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Abstract
Consider a secure environment (say an airport) that has a unique entry and a unique exit
point with multiple inter-crossing paths between them. We want to place (minimum
number of) trackers (or check points) at some specific intersections so that based on the
sequence of trackers a person has encountered, we can identify the exact path traversed
by theperson.Motivatedby such applications,we study theTracking Pathsproblem
in this paper. Given an undirected graph with a source s, a destination t and a non-
negative integer k, the goal is to find a set of at most k vertices, a tracking set, that
intersects each s–t path in a unique sequence. Such a set enables a central controller
to track all the paths from s to t . We first show that the problem is NP-complete. Then
we show that finding a tracking set of size at most k is fixed-parameter tractable when
parameterized by the solution size. More specifically, given an undirected graph on n
vertices and an integer k, we give a polynomial time algorithm that either determines
that the graph cannot be tracked by k trackers or produces an equivalent instance with
O(k7) edges.

Keywords Graph · s–t paths · Tracking paths · Parameterized complexity · FPT ·
Kernel · Feedback vertex set

1 Introduction

Trackingmovingobjects in a secure environment is an active area of research.Typically
a secure environment is modelled as a network with fixed entry and exit point(s).
Monitoring is achieved by placing sensor nodes which monitor the movements of
the objects in the network. For a detailed study of field surveillance for the purpose
of habitat monitoring, securing buildings, and intruder tracking please refer to [3,6].
While tracking traces of illegal activities over the Internet, the biggest challenge is to
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track moving data packets [13,15]. One may want to place trackers at an appropriate
subset of routers in the network in order to track such activities.

Motivated by these applications, in a recent paper, Banik et al. [2] considered the
problem of target tracking theoretically andmodeled it as the following graph theoretic
problem. Let G = (V , E) be an undirected graph without any self loops or parallel
edges, and suppose G has an unique entry vertex s and an unique exit vertex t . A
simple path from s to t is called an s–t path. Let P be an s–t path in G and T ⊆ V be
a set of vertices. By λT

P we denote the sequence of vertices of T obtained from P by
deleting the vertices that do not belong to T . T is a tracking set for G, if and only if
for any two distinct s–t paths P1 and P2, λT

P1
�= λT

P2
. The vertices in set T are called

trackers. Banik et al. [2] proved that the problem of finding a minimum-cardinality
tracking set with respect to the shortest s–t paths (Tracking Shortest Paths) is
NP-hard and APX-hard. In this paper we consider the problem of tracking all simple
paths and not just the shortest paths. In particular, we study the following problem.

Tracking Paths (G, s, t, k) Parameter: k
Input: An undirected graph G = (V , E) with two distinguished vertices s and t ,
and a non-negative integer k.
Question: Is there a tracking set T of size at most k for G?

Observe that if we consider all s–t paths and not just the simple s–t paths, then
the solution is quite simple. We first retain only those vertices and edges that are
reachable from s and t , and delete the remaining vertices and edges. Now the set of all
remaining vertices form a tracking set. Note that any path that traverses an edge back
and forth, more than once, makes it necessary for both end points of the edge to be
marked as trackers. Hence, the set of all vertices reachable from both s and t , forms an
optimum tracking set, when we consider all s–t paths, including the paths that are not
simple.

Our Results and Methods. In this paper we study Tracking Paths from the per-
spective of parameterized complexity. Our first contribution is the following theorem.

Theorem 1 Tracking Paths is NP-complete.

As it is the case for any proof of NP-completeness, the proof of Theorem 1 requires
two steps: hardness, and, containment inside NP. While hardness follows by a slight
modification to a result of Banik et al. [2] (see Lemma 1), it is not immediately clear
why the problem is in NP. To check whether a given set of vertices is a tracking set
for G, we need to go over all pairs of paths between s and t , and check whether
the sequence of trackers in each of them is unique. However, the number of paths
between s and t could be exponentially large, and thus it does not seem possible to
exploit the definition of the problem in order to show its containment in NP. Thus, to
show that the problem belongs to NP, we first give an alternate characterization for
a tracking set. Further, we show that T is a feedback vertex set (FVS) for G. That is,
G\T is a forest. Using this property and our alternate characterization of tracking set
we give a polynomial time algorithm to test whether a given set of vertices is a tracking
set.
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Once we have shown that Tracking Paths is NP-complete, we study the problem
from the viewpoint of parameterized complexity. In particular we design a fixed-
parameter tractable (FPT) algorithm for Tracking Paths. That is, we design an
algorithm for Tracking Paths with running time 2O(k log k)nO(1), where k is the
size of the tracking set we seek. In fact, we give a stronger result than just designing
an FPT algorithm; we give a polynomial kernel for the problem. In particular, given an
instance (G, s, t, k), we give a polynomial time algorithm that either determines that
(G, s, t, k) is a NO instance or produces an equivalent instance with O(k6) vertices
and O(k7) edges. This polynomial time algorithm is called a kernelization algorithm
and the reduced instance is called a kernel. For more details about parameterized
complexity and kernelization we refer to monographs [4,5]. Our second contribution
is the following result.

Theorem 2 Tracking Paths admits a polynomial kernel of size O(k7).

The kernelization algorithm (proof of Theorem 2) works along the following lines.
Let (G, s, t, k) be an input instance to Tracking Paths. We first apply a simple
reduction rule to ensure that each edge and vertex in G belongs to some s–t path. Then
we prove two structural claims: (a) every tracking set S is an FVS; and (b) if there
exists a pair of vertices x and y in G, such that x and y have at least k + 4 vertex
disjoint paths between them, then (G, s, t, k) is a NO instance.

Next, using the known factor 2-approximation algorithm for the Feedback Ver-

tex set problem, we compute a set S such that G\S is a forest. If |S| > 2k then we
immediately return that (G, s, t, k) is a NO instance. Else, we assume that the size
of S is at most 2k. Now using the second structural claim regarding tracking set, we
show that the number of connected components in G\S, and the number of vertices
in V (G\S) that have at least two neighbors in S, is at most kO(1). Next, we bound the
number of vertices in V (G\S) that have exactly one neighbor in S. To do this, we fix
a tree R in G\S and a vertex v ∈ S, and bound the size of the set of neighbors of v,
NR(v), in R. Towards this, we consider the minimal subtree T in R that contains all
the neighbors of v, and show that if |NR(v)| > kO(1), then we can partition the tree T
into k + 1 parts in such a way that each part must contain a vertex marked as a tracker.
This bounds the degree of each vertex in S into V (G\S) by kO(1). This, together with
some well-known counting methods on trees, gives us the desired polynomial kernel
for Tracking Paths.

RelatedWork. Different structural properties of graphs have been studied previously
to analyze navigational models in network settings. In a seminal paper, Slater [14]
introduced the concept of metric dimension of a graph. In graph theory, the metric
dimension of a graph G is the minimum cardinality of a subset S of vertices such that
all other vertices are uniquely determined by their distances to the vertices in S [7]. One
application ofmetric dimension is the problem of determining the location of an object
in a network, depending on its distance from different landmarks in the network [11].
For a survey of metric dimension in graphs see [8]. Furthermore, as mentioned before
Tracking Paths is also related to Feedback Vertex set in a graph. Feedback
Vertex set is NP-hard [9], has a 2 approximation algorithm [1], a quadratic sized
kernel [16] and an FPT algorithm running in time O((3.619)knO(1)) [12].
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1.1 Preliminaries

A kernelization algorithm is typically obtained using what are called reduction rules.
These rules transform a given parameterized instance to another equivalent instance
in polynomial time. A rule is said to be safe if the resulting graph has a tracking set
of size at most k if and only if the original instance has one.

