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A rectilinear Steiner tree for a set K of points in the plane is a tree that connects K using horizontal and

vertical lines. In the Rectilinear Steiner Tree problem, the input is a set K = {z1, z2, . . . , zn } of n points

in the Euclidean plane (R2), and the goal is to find a rectilinear Steiner tree for K of smallest possible total

length. A rectilinear Steiner arborescence for a set K of points and a root r ∈ K is a rectilinear Steiner tree

T for K such that the path in T from r to any point z ∈ K is a shortest path. In the Rectilinear Steiner

Arborescence problem, the input is a set K of n points in R2, and a root r ∈ K , and the task is to find a

rectilinear Steiner arborescence for K , rooted at r of smallest possible total length. In this article, we design

deterministic algorithms for these problems that run in 2O (
√

n log n) time.
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1 INTRODUCTION

In the Steiner Tree problem, we are given as input a connected graph G, a non-negative weight
function w : E (G ) → {1, 2, . . . ,W }, and a set of terminal vertices K ⊆ V (G ). The task is to find
a minimum-weight connected subgraph of G, which is a tree, containing all terminal nodes K .
Steiner Tree is one of the central and best-studied problems in computer science. We refer to the
books of Hwang et al. [13] and Prömel and Steger [20] for thorough introductions to the problem.

In this article, we give a deterministic subexponential algorithm for an important geometric
variant of Steiner Tree, namely Rectilinear Steiner Tree. Here, for a given set of terminal
points K in the Euclidean plane with �1-norm, the goal is to construct a network of minimum
length connecting all points in K . This variant of the problem is extremely well studied. Please
see Chapter 3 of the book by Brazil and Zachariasen [2] for an extensive overview of various
applications of Rectilinear Steiner Tree.

For the purpose of this article, it is convenient to define Rectilinear Steiner Tree as the
Steiner Tree problem on a special class of graphs called Hanan grids. Recall that for two points
p1 = (x1,y1) and p2 = (x2,y2) in the Euclidean plane R2, the rectilinear (�1, Manhattan or taxicab)
distance between p1 and p2 is d1 (p1,p2) = |x1 − x2 | + |y1 − y2 |.

Definition 1.1 (Hanan grid [11]). Given a set K = {z1, z2, . . . , zn } of n terminal points in the Eu-
clidean plane R2, the Hanan gridG of K is defined as follows. The vertex setV (G ) ofG is the set of
intersection points obtained by drawing a horizontal line (line parallel to the x-axis) and a vertical
line (line parallel to they-axis) through each point ofK . For everyu,v ∈ V (G ), there is an edge be-
tweenu andv inG, if and only ifu andv are adjacent along a horizontal or vertical line; the weight
of edgeuv is the rectilinear distance betweenu andv . For a Hanan gridG,we define a weight func-
tion recdistG from the edge set E (G ) to R such that for an edgeuv ∈ E (G ), recdistG (uv ) = d1 (u,v ).
If the graph G is clear from the context, we drop the subscript from recdistG and only use recdist.

Let us note that when G is the Hanan grid of a set K of n points, then K ⊆ V (G ), |V (G ) | ≤ n2,
and for every u,v ∈ V (G ), the weight of a shortest path between u and v is equal to d1 (u,v ). For
edge uv ∈ E (G ), we say that uv is a horizontal (vertical) edge if both points u and v are on the
same horizontal (vertical) line. It was shown by Hanan [11] that the Rectilinear Steiner Tree
problem can be defined as the following variant of Steiner Tree.

Rectilinear Steiner Tree
Input: A set K = {z1, z2, . . . , zn } of n terminal points, the Hanan grid G of K , and recdistG .
Output: A minimum Steiner tree for K in G.

Previous work. Although the Rectilinear Steiner Tree problem is a very special case of the
Steiner Tree problem, the decision version of the problem is known to be NP-complete [9]. The
detailed account of various algorithmic approaches applied to this problem can be found in books
of Brazil and Zachariasen [2] and Hwang et al. [13]. In particular, several exact algorithms for this
problem can be found in the literature. The classic algorithm of Dreyfus and Wagner [5] from 1971
solves Steiner Tree on general graphs in time 3n · logW · |V (G ) |2, whereW is the maximum edge
weight inG. For Rectilinear Steiner Tree, an adaptation of the Dreyfus-Wagner algorithm pro-
vides an algorithm of running time O (n2 · 3n ). The survey of Ganley [7] summarizes the chain of
improvements based on this approach concluding with the O (n2 · 2.62n )-time algorithm of Ganley
and Cohoon [8]. Thomborson et al. [23] and Deneen et al. [4] gave randomized algorithms with

running time 2O (
√

n log n) for the special case of Rectilinear Steiner Tree when the terminal
points T are drawn from a uniform distribution on a rectangle. In this work, we design a deter-
ministic algorithm to answer the question of whether Rectilinear Steiner Tree can be solved in
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time subexponential in the number of terminals. The running time of our algorithm is 2O (
√

n log n) .

Smith and Wormald [22] claimed to give a 2O (
√

n log n) algorithm for Rectilinear Steiner Tree.
However, we believe that there is an error in the claimed running time recurrence and that the cor-

rect recurrence would result in a running time of 2O (
√

n log2 n) . Moreover, our approach to solving
the problem is very different from that given inthe work of Smith and Wormald.

It is also worth mentioning relevant parameterized algorithms for Steiner Tree on general

graphs. Fuchs et al. [6] provided an algorithm with running time O ((2 + ε )n |V (G ) |f (1/ε ) logW ).
Björklund et al. [1] and Nederlof [17] gave 2n |V (G ) |O (1) ·W time algorithms for Steiner Tree.
Let us remark that, since the distances between adjacent vertices in a Hanan grid can be exponen-
tial in n, the algorithms of Björklund et al. and of Nederlof do not outperform the Dreyfus-Wagner
algorithm for the Rectilinear Steiner Tree problem. Interesting recent developments also con-
cern Steiner Tree on planar graphs, and more generally, on graphs of bounded genus. Although
the existence of algorithms running in time subexponential in the number of terminals on these
graph classes is still open, Pilipczuk et al. [18, 19] showed that Steiner Tree can be solved in time
subexponential in the size of the Steiner tree on graphs of bounded genus.

The techniques described in this article also yield a subexponential algorithm for the Rectilin-
ear Steiner Arborescence problem, which is closely related to Rectilinear Steiner Tree.

Definition 1.2. Let G be a graph, K ⊆ V (G ) be a set of terminals, and r ∈ K be a root vertex. A
Steiner arborescence of K in G is a subtree T of G rooted at r with the following properties:

• T contains all vertices of K , and
• for every vertex z ∈ K \ {r }, the unique path inT connecting r and z is also the shortest r–z

path in G.

Let us note that if T is a Steiner arborescence of K in G, then for every vertex v ∈ V (T ), the
unique path connecting r and v in T is also a shortest r–v path in G. The Rectilinear Steiner
Arborescence problem is defined as follows.

Rectilinear Steiner Arborescence
Input: A set K of n terminal points, the Hanan grid G of K , a root r ∈ K , and recdistG .
Output: A minimum length Steiner arborescence of K .

Rectilinear Steiner Arborescence was introduced by Nastansky et al. [16] in 1974. Inter-
estingly, the complexity of the problem was open until 2005, when Shi and Su [21] proved that
the decision version of Rectilinear Steiner Arborescence is NP-complete. No subexponential
algorithm for this problem was known prior to our work.

Our method. Most of the previous exact algorithms for Rectilinear Steiner Tree exploit the
theorem of Hwang [12], which describes the topology of so-called full rectilinear trees. Our ap-
proach here is entirely different. The main idea behind our algorithms is inspired by the work of
Klein and Marx [14], who obtained a subexponential algorithm for Subset Traveling Salesman
Problem on planar graphs. The approach of Klein and Marx was based on the following two steps:
(1) find a locally optimal solution such that its union with some optimal solution is of bounded
treewidth, and (2) use the first step to guide a dynamic program. Although our algorithm follows
this general scheme, the implementations of both steps for our problems are entirely different from
those of Klein and Marx.

We give a high-level description of the algorithm for Rectilinear Steiner Tree. The algorithm
for Rectilinear Steiner Arborescence is similar. In the first step, we build in polynomial time
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a (possibly non-optimal) solution. To build a non-optimal Steiner tree T̂ of K = {z1, . . . , zn }, we

implement the following greedy strategy. We build T̂ starting from vertex z1 and gradually connect
new terminals to the tree. When we connect terminal zi+1 to treeTi spanning the first i terminals,
we select a shortest monotone (containing at most one “bend”) path from zi+1 to Ti in the Hanan
grid G. If there are two such paths, we select one of them according to the structure of Ti . The

constructed tree T̂ can be seen as a “shortest path” rectilinear Steiner tree. The property of T̂ that

is crucial for the algorithm is that there is an optimal Steiner treeTopt such that graphT = T̂ ∪Topt

is of treewidth O (
√
n). Note that since the Hanan grid can have O (n2) vertices, from the properties

of a planar graph the treewidth of the Hanan grid can be derived to be only O (n) and not O (
√
n).

Thus, this step is non-trivial.

