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Abstract

Wordle is a single player word-guessing game in which the player wishes

to discover a secret word, chosen from a dictionary, through a series of guesses

that must also be words from said dictionary, and of the same length. After

each guess, the player is notified of the positions in which their guess matches

the secret word, as well as letters in the guess that appear in the secret word

in a different position. We study the game of Wordle from a complexity per-

spective, proving NP-hardness of a natural formalization, even when restricted

to instances where words have length 5. We also present results regarding its

parameterized complexity and offer some related open problems.

1 I N T R O

Wordle (https://www.nytimes.com/games/wordle/index.html) is a single-playerweb-basedword-

guessing game that combines principles of classic games such as Mastermind,

Hangman, and Jotto, which have been studied from a computational perspective

before [1, 2, 3, 4, 5]. Created by Josh Wardle for his partner [6], and published in

October 2021, Wordle has reached an unprecedented level of virality and gained

millions of daily players [7, 8]. As for the popularity of the game, Wardle sug-

gested that part of the game’s success is due to its artificial scarcity, as it can

only be played once a day [9]. Others have pointed at the distinctive colorful

patterns with which players share their results [10]. This article can be seen

as yet another reason for Wordle’s success: its intrinsic complexity. The rela-

tionship between in games and their computational complexity has been pro-

posed by multiple authors [11, 12], and thus by establishing theoretical results

of hardness for Wordle we can explain part of its challenging nature, and make

the reader feel better about their unsuccessful guesses.
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𝑤 = ABBEY

𝑝1 A L G A E
𝑝2 K E E P S
𝑝3 O R B I T
𝑝4 B R I B E
𝑝5 A B B O T
𝑝6 A B B E Y

𝑤 = KEBAB

𝑝1 A B B E Y
𝑝2 B A B E S
𝑝3 K E E P S
𝑝4 K E B A B

𝑤 = H I P P Y

𝑝1 C R A N E
𝑝2 B O I L S
𝑝3 G U M M Y
𝑝4 K I D D Y
𝑝5 J I F F Y
𝑝6 F I Z Z Y

Figure 1: Illustration of three different instances of Wordle. In all of them 𝑘 = 5 and

ℓ = 6. The first two games are won by the guesser, while the third one is lost.

The game is played over a dictionary of words 𝐷 , all of which have length 𝑘 ,

that is fully known to the player. Formally, for a given alphabet Σ, 𝐷 ⊆ Σ𝑘 . The
player, who we will denote the guesser, wishes to discover a secret word𝑤 ∈ 𝐷
through a series of at most ℓ guesses 𝑝1, 𝑝2, . . . , 𝑝ℓ , all of which must be words

belonging to𝐷 . The guesser is said to win if one of its guesses 𝑝𝑖 is exactly equal

to 𝑤 , and she loses if no such match occurs after ℓ guesses. Whenever a guess

𝑝 is made, the guesser receives some information about the relation between 𝑝

and the secret word 𝑤 : she is notified of every position 𝑖 such that 𝑝 [𝑖] = 𝑤 [𝑖],
and also of positions 𝑖 such that the letter 𝑝 [𝑖] is present in the word𝑤 but not

in position 𝑖 . More precisely, to handle the case of repeated letters, we will use

a notion of marking with colors. For an index 1 ≤ 𝑖 ≤ 𝑘 , 𝑤 [𝑖] marks 𝑝 [𝑖] with
green iff𝑤 [𝑖] = 𝑝 [𝑖]. If𝑤 [𝑖] ≠ 𝑝 [𝑖], and the set

𝑆𝑖 = { 𝑗 : 𝑝 [ 𝑗] = 𝑤 [𝑖], 𝑝 [ 𝑗] is unmarked}

is not empty, then𝑤 [𝑖] marks 𝑝 [min(𝑆𝑖)] with yellow. All letters 𝑝 [ 𝑗] that were
not marked at this point are marked with gray. A few games of Wordle are

illustrated in Figure 1.

Despite its apparent simplicity, Wordle allows for encoding hard problems,

as we present in the next section.

2 Complexity R E S U L T S

In order to study the complexity of Wordle, we need to define an appropriate

formal decision problem for it. Let us assume that the guesser wants to design

a strategy that ensures winning the game (i.e., guessing correctly within ℓ at-

tempts) regardless of what the secret word was chosen to be. Thus, we can pose

the following problem:
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PROBLEM : Wordle
INPUT : (𝐷, ℓ) with 𝐷 ⊆ Σ𝑘 the dictionary,

and an integer ℓ ≥ 1, the number of guesses allowed.