As mentioned earlier, when considering tracking set for a graph G = (V , E), we
assume that we are given a unique source s ∈ V and a unique destination t ∈ V , and
we aim to find a tracking set that can distinguish between all simple paths between s
and t . Here s and t are also referred to as the terminal vertices. We say that a vertex v is
a tracker, if v has been marked as a tracker. If a, b ∈ V , then unless otherwise stated,
{a, b} represents the set of vertices a and b, and (a, b) represents an edge between a
and b. For a vertex, v ∈ V , its neighborhood, N (v) ⊆ V consists of the set of vertices
that are adjacent to v.

For a path P , V (P) denotes the vertex set of path P . For a subgraph (or graph) G ′,
V (G ′) denotes the vertex set of G ′, and E(G ′) denotes the edge set of G ′. Let P1 be
a path between vertices a and b, and P2 be a path between vertices b and c, such that
V (P1) ∩ V (P2) = {b}. Then, by P1 · P2, we denote the path between a and c, formed
by concatenating paths P1 and P2 at vertex b. Two paths P1 and P2 are said to be
vertex disjoint if their vertex sets do not intersect, except possibly at the end points,
i.e. V (P1) ∩ V (P2) ⊆ {a, b}, where a and b appear only as ending points of one or
both of the paths. If G = (V , E) is a graph, then G\V ′ depicts the graph induced
by the vertex set V \V ′, and (G\V ′) ∪ V ′′ depicts the graph induced by the vertex
set (V \V ′) ∪ V ′′, where V ′, V ′′ ⊆ V . Pab denotes a simple path between vertices a
and b, where a, b ∈ V . For a path P , if x, y ∈ V (P), then by P[x, y], we denote the
segment of path P lying between the vertices x and y. For two paths P1 and P2, we say
P1 = P2, if both P1 and P2 consist of the same sequence of vertices. P1 ∪ P2 denotes
the graph induced by the vertices in V (P1) ∪ V (P2). Similarly, P1[a, b] ∪ P2[c, d]
denotes the graph induced by vertices in segments of paths P1 and P2, lying between
vertices a, b and c, d respectively.

2 NP-Completeness

In this section we show that Tracking Paths is NP-complete. We first show that
the problem is NP-hard. Banik et al. [2] showed Tracking Shortest Paths to
be NP-hard by giving a reduction from Vertex Cover to Tracking Shortest

Paths. We show that with some minor modification, the same reduction also proves
Tracking Paths to be NP-hard.

Lemma 1 Let (G, k) be an instance of Vertex Cover. Then there exists an instance
(G ′, k′) of Tracking Paths, such that G has a vertex cover of size k if and only if
G ′ has a tracking set (for all paths) of size k′ = k + |E | + 2.

Proof Let {G = (V , E), k} be an instance of Vertex Cover. We construct graph
G ′ = (V ′, E ′) from G = (V , E) as follows. Add a vertex in G ′ for each vertex in G,
and for each edge in G. Also add vertices s and t in G ′. Now V ′ = Vr ∪ Er ∪ {s, t},
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Fig. 1 Reduction from Vertex Cover to Tracking Paths (circled vertices represent vertex cover in G,
and tracking set in G′)

where Vr = {uv | v ∈ V } and Er = {ue | e ∈ E}. In G ′, we introduce an edge
between a vertex uv ∈ Vr and a vertex ue ∈ Er if the edge corresponding to e in G,
is incident to v in G. Also introduce an edge between uv and s, for each uv ∈ Vr , and
introduce an edge between ue and t , for each ue ∈ Er , as shown in Fig. 1. Add the
vertices a, b, and d to V ′, and the edges (s, a), (s, b), and (d, t) to E ′. Also add the
edges (a, x), for each x ∈ E , and the edges (a, d) and (b, d) to E ′ (see Fig. 1).

First we prove that if Vc is a vertex cover for G, then T = Vc ∪ Er ∪ {a, d} is
a tracking set for all s–t paths in G ′. Suppose not. Then there exist two distinct s–t
paths (not necessarily shortest), say P1 and P2 in G ′, such that they contain the same
sequence of trackers. Since P1 and P2 are two distinct paths, there exists a vertex
that is present in exactly one of these two paths, but not in the other. Without loss of
generality, assume that there exists a vertex v such that, v ∈ V (P1)\V (P2). Observe
that, v ∈ Vr\Vc ∪ {b}. First we consider the case when, v = b. Note that due to the
structure of G ′, b is followed by d in every path that contains b. Hence, P1 contains
d. Since d is a tracker, P2 must contain a sequence of vertices that includes the vertex
d. The only path possible that would not contain b, but would contain d, necessarily
includes the vertex a followed by the vertex d. Notice that since a is a tracker itself,
this contradicts the assumption that P1 and P2 contain the same sequence of trackers.
Next we consider the case when v ∈ Vr\Vc. Observe that any path consisting of
such a vertex v, would contain v followed by some vertex, say e′ ∈ Er . Since e′
is a tracker, and P1 and P2 contain the same sequence of trackers, e′ ∈ V (P1), and
e′ ∈ V (P2). Hence, in order for P2 to be distinct from P1, there must exist another
vertex v′ ∈ Vr\Vc, such that P2 contains the vertex v′ followed by e′. Thus the edge
corresponding to e′ in G, is incident to the vertices corresponding to v and v′ in G.
Hence at least one among v and v′ necessarily belongs to Vc, and, consequently is a
tracker. This contradicts the assumption that P1 and P2 contain the same sequence of
trackers.

Next we prove that if there exists a tracking set (for all s–t paths) of size k+|E |+2
in G ′, then there exists a vertex cover of size k in G. First, note that for each vertex
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ei ∈ Er , there exists two vertex disjoint paths between s and ei , that pass through
the vertices in Vr that correspond to the vertices that were the end points of the edge
corresponding to ei in G. And, in order to distinguish between these paths, at least one
of the vertices that corresponded to the end points of the edge ei , necessarily belong
to T . Since, this holds for each ei ∈ Er , we have that, if there exists a vertex cover of
size k in G, then k vertices (Vc) among Vr belong to T . Now consider the graph G ′′
induced on V (G ′)\Vc. Note that there exists two vertex disjoint paths between s and
each e j ∈ Er , one passing through a and another passing through a vertex in Vr\Vc.
Hence either a or all of Vr ∩ V (G ′′) belongs to T . Without loss of generality, assume
that a belongs to T . Next, observe that there exist two paths from s to a, one via the
edge (s, a), and another via vertices b and then d. Hence, at least one among b and d
have to be part of tracking set. Note that since a is incident to all vertices in Er ∪ {d},
and all these vertices are adjacent to t , there are |Er |+1 vertex disjoint paths between
a and t . Hence, by pigeonhole principle, all but one vertices in Er ∪ {d} necessarily
need to be trackers. Hence, a tracking set T of size k + |E | + 2 in G ′ necessarily
consists of Vc ∪ Er ∪ {d}. Note that, d can be replaced by b here. By the arguments
given for the vertices contained in T , it can be seen that if there exists a tracking set
of size k + |E | + 2 in G ′, then there exists a vertex cover of size k in G. Hence, the
lemma holds. �	
Theorem 3 Tracking Paths is NP-hard.

