
Homework 12: Dynamic Dispatch and Polymorphism

Instructor: Mehmet Emre

CS 32 Spring ’22

Due: 5/18 2pm
Name & Perm #:

Homework buddy (leave blank if you worked alone):
Reading: PS 15.3

1 (10 pts)

In the lectures, I mentioned dynamic dispatch is a form of polymorphism, and that some object-oriented pro-
gramming resources mistakenly conflate the two.

1. (4 pts) What is dynamic dispatch? Why is it "dynamic"? Explain briefly.

2. (4 pts) What is the purpose of polymorphism? How does it differ from dynamic dispatch? Polymorphism
is more general than dynamic dispatch, explain how it is more general.

2

On page 868 in PS, in Display 15.12, line 17, there is a use of the overloaded operator < on two objects, one of
type Sale and another of type DiscountSale. The definition of that operator appears on lines 25 - 28 of Display
15.10 on p. 866. On line 27, there is an invocation of first.bill() and an invocation of second.bill().

1. (2 pts) For first.bill() in the case of the invocation in Display 15.12 line 17, where is the definition of
the member function bill() that is invoked? Give the name of the class whose bill() function is invoked.

2. (2 pts) For second.bill() in the case of the invocation in Display 15.12 line 17, where is the definition of
the member function bill() that is invoked? Give the name of the class whose bill() function is invoked.

3. (2 pts) The bill() member function is special in that the exact definition of the function used depends
on what type of object it is invoked on–whether it is an instance of Sale or DiscountSale, which may not
be known until run-time. What is the C++ keyword that is used in the definition of bill() that signals
this so called dynamic dispatch of the member function?

1



3 (8 pts)

Assume we have a base class (e.g. Person) and derived class (e.g. Student), and there is some function such as
toString() that is defined in both the base class and the dervied class.

For example, suppose that:

• for Person, toString returns the person’s name, e.g. Chris Gaucho

• for Student, toString returns the person’s name and their perm number in parentheses. e.g. Chris
Gaucho (1234567).

We say that toString() is overridding in the derived class. However, in PS (15.3), Savitch makes a dis-
tinction between the two cases, one that is properly called overriding and another that should really be called
redefinition. Most of the cases we’ve seen so far are really just redefinition. What is different, according to Sav-
itch, in the case where this should be called overriding? Hint: the override keyword covered in class is relevant
here.

2



4

Given the following class definitions (you may assume all necessary libraries have already been included):

class A {
public:

~A() { cout << "A::~A()" << endl; }
void f1() { cout << "A::f1()" << endl; }
virtual void f2() { cout << "A::f2()" << endl; }

};
class B : public A {
public:

virtual ~B() { cout << "B::~B()" << endl; }
virtual void f1() { cout << "B::f1()" << endl; }
void f2() { cout << "B::f2()" << endl; }
virtual void f3() = 0;

};
class C : public B {
public:

~C() { cout << "C::~C()" << endl; }
void f1() { cout << "C::f1()" << endl; }
virtual void f3() { cout << "C::f3()" << endl; }

};

1. (6 pts) What will the output be if we ran the following code (be sure to include destructors’ output):

void f1() { C c1; A a1 = c1; a1.f1(); a1.f2(); }

int main() { f1(); }

2. (6 pts) What will the output be if we ran the following code (be sure to include destructors’ output):

void f2() { B* b1 = new C(); b1->f1(); b1->f2(); b1->f3(); delete b1; }

int main() { f2(); }

3


	(10 pts)
	
	(8 pts)
	

