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In the SUBSET FEEDBACK VERTEX SET (SUBSET FVS) problem, the input is a graph G on n vertices
and m edges, a subset of vertices T , referred to as terminals, and an integer k. The objective is to determine
whether there exists a set of at most k vertices intersecting every cycle that contains a terminal. The study
of parameterized algorithms for this generalization of the FEEDBACK VERTEX SET problem has received
significant attention over the last few years. In fact the parameterized complexity of this problem was open
until 2011, when two groups independently showed that the problem is fixed parameter tractable (FPT).
Using tools from graph minors Kawarabayashi and Kobayashi obtained an algorithm for SUBSET FVS
running in time O(f(k) ·n2m) [SODA 2012, JCTB 2012]. Independently, Cygan et al. [ICALP 2011, SIDMA
2013] designed an algorithm for SUBSET FVS running in time 2O(k log k) · nO(1). More recently, Wahlström
obtained the first single exponential time algorithm for SUBSET FVS, running in time 4k · nO(1) [SODA
2014]. While the 2O(k) dependence on the parameter k is optimal under the Exponential Time Hypothesis
(ETH), the dependence of this algorithm as well as those preceding it, on the input size is at least quadratic.
In this paper we design the first linear time parameterized algorithms for SUBSET FVS. More precisely, we
obtain the following new algorithms for SUBSET FVS.

— A randomized algorithm for SUBSET FVS running in time O(25.6k · (n+m)).
— A deterministic algorithm for SUBSET FVS running in time 2O(k log k) · (n+m).

Since it is known that assuming the Exponential Time Hypothesis, SUBSET FVS cannot have an algorithm
running in time 2o(k)nO(1), our first algorithm obtains the best possible asymptotic dependence on both the
parameter as well as the input size. Both of our algorithms are based on “cut centrality”, in the sense that
solution vertices are likely to show up in minimum size cuts between vertices sampled from carefully chosen
distributions.
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1. INTRODUCTION

FEEDBACK SET problems constitute one of the most important topics of research in
parameterized algorithms [Cao et al. 2015; Chen et al. 2008; Chen et al. 2008; Chitnis
et al. 2015; Cygan et al. 2011; Cygan et al. 2013; Kawarabayashi and Kobayashi 2012;
Kakimura et al. 2012; Kociumaka and Pilipczuk 2014; Raman et al. 2006; Wahlström
2014]. Typically, in these problems, we are given an undirected graph G (or a directed
graph) and a positive integer k, and the objective is to “hit” all cycles of the input graph
using at most k vertices (or edges or arcs). Recently, there has been a lot of study on the
subset variant of FEEDBACK SET problems. In these problems, the input also includes
a terminal subset T ⊆ V (G) and the goal is to detect the presence of a set, referred to
as a subset feedback vertex set, that hits all T -cycles, that is, cycles whose intersection
with T is non-empty. In this paper we consider the following problem.

SUBSET FEEDBACK VERTEX SET (SUBSET FVS)
Instance: A graph G on n vertices and m edges, a subset of T of V (G),

and a positive integer k.
Parameter: k

Question: Is there a k-sized vertex subset S that intersects every T -cycle?

SUBSET FVS generalizes FEEDBACK VERTEX SET as well as the well known MUL-
TIWAY CUT problem. In this paper we explore parameterized algorithms for SUBSET
FVS. In parameterized complexity each problem instance has an associated parame-
ter k and a central notion in parameterized complexity is fixed parameter tractability
(FPT). This means, for a given instance (x, k), solvability in time τ(k) · |x|O(1), where τ
is an arbitrary function of k.

The study of parameterized algorithms for the SUBSET FVS problem has re-
ceived significant attention in the last few years. The existence of an FPT algo-
rithm for SUBSET FVS was shown only in 2011, when two groups independently
gave FPT algorithms for the problem. Using tools from graph minors Kawarabayashi
and Kobayashi obtained an algorithm for SUBSET FVS with running time O(f(k) ·
n2m) [Kawarabayashi and Kobayashi 2012] (also see [Kakimura et al. 2012]). Indepen-
dently, Cygan et al. [Cygan et al. 2013] combined iterative compression [Niedermeier
2006] with Gallai’s theorem [Diestel 2010] to obtain an algorithm for SUBSET FVS
with running time 2O(k log k) · nO(1). Cygan et al. asked whether it is possible to obtain
an algorithm for SUBSET FVS running in time 2O(k) · nO(1). Wahlström [Wahlström
2014] resolved this question in the affirmative by giving an algorithm for SUBSET
FVS, with running time 4k · nO(1). It is known that under the Exponential Time Hy-
pothesis (ETH) [Impagliazzo et al. 2001], FEEDBACK VERTEX SET does not not admit
an algorithm with running time 2o(k) · nO(1) [Cygan et al. 2014]. Since SUBSET FVS is
a generalization of FEEDBACK VERTEX SET, it follows that assuming ETH, SUBSET
FVS also does not admit an algorithm with running time 2o(k) · nO(1).

The focus of this paper is the second component of the running time of parameterized
algorithms, that is, the running time dependence on the input size n. This direction of
research is as old as the existence of parameterized algorithms, with classic results,
such as Bodlaender’s linear time algorithm for treewidth [Bodlaender 1996] and the
cubic time algorithm of Robertson and Seymour for the disjoint paths problem [Robert-
son and Seymour 1995]. A more recent phenomenon is that one strives for linear time
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parameterized algorithms that do not compromise too much on the dependence of the
running time on the parameter k. The gold standard for these results are algorithms
with linear dependence on input size as well as provably optimal (under ETH) de-
pendence on the parameter. New results in this direction include parameterized algo-
rithms for problems such as ODD CYCLE TRANSVERSAL [Iwata et al. 2014; Ramanujan
and Saurabh 2017], SUBGRAPH ISOMORPHISM [Dorn 2010], PLANARIZATION [Jansen
et al. 2014; Kawarabayashi 2009] as well as a single-exponential and linear time
parameterized constant factor approximation algorithm for TREEWIDTH [Bodlaender
et al. 2013]. Other recent results include parameterized algorithms with improved de-
pendence on input size for a host of problems [Grohe et al. 2013; Kawarabayashi et al.
2012; Kawarabayashi and Mohar 2008; Kawarabayashi et al. 2008; Kawarabayashi
and Reed 2009; 2010].

The running time dependence on the input size for all the previous algorithms
for SUBSET FVS is quite far from being linear. Recently, the methods behind the
4k · nO(1) time algorithm of Wahlström have been applied to give linear time FPT al-
gorithms [Iwata et al. 2016] for several problems, including the edge-deletion variant
of UNIQUE LABEL COVER. In this paper we design the first linear time parameterized
algorithms for SUBSET FVS. The first algorithm is randomized with one-sided error,
and obtains linear dependence on n as well as single exponential dependence on k.

THEOREM 1.1. There is an algorithm that, given an instance (G,T, k) of SUBSET
FVS runs in time 25.6kkO(1)(m + n) and either returns a subset feedback vertex set of
size at most k or concludes correctly with probability at least 1 − 1

e that no such set
exists, where m = |E(G)| and n = |V (G)|.

The second algorithm is deterministic at the cost of a slightly worse dependence on
the parameter k.

THEOREM 1.2. There is an algorithm that given an instance (G,T, k) of SUBSET
FVS runs in time 2O(k log k)(m+n) and either returns a subset feedback vertex set of size
at most k, or correctly concludes that no such set exists.

Methodology.. Both algorithms begin by applying simple preprocessing rules to en-
sure that there are no irrelevant vertices or edges and that every vertex is sufficiently
connected to the terminals. While the preprocessing rules are quite easy to state, ap-
plying some of the rules exhaustively in linear time is non-trivial. We achieve this
by using a classic algorithm of Hopcroft and Tarjan [Hopcroft and Tarjan 1973a] to
decompose a graph into its 3-connected pieces.

At this point the randomized algorithm of Theorem 1.1 exploits the following struc-
tural insight. Consider a graph G that does have a subset feedback vertex set S of size
at most k. G− S has no T -cycles, and a graph without any T -cycles is essentially a for-
est where some of the terminal-free regions have been replaced by arbitrary graphs.
A terminal-free region here is a connected component of G− T − S. The terminal-free
regions may only interact with neighboring terminals via single edges. That is, for ev-
ery connected component C in G − T − S and every t ∈ T , there is at most one edge
between C and t. Since a forest has average degree at most 2, at least half the regions
interact with at most two other terminals in this way. Any such “degree two” region can
be separated from the terminals by removing the solution S, as well as the two edges
leaving the region in G − S. On the other hand the preprocessing rules ensure that
every vertex has sufficient flow to the terminals, in particular the rules ensure that
each “degree two” region must have at least one neighbor in the solution. From this
we infer that the vertices of S appear very frequently in small cuts between vertices
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in “degree two regions” and terminal vertices. Our algorithm is based on a random
process which is likely to produce a vertex v which is in a “degree two region”. The
algorithm then samples a small set A such that A separates v from the terminal, and
with good probability A has a large intersection with the solution S. At this point the
algorithm guesses the intersection of the set A with the solution S, removes A∩S from
the graph and starts again. The difficult part of the analysis is to show that whenever
the algorithm guesses that a set X is a subset of the solution, the algorithm is correct
with probability at least 1

2O(|X|) .
The deterministic algorithm of Theorem 1.2 is based on the same ideas as the ran-

domized algorithm, but is quite far from being a “direct derandomization”. An attempt
at a “direct derandomization” of the algorithm of Theorem 1.1 could look like this. The
randomized algorithm essentially selects a vertex and claims that this vertex is a part
of the solution. The analysis basically shows that for any optimal solution S of size
at most k, the probability that the randomized algorithm selects a vertex in S is at
least 1/25.6. Suppose that we could compute deterministically for each vertex v, the
probability p(v) with which v is selected. We know that

∑
v∈S p(v) ≥ 1

25.6 . Thus there
must be a vertex in v ∈ S such that p(v) ≥ 1

25.6k . However,
∑
v∈V (G) p(v) = 1, implying

that the number of vertices v such that p(v) ≥ 1
25.6k is at most 25.6k. This gives us a

candidate set of size 25.6k, out of which a vertex must be in the solution. We can now
guess this vertex, decrease k by 1, and re-start. The main problem with this approach
is that we are unaware of an algorithm to compute p(v) for all vertices v in linear time.
The engine behind the algorithm of Theorem 1.2 is a different random process which
also ensures that solution vertices are picked with high probability, but for which the
probabilities p(v) are efficiently computable.

Related work:. Apart from SUBSET FVS, the subset variants of DIRECTED FEED-
BACK VERTEX SET and ODD CYCLE TRANSVERSAL have also been studied. Chitnis
et al. [Chitnis et al. 2015] showed that the SUBSET DIRECTED FEEDBACK VERTEX
SET is FPT. Kakimura et al. [Kakimura et al. 2012] initiated the study of SUBSET
ODD CYCLE TRANSVERSAL and proposed an FPT algorithm for this problem using
graph minors theory. SUBSET FVS has also been studied in the realm of approxima-
tion algorithms [Even et al. 2000b; Even et al. 2000a]. The current best approximation
algorithm for SUBSET FVS has factor 8 [Even et al. 2000a]. Kakimura et al. [Kakimura
et al. 2011] and Pontecorvi and Wollan [Pontecorvi and Wollan 2012] gave an Erdős-
Pósa type result for SUBSET FVS. In particular, Pontecorvi and Wollan proved that
there exists a constant α such that for all graphs G,T ⊆ V (G), and a positive inte-
gers k, either there exist k vertex disjoint T -cycles, or there exists a subset-fvs X with
|X| ≤ αk log k.

2. PRELIMINARIES

All graphs we consider are undirected and finite, unless explicitly stated otherwise.
When considering multigraphs we allow self loops (but not more than one per vertex)
and any number of multiple edges. We use [n] as an abbreviation for {1, . . . , n}. For a
graph G we denote its vertex set by V (G) and the edge set by E(G). An edge between
vertices u and v is denoted by uv, and is identical to the edge vu. If there are multiple
edges between u and v, then uv denotes any one of these edges. Removing a vertex v
from the graph means removing v and all edges incident to v. This graph is denoted by
G−v. Removing a set Z of vertices is denoted by G−Z and means removing all vertices
in Z one by one. The subgraph G[V ′] induced by a vertex set V ′ is G − (V (G) \ V ′). It
is possible to add a vertex v to a graph G. In this case the vertex v is added to the set
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V (G) and some specified edges incident to v are added to E(G). We denote by G+(v,E)
the graph obtained from G by adding v to V (G) and E to E(G). Here all edges in E are
required to be incident to v.

The open neighborhood of a vertex v in graph G contains the vertices adjacent
to v, and is written as NG(v). The open neighborhood of a set S ⊆ V (G) is defined
as
⋃
v∈S NG(v)\S. Thus, if G is simple then dG(v) = |NG(v)|. When the graph G is clear

from context we omit the subscript.
A cut vertex is a vertex whose removal increases the number of connected compo-

nents. A graph is biconnected (or 2-connected) if it is connected and does not contain
any cut vertices. The biconnected components of a graph G are its maximal biconnected
subgraphs. It is well known that the biconnected components of a graph form a par-
tition of its edge set. Similarly, a connected graph is triconnected (or 3-connected) if
there is no set of at most two vertices whose removal disconnects the graph.

A separation of a graph G is a pair (L,R) of subsets of V (G) such that L ∪R = V (G)
and there are no edges between L \ R and R \ L in G. The intersection L ∩ R is called
the center of the separation, and the size |L ∩R| is the order of the separation.

Given a path P (cycle C), we refer to the number of edges in P (C) as the length of P
(C) and denote it by |P | (respectively |C|).

If P is a path from a vertex in X to a vertex in Y , we say that P is an X-Y path. If X
contains a single vertex x, we say that P is an x-Y path. Two paths that do not share
any vertices are called vertex disjoint. Two paths P1 and P2 such that the internal
vertices of P1 are disjoint from P2 and vice versa are called internally vertex disjoint
paths. For a graph G and T ⊆ V (G), a path with both endpoints in T but no internal
vertices in T is called a T -path. A cycle which intersects T is called a T -cycle. A subset
feedback vertex set of a graph G and terminal set T ⊆ V (G) is a set S ⊆ V (G) such that
G− S does not contain any T -cycles.

Contracting an edge uv amounts to removing the vertices u and v from the graph
and making a new vertex w which is adjacent to all vertices in N(u) ∪ N(v). When
working with multigraphs the number of edges from w to a vertex x in N(u) ∪N(v) is
the number of edges from u to x plus the number of edges from v to x.

Tree decompositions and the Tutte Decomposition. A tree decomposition of a graph G
is a pair (F, χ), where F is a tree and χ : V (F ) → 2V (G) is a function such that the
following conditions are satisfied:

(1) For each edge uv ∈ E(G) there is a node b ∈ V (F ) such that {u, v} ⊆ χ(b).
(2) For each v ∈ V (G) the nodes in {b | v ∈ χ(b)} induce a non-empty connected subtree

of F .

The sets χ(b) for b ∈ V (F ) are called bags of the tree decomposition. We will assume
that the reader is familiar with tree decompositions and their basic properties. For an
introduction to tree decompositions, see [Diestel 2010]. We extend the definition of χ
so that it also may take subsets of vertices of F as input. In particular, for B ⊆ V (F )
we define χ(B) =

⋃
b∈B χ(b). The width of a tree decomposition is the maximum size

of a bag in the decomposition, minus 1. The tree-width of a graph G is the minimum
width of any tree decomposition of G. A useful fact is that a graph G has tree-width at
most 1 if and only if G is a forest [Diestel 2010].

It is possible to decompose any graph “in a tree-like fashion” into triconnected parts.
While the idea of a triconnected part is similar in spirit to that of a biconnected compo-
nent, a triconnected part in our context is not necessarily a subgraph of the input graph
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and is more conveniently stated using tree decompositions. The concepts of torsos and
adhesions are needed to state this decomposition theorem. For a graph G and vertex
set M ⊆ V (G), the graph torso(G,M) has vertex set M . Two vertices u and v have an
edge between each other in torso(G,M) if uv ∈ E(G[M ]), or there is a path from u to v
in G with all internal vertices in V (G) \M . For a tree decomposition (F, χ) of G and
edge ab ∈ E(F ) the set χ(a)∩χ(b) is called an adhesion of the tree decomposition (F, χ).

Definition 2.1. A Tutte decomposition of a connected graph G is a tree decomposi-
tion (F, χ) of G with the following properties.