Proof Lemma 1 proves that there exists a polynomial time reduction from Vertex

Cover to Tracking Paths. NP- hardness of Tracking Paths follows since Ver-
tex Cover is NP- hard [9]. �	

In what follows, we show that Tracking Paths is in NP. Towards that we first
give an alternative characterization for a tracking set. Then using a preprocessing rule,
we show that for a graph, every tracking set is also a feedback vertex set (FVS). Finally
using these two properties we devise a polynomial time algorithm to check whether a
given set of vertices is a tracking set for graph G or not.

2.1 Characterization of Tracking Set

Towards characterization of a tracking set, we first define the tracking set condition.

Tracking Set Condition:
For a graph G = (V , E), with terminal vertices s, t ∈ V , a set of vertices T ⊆ V ,
is said to satisfy the tracking set condition if there does not exist a pair of vertices
u, v ∈ V , such that the following holds:

– there exist two distinct paths, say P1
uv and P2

uv , between u and v in (G\(T ∪
{s, t})) ∪ {u, v}, and

– there exists a path from s to u, say Psu , and a path from v to t , say Pvt , in
(G\(V (P1

uv) ∪ V (P2
uv))) ∪ {u, v}, and V (Psu) ∩ V (Pvt ) = ∅, i.e. Psu and Pvt

are mutually vertex disjoint, and also vertex disjoint from P1
uv and P2

uv .

See Figs. 2 and 3.
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Fig. 2 Tracking Set Condition
satisfied (circled vertex
represents a tracker)

Fig. 3 Tracking Set Condition
not satisfied (circled vertex
represents a tracker)

Fig. 4 Paths P1 and P2 are marked using straight line and dash dotted line, respectively. Paths Pa and Pb
are shown using dotted line and dashed line, respectively

Next we have a lemma that establishes the relation between the tracking set condi-
tion and a tracking set.

Lemma 2 For a graph G = (V , E) with terminal vertices s, t ∈ V , a set of vertices
T ⊆ V is a tracking set if and only if T satisfies the tracking set condition.

Proof Let us assume that T ⊆ V is a tracking set for G. We claim that T satisfies
the tracking set condition. Suppose not. Then there exists a pair of vertices u, v ∈ V ,
such that there exist two distinct paths, say P1

uv, P
2
uv , between u and v in (G\(T ∪

{s, t})) ∪ {u, v}, and, there exists a path from s to u, say Psu , and a path from v

to t , say Pvt in (G\(V (P1
uv) ∪ V (P2

uv))) ∪ {u, v}, such that V (Psu) ∩ V (Pvt ) = ∅.
Notice that there might be trackers in V (Psu)∪ V (Pvt ), however there are no trackers
in (V (P1

uv) ∪ V (P2
uv))\{u, v}. Observe now there exist two s–t paths in G, P1 =

Psu · P1
uv · Pvt , and, P2 = Psu · P2

uv · Pvt , such that both have the same sequence of
trackers. This contradicts the assumption that T is a tracking set for G.

Conversely, let us assume that there exists a set of vertices, T ⊆ V , such that T
satisfies the tracking set condition. We claim that T is a tracking set for G. Suppose
not. Then there exist at least two distinct s–t paths in G, say P1 and P2, that contain
the same sequence of trackers.

Let the sequence of trackers that appears in P1 and P2 be T = (t1, . . . , tk). We
define T ′ = T ∪ {s} ∪ {t}. Let us assume that ti be the first vertex in T ′, such that

123



48 Algorithmica (2020) 82:41–63

P1[s, ti ] = P2[s, ti ] and P1[ti , ti+1] �= P2[ti , ti+1]. See Fig. 4, colors have been used
for better visibility of paths. Observe that, it may be the case that, ti = s.

Let j > i be the maximum index such that

– there exist two paths, Pa and Pb, between ti and t j , such that Pa �= Pb, where
t j ∈ T ′ (subscripts a and b have been used just to identify the paths)

– Pa and Pb do not contain any trackers other than ti and t j .
– Pa ⊆ P1[ti , t j ] ∪ P2[ti , t j ] and Pb ⊆ P1[ti , t j ] ∪ P2[ti , t j ].
Observe that such an index j always exists as j = i + 1 satisfies all the above

conditions (see Fig. 4).

Claim 1 There exists a path between t j and t in (P1[t j , t] ∪ P2[t j , t])\(Pa ∪ Pb).

Proof For the sake of contradiction, we assume that there does not exist a path between
t j and t in (P1[t j , t] ∪ P2[t j , t])\(Pa ∪ Pb).

Observe that for any l > j , there exist two paths (not necessarily disjoint),
P1[tl , tl+1] and P2[tl , tl+1], between tl and tl+1. There does not exist a path between
tl and tl+1, in (P1[tl , tl+1] ∪ P2[tl , tl+1])\(Pa ∪ Pb), if and only if, Pa ∪ Pb intersects
both P1[tl , tl+1] and P2[tl , tl+1]. Therefore, if there does not exist a path between t j
and t in (P1[t j , t] ∪ P2[t j , t])\(Pa ∪ Pb), then there must exist two consecutive track-
ers tr and tr+1, where r ≥ j , such that P1[tr , tr+1] and P2[tr , tr+1] have a nonempty
intersection with (Pa ∪ Pb).

Letλ1 = P1[tr , tr+1]∩(Pa∪Pb), andλ2 = P2[tr , tr+1]∩(Pa∪Pb) (seeFig. 5, colors
have been used for better visibility of paths). Observe that P1[tr , tr+1] and P2[tr , tr+1]
are not necessarily disjoint. However, we claim that λ1 and λ2 are disjoint. If not, then
suppose p ∈ λ1 ∩λ2. Hence, p ∈ P1[tr , tr+1]∩ P2[tr , tr+1]. But p ∈ Pa ∪ Pb. Hence,
p ∈ P1[ti , t j ]∪ P2[ti , t j ]. Without loss of generality, assume that p ∈ P1[ti , t j ]. Thus,
p ∈ P1[tr , tr+1], and p ∈ P1[ti , t j ]. But, this contradicts the fact that P1 is a simple
path. For the rest of the proof, we assume that λ1 and λ2 are vertex disjoint paths.
Observe that following are the two possible cases.

Case (i): Both λ1 and λ2 intersect Pa , or both λ1 and λ2 intersect Pb.
Case (ii): λ1 intersects Pa , but does not intersect Pb, and, λ2 intersects Pb, but does

not intersect Pa .

We first consider Case (i). See Fig. 5. Let c and d be the first points appearing in
λ1 ∩ Pa and λ2 ∩ Pa , respectively. Without loss of generality, assume that c appears
before d in Pa . Let P∗

a = Pa[ti , c] · P1[c, tr+1], and P∗
b = Pa[ti , d] · P2[d, tr+1].

Observe that, P∗
a �= P∗

b as c /∈ P∗
b , and d /∈ P∗

a . This contradicts the maximality of
j , since now r + 1 > j , and there exist two paths, P∗

a and P∗
b , between ti and tr+1,

and P∗
a �= P∗

b , and these two paths do not contain any trackers other than ti and tr+1.
Hence the claim holds.