For the second step, we have T̂ at hand and know that there exists a subgraphT ofG of treewidth

O (
√
n), which contains an optimal Steiner treeTopt and T̂ . Of course, if the subgraphT were given to

us, then findingTopt inT could be done by a standard dynamic programming on graphs of bounded
treewidth. However, we only know that such a subgraphT exists, albeit with the extra information

that T̂ ∪Topt ⊆ T . It turns out that this is sufficient to mimic the dynamic programming algorithm

for bounded treewidth, to solve Rectilinear Steiner Tree in time 2O (
√

n log n) .
Let us given a brief sketch of the ideas behind the dynamic programming algorithm for Steiner

Tree on a rooted tree decomposition T = (T ,X = {Xt }t ∈V (T ) ) of the input graph (e.g., see Theo-
rem 7.8 in Cygan et al. [3]). For each node t ∈ V (T ), letVt be the union of vertices contained in all
bags corresponding to nodes of the subtree of T rooted at t and let St be the subgraph induced by
Vt . Then, in the dynamic programming algorithm, for each t we store a set of states, capturing the
interaction between a minimal Steiner tree and subgraph St , particularly the weight of a tree and
the information about its connected components in St . It is possible to ensure that all the infor-
mation carried out in each state is “locally” defined—for instance, the information can be encoded
by the elements of the bag Xt only. Therefore, at the root node, there is a state that corresponds
to an optimal Steiner tree.

In our algorithm, we define types, which are analogous to the states stored at a node of a tree
decomposition. A type stores all of the information of its corresponding state. Since we do not
know the tree decomposition T , a type stores more “local” information, to take care of the lack of

definite information about T = Topt ∪ T̂ . We guess some structural information about the virtual
tree decomposition T of T . For example, we guess the height h of the rooted tree T . In a rooted
tree decomposition, the level of a node t is defined by the height of the subtree rooted at t . In our
algorithm, we generate types over h levels. The intuition is that, for a node t ∈ T of level h′, for
each state of t , that was required for the dynamic programming over T , there is an equivalent
type generated in level h′ of our algorithm. This implies that, at level h, there is a type equivalent
to a state that corresponds to an optimal Steiner tree in T . In fact, we show that any Steiner tree

corresponds to exactly one type D̂. During the iterative generation of types, the type D̂ may be
generated many times. One such generation corresponds to an optimal solution. Thus, the final

step of the algorithm involves investigating all occurrences of type D̂ in the iterative generation
and finding the weight of a minimum Steiner tree. As in dynamic programming, a backtracking

step will enable us to retrieve a minimum Steiner tree of T = Topt ∪ T̂ and therefore of G.

2 PRELIMINARIES

For a positive integer n, we use the notation [n] to denote the set {1, 2, . . . ,n}. For a point u in the
Euclidean plane R2, its position is denoted by the coordinates (ux ,uy ). For a set V , a partition P
of V is a family of subsets of V such that the subsets are pairwise disjoint and the union of the
subsets is V . Each subset of a partition is called a block. Given two partitions P1 and P2, the join
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operation results in the partition P, which is the most refined partition of V such that each block
of P1 and P2 is contained in a single block of P. The resultant partition P is often denoted as
P1 	 P2. Given a block B of P, P \ B denotes removing the block B from P.

Given a graph G, its vertex and edge sets are denoted by V (G ) and E (G ), respectively. For a
vertex v ∈ V (G ), the degree of v , denoted as degreeG (v ), is the number of edges of E (G ) incident
with v . Given a vertex subset V ′ ⊆ V (G ), the induced subgraph of V ′, denoted by G[V ′], is the
subgraph ofG, withV ′ as the vertex set and the edge set defined by the set of edges that have both
endpoints in V ′. An edge between two vertices u and v is denoted as uv . A path where vertices
{u1,u2, . . . ,u� } appear in sequence is denoted by u1u2 · · ·u� . Similarly, a path where vertices u and
v are the endpoints is called au–v path. Given a path P its non-endpoint vertices are referred to as
internal vertices. For an edge uv , an edge contraction inG results in a graphG ′ defined as follows.
The vertex set V (G ′) = (V (G ) \ {u,v}) ∪vnew , where vnew is a new vertex. The edge set E (G ′) =
E (G[V (G ) \ {u,v}]) ∪ {wvnew |wu ∈ E (G ) ∨wv ∈ E (G )}. By G ′ ≤s G, we mean that the graph G ′

is a subgraph of G. Given a graph G and a vertex (edge) set S , we denote by G − S the subgraph
resulting from G after deleting the vertices (edges) in S . Given a weight function w : E (G ) → R,
for a subgraph H of G, we use w (H ) to denote the number

∑
e ∈E (H ) w (e ). Furthermore, for two

vertices s and t in V (G ), by the term shortest path between s and t we mean a shortest path with
respect to the weight functionw . Given two subgraphsG1,G2 ofG, a shortest path betweenG1 and
G2 is a path P between a vertex u ∈ V (G1) and a vertex v ∈ V (G2) such that, among the shortest
paths for each possible pair {u ′ ∈ V (G1),v ′ ∈ V (G2)}, P has minimum length. Given two graphs
G1 andG2, the union graphG1 ∪G2 has vertex setV (G1 ∪G2) = V (G1) ∪V (G2), whereas the edge
set E (G1 ∪G2) = E (G1) ∪ E (G2).

2.1 Treewidth

LetG be a graph. A tree-decomposition of a graphG is a pair (T ,X = {Xt }t ∈V (T ) ), where T is a tree
whose every node t ∈ V (T ) is assigned a subset Xt ⊆ V (G ), called a bag, such that the following
conditions hold:

• ⋃t ∈V (T ) Xt = V (G );
• for every edge xy ∈ E (G ), there is a t ∈ V (T ) such that {x ,y} ⊆ Xt ; and
• for any v ∈ V (G ), the subgraph of T induced by the set {t | v ∈ Xt } is connected.

The width of a tree decomposition is maxt ∈V (T ) |Xt | − 1. The treewidth of G is the minimum
width over all tree decompositions ofG and is denoted by tw(G ). A tree decompositionT = (T ,X)
is called a nice tree decomposition if T is a tree rooted at some node r where Xr = ∅, each node of
T has at most two children, and each node is of one of the following kinds:

• Introduce node: A node t that has only one child t ′ where Xt ⊃ Xt ′ and |Xt | = |Xt ′ | + 1.
Note that the new vertex is introduced as an isolated vertex, and no edges incident to it are
introduced in this bag.

• Introduce edge node: A node t labeled with an edge uv , with only one child t ′ such that
{u,v} ⊆ Xt ′ = Xt . This bag is said to introduce uv .

• Forget vertex node: A node t that has only one child t ′ where Xt ⊂ Xt ′ and |Xt | = |Xt ′ | − 1.
• Join node: A node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .
• Leaf node: A node t that is a leaf of T , and Xt = ∅.

We additionally require that every edge is introduced exactly once.
Given the tree decomposition T , consider the the underlying tree T . For any node t ∈ V (T ),

we define the level of t as the height of the subtree rooted at t . Here, the height of a node t is the
number of vertices in the longest downward path to a leaf from that node.

ACM Transactions on Algorithms, Vol. 16, No. 2, Article 21. Publication date: March 2020.



21:6 F. V. Fomin et al.

Proposition 2.1 (Kloks [15]). Given a graph G and a tree decomposition T ′ rooted at a node

r ′ and of treewidth w , there is a polynomial time algorithm that finds a nice tree decomposition

T = (T ,X), rooted at a node r and of treewidth w , such that the height of the underlying tree T is

at most 3( |V (G ) | + |E (G ) |).

2.2 Planar Graph Embeddings and Minors

A graph is planar if it can be embedded in the plane. In other words, it can be drawn on the plane
in such a way that its edges intersect only at their endpoints. Formally, a planar embedding Π of
a graph G consists of an injective mapping Π : V (G ) → R2 and a mapping Π of edges uv ∈ E (G )
to simple curves in R2 that join Π(u) and Π(v ). In addition, for e, f ∈ E (G ), Π(e ) ∩ Π( f ) contains
only the images of common end vertices, and for e ∈ E (G ) and v ∈ V (G ), Π(v ) is not an internal
point of Π(e ). Now we define the notion of a minor of a graph G.

Definition 2.2. A graph H is a minor of a graphG, denoted as H ≤m G, if it can be obtained from
a subgraph of G by a sequence of edge contractions.

Notice that this implies thatH can be obtained fromG by a sequence of vertex deletions, followed
by a sequence of edge deletions and finally a sequence of edge contractions. We will need the
following folklore observation.

Observation 1. Suppose G,H are connected graphs such that H is a minor of G. Then H can be

obtained from G only by a sequence of edge deletions and contractions.

We also will be using the notion of a minor model.

Definition 2.3. Let G and H be two connected graphs, and H ≤m G. A minor model or simply a
model of the graph H is a collection of pairwise disjoint vertex subsets P (H ) = {Cv ⊆ V (G ) | v ∈
V (H )} such that

(a) V (G ) =
⊎

v ∈V (H ) Cv ;
(b) for each v ∈ V (H ), G[Cv ] is connected; and
(c) for any uv ∈ E (H ), there exists w ∈ Cu and w ′ ∈ Cv such that ww ′ ∈ E (G ).