(a) The size of the largest adhesion of (F, χ) is at most 2.
(b) For each b ∈ V (F ) the graph torso(G,χ(b)) is triconnected.
(c) For each set B ⊆ V (F ) such that at most one node in B has a neighbor outside of

B, G[χ(B)] is connected.
(d) There is no pair of distinct nodes b, b′ ∈ V (F ) such that χ(b) ⊆ χ(b′).

When representing a Tutte decomposition in memory, we store some additional in-
formation besides the tree and the bags corresponding to the nodes, to allow compu-
tations on the decomposition to be performed efficiently. For each edge ab ∈ E(F ), we
store the adhesion χ(a) ∩ χ(b) between the two bags.

PROPOSITION 2.2 ([HOPCROFT AND TARJAN 1973A; GUTWENGER AND MUTZEL 2000]).
There is an algorithm that, given an n-vertex m-edge graph G, runs in time O(n + m)

and outputs a Tutte decomposition (F, χ) of G, where |V (F )| = O(n).

We will also need the following fact about Tutte decompositions. Although it follows
implicitly from the decomposition given in [Diestel 2010], we give a proof here for the
sake of completeness.

PROPOSITION 2.3. Let (F, χ) be a Tutte decomposition of G and b ∈ V (F ) be a node
such that |χ(b)| ≥ 4. For every pair of distinct vertices u, v ∈ χ(b), either uv are adjacent
in G or there are at least 3 vertex disjoint paths from u to v in G.

PROOF. Suppose u and v appear in the same bag χ(b) of size at least 4, but that
there exists a separation L,R of order at most 2 such that u ∈ L \R and v ∈ R \L. Pick
u, v, L and R and such that |L ∩R \ χ(b)| is minimized. Let Z = L ∩R.

If u and v are non-adjacent in torso(G,χ(b)) then there are 3 vertex disjoint u-v
paths in torso(G,χ(b)), and since torso(G,χ(b)) can also be obtained from G by vertex
deletions, edge deletions and edge contractions, we infer that there are 3 vertex disjoint
u-v paths in G as well. Thus u and v are adjacent in torso(G,χ(b)) . Since u and v are
non-neighbors in G it follows that there is an edge bb′ ∈ E(F ), such that χ(b) ∩ χ(b′) =
{u, v}. Let B be the vertex set of the connected component of F − bb′ that contains b′,
we have that χ(B) ∩ χ(b′) = {u, v} and that G[χ(B)] is connected. Thus Z ∩ χ(B) 6= ∅.

Let P = χ(B) and Q = χ(V (G) \B). Then, (P,Q) is a separation with P ∩Q = {u, v}
and χ(b) ⊆ Q. Since Z ∩ χ(B) 6= ∅, it follows that |Z ∩ χ(b)| ≥ 1 and that there exists a
vertex z ∈ χ(b)\ ({u, v}∪Z). The vertex z is either in L\R or R\L. We assume without
loss of generality that z ∈ L \R. Consider now the separation (L ∩Q,R ∪ P ). We have
that (L∩Q)∩ (R∪P ) = {u}∪ (Z \ (P \Q)), and Z ∩ (P \Q) 6= ∅. Therefore, (L∩Q,R∪P )
is a separation of order at most 2. Furthermore Z ∩ (P \Q)∩χ(b) = ∅ while u ∈ χ(B). It
follows that |(L∩Q)∩(R∪P )\χ(b)| < |(L∩R)\χ(b)|. Finally z ∈ χ(b)∩((L∩Q)\((R∪P ))
while v ∈ χ(b) ∩ ((R ∪ P ) \ (L ∩ Q)). This contradicts the choice of u,v, L and R, thus
completing the proof of the proposition.
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2.1. Important Separators

We review important separators, as well as some related results. Let G be a graph, let
X,S ⊆ V (G) be vertex subsets. We denote byRG(X,S) the set of vertices ofG reachable
from X in the graph G − S and we denote by NRG(X,S) the set of vertices of G − S
which are not reachable from X in the graph G − S. We drop the subscript G if it is
clear from the context. Let G be a graph and let X,Y ⊂ V (G) be two disjoint vertex
sets. A subset S ⊆ V (G)\ (X ∪Y ) is called an X-Y separator in G if RG(X,S)∩Y = ∅ or
in other words there is no path from X to Y in the graph G−S. We denote by λG(X,Y )
the size of the smallest X-Y separator in G. If there is an edge in G with one endpoint
in X and the other in Y , then λG(X,Y ) = ∞. If G is clear from context we omit the
subscript.

An X-Y separator S1 is said to cover an X-Y separator S if R(X,S1) ⊃ R(X,S). Note
that the definition of covering is asymmetric; the reachability set is taken from X and
not from Y . We say that an X-Y separator S1 dominates another X-Y separator S if S1

covers S and |S1| ≤ |S|. An X-Y separator is said to be inclusionwise minimal if none
of its proper subsets is an X-Y separator.

Definition 2.4. Let G be a graph, X,Y ⊂ V (G) be disjoint vertex sets and S ⊆
V (G) be an X-Y separator in G. We say that S is an important X-Y separator if it is
inclusionwise minimal and there does not exist another X-Y separator S1 such that S1

dominates S.

Important separators were first defined by Marx [Marx 2006], and have found nu-
merous applications since then [Chen et al. 2008; Lokshtanov and Ramanujan 2012;
Marx and Razgon 2014; Razgon and O’Sullivan 2009]. The crucial property of impor-
tant separators that has led to this widespread use is the fact that there are not too
many importantX-Y separators of small size. This is formalized in the following state-
ment.

LEMMA 2.5 ([CHEN ET AL. 2009; MARX AND RAZGON 2014]). The number of im-
portant X-Y separators of size at most k is at most 22k−λ(X,Y ), where λ(X,Y ) denotes
the size of the smallest X-Y separator in G. The set of important X-Y separators of size
at most k can be enumerated in time O(4kk(m+ n)).

The following proposition is a crucial component of the proof of Lemma 2.5, and also
features prominently in several arguments using important separators.

PROPOSITION 2.6 ([CHEN ET AL. 2009; MARX AND RAZGON 2014]). For any dis-
joint X and Y such that there is no edge from X to Y there is a unique important X-Y
separator A of size λ(X,Y ). Furthermore every important X-Y separator A′ 6= A covers
A. Finally, there is an algorithm that given G, X, Y and k, runs in time O(k(n + m))
and either correctly concludes that λ(X,Y ) > k or returns A.

At certain points in our algorithm, we do not need to find the important separator
of the minimum size and it is sufficient to compute a minimum separator. For this,
we use the following proposition which follows from the classic Max-Flow algorithm of
Ford and Fulkerson [Ford and Fulkerson 1956] and provides a witness that the given
separator actually has the minimum possible size.

PROPOSITION 2.7. Given a graph G with n vertices and m edges, disjoint sets
X,Y ⊆ V (G), and an integer k, there is an algorithm that runs in time O(k(n+m)) and
either correctly concludes that there is no (X,Y )-separator of size at most k, or returns a
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minimum (X,Y )-separator ∆ and a collection of |∆| pairwise internally vertex-disjoint
X − Y paths.

We now prove a “sampling” analogue of Lemma 2.5. The proof of this lemma is an
easy adaptation of the proof of Lemma 2.5.

LEMMA 2.8. There is a randomized algorithm SampleImp that given as input a
graph G, disjoint and non-adjacent vertex sets X and Y integer k, and rational deletion
probability 0 < p < 1, runs in time kO(1)(m+n) and outputs an X-Y separator S of size
at most k or fail. For each important X-Y separator A of size at most k, the probability
that S = A is at least p|A|(1− p)|A|−λ(X,Y ).

PROOF. On input (G,X, Y, k, p) the algorithm first checks whether there is a path
from X to Y in G. If no such path exists the algorithm returns ∅. If there is a path
from X to Y but k = 0 the algorithm returns fail. Now the algorithm either correctly
concludes that no X-Y separator S of size at most k exists, or computes the unique
X-Y important separator Z of size λ(X,Y ) by invoking Proposition 2.6. Given Z the
algorithm picks an arbitrary vertex z ∈ Z. With probability p the algorithm proceeds
as follows: first it makes a recursive call to SampleImp(G−z,X, Y, k−1, p). Let S′ be the
set returned by the recursive call, the algorithm returns {z} ∪ S′. Otherwise (i.e with
probability 1 − p) the algorithm proceeds as follows: first it makes a recursive call to
SampleImp(G − z,X ∪ {z}, Y, k − 1, p). Let S′ be the set returned by the recursive call,
the algorithm returns S′. If the recursive calls fail to return a set, the algorithm also
fails.

First, observe that the algorithm terminates because in each recursive call either
the number of vertices of G decreases or n − |X| decreases. Now we show that if the
algorithm returns a set S, then this set is always an X-Y separator in G. We show
this by an induction on the recursion depth of the algorithm. In the base case the
algorithm only returns ∅ if there are no X-Y paths. Consider now a recursive call to
the algorithm that makes at least one recursive call and then returns a set S. If the
algorithm returns S = S′ then we know by the induction hypothesis that S = S′ is an
X ∪{z}-Y separator in G. If the algorithm returns S = S′∪{z} then it follows from the
induction hypothesis that S′ is an X-Y separator in G − z, implying that S is an X-Y
separator in G.

Thus, what is left is to prove that for every importantX-Y separatorA of size at most
k, the probability that S = A is at least p|A|(1 − p)|A|−λ(X,Y ). We prove the statement
by induction on 2k − λ(X,Y ). If 2k − λ(X,Y ) < 0 then λ(X,Y ) > k and there is no
X-Y separator of size at most k. If 2k − λ(X,Y ) = 0 then it must be the case that
k = 0 and the algorithm outputs ∅ which is the unique important X-Y separator (of
any size). Consider now the execution of the algorithm on an instance (G,X, Y, k, p), let
λ = λ(X,Y ) and assume that the statement holds for all smaller values of 2k − λ. We
distinguish between the following two cases. Either the vertex z ∈ Z that the algorithm
picks is in A or it is not.

If z ∈ A then, with probability p the algorithm makes the recursive call
SampleImp(G − z,X, Y, k − 1, p). Suppose that it does. In G − z, A \ z is an important
(X,Y ) separator and λG−z(X,Y ) ≥ λG(X,Y ) − 1. Thus, by the induction hypothesis
the probability that the recursive call outputs A \ z is at least pk−1(1 − p)k−1−(λ−1) =
pk−1(1−p)k−λ. Since the probability that G makes the recursive call is p it follows that
the probability that G outputs A is at least p · pk−1(1− p)k−λ = pk(1− p)k−λ.

If z /∈ A then, by Proposition 2.6 A covers Z and therefore z is reachable from X in
G−A. ThusA is an important (X∪{z})-Y separator. Furthermore, since Z is the unique
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important (X,Y ) separator of size at most λ, it follows that Z covers all other (X,Y )
separators of size at most λ. Thus there can not be any (X ∪ {z})-Y separators in G of
size at most λ, implying λG(X ∪ {z}, Y ) ≥ λ+ 1. Thus, by the induction hypothesis the
recursive call outputs A with probability at least pk(1− p)k−(λ+1). Since the algorithm
makes the recursive call with probability (1 − p) it follows that the probability that G
outputs A is at least (1− p) · pk(1− p)k−(λ+1).

All that remains is to bound the running time of the algorithm. The algorithm makes
at most one recursive call, which means that the recursion tree is actually a path. In
each node of the recursion tree the most expensive operation is the call to Proposi-
tion 2.6, which takes O(k(n + m)) time. Furthermore the recursion depth is at most
2k−λ ≤ 2k, since in each recursive call either k decreases and λ decreases by at most 1,
or λ increases by 1 while k remains unchanged. Thus the running time of the algorithm
is kO(1)(n+m), as claimed.

3. PREPROCESSING

In this section we describe some reduction rules that are applied on the input instance
(G,T, k) of SUBSET FVS. These rules will be useful both for the randomized and for
the deterministic algorithms. For Rules 1, 2 and 3 we execute each rule exhaustively
before proceeding to the application of the next rule. After a rule has been applied
exhaustively and the reduction proceeds to the next rule, the procedure does not look
for possibilities to apply the previous rules. After Rule 3 has been applied the reduction
algorithm will try to apply either one of Rule 4, Rule 5 or Rule 6, until none of these
rules can be applied. The algorithm will not look for opportunities to apply Rules 1,
2 and 3 after it is done with Rule 3. The only exception is that in some cases when
Rule 6 is applied, the algorithm re-starts the reduction procedure from Rule 1. This is
discussed in more detail later in the section.

PREPROCESSING RULE 1. If an edge e is not contained in any T -cycle, then remove
e.

Any solution before e is deleted is a solution after, and vice versa. Hence Rule 1 is
safe. It is not immediately obvious how to apply Rule 1 exhaustively in linear time. To
that end we will use the following lemma.

LEMMA 3.1. An edge e is contained in a T -cycle if and only if e is not a bridge and
the biconnected component of G containing e contains a terminal.

PROOF. For the forward direction, suppose e = uv is contained in a T -cycle C. Then
e is not a bridge, as we can go from u to v in G − e along C. Further C contains a
terminal t. If u 6= t then C gives two disjoint paths from u to t. Similarly, if v 6= t
there are two disjoint paths from v to t. Hence u, v and t are in the same biconnected
component.

For the reverse direction, suppose the edge uv is not a bridge, and the biconnected
component of G containing e also contains a terminal t. If t = u or t = v then we can
complete uv to a T -cycle by going back from v to u in G − e, since e is not a bridge. If
t /∈ {u, v}, then by Menger’s theorem there are two paths from t to {uv} that intersect
only in t. These paths, together with the edge uv form a T -cycle. This completes the
proof of the lemma.

Using Lemma 3.1 we may apply Rule 1 exhaustively in linear time.

LEMMA 3.2. Rule 1 can be applied exhaustively in time O(n+m).
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PROOF. We may partition E(G) into the edge sets of its biconnected components in
linear time [Hopcroft and Tarjan 1973b]. For each biconnected component C that does
not contain any terminals, we remove all edges in C. If a biconnected component C con-
tains exactly one edge e, then e is a bridge and can be removed. Note that removing all
the edges from a biconnected component leaves all the other biconnected components
untouched (and biconnected). Hence one pass of this algorithm over all biconnected
components applies Rule 1 exhaustively.

Removing edges can create vertices of degree 0, which we can remove, since they do
not appear in any T -cycle. Note that after we apply Rule 1 exhaustively, there are no
vertices of degree 1, as these would be incident to a bridge.

PREPROCESSING RULE 2. Delete vertices of degree 0.

After Rule 1 and Rule 2 have been applied exhaustively, every vertex is in a T -cycle.
Indeed, every vertex is in a T -cycle if and only if there are no vertices of degree 0 and
every edge is in a T -cycle.

Observe that if every non-terminal vertex v is in a T -cycle, there cannot exist any
separation (L,R) of order at most 1 such that L ∩ T = ∅ and v ∈ L \R. In such a case v
cannot be in any T -cycle. We now give a reduction rule for such separations of order 2.

PREPROCESSING RULE 3. If there exists a separation (L,R) of G such that G − R
and G[L] are connected, L ∩R = {u, v}, L ∩ T = ∅ and L \R 6= ∅, then delete all vertices
in L \R and add the edge uv.

Observe that if a separation (L,R) of G satisfying the prerequisites of Rule 3 exists,
and every vertex is in a T -cycle, then G[R] must be connected (otherwise there is a
vertex in L which is not part of any T -cycle).

LEMMA 3.3. Rule 3 is safe.

PROOF. Let G′ be the graph output by Rule 3. Since G′ can be obtained from G
by contracting all edges in G[L] (except uv), if (G,T, k) is a “yes” instance then so is
(G′, T, k).

For the reverse direction, assume there exists a subset feedback vertex set S such
that G′ − S has no T -cycle. We claim that G − S has no T -cycle either. Suppose for
contradiction that G\S contains a T -cycle C. Then C must contain a terminal t, which
is in R \ L and a vertex p ∈ (V (G′) \ V (G)), hence p ∈ L \R. But then, since (L,R) has
order 2, C must contain both u and v. In G′ there is an edge from u to v and thus G′ \S
contains a T -cycle, a contradiction.

Observe that Rule 3 maintains the property that every vertex is in a T -cycle. Indeed,
any T -cycle C which contains a deleted vertex must contain both u and v, which have
an edge in e ∈ E(G′) \ E(G). Adding e to C and removing all vertices of V (G) \ V (G′)
from C yields a T -cycle C ′ in G′ which contains all vertices of C ∩ V (G′).