Next we consider Case (ii). Let c and d be the first points appearing in λ1 ∩ Pa and
λ2∩Pb, respectively. Let P∗

a = Pa[ti , c]·P1[c, tr+1], and P∗
b = Pb[ti , d]·P2[d, tr+1].

Observe P∗
a �= P∗

b as c /∈ P∗
b , and d /∈ P∗

a . This contradicts the maximality of j , since
now r + 1 > j , and there exist two paths, P∗

a and P∗
b , between ti and tr+1, and

P∗
a �= P∗

b , and these two paths do not contain any trackers other than ti and tr+1.
Hence the claim holds. �	
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Fig. 5 Paths Pa and Pb are indicated using straight line and dotted line, respectively. Paths P∗
a and P∗

b are
indicated using dash dot dotted line and dashed line, respectively

Next we show the tracking set condition being violated by proving the existence of
two vertices u, v ∈ V , such that the following holds:

– there exist two distinct paths, say P1
uv and P2

uv , between u and v, in (G\(T ∪
{s, t})) ∪ {u, v}, and

– there exists a path from s to u, say Psu , and a path from v to t , say Pvt , in
(G\(V (P1

uv) ∪ V (P2
uv))) ∪ {u, v}, and V (Psu) ∩ V (Pvt ) = ∅.

Consider the graph Gab induced by V (Pa)∪ V (Pb). Let P[s, ti ] = P1[s, ti ]. Also,
there exists a path between t j and t in (P1[t j , t] ∪ P2[t j , t])\(Pa ∪ Pb). We denote
this path by P[t j , t]. Observe that Pa and Pb are two paths between ti and t j , where
Pa �= Pb, and Gab\{ti , t j } does not contain any trackers. Therefore there must exist a
cycle C in Gab. Observe that there exists at least one edge in P1 that is also present
in C , otherwise C will be fully contained in P2 which contradicts the fact that P2 is a
simple path. Let u and v be the first and last vertices fromC visited by P1. Observe that
there are two paths P1

uv and P2
uv , between u and v in C . Let Psu = P[s, ti ]∪ P1[ti , u],

and Pvt = P1[v, t j ] ∪ P[t j , t]. Observe that the existence of P1
uv , P

2
uv , Psu and Pvt ,

together contradict the tracking set condition and hence the result holds. �	
Although we have a nice characterization for what qualifies to be a tracking set,

we cannot use it yet for polynomial time verification, since there can be exponentially
many paths between s and t in an arbitrary graph. However, in the next subsection,
we show that in our case we can assume that between any two vertices, we have only
polynomially many relevant paths, if we remove all the trackers along with s and t
from the graph.

2.2 Tracking Set as Feedback Vertex Set

Let (G, s, t, k) be any instance of Tracking Paths. After applying a reduction rule
that ensures that each edge and vertex in G belongs to some s–t path, we show that
every tracking set is also an FVS for the reduced graph. For a graph G = (V , E), an
FVS is a set of vertices S ⊆ V , such that G\S is a forest.

Reduction Rule 1 If there exists a vertex or an edge in G that does not participate in
any s–t path, then delete it.
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Fig. 6 Cycle without tracker
leads to two s-t paths with same
sequence of trackers

Lemma 3 Reduction Rule 1 is safe and can be implemented in polynomial time.

Proof Vertices and edges that do not participate in any s–t path, cannot help distinguish
between two s–t paths in a graph. Thus, after removal of such vertices and edges, a
tracking set for the resulting graph will also be a tracking set for the original graph
and vice versa. Hence, Reduction Rule 1 is safe.

An edge e = (u, v) participates in an s–t path if and only if there exist two simple
paths, one from s to u and another from v to t , such that both these paths are mutually
vertex disjoint (or simple paths from s to v and from u to t that are mutually vertex
disjoint). Existence of such paths can be determined in quadratic time [10]. Note that
removing all edges that do not participate in any s–t path will isolate the vertices that
do not participate in any s–t path. In linear time we can remove such vertices from the
graph. �	

In the remainder of this paper we assume that each vertex and each edge participates
in at least one s–t path. Next we have a lemma that establishes the connection between
a tracking set and an FVS.

Lemma 4 If T is a tracking set for G then T is a feedback vertex set for G.

Proof Consider a cycle C in G. We show that T contains at least one vertex from C .
Consider an edge e in cycle C . Since every edge in the graph participates in at least
one s–t path, there exists an s–t path, say P , that contains the edge e. Path P may
contain some more vertices and edges from the cycle C . Let x be the first vertex of C
that appears in path P while traversing from s to t . Similarly let y be the last vertex
of C that appears in path P while traversing from s to t (see Fig. 6). Observe that
there are two paths between x and y in cycle C , one of them containing edge e, and
the other one not containing edge e. Denote the path containing the edge e by P2, and
the other path by P3. Let P1 be the subpath (which would contain only s if s is in the
cycle C) of P from s to x , and P4 be the subpath (which would contain only t if t is
in the cycle C) of P from y to t . Consider the following two paths:

P ′ = P1 · P2 · P4
P ′′ = P1 · P3 · P4

Observe that if C does not contain any trackers, then P ′ and P ′′ contain exactly the
same sequence of trackers, thus contradicting the fact that T is a tracking set. �	

Thus we have the following corollary.

Corollary 1 The size of a minimum tracking set for a graph G is at least the size of a
minimum FVS for G.
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Fig. 7 Feedback Vertex Set
versus Tracking Set (circled
vertices represent trackers)

Note that although a tracking set is also an FVS for a graph, they are very different.
Consider the example of a graphG induced bym vertex disjoint paths, with a common
starting point a, and a common ending point b. Here a single vertex, a (or b) is an
FVS for G. But we need exactly m − 1 trackers in G\{a, b}, one each on all but one
vertex disjoint paths, in order to track all paths between a and b. See Fig. 7. Hence,
the cardinality of a minimum tracking set can be arbitrarily larger than the cardinality
of a minimum FVS for a graph.

2.3 Verification of Tracking Set

From Lemma 2, we know that a set T ⊆ V of vertices is a tracking set for graph
G = (V , E), if and only if it satisfies the tracking set condition. Now for each pair
of vertices u, v ∈ V , we give a bound on the number of paths between them in
(G\(T ∪ {s, t})) ∪ {u, v}.
Lemma 5 Let T be a tracking set for graph G = (V , E), |V | = n, and let u, v be a
pair of distinct vertices in V , then the number of distinct paths between u and v in
(G\(T ∪ {s, t})) ∪ {u, v} is O(n2), and they can be found in O(n3) time.

Proof From Lemma 4, we know that if T is a tracking set for graph G = (V , E), then
T is also an FVS for G. Consider a pair of vertices u, v ∈ V . Let V ′ = V \(T ∪{s, t}),
and G ′ be the graph induced on V ′. Note that G ′ is a forest. Let V ′′ = V ′ ∪ {u, v},
and G ′′ be the graph induced on V ′′. Next we consider the following possible cases:

– u, v ∈ V ′. Since G ′ is a forest, there exists at most one path between u and v in
G ′′.