Remark 1. It is important to point out that in general the definition of minor model does not
demand that the vertex sets inP (H ) = {Cv ⊆ V (G ) |v ∈ V (H )} form a partition of V (G ). However,
when both G and H are connected, one can easily show that even this extra property can be
assumed.

Given a planar graph G with an embedding Π, we call the vertices of the outer face boundary

vertices of the embedding Π and all other vertices internal vertices of the embedding Π.

Definition 2.4. LetG be a planar graph with a planar embedding Π, and letC be a simple cycle of
G. Let p∞ be a point in the outer face ofG in the embedding Π. Then removal ofC from R2 divides
the plane into two regions. The region that does not contain the point p∞ is called the internal

region ofC , and the region containing p∞ is called the outer/external region ofC . A vertex inV (G )
is called internal with respect toC if it lies in the internal region ofC , and external with respect toC
if it lies in the external region of C . An edge in E (G ) \ E (C ) is called an external edge if all points
on its curve lie in the external region of C . Otherwise, an edge in E (G ) \ E (C ) is called an internal

edge.

Therefore, an edge of E (G ) can be exactly one of the three kinds: an edge ofC , an external edge,
or an internal edge. Similarly, a vertex can be exactly one of the three kinds: a vertex of C , an
external vertex with respect to C, or an internal vertex with respect to C .
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Fig. 1. Derived embedding: the edge uv is contracted to the vertex u.

Observation 2. Let G be a planar graph with a planar embedding Π in R2. Let p∞ be a point in

the outer face of Π. Let H be a minor of G, and let P (H ) = {Cv |v ∈ V (H )} be a minor model of H .

Then H is a planar graph. Furthermore, a planar embedding Π′ of H can be obtained from Π that

satisfies the following properties:

• Every vertex v ∈ H is positioned in the place of a vertex in Cv .

• The point p∞ is on the outer face of Π′.

We call such a planar embedding Π′ the embedding derived from Π.

Proof. It is well known that a minor of a planar graph is also a planar graph. We modify Π to
obtain Π′ in the following way. Let O = {o1,o2, . . . ,o� } be the sequence of edge deletions and edge
contractions. Starting from G0 = G and ending at G� = H , each operation oi creates a new graph
Gi . We will induct over the length of the sequence O to show that at the end of each operation, we
obtain a planar embedding Πi of Gi derived from the planar embedding Π of G. In the base case,
we obtain a planar embedding Π1 for G1 derived from Π0 = Π as follows:

(1) If o1 is a deletion operation, then it changes the embedding of the current graph by simply
deleting the element concerned. No other vertex or edge changes position.

(2) Suppose o1 contracts the edge uv . Let the degree of v be d . We first make d − 1 parallel
copies of uv . We forget the vertex v and the original edge uv . We reroute all other edges
incident withv using the original edges in Π and one of thed − 1 copies ofuv . See Figure 1.
The new embedding is a planar embedding of the new graph.

Thus, the embedding Π1 ensures the two preceding properties and is a derived embedding from
Π.

In the induction step i ≤ �, we have a planar embedding Πi−1 for graph Gi−1 where (i) every
vertexv ∈ Gi−1 is positioned in the place of a vertex inCv and (ii) the point p∞ is on the outer face
of Πi−1. In other words, the embedding Πi−1 for Gi−1 is derived from the embedding Π for G. To
obtain an embedding Πi for Gi , we do as follows:

(1) If oi is a deletion operation, then it changes the embedding Πi−1 by simply deleting the
element concerned. No other vertex or edge changes position.

(2) Suppose oi contracts the edge uv . Let the degree of v be d . We first make d − 1 parallel
copies of uv . We forget the vertex v and the original edge uv . We reroute all other edges
incident with v using the original edges in embedding Πi−1 and one of the d − 1 copies of
uv (see Figure 1). The new embedding Πi is a planar embedding of the Gi .

This ensures that Πi is derived from Πi−1. Since Πi−1 was derived from Π, by definition this ensures
that Πi is a derived embedding from Π. Therefore, Π� = Π′ for H is a derived embedding from Π
for G. �
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21:8 F. V. Fomin et al.

Fig. 2. The solid edges define a subgrid of a grid. The vertexv1 is a boundary vertex of the subgrid. The vertex

v2 is a subdivision vertex, and v3 is a cross vertex; both v2 and v3 are also interior vertices of the subgrid.

Grids and subgrids play an important role in this article. For n ∈ N and a subset W ⊆ [n], by
maxW (minW ) we denote the maximum (minimum) element ofW .

Definition 2.5. Let n,m be two positive integers. An n ×m grid is a graph G such that
V (G ) = {vi, j | i ∈ [n], j ∈ [m]} and E (G ) = {vi jvi′j′ | |i − i ′| + |j − j ′ | = 1}. For any i ∈ [n], we call
{vi1, . . . ,vim } to be the i-th row of the grid G, and for any j ∈ [m], we call {v1j , . . . ,vnj } to be the
j-th column of the gridG. The vertices in the first row and n-th row and the first column andm-th
column are called the boundary vertices of the grid. The vertices that are not boundary vertices are
called interior vertices of the grid.

The graph H is called a subgrid of G if there exist subsets R ⊆ [n],C ⊆ [m] such that
V (H ) = {vi j ∈ V (G ) : (minR ≤ i ≤ maxR) ∧ (minC ≤ j ≤ maxC ) ∧ (i ∈ R ∨ j ∈ C )} and E (H ) =
{vi jvi′j′ ∈ E (G ) : vi j ,vi′j′ ∈ V (H ) ∧ (i = i ′ ∈ R ∨ j = j ′ ∈ C )}. The set of vertices {vi j ∈ V (H ) :
i � {minR,maxR} ∨ j � {minC,maxC}} are called the interior vertices of H . The set of vertices
{vi j ∈ V (H ) : i ∈ R ∧ j ∈ C} are called cross vertices. Finally, the set of vertices {vi j ∈ V (H ) : i �
R ∨ j � C} are called subdivision vertices of H . See Figure 2.

For the proof of the first step of the algorithm, we will use the following auxiliary lemma.

Lemma 2.6. Let G and H be two connected planar graphs such that H ≤m G, and let P (H ) =
{Cv |v ∈ V (H )} be a minor model of H in G. Let also Π′ be an embedding of H derived from a planar

embedding Π of G. Suppose H contains an induced subgraph H ′ isomorphic to a 3 × 3 grid. LetC ′ be

the cycle formed by boundary vertices of H ′, and let v be the vertex of H ′ in the internal region ofC ′.
Then there is a simple cycle C in G such that

(1) V (C ) ⊆ ⋃u ∈V (H ′);u�v Cu .

(2) For each vertex w ∈ G that is contained in the internal region of C in Π, there is a vertex

u ∈ V (H ′) with w ∈ Cu .

(3) All vertices of Cv are completely contained in the internal region of C in Π.

(4) There is a vertex w ∈ Cv such that degreeG (w ) ≥ 3.

Proof. Consider consecutive vertices u,w in C ′. The edge uw corresponds to an edge u ′w ′ ∈
E (G ) such that u ′ ∈ Cu ,w

′ ∈ Cw . We will call edges like u ′w ′ marked edges inG. Note that both u ′

and v ′ do not belong toCv . Now, for a boundary vertex u of H ′, consider the connected subgraph
G[Cu ] of G. There are at most two vertices, u1 and u2, that are incident with marked edges in Cu .
Since G[Cu ] is a connected graph, let Pu1u2 be a path connecting u1 and u2 in G[Cu ]. We call Pu1v2

a marked path. Note that V (Pu1u2 ) ∩Cv = ∅. The union of the marked edges and marked paths
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forms the simple cycleC, and the vertex setV (C ) is disjoint fromCv . This proves condition (1). In
fact, a vertex of C only belongs to Cu for a vertex u ∈ V (C ′).

Now, we show condition (2). Consider a vertex w that is contained in the internal region of C
in Π. Since G and H are both connected graphs, by Definition 2.3, there is a vertex u ∈ V (H ) such
that w ∈ Cu . If u ∈ V (H ′), then condition (2) holds. Suppose not. Then u belongs to the external
region ofC ′ in Π′. By Observation 2, u is positioned at a vertexw ′ ∈ Cu . This means thatCu has a
vertex w ′ in the external region of C and a vertex w in the internal region of C . Since u � V (H ′),
Cu ∩V (C ) = ∅. However, G[Cu ] is a connected subgraph of G and cannot be embedded without
crossing with the cycle C . This is a contradiction to the fact that G is a planar graph. Hence,
condition (2) must hold.

Next, we show that for the interior vertexv ∈ V (H ′), all vertices ofCv are completely contained
in the internal region of C . From the definition of the derived embedding Π′ from Π, as described
in Observation 2, the point p∞ is a point in the outer face of both embeddings. The interior vertex
v ∈ V (H ′) is contained in the internal region ofC ′. Then, from the definition of Π′ derived from Π,
v is placed in the position of a vertex u ∈ Cv . By construction of C , it is disjoint from the vertices
of Cv . Since G[Cv ] is connected, to maintain planarity, it follows that Cv is in the internal region
of C . This shows that condition (3) must hold.