OUTPUT : Yes, if there is a winning strategy for the guesser,

and No otherwise.

Note that Σ and 𝑘 are not explicitly part of the input, but can trivially be

deduced from 𝐷 . We claim now that if a guesser knew a polynomial time al-

gorithm 𝐴 for this problem, then they could use 𝐴 to win the game whenever

it was possible, as we explain next. First, we will define the notion of feasible

words. Observe that at any point in the game, the information the guesser has

received thus far (i.e., the letters that have been marked or not in all the pre-

vious guesses) defines a dictionary 𝐷 ′ ⊆ 𝐷 of words that could happen to be

the secret word, which we call feasible words. For example, after the first guess

illustrated in the left-most game of Figure 1, the word GAMESwould be infeasible
with the information received for the first guess, as the letter Gwas not marked.

Similarly, the word KEEPS used in the second guess of that same game is also

infeasible with the result of the first guess, as it does not contain the letter A that
was marked in the first position. The word AMAZE would not be feasible either,

as in the first guess the letter E at the end is marked with yellow, and thus cannot

appear in that position in the secret word. In contrast, the word ANNEX would

be feasible, and naturally ABBEY, the actual secret word of that game, is feasible

too. Formally, a word 𝑝 ∈ 𝐷 is feasible after a sequence of guesses 𝑝1, . . . , 𝑝𝑛 if

and only if the following conditions hold:

1. No letter 𝑝 [𝑖] was marked gray in a previous guess 𝑝 𝑗 , for 1 ≤ 𝑖 ≤ 𝑘, 1 ≤
𝑗 ≤ 𝑛.

2. No letter 𝑝 [𝑖] was marked yellow in a previous guess 𝑝 𝑗 , such that 𝑝 𝑗 [𝑖] =
𝑝 [𝑖], for 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑛.

Now, provided a guesser can solve the Wordle problem efficiently, they can

play optimally by following Algorithm 1. To see correctness, we can proceed

by induction over ℓ . The base case ℓ = 0 is trivially correct. For the inductive

case, if |𝐷 | = 1 then also correctness is trivial. In any other case, if there is

a winning strategy for the guesser within ℓ attempts, that implies that after

the first guess, regardless of what the secret word is, it will be possible to win

within ℓ−1 attempts over the dictionary restricted to the corresponding feasible

words. Thus, the inductive hypothesis guarantees that calls to the algorithm

with parameter ℓ −1will be correct, thus implying correctness of the algorithm.

This justifies the choice of Wordle as a decision problem. Our next step is to

study its complexity. We will prove the following theorems:

Theorem 1. Wordle is NP-hard, and it is W[2]-hard when parameterized by ℓ ,
the number of guesses allowed.
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Algorithm 1:WordleGuesser(𝐷, ℓ)
1.1 if ℓ = 0 then
1.2 guesser loses.

1.3 if |𝐷 | = 1 then
1.4 guess the only word in 𝐷 and win.

1.5 for 𝑝 ∈ 𝐷 do
1.6 potentialGuess← true
1.7 for𝑤 ∈ 𝐷 do
1.8 𝑚 ← marking for guess 𝑝 if𝑤 is the secret word

1.9 𝐷′← {𝑝′ ∈ 𝐷 | 𝑝′ is feasible after𝑚}
1.10 if𝑊𝑜𝑟𝑑𝑙𝑒𝐺𝑢𝑒𝑠𝑠𝑒𝑟 (𝐷′, ℓ − 1) is a loss for the guesser then
1.11 potentialGuess← false
1.12 break

1.13 if potentialGuess then
1.14 Guesser can win using 𝑝 as its next guess.

1.15 If this point is reached, then the guesser loses.

Theorem 2. Wordle cannot be solved in polynomial time unless P = NP even
when restricted to instances where 𝑘 = 5.

Theorem 3. Wordle can be solved in polynomial time if the alphabet size 𝜎 = |Σ|
is constant.

In order to prove Theorem 1, we will reduce from Almost Set Cover. An

input of Almost Set Cover is a pair (F , 𝑐), where F is a family of sets 𝑆1, . . . , 𝑆 | F |
whose union we denote by𝑈 , and 𝑐 is an integer. The goal is to decide whether

there is a sub-family F ′ ⊆ F of at most 𝑐 sets such that�����𝑈 \
( ⋃
𝑆∈F′

𝑆

)����� ≤ 1.