– u, v ∈ V \V ′, i.e., u, v ∈ T ∪ {s, t}. Observe that u and v can have at most n − 1
neighbors each, in G ′′, and NG ′′(u) ⊆ V ′ ∪ {v}, and NG ′′(v) ⊆ V ′ ∪ {u}. Since
G ′ is a forest, there exists at most one path between each pair of neighbors in
V ′. Since the paths between u and v either pass through V ′, or consists of edge
(u, v), the maximum number of paths between u and v is at most (n − 1)2 + 1.
Specifically there can exist at most 1 path of length one, n−2 paths of length two,
and (n − 1)2 paths of length at least three. Hence the number of paths between u
and v is O(n2).

– u ∈ V ′ and v ∈ V \V ′. Since G ′ is a forest, and v can have at most n−1 neighbors
in G ′′, there can be at most n − 1 paths between u and v in G ′′. Note that the case
when v ∈ V ′ and u ∈ V \V ′ is symmetric to the current case.
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The path between a pair of vertices in G ′ can be found using depth first search inO(n)

time sinceG ′ is a forest. Thus finding all distinct paths between u and v, inG ′ ∪{u, v},
can be done in O(n3) time. �	

Given a graph G, |V (G)| = n, and, two pairs of vertices, say u, v and u1, v1, we
can verify if there exist two vertex disjoint paths, from u to u1, and from v to v1, in
O(n2) time, using the algorithm for vertex disjoint paths by Kawarabayashi et al. [10].
Hence we have the following lemma.

Lemma 6 In a graph G, |V (G)| = n, with terminal vertices s, t ∈ V (G), for a pair
of vertices u, v ∈ V (G) verifying if there exists a path from s to u, Psu and a path
from v to t , Pvt , such that V (Psu) ∩ V (Pvt ) = ∅, can be done in O(n2) time.

Algorithm 1: Verifying a Tracking Set T .
Input: Instance of the Tracking Paths problem (G = (V , E), s, t, k), T ⊆ V
Output: YES if T is a Tracking Set, else NO

1 if G\T has a cycle then
2 return NO;
3 end
4 G1 = G\(T ∪ {s, t}) ;
5 foreach pair of vertices u, v ∈ V do
6 if u /∈ V (G1) OR v /∈ V (G1) then

// If u, v ∈ V (G1), there exists at most one path between u and
v since G1 is a forest

7 G2 = (G\(T ∪ {s, t})) ∪ {u, v};
8 if ∃ two or more paths between u, v in G2 then
9 P = set of paths between u, v in G2 ;

10 foreach pair of paths P1, P2 ∈ P do
11 G3 = (G\(V (P1) ∪ V (P2))) ∪ {u, v};
12 if ∃ a path from s to u, Psu , and a path from v to t , Pvt , in G3, such that

V (Psu) ∩ V (Pvt ) = ∅ then
13 return NO;
14 end
15 end
16 end

17 end
18 end
19 return YES;

Lemma 7 For a graph G = (V , E), and a set of vertices T ⊆ V , it can be determined
in polynomial time whether T is a tracking set for all s–t paths in G.

Proof From Lemma 4, we know that if T is a tracking set for G, then T is also an FVS
for G. Thus, Algorithm 1 first checks if T is an FVS for G. If not, then it returns NO.
Henceforth, it is assumed that T is an FVS for G. From Lemma 2, we know that a
set of vertices is a tracking set if and only if it satisfies the tracking set condition. We
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define G1 = G\(T ∪ {s, t}). As required by the tracking set condition, the algorithm
correctly considers each pair of vertices, say u, v ∈ V , and checks if there exist two
or more distinct paths, say P1 and P2 between u and v in (G\(T ∪ {s, t})) ∪ {u, v}.
If yes, then it checks if there exists a path from s to u, say Psu , and a path from v to
t , say Pvt , in (G\(V (P1) ∪ V (P2))) ∪ {u, v}, such that V (Psu) ∩ V (Pvt ) = ∅. If yes,
then the algorithm returns NO. Else, if no such paths are found, then the algorithm
returns YES.

Let |V | = n, and |E | = m. Using breadth first search, in O(m + n) time we can
check whether G\T contains a cycle and verify if T is an FVS for G. For each pair of
vertices u, v ∈ V , we consider the graph G2 = (G\(T ∪ {s, t})) ∪ {u, v}. Note that
construction of graphG2 takesO(n2) time assuming adjacency matrix representation.
From Lemma 5, we know that there can be O(n2) paths between u and v in G2, and
these can be found inO(n3) time. For each pair of paths, P1 and P2, among theO(n2)
paths inP , we consider the graphG3 = (G\(V (P1)∪V (P2)))∪{u, v}. Note that there
exist O(n4) graphs to consider for G3, and each of these graphs can be constructed
in O(n2) time (assuming adjacency matrix representation). In G3, using Lemma 6,
we can check if there exists a path from s to u, say Psu , and a path from v to t , say
Pvt , such that V (Psu) ∩ V (Pvt ) = ∅, in O(n2) time. Hence the overall time taken
for verification is O(n2(n2 + n3 + n4(n2 + n2))). Thus Algorithm 1 runs in O(n8)
time. �	

From Lemmas 6 and 7, we have the following corollary.

Corollary 2 Tracking Paths is in NP.

Lemma 1 and Corollary 2 together prove Theorem 1.

3 Polynomial Kernel forTracking PathsTracking PathsTracking Paths

In this section, with the help of some reduction rules we give a polynomial time
algorithm that checks whether the given instance is a NO instance (for a solution of
size at most k), or produces an equivalent instance with O(k6) vertices and O(k7)
edges. We assume that the given graph has been preprocessed using Reduction Rule 1.

Recall fromCorollary 1 that the size of aminimum tracking set T forG is at least the
size of a minimum FVS for G. We start with a 2-approximate solution for Feedback
Vertex set S in G using the algorithm of Bafna et al. [1]. From Corollary 1, we
have the following reduction rule.

Reduction Rule 2 Apply the algorithm of Bafna et al. [1] to find a 2-approximate
solution S for Feedback Vertex set. If |S| > 2k, then return that the given instance
is a NO instance.

Observe that F = G\S is a forest. Now we try to bound the number of vertices in
graph F when k trackers are sufficient to track all s–t paths in G. Towards this we
first prove a monotonicity lemma and a corollary which says that if a subgraph of G
cannot be tracked with k trackers, then G cannot be tracked with k trackers either.
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Fig. 8 Illustration of Lemma 9:
k + 4 vertex disjoint paths
between pair of vertices u and v

Lemma 8 Let G = (V , E) be a graph, and G ′ = (V ′, E ′) be a subgraph of G such
that s, t ∈ V ′. If T is a tracking set for G, then T is also a tracking set for G ′.

Proof We show that T is a tracking set for G ′ as well. Suppose not. Then there must
exist two s–t paths, say P1 and P2, in G ′ that contain the same sequence of trackers.
Observe that P1 and P2 also belong toG. Hence, P1 and P2 cannot be distinguished by
T in G as well. This contradicts the assumption that T is a tracking set for G. Hence
the lemma holds. �	
Corollary 3 If a subgraph of G that contains both s and t cannot be tracked by k
trackers, then G cannot be tracked by k trackers either.

Henceforth, we limit ourselves to analyzing the cases when a subgraph of G cannot
be tracked by at most k trackers. We first prove a lemma that bounds the number of
vertex disjoint paths between a pair of vertices in G if it is a YES instance.