Last, we show that there is a vertex w ∈ Cv that has at least three neighbors in G. Notice that
the induced subgraph G ′ of G, formed by the vertices of C and the internal region of C , also has
H ′ as a minor. For a vertex u ∈ V (H ′), let Du denote the restriction of Cu in G ′. Since, for the
interior vertex v ∈ V (H ′), Cv is completely contained in the internal region of C , Dv = Cv . There
are four neighbors of v in H ′. For a neighbor u of v , let e be an edge between Du and Cv . We call
the endpoint of e , in Cv , a marked vertex. There are at most four marked vertices in Cv .

Suppose there are at most two marked vertices. This means that at least one marked vertex, say
w , has at least two neighbors outsideCv . SinceCv is connected, and there are at least two marked
vertices in Cv , the degree of w must be at least 3 in G.

Otherwise, there are at least three marked vertices x1,x2,x3 ∈ Cv . Let P12 be a shortest path in
Cv , between x1 and x2. Among the vertices of P12, letw be the closest to x3, and letQ be the shortest
path between w and x3. First, if w = x3, then w must be internal in P12 and thus has at least two
neighbors in Cv . In this case, since w is also a marked vertex, it has a third neighbor outside Cv ,
thereby making its degree inG at least 3. Otherwise, whenw � x3, supposew is an internal vertex
of P12. Then, the two neighbors in P12 and a neighbor in Q makes the degree of w at least 3 in G.
Otherwise, w is one of x1 or x2. This means that w has a neighbor in P12, x3 as a neighbor, and a
neighbor outside Cv . Thus, w has degree at least 3 in G. This completes the proof. �

Finally, our proof will also need the following planar grid-minor theorem.

Proposition 2.7 (Gu and Tamaki [10]). Lett be a non-negative integer. Then every planar graph

G of treewidth at least 9t/2 contains a t × t grid as a minor.

2.3 Properties of Shortest Paths in the Hanan Grid

Let G be the Hanan grid of a set of n points P . For a subgraph H of G and v ∈ V (H ), we say that
v is a bend vertex if there exists at least one horizontal edge and at least one vertical edge from
E (H ) incident with the vertexv . A path R = u1 · · ·u� , between u1 and u� inG, is called a monotone

path if there exists i ∈ [�] such that the points u1, . . . ,ui belong to a horizontal line and ui , . . . ,u�
belong to a vertical line or vice versa. In other words, all horizontal edges and all vertical edges in
R are contiguous.

The following observation contains some simple facts about monotone paths.

Observation 3. Let u and v be two vertices of a Hanan grid G. Then,
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Fig. 3. The solid lines represent the grid defined by vertices u and v as its diagonal points.

(a) There is at least one and at most two monotone u–v paths.

(b) If the x-coordinates of u and v are equal, then there is only one monotone u–v path and all

edges in this path are vertical. Similarly, if the y-coordinates of u and v matches, the unique

monotone u–v path consists of horizontal edges only.

(c) If there are two monotone paths betweenu andv , then one path has a horizontal edge incident

with u and the other path has a vertical edge incident with u.

Definition 2.8. Suppose we are given a Hanan grid G of a set of terminals K and two vertices
u,v ∈ V (G ). Let x1 = min{ux ,vx }, x2 = max{ux ,vx }, y1 = min{uy ,vy }, and y2 = max{uy ,vy }. Let
V ′ = {w ∈ V (G ) |wx ∈ [x1,x2],wy ∈ [y1,y2]}. Then G ′ = G[V ′], the subgraph of G induced by V ′,
is called a grid defined by the two vertices u,v as its diagonal points. See Figure 3.

Observation 4. Given a Hanan grid G, a shortest path between any two vertices u,v has the

property that the sequence of the x-coordinates of the vertices of the path is a monotone sequence and

the sequence of their y-coordinates is also a monotone sequence.

Observation 5. Given a grid G, all shortest paths between two vertices u,v are contained in the

gridG ′ ≤s G that is defined byu,v as its diagonal points. In fact, any path, with the property that the

sequence of the x-coordinates of the vertices of the path is a monotone sequence and the sequence of

their y-coordinates is also a monotone sequence, and which is fully contained inside G ′, is a shortest

path between u and v .

3 SUBEXPONENTIAL ALGORITHM FOR RECTILINEAR STEINER TREE

In this section, we give a subexponential algorithm for Rectilinear Steiner Tree. Let K be an
input set of terminals (points in R2), |K | = n, and G be the Hanan grid of K . Furthermore, let
recdistG denote the weight function on the edge set E (G ). For brevity, we will use recdist for
recdistG . The described algorithm is based on a dynamic programming over vertex subsets of size
O (
√
n) of G. To reach the stage where we can apply the dynamic programming algorithm, we do

as follows. First, we define a rectilinear Steiner tree, called shortest path RST, and describe some of

its properties. Next, we show that for a shortest path RST T̂ , there is an optimal Steiner tree Topt

such that T̂ ∪Topt has treewidth of O (
√
n). Finally, keeping a hypothetical tree decomposition of

T̂ ∪Topt in mind, we design a dynamic programming algorithm to obtain the size of a minimum
rectilinear Steiner tree of G.

3.1 Shortest Path RST and Its Properties

In this part, we define a shortest path RST for a set K = {z1, . . . , zn } of input terminals and prove
some useful properties of such a Steiner tree. We define a shortest path RST as follows.
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Let G be the Hanan grid of K . We define a shortest path RST T̂ through the following con-
structive greedy process. Initially, we set T1 to the graph ({z1}, ∅), which is a rectilinear Steiner
tree of {z1}. In the i-th step, we compute a rectilinear Steiner tree Ti+1 of {z1, . . . zi+1} from Ti

as follows. If zi+1 ∈ V (Ti ), then we set Ti+1 = Ti . Otherwise, let v be a vertex in Ti such that
recdist(v, zi+1) = minu ∈V (Ti ) recdist(u, zi+1). If there is only one monotone zi+1 −v path, then let
Q be this path. Otherwise, there are two monotone zi+1 −v paths, such that one path has a hori-
zontal edge incident withv and the other has a vertical edge incident withv . If there is a horizontal
edge in Ti that is incident with v , then we choose Q to be the monotone zi+1 −v path such that
the edge in Q incident with v is a horizontal edge. Otherwise, we choose Q to be the monotone
zi+1 −v path such that the edge in Q incident with v is a vertical edge. Then we constructTi+1 by

adding the chosen monotone path Q to Ti . After n − 1 iterations, we construct a tree T̂ = Tn of G,
which is a Steiner tree of K . This is our shortest path RST.

It is easy to see that one can construct a shortest path RST in polynomial time.

Lemma 3.1. Given a set K of terminal points and the Hanan grid G of K , a shortest path RST T̂ of

K can be constructed in polynomial time.

Proof. Consider the procedure used to define a shortest path RST. The procedure involves |K |
steps. In each step, polynomially many shortest paths from one terminal to a set of vertices of
G are found out. Since this step can be executed in polynomial time, and there are polynomially

many steps, the construction of T̂ requires polynomial time. �

Next, we give an upper bound on the number of bend vertices in a shortest path RST. Recall that
for a subgraph H of the Hanan grid G, a vertex v ∈ V (H ) is a bend vertex if there is at least one
horizontal edge and at least one vertical edge in E (H ) incident to v .

Lemma 3.2. The number of bend vertices in T̂ is at most n.

Proof. We prove the assertion by induction on the number of iterations to construct the so-

lution T̂ . Toward this, using induction on i , we prove that the number of bend vertices in Ti is at
most i . In the base case, T1 is a single vertex with no bend vertices. Suppose the statement holds
forTi−1. If zi is already contained inTi−1, thenTi = Ti−1. By induction, the number of bend vertices
inTi−1 is at most i − 1, and therefore the number of bend vertices inTi is at most i . Otherwise, we

find a vertex v ∈ V (T̂i−1) such that a shortest path Q between zi and T̂i−1 ends with v .

Since Q is a shortest path between zi and T̂i−1, the set of internal vertices of Q is disjoint from

V (T̂i−1). By induction hypothesis,Ti−1 had at most i − 1 bend vertices. The number of bend vertices
in Q is at most 1. If v is already a bend vertex in Ti−1, then the number of bend vertices in Ti is at
most i − 1 + 1 = i . By the way, we define shortest path RST such that if v is not a bend vertex in
Ti−1, it is also not a bend vertex in Ti . Therefore, in this case, the number of bend vertices in Ti , if
Q has a bend vertex, is also at most i . This concludes the proof. �

3.2 Supergraph of an Optimal RST with Bounded Treewidth

We view the Hanan grid G as a planar graph and use this viewpoint to obtain the required upper

bound on the treewidth of a subgraph of G. In particular, given a shortest path RST T̂ , we show

the existence of an optimal Steiner treeTopt such that the treewidth of T̂ ∪Topt is O (
√
n). First, we

show that there is an optimal Steiner tree in G that has a bounded number of bends.