In other words, the goal is to decide whether it is possible to cover all the el-

ements of the universe, except for perhaps one of them, with 𝑐 sets. Almost
Set Cover is W[2]-hard (parameterized by 𝑐), as we show next. It is a simple

reduction from standard Set Cover, which is known to beW[2]-hard.

Lemma 1. Almost Set Cover isW[2]-hard, when parameterized by 𝑐 .

Proof. Let (F , 𝑐) be an instance of Set Cover, and let 𝑈 =
⋃F be its universe.

Create first 𝑈 ′ of size 2|𝑈 | in the following way: for each element 𝑢 ∈ 𝑈 put
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elements 𝑢+ and 𝑢− in 𝑈 ′. Now, create F ′ with |F | sets as follows: for each set

𝑆 ∈ F , put into F ′ a set
𝑆 ′ = {𝑢+, 𝑢− | 𝑢 ∈ 𝑆}.

We claim (F , 𝑐) ∈ Set Cover iff (F ′, 𝑐) ∈ Almost Set Cover. For the forward

direction, if F ∗ ⊆ F is a set cover of size 𝑐 for F , then its corresponding sub-

family

F ∗′ = {𝑆 ′ | 𝑆 ∈ F ∗}

is trivially a set cover for F ′. On the other hand, if no sub-family 𝐾 of at most

𝑐 sets in F covers F , that means that for every such sub-family 𝐾 , there is at

least one element 𝑢 ∉
⋃
𝐾 . But now if we consider

𝐾 ′ = {𝑆 ′ | 𝑆 ∈ 𝐾},

then both 𝑢+ and 𝑢− are not covered by 𝐾 ′. This implies that every sub-family

𝐾 ′ ⊆ F ′ of size at most 𝑐 leaves at least two elements outside. This concludes

the reduction, as it can be clearly computed in FPT-time. □

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let (F , 𝑐) be an instance of Almost Set Cover. We will build

a dictionary 𝐷F as follows. First, we will need |𝑈 | + 2 symbols, that we will

denote ΣF = {⊥, 1, 𝑠1, . . . , 𝑠 |𝑈 |}. Now, 𝐷F will contain two different kinds of

words, element-words and set-words, both of which will have length |𝑈 |. For

every element 𝑢𝑖 ∈ 𝑈 , build its corresponding word𝑤𝑢𝑖 as:

𝑤𝑢𝑖 [ 𝑗] =
{
1 if 𝑖 = 𝑗

𝑠𝑖 otherwise.

All words 𝑤𝑢𝑖 created this way constitute the set of element-words. Now, for

every set 𝑆𝑖 ∈ F , build its corresponding set-word𝑤𝑆𝑖 as:

𝑤𝑆𝑖 [ 𝑗] =
{
1 if 𝑢 𝑗 ∈ 𝑆𝑖
⊥ otherwise.

We now claim that (F , 𝑐) ∈ Almost Set Cover iff (𝐷F, 𝑐 + 1) ∈ Wordle. For the
forward direction, if there is a family of sets F ′, with |F ′ | ≤ 𝑐 and such that

|𝑈 \⋃F ′ | ≤ 1, then the guesser can use the set-words 𝑤𝑆 for every 𝑆 ∈ F ′ to
guarantee a win. If the secret word𝑤 was chosen to be a set-word, then we have

two cases after the first guess 𝑤𝑆 , 𝑆 ∈ F ′. Either the secret word 𝑤 is revealed

to be exactly 𝑤𝑆 , in which case the guesser wins, or it is another set-word 𝑤𝑆 ′ ,

in which case we claim that after guess𝑤𝑆 is made,𝑤𝑆 ′ will be the only feasible

word remaining and thus the guesser will win in her second turn. Indeed, for

every element 𝑢𝑖 ∈ 𝑈 there are 4 cases:
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1. (𝑢𝑖 ∈ 𝑆,𝑢𝑖 ∈ 𝑆 ′). In this case𝑤𝑆 [𝑖] = 𝑤𝑆 ′ = 1, and it will be marked green.

This makes all words that do not have a 1 in their 𝑖-th position infeasible.