Lemma 9 If there are two vertices u, v ∈ V such that there exist at least k + 4 vertex
disjoint paths between u and v, then G cannot be tracked with k trackers.

Proof Towards a contradiction assume that there exists a set of k + 4 vertex disjoint
paths, P = {P1, . . . , Pk+4}, between u and v, and G can be tracked with k trackers.
LetG ′ be the subgraph induced byP . As each edge and vertex ofG is part of some s–t
path, there exists an s–t path, say λ, that intersects with G ′. Let a and b be the first and
last vertices respectively visited by λ in G ′ (see Fig. 8). We denote the subpaths from
s to a and b to t by λ1 and λ2, respectively. Here it is possible that, V (λ1) = {s} = {a}
and/or V (λ2) = {t} = {b}. Observe that either there exists a path from a to u that
is vertex disjoint from the path from v to b, or there exists a path from a to v that is
vertex disjoint from the path from u to b, and either pair of paths can intersect with at
most two paths from P . Without loss of generality, assume that there exist mutually
disjoint paths between a and u, say λ3 ⊆ P1, and between v and b, say λ4 ⊆ Pk+4, as
shown in Fig. 8. By the pigeonhole principle, if we use at most k trackers, among the
paths in P\{P1, Pk+4}, there exist two paths that do not contain any trackers. Without
loss of generality let us assume that P2 and P3 do not contain any trackers, while Pi
contains a tracker, for 4 ≤ i ≤ k + 3. Consider the following two paths:

λ′ = λ1 · λ3 · P2 · λ4 · λ2
λ′′ = λ1 · λ3 · P3 · λ4 · λ2
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Fig. 9 k + 4 vertices in F connected to the same pair of vertices in S

Observe that λ′ and λ′′ are two s–t paths with the same sequence of trackers. This
contradicts our assumption that G can be tracked by at most k trackers. Hence the
result holds.

Note that if λ3 = P1 and λ4 = Pk+4 i.e. a = v and b = u, then the number of vertex
disjoint paths between u and v will be greater than or equal to k + 1, thus requiring at
least k trackers. Also, if a and b lie on the same path in P , then the number of vertex
disjoint paths between u and v will be greater than or equal to k + 2, thus requiring at
least k + 1 trackers. The lemma now follows from Corollary 3. �	

We use the above lemma in upcoming sections to bound the number of vertices in
F as a function of k. We start by giving a bound for the number of vertices in F that
have at least two neighbors in S.

3.1 Bounding the Number of Vertices inF with at Least Two Neighbors in S

Lemma 9 implies the following reduction rule.

Reduction Rule 3 If there exist two vertices in S that have k + 4 common neighbors
in F , then we return that the given instance is a NO instance.

Lemma 10 Reduction Rule 3 is safe and can be implemented in polynomial time.

Proof Consider the case when there exist k+4 vertices inF that are neighbors of two
distinct vertices u and v in S (see Fig. 9). Note that this leads to the formation of k+4
vertex disjoint paths between u and v. We know from Lemma 9 that in such a case,
G cannot be tracked with at most k trackers. This proves safeness of the reduction
rule. To implement the rule, we can consider each pair of vertices (O(k2) pairs) in
S, and compare their neighbors in F (O(n2) comparisons). Hence the rule can be
implemented in polynomial time. �	
Corollary 4 If Reduction Rule 3 is not applicable, then the number of vertices in F
that have at least two neighbors in S is at most 2k2(k + 3).

Proof Note that when a pair of vertices, say u, v, in S, is adjacent to a vertex, say x , in
F , then x has at least two neighbors in S. There are at most

(2k
2

)
pairs in S, and after

application of Reduction Rule 3, each pair can be adjacent to at most k + 3 vertices
in F . Hence, there can be at most 2k2(k + 3) vertices in F that have at least two
neighbors in S. �	
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Fig. 10 k + 4 trees in F connected to same pair of vertices in S

3.2 Bounding the Number of Trees inF

Now we explain how the argument for Reduction Rule 3 can be also used to bound
the number of trees in F that are adjacent to at least two vertices in S.

Reduction Rule 4 If there exist two vertices in S and there exist k + 4 trees in F such
that both the vertices in S have at least one neighbor in each of the k + 4 trees, then
we return that the given instance is a NO instance.

Lemma 11 Reduction Rule 4 is safe and can be implemented in polynomial time.

Proof Note that there exists a unique path between any two vertices in a tree. So if
there exist two vertices, say u and v in S, such that both have at least one neighbor
in each of the k + 4 trees in F , then k + 4 vertex disjoint paths exist between u and
v passing through these trees. See Fig. 10. From Lemma 9, we know that in such a
case, G cannot be tracked with at most k trackers. Hence safeness of the reduction
rule holds. For applying the rule, we can consider each pair of vertices (O(k2) pairs)
in S, and compare if their neighbors in F (O(n2) comparisons) belong to the same
tree (O(n) time). Hence the rule can be implemented in polynomial time. �	

Since there exist at most
(2k
2

)
pairs in S, and after application of Reduction Rule 4,

each pair can be adjacent to at most k + 3 trees, we have the following corollary.

Corollary 5 If Reduction Rule 4 is not applicable, then the number of trees in F that
have at least two neighbors in S is at most 2k2(k + 3).

Next we bound the number of trees with exactly one neighbor in S. Towards this
we first show the following.

Lemma 12 Any induced subgraph G ′ of G containing at least one edge will contain a
pair of vertices u and v, such that, (a) there exists a path in G from s to u, say Psu, and
another path from v to t , say Pvt , (b) V (Psu)∩V (Pvt ) = ∅, (c) V (Psu)∩V (G ′) = {u}
and V (Pvt ) ∩ V (G ′) = {v}.
Proof Consider an edge e = (x, y) in E(G ′). We know that e participates in at least
one s–t path in G, say P . We denote the subpaths of P from s to x , and from y
to t , as Psx and Pyt respectively. Observe that Psx and Pyt are vertex disjoint. Let
u ∈ V (G ′) be the first vertex in Psx encountered in G ′, while traversing from s to x ,
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and v ∈ V (G ′) be the last vertex encountered in G ′, while traversing Pyt from y to t .
Observe that the path from s to u (which is a subpath of Psx ) and the path from v to t
(which is a subpath of Pyt ) are vertex disjoint and intersect with G ′ only at u and v.
Hence the claim holds. �	

Next, we show that the only trees that have exactly one neighbor in S are the ones
that contain either s or t , and hence at most two in count.

Lemma 13 The number of trees in F that have a single neighbor in S is at most 2.

Proof In order to prove the lemma, we will prove that a tree inF with single neighbor
in S necessarily contains either s or t or both s and t , and hence the count of such trees
is at most 2. For contradiction let us assume that there exists a tree R inF that contains
neither s nor t , and has a single neighbor in S. First consider the case when R consists
of only one vertex, say u. Due to Reduction Rule 1, u participates in at least one s–t
path, so u must have at least two neighbors in S. Thus we are left with the possibility
where R necessarily contains at least two vertices, and hence, contains an edge. By
Lemma 12, there exists a pair of vertices u, v in R, such that there is a path in G from
s to u and a path from v to t such that these paths are mutually disjoint, and contain no
other vertices from R. This implies that R has at least two neighbors (the neighbors
of u and v in those paths) in S. Note that above argument can be extended for the case
when R has more than 2 vertices as well. This contradicts the initial assumption, and
hence the lemma holds. �	

Note that if a tree in F has zero neighbors in S, then the graph is disconnected. But
due to Reduction Rule 1, each vertex participates in at least one s–t path. Hence, each
tree has at least one neighbor in S. From Corollary 5, the number of trees with at least
two neighbors in S is at most 2k2(k + 3), and from Lemma 13, the number of trees
with a single neighbor in S is at most two. Thus we have the following corollary.

