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Abstract15

In the Multi-Team Formation problem, we are given a ground set C of n candidates, each of16

which is characterized by a d-dimensional attribute vector in Rd, and two positive integers α and β17

satisfying αβ ≤ n. The goal is to form α disjoint teams T1, ..., Tα ⊆ C, each of which consists of β18

candidates in C, such that the total score of the teams is maximized, where the score of a team T is19

the sum of the hj maximum values of the j-th attributes of the candidates in T , for all j ∈ {1, ..., d}.20

Our main result is an 22O(d)
nO(1)-time algorithm for Multi-Team Formation. This bound is21

ETH-tight since a 22d/c

nO(1)-time algorithm for any constant c > 12 can be shown to violate the22

Exponential Time Hypothesis (ETH). Our algorithm runs in polynomial time for all dimensions23

up to d = c log logn for a sufficiently small constant c > 0. Prior to our work, the existence of a24

polynomial time algorithm was an open problem even for d = 3.25
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1 Introduction29

The problem of team formation arises in many organizational settings—project management,30

product development, team sports, academic committees, legal defence teams, to name a few—31

and remains an important area of research in mathematical social sciences [12, 16, 22, 24].32

Within computer science and operations research, several application domains—distributed33

robotics, AI, multi-agent systems, online crowdsourcing, databases—also use team formation34

models for execution of complex tasks that require cooperation or coalition of multiple agents35

with different capabilities [5, 18, 21, 23]. The basic setting of a Team Formation problem36

includes a ground set C of n candidates and a number β ≤ n. The goal is to form a team37

T ⊆ C of a size β such that scr(T ) is maximized, where scr(·) is a pre-defined scoring function.38

A concrete example of a scoring function frequently used in the literature [11, 25] (often in39

conjunction with other, more complex measures of team performance) is the skill coverage40

function. There is a set U of useful skills, each candidate a ∈ C has a subset Sa of these skills,41

and we evaluate the team by the number of different skills covered by the team members.42

In other words, scr(T ) = |
⋃
a∈T Sa|. It is easy to see that Team Formation with the skill43

coverage scoring function is equivalent to the-well studied Maximum Coverage problem,44
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23:2 Multi-Team Formation

which is NP -complete [7], admits a (1− 1
e )-approximation algorithm [15], and is NP -hard45

to approximate [4] within any factor smaller than 1− 1
e .46

A natural generalization of Team Formation is the Multi-team Formation problem,47

where we want to form α disjoint teams T1, . . . , Tα ⊆ C each of size β that collectively48

maximize the total score
∑α
i=1 scr(Ti). This generalization is well-motivated in practice:49

in many applications, we want to form multiple teams from a common pool of candidates,50

where candidate can belong to at most one team. Multi-team Formation has some51

resemblance to the coalition structure generation problem in multi-agent systems and AI,52

where the goal is to partition a set of candidates into groups, called coalitions [19]. However,53

in these applications, the scoring function for evaluating a coalition is assumed to be an54

arbitrary black box function. As a result, the size of each team (coalition) is not explicitly55

specified but rather determined by the objective function of maximizing the total coalition56

structure value—e.g. if putting all the candidates into a single coalition maximizes the57

total value, then that is the optimal solution. In [14], a dynamic programming algorithm is58

described for computing an optimal coalition structure in time O(3n). Unlike the (single)59

Team Formation problem, Multi-team Formation has not yet received much attention,60

and beyond the exponential bound of Michalak et al. [14], no algorithmic result appears to61

be known for forming multiple teams except for the recent work of Schibler et al. [20].62

In this paper, we follow Schibler et al. [20] and investigate Multi-team Formation63

with a fundamental scoring function, called sum-of-maxima scoring, to be defined below.64

A common model for characterizing a candidate is a multi-dimensional attribute vector in65

which each entry measures a certain performance of the candidate. For instance, in college66

admissions, such a vector may include scores of different standardized tests, grade point67

averages, etc. In project management, the categories may include various technical skills68

as well as non-technical attributes such as leadership qualities. Following Page’s influential69

work on team performance [16], it is generally acknowledged that simply adding up all the70

scores is a poor measure of team performance—instead, strength in multiple dimensions71

(skill diversity) is essential. When the candidates are characterized by attribute vectors,72

one natural scoring is to take the best attribute of the candidates in the team T in each73

dimension and set the score of T to be the sum of these best attributes. Kleinberg and74