Lemma 3.3. Let K be a set of n points in R2 andG be the Hanan grid of K . Then there is an optimal

rectilinear Steiner tree of K such that the number of bend vertices in the rectilinear Steiner tree is at

most 3n.
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Proof. We prove the lemma using induction on n = |K |. The base cases are whenn = 1, 2. Since
the tree (z1, ∅) is an optimal Steiner tree when |K | = 1, the number of bend vertices in the tree
(z1, ∅) is zero. Similarly, when n = 2, a monotone path between the two terminal vertices is an
optimal Steiner tree. Therefore, the number of bends is at most 1 and the hypothesis is still true.

Consider the induction step where n = |K | > 2. Let Topt be an optimal Steiner tree of K in G.
Since Topt is an optimal Steiner tree of K , there are at least two leaves, and each leaf node is a
terminal. In addition, there is a pair {z1, z2} of leaf terminals such that, in the z1 − z2 path P ofTopt,
there is at most one internal vertex with degree at least 3 inTopt. This means that all other internal
vertices in P are of degree exactly 2 in Topt. If there are no internal vertices of degree at least 3 in
P , this means that all terminals in K are collinear and that Topt is a path. Otherwise, let u be an
internal vertex of P with degree at least 3 inTopt. Consider the subpaths P1 and P2, which are z1 − u
and z2 − u paths. Suppose there is a terminal z appearing as an internal vertex on P . Without loss
of generality, we can assume that z ∈ V (P1) and z is the second terminal vertex in the path P1 (the
first terminal vertex is z1). Let us denote the z1 − z subpath of P1 as P3. By definition, all internal
vertices of P3 are degree 2 non-terminal vertices. LetT1 be the tree obtained by deletingV (P3) \ {z}
from Topt. Since Topt is an optimal Steiner tree of K , T1 is an optimal Steiner tree of T \ {z1} and
P3 is a minimum weight z1 − z path. Since |K \ {z1}| = n − 1, by induction hypothesis, there is an
optimal Steiner tree T ′ of K \ {z1} such that the number of bend vertices is at most 3(n − 1). Let
P ′3 be a monotone z1 − z path. Since recdist(T ′ ∪ P ′3) ≤ recdist(T1 ∪ P3) = recdist(Topt), T

′ ∪ P ′3 is
an optimal Steiner tree of K . By the definition of a monotone path, the number of bend vertices in
P ′3 is at most 1. Thus, any bend vertex b inT ′ ∪ P ′3 is a bend vertex inT ′, or a bend vertex in P ′3, or
b = z. This implies that the number of bend vertices in T ′ ∪ P ′3 is at most 3(n − 1) + 1 + 1 ≤ 3n.

The remaining case is that the z1 − z2 path P has exactly one internal vertexu of degree at least 3,
whereas all other internal vertices are of degree 2 and are not terminals. LetT1 be the tree obtained
by deleting V (P1 ∪ P2) \ {u} from Topt. Since Topt is an optimal Steiner tree of K , T1 is an optimal
Steiner tree of K \ {z1, z2} ∪ {u}. Again, the subpaths P1 and P2 must be minimum weight z1 − u
and z2 − u paths, respectively. Since |K \ {z1, z2} ∪ {u}| = n − 1, by induction hypothesis, there is
an optimal Steiner treeT ′ ofK \ {z1, z2} ∪ {u} such that the number of bend vertices is at most 3(n −
1). By optimality of Topt, for any minimum weight z1 − u path P ′1 and z2 − u path P ′2, recdist(T ′ ∪
P ′1 ∪ P ′2) = recdist(Topt). Thus, T = T ′ ∪ P ′1 ∪ P ′2 is an optimal Steiner tree of K . We choose P ′1 and
P ′2 to be monotone paths. Thus, the number of bend vertices in P ′1 and P ′2 is at most 1 each. This
means thatu could be a new bend vertex inT , and there could be at most two new bend vertices in
the two monotone paths added. This brings the total number of newly introduced bend vertices to
at most 3. Thus, the total number of bend vertices inT is at most 3n. This completes the proof. �

Next, with respect to a shortest path RST T̂ of G, we prove that there is an optimal Steiner

tree Topt that, because of its carefully chosen conditions, ensures the treewidth of T = T̂ ∪Topt is

at most 41
√
n. To get the desired upper bound on the treewidth of T , we show that it does not

contain O (
√
n) × O (

√
n) grid as a minor. In fact, we prove that if there is a large grid, then we can

find a “clean part of the grid” (subgrid not containing vertices of K and bend vertices of either T̂

or Topt) and reroute some of the paths in either T̂ or Topt. This, in turn, contradicts either the way

T̂ is constructed or the optimality of Topt.

Lemma 3.4. Given a set K of n points and a shortest path RST T̂ of K , there is an optimal rectilinear

Steiner tree Topt of K with the property that the treewidth of T̂ ∪Topt is at most 41
√
n.

Proof. Among the optimal Steiner trees of K with the minimum number of bend vertices, we

select a tree Topt that has maximum edge intersection with E (T̂ ). From Lemma 3.3, it follows that
the number of bend vertices in Topt is at most 3n.

ACM Transactions on Algorithms, Vol. 16, No. 2, Article 21. Publication date: March 2020.



Subexponential Algorithms on Rectilinear Graphs 21:13

Let T = T̂ ∪Topt. Let B̂ and Bopt be the set of bend vertices in T̂ and Topt, respectively. Let U =

K ∪ B̂ ∪ Bopt and N = V (G ) \U . Since |K | = n, |B̂ | ≤ n, and |Bopt | ≤ 3n, we know that |U | ≤ 5n. Let
ΠT be a planar embedding ofT , obtained by deleting all edges and vertices not inT from the planar
embedding Π ofG. We show that the treewidth ofT is at most 41

√
n. We can assume that n ≥ 4, as

otherwise we can greedily find out the best rectilinear Steiner tree from the constant-sized Hanan
grid. For the sake of contradiction, assume that tw(T ) > 41

√
n. Then, by Proposition 2.7, there is a

9
√
n × 9

√
n grid H appearing as a minor of T . Let P (H ) = {Cv |v ∈ V (H )} be a minor model of H .

SinceH andG are connected graphs, P (H ) is a partition of the vertex setV (G ). We identify a 3 × 3
subgrid H ′ of H by the following process. For any v ∈ V (H ), we mark the vertex v if Cv ∩U � ∅
(i.e,Cv contains a terminal or a bend vertex from T̂ orTopt). Since |U | ≤ 5n, the number of marked

vertices in H is at most 5n. Since H is a 9
√
n × 9

√
n grid, there are at least 9n vertex disjoint 3 × 3

subgrids in H . Since there are at most 5n marked vertices, this implies that there is a 3 × 3 subgrid
H ′ in H such that each vertex of H ′ is unmarked. The fact that for u ∈ V (H ′), Cu ∩U = ∅ implies
the following observation. �

Observation 6. Let u ∈ V (H ′) and w ∈ Cu :

(i) d
T̂

(w ),dTopt
(w ) ∈ {0, 2}. If for anyTi ∈ {T̂ ,Topt},dTi

(w ) = 2, then the two edges inTi incident

with w are of the same kind (either horizontal or vertical).

(ii) If one horizontal (vertical) edge incident with w is present in T = T̂ ∪Topt, then the other

horizontal (vertical) edge incident with w is also present in T . Hence, dT (w ) ∈ {2, 4}.

Note that H ′ is a connected graph and is a minor of a connected graph T . Let ΠH ′ be a planar
embedding derived from ΠT . By Lemma 2.6, we know that there is a simple cycleC ′ inT with the
following properties:

(1) V (C ′) ⊆ ⋃u ∈V (H ′) Cu .
(2) For each vertex w ∈ G that is contained in the internal region ofC ′ in Π, there is a vertex

u ∈ H ′ with w ∈ Cu . In particular, all vertices of V (S ) \⋃u ∈V (H ′) Cu (which includes U )
are not in the internal region of C ′.

(3) For the interior vertex v ∈ V (H ′), all vertices in Cv are in the internal region of C ′.
(4) Finally, there is a vertexw ∈ Cv , wherev is the interior vertex ofH ′, in the internal region

of C ′, such that dT (w ) ≥ 3. By Observation 6, dT (w ) = 4.

In other words, there is a cycleC ′ in the Hanan gridG such thatV (C ′) ⊆ V (T ) \U , every point in
the internal region of C ′ does not correspond to any vertex inU and there is a vertex w of degree
4 in T , which is in the internal region of C ′. The following claim follows from Observation 6.

Claim 1. Let u,v ∈ V (G ) be points that are either on the same horizontal line or on the same

vertical line. If the line segment L connecting u and v does not intersect with the outer region of C ′,
and there is an edge v1v2 ∈ E (T ) on the line L, then all edges on the line segment L belong to E (T ).

Let C ′ be a minimum-weight cycle satisfying properties (1), (2), (3), and (4), and let w ′ be a
vertex of degree 4 in the internal region of C ′. Let Ew ′ be the set of edges of T not in the outer
region of C ′, and each edge either belongs to the horizontal line or vertical line containing w ′.

Claim 2. GraphG ′ = C ′ ∪ Ew ′ is a subgrid ofG. Moreover,V (G ′) ⊆ V (G ) \U , E (G ′) ⊆ E (T ), and

all subdivision vertices in G ′ have degree exactly 2 in T .