We say that a non-terminal vertex v is reducible by Rule 3 if there exists a separation
(L,R) satisfying the conditions of Rule 3, such that v ∈ L \ R. In other words v would
be deleted if we applied Rule 3 on (L,R). A vertex which is not reducible by Rule 3
is irreducible by the same rule. Showing that Rule 3 can be applied exhaustively in
linear time is non-trivial. To achive this goal we will exploit the Tutte decomposition.

LEMMA 3.4. Rule 3 can be applied exhaustively in linear time.
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PROOF. From G, make a graph G′ by adding a new vertex τ and making τ adjacent
to all vertices in T . Let T ′ = T ∪ {τ}. Compute a Tutte decomposition (F, χ) of G′ in
linear time, using Proposition 2.2. Let B be the set of all nodes b in V (F ) such that
χ(b) ∩ T ′ 6= ∅. Since G′[T ′] is connected the properties of tree decompositions ensure
that F [B] is a connected subtree of F .

Consider an edge ab ∈ E(F ) such that a /∈ B and b ∈ B. Removing the edge ab from
F produces two trees, Fa and Fb with a ∈ V (Fa) and b ∈ V (Fb). Set L = χ(V (Fa)) and
R = χ(V (Fb)) \ {τ}. We claim that Rule 3 can be applied on (L,R).

By the properties of tree decompositions (L,R∪{τ}) is a separation ofG′ and so (L,R)
is a separation in G. Further, by the properties of Tutte decompositions, the order of
(L,R) is at most 2. Also, since no bag in a Tutte decomposition is a subset of another
bag, it must be the case that L\R 6= ∅. Furthermore, since B∩V (Fa) = ∅ it follows that
T ∩ L = ∅. Let p ∈ L \ R. Since p is in some T -cycle the order of the separation (L,R)
must be at least 2 and hence it must be exactly 2. Thus (L,R) satisfies the prerequisites
of Rule 3.

Let L ∩ R = {u, v}. We apply Rule 3 on (L,R), i.e delete L \ R and add the edge uv
in G. When applying the reduction rule to (L,R) we update the graph G′ as well by
removing the vertices in L \ R and adding the edge uv. Removing the subtree Fa from
F yields a Tutte decomposition of the updated G′ since adding the edge uv ensures
that torso(G′, χ(b)) stays triconnected, even after L \R is deleted. After performing the
rule, updating G′ and the Tutte decomposition of G′, we may again look for an edge
ab ∈ V (F ) such that a /∈ B and b ∈ B, and repeat the reduction process until no such
edge exists. This can clearly be done in linear time.

Suppose now that the algorithm has reduced all edges ab ∈ V (F ) such that a /∈ B
and b ∈ B, and that such edges no longer exist. Since B 6= ∅ it follows that B = V (F ).
Define Q = {b ∈ V (F ) | |χ(b)| ≥ 4} and let U =

⋃
b∈Q χ(b)\T ′. We claim that all vertices

in U are irreducible by Rule 3.
Suppose for contradiction that there exists a separation (L,R) of G that satisfies the

conditions of Rule 3, but that (L \R)∩U 6= ∅. (L,R ∪ {τ}) is a separation of G′ of order
at most 2. Furthermore T ′ ⊆ R \ L. Let p be a vertex in (L \ R) ∩ U . Since p is in U , it
follows that there exists a node b ∈ V (F ) such that χ(b) ≥ 4 and p ∈ χ(b). Since every
bag contains a node from T ′ there is a node t′ ∈ χ(b) ∩ T ′. Now, because p ∈ L \ R and
t′ ∈ (R∪{τ}) \L it follows that p and t are non-adjacent, and hence, By Proposition 2.3
there are three vertex disjoint paths from p to t in G′. But each of these paths must
intersect with L∩ (R∪{τ}) = L∩R, and |L∩R| ≤ 2 yielding the desired contradiction.
We conclude that for each vertex p ∈ U , p is irreducible.

Let P = V (G) \ (U ∪ N [T ]). Every reducible vertex is in P . We claim that G[P ] is
a forest. We define a function χ′ : V (F ) → 2P as follows: χ′(b) = χ(b) ∩ P . (F, χ′) is
a tree decomposition of G[P ]. Since every node b of F such that χ(b) ∩ P 6= ∅ satisfies
|χ(b)| ≤ 3, and χ(b)∩T ′ 6= ∅, it follows that |χ′(b)| ≤ 2. Thus the tree-width of G[P ] is at
most 1 and hence G[P ] is a forest.

Next we show that every vertex p /∈ P has at most one neighbor in a connected
component of G[P ]. For a contradiction, suppose otherwise. Then G′[P ∪ p] contains a
cycle C, and therefore the Tutte decomposition must contain a bag b such that |χ(b) ∩
C| ≥ 3. But χ(b) contains a vertex from P , and hence |χ(b)| ≤ 3. But then χ(b) may not
also contain a vertex in T ′, contradicting that all bags do.

We prove that at this point, every vertex with at least three neighbors is irreducible.
Consider a vertex p ∈ P such that |N(P )| ≥ 3, and suppose that there is a separation
(L,R) satisfying the conditions of Rule 3, such that p ∈ L \R. Let L∩R = {u, v}. Since
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L \ R ⊆ P it follows that G[L \ R] is a tree. Let ` be the number of leaves of the tree
except for p, and r be the number of neighbors of p in L∩R. Since p has degree at least
3 it follows that `+ p ≥ 3. Each of the leaves of the tree are in some T -cycle, and hence
they all are adjacent to at least one of u or v. Thus there are at least 3 edges between
{u, v} and L \ R. Without loss of generality u is incident to at least two of these edges.
If u ∈ P this contradicts that G[P ] is a forest, because G \ R is connected. If u /∈ P
this contradicts that a vertex outside of P may not have two neighbors in the same
component of G[P ].

It follows that the only remaining reducible vertices have two neighbors, both non-
terminals. For each such vertex p we can apply Rule 3 on the separation (N [p], V (G) \
{p}). This amounts to deleting p and adding an edge between p’s neighbors. Note that
this operation may never turn an irreducible vertex v reducible, since it cannot de-
crease the number of vertex disjoint paths from v to T . Applying Rule 3 on all non-
terminals with two non-terminal neighbors can be done in linear time, and after this
there are no reducible vertices left. This concludes the proof.

If Rule 3 cannot be applied it follows that every non-terminal vertex is either adja-
cent to a terminal or has at least three internally vertex-disjoint paths to T . All the
following reduction rules maintain this property, unless explicitly stated otherwise.

PREPROCESSING RULE 4. Short-circuit every degree 2 non-terminal and if a degree
2 terminal t has a terminal neighbor t′, contract the edge tt′.

The correctness of Reduction Rule 4 for non-terminals follows from the observation
that if there is a vertex v of degree 2 then every cycle, and in particular every T -cycle
must pass through both of v’s neighbors. Thus there exists an optimal solution which
avoids v, and hence it is safe to contract any edge incident to v. If t is a terminal of
degree 2 and t has a terminal neighbor t′, then any subset feedback vertex set that
contains t could just as well have contained t′ instead. Thus we can contract the edge
tt′. Note that an application of Rule 4 may create multi-edges. We would like to get rid
of multiple edges between the same two vertices. Though we cannot safely remove all
of them, we can indeed remove the ones not incident to a terminal, and ensure that
there are at most three edges between any pair of vertices.

PREPROCESSING RULE 5. If there are at least 3 edges between any two vertices,
delete all but two of the edges. If there are two edges between two non-terminals, delete
one of the edges.

The correctness of Reduction Rule 5 follows from the fact that no T -cycle contains
both of the edges between two non-terminals, or more than two edges incident to the
same vertex. The reason we keep double edges between a terminal and a non-terminal
is that these constitute T -cycles all by themselves.

PREPROCESSING RULE 6. Remove self-loops on non-terminals. If a terminal t has
a self-loop remove t from the graph and decrease k by 1.

A self-loop on a non-terminal is never a part of a T -cycle and may be removed. In
addition, terminal with a self-loop must be in every subset feedback vertex set. It is im-
portant to note and briefly discuss the following possible consequence of an application
of Rule 6.

Remark 3.5. An application of Rule 6 may cause a vertex to no longer be part of
any T -cycle, or make a vertex which is irreducible by Rule 3, reducible. In this case
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we need to re-start the reduction procedure from Rule 1. However, an application of
Rule 6 on a terminal decreases k. Therefore, such a re-start can only happen at most k
times.

LEMMA 3.6. There exists a O(k(n + m)) time algorithm Reduce that given as in-
put an instance (G,T, k), returns an equivalent instance (G’,T’,k’) with the following
properties.

— |V (G′)| ≤ |V (G)|, |E(G′)| ≤ |E(G)| and k′ ≤ k.
— Every non-terminal vertex has degree at least 3.
— Every terminal vertex has degree at least 2.
— Every terminal vertex of degree 2 has only non-terminal neighbors.
— Every vertex is in a T -cycle.
— For every non-terminal v, either v is adjacent to a terminal or there are at least three

internally vertex disjoint paths to T .
— Between any pair of vertices there are at most two edges.
— Between any pair of non-terminals there is at most one edge.

PROOF. The algorithm applies the reduction rules in order. That is, it first applies 1
exhaustively using Lemma 3.2. Then it applies Rule 2 exhaustively in linear time. Af-
ter this all vertices are in a T -cycle and all rules that will be applied, except possibly for
Rule 6 maintain this property. The algorithm now applies Rule 3 exhaustively in lin-
ear time using Lemma 3.4. After this the algorithm applies Rules 4 and 5 exhaustively.
Note that applications of Rule 5 may create new possibilities to apply Rule 4 and vice
versa, but both rules maintain the two properties that (a) every vertex is in a T -cycle
and (b) every vertex is irreducible by Rule 3. If at any point a vertex with a self-loop is
created then the algorithm immediately executes Rule 6. If a self-loop is removed from
a non-terminal, this preserves both property (a) and (b). If the rule removes a terminal
then k is decreased and the algorithm restarts the reduction procedure from scratch,
starting with Rule 1. Since this can happen at most k times the total running time of
the algorithm is O(k(n+m)) as claimed.

Consider now an instance after the reduction procedure is finished. Then, since every
vertex is in a T -cycle every vertex has degree at least 2. Since non-terminals of degree
2 are reduced by Rule 4 there are no non-terminals of degree 2. Since terminals of
degree 2 with at least one terminal neighbor are reduced by Rule 4 every terminal
vertex of degree 2 has only non-terminal neighbors. After we have exaustively applied
Rule 3 we have that every non-terminal v, either v is adjacent to a terminal or there
are at least three internally vertex disjoint paths to T . All the rules after this maintain
this property. The only exception is Rule 6 applied to terminals, but if this rule is ever
applied the reduction restarts from scratch. Hence, for every non-terminal v, either v
is adjacent to a terminal or there are at least three internally vertex disjoint paths to
T . The two last properties are ensured by Rule 5.

We will refer to instances satisfying the conclusions of Lemma 3.6 as reduced in-
stances.

3.1. Structural Properties of Reduced Instances

Before commencing with the algorithms we need to make some observations on the
structure of reduced instances that do not contain double edges. Even though reduced
instances may contain double edges, these are always incident to a terminal and con-
stitute T -cycles all by themselves. Since every subset feedback vertex set must contain
at least one of the two endpoints of such a double edge, our algorithms will quickly get
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rid of double edges by branching. We start by inspecting the structure of instances that
do not contain any T -cycles.

LEMMA 3.7. Let G be a graph and let T ⊆ V (G) be a set such that G has no T -cycles.
Then (a) G[T ] is a forest, (b) for every connected component C of G − T and connected
component CT of G[T ] there is at most one edge between C and CT , and (c) contracting
all edges of which both endpoints are non-terminals yields a forest.

PROOF. For (a) observe that any cycle in G[T ] is a T -cycle. For (b) observe that if
there are two edges between C and CT then G[C ∪ CT ] contains a T -cycle.

For (c), suppose that contracting all edges with both endpoints non-terminals yields
a graph containing a cycle C. Every edge of C must have at least one endpoint being a
terminal, and thus C contains a terminal. But then C corresponds to a T -cycle in G, a
contradiction.

Let G be a graph and let T be a subset of V (G) such that G does not contain a
T -cycle. Next we define the notion of a terminal forest. While the definition might
look technical at a first glance, a terminal forest is just the forest obtained from G by
contracting all the edges with both endpoints non-terminals, rooting the trees in the
forest at arbitrary roots and providing a function χ that maps each vertex v of the forest
to the vertex set in G which was contracted into v. In order to keep the presentation
simple, in the next definition, we misuse notation by treating the function χ as one
that can output either vertex sets (non-terminals) or single vertices (terminals).

Definition 3.8. Let G be a graph and let T be a subset of V (G) such that G does not
contain a T -cycle. A terminal forest of G is a pair (F, χ), where F is a forest of rooted
trees and χ : V (F )→ {T} ∪ 2V (G)\T is a function with the following properties:

(a) Each tree Ti in F can be associated to a unique connected component Ci in G; for
each b ∈ V (Ti), χ(b) ⊆ Ci.

(b) ∪b∈V (F )χ(b) = V (G) and for any pair of vertices b, b′ ∈ V (F ), χ(b) ∩ χ(b′) = ∅. That
is, χ partitions the vertex set V (G).

(c) For every b ∈ V (F ), χ(b) 6= ∅ and the graph G[χ(b)] is connected.
(d) For every edge uv ∈ E(G) such that u, v /∈ T there exists b ∈ V (F ) such that

u, v ∈ χ(b).
(e) For every edge tv ∈ E(G) such that t ∈ T and v ∈ V (G) there exists a bt ∈ V (F )

and bv ∈ V (F ) such that χ(bt) = t, v ∈ χ(bv) and btbv ∈ E(F ).

From Lemma 3.7 it follows directly that every graph G that does not have a T -cycle
has a terminal forest. In addition, note that there can be multiple terminal forests for
a single graph. This is because F is a forest of rooted trees and technically, this implies
a different terminal forest for every different rooting of the trees in F .

For a terminal forest (F, χ) of G we define the function χ− : V (G) → V (F ) so that
χ−(u) is the unique node b ∈ V (F ) so that u ∈ χ(b). We extend χ− to vertex sets of G in
the following manner: χ−(S) =

⋃
u∈S χ

−(u).
As mentioned earlier, Definition 3.8 abuses notation - χ can output either ver-

tex sets (non-terminals) or single vertices (terminals). When χ(b) outputs a ter-
minal t it is sometimes convenient to treat it as the set {t} containing the
terminal. In the forest F the child-parent and descendant-ancestor relations
are well defined. We can extend these relations to vertices in G in a natu-
ral way; u is a child/parent/ancestor/descendant of v if and only if χ−(u) is a
child/parent/ancestor/descendant of χ−(v). We can also extend the relations to allow
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comparisons between a vertex u in the graph G and a node b in F , in particular u is a
child/parent/ancestor/descendant of b if and only if χ−(u) is. We will refer to the nodes
b of F such that χ(b) ∈ T as terminal nodes, and to the other nodes as non-terminal
nodes.

OBSERVATION 3.1. Let (F, χ) be a terminal forest of a graph G that has no T -cycles.
There is no bb′ ∈ E(F ) such that both b and b′ are non-terminal nodes.

PROOF. Suppose such an edge bb′ exists, then χ(b) and χ(b′) are subsets of the same
connected components of G, and therfore there must be an edge uv ∈ E(G) such that
χ−(u) = b and χ−(v) = b′. But this contradicts property (d) of terminal forests.

OBSERVATION 3.2. Let (F, χ) be a terminal forest of a graph G that has no T -cycles.
Let bb′ ∈ E(F ). There is exactly one edge between χ(b) and χ(b′).

PROOF. Suppose there is no edge between χ(b) and χ(b′). Let C be the vertex set of
the component of F containing bb′, then G[χ(C)] is disconnected, contradicting Prop-
erty (a) of terminal forests. Suppose there are at least two edges. By Observation 3.1
at least one of b and b′ is a terminal node, without loss of generality it is b. Let t = χ(b).
Suppose t has at least two edges to χ(b′). Since G[χ(b′)] is connected there is a path be-
tween the two edge endpoints in G[χ(b′)]. But this path together with t forms a T -cycle
in G, yielding a contradiction.