2. (𝑢𝑖 ∈ 𝑆,𝑢𝑖 ∉ 𝑆 ′). In this case 𝑤𝑆 [𝑖] = 1, and it will not be marked green.

This makes all words that have a 1 in their 𝑖-th position infeasible.

3. (𝑢𝑖 ∉ 𝑆,𝑢𝑖 ∈ 𝑆 ′). In this case 𝑤𝑆 [𝑖] = ⊥, and it will not be marked green.

This makes all words that have a ⊥ in their 𝑖-th position infeasible.

4. (𝑢𝑖 ∉ 𝑆,𝑢𝑖 ∉ 𝑆 ′). In this case𝑤𝑆 [𝑖] = 𝑤𝑆 ′ = ⊥, and it will be marked green.

This makes all words that do not have a ⊥ in their 𝑖-th position infeasible.

Note that regardless of the case, words that do not agree with 𝑤𝑆 ′ on their 𝑖-

th position become infeasible, and as this happens for every 𝑖 ∈ [𝑈 ], the only
remaining feasible word is𝑤𝑆 ′ . As 𝑐+1 ≥ 1, and we have shown that if the secret

word is a set-word then the guesser can win in at most 2 turns, we can safely

proceed to the case where the secret word is an element-word. For this case the

guesser can first make 𝑐 guesses corresponding to all the words 𝑤𝑆 for 𝑆 ∈ F ′.
Let 𝑤𝑢𝑖 be the secret element word. As |𝑈 \⋃F ′ | ≤ 1, there are two cases: in

the first case, there is some 𝑆 𝑗 ∈ F ′ such that 𝑢𝑖 ∈ 𝑆 𝑗 . Whenever the guess 𝑤𝑆 𝑗

is made, as it will happen that𝑤𝑆 𝑗
[𝑖] = 𝑤𝑢𝑖 [𝑖] = 1. This will reveal a 1 in the 𝑖-th

position of the secret word, and as it is an element-word, this unambiguously

reveals 𝑤𝑢𝑖 to the guesser, who will win in the next turn, and thus in no more

than 𝑐 + 1 guesses. The second case is when 𝑤𝑢𝑖 , the secret word, is the only

element of𝑈 \⋃F ′, and thus the guesser simply say that word in its next turn,

also ensuring a win. This concludes the forward direction.

For the backward direction, assume every sub-family F ′ ⊆ F leaves at least

two elements 𝑢1 and 𝑢2 of𝑈 uncovered. Then we claim that no strategy for the

guesser can guarantee a win within 𝑐 +1 attempts. Indeed, for any set of 𝑐 initial

guesses the guesser can make, we claim that there are at least two feasible words

remaining, and thus the guesser cannot ensure a win in her last turn. To see this,

consider any sequence𝑊 = 𝑤1, . . . ,𝑤𝑐 of 𝑐 guesses, and then define

Fsets = {𝑆 ∈ F | 𝑤𝑆 ∈𝑊 } ; Felem = {{𝑢} ⊆ 𝑈 | 𝑤𝑢 ∈𝑊 }.

Now observe that every element-word 𝑤𝑢 such that 𝑢 ∉
⋃ (Fsets ∪ Felem), is

feasible after the sequence of guesses𝑊 . Also notice that for every 𝑆 ∈ Felem
there is a set 𝑆 ′ ∈ F such that 𝑆 ⊆ 𝑆 ′. Thus, if for every set 𝑆 ∈ Felem we

choose a set 𝑆 ′ ∈ F such that 𝑆 ⊆ 𝑆 ′, we get a collection of sets F ′ such that

(⋃Felem) ⊆ (⋃F ′) and |F ′ | = |Felem |. This implies that (Fsets ∪ F ′) ⊆ F
and (Fsets ∪ F ′) is a collection of at most 𝑐 sets, and thus there are at least two

elements 𝑢1, 𝑢2 ∈ 𝑈 that are not on its union. We thus also have that

{𝑢1, 𝑢2} ∩
(⋃
Fsets ∪ Felem

)
= ∅,

and consequently, both 𝑤𝑢1
and 𝑤𝑢2

are feasible words, which implies it is not

possible to guarantee a win in the next guess. This concludes the proof.