Corollary 6 If Reduction Rules 1–4 are not applicable, then the number of trees in F
is at most 2k2(k + 4).

We have bounded the number of trees in F , and the number of vertices in the trees
in F with at least two neighbors (in Sect. 3.1). Now we are left to bound the number
of vertices inF with exactly one neighbor in S. Note that due to Reduction Rule 1, all
leaf vertices (except possibly s and t) necessarily have neighbors in S. And, a bound on
the number of leaf vertices in F immediately gives a bound on the number of internal
vertices (may or may not have neighbors in S) of the trees in F .

3.3 Bounding the Number of Vertices inF with Exactly One Neighbor in S

Webound the number of vertices in a single tree inF , that are adjacent to a particular
vertex of S. Consider a tree R in forest F , and a vertex f ∈ S. Let N f be the set of
vertices in R that are adjacent to f . In this section we give a bound on the cardinality
of N f . Let R′ be a subtree of R with the minimum number of vertices, such that R′
contains all vertices of N f . Note that the leaf vertices of R′ are in N f . Note that if
|N f | < 3, then the number of vertices in each tree in F that are adjacent to a single
vertex is 2, and hence, asymptotically same as the number of trees in F .
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Fig. 11 Illustration of
Lemma 14 (solid lines denote
edges of the tree R′′, dashed
lines denote edges between f
and its neighbors in R′′) a

b

c

Pxb

Pac

f

x

Pxa Pxc

Lemma 14 Let R′′ be a subtree of R′ with the minimum number of vertices, such that
it contains three vertices from N f . Then any tracking set T must contain at least one
vertex of R′′.

Proof The proof is based on the argument that there will be three vertex disjoint paths
formed between some vertex in R′′ and f . At most two of these paths may contain
s and t , thus requiring the remaining one path to necessarily contain a tracker. Let
{a, b, c} ⊆ N f , be the three vertices contained in R′′. The situation is shown in
Fig. 11. Let T be a tracking set which does not contain any vertex from R′′. Observe
that all the leaf vertices of R′′ belong to {a, b, c}. Furthermore, at least two of a, b or c
must be leaf vertices in R′′. Without loss of generality assume that a and c are leaves
of R′′. Consider the path Pac from a to c in R′′. Without loss of generality assume that
b is connected to Pac via the path Pxb (see Fig. 11) joining Pac at vertex x . We denote
the paths from x to a and x to c by Pxa and Pxc, respectively. Note that Pxb could be
a single vertex, i.e., b = x .

Let G ′ be the graph induced by { f } ∪ V (R′′). From Lemma 12 we know that there
exists a pair of vertices u, v ∈ V (G ′), such that there exists a path inG from s to u, say
Psu , and a path from v to t , say Pvt , such that V (Psu) ∩ V (Pvt ) = ∅, and both these
paths do not contain any vertices from G ′ except u and v. See Fig. 12a. Depending on
the locations of u and v in G ′, we consider the following three cases.

Case 1 (u and v lie on different paths among Pxa, Pxb and Pxc): Without loss of gen-
erality assume u ∈ V (Pxa), v ∈ V (Pxc), other cases can be proved similarly.
See Fig. 12a. Observe that Psu ·Pua · f ·Pxb ·Pxv ·Pvt and Psu ·Pua · f ·Pcv ·Pvt

contain the same sequence of trackers ( f may or may not contain a tracker).
This contradicts the assumption that T is a tracking set.

Case 2 (u and v lie on same path among Pxa, Pxb and Pxc):Without loss of generality
assume u, v ∈ Pxa . See Fig. 12b. Observe that Psu · Pua · f · Pcv · Pvt and
Psu · Pua · f · Pxb · Pxv · Pvt contain the same sequence of trackers. This
contradicts the assumption that T is a tracking set.

Case 3 (u = f or v = f ): Without loss of generality assume that u = f and
v ∈ V (R′′). Observe that there exist two paths from f to v inG ′. In particular,
Psu ·Pav ·Pvt and Psu ·Pbv ·Pvt are the twopaths that contain the same sequence
of trackers, hence, contradicting the assumption that T is a tracking set.

�	
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Fig. 12 Illustration of Lemma 14 (solid lines denote edges of the tree R′′, dashed lines denote edges between
f and its neighbors in R′′, dotted lines denote the paths between R′′ and s and t)

Fig. 13 Degree of each vertex in
R′ is at most k + 4 (circled
vertices belong to N f )

Next we use the above lemma to bound the degree of vertices in R′.

Lemma 15 Let v be a vertex in R′. If v has more than k + 4 neighbors in R′, then it
is a NO instance.

Proof Observe that if there exists a vertex v, with degree at least k+4 in R′, then there
exist at least k + 3 leaves in R′ (one neighbor of v might be its parent in R′). Hence
there are at least k+4 vertex disjoint paths between v and f , either all passing through
descendants of v in R′, or k + 3 of them passing through descendants of v, while the
remaining one path passes through an ancestor of v. See Fig. 13. From Lemma 9 we
know that in such a case, G cannot be tracked with at most k trackers. Hence the
lemma holds. �	

Since R′ is a minimum tree containing N f , we have that all the leaf vertices of R′
belong to N f . Next we have the following lemma.

Lemma 16 Let p ≥ 1 be an integer. If the number of vertices in N f is at least (2k+9)p
then we can partition R′ into at least p disjoint subtrees, each containing at least three
vertices from N f .

Proof We prove the claim by induction on p. Consider the base case when p = 1. If
the number of vertices in N f is at least 2k+9 then clearly R′ is a single tree containing
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at least three vertices from N f . Suppose the claim holds for any value p < q. Next we
prove that the statement holds for p = q. Let R′ contains (2k+9)q vertices from N f .
Let w be a vertex closest to a leaf vertex, such that the subtree rooted at w contains
at least three vertices from N f . We denote the subtree rooted at w by Tw. Due to
Lemma 15, it is known that the degree of w is upper bounded by k + 4. Hence, w can
have at most k+4 children, the subtree rooted at each having at most two vertices from
N f . Thus the number of vertices of N f present in the subtrees rooted at the children
of w is at most 2k + 8. Note that w may also belong to N f . Hence, if we remove
the subtree rooted at w from R′, it will still contain (2k + 9)(q − 1) vertices from
N f . We know that R′\Tw contains at least (2k + 9)(q − 1) vertices from N f . Hence,
from induction hypothesis, we can partition R′\Tw into q − 1 disjoint subtrees, each
containing three vertices from N f . Hence, the claim holds. �	

From Lemma 14 we know that each partition mentioned in Lemma 16 needs a
separate tracker. This proves the safeness of the following reduction rule.