Definition 3.9. Let G be a graph and T ⊆ V (G) be such that G has no T -cycles. We
say that a terminal t′ ∈ T is an effective descendant of t ∈ T \ {t′} with respect to a
terminal forest (F, χ) of G if we have that χ−(t) is a descendant of χ−(t′) and there is a
path from χ−(t) to χ−(t′) in F with internal vertices disjoint from χ−(T ). We drop the
explicit reference to (F, χ) if it is clear from the context.

To better understand the definition of effective descendants it is helpful to construct
the effective descendant graph. This is a directed graph with vertex set T . Each vertex
in T has arcs to all of its effective descendants.

It is easy to see that the effective descendant graph is obtained from F by contract-
ing, for all terminals t, all edges to t’s non-terminal children, and then orienting edges
from parents to descendants in F . This leads to the following observation.

OBSERVATION 3.3. The effective descendant graph is a forest of rooted trees.

Definition 3.10. Let G be a graph with no T -cycles. A terminal t is called good with
respect to a terminal forest (F, χ) if t has at most one effective descendant with respect
to a terminal forest (F, χ). We drop the explicit reference to (F, χ) when it is clear from
the context.

The following observation follows from the fact that any rooted tree has at least as
many leaves as vertices with at least two children.

OBSERVATION 3.4. Let G be a graph with no T -cycles. At least |T |/2 terminals are
good.

Finally we prove a lemma about the structure of reduced instances, and how a po-
tential subset feedback vertex set interacts with the rest of the graph.

LEMMA 3.11. Let (G,T, k) be a reduced instance and S be a subset fedback vertex
set of G. Let (F, χ) be a terminal forest of G \ S. Then the following holds.
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— For every leaf b of F , χ(b) has at least one neighbor in S.
— For every non-terminal leaf b in F such that χ(b) has exactly one neighbor in S, this

neighbor is a terminal.
— For every non-terminal node b ∈ V (F ) that has degree 2 in F , χ(b) has at least one

neighbor in S.

PROOF. Consider a leaf b of F . If b is a terminal node then χ(b) = t, and since t has
degree at least 2, t must have a neighbor in S. If b is a non-terminal leaf then b either
has a parent b′ in F or it does not.

We first argue the case when b does not have a parent in F . Then, as G is connected,
χ(b) has a neighbor in S. If χ(b) only has one neighbor v in S then v separates χ(b)
from all terminals. Thus, unless v is a terminal none of the vertices in χ(B) are part of
any T -cycles. We conclude that v is a terminal. On the other hand, suppose that b has
a parent b′ in F . Then, by Observation 3.1 b′ must be a terminal node. Let t = χ(b′).
By Observation 3.2 t has a unique neighbor in χ(b), call this neighbor v. Since v is in
a T -cycle, χ(b) does not contain any terminals and t only has one edge to χ(b), χ(b)
must have at least one more neighbor. Moreover, this neighbor must be in S. Suppose
now that χ(b) has exactly one neighbor in S say w. Suppose for contradiction that w
is a non-terminal. The vertex v has degree 3, it has exactly one edge to t and at most
one edge to w. Thus v must have at least one more neighbor v′ ∈ χ(b). But then v
and w are non-terminals that separate v′ from T in G. Thus v′ is reducible by Rule 3,
contradicting that G is reduced. Thus w must be a terminal.

Finally consider a non-terminal node b ∈ V (F ) that has degree 2 in F , and let b1
and b2 be the neighbors of b. By Observation 3.1 both b1 and b2 are terminal nodes,
and by Observation 3.2 there are exactly two edges from χ(b1) ∪ χ(b2) to χ(b). Suppose
now that χ(b) contains a vertex u which is not incident to either of these edges. If u is
adjacent to a terminal, this terminal is in S. Otherwise, since u is irreducible by Rule 3
it follows that there are three internally vertex disjoint paths from u to T . At most
two of these paths intersect with χ(b1) ∪ χ(b2), implying that the third must intersect
with S∩N(χ(b)) proving that S∩N(χ(b)) is non-empty. Suppose now that every vertex
of χ(b) is incident to an edge to χ(b1) ∪ χ(b2). Then |χ(b)| ≤ 2. If χ(b) = {v} then v
has degree at least 3 (by Lemma 3.6). At most two of the edges incident to v have an
endpoint in χ(b1) ∪ χ(b2), which implies that at least one must have an endpoint in S.
If |χ(b)| = 2, let χ(b) = {u, v} where u is incident to the edge to χ(b1) and v is incident
to the edge to χ(b2). Since u has degree at least 3, u must have a neighbor in S.

4. A RANDOMIZED LINEAR TIME ALGORITHM FOR SUBSET FVS

We now describe the randomized algorithm for SUBSET FVS. The algorithm, called
SolveSFVS, is given in Algorithm 1. The algorithm runs in time kO(1)(n + m) and has
one-sided error. Except for applying Lemma 3.6, whenever the algorithm decreases k
by x it also removes x vertices from the graph. Thus, whenever the algorithm outputs
succeed, the input instance is a “yes” instane. The difficult part is to show that if the
instance is a “yes” instance then the algorithm returns succeed with probability at
least γk, for a constant γ = 1

25.6 . The remaining part of the analysis is essentially
devoted to the following lemma and its proof.

LEMMA 4.1. If (G,T, k) is a “yes” instance, then Algorithm SolveSFVS outputs suc-
ceed on (G,T, k) with probability at least γk for γ = 1

25.6 .

The algorithm SolveSFVS makes use of some probability constants, 0 < αt, αv, β, p <
1. These constants are set so as to maximize the success probability of the algorithm.
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ALGORITHM 1: Algorithm SolveSFVS for SUBSET FVS
Input : An instance (G,T, k) of SUBSET FVS.
Output: succeed if the algorithm has found a subset feedback vertex set in G of size

at most k, or fail.
(G,T, k)← Reduce(G,T, k)

if G has no T -cycles and k ≥ 0 then return succeed
if k ≤ 0 then return fail
if there exists a double edge uv then

pick x from {u, v} uniformly at random.

return SolveSFVS(G− x, T \ {x}, k − 1)

pick t from T uniformly at random.

with probability (1− αt):
return SolveSFVS(G− t, T \ {t}, k − 1)

if |N(t) ∩ T | ≥ 2 then
with probability 1

2
:

pick z from N(t) ∩ T uniformly at random.
return SolveSFVS(G− z, T \ {z}, k − 1)

if N(t) \ T = ∅ then return fail
pick v from N(t) \ T uniformly at random.
with probability (1− αv):

return SolveSFVS(G− v, T \ {v}, k − 1)

let T̄ = {t}
insert each z ∈ T \ {t} with probability 1− β.
let G′ = G− {vt ∈ E(G) | t ∈ T̄}+ (τ, {τt | t ∈ T})
A? ← SampleImp(G′, v, T̄ ∪ {τ}, k + 1, p)
if |N(v) ∩ T̄ | ≥ 2 or A? \ T = ∅ or |A?| = 1 then

return SolveSFVS(G−A?, T \A?, k − |A?|)
pick y? from A? \ T uniformly at random.
return SolveSFVS(G− (A? \ {y?}), T \ (A? \ {y?}), k − |A|+ 1)

The exact values of the constants are not important for any of the arguments, except
for the final calculations. As a result, for the sake of simplicity, we provide the exact
values only when we arrive at the final calculations and the reader may think of all the
constants as 1

2 , and consider γ as 256 until arriving at the final calculations, where we
give the exact values which are tweaked in order to optimize the success probability.

We will prove Lemma 4.1 by induction on k. Towards this we analyze the algorithm
when run on a “yes” instance (G,T, k). Let S be a subset feedback vertex set of G of
size at most k, and let (F, χ) be a terminal forest of G \ S.

The algorithm starts by reducing the instance using Lemma 3.6 and performing
some sanity checks; if G already does not have any T -cycles we are done, on the other
hand if there are T -cycles but k ≤ 0 the input instance is a “no” instance (since we
assumed the input instance was a “yes” instance, this does not happen). This lets us
assume that the input instance is reduced, that k ≥ 1 and that S 6= ∅.
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Now, if G has a double edge uv then either u or v is a terminal, since G is reduced
by Lemma 3.6. Thus at least one of u and v is in S. The algorithm selects x from {u, v}
uniformly at random. Therefore, the probability that x is in S is at least 1

2 . If x ∈ S

then the recursive call of the algorithm succeeds with probability at least γk−1 by the
induction hypothesis. Hence the probability that the algorithm outputs success is at
least 1

2 · γ
k−1 ≥ γk. It remains to consider the case when G has no double edges.

If G has no double edges the algorithm picks a random terminal t ∈ T . By Observa-
tion 3.4, at least half the terminals in G \S are good. Thus, with probability at least 1

2 ,
the vertex t is either in S or a good terminal of G\S. Let Tg be the set of good terminals
of G \ S. Let success be the event that the algorithm outputs succeed. We have that

P [success] ≥ P [t ∈ S ∪ Tg] · P [success | t ∈ S ∪ Tg] ≥
1

2
P [success | t ∈ S ∪ Tg]

Now, P [success | t ∈ S ∪ Tg] can be lower bounded as follows

P [success | t ∈ S ∪ Tg] ≥ min (P [success | t ∈ S], P [success | t ∈ Tg]) .

With a constant probability (1 − αt) the algorithm puts t in the solution and calls
itself recursively on G− t with terminal set T \ t and budget of k− 1. If t ∈ S then G− t
has a solution of size at most k − 1. By the induction hypothesis the recursive call will
output success on (G− t, T \ t, k − 1) with probability at least γk−1. Thus

P [success | t ∈ S] ≥ (1− αt)γk−1 (1)

We now define a set of events related to the execution of algorithm SolveSFVS. The
event linei is that the algorithm executes line i (if the algorithm reaches line i in some
of the recursive calls this does not count). We have that

P [success | t ∈ Tg] ≥ P [line10 | t ∈ Tg] · P [success | line10 ∧ t ∈ Tg] (2)
≥ αt · P [success | line10 ∧ t ∈ Tg]

Consider now the case that the algorithm reaches line 10, and that t ∈ Tg. By
Lemma 3.6, t has degree at least two. Observe that since t is good, t has at most
two neighbors in T which are not in S - the parent of t in F and at most one child of
t. We consider the following four cases: (1a) |N(t) ∩ T | ≥ 3, (1b) |N(t) ∩ T | = 2 and
N(t) ∩ T ∩ S 6= ∅, (1c) |N(t) ∩ T | = 2 and N(t) ∩ T ∩ S = ∅ and (1d) |N(t) ∩ T | ≤ 1. With
each of the cases we associate the event that the case occurs.

We first consider case (1a). Starting from line 10, the algorithm reaches line 12 with
probability 1

2 . Then, since |N(t) ∩ T \ S| ≤ 2 it follows that the probability that the
vertex z, selected from N(t) ∩ T on line 13, is in S is at least 1

3 . Thus, we conclude that

P [success | line10 ∧ t ∈ Tg ∧ (1a)] ≥ 1

6
· γk−1. (3)

Case (1b) is similar to case (1a), except that now the probability that z is in S is at
least 1

2 , because at least one out of two vertices in N(t) ∩ T are in S. Thus,

P [success | line10 ∧ t ∈ Tg ∧ (1b)] ≥ 1

4
· γk−1. (4)

In case (1c), line 11 is executed, and with probability 1
2 the algorithm skips to line 14.

In this case, |N(t)∩ T | = 2 and therefore t has at least one neighbor that is a terminal.
Hence by Lemma 3.6 t has degree at least 3. Thus t has at least one non-terminal
neighbor, implying that the algorithm does not return fail in line 14. Furthermore,
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since t’s parent is a terminal, all non-terminal neighbors of t are either in S or children
of t in F . Let C be the set of non-terminal children of t in F . We have that

P [success | line10 ∧ t ∈ Tg ∧ (1c)] ≥ 1

2
· P [success | line15 ∧ t ∈ Tg ∧ v ∈ S ∪ C] (5)

In case (1d) the algorithm skips directly to line 15. If t has exactly one terminal
neighbor then by Lemma 3.6 t has degree at least 3, and so t has at least two non-
terminal neighbors. If t has no terminal neighbors it also has at least two non-terminal
neighbors. At most one of these non-terminal neighbors is the parent of t in F . Thus,
when a non-terminal neighbor v of t is picked in line 15, the probability that v is in
S ∪ C is at least 1

2 . It follows that

P [success | line10 ∧ t ∈ Tg ∧ (1d)] ≥ 1

2
· P [success | line15 ∧ t ∈ Tg ∧ v ∈ S ∪ C] (6)

Since the four cases (1a) . . . (1d) are exhaustive, we may conclude that

P [success | line10 ∧ t ∈ Tg] ≥ min

(
1
6 · γ

k−1

1
2 · P [success | line15 ∧ t ∈ Tg ∧ v ∈ S ∪ C]

)
The algorithm resolves that it “knows” that v ∈ S ∪ C but does not know whether

v ∈ S or v ∈ C in exactly the same way that it resolved “knowing” t ∈ S ∪ Tg but not
knowing whether t ∈ S or t ∈ Tg. In particular, the algorithm recurses on (G\v, T, k−1)
with probability 1− αv. This yields the following bounds.

P [success | line15 ∧ t ∈ Tg ∧ v ∈ S] ≥ (1− αv)γk−1 (7)
P [success | line15 ∧ t ∈ Tg ∧ v ∈ C] ≥ αv · P [success | line18 ∧ t ∈ Tg ∧ v ∈ C] (8)

Plugging all of the above bounds together we get the following bound for P [success].

P [success] ≥ min


1
2 · (1− αt) · γ

k−1

1
12 · αt · γ

k−1

1
4 · αt · (1− αv) · γ

k−1

1
4 · αt · αv · P [success | line18 ∧ t ∈ Tg ∧ v ∈ C]

(9)

At this point we need to lower bound P [success | line18∧t ∈ Tg∧v ∈ C]. Starting at line
18 the algorithm does the following. First it makes some of the terminals “undeletable”
by putting them into T̄ , samples an important separator from v to the set of terminals
(but without deleting the undeletable ones), and either puts the entire separator into
the solution, or puts the separator minus a randomly chosen vertex into the solution.
The trickiest part of the proof is to show that with good probability the set which is put
into the solution is either a subset of S or of another optimal solution to the instance.
Towards this goal we need to prove a few “pushing lemmata”.

Assume that t ∈ Tg and that v ∈ C (recall that C was the set of non-terminal children
of t in F ). Let b = χ−(t) and b′ = χ−(v). Since t is good, t has at most one effective
descendant. Thus b′ is either a leaf or a degree 2 vertex of F . We define the event leaf
as b′ being a leaf of F , and the event deg2 as b′ having degree 2. If b′ has degree 2 this
means that t has exactly one effective descendant t′ and that χ−(b′) is the parent of
χ−(t′) in F . We distinguish between two cases, either vt′ ∈ E(G) or not. We define the
event adj which is that vt′ ∈ E(G), and the event nadj which is that vt′ /∈ E(G).
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4.1. Pushing Lemmata

We now prove a series of lemmas about how one can modify a solution by “pushing” the
solution vertices towards the terminals. In the following two lemma statements, G is a
graph, T is a set of terminals and S is a subset feedback vertex set of G. Further, (F, χ)
is a terminal forest of G−S, b is a terminal node in F and b′ is a non-terminal child of b
in F . Also, t = χ(b) and v is the unique neighbor of t in χ(b′) (assuming the existence of
b and b′, the existence and uniqueness of v is guaranteed by Observation 3.2). Further-
more A = N(χ(b′)) ∩ S and T̄ ⊆ T is a set of terminals such that t ∈ T̄ and T̄ ∩ A = ∅.
Finally, G′ is the graph obtained from G by adding a new vertex τ , making τ adjacent
to all vertices of T , and removing all edges between v and vertices in T̄ . Lemma 4.2
will be applied to analyze the event leaf, as well as in the deterministic algorithm of
Section 5.

LEMMA 4.2. If b′ is a leaf node of F , then A is a v-τ separator in G′. Further, for any
v-τ separator A′ (in G′) that dominates A, the set (S \A)∪A′ is a subset feedback vertex
set of G.

PROOF. To see that A is a v-τ separator in G′ observe that NG′(χ(b′)) = A and that
χ(b′)∩T = ∅. We now move to the second statement, namely that (S \A)∪A′ is a subset
feedback vertex set of G.

Suppose not. Then G− ((S \A)∪A′) contains a T -cycle C. Let L′ be the set of vertices
reachable from v in G′−A′, plus A′. Let R′ = (V (G′)\L′)∪A′. (L′, R′) is a separation in
G′, since L′ \R′ are exactly the vertices reachable from v, while R′ \L′ are the vertices
not reachable from v in G′ − A′. A key observation is that since A′ dominates A, we
have that χ(b′) ⊆ L′ \R′ and that A \A′ ⊆ L′ \R′.