Raghu [8], in their work on team performance metrics and testing, suggested extending this75

further to sum-of-top-h scores in each dimension, for some h ≤ β, ensuring both coverage of76

all the skills (dimensions) and robustness (no single point of failure). We allow a slightly77

more general scoring rule, where for each dimension j, a possibly different number hj of top78

attributes are considered. We call this the sum-of-maxima scoring. Formally, each candidate79

a ∈ C is characterized by a d-dimensional attribute vector (κ1(a), . . . , κd(a)) ∈ Rd. For a80

given vector h = (h1, . . . , hd) ∈ Zd+, the sum-of-h-maxima scoring function is defined as81

somh(T ) =
d∑
j=1

maxhj{κj(a) : a ∈ T}, (1)82

where the notation maxhjS denotes the sum of the largest hj numbers in the multiset S of83

numbers (if |S| < hj , then maxhjS is the sum of all numbers in S). It is easy to see that84

the sum-of-maxima scoring function generalizes skill coverage. In particular, the Maximum85

Coverage problem is a special case of Multi-team Formation where h is the vector of86

all 1’s, all the candidate attributes are binary, and α = 1.87

In the rest of the paper, the Multi-team Formation problem we discuss is always with88

respect to sum-of-maxima scoring. Since Multi-team Formation generalizes Maximum89

Coverage, it is clearly NP -hard (when the dimension d is unbounded). Schibler et al. [20]90
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proved that Multi-team Formation is NP -hard when d = Θ(logn), even with binary91

attributes and team size β ≥ 4. These hardness claims, however, depend on the rather92

unrealistic assumption that the dimension d of attribute vectors must be quite large—in93

most applications, the number of attributes (e.g., standardized test scores) is much more94

modest. Therefore, it is interesting to study the complexity of Multi-team Formation95

when d is small. Indeed, Schibler et al. [20] gave a polynomial-time algorithm for the case of96

d = 2 and leave as an open problem whether the problem is polynomial time solvable for any97

constant d ≥ 3. Our main result is a new algorithm for Multi-team Formation, which98

runs in polynomial time for any d ≤ c · log logn where c > 0 is a sufficiently small constant99

(and hence for any constant d). Specifically, we prove the following theorem.100

I Theorem 1. There exists a 22O(d)
nO(1)-time algorithm for Multi-team Formation.101

In the view of Parameterized Complexity, this is the first Fixed-Parameter Tractable102

(FPT) algorithm for Multi-team Formation parameterized by the dimension d. The103

analysis of the algorithm of Theorem 1 involves a novel application of Graver Bases, a notion104

that has successfully been applied to yield fixed parameter tractability results for a number105

of problems in Mathematical Programming. To the best of our understanding, however,106

none of the existing state-of-the art results [3, 6, 9] can be applied in a black box fashion to107

yield an FPT algorithm for Multi-team Formation parameterized by d. It remains an108

interesting research question to generalize Theorem 1 to an FPT algorithm for solving a class109

of mathematical programs that is powerful enough to encompass Multi-team Formation.110

The time complexity of our algorithm grows double exponentially with d and, under111

plausible complexity theoretic assumptions, it cannot be substantially improved. In particular,112

a fresh look at the NP -hardness reduction of Schibler et al. [20] reveals that any algorithm113

that solves Multi-team Formation in 22d/c · nO(1) time for a sufficiently large constant c114

will violate the Exponential Time Hypothesis (ETH).115

I Theorem 2. The existence of a 22d/c

nO(1)-time algorithm for Multi-team Formation116

with any constant c > 12 violates the Exponential Time Hypothesis (ETH).117

Therefore, our algorithm is ETH-tight, and adds Multi-team Formation to the small118

club of problems (together with Edge Clique Cover [2] and Distinct Vectors [17]) for119

which both a double exponential time algorithm and a double exponential time lower bound120

were known.121

2 An ETH-tight algorithm122

In this section, we present our algorithm for Multi-team Formation in Theorem 1, and123

also prove Theorem 2 (which is easy). We begin by introducing some basic notations. Let124

N, Z, Z+, R to denote the set of natural numbers (including 0), integers, positive integers,125

and real numbers, respectively. For two vectors u,v of the same dimension, we use 〈u,v〉 to126

denote the inner product of u,v. For a number k ∈ {0, . . . , 2d − 1}, let bin(k) be the d-bit127

binary representation of k, which is a d-dimensional binary vector, and binj(k) be the j-th128

entry of bin(k), i.e., the j-th (highest) digit of the d-bit binary representation of k.129