Proof. The definition of G ′ implies that V (G ′) ⊆ V (G ) \U and E (G ′) ⊆ E (T ). Let L1 and L2

be the horizontal and vertical line passing through the point w ′ = (w ′x ,w
′
y ), respectively. We
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show that G ′ is indeed a subgrid of G. Let l , r be degree 4 vertices of T on the line L1 such that
lx < w ′x , rx > w ′x , and the distances recdist(w ′, l ) and recdist(w ′, r ) are minimized. Similarly, let
a,b be degree 4 vertices of T on the line L2 such that ay > w ′y ,by < w ′y , and the distances

recdist(w ′,a) and recdist(w ′,b) are minimized. Let R = {ay ,w
′
y ,by } and C = {lx ,w ′x , rx }. Now we

will show that the subgrid G ′′, of G, defined by R and C is same as G ′. Let L′1 be the line segment
of L1, between l and r . This line segment is not in the external region of C ′. Similarly, the line
segment L′2 on L2, between a and b, is not in the external region of C ′.

Let C ′′ be the cycle formed by the boundary vertices of G ′′. We need to show that C ′′ is the
same as C ′. We first show the following:

• Condition (a): There is no edge uv ∈ E (T ) such that uv is in the internal region of C ′′ and
uv ∈ E (T ) \ E (G ′′).

Suppose not. Among all such edges, let uv be an edge such that recdist(w ′,u) is minimized in the
Hanan grid G. As uv does not belong to E (G ′′), it does not lie on the line segments L′1 and L′2.
Since uv is an internal edge of C ′′, lx < ux < rx and by < uy < ay . Notice that any shortest path,
in G, between u and w ′ lies in the internal region of C ′′. In other words, the grid Gu defined by
the u and w ′ lies in the internal region of C ′′. Any edge in Gu has shorter distance to w ′ than uv .
Thus, since uv has minimum distance to w ′, if an edge, of Gu , does not belong to L′1 or L′2, then
the edge cannot belong to E (T ). We show that uv is not in the external region of C ′. Suppose uv
is in the external region of C ′. Since, w ′ is in the internal region of C ′, a shortest path from u to
w ′ must cross into the internal region bounded by C ′. As L′1 and L′2 are also not in the external
region of C ′, there is an edge of E (Gu ) \ (L′1 ∪ L′2), that belongs to C ′. Therefore, there is an edge
in Gu that belongs to T . This edge belongs to E (T ) \ E (G ′′) and is in the internal region of C ′′ but
is closer to w ′ than uv . This contradicts the choice of uv . Thus, uv is not in the external region
of C ′. Consider the line L passing through uv . As mentioned earlier, L � {L1,L2}. Then L hits the
line Li , where Li is exactly one of L1 or L2, at a single point ũ. First, suppose u � ũ. Let the line
segment L′ of L connectu and ũ. As shown earlier,u either belongs toC ′ or is in the internal region
of C ′. Following from Observation 6, since uv is an edge of T , there is another edge ux incident
with u and lying on the line segment L′. This edge is also in the internal region of C ′′ and does
not belong to E (G ′′). Consider the other endpoint x . This vertex has shorter distance tow ′ than u.
This contradicts the fact that uv was the chosen edge.

Finally, if u = ũ, then u lies on the line Li . The line segments of L′1 and L′2 are not in the external
region of C ′. Note that lx < ux < rx and by < uy < ay . This means that the edge uv and the two
edges of Li , incident on u, belong to T and are not in the external region of C ′. Hence, there are
both horizontal and vertical edges in T that are incident with u. Since u is not an external vertex
of C ′, the degree of u in T is 4 (by Observation 6). However, u is a vertex on Li , lx < ux < rx , and
by < uy < ay . This contradicts the choice of one of l , r ,a, or b.

Condition (a) implies that the internal region ofC ′′ does not have an edge ofT . Since all vertices
{�, r ,a,b,w ′} either belong toC ′ or to the internal region ofC ′, the internal region ofC ′′ is a subset
of the internal region ofC ′. In addition, all edges inC ′′ are not in the outer region ofC ′. Since degree
of l , r ,a, and b in T are 4, by Claim 1, all edges in C ′′ belong to E (T ). Since w ′ is in the internal
region of C ′′, property (4) holds for C ′′. As well, the vertices and edges of C ′′ either belong to C ′

or are in the internal region ofC ′. Thus, properties (1) and (2) also hold. Then, by the minimality
of C ′, C ′′ = C ′. Since the degree of w ′ in T is 4, by Claim 1, all edges in Ew ′ belong to E (T ).

Now, we need to show that all subdivision vertices of G ′ have degree 2 inT . Suppose not. Let u
be a subdivision vertex inG ′ such that degree of u inT is greater than 2. By Observation 6, degree
ofu inT is 4. This implies that there is an edgeuv in the internal region ofC ′ anduv � E (G ′). This
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contradicts condition (a). We have shown that G ′ = C ′ ∪ Ew ′ is a subgrid, where all subdivision
vertices are of degree 2 in T . �

The next claim provides us with the insight on how subpaths of T̂ and Topt behave in G ′.

Claim 3. Let Fh and Fv be the sets of horizontal and vertical edges in G ′ = C ′ ∪ Ew ′ , respectively.

Then exactly one of the following conditions is true:

(1) Fh ⊆ E (T̂ ) and Fv ⊆ E (Topt).

(2) Fv ⊆ E (T̂ ) and Fh ⊆ E (Topt).

Proof. LetG1 = G
′[E (T̂ )] andG2 = G

′[E (Topt)]. First, we show that each component ofG1 and
G2 is a path where all edges are of the same kind (i.e., either all are horizontal or all are vertical).
Note that a component of G1 or G2, with only horizontal or only vertical edges, must be a path.
For contradiction’s sake, suppose there is a component with both horizontal and vertical edges.
Without loss of generality, we assume that there is a componentC1 ∈ G1 with both kinds of edges.
This implies that there is a vertex v ∈ V (C ) such that v is incident with a vertical edge and a
horizontal edge. However, by Observation 6(i) and the definition of G ′, such a vertex cannot be in
G ′. Therefore, each component of G1 and G2 is a path where all edges are of the same kind.

Next, we show that the edges of G1 are either all horizontal or all vertical. For ease of notation,
we will call a set of edges, which are all horizontal or all vertical, to be parallel edges. Let D be
a component of G1 and e an edge of E (G1) \ E (D). In addition, the edges of D are of a different
orientation than the edge e . In other words, if all edges of D are horizontal, then e is a vertical
edge and vice versa. As shown earlier, all edges of D are parallel to each other. Among all such
pairs (D, e ), we choose a pair (C1,uv ) that has the minimum distance between D and e in G ′. As
G ′ is connected, there is a path between C1 and uv . Without loss of generality, assume that all
edges of C1 are horizontal and uv is a vertical edge. Assume that u and a vertex w ∈ C1 are the
vertices whose shortest path Quw in G ′ is a witness to the vertical edge uv and the componentC1

having the minimum distance between them. We first show that no edge of Quw belongs to E (T̂ ).

Traversing from u along Quw , let e∗ be the first edge of E (T̂ ) that is encountered. If e∗ is a vertical
edge, then (C1, e

∗) is a pair that satisfies the preceding description. However, the distance between
C1 and e∗ is strictly smaller than the distance between C1 and uv , which is a contradiction. But
suppose e∗ is a horizontal edge and it belongs to the component C2 � C1 of G1. Then (C2,uv ) is a

closer pair than (C1,uv ). Thus, all edges of Quw belong to E (Topt) and not to E (T̂ ). Moreover, all
edges of Quw must belong to a single component C2 of G2. This implies that all edges of Quw are
parallel to each other. Let ew be the edge of Quw that is incident with w . Since w has at least one

horizontal edge of E (C1) ⊆ E (T̂ ) and ew � E (T̂ ), by Observation 6(i) with respect tow , ew must be
a vertical edge. Since, C2 is a component of G2, all edges of Quw must be vertical edges. Let eu be

the edge ofQuw incident with u. Both eu ∈ G2 and e ∈ G1 are vertical edges, where e ∈ E (T̂ ) while

eu � E (T̂ ). This is a contradiction to Observation 6(i) with respect to u. A similar argument shows
that E (G2) is a set of parallel edges. This completes the proof of Claim 3. �

Note that G ′ is a 3 × 3 subgrid of G. Let G ′ be formed by horizontal paths P123, P456, P789 and
vertical paths P147, P258, P369. Letu1, . . . ,u9 be the nine vertices inG ′ such that the path Pi jk , where
i, j,k ∈ [9], contains the vertices ui ,uj , and uk . Due to Claim 3, without loss of generality, we may

assume that the horizontal paths belong toTopt and the vertical paths belong to T̂ . For a path Pi jk ,
we use Pi j and Pjk to denote the subpaths of Pi jk connectingui anduj , anduj anduk , respectively.
Let the length of the subpath P12 be �1 and the length of the subpath P23 be �2. By the definition of
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Fig. 4. The subgrid G ′.