All edges of G that are not in G′ are incident to v. Let L = L′ ∪ {v} and R = R′ ∪ {v},
it follows that (L,R) is a separation in G. Since G− S has no T -cycles it follows that C
must contain some vertex of A\A′. We know that A\A′ ⊆ L′ \R′ = L\R. Furthermore,
since C is a T -cycle, C must contain a terminal z. Since A′ separates v from τ it follows
that L′ ∩ T ⊆ A′. Since v is not a terminal it follows that L∩ T ⊆ A′. Since C is disjoint
from A′ this means that z /∈ L, implying that z ∈ R \ L. But then C contains a vertex
in L \ R and a vertex in R \ L, which implies that |C ∩ L ∩ R| ≥ 2. However, the only
vertex in L ∩R which is not in A′ is v, contradicting that C ∩A′ = ∅.

Lemma 4.3 will be applied to analyze the event deg2 ∨ adj.

LEMMA 4.3. If t has a unique effective descendant t′, b′ is adjacent to χ−(t′) (in
F ), v is adjacent to t′ and t′ is in T̄ , we conclude the following. A is a v-τ separator in
G′. Further, for any v-τ separator A′ (in G′) that dominates A, (S \ A) ∪ A′ is a subset
feedback vertex set of G.

The proof of Lemma 4.3 is identical (word by word!) to the proof of Lemma 4.2, and
therefore omitted.

For the last lemma statement we need to change the definition of A. Suppose t has a
unique effective descendant t′, b′ is adjacent to χ−(t′) (in F ), v is non-adjacent to t′. Let
y be the unique neighbor of t′ in χ(b′). We define Q to be the set of vertices reachable
from v (including v) in G − (S ∪ {y, t}), and define A = N(Q) \ {y, t}. Just as before,
T̄ ⊆ T is a set of terminals such that t ∈ T̄ and T̄ ∩ A = ∅. Finally, G′ is the graph
obtained from G by adding a new vertex τ , making τ adjacent to all vertices of T , and
removing all edges between v and vertices in T̄ . Lemma 4.4 will be applied to analyze
the event deg2 ∨ nadj.
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LEMMA 4.4. If t has a unique effective descendant t′, b′ is adjacent to χ−(t′) (in
F ), v is non-adjacent to t′ and t′ is in T̄ , we conclude the following. Let y be the unique
neighbor of t′ in χ(b′). ThenA∪{y} is a v-τ separator inG′. Further, for any v-τ separator
A′ (in G′) that dominates A ∪ {y}, if A′ ∩ T̄ = ∅ then y ∈ A′ and (S \ A) ∪ (A′ \ {y}) is a
subset feedback vertex set of G.

PROOF. To see that A ∪ {y} is a v-τ separator in G′ observe that the set of vertices
reachable from v in G′ \ (A ∪ {y}) is exactly Q and that Q ∩ T = ∅. We now show that
y ∈ A′. We have that G′[Q] is connected, and contains a neighbor of y, since G′[χ(b′)] is
connected. Since A′ dominates A∪{y}, all vertices in Q are reachable from v in G−A′.
Since t′ ∈ T̄ we have that t′ /∈ A′. If y /∈ A′ then there is a path from v to τ in G′ − A′;
via Q to y, then to t′ by the edge yt′ and finally to τ . This contradicts that A′ separates
v from τ . We conclude that y ∈ A′, and proceed to the last statement, namely that
(S \A) ∪ (A′ \ {y}) is a subset feedback vertex set of G.

Suppose not. Then G− ((S \A)∪A′) contains a T -cycle C. Let L′ be the set of vertices
reachable from v in G′−A′, plus A′. Let R′ = (V (G′)\L′)∪A′. (L′, R′) is a separation in
G′, since L′ \R′ are exactly the vertices reachable from v, while R′ \L′ are the vertices
not reachable from v in G′ − A′. A key observation is that since A′ dominates A ∪ {y},
we have that Q ⊆ L′ \R′ and that A \A′ ⊆ L′ \R′.

All edges of G that are not in G′ are incident to v. Let L = L′ ∪ {v} and R = R′ ∪ {v},
it follows that (L,R) is a separation in G. Since G− S has no T -cycles it follows that C
must contain some vertex of A\(A′\{y}) = A\A′. We know that A\A′ ⊆ L′\R′ = L\R.
Furthermore, since C is a T -cycle, it must contain a terminal z. Since A′ separates v
from τ in G′ it follows that L′ ∩ T ⊆ A′. Since v is not a terminal it follows that
L ∩ T ⊆ A′. Since C is disjoint from A′ \ {y} and y is not a terminal, this means that
z /∈ L, and hence z ∈ R \ L. Thus C contains a vertex in L \ R and a vertex in R \ L,
implying that |C ∩L∩R| ≥ 2. However, the only two vertices in L∩R which are not in
A′ \ {y} are v and y. Thus C ∩ L ∩R = {v, y}.

It follows that C contains path P from v to y with at least one internal vertex, and
all of its internal vertices in R \ L. The internal vertices of P are disjoint from S \ A
and disjoint from A \A′, since A \A′ ⊆ L. Thus P is disjoint from S. However, all paths
between v and y in G \ S with at least one internal vertex must intersect Q \ {v}. But
Q ⊆ L, contradicting that the internal vertices of P are disjoint from L.

4.2. Final Analysis of Algorithm SolveSFVS

Recall that in order to lower bound the success probability of Algorithm SolveSFVS, all
that remained was to lower bound P [success | line18 ∧ t ∈ Tg ∧ v ∈ C]. Thus we consider
the case that t ∈ Tg and that v ∈ C (C is the set of non-terminal children of t in F ). This
case is split in three subcases: leaf, deg2∧ adj, and deg2∧nadj. In all cases the algorithm
selects a subset T̄ ⊆ T as follows, t is in T̄ , and every other terminal is put into T̄ with
probability 1− β. We now consider these cases one by one.

4.2.1. Handling the subcase v ∈ C ∧ leaf. First we lower bound P [success | line18 ∧ t ∈
Tg ∧ v ∈ C ∧ leaf]. In this case, let A = N(χ(b′)) \ {t}. Since v is in a T -cycle we have
that |A| ≥ 1. The probability that A ∩ T̄ = ∅ is β|A∩T |. Assume now that A ∩ T̄ =
∅. The algorithm defines G′, and G′ is exactly the graph defined in the beginning of
Section 4.1. By Lemma 4.2, A is a v-τ separator in G′. Furthermore A ∩ T̄ = ∅ so A
is a v-({τ} ∪ T̄ ) separator in G′. Hence, either there exists an important v-({τ} ∪ T̄ )
separator A′ which dominates A, or A is itself an important v-({τ} ∪ T̄ ) separator in
G′. In this case we let A′ = A. In either case, by Lemma 4.2, (S \ A) ∪ A′ is a subset

21



feedback vertex set of G of size at most |S| ≤ k. Furthermore, since A′ dominates A
and separates v from τ , it follows that A ∩ T ⊆ A′.

The algorithm samples an important v-({τ} ∪ T̄ ) separator A? using Lemma 2.8,
with deletion probability p. By Lemma 2.8 the probability that A? = A′ is at least
p|A|(1− p)|A|−λ, where λ = λG′(v, {τ} ∪ T̄ ) ≥ 1 since v is in a T -cycle.

At this point we distinguish between two cases, either λ = 1, or λ ≥ 2. We consider
first the case where λ = 1. In this case there exists a vertex z that separates v from τ
in G′. Let C be the connected component of G′ − z that contains v. We prove that z is
a terminal vertex. Suppose not, since v has degree at least 3 (in G) by Lemma 3.6, and
the only potential neighbors of v outside of {t, z} are in C, v has a neighbor u in C. But
then u is separated (in G) from T by {v, z} contradicting the conclusion of Lemma 3.6
that u has three internally vertex disjoint paths to T . We conclude that z is a terminal
vertex.

The set {z} is a v-({τ} ∪ T̄ ) separator, and since z is a terminal, {z} is an important
v-({τ}∪ T̄ ) separator of size λG′(v, {τ}∪ T̄ ). By Lemma 2.6 every important v−({τ}∪ T̄ )

separator Â (except {z}) covers {z}. Consider an important v − ({τ} ∪ T̄ ) separator Â.
If z ∈ Â then Â = {z} since Â is a minimal v − ({τ} ∪ T̄ ) separator. But if z /∈ Â then z

is reachable from v in G′ \ Â, since Â covers {z}. But z is adjacent to τ , contradicting
that Â separates v from τ . We conclude that {z} is the only important v − ({τ} ∪ T̄ )
separator, of any size.

Thus, if λ = 1 we have that A? = A′ = {z}. By Lemma 4.2 the set S? = (S \A)∪A? is
a subset feedback vertex set of G, and |S?| ≤ |S| ≤ k. Since |A?| = 1 the algorithm calls
itself recursively on (G−A?, T \A?, k − |A?|), which is a “yes” instance since A? ⊆ S?.

By the induction hypothesis the recursive call outputs succeed with probability at
least γk−1. Hence,

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C ∧ leaf ∧ λ = 1] ≥ β · γk−1 (10)

We now consider the case that λ ≥ 2. Thus the probability that A? = A′ is at least
p|A|(1− p)|A|−2. If A? = A′ then we conclude that S? = (S \A)∪A? is a subset feedback
vertex set of size at most k. Assume now that A? = A′. Note that since λ ≥ 2, |A?| ≥ 2.

At this point we distinguish between two cases, either A ⊆ T or not. We first consider
the case that A is not a subset of T . If A? ⊆ T then the algorithm calls itself recursively
on (G− A?, T \ A?, k − |A?|), which is a “yes” instance since A? ⊆ S?. By the induction
hypothesis the recursive call outputs succeed with probability at least γk−|A

?|. If A? \
T 6= ∅ then the algorithm picks a random y? ∈ A? \ T , and calls itself recursively on
(G− (A? \{y?}), T \ (A? \{y?}), k−|A?|+ 1), which is a “yes” instance since A? ⊆ S?. By
the induction hypothesis the recursive call outputs succeed with probability at least
γk−|A

?|+1. Thus, in either case (A? ⊆ T or A? * T ) the recursive call outputs succeed
with probability at least γk−|A

?|+1. Thus,

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C ∧ leaf ∧ λ ≥ 2 ∧A * T ] ≥ (11)

≥ β|A∩T | · p|A|(1− p)|A|−2 · γk−|A|+1

≥ β|A|−1 · p|A|(1− p)|A|−2 · γk−|A|+1

Note that in Equation 11 we have |A| ≥ 2.
Consider now the case that A ⊆ T . Since A? = A′ dominates A and separates v from

τ we have that A ∩ T = A ⊆ A?. Since |A?| ≤ |A| it follows that A? = A, and therefore
that A? ⊆ T . The algorithm calls itself recursively on (G−A?, T \A?, k−|A?|), which is
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a “yes” instance since A? ⊆ S?. By the induction hypothesis the recursive call outputs
succeed with probability at least γk−|A

?|. Hence,

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C ∧ leaf ∧A * T ] ≥ β|A| · p|A|(1− p)|A|−2 · γk−|A| (12)

In Equation 12 we have |A| ≥ 2. To summarize the leaf case, we have:

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C ∧ leaf] ≥ min

 β · γk−1

βa−1 · pa(1− p)a−2 · γk−a+1 (a ≥ 2)
βa · pa(1− p)a−2 · γk−a (a ≥ 2)

4.2.2. Handling the subcase v ∈ C ∧ deg2 ∧ adj. Next we lower bound P [success | line18 ∧ t ∈
Tg ∧ v ∈ C ∧ deg2 ∧ adj]. In this case t has an effective descendant t′ and v is adjacent
both to t and to t′. Further, b′ has degree 2 in F , thus the neighbors of b′ in F are exactly
χ−(t) and χ−(t′). Let A = N(χ(b′)) \ {t, t′}. We show that A 6= ∅.

For a contradiction, suppose A = ∅. Since v has degree at least 3 by Lemma 3.6, and
the only potential neighbors of v outside of A ∪ {t, t′} are in χ(b′), v has a neighbor
u ∈ χ(b′). But then u is separated (in G) from T by v, contradicting the conclusion of
Lemma 3.6 that u has three internally vertex disjoint paths to T . We conclude that
A 6= ∅.

The probability that A ∩ T̄ = ∅ and that t′ ∈ T̄ is (1 − β)β|A∩T |. Assume now that
A∩ T̄ = ∅ and that t′ ∈ T̄ . The algorithm defines G′, and G′ is exactly the graph defined
in the beginning of Section 4.1. By Lemma 4.3, A is a v-τ separator in G′. Furthermore
A∩ T̄ = ∅ so A is a v-({τ} ∪ T̄ ) separator in G′. Hence, either there exists an important
v-({τ} ∪ T̄ ) separator A′ which dominates A, or A is itself an important v-({τ} ∪ T̄ )
separator in G′. In this case we let A′ = A. In either case, by Lemma 4.3, (S \ A) ∪ A′
is a subset feedback vertex set of G of size at most |S| ≤ k. Furthermore, since A′

dominates A and separates v from τ , it follows that A ∩ T ⊆ A′.
The algorithm samples an important v-({τ} ∪ T̄ ) separator A? using Lemma 2.8,

with deletion probability p. By Lemma 2.8 the probability that A? = A′ is at least
p|A|(1 − p)|A|−λ, where λ = λG′(v, {τ} ∪ T̄ ). We show that λ ≥ 1. Suppose not, then
the connected component of G′ = G \ {vt, vt′} that contains v does not contain any
terminals. Since the degree of v is at least 3 in G, v has a neighbor u in this component.
But then v separates u from T contradicting that u is in a T -cycle. Thus the probability
that A? = A is at least p|A|(1−p)|A|−1. If A? = A′ then we conclude that S? = (S\A)∪A?
is a subset feedback vertex set of size at most k. Assume now that A? = A′

Since both t and t′ are in T̄∩N(v), the algorithm calls itself recursively on (G−A?, T \
A?, k − |A?|), which is a “yes” instance since A? ⊆ S?. By the induction hypothesis the
recursive call outputs succeed with probability at least γk−|A

?|. Hence,

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C ∧ deg2 ∧ adj] ≥ (1− β)βa · pa(1− p)a−1 · γk−a (a ≥ 1)

4.2.3. Handling the subcase v ∈ C ∧deg2∧nadj. Now we lower bound P [success | line18∧ t ∈
Tg ∧ v ∈ C ∧ deg2 ∧ nadj]. In this case t has an effective descendant t′ and v is adjacent
to t, but not to t′. Then by Observation 3.2 t′ has exactly one neighbor in χ(b′), call
this neighbor y. Further, b′ has degree 2 in F , thus the neighbors of b′ in F are exactly
χ−(t) and χ−(t′). We define Q to be the set of vertices reachable from v (including v) in
G − (S ∪ {y, t}), and define A = N(Q) \ {y, t}. Observe that Q ⊆ χ(b′). We show that
A 6= ∅.

For a contradiction, suppose A = ∅. Since v has degree at least 3 by Lemma 3.6, and
the only potential neighbors of v outside of A ∪ {t, y} are in Q, v has a neigbors u ∈ Q.
We have that u is separated (in G) from T by {y, v}, contradicting the conclusion of
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Lemma 3.6 that u has three internally vertex disjoint paths to T . We conclude that
A 6= ∅.

The probability that A ∩ T̄ = ∅ and that t′ ∈ T̄ is (1 − β)β|A∩T |. Assume now that
A∩ T̄ = ∅ and that t′ ∈ T̄ . The algorithm defines G′, and G′ is exactly the graph defined
right before the statement of Lemma 4.4. By Lemma 4.4, A ∪ {y} is a v-τ separator in
G′. Furthermore (A ∪ {y}) ∩ T̄ = ∅ so (A ∪ {y}) is a v-({τ} ∪ T̄ ) separator in G′. Hence,
either there exists an important v-({τ} ∪ T̄ ) separator A′ which dominates (A ∪ {y}),
or (A ∪ {y}) is itself an important v-({τ} ∪ T̄ ) separator in G′. In this case we let
A′ = (A ∪ {y}). In either case, by Lemma 4.4, y ∈ A′ and (S \A) ∪ (A′ \ {y}) is a subset
feedback vertex set ofG of size at most |S| ≤ k. Furthermore, sinceA′ dominatesA∪{y}
and separates v from τ , it follows that A ∩ T ⊆ A′.