Recall that in Multi-team Formation, the input includes a set C of n candidates where130

each a ∈ C is characterized by a d-dimensional attribute vector κ(a) = (κ1(a), . . . , κd(a)) ∈131

Rd, a vector h = (h1, . . . , hd) ∈ Zd+ used for defining the scoring function somh, and two132

integers α, β > 0 satisfying αβ ≤ n. The goal is to form α disjoint teams T1, . . . , Tα ⊆ C of133

size β such that
∑α
i=1 somh(Ti) is maximized. Without loss of generality, we may assume134

CVIT 2016



23:4 Multi-Team Formation

that hj ≤ β for all j ∈ {1, . . . , d}, because somh(T ) remains unchanged for all T ⊆ C with135

|T | = β if we replace all hj > β with β, as one can easily verified. Let opt denote the136

optimum of the input instance.137

Consider a solution T1, . . . , Tα ⊆ C of the problem. The total score of this solution,138 ∑α
i=1 somh(Ti), is the sum of some attributes κj(a) for a ∈

⋃α
i=1 Ti. For each team Ti, each139

candidate a ∈ Ti contributes to the score somh(Ti) in a certain way. Specifically, for each140

dimension j ∈ {1, . . . , d}, the candidate a is either among the top hj candidates in Ti in141

that dimension, in which case it contributes κj(a), or it is not, in which case it contributes142

01. The information of how the d attributes of a ∈ Ti contribute to the score somh(Ti) can143

be depicted by a number k ∈ {0, . . . , 2d − 1} (or equivalently, a d-bit binary string) where144

binj(k) = 1 if κj(a) contributes to somh(Ti) and binj(k) = 0 if κj(a) does not contribute, for145

j ∈ {1, . . . , d}. We call k the type of the candidate a in the solution T1, . . . , Tα. Now every146

candidate in
⋃α
i=1 Ti has its type, which is a number in {0, . . . , 2d − 1}. For the unassigned147

candidates, i.e., the candidates in C\
⋃α
i=1 Ti, we simply say their type is � (in the solution148

T1, . . . , Tα). In this way, we give every candidate in C a type in the solution, which is an149

element in Γ = {0, . . . , 2d − 1} ∪ {�}. We then define the type assignment (or assignment150

for short) of the solution T1, . . . , Tα as the function π : C → Γ that maps each candidate to151

its type in the solution.152

We consider the following question: for a solution T1, . . . , Tα ⊆ C, if we were only given153

its type assignment π : C → Γ without the original teams T1, . . . , Tα, how much information154

about T1, . . . , Tα can we recover from π? Observe first that we can easily recover the total155

score
∑α
i=1 somh(Ti) of the solution, simply because the types of the candidates record how156

their attributes contribute to the total score. Specifically, if we define157

scr(π) =
∑

a∈C, π(a)6=�

〈bin(π(a)), κ(a)〉 =
∑

a∈C, π(a) 6=�

 d∑
j=1

binj(π(a)) · κj(a)

 , (2)158

which we call the score of π, then it is clear that
∑α
i=1 somh(Ti) = scr(π). At the same159

time, however, we cannot recover the teams T1, . . . , Tα from π, because it can happen that160

different solutions share the same type assignment (for example, there are situations where161

two candidates with the same attributes, but in different teams, could be swapped without162

changing their type, leading to a different solution with the same type assignment).163

We say a solution T1, . . . , Tα ⊆ C realizes a type assignment function π : C → Γ if π is164

the type assignment of T1, . . . , Tα. Thus, for a type assignment function π : C → Γ , there165

could be zero, one, or more solutions that realize it, and all such solutions have the same166

total score. We say π is realizable if there exists at least one solution that realizes π. What167

we want is essentially a realizable π : C → Γ that maximizes scr(π).168

Note that there are too many (type assignment) functions π : C → Γ to go over all of169

them; indeed, the number of such functions is (2d + 1)n. Furthermore, it turns out to be170

difficult to check whether a given π is realizable, and even if we know π is realizable, it is171

not clear how to find a witness solution T1, . . . , Tα ⊆ C that realizes π. For this reason,172

our algorithm does not work on type assignment functions directly. Instead, we only guess173

some distinguishing features of the type assignment of an optimal solution. Perhaps the174

most natural distinguishing feature is “how many candidates are there of each type”. We175