G ′, the length of P45 is also �1, and the length of P56 is �2. In addition, let the length of the subpath
P14 be p. See Figure 4.

Suppose �1 + �2 > 2p. Then, we consider the graph T ∗ formed by deleting in Topt the path P123

and adding the two paths P14 and P36. Since all subdivision vertices of G ′ are of degree 2 in T , T ∗

is a Steiner tree of weight strictly less than the weight of Topt. This contradicts the choice of Topt.
Hence, this is not possible.

Suppose �1 + �2 ≤ 2p. Without loss of generality, let �1 ≤ �2. Thus, �1 ≤ p. Consider the two

paths P147 and P258. They are vertical paths of T̂ such that all vertices in these paths belong to

V (G ) \U (i.e., non-terminals and non-bend vertices) and have degree 2 in T̂ (by Observation 6).
This implies that all edges in any path R ∈ {P147, P258} are added in a single step while constructing

T̂ . Since both the paths are parallel, by Observation 4, if a path R1 in T̂ has both P147 and P258 as

subpaths, then R cannot be a shortest path between its endpoints. Thus, by construction of T̂ ,

both P147 and P258 could not have been added to T̂ in a single step of the construction. Also by

construction, one of them is added to T̂ before the other. Without loss of generality, let P147 be
added before P258. Again by construction, a path, containing P258 as a subpath, was added in the

i-th step to connect a terminal z to the already constructed T̂i−1. Let R∗ be the path added to Ti−1.
By definition ofG ′, this terminal z must lie outside the region formed by the subgridG ′. Since P258

was part of a shortest path between T̂i−1 and z, by Observation 4, z must lie on a row strictly higher
than or strictly lower than the rows inG ′. Suppose this terminal lies above P123. By Observation 6,

both vertical edges incident on u1 belong to T̂ . Since u1 and u2 are of degree 2 in T̂ , both vertical
edges incident with u1, as well as u2, are added when the path containing P147 or P258 is added to

construct T̂ . This implies that both vertical edges, incident with u1, are present in Ti−1. Let u1u
′
1

be the vertical edge present in Ti−1 and not in E (P147). Let u2u
′
2 be the vertical edge not present in

P258. Now, consider the path R2, between u ′2 and z, obtained by concatenating the horizontal path
between u ′1 and u ′2 and the subpath of R∗ connecting u ′2 and z. The length of the path R2 is strictly
less than that of R∗ and u ′1 ∈ Ti−1. This is a contradiction. The case when z lies below any row in
G ′ is identical to the preceding case.

Thus, there is no such subgrid G ′ of G such that G ′ is a subgraph of T . This implies that there
is no 9

√
n × 9

√
n grid as a minor in T . Due to Proposition 2.7, the treewidth of T must be at most

9
2 · 9
√
n ≤ 41

√
n. This completes the proof.
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3.3 Dynamic Programming Algorithm for Rectilinear Steiner Tree

In this section, we utilize all of the results proved in the previous sections and design our algorithm

for Rectilinear Steiner Tree. By Lemma 3.4, we known that given a shortest path RST T̂ , there

exists an optimum Steiner tree Topt such that the treewidth of T = T̂ ∪Topt is at most 41
√
n. The

idea of the algorithm is to implicitly do a dynamic programming over a tree decomposition of T ,
even though we do not know what T is, to compute an optimum Steiner tree for T .

Suppose we know the subgraphT ofG such that there is an optimum Steiner tree fully contained
in T . Then we can do the well-known algorithm for Steiner Tree over the tree decomposition
of T (see Theorem 7.8 in Cygan et al. [3]). However, in our case, the difficulty is that we do not
know T and therefore do not have a nice tree decomposition of T . Let (T ,X′ = {X ′t }t ∈V (T ) ) be a

potential nice tree decomposition of T , of width at most 41
√
n, where T is rooted tree with root

r . To describe our algorithm in the best way possible, we modify our tree decomposition slightly.
First, we fix a terminal z∗ ∈ K . From (T ,X′ = {X ′t }t ∈V (T ) ), we obtain a new tree decomposition
(T ,X = {Xt }t ∈V (T ) ) by adding z∗ to each bag X ′t , t ∈ V (T ). We continue to name a bag Xt as we
namedX ′t —that is, ifX ′t was a leaf bag, then so isXt and so on. Notice that the treewidth of (T ,X)
increases by at most 1, but the root and leaf bags of T are identical to the singleton set {z∗}. For
a node t , let Vt be the union of all bags present in the subtree of T rooted at t . For a node t , we
define a graph St = (Vt ,Et = {e ∈ E (T ) : e is introduced in the subtree rooted at t }). We define
the following function c[·] for the Steiner Tree problem: for each bag Xt , X ⊆ Xt and a partition
P = (P1, . . . , Pq ) of X with Pi � ∅, the value c[t ,X ,P] is the minimum weight of a subgraph F of
St with the following properties:

(1) F has exactly q connected components C1, . . . ,Cq such that ∅ � Pi = Xt ∩V (Ci ) for all
i ∈ [q]. In other words, P corresponds to connected components of F .

(2) Xt ∩V (F ) = X . In other words, the vertices of Xt \ X are untouched by F .
(3) K ∩Vt ⊆ V (F ). In other words, all terminal vertices in St belong to F .

Note that if we consider the input graph T with tree decomposition (T ,X = {Xt }t ∈V (T ) ) and re-
strict an optimal Steiner tree to the subgraph St , then the restriction F will be a forest C1, . . . ,Cq .
Not all vertices inXt need to be in F , and we may denote the vertices ofXt that are in the restriction
as X . From the Ci ’s, we may obtain a partition P = (P1, . . . , Pq ) of X such that Pi = Xt ∩V (Ci ).
By the properties of tree decomposition, all terminals in Vt must belong to F , as otherwise it will
contradict the fact that F is a restriction of an optimal Steiner tree. Thus, the properties we have
listed previously help to describe an optimal Steiner tree when restricted to a subgraph St . Thus,
the value c[t ,X ,P] stores the length of this subgraph F of the optimal Steiner tree. In particular,
by definition of the function c[·], for the root r of T the value c[r , {z∗}, {{z∗}}] corresponds to the
weight of a minimum Steiner tree. Thus, knowing the function c[·] is enough to know the weight
of an optimal rectilinear Steiner tree of K in T .

In our case, we do not know the graph T = T̂ ∪Topt and a tree decomposition of T , but we

know that the treewidth of T is at most 41
√
n. This implies that the number of choices for bags

in a tree decomposition of T is at most nO (
√

n) . Consider properties (1) and (2) mentioned earlier.
They are local properties of the witness subgraph F with respect to the bag Xt . However, property

(3) states that all terminals in the subgraph St should be present in F . Moreover, since T̂ is a

rectilinear Steiner tree, all terminals in St are definitely covered by T̂ . In fact, we can bound the

potential setsK ∩V (St ) using T̂ . Observe that any bagXt is a separator of sizeO (
√
n) forT and thus

for T̂ . This implies that for every connected componentC of T̂ − Xt , eitherK ∩V (C ) is fully inVt or no

vertex inK ∩V (C ) belongs toVt . Since each vertex inG has degree at most 4 andXt is a bag in a tree

decomposition, the number of connected components in T̂ − Xt is at most 4|Xt | ≤ 164(
√
n + 1).
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As observed before, for any connected component C of T̂ − Xt , either K ∩V (C ) is fully in Vt or
no vertex in K ∩V (C ) belongs to Vt . This implies that the number of potential sets K ′ ⊆ K such

that K ′ = (Vt \ Xt ) ∩ K is at most 2164(
√

n+1) , and we can enumerate them in subexponential time.
Using this observation, we could keep track of property (3) as well, even though we do not know
the graph T and its tree decomposition.

Now, we move toward the formal explanation of our algorithm. We first define the notion of a
type, which is the analogue of a tuple (t ,X ,P ) that is an input for the function c[·] defined earlier.

Definition 3.5. A type is a tuple (Y ,Y ′ ⊆ Y ,P,K ′) such that the following hold:

(i) Y is a subset of V (G ) of size at most 41
√
n + 2.

(ii) P is a partition of Y ′ with q blocks.

(iii) There exists a set of components C1, . . . ,Cq in T̂ − Y such that K ′ = K ∩ (Y ′ ∪⋃q
i=1V (Ci )).

Informally, in a type (Y ,Y ′,P,K ′), Y represents a potential bag Y of a node (say t ) in a tree
decomposition of T . The set Y ′ and partition P have the same meaning as that of (t ,Y ′,P ) as an
input to the function c[·]. The set K ′ is the set of terminals in the graph St . The next lemma gives
an upper bound on the number of types.

Lemma 3.6. There is a 2O (
√

n log n)nO (1) time algorithm B enumerating all of the types.