The algorithm samples an important v-({τ} ∪ T̄ ) separator A? using Lemma 2.8,
with deletion probability p. By Lemma 2.8 the probability that A? = A′ is at least
p|A|(1− p)|A|−λ, where λ = λG′(v, {τ} ∪ T̄ ). We show that λ ≥ 2.

Suppose not, then there exists a vertex z that separates v from {τ} ∪ T̄ in G′. Since
t′ ∈ T̄ and G′[Q ∪ {y, t′}] is a connected set containing both v and t′ it follows that
z ∈ Q∪{y}, which means that z is not a terminal. Let C be the connected component of
G′ \ z that contains v, since v has degree 3 or more in G (by Lemma 3.6), v has at least
one neighbor u /∈ {t, z}. Then u ∈ C and so u is a non-terminal. But then u is a non-
terminal separated in G from T by {v, z} contradicting the conclusion of Lemma 3.6
that u has three internally vertex disjoint paths to T . We conclude that λ ≥ 2. Thus
the probability that A? = A′ is at least p|A|+1(1 − p)|A|−1. If A? = A′ then we conclude
that S? = (S \A) ∪ (A? \ {y}) is a subset feedback vertex set of size at most k. Assume
now that A? = A′.

Since t is the only terminal neighbor of v except for the terminals in A, v has exactly
one neighbor in T̄ . Further, y ∈ A′ = A? so A? contains at least one non-terminal.
Finally we showed that λG′(v, {τ} ∪ T̄ ) ≥ 2 and therefore |A?| ≥ 2. It follows that
the algorithm proceeds to line 24 where it picks a non-terminal vertex y? ∈ A? \ T .
With probability 1

|A?\T | the vertex y? is equal to y. Since A ∩ T ⊆ A? it follows that
1

|A?\T | ≥
1

|A\T |+1 . Assume now that y? = y.

At this point the algorithm calls itself recursively on (G−(A?\{y?}), T \(A?\{y?}), k−
|A?|+1), which is a “yes” instance since (A?\{y}) ⊆ S?. By the induction hypothesis the
recursive call outputs succeed with probability at least γk−|A

?|+1 = γk−|A|. Let a = |A|
and r = |A ∩ T |, then

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C ∧ deg2 ∧ nadj] ≥ (1− β)βr · pa+1(1− p)a−1 · γk−a

a− r + 1

Here a and r must satisfy a ≥ 1 and a ≥ r ≥ 0.

4.2.4. Completing the proof of Lemma 4.1 and the randomized algorithm for SUBSET FVS. Since
the three cases leaf, deg2 ∨ adj and deg2 ∨ nadj are exhaustive if the algorithm reaches
line 18, t ∈ Tg and v ∈ C, the following inequalty summarizes the bounds for P [success |
line18 ∧ t ∈ Tg ∧ v ∈ C]

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C] ≥ min


β · γk−1

βa−1 · pa(1− p)a−2 · γk−a+1 (a ≥ 2)
βa · pa(1− p)a−2 · γk−a (a ≥ 2)
(1− β)βa · pa(1− p)a−1 · γk−a

(1− β)βr · pa+1(1− p)a−1 · γk−a

a−r+1 (a ≥ r ≥ 0)
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Here a ≥ 1 in all inequalities, unless a ≥ 2 is specified. Inserting this into the Equa-
tion 9 yields the following bounds for P [success].

P [success] ≥ min



1
2 · (1− αt) · γ

k−1

1
12 · αt · γ

k−1

1
4 · αt · (1− αv) · γ

k−1

1
4 · αt · αv · β · γ

k−1

1
4 · αt · αv · β

a−1 · pa(1− p)a−2 · γk−a+1 (a ≥ 2)
1
4 · αt · αv · β

a · pa(1− p)a−2 · γk−a (a ≥ 2)
1
4 · αt · αv · (1− β)βa · pa(1− p)a−1 · γk−a
1
4 · αt · αv · (1− β)βr · pa+1(1− p)a−1 · γk−a

a−r+1 (a ≥ r ≥ 0)

Here a ≥ 1 unless a ≥ 2 is specified. In order to complete the inductive proof of
Lemma 4.1 we need to prove that the right hand side is at least γk. At this point we
plug in the following values for the probability constants in the algorithm: αt = 0.92,
αv = 0.83, β = 0.48 and p = 0.91. Recall that γ = 1

25.6 . For the first four bounds, we get
the following outcome.

1

2
· (1− αt) · γk−1 ≥ γk · (25.6 · 1

2
· (1− 0.92)) ≥ γk

1

12
· αt · γk−1 ≥ γk · (25.6 · 1

12
· 0.92) ≥ γk

1

4
· αt · (1− αv) · γk−1 ≥ γk · (25.6 · 1

4
· 0.92 · (1− 0.83)) ≥ γk

1

4
· αt · αv · β · γk−1 ≥ γk · (25.6 · 1

4
· 0.92 · 0.83 · 0.48) ≥ γk

For the next bound, we have

1

4
· αt · αv · βa−1 · pa(1− p)a−2 · γk−a+1 ≥

≥ γk · (25.6 · 0.48 · 0.91 · (1− 0.91))a−1 · 0.92 · 0.83

4
· 0.91

1− 0.91

≥ γk

In the last transition we used that a ≥ 2. Similarly, for the third last bound we have

1

4
· αt · αv · βa · pa(1− p)a−2 · γk−a ≥

≥ γk · (25.6 · 0.48 · 0.91 · (1− 0.91))a · 0.92 · 0.83

4
· 1

(1− 0.91)2

≥ γk

Again, in the last transition we used that a ≥ 2. For the second to last bound have

1

4
· αt · αv · (1− β)βa · pa(1− p)a−1 · γk−a ≥

≥ γk · (25.6 · 0.48 · 0.91 · (1− 0.91))a · 0.92 · 0.83

4
· 1− 0.48

1− 0.91

≥ γk
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For the last bound we obtain the following expression.

1

4
· αt · αv · (1− β)βr · pa+1(1− p)a−1 · γk−a

a− r + 1
≥

≥ γk · (25.6 · 0.91 · (1− 0.91))a · 0.48r

a+ 1− r
· 0.92 · 0.83

4
· (1− 0.48) · 0.91

1− 0.91

≥ γk · (25.6 · 0.48 · 0.91 · (1− 0.91))a · 0.92 · 0.83

4
· (1− 0.48) · 0.91

1− 0.91

≥ γk

We conclude that P [success] ≥ γk, which proves Lemma 4.1 .
Having Lemma 4.1 at hand we are ready to prove the main result of this section.

THEOREM 4.5. There is a O(25.6k · kO(1) · (n+m)) time algorithm for SUBSET FVS.
If the input instance is a “no” instance the algorithm outputs fail, if the input instance
is a “yes” instance the algorithm outputs succeed with probability at least 1− 1

e .

PROOF. The algorithm simply runs Algorithm SolveSFVS 25.6k times on the input
instance. If either of these runs result in a succeed, then the algorithm outputs suc-
ceed. If all of the runs of SolveSFVS return fail, the algorithm returns fail. The running
time bound for this algorithm follows directly from the running time bound of Algo-
rithm SolveSFVS. Further, since SolveSFVS always returns fail on “no” instances, this
algorithm will also always output fail on “no” instances.

Consider now a run of this algorithm on a “yes” instance. By Lemma 4.1 the probail-
ity that a particular run of SolveSFVS returns fail is at most (1 − 1

γk ), where γ = 25.6.

The probability that all 25.6k runs return fail is at most (1 − 1
25.6k )25.6k ≤ 1

e . Thus the
probability that the algorithm returns succeed is at least 1− 1

e , as claimed.

5. A DETERMINISTIC LINEAR TIME ALGORITHM FOR SUBSET FVS

In this section we design a deterministic algorithm for SUBSET FVS running in time
2O(k log k) · (m + n). This algorithm could be thought of as a weak derandomization of
the algorithm presented in the previous section. The algorithm uses the structural
properties developed in the previous sections for the randomized algorithm. The main
ingredient of the algorithm is a “deterministic sampling subroutine”, that outputs a
set of size polynomial in k, and whose intersection with any subset-fvs of size at most
k is non-empty.

5.1. Finding nice independent sets

In this section we introduce the notion of “nice independent sets” which form the cru-
cial ingredient in the sampling lemma we prove in the next section. The independent
sets that we define have the following important property. Either they intersect a so-
lution or there are many vertex disjoint paths from them to some subset-fvs of size at
most k avoiding a large piece of the graph, that themselves have large flow between
vertices of the independent set. These are crucially used in the sampling algorithm.

Definition 5.1. LetG be a graph, I ⊆ V (G) be an independent set and γ be a positive
integer. We say that I is γ-separating if for any pair of vertices x, y in I, we have that
λG(x, y) ≤ γ.

26



Definition 5.2. Let G be a graph and I ⊆ V (G). The closure of I in G is an induced
subgraph, denoted by closure(I,G), obtained by taking the union of connected compo-
nents of G− I that have at least two neighbors in I.

Definition 5.3. Let G be a graph, X ⊆ V (G), I be an independent set in G−X and
δ be a positive integer. We say that I is a δ-nice independent set with respect to X, if
there exists a subset I∗ ⊆ I that satisfies the following properties.

— |I∗ = {w1, . . . , w`}| ≥ δ.
— There exists an induced subgraph H of G − X containing I∗ such that for any

partition (A,B) of I∗ we have that λH(A,B) = λG−X(A,B).
— There exists a family of paths Pi = wi · · · bi, i ∈ {1, . . . , `}, such that bi ∈ X. Let
P ′i denote the subpath of Pi that contains all but the last vertex, then the family
of paths P ′i , i ∈ {1, . . . , `}, are pairwise disjoint and Z = ∪`i=1V (P ′i ) \ I∗ does not
intersect V (H). That is, Z ∩ V (H) = ∅.

We say that I∗ certifies the niceness of I.

In what follows we prove the existence of big nice independent sets.

LEMMA 5.4. Let (G,T, k) be an instance of SUBSET FVS, T̃ ⊆ T be a set of terminals
with degree at least 3 in G and let G be reduced. Then in time O(|T̃ |2k(m + n)), either
we output a (k + 1)-separating independent set I ⊆ T̃ , such that for any subset-fvs S of
size at most k that is disjoint from T̃ , I is a δ-nice independent set with respect to S; or
report that every S intersects T̃ . Here, δ = |T̃ |

4 .

PROOF. We first test whether G[T̃ ] is a forest. If G[T̃ ] is not a forest then we report
that every S intersects T̃ . So from now onwards we assume that G[T̃ ] is a forest. We
find a maximum independent set, say I, in G[T̃ ]. Since G[T̃ ] is a forest, we can find I

in linear time. Furthermore, since G[T̃ ] is a forest, and hence bipartite, we have that
|I| ≥ |T̃ |/2. We first show that I is a (k + 1)-separating independent set or every S

intersects T̃ . Suppose there exists a subset-fvs S that is disjoint from T̃ . Then for every
pair of vertices x, y ∈ I, there is at most one internally vertex disjoint path between
them in G− S and thus x can be disconnected from y in G− S with at most one vertex
z (here z /∈ {x, y}). Thus x can be disconnected from y in G by deleting S ∪ {z}. This
implies that λG(x, y) ≤ k + 1. So if there exists a subset-fvs S that is disjoint from T̃
we have that I is a (k + 1)-separating independent set. Thus, given I, we check for
every pair of vertices x, y ∈ I whether λG(x, y) ≤ k + 1. If for any pair we have that
λG(x, y) > k + 1 we report that every S intersects T̃ . This task can be carried out in
time O(|T̃ |2k(m+ n)) using Proposition 2.7.

Let S be an arbitrary subset-fvs of size at most k that is disjoint from T̃ . We will show
that I is a δ-nice independent set with respect to S. LetG∗ = G−S. Consider a terminal
forest (F, χ) of G∗ with respect to I. Let Q ⊆ I be the set of good terminals, that is,
a subset of I that have at most one effective descendant in F . By Observation 3.4
we have that |Q| ≥ |I|/2. Let closure(Q,G − S) be the closure of Q in G − S. Define
H = G∗[V (closure(Q,G − S) ∪ Q]. We need to show that for any partition (A,B) of
Q, we have that λH(A,B) = λG∗(A,B). To prove this it is sufficient to show that no
vertex in V (G∗) \ V (H) appears on any path between a vertex in A and a vertex in
B in G∗. Suppose that this is not the case and let P be a path between a vertex in A
and a vertex in B in G∗ that violates this property. That is, P is a path from a vertex
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x in A to a vertex y ∈ B, and there is a vertex w on P that is also in V (G∗) \ V (H).
Since x, y ∈ Q, there is a subpath P ′ of P such that the end vertices belong to Q and
all the internal vertices belong to V (G∗) \ V (H). But this implies that the internal
vertices are connected and have two neighbours in Q and thus should be the part of
closure(Q,G− S), a contradiction. This proves the claim that λH(A,B) = λG∗(A,B).

For every vertex in q ∈ Q we associate a set of vertices Aq ⊆ V (G∗) \V (closure(Q,G−
S)) such that G[Aq] is connected.

— If |N(q) ∩ S| ≥ 1 then Aq = {q}.
— So assume now that N(q) ∩ S = ∅. Let τ = χ−1(q). Since q has at most one effective

descendant in F and has degree at least three in G, there is one child of τ , say uq,
such that χ(uq) ∩ I = ∅. We set Aq = χ(uq). By the properties of terminal forests
we have that G[Aq] is connected. Furthermore, observe that G[Aq] is a connected
component of G∗ \ {q} and thus V (Aq) does not intersect with V (closure(Q,G− S)).

Observe that by our construction, the sets {Aq | q ∈ Q} are pairwise disjoint. Next
we claim that for every vertex q ∈ Q there is a vertex vq (could be equal to q itself)
in Aq such that |N(vq) ∩ S| ≥ 1. Towards a contradiction assume that N(Aq) ∩ S = ∅.
Let x be the unique neighbor of q in Aq (recall that if q will have two neighbours
then it would imply a T -cycle in G − S). However, this implies that xq is a bridge
in G and hence Reduction Rule 1 would have been applicable; a contradiction to the
assumption that G is reduced. Now for every q ∈ Q, we define the path Pq as follows.
Let bq denote a neighbour of vq in S and Lq denote the path from uq to vq in G[Aq] and
let the path Pq = qLqbq. Let P ′q, q ∈ Q, denote the subpath of Pq that contains all but
the last vertex bq, then the family of paths P ′q, i ∈ {1, . . . , `}, are pairwise disjoint and
Z = ∪`q∈QV (P ′q) \Q does not intersect V (H). This completes the proof.

Now we prove the lemma for the case when the set of degree 2 terminals is large.

LEMMA 5.5. Let (G,T, k) be an instance of SUBSET FVS, T̃ ⊆ T be a set of degree 2

terminals and let G be reduced. Then in time 2O(|T̃ |)(m+n), either we output five (k+1)-
separating independent sets I1, I2, I3, I4 and I5 in N(T̃ ) such that for any subset-fvs S
of size at most k that is disjoint from N [T̃ ], there exists a j ∈ {1, 2, 3, 4, 5} such that Ij is
a δ-nice independent set with respect to S; or report that every S intersects N [T̃ ]. Here,
δ = |T̃ |

40 .

PROOF. We first add an edge between a pair of vertices a, b ∈ N(T̃ ) if λG(a, b) ≥ k+2.
Let G′ denote this supergraph. Observe that, using Proposition 2.7, we can construct
G′ in time O(|T̃ |2k(m + n)). The reason we construct G′ is that it ensures that any
independent set in G′[N [T̃ ]] has the property that it is a (k+1)-separating independent
set in G. We start with the following claim.

Let G∗ = G − S. Consider a terminal forest (F, χ) of G∗ with respect to T̃ . Each
tree Fi in F is rooted at ri ∈ V (Fi). Let R = {r1, . . . , r`} denote the set of roots. Let
T̃good be the subset of T̃ that consists of good terminals (that is, they have at most one
effective descendant in T̃ ). By Observation 3.4 we have that |T̃good| ≥

˜|T |
2 . Let ut and

vt denote the neighbors of t ∈ T̃good. Note that χ−1(ut) 6= χ−1(vt), else we will have
T -cycle in G[{t} ∪ χ(χ−1(ut))] ⊆ G − S. This implies that either χ−1(ut) is a child of
χ−1(t) or χ−1(vt) is a child of χ−1(t). Now for every vertex t ∈ T̃good we associate a
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neighbor ut such that h = χ−1(ut) is a child of χ−1(t). We denote ut by sph. Observe
that if χ−1(t) is not in R then it has a unique child. Let X = {ut | t ∈ T̃good} and
I∗ = {χ−1(w) | w ∈ X}. Given Y , it would be easier to work with the following definition
of X. That is, I∗ = {sph | h ∈ Y }. We first show that I∗ is an independent set.