1 Here we assume that the “sum-of-top-hj” function maxhj in Equation 1 breaks ties in a certain way
(e.g., take the attributes of the candidates with smaller indices first, etc.) so that the contributing
attributes of each candidate in the team is uniquely defined.
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formalize this as follows. The configuration of a function π : C → Γ is a 2d-dimensional176

vector conf(π) = (c0, . . . , c2d−1) ∈ N2d where ck = |π−1({k})| for k ∈ {0, . . . , 2d − 1}. In177

other words, the k-th entry ck of the vector conf(π) records the number of candidates assigned178

to type k by π.179

Clearly, not every vector in N2d can be the configuration of some realizable function.180

Next, we establish a simple necessary (but not sufficient) condition for a vector to be the181

configuration of some realizable function. Suppose c = (c0, . . . , c2d−1) is the configuration of182

a realization function π : C → Γ and let T1, . . . , Tα ⊆ C be the solution that realizes π, i.e.,183

π is the type assignment of T1, . . . , Tα. For i ∈ {1, . . . , α} and k ∈ {0, . . . , 2d − 1}, let vi,k184

be the number of candidates in Ti which are mapped to k by π, i.e., vi,k = |π−1({k}) ∩ Ti|.185

Since π maps all candidates in C\(
⋃α
i=1 Ti) to �, we have ck = |π−1({k})| =

∑α
i=1 vi,k for all186

k ∈ {0, . . . , 2d − 1} and hence c =
∑α
i=1 vi where vi = (vi,0, . . . , vi,2d−1). Now what are the187

conditions that each vi has to satisfy? First, since |Ti| = β and π maps all candidates in Ti188

to {0, . . . , 2d − 1}, the sum of all entries of vi is equal to β, i.e.,
∑2d−1
k=0 vi,k = β. Second, for189

each j ∈ {1, . . . , d}, the number of candidates in Ti which contribute in the j-th dimension is190

precisely hj , and thus the sum of the entries of vi corresponding to types k which contribute191

in the j-th dimension, i.e., binj(k) = 1, is equal to hj , i.e.,
∑2d−1
k=0 vi,k · binj(k) = β. To192

summarize, in order to be the configuration of some realizable function, a vector c must be193

the sum of α vectors each of which satisfies the above two conditions. This is exactly the194

necessary condition we want. Formally, we give the following definition.195

I Definition 3 (legal vectors). A vector v = (v0, . . . , v2d−1) ∈ N2d is (β,h)-legal (or simply196

legal when β and h are all clear from the context) if
∑2d−1
k=0 vk = β and

∑2d−1
k=0 vk ·binj(k) = hj197

for all j ∈ {1, . . . , d}.198

I Fact 4. If π : C → Γ is realizable, then conf(π) is the sum of α legal vectors.199

Note that the converse of the above fact is not true, i.e., it is possible that conf(π) is the200

sum of α legal vectors but π is not the type assignment of any solution. However, we have201

the following nice property.202

I Lemma 5. If π : C → Γ is a function such that conf(π) is the sum of α legal vectors,203

then scr(π) ≤ opt. Furthermore, given π and a decomposition conf(π) =
∑α
i=1 vi into legal204

vectors, one can compute in O(n+ 2d) time a solution T1, . . . , Tα ⊆ C of the problem such205

that scr(π) ≤
∑α
i=1 somh(Ti).206

Proof. Suppose conf(π) = (c0, . . . , c2d−1) =
∑α
i=1 vi, where each vi = (vi,0, . . . , vi,2d−1)207

is a legal vector. For k ∈ {0, . . . , 2d − 1}, we arbitrarily partition the ck candidates in208

π−1({k}) into α groups G1,k, . . . , Gα,k such that |Gi,k| = vi,k; this is possible because209

ck =
∑α
i=1 vi,k. We then define Ti =

⋃2d−1
k=0 Gi,k for i ∈ {1, . . . , α}. It is clear that T1, . . . , Tα210

are disjoint subsets of C with size β. Therefore,
∑α
i=1 somh(Ti) ≤ opt. It suffices to211

show scr(π) ≤
∑α
i=1 somh(Ti). Note that π(a) ∈ {0, . . . , 2d − 1} for all a ∈

⋃α
i=1 Ti and212

π(a) = � for all a ∈ C\(
⋃α
i=1 Ti). So we have scr(π) =

∑α
i=1

∑
a∈Ti

∑d
j=1 binj(π(a)) · κj(a).213

Equivalently, scr(π) =
∑α
i=1

∑d
j=1

∑
a∈Ti,j

κj(a), where Ti,j = {a ∈ Ti : binj(π(a)) = 1}.214

Since v1, . . . ,vα are (β,h)-legal, we have |Ti,j | = hj for all i ∈ {1, . . . , α} and j ∈ {1, . . . , d}.215