Proof. We know that a type is a tuple (Y ,Y ′,P,K ′) satisfying properties (i) through (iii) of

Definition 3.5. Since |V (G ) | ≤ n2, the number of choices for Y is nO (
√

n) . The cardinality of Y is at

most 41
√
n + 2, and thus for a fixed Y , the number of choices for Y ′ is 2O (

√
n) and the number of

choices for the partition P, of Y ′, is nO (
√

n) . By definition of the Hanan grid G, each vertex in G

has at most four neighbors. Thus, T̂ − Y has at most 4(41
√
n + 2) components. Hence, on fixing Y ,

the choices for K ′ is at most 2O (
√

n) . Thus, we get an upper bound of 2O (
√

n log n) on the number of

types. Furthermore, it can be enumerated in time 2O (
√

n log n)nO (1) . �

Our algorithm is a dynamic programming algorithm over the types of T . Let N = 3( |V (G ) | +
|E (G ) |). Our algorithm computes valuesA[i,D], where i ∈ [N ] and D is a type. We want the table
A[, ] to contain all of the information that is necessary for correctly computing the function c[·]
for Steiner Tree over a tree decomposition of T . To motivate the definition of A[, ], we assume
a hypothetical tree decomposition T = (T ,X = {Xt }t ∈V (T ) ) of T of width at most 41

√
n. For ease

of understanding, let it be a nice tree decomposition, and let the tree be rooted at a node r ∈ T .
Recall that the level of a vertex t ∈ T is the height of the subtree of T rooted at t . The height of a
node t is the number of vertices in the longest downward path to a leaf from that node. Following
from Proposition 2.1, note that the level of any node of T is at most N . Suppose t ∈ T is a node at
level i and corresponds to the bagXt . LetVt be the union of bags present in the subtree rooted at t .
Let the graph St be defined as (Vt , {e | e is introduced in the subtree rooted at t }). Let K ′ = Vt ∩ K .
Then, for any X ⊆ Xt , and a partition P of X having q blocks,A[i, (Xt ,X ,P,K ′)] = c[t ,X ,P]. As
mentioned before, c[t ,X ,P] is the minimum weight of the subgraph F of St such that the following
hold: (i) F has q connected componentsC1, . . . ,Cq such that ∅ � Pj = Xt ∩V (Cj ), (ii) Xt ∩V (F ) =
X , and (iii) K ∩Vt ⊆ V (F ). For other pairs (i,D), we do not guarantee that the value of A[i,D] is
meaningful. However, it is enough to maintain reasonable values for only the preceding subset of
pairs (i,D). Of course, we do not know T , and thus we do not know the tree decomposition T .
Therefore, we store values in the tableA[, ] in such a way that given any nice tree decomposition
of T , we have information pertaining to it. Thus, given a pair (i,D) where D = (Y ,Y ′ ⊆ Y ,P,K ′),
we viewY as a bag of some hypothetical nice tree decomposition, T , ofT and assume that the level
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of the bag corresponding to Y in T is i . At a level i of this hypothetical nice tree decomposition,
any bag is one of at most five kinds, namely the five kinds of bags as per the definition of a nice
tree decomposition. We guess the relationship between a bag at level i and its children, which
must be at level at most i − 1. For example, if our hypothetical node t corresponds to an introduce
vertex bag Xt , then we pretend that we know Xt , the child node t ′, the bag Xt ′ , and the vertex v
that is being introduced at node t . Thereafter, for a subset X ⊆ Xt , and a partition P of X , we try
to compute A[i, (Xt ,X ,P,K ′)] using that values of A calculated at step i − 1 of the algorithm.
The calculation ensures that A[i, (Xt ,X ,P,K ′)] = c[t ,X ,P]. In what follows, we give a formal
definition of A[, ].

We write a recurrence relation for A[i,D], where i ∈ [N ] and D is a type. We fix a terminal z∗

in K . When i = 1,

A[1,D] =

{
0 if D = ({z∗}, {z∗}, {{z∗}}, {z∗})
∞ otherwise.

(1)

To defineA[i,D] for i ∈ [N ] \ {1} and a type D = (Y ,Y ′,P,K ′), we first define many intermediate
values and take the minimum over all such values.

We first try to viewY as an introduce node in some nice tree decomposition ofT and having level
i . This viewpoint results in the following recurrence. For all v ∈ Y where type D = (Y ,Y ′,P,K ′),

Iv [i,D] =
⎧⎪⎪⎨
⎪⎪
⎩

∞ if v � Y ′ and v ∈ K
A[i − 1, (Y \ {v},Y ′,P,K ′)] if v � Y ′ and v � K

A[i − 1, (Y \ {v},Y ′ \ {v},P \ {{v}},K ′ \ {v})] if v ∈ Y ′
(2)

Intuitively, if Y is a bag corresponding to a node t in a tree decomposition ofT and K ′ is the set of
terminals in St , then Equation (2) corresponds to the value of the function c[t ,Y ′,P] for Steiner
Tree.

For all u,v ∈ Y and uv ∈ E (G ) where type D = (Y ,Y ′,P,K ′),

Iuv [i,D] = min
{
min
P′
{A[i − 1, (Y ,Y ′,P′,K ′)] + recdist(uv )

}
,A[i − 1,D]

}
, (3)

where P′ varies over partitions ofY ′ such thatu andv are in different blocks of P′ and by merging
these two blocks we get the partition P. Note that if {u,v} � Y ′ or u and v are in same block of
P, then Equation (3) gives Iuv [i,D] = A[i − 1,D]. Equation (3) corresponds to the computation of
values in the introduce edge node where the edge uv is introduced.

For all w ∈ V (G ),

Fw [i,D] = min
{
min
P′
{A[i − 1, (Y ∪ {w },Y ′ ∪ {w },P′,K ′)]} ,A[i − 1, (Y ∪ {w },Y ′,P,K ′)]

}
, (4)

where P′ in the inner minimum varies over all partitions obtained by adding w to one of the
existing blocks. Equation (4) corresponds to computation in a forget node where w is forgotten.

J [i,D] = min
P=P1	P2

K ′=K ′1∪K ′2
i′≤i−1

{A[i − 1, (Y ,Y ′,P1,K
′
1)] +A[i ′, (Y ,Y ′,P2,K

′
2)]
}

(5)

Equation (5) corresponds to a computation in a join node.
We define A[i,D] for i ∈ [N ] \ {1} and type D = (Y ,Y ′,P,K ′) as follows.

A[i,D] = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

min
v ∈Y

Iv [i,D]

min
uv∈E (G )

u,v∈Y

Iuv [i,D]

min
w ∈V (G )

Fw [i,D]

J [i,D]

(6)
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For each i ∈ [N ] and each typeD, we associate withA[i,D] a subgraph ofT . We say that a subgraph
F is of type (Y ,Y ′,P,K ′), where P = {P1, . . . Pq } if the following holds:

(a) The number of connected components in F is equal to |P | = q. We can order the connected
components C1, . . . ,Cq of F such that V (Cj ) ∩ Y = Pj .

(b) V (F ) ∩ K = K ′.

In the following lemma, we show the connection between A[i,D] and a subgraph of type D.

Lemma 3.7. Let i ∈ [N ] and D be a type. Furthermore, let A[i,D] be computed by the Equation (6),

and let A[i,D] = �. Then there is a subgraph F , of type D, such that recdist(F ) ≤ �.
Proof. We prove the statement using induction on i . Recall that we fixed a terminal z∗ in K .

Since the graph ({z∗}, ∅) is of type ({z∗}, {z∗}, {{z∗}}, {z∗}), the base case holds trivially. Let 1 < i ≤
N andD = (Y ,Y ′,P,K ′) be a type andA[i,D] = �. We need to show that there is a subgraph F ofG
such that F has type D and recdist(F ) ≤ �. We know thatA[i,D] is computed using Equation (6),
which is a minimum over a set of values. Suppose A[i,D] = Iv [i,D] = � for some v ∈ Y . If v �
Y ′ and v � K , then by Equation (2), � = Iv [i,D] = A[i − 1, (Y \ {v},Y ′,P′,K ′)]. By the induction
hypothesis, there is a subgraph F of type D ′ = (Y \ {v},Y ′,P′,K ′) and recdist(F ) ≤ �. Since D and
D ′ are satisfying types, conditions (a) and (b) in the definition of satisfying types imply that F is
of type D as well. Ifv ∈ Y ′, then � = Iv [i,D] = A[i − 1,D ′′ = (Y \ {v},Y ′ \ {v},P \ {v},K ′ \ {v})].
By the induction hypothesis, there is a subgraph F such that recdist(F ) ≤ � and F is of type D ′′.
This implies that the graph F ′ = F ∪ ({v}, ∅) is of type D and recdist(F ′) = recdist(F ) ≤ �.

Next, supposeA[i,D] = J [i,D] = �. Suppose the type D = (Y ,Y ′,P,K ′). Then by Equation (5),
there are partitions P1 and P2 with P = P1 	 P2, terminal subsets K ′2 and K ′2 such that K ′1 ∪ K ′2 =
K ′, and an i ′ ≤ i − 1 such that � = J [i,D] = A[i − 1, (Y ,Y ′,P1,K

′
1)] +A[i ′, (Y ,Y ′,P2,K

′
2)]. By the

induction hypothesis, there is a subgraph F1 of type D1 = (Y ,Y ′,P1,K
′
1) and a subgraph F2 of type

D2 = (Y ,Y ′,P2,K
′
2) such that recdist(F1) + recdist(F2) ≤ �. Consider the union graph F = F1 ∪ F2.

By definition, recdist(F ) ≤ recdist