CLAIM 1. G′[I∗] is an independent set and |I∗| ≥
˜|T |
2 .

PROOF. We first show thatG[I∗] is an independent set. Before prove the main claim,
we collect two useful facts.

(1) The graph G is reduced and thus N(T̃ ) ∩ T = ∅ and thus I∗ ∩ T = ∅.
(2) Since every child has a unique parent, for any pair of vertices x, y ∈ I∗, we have

that χ−1(x) 6= χ−1(y).

Next we show the desired claim. Suppose I∗ is not an independent set, then this
implies that there exist vertices x, y ∈ I∗ such that xy is an edge. Since, x, y /∈ T , by the
properties of (F, χ), there exists some b ∈ V (H) such that x, y ∈ χ(b). Since χ partitions
V (G∗) this would imply that χ−1(x) = χ−1(y), a contradiction. This implies that I∗ is
an independent set.

For every pair of vertices x, y ∈ I∗, there is at most one internally vertex disjoint path
between them in G∗ and thus we can disconnect x from y with at most one vertex, say
z, that is not equal to x and y (this exists as there is no edge between x and y). Hence,
we can disconnected x from y inG by deleting S∪{z}. This implies that λG(x, y) ≤ k+1,
and thus xy /∈ E(G′). From this we conclude that I is an independent set in G′ as well.

The size bound on |I∗| follows from the fact that |T̃good| ≥
˜|T |
2 .

For every, h ∈ Y , let border(h) denote the vertices in χ(h) that have neighbors in V (G∗)\
χ(h). By the properties of terminal forests and by the definitions of sph we have the
following.

OBSERVATION 5.1. For every h ∈ Y , |border(h)| ≤ 2 and sph ∈ border(h).

Let h ∈ Y , such that |border(h)| = 2 and let δh = border(h) \ {sph}. We now define an
auxilliary graph Gh as follows. We start with the graph G[χ(h)]. Let τ and τS be two
new vertices. Add directed edge from a vertex in N(S) ∩ χ(h) to τS , add the directed
edge (δh, τ) and finally add the directed edge (τS , τ). Of course for edges, say uv, for
which no direction is specified, we have directed edges (u, v) and (v, u). Now we have
the following claim.

CLAIM 2. Let h ∈ Y , such that |border(h)| = 2. Then either |N(sph) ∩ S| ≥ 1 or there
are two vertex disjoint paths from sph to τ in Gh.

PROOF. Assume that N(sph)∩S = ∅. Since G[χ(h)] is connected, there exists a path,
say P , from sph to δh. Let (FT , χT ) denote a terminal forest of G− S with respect to T .
Of course, (F, χ) is a terminal forest ofG−S with respect to T̃ . Let h′ ∈ V (FT ) such that
sph ∈ χT (h′). Clearly, χT (h′) ⊆ χ(h). (It could be very well be true that χT (h′) = χ(h).)
Observe that χT (h′) ∩ T = ∅ and let δh′ denote the last vertex on P from χT (h′).

Let t denote the terminal in T̃good such that χ−1(sph) is a child of χ−1(t). Since t is
good, there exists at most one other terminal say t′ (in our case exactly one) such that
χ−1(sph) is a parent of χ−1(t). Furthermore, t′ is a neighbor to δh. Let h′′ be the child
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of h′ such that χ−1
T (t′) is a node in the subtree of FT rooted at h′′. We denote this tree

by FT (h′′).
Notice that 1 ≤ λGh

(sph, τ) ≤ 2. Indeed, deleting δh and τS from Gh disconnects sph
from τ in Gh. This implies that λGh

(sph, τ) ≤ 2. For the other inequality notice that Pτ
is a path from sph to τ in Gh. For a contradiction assume that there are no two vertex
disjoint paths from sph to τ in Gh. Then, by Menger’s theorem this implies that there
exists a vertex w such that deleting w from Gh disconnects sph from τ in Gh. Clearly, w
is on the path P . Now we distinguish between the following two cases.

(1) Suppose w ∈ χT (h′). Let RGh
(sph, w) denote the set of vertices of Gh reachable

from sph in the graph Gh − {w}. We first show that δh′ /∈ RGh
(sph, w). Suppose

not, then take a path to δh′ from sph using vertices from RGh
(sph, w and then go

along the path P and reach δh and then take the edge (δh, τ). This implies that we
have shown path from sph to τ that avoids w, a contradiction. Thus, we have shown
that δh′ /∈ RGh

(sph, w), which in turn implies that RGh
(sph, w) ∩ χT (V (FT (h′′)) = ∅.

Next we show that RGh
(sph, w) ⊆ χT (h′). Suppose not, then there exists another

neighbour h∗ (not equal to h′′) of h′ in FT and |χT (h∗) ∩ RGh
(sph, w)| ≥ 1. Let xy

be the edge such that x ∈ RGh
(sph, w) ∩ χT (h′) and y ∈ RGh

(sph, w) ∩ χT (h∗). We
know that G is reduced and hence every edge participates in a T -cycle. In particular
there is a T -cycle C that intersects S and use the edge xy. Let P be the path on C
from y to a vertex in S such that it does not use the edge xy and all the internal
vertices do not belong to S. Clearly, all the internal vertices of this path belong to
χT (V (FT (h∗))). Here, FT (h∗) denote the subtree of FT rooted at h∗. This implies that
there is a path from sph to τ in Gh that avoids w, a contradiction. Thus, we assume
that RGh

(sph, w) ⊆ χT (h′). We know that sph is a non-terminal and hence it has
degree at least three in G. Furthermore, since none of its neighbours are in S, there
exists a neighbor in RGh

(sph, w), say z, such that z is not equal to t or w. But then w
and sph disconnects z from all the terminals T . This leads to a contradiction that G
is reduced, as Reduction Rule 3 is applicable now.

(2) Suppose w /∈ χT (h′). We will reduce this to the previous case. Since every path from
sph to w must pass through δh′ , we have that RGh

(sph, δh′) ⊆ RGh
(sph, w) and thus

δh′ also separates sph from τ in Gh. However, δh′ ∈ χT (h′) and thus we end up in the
previous case.

This completes the proof of the claim.

Next we prove the following claim.

CLAIM 3. For every h ∈ Y , we have that |N(χ(h)) ∩ S| ≥ 1.

PROOF. We distinguish two cases. If |border(h)| = 2 then the claim follows from
Claim 2. So assume that |border(h)| = 1. Let t denote the terminal in T̃good such that
χ−1(sph) is a child of χ−1(t). We know that G is reduced and hence every edge par-
ticipates in a T -cycle. Consider the edge t sph. In particular there is a T -cycle C that
intersects S and uses the edge t sph. Let P be the path on C from sph to a vertex in S
such that it does not use the edge t sph and all the internal vertices do not belong to S.
Since |border(h)| = 1, all the internal vertices of P are in χ(h) and thus the last vertex
on this path has a neighbour in S. This concludes the proof.

Now for every vertex h ∈ H we define two paths Ph and Lh.
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— First we deal with the case when |border(h)| = 1. Let guard(h) denote a vertex in
χ(h) such that guard(h) ∩ S 6= ∅. In this case take Ph = sph and Lh to be a path from
guard(h) to sph with all the internal vertices in χ(h) \Ph.

— Now assume that |border(h)| = 2. If |N(sph) ∩ S| ≥ 1 then Ph = sph and Lh =
sph. So assume that N(sph) ∩ S = ∅. Now, by Claim 2 we know that there are two
vertex disjoint paths from sph to τ in Gh. Let P1 and P2 denote these paths. By the
construction of Gh one of these paths pass through δh, say P1, define Ph to be the
subpath from sph to δh. Again, by the construction of Gh, the path P2 must have τS
on it. Let x and y be two neighbours of τS on P2, clearly one of them is τ(= x) and
the other is some vertex y ∈ χ(h) such that |N(y) ∩ S| ≥ 1. Also the subpath of P2,
say P ′2, from sph to y is entirely contained in χ(h). We denote y by guard(h) and let
Lh = P ′2.

Let

H = G∗[V (G∗) \
( ⋃
h∈Y

(χ(h) \Ph)
)
].

That is obtain the graph H by deleting vertices of χ(h), h ∈ Y from G∗ but leaving the
vertices of the special path Ph. Next we have to prove the following.

CLAIM 4. For any partition (A,B) of I∗ we have that λH(A,B) = λG∗(A,B).

PROOF. Since H is a subgraph of G∗, we have that λH(A,B) ≤ λG∗(A,B). Next we
show the other direction of the proof. That is, λH(A,B) ≥ λG∗(A,B). Let η = λG∗(A,B).
Let P = {P1, . . . , Pη} be a family of vertex disjoint paths in G∗, between A and B, such
that the number of vertices outside V (H) is minimised. That is |(∪ηi=1V (Pi)) \ V (H)|
is minimum among all η sized family of pairwise vertex disjoint paths between A and
B in G∗. Since λH(A,B) < λG∗(A,B), there exists a path, say P ∈ P such that there
exists a vertex w ∈ V (P ) \ V (H). This implies that there exists a h ∈ Y such that
w ∈ (χ(h) \ Ph). Also, note that w /∈ border(h). Thus, w is an internal vertex on P
and both its neighbors belong to χ(h). This in turn implies that P contains both the
vertices of border(h). In fact, P contains a subpath, say P ′, with its endpoints being
the vertices in border(h) and w belongs to this path. Since the paths in P are pairwise
vertex disjoint and |border(h)| = 2, we have that P is the only path that contains ver-
tices from χ(h). Now we replace the subpath P ′ by Ph and obtain a path P ∗. Clearly,
P ′ = (P ∪ {P ∗}) \ {P} is a family of pairwise vertex disjoint paths and the number
of vertices from outside V (H) is strictly smaller than |(∪ηi=1V (Pi)) \ V (H)|. This con-
tradicts the minimality of our choice of family of paths. From this, we conclude that
there exists a family of vertex disjoint paths between A and B in G∗ of size λG∗(A,B)
such that all the vertices on these paths belong to V (H). From this we conclude that
λH(A,B) ≥ λG∗(A,B). This completes the proof.

Clearly, by our construction the family of paths Q = {Lh | h ∈ Y } satisfies the last
property in the definition of nice independent sets.

If there exists a subset-fvs S that is disjoint from N [T̃ ] then by Claim 1 we know that
G′[N [T̃ ]] has |T̃ |2 -nice independent set I∗ with respect to S. Let W = N(T̃ ), we know
that |W | ≤ 2|T̃ |. Next we give an algorithm that either reports that there is no subset-
fvs that is disjoint from N [T̃ ] or find an independent set that contains large fraction of
I∗. Towards this we do as follows.

For i = 1 to 5 do as follows:
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— If W 6= ∅, find a maximum independent set Ii in G′[W ] and set W :=
W − Ii; else return Ii as an empty set.

Set |W | = ∆ and let I1, . . . , I4, I5 be the set of independent sets. If |I1| < ∆
4 then we

conclude that there is no subset-fvs of size at most k that is disjoint from N [T̃ ]. This
follows from Claim 1. Indeed, if there is a subset-fvs of size at most k then G′[N [T̃ ]] has
an independent set of size at least |T̃ | and hence of size at least ∆

4 . From now onwards
we assume that |I1| ≥ ∆

4 . Next we have the following claim.

CLAIM 5. There exists j ∈ {1, 2, 3, 4, 5} such that |Ij ∩ I∗| ≥ |T̃ |40 .

PROOF. For i ≥ 2, we say that Ii is good if |Ii| ≥ ∆
4 −

(i−1)∆
40 . It could be the case that

all the independent sets are good. We know that |I∗| ≥ ∆
4 . Since every independent

set is good, the number of vertices of W they cover is at least
∑5
i=1(∆

4 −
(i−1)∆

40 ) ≥ ∆

and thus some independent sets cover at least |I
∗|
5 ≥ ∆

20 ≥
|T̃ |
20 vertices of I∗. Now

let i ≥ 2 be the first integer such that |Ii| < ∆
4 −

(i−1)∆
40 . This implies that at least

∆
4 − (∆

4 −
(i−1)∆

40 ) = (i−1)∆
40 vertices of I∗ are distributed among I1, . . . , Ii−1 and hence

one of them contains at least ∆
40 ≥

|T̃ |
40 vertices of I∗.

Thus, we have shown that one of the independent sets has larger intersection with
I∗. We can find the desired independent sets in time 2O(|T̃ |) by trying all possible sub-
sets of N(T̃ ) and checking whether they are independent. This concludes the proof of
Lemma 5.5.

5.2. Deterministic sampling

In this section we give an algorithm that, given an instance (G,T, k) of SUBSET FVS
with sufficiently many terminals, finds a set whose size is upper bounded by a poly-
nomial in k, that intersects with every subset-fvs of size at most k. We first prove a
probabilistic statement that shows that if we have a nice independent set I of large
size then for any random partition of I, any minimum vertex cut between these two
parts intersects a subset-fvs of size at most k. Finally, we use this probabilistic state-
ment to define a scoring scheme on the vertex set of G and show that the first O(k4)
vertices of highest score must intersect every solution of size at most k.

LEMMA 5.6. Let (G,T, k) be an instance of SUBSET FVS, S be a subset-fvs of size at
most k and I be an independent set such that I is a δ-nice independent set with respect
to S. Furthermore, let (A,B) be a random partition of I. Then, with probability at least
1
2 any minimum vertex cut C between A and B intersects S. Here δ = 1000k.

PROOF. To prove our claim, we first make an auxiliary bipartite graph H with the
vertex set S ∪ I. Now we know that I is a δ-nice independent set with respect to S and
hence there exists a subset I∗ ⊆ I that satisfies the following properties.

— |I∗ = {w1, . . . , w`}| ≥ δ.
— There exists an induced subgraph H̃ of G−S containing I∗ such that for any parti-

tion (A,B) of I∗ we have that λH̃(A,B) = λG−S(A,B).
— There exists a family of paths H = {Pi = wi . . . bi | i ∈ {1, . . . , `}}, such that bi ∈ S.

Let P ′i denote the subpath of Pi that contains all but the last vertex, then the family
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of paths P ′i , i ∈ {1, . . . , `}, are pairwise disjoint and Z = ∪`i=1V (P ′i ) \ I∗ does not
intersect V (H̃). That is, Z ∩ V (H̃) = ∅.

We add an edge between wi and bi in the bipartite graph H. Clearly, the number of
edges in H is at least ` ≥ δ.

For subsets X,Y of I such that X ∩ Y = ∅, we define

score(X,Y ) =
∑
v∈S

min{|NH(v) ∩X|, |NH(v) ∩ Y |} =
∑
v∈S

min{dX(v), dY (v)}.

Observe that if (A,B) is a random partition (that is, every vertex is placed in A with
probability 1/2) of I then (A ∩ I∗, B ∩ I∗) is a random partition of I∗. We denote (A ∩
I∗, B ∩ I∗) by (A∗, B∗). We first show that with probability at least 1/2, score(A∗, B∗) ≥
k + 1. This would immediately imply that with probability at least 1/2, score(A,B) ≥
k + 1.

Let H ′ := H[S ∪ I∗]. With every vertex v ∈ S, we associate a random variable Xv

and for every vertex u ∈ I we associate a random variable Yu. A random variable Yu
takes 1 if u ∈ A∗ and 0 otherwise. Let d(v) = dH′(v); that is, the degree of a vertex
in the graph H ′. Similarly define N(v) = NH′(v). Let Xv =

∑
u∈N(v) Yu. Clearly, the

expectation of Xv, E[Xv] = d(v)
2 . Now we do some filtering in S, let S̃ = {v | d(v) ≥ 100}.

For every vertex v ∈ S̃, using Chernoff bounds (see [Mitzenmacher and Upfal 2005,
page numbers 70-71, Corollaries 4.9 and 4.10]) we can show that

Pr

(
Xv <

d(v)

10

)
≤ e

−8d(v)2

25d(v)

≤ e
−8×100

25 = e−32.

We can similarly bound that Pr(Xv >
9d(v)

10 ) ≤ e−32. Let

J =

{
v
∣∣∣ v ∈ S̃ ∧ (

Xv <
d(v)

10
or Xv >

9d(v)

10

)}
.