Thus,
∑
a∈Ti,j

κj(a) ≤ maxhj{κj(a) : a ∈ Ti} (recall that maxhj S denotes the sum of the216

largest hj numbers in the multiset S). It follows that217

scr(π) =
α∑
i=1

d∑
j=1

∑
a∈Ti,j

κj(a) ≤
α∑
i=1

d∑
j=1

maxhj{κj(a) : a ∈ Ti} =
α∑
i=1

somh(Ti).218

CVIT 2016



23:6 Multi-Team Formation

Therefore, scr(π) ≤ opt. If we are given π and the legal vectors v1, . . . ,vα, then the teams219

T1, . . . , Tα can clearly be constructed in O(n+ 2d) time. J220

With the above lemma in hand, it now suffices to compute a function π∗ : C → Γ with221

the maximum scr(π∗) such that conf(π∗) is the sum of α legal vectors and a decomposition222

conf(π∗) =
∑α
i=1 vi into legal vectors. Indeed, once we have the function π∗ and the223

decomposition conf(π∗) =
∑α
i=1 vi, we can apply the above lemma to obtain a solution224

T ∗1 , . . . , T
∗
α ⊆ C satisfying scr(π∗) ≤

∑α
i=1 somh(T ∗i ). Note that Fact 4 guarantees scr(π∗) ≥225

opt, which implies
∑α
i=1 somh(T ∗i ) ≥ opt, i.e., T ∗1 , . . . , T ∗α is an optimal solution.226

Next, we show how to compute the function π∗ and the decomposition efficiently. To this227

end, we formulate the problem as an integer linear programming (ILP) instance. For each228

candidate a ∈ C, we define 2d + 1 variables u0(a), . . . , u2d−1(a), u�(a). These variables are229

used to encode the information of π∗. Specifically, the variable uk(a) will indicate whether230

π∗(a) = k: uk(a) = 1 if π∗(a) = k and uk(a) = 0 if π∗(a) 6= k. Therefore, the values of these231

variables are in {0, 1} and must satisfy the constraints
∑
k∈Γ uk(a) = 1 for all a ∈ C. Our232

objective function, which is scr(π∗), can be expressed as
∑
a∈C

∑2d−1
k=0 uk(a) · 〈bin(k), κ(a)〉,233

according to the formula of Equation 2. In addition, we need variables and constraints to234

guarantee that conf(π∗) is the sum of α legal vectors. Note that conf(π∗) can be expressed235

as
∑
a∈C u(a), where u(a) = (u0(a), . . . , u2d−1(a)). We introduce variables vi,0, . . . , vi,2d−1236

for all i ∈ {1, . . . , α}. Each vector vi = (vi,0, . . . , vi,2d−1) is supposed to be a legal vector. So237

we include the constraints
∑2d−1
k=0 vi,k = β and

∑2d−1
k=0 vi,k · binj(k) = hj for all j ∈ {1, . . . , d}.238

Finally, we need to constraint
∑
a∈C u(a) =

∑α
i=1 vi to ensure that conf(π∗) is the sum of239

v1, . . . ,vα. In sum, our ILP instance is240

max
∑
a∈C

2d−1∑
k=0

uk(a) · 〈bin(k), κ(a)〉

s.t.
∑
k∈Γ uk(a) = 1 for all a ∈ C,∑2d−1
k=0 vi,k = β for all i ∈ {1, . . . , α},∑2d−1
k=0 vi,k · binj(k) = hj for all i ∈ {1, . . . , α} and j ∈ {1, . . . , d},∑
a∈C u(a) =

∑α
i=1 vi,

0 ≤ u(a) ≤ 1 for all a ∈ C and vi ≥ 0 for all i ∈ {1, . . . , α}.