□
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Theorem 2 captures an arguably essential part of Wardle’s Wordle: difficulty

does not require long words. Its proof is inspired by that of coNP-hardness for

Evil Hangman by Barbay and Subercaseaux [1]. We will use a result in hardness

of approximation to prove that Wordle cannot be solved efficiently unless P =

NP. In particular, we will use that 𝛾 (𝐺), the size of the smallest dominating

set in a 4-regular graph 𝐺 , is NP-hard to approximate within 1 + 1

390
[13, 14].

For our purpose it will be enough to use that is NP-hard to compute a (1 + 𝜖)-
approximation.

Proof of Theorem 2. Let 𝐺 be a 4-regular graph. We will work with words of

length 𝑘 = 5. The alphabet Σ will be the vertex set of 𝐺 . We build a dictionary

𝐷𝐺 from 𝐺 as follows: for every vertex 𝑣 ∈ 𝐺 , we create two words,𝑤𝑣 and𝑤
′
𝑣 :

the word 𝑤𝑣 has 𝑣 as its first symbol is 𝑣 , and its 4 remaining symbols are the

neighbors of 𝑣 (the order of these 4 symbols can be chosen arbitrarily), while the

word 𝑤 ′𝑣 consists simply of the symbol 𝑣 repeated 5 times. Given a dictionary

𝐷 , let𝑊 (𝐷) be the minimum value of ℓ such that (𝐷, ℓ) is a positive instance of
Wordle. We now claim that 𝛾 (𝐺) ∈ [𝑊 (𝐷𝐺 ) −4,𝑊 (𝐷𝐺 )]. Note that this claim is

enough to prove the theorem, as a polynomial time algorithm forWordlewould
imply that𝑊 (𝐷𝐺 ) can be computed in polynomial time, and thus 𝛾 (𝐺) could be
approximated up to an additive constant, contradicting its 1 + 1

390
hardness of

approximation [13, 14]. In order to prove 𝛾 (𝐺) ≥ 𝑊 (𝐷𝐺 ) − 4, we show that a

dominating set of size 𝑑 for𝐺 implies a guessing strategy that guarantees a win

within 𝑑 + 4 guesses. Assume𝐺 has a dominating set 𝑆 of size at most 𝑑 and the

secret word is either𝑤𝑢 or𝑤
′
𝑢 for some𝑢 ∈ 𝑉 (𝐺). Now consider the sequence of

guesses𝑤𝑣, 𝑣 ∈ 𝑆 . If𝑢 ∈ 𝑆 we have two cases, either the secret word was𝑤𝑢 , and

thus the secret word was already guessed in 𝑑 guesses, or the secret word was

𝑤 ′𝑢 , in which case the first symbol of guess 𝑤𝑢 was marked green, leaving only

𝑤 ′𝑢 as a feasible word, and thus allowing a guaranteed win within 𝑑 + 1 guesses.
If 𝑢 ∉ 𝑆 , then as 𝑆 is a dominating set 𝑢 must be a neighbor of some vertex 𝑣★

in 𝑆 . If the secret word was𝑤𝑢 , then the symbol 𝑢 in guess𝑤𝑣★ must have been

marked yellow, which allows to find𝑤𝑢 by guessing the sequence of words𝑤𝑢′

for 𝑢′ ∈ 𝑁 (𝑣∗), which must contain 𝑤𝑢 , as 𝑢 is a neighbor of 𝑣 . This guessing

strategy has at most 𝑑 + 4 guesses and it is guaranteed to succeed. On the other

hand, if the secret word was𝑤 ′𝑢 , then the symbol 𝑢 in guess𝑤𝑣★ must have been

marked green, which makes 𝑤 ′𝑢 the only feasible word, and thus allows to win

in 𝑑 + 1 guesses. In order to prove 𝛾 (𝐺) ≤𝑊 (𝐷𝐺 ), we show that is not possible

to guarantee a win within 𝛾 (𝐺) − 1 guesses. Indeed, any sequence 𝜎 of 𝛾 (𝐺) − 1
guesses induces a set 𝑆 of vertices by considering the first symbol of each guess.

As |𝑆 | ≤ 𝛾 (𝐺) − 1, there needs to be a vertex 𝑣 that is not dominated by 𝑆 , the

word 𝑤 ′𝑣 is still a feasible word that is not part of 𝜎 , and thus in the case where

every request in 𝜎 was entirely marked with gray, then 𝜎 does not make the

guesser win. As this is true for any sequence 𝜎 of length 𝛾 (𝐺) − 1, we conclude
𝑊 (𝐷𝐺 ) ≥ 𝛾 (𝐺).