Let Zv, v ∈ S̃ be a random variable that is 1 if v ∈ J and 0 otherwise. Clearly,

Pr(Zv = 1) = Pr

(
Xv <

d(v)

10
or Xv >

9d(v)

10

)
≤ Pr

(
Xv <

d(v)

10

)
+ Pr

(
Xv >

9d(v)

10

)
≤ 2e−32.

ZJ =
∑
v∈S̃ d(v)Zv be a random variable. Then, the expectation of ZJ ,

E[ZJ ] =
∑
v∈S̃

d(v)E[Zv] ≤ 2e−32
∑
v∈S̃

d(v)

Thus the expected sum of degrees in the set J is upper bounded by Λ = 2e−32
∑
v∈S̃ d(v).

Now by Markov’s inequality we have that Pr(ZJ > 2Λ) ≤ E[ZJ ]
2Λ ≤ 1

2 . Define S∗ = S̃ \ J .
Then with probability at least 1

2 , we have that

∑
v∈S∗

d(v) =
∑
v∈S̃

d(v)−
∑
v∈J

d(v) ≥ (1− 2e−32)
∑
v∈S̃

d(v),
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and for every vertex v ∈ S∗, we have that d(v)
10 ≤ dA∗(v) ≤ 9d(v)

10 . This implies that
d(v)
10 ≤ dB∗(v) ≤ 9d(v)

10 . Hence,

score(A∗, B∗) =
∑
v∈S

min{dA∗(v), dB∗(v)}

≥
∑
v∈S∗

min{dA∗(v), dB∗(v)}

≥ 1

10

∑
v∈S∗

d(v)

≥ (1− 2e−32)

10

∑
v∈S̃

d(v)

Observe that the number of edges inH andH ′ is the same, that is, at least 1000k. Since
every vertex in S \ S̃ has degree at most 100, we have that

∑
v∈S̃ d(v) ≥ 900k. Thus, we

have that score(A∗, B∗) ≥ (1 − 2e−32)90k ≥ k + 1. This implies that score(A,B) ≥ k + 1
which proves the claim.

Let C be a minimum vertex cut between A and B in G. We need to show that
with probability at least 1

2 , C ∩ S 6= ∅. With probability at least 1
2 , we know that

score(A,B) ≥ k+1. For a contradiction assume that C∩S = ∅. Let G∗ = G−S. We know
that λH̃(A,B) = λG∗(A,B). By Menger’s theorem we know that A can be disconnected
from B in G∗ by λG∗(A,B) vertices. This implies that λG(A,B) ≤ λG∗(A,B) + |S| =
λH̃(A,B) + |S| ≤ λH̃(A,B) + k. Next we show that if a minimum vertex cut between A
and B does not include S then the size of any vertex set separating A from B in G has
size at least λG∗(A,B) + k + 1. This will lead to our desired contradiction.

Let P be a family of vertex disjoint paths of size λG∗(A,B)(= λH(A,B)) between A
and B in H. We also have a family of paths H whose internal vertices are disjoint from
V (H). For each v ∈ S, define score(A,B)[v] = min{dA(v), dB(v)}. It means that we have
score(A,B)[v] number of paths in H that start at vertices in A and end at v – let A be
a set of such paths of size score(A,B)[v]. Similarly, we have score(A,B)[v] number of
paths in H that start at vertices in B and end at v – let B be a set of such paths of
size score(A,B)[v]. We arbitrarily pair paths from A and B and get score(A,B)[v] paths
from A to B that are internally pairwise vertex disjoint but for the vertex v ∈ S. Thus
we can obtain a family of paths D of size score(A,B) from A to B that are internally
pairwise vertex disjoint but for the vertices in S. Observe that no path in D intersects
the set of internal vertices of any path in P. Now any minimum vertex cut from A to
B in G must intersects every path in P and D. However, if it does not use vertices in S
then it at least needs |P|+ |D| ≥ λG∗(A,B) + score(A,B)[v] ≥ λG∗(A,B) +k+ 1 vertices.
However, we know that λG(A,B) ≤ λG∗(A,B) + k and thus we have proved that any
minimum vertex cut C between A and B in G must intersect S. This concludes the
proof of the lemma.

Now we prove the main sampling lemma of this section.

LEMMA 5.7. Let (G,T, k) be an irreducible instance of SUBSET FVS and |T | ≥ αk.
There is an algorithm that runs in time 2O(k)(m + n) and either reports that the given
instance is a NO-instance or outputs a set Z of size at most O(k4) such that there exists
a solution S of size at most k such that |S ∩ Z| ≥ 1. Here, α = 80× 103.
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PROOF. The algorithm first tests whether it has a T -cycle of size 2. If yes, then it
returns its vertices as the desired Z. So from now onwards we assume that there is
no T -cycle of size 2 in G, which also implies that G does not have parallel edges. Let
β = 40×103. Since |T | ≥ αk we have that either the number of terminals whose degree
is at least 3 in G is at least βk or the number of terminals whose degree is equal to 2
in G is at least βk.

Number of terminals of degree at least 3 is at least βk.. Let T̃ ⊆ T be a set of terminals
of size βk with degree at least 3 in G. We first add T̃ to the set Z we are constructing.
This takes care of all subset-fvs of size at most k that intersects T̃ . Now we need to
take care of all those subset-fvs that are disjoint from T̃ . Now we apply Lemma 5.4 and
either obtain a 1000k-nice independent set, I, that is k+1 separating or that there is no
subset-fvs of size at most k that is disjoint from T̃ . If it returns that there is no subset-
fvs of size at most k that is disjoint from T̃ then the algorithm returns the current Z.
So assume that we have 1000k-nice independent set, I, that is k + 1 separating. Let S
be a subset-fvs of size at most k that is disjoint from T̃ . Lemma 5.4 implies that I is
a 1000k-nice independent set with respect to S. Let (A,B) be a random partition of I.
Then by Lemma 5.6 we know that with probability at least 1

2 any minimum vertex cut
C between A and B intersects S. We use this fact to find vertices in S. Towards this we
do as follows.

(1) For every vertex v ∈ V (G) define a variable score[v] which is initialized to 0.
(2) For every partition (A,B) of I, find a minimum sized vertex cut C and for every ver-

tex v ∈ C add 1 to score[v]. Recall that since I is k+1 separating |C| ≤ 2500k2(k+1) =
O(k3). Thus we can find the desired C in time O(k3(m+ n)) using Proposition 2.7.

(3) Sort the vertices of G in the decreasing order of their score. For any vertex v ∈ V (G),
score[v] ≤ 21000k and thus we can sort the vertices in time O(21000kn) using bucket
sort.

(4) Let X be the first 5000k3(k + 1) vertices of highest score.
(5) Output Z := Z ∪X.

Clearly, |Z| = O(k4) as desired. What remains to prove is that |Z∩S| ≥ 1. Towards this
we show that |X ∩ S| ≥ 1. Let (A,B) be a random partition of I. Then by Lemma 5.6
we know that with probability at least 1

2 any minimum vertex cut C between A and
B intersects S. This implies that for half of all possible partitions, the corresponding
minimum sized vertex cut C intersects S and thus there is a vertex v ∈ S such that
score[v] ≥ 2|I|

2k . Since, Λ =
∑
v∈V (G) score[v] ≤ 2|I|2500k2(k+ 1), we have that the number

of vertices with score at least 2|I|

2k is upper bounded by 5000k3(k + 1). This implies that
indeed the first 5000k3(k + 1) vertices of highest score contain a vertex from S. This
concludes the proof for this case.

Number of terminals of degree 2 is at least βk.. Let T̃ ⊆ T be a set of terminals
of size 6000k of degree 2 in G. We first add N [T̃ ] to the set Z we are constructing.
Clearly, the size of |Z| = O(k) until now. This takes care of all the subset-fvs of size at
most k that intersects N [T̃ ]. Now we need to take care of all those subset-fvs that are
disjoint from N [T̃ ]. Now we apply Lemma 5.5 and either obtain five (k + 1)-separating
independent sets I1, I2, I3.I4 and I5 in N(T̃ ) such that for any subset-fvs S of size at
most k that is disjoint from N [T̃ ] there exists a j ∈ {1, 2, 3, 4, 5} such that Ij is a 1000k-
nice independent set with respect to S; or report that every S intersects N [T̃ ]. If it
returns that there is no subset-fvs of size at most k that is disjoint from N [T̃ ] then
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the algorithm returns the current Z. So assume that we are in the other case. From
now onwards the proof for this case is identical to the case of number of terminals of
degree at least 3 is at least βk. Thus, we only point out the differences. We know for
every subset-fvs S of size at most k, there is some Ij that is 1000k-nice independent set
and k + 1 separating. Now we apply the algorithm described in the case of number of
terminals of degree at least 3 is at least βk on each Ij , j ∈ {1, 2, 3, 4, 5} and obtain Xj .
Let X := ∪5

j=1Xj . As before we can show that |S ∩X| ≥ 1. We output Z := Z ∪X. This
concludes the proof.

5.3. Deterministic algorithm for SUBSET FVS

In this section we design the claimed deterministic algorithm for SUBSET FVS. Ob-
serve that Lemma 5.7 from the previous section is useful when the number of termi-
nals is at least αk. To deal with the case when the number of terminals are small we
design an algorithm for SUBSET FVS running in time |T |O(k)(m+ n). We first give an
algorithm for a slightly different version of the problem, namely, DISJOINT SUBSET
FVS. An input to DISJOINT SUBSET FVS is an undirected graph G, a subset of ter-
minals T , and a positive integer k and the objective is to determine whether G has a
subset-fvs of size at most k that is disjoint from T .

LEMMA 5.8. DISJOINT SUBSET FVS can be solved in time |T |O(k)(m+ n).

PROOF. Let (G,T, k) be an instance to DISJOINT SUBSET FVS. We solve the prob-
lem by a recursive branching algorithm. If there is no T -cycle then we are done. Oth-
erwise, we first apply Lemma 3.6 and obtain an equivalent instance (G′, T ′, k) such
that G′ is irreducible. For clarity we also denote (G′, T ′, k) by (G,T, k). If G[T ] has a
cycle then return that the given instance is a NO-instance. Now, by Observation 3.4
we know that if there exists a subset-fvs S of size at most k then half of the terminals
are good. In particular, we know that there exists a terminal t ∈ T such that it does
not have any effective descendant in some terminal forest of G−S. Furthermore, let ut
and vt denote the two neighbours of t in G. Let T̄ = T . Finally, for a vertex v, G̃v is the
graph obtained from G by adding a new vertex τ , making τ adjacent to all vertices of T ,
and removing all edges between v and vertices in T̄ . Then either ut ∈ S or vt ∈ S, or for
one of them, say ut, by Lemma 4.2, there exists an important ut-τ separator, disjoint
from T̄ , that is contained in a subset-fvs of size at most k. Let W = {{ut}, {vt} | t ∈ T}.
For every wt ∈W , we use the algorithm of Lemma 2.5 to construct the set Swt consist-
ing of every important ({wt}, τ)-separator of size at most k in G̃wt . We now clean the
family Swt

, by removing any set in Swt
that intersects T̄ . Let

Pk =
⋃

{wt}∈W

Swt
,

be those important separators that are disjoint from T̄ . We can construct Sk in time
O(4kk(m + n)|T |) using Lemma 2.5. Now we know that if there exists a subset-fvs
of size at most k that is disjoint from T then it must contain either a set from W
or a set from Pk. Therefore, we branch on the sets in W or one of the vertex cuts in
Pk: for every S′ ∈ Pk ∪W , we recursively solve the DISJOINT SUBSET FVS instance
(G− S′, T, k − |S′|). If one of these branches returns a solution S, then clearly S ∪ S′ is
a subset-fvs of size at most k in G.

The correctness of the algorithm is clear from Lemma 4.2. We claim that the search
tree explored by the algorithm has at most (2|T |)k8k leaves. We prove this by induc-
tion on k, thus let us assume that the statement is true for every value less than k.
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This means that we know that the recursive call (G− S′, T, k − |S′|) explores a search
tree with at most (2|T |)k−|S′|8k−|S′| leaves. Note that the value of k − |S′| is always
nonnegative and the claim is trivial for k = 0. Let µ(k) denotes the number of leaves
in the search tree when the parameter is k. For our computation we will also need
the following known result. Let G be an undirected graph and let X,Y ⊆ V (G) be
two disjoint sets of vertices. If S is the set of all important (X,Y )-separators, then∑
S∈S 4−|S| ≤ 1 [Cygan et al. 2014]. We have the following recurrence on µ(k).

µ(k) =
∑

{wt}∈W

µ(k − 1) +
∑

{wt}∈W

∑
S′∈Swt

µ(k − |S′|)

=
∑

{wt}∈W

(2|T |)k−18k−1 +
∑

{wt}∈W

∑
S′∈Swt

(2|T |)k−|S
′|8k−|S

′|

≤ (2|T |)k8k−1 + (2|T |)k−18k
∑

{wt}∈W

∑
S′∈Swt

8−|S
′|

≤ (2|T |)k8k−1 + (2|T |)k−1 8k

2

∑
{wt}∈W

∑
S′∈Swt

4−|S
′|

≤ (2|T |)k8k−1 + (2|T |)k 8k

2
(since

∑
S′∈Swt

4−|S
′| ≤ 1)

≤ (2|T |)k8k−1(1 + 4) ≤ (2|T |)k8k.

As the height of the search tree is at most k, it has O(k(2|T |)k8k) nodes. Due to
Lemma 2.5, the time spent at each node is O(4kk(m + n)|T |), and we conclude that
the total time of the algorithm is upper bounded by |T |O(k)(m+ n). This completes the
proof.

Now we give an algorithm for SUBSET FVS running in time |T |O(k)(m+ n).

THEOREM 5.9. SUBSET FVS can be solved in time |T |O(k)(m+ n).

PROOF. Let (G,T, k) be an instance to SUBSET FVS. We solve the problem by first
guessing the intersection of solution with T and then calling the algorithm for DIS-
JOINT SUBSET FVS. In other words, for every X ⊆ T of size at most k, we want to find
a solution that include X and is disjoint from T \X. To obtain the desired solution we
delete X from G and obtain an instance (G − X,T \ X, k − |X|) of DISJOINT SUBSET
FVS. We finally solve the instance (G − X,T \ X, k − |X|) of DISJOINT SUBSET FVS
using Lemma 5.8 in time |T |O(k)(m + n). If for any X, we get a solution S′ of size at
most k−|X| for the corresponding instance (G−X,T \X, k−|X|) of DISJOINT SUBSET
FVS, then clearly X ∪ S′ is a subset-fvs of size at most k for G. Since the number of
subsets of size at most k in T is upper bounded by k|T |k, the claimed running time
follows.

Finally, we combine Lemma 5.7 and Theorem 5.9 and give the main theorem of
this section. That is, a deterministic algorithm for SUBSET FVS running in time
2O(k log k)(m+ n).

THEOREM 5.10. SUBSET FVS can be solved in time 2O(k log k)(m+ n).

PROOF. Let (G,T, k) be an instance to SUBSET FVS. We first apply Lemma 3.6 and
obtain an equivalent instance (G′, T ′, k) such that G′ is reduced. For brevity we denote
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(G′, T ′, k) by (G,T, k). Set α = 48000. The problem is solved by a recursive branching
algorithm. It distinguishes two cases based on whether |T | ≥ αk or |T | < αk.

In the former case we apply Lemma 5.7 and in time 2O(k)(m+n) either find out that
the given instance is a NO-instance or obtain a set Z of size O(k4) such that there
exists a solution S of size at most k such that |S ∩ Z| ≥ 1. Therefore, we branch on the
choice of one of these vertices: for every vertex z ∈ Z, we recursively solve the SUBSET
FVS instance (G − {z}, T \ {z}, k − 1). If one of these branches returns a solution S,
then clearly S ∪{z} is a subset-fvs of size at most k in G. In the case when |T | < αk, we
apply Theorem 5.9 and solve the problem in time |T |O(k)(m+ n) = 2O(k log k)(m+ n).

In every branch of the algorithm k drops by 1 and thus the number of leaves in
the search tree is upper bounded by |Z|k and since the height of the tree is at most
k, the number of nodes in the search tree is upper bounded by k|Z|k. The time we
spend at every node is either 2O(k)(m+n) or |T |O(k)(m+n) ≤ 2O(k log k)(m+n) time. In
either case the total time spend at any node is upper bounded by 2O(k log k)(m+ n) and
thus the running time of the algorithm is upper bounded by k|Z|k2O(k log k)(m + n) =
2O(k log k)(m+ n). This completes the proof.
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