Reduction Rule 5 If there exists a vertex in S that is adjacent to at least (2k+9)(k+1)
vertices of a tree in F , we return that the given instance is a NO instance.

Note that the above rule can be implemented in polynomial time by considering
each vertex in S, and counting its neighbors in each tree in F .

Corollary 7 If Reduction Rule 5 is not applicable, then the total number of vertices
from each tree in F that are adjacent to a vertex in S is at most 2k(2k + 9)(k + 1).

Proof If the bound given in the corollary does not hold, then there will be a vertex in
S that will have more than (2k + 9)(k + 1) vertices in a tree and Reduction Rule 5
will apply. �	

3.4 Wrapping up: Polynomial Kernel and FPT Algorithm

From Corollaries 5 and 7, we have the following corollary.

Corollary 8 The number of vertices in a tree in F , that have at least one neighbor in
S, is at most 2k2(k + 4) + 2k(2k + 9)(k + 1) = 2k(3k2 + 19k + 8).

Now we are left to bound the number of vertices in F that have no neighbors in
S. Note that every leaf vertex in F has at least one neighbor in S (due to Reduction
Rule 1). So in order to bound the number of vertices in F with no neighbors in S, we
need to bound the number of internal (non-leaf) vertices in the trees in F . Next we
give a reduction rule that will help to bound the number of internal vertices in each
tree.

Reduction Rule 6 If there exist three vertices, say a, b and c, each of degree two, such
that (a, b), (b, c) ∈ E(G), then delete vertex b, and introduce the edge (a, c) in E(G).

Lemma 17 Reduction Rule 6 is safe and can be implemented in polynomial time.
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Proof Note that, due to Reduction Rule 1, there does not exist an edge between vertices
a and c, as otherwise a, b, and c would form an isolated triangle, and hence, none
of them will be part of an s–t path. Now observe that by removing the vertex b, and
introducing the edge (a, c), the only change in the structure of the graph is that the s–t
paths passing through b will have their lengths reduced by one vertex. Hence, proving
that there exists an optimal tracking set that does not contain b suffices to prove the
lemma. Let T be an optimal tracking set that contains b. Observe that any s–t path that
contains either of the three vertices, say b, must also contain the other two vertices a
and c. Thus a single vertex (any one) amongst a, b, c is sufficient to be included in
T to indicate containment of vertices in an s–t path, if required. Two vertices from
a, b, c have to be included in T if their mutual sequence is different in two s–t paths
having the same vertex sets.

First, we consider the case when T does not contain a and c, but contains b. Observe
that if an s–t path P contains b, then the relative ordering between b and some other
vertex, say d, in path P is same as the relative ordering between c and d in P . Hence
(T \{b}) ∪ {c} is also a tracking set.

Next, we consider the casewhen T contains both a and b. Since the relative ordering
of a and b is the same as that of a and c, we can replace b by c in this case. Thus
(T \{b}) ∪ {c} is also a tracking set. The same argument also holds if T contains both
b and c, in this case an alternate tracking set being (T \{b})∪{a}. Hence the reduction
rule is safe. This rule can be implemented in polynomial time by considering all

(n
3

)

vertex sets of size three in G, and checking if a set of three vertices, each of degree
two, forms an induced path in G. �	
Lemma 18 If none of the reduction rules are applicable, then the number of vertices
in a tree in F that do not have any neighbors in S is at most 10k(3k2 + 19k + 8).

Proof In a tree, we denote the set of leaf vertices by V1, the set of vertices with
degree two by V2, and the set of vertices with degree three or more by V3. Since G
is preprocessed by Reduction Rule 1, each vertex participates in at least one s–t path,
so there cannot be any vertices with degree one in G, except for s and t . Thus each
leaf vertex in a tree in F necessarily has a neighbor in S. Thus, by Corollary 8, the
number of vertices in V1 is upper bounded by 2k(3k2 + 19k + 8). Observe that both
V2 and V3 belong to the set of internal vertices in a tree. First we consider the tree
to be consisting of only V1 and V3, giving a bound on these two. By standard graph
theoretic properties of a tree, we know that the number of internal vertices in a treewith
degree≥ 3 are upper bounded by the number of leaves in the tree. Hence, |V3| ≤ |V1|.
Hence the number of vertices in V3 is upper bounded by 2k(3k2 + 19k + 8). Due to
Reduction Rule 6, we know that an induced path consisting of only degree two vertices
can contain at most two vertices. Hence in any tree inF , between every pair of closest
vertices from V1 ∪ V3 there can be an induced path consisting of at most two vertices
from V2. Hence the number of vertices in V2 is upper bounded by 2(|V1| + |V3|), i.e.
|V2| ≤ 8k(3k2 + 19k + 8). Hence |V2| + |V3| ≤ 2k(3k2 + 19k + 8). Thus the overall
upper bound on the number of vertices in F that do not have any neighbors in S is
10k(3k2 + 19k + 8). �	

From Corollary 8 and Lemma 18, we have the following corollary.
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Corollary 9 If none of the reduction rules are applicable, then the number of vertices
in each tree in F is at most 12k(3k2 + 19k + 8).

Proof of Theorem 2 From Corollaries 6 and 9, in case of a YES instance, the total
number of vertices in F is at most 12k(3k2 + 19k + 8)2k2(k + 4), and the total
number of vertices in G is at most 12k(3k2 + 19k + 8)2k2(k + 4)+ 2k. Thus the total
number of vertices in G is at most 72k6 +744k5 +1920k4 +768k3 +2k if it is a YES
instance.

Since F is a forest, the total number of edges in F is at most 12k(3k2 + 14k +
8)2k2(k+4)−1. From Reduction Rule 5, we know that the total number of vertices in
each tree inF , that are adjacent to a single vertex in S is atmost 2k(2k+8)(k+1). From
Corollary 6, we know that the number of trees inF is at most 2k2(k+4). Thus the total
number of edges betweenF and S is at most 2k(2k+8)(k+1)2k2(k+4)2k. The total
number of edges among the vertices in S is at most 4k2. Thus the total number of edges
inG is atmost 12k(3k2+19k+8)2k2(k+4)−1+2k(2k+8)(k+1)2k2(k+4)2k+4k2,
which is O(k7). �	
Theorem 4 Tracking Paths is FPT when parameterized by the solution size, and
the running time of the FPT algorithm is 2O(k log k)nO(1).

Proof First we apply Theorem 1, to get an equivalent instance (kernel) with O(k6)
vertices. Then we run through all vertex subsets of size k in the kernel, and use
Algorithm 1 to check if a particular subset is a tracking set for G, or not. Using the
proof of Theorem 2,we can find all subsets of size k inO(k6k) time. FromAlgorithm 1,
we can verify if a subset of k vertices is a tracking set for G in polynomial time. Thus
we have a 2O(k log k)nO(1) time FPT algorithm for Tracking Paths. �	

4 Conclusions

In this paper we have shown that the Tracking Paths problem is NP-complete. We
also show the problem to be fixed-parameter tractable by proving the existence of
a polynomial sized kernel. This is achieved by exploiting the connection between a
feedback vertex set and a tracking set. An open problem is to improve the size of the
kernel, and the running time of the FPT algorithm for the problem. Other directions
to explore are to find approximation algorithms, to study the problem for other graph
classes like planar graphs and directed graphs, and to consider weighted versions of
the problem.
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