(3)241

The above ILP instance has (2d + 1)n+ 2dα variables, thus we cannot apply any general242

ILP solver to solve it in time polynomial in n. Fortunately, this ILP instance has some nice243

structural property which we can exploit. In order to describe the property, we need to first244

introduce the notion of N -fold ILP. In an N -fold ILP instance, the linear constraints on the245

variable vector x can be represented as xlow ≤ x ≤ xhigh and Ax = b where246

A =


M1 M2 · · · MN

M ′1 0 · · · 0
0 M ′2 · · · 0
...

...
. . .

...
0 0 · · · M ′N

 . (4)247

Let r be the maximum number of rows of the matrices M1, . . . ,MN and M ′1, . . . ,M ′N , and t248

be the maximum number of columns of the matrices M ′1, . . . ,M ′N . It was shown in [10] that249

the N -fold ILP instance can be solved in ∆O(r3)(Nt)O(1) time, where ∆ = max{2, ‖A‖∞}.250
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We observe that our ILP instance in Equation 3 is in fact an N -fold ILP instance with251

N = n+ α, r = 2d, t = 2d + 1, and ∆ = 2. To this end, we classify our variables into n+ α252

groups. For each a ∈ C, we have a group Ga = {uk(a) : k ∈ Γ} of 2d + 1 variables. For253

each i ∈ {1, . . . , α}, we have a group G′i = {vi,0, . . . , vi,2d−1} of 2d variables. We obtain our254

variable vector x by permuting all (2d + 1)n+ 2dα variables such that the variables in each255

group are consecutive in the permutation. Now notice that the constraint
∑
k∈Γ uk(a) = 1 is256

only for the variables in Ga, while the constraints
∑2d−1
k=0 vi,k = β and

∑2d−1
k=0 vi,k ·binj(k) = hj257

for j ∈ {1, . . . , d} are only for the variables in G′i. We call these constraints local constraints.258

Local constraints can be realized using the M ′-matrices in Equation 4; the number of rows of259

these matrices is at most d+ 1 because we have one local constraint for each group Ga and260

d+ 1 local constraints for each group G′i, and the number of columns of these matrices is at261

most 2d + 1 because each group has at most 2d + 1 variables. Finally, we have the “global”262

constraints
∑
a∈C u(a) =

∑α
i=1 vi. Since the dimension of the vectors u(a) and vi is 2d, the263

global constraints can be expressed as Mx = 0 for some 2d-row matrix M , which can be264

in turn realized using matrices M1, . . . ,MN in Equation 4. To summarize, the constraints265

of our ILP instance of Equation 3 can be written as Ax = b, where A is of the form of266

Equation 4 in which N = n+ α and the maximum number of rows (resp., columns) of the267

matrices M1, . . . ,MN ,M
′
1, . . . ,M

′
N is 2d (resp., 2d + 1). Also, as one can easily verified, the268

entries of A are all in {−1, 0, 1}, which implies ‖A‖∞ ≤ 1 and ∆ = 2. Therefore, applying269

the algorithm of [10] solves our ILP instance in 22O(d)
nO(1) time.270

After solving the ILP instance of Equation 3, we obtain the desired function π∗ : C → Γ271

by setting π∗(a) to be the (unique) element k ∈ Γ satisfying uk(a) = 1, and a decomposition272

conf(π∗) =
∑α
i=1 vi into legal vectors. As argued before, we can then use Lemma 5 to273

compute an optimal solution for the problem in O(n) time. The overall running time of our274

algorithm is 22O(d)
nO(1). This proves Theorem 1, which we restate below.275

I Theorem 1. There exists a 22O(d)
nO(1)-time algorithm for Multi-team Formation.276

Although the running time of our algorithm depends double exponentially on d, it is277

ETH-tight and hence unlikely to be substantially improved. The lower bound follows readily278

from the reduction in [20] and the ETH lower bound in [1] for 3-dimensional Matching.279

I Theorem 2. The existence of a 22d/c

nO(1)-time algorithm for Multi-team Formation280

with any constant c > 12 violates the Exponential Time Hypothesis (ETH).281

Proof. Let c > 12 be a constant. Schibler et al. [20] described a polynomial-time reduction282

from 3-dimensional Matching to Multi-team Formation with n = O(m) and d =283

12 logm+O(1), where m is the size of the 3-dimensional Matching instance. Therefore, a284