□
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We naturally obtain hardness of approximation as a corollary.

Corollary 1. Let𝑊 (𝐷) be the minimum number of guesses ℓ such that the guesser
can guarantee to win a game of Wordle over dictionary 𝐷 within ℓ guesses, i.e.,
(𝐷, ℓ) ∈ Wordle. Then it is NP-hard to approximate𝑊 (𝐷) within 1 + 1

390
.

Interestingly, both the proof of Theorem 1 and Theorem 2 crucially depend

on variable length alphabets. This if further confirmed by Theorem 3, which

will we prove next. First, consider the following lemma:

Lemma 2. Wordle restricted to instances where ℓ ≤ 𝑐 , for some fixed constant 𝑐 ,
can be solved in polynomial time.

Proof. This can be seen by analizing the branching factor and depth of the as-

sociated game-tree. The game-tree has a branching factor of 𝑂 (𝐷), as at any
point the guesser can choose one of the𝑂 (𝐷) feasible words remaining, and for

each such word there are at most 𝑂 (𝐷) possible responses the guesser can get,

depending on what the secret word𝑤 was at that point. The game-tree has also

depth at most ℓ , which implies thus that the size of the game-tree is at most

𝑂 (𝐷ℓ ) = 𝐷𝑂 (1)
, and thus the optimal guess at any given point can be computed

in polynomial time. The result follows from this. □

Now we can a prove a key lemma relating 𝜎 = |Σ| and ℓ .
Lemma 3. On a game of Wordle over an alphabet Σ of size 𝜎 = |Σ|, the guesser
can always win in at most 𝜎 guesses.

Proof. Consider the following simple algorithm for the guesser: at any point of
the game, choose any feasible word as a guess. We will show that this algorithm

requires at most 𝜎 guesses to find the secret word. Indeed, for each index 1 ≤
𝑖 ≤ 𝑘 , let us define sets 𝑆 (𝑖) ⊆ Σ as:

𝑆 (𝑖) = {𝑠 ∈ Σ | there is a feasible word𝑤 ∈ 𝐷, such that𝑤 [𝑖] = 𝑠}.

Note that, before the first guess, 𝑆 (𝑖) = Σ for every 𝑖 . The key idea is now the

following: after a feasible word𝑤 is guessed by the aforementioned strategy, the

following holds for every 1 ≤ 𝑖 ≤ 𝑘 : 𝑤 [𝑖] can either be marked green, in which

case 𝑆 (𝑖) ← {𝑤 [𝑖]}, or it can be marked with gray or yellow, in which case

𝑆 (𝑖) ← 𝑆 (𝑖) \ {𝑤 [𝑖]}. This implies that after every feasible guess each set 𝑆 (𝑖)
either becomes a singleton or decreases its size by 1. Therefore, by doing 𝜎 − 1
feasible guesses, either the secret word has been found (in which case we are

done), or it happens that every set 𝑆 (𝑖) must be a singleton, and thus there will

be only one remaining feasible word, which allows the guesser to win within 𝜎

guesses in total. □

We are now ready to use the previous lemmas and prove Theorem 3.

Proof of Theorem 3. Consider an instance (𝐷, ℓ) of Wordlewhere |Σ| ∈ 𝑂 (1). By
Lemma 3, if |Σ| ≤ ℓ , then simply answer Yes. Otherwise ℓ ≤ |Σ| = 𝑂 (1), and
thus by Lemma 2 the result follows. □
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3 O P E N Problems
We now offer problems that our analysis leaves open.

1. IsWordle inNP, or is it PSPACE-complete? It is not hard to see thatWordle
is in PSPACE, by simply computing its associated game-tree, which has

polynomial depth by Lemma 3.

2. IsWordle in FPTwhen parameterized by 𝜎 = |Σ|? The proof of Theorem 3

provides an algorithm in time 𝐷𝑂 (ℓ )
, and it seems challenging to obtain a

poly(𝐷) · 𝑓 (ℓ) algorithm for some computable function ℓ .

3. How does is the complexity of Wordle affected by having a dictionary

that is not presented as a list of word, but rather in some more compact

representation as a finite automaton? We can envision𝐷 to be provided as

a finite automaton, for which all accepted words of length 𝑘 are considered

part of the dictionary. This affects for example the proof of Theorem 3, as

now a branching factor of |𝐷 | can be exponential in the input size.
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