22d/c

nO(1)-time algorithm for Multi-team Formation implies a 2m12/c

mO(1)-time algorithm285

for 3-dimensional Matching. However, it was shown in [1] that any algorithm with running286

time 2o(m) for 3-dimensional Matching violates the ETH. J287

3 Conclusion and future work288

In this paper, we considered Multi-team Formation under the natural sum-of-maxima289

scoring rule, and presented an algorithm that runs in 22O(d) · nO(1) time, which is ETH-tight290

since a 22d/c · nO(1)-time algorithm, for any constant c > 12, would violate the ETH.291

A direction for future work is approximation algorithms for Multi-team Formation.292

Exploiting the submodularity of the sum-of-maxima scoring function, one can easily formu-293

late Multi-team Formation as a submodular maximization problem with two matroid294

CVIT 2016
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constraints, which leads to a polynomial-time (0.5 − ε)-approximation algorithm for any295

constant ε > 0 using the algorithm of [13]. Whether one can achieve a better approximation296

in polynomial time is an interesting open question to be studied.297
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10 Martin Kouteckỳ, Asaf Levin, and Shmuel Onn. A parameterized strongly polynomial algorithm323

for block structured integer programs. In 45th International Colloquium on Automata, Lan-324

guages, and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,325

2018.326

11 Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a team of experts in social networks.327

In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery328

and Data Mining, KDD ’09, pages 467–476, 2009.329

12 Patrick R. Laughlin and Andrea B. Hollingshead. A theory of collective induction. Organiza-330

tional Behavior and Human Decision Processes, 61(1):94 – 107, 1995.331

13 Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple332

matroids via generalized exchange properties. Mathematics of Operations Research, 35(4):795–333

806, 2010.334

14 Tomasz P. Michalak, Talal Rahwan, Edith Elkind, Michael J. Wooldridge, and Nicholas R.335

Jennings. A hybrid exact algorithm for complete set partitioning. Artif. Intell., 230:14–50,336

2016.337

15 George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of ap-338

proximations for maximizing submodular set functions - I. Math. Program., 14(1):265–294,339

1978.340

16 Scott Page. The Difference: How the Power of Diversity Creates Better Groups, Firms,341

Schools, and Societies. Princeton University Press, 2007.342



D. Lokshtanov, S. Saurabh, S. Suri, J. Xue 23:9

17 Marcin Pilipczuk and Manuel Sorge. A double exponential lower bound for the distinct343

vectors problem. CoRR, abs/2002.01293, 2020. URL: https://arxiv.org/abs/2002.01293,344

arXiv:2002.01293.345

18 Habibur Rahman, Senjuti Basu Roy, Saravanan Thirumuruganathan, Sihem Amer-Yahia, and346

Gautam Das. Optimized group formation for solving collaborative tasks. The VLDB Journal,347

28(1):1–23, February 2019.348

19 Talal Rahwan, Tomasz P. Michalak, Michael J. Wooldridge, and Nicholas R. Jennings. Coalition349

structure generation: A survey. Artif. Intell., 229:139–174, 2015.350

20 Thomas Schibler, Ambuj Singh, and Subhash Suri. On multi-dimensional team formation. In351

Proc. of the 31st Canadian Conference on Computational Geometry, pages 146–152, 2019.352

21 Travis C. Service and Julie A. Adams. Coalition formation for task allocation: theory and353

algorithms. Autonomous Agents and Multi-Agent Systems, 22(2):225–248, Mar 2011.354

22 Marjorie E. Shaw. A comparison of individuals and small groups in the rational solution of355

complex problems. The American Journal of Psychology, 44(3):491–504, 1932.356

23 Onn Shehory and Sarit Kraus. Methods for task allocation via agent coalition formation. Artif.357

Intell., 101(1-2):165–200, 1998.358

24 I. D. Steiner. Group process and productivity. New York: Academic Press, 1972.359

25 Xinyu Wang, Zhou Zhao, and Wilfred Ng. A comparative study of team formation in social360

networks. In Matthias Renz, Cyrus Shahabi, Xiaofang Zhou, and Muhammad Aamir Cheema,361

editors, Database Systems for Advanced Applications - 20th International Conference, DASFAA362

2015, Hanoi, Vietnam, April 20-23, 2015, Proceedings, Part I, volume 9049 of Lecture Notes363

in Computer Science, pages 389–404. Springer, 2015.364

CVIT 2016

https://arxiv.org/abs/2002.01293
http://arxiv.org/abs/2002.01293

	Introduction
	An ETH-tight algorithm
	Conclusion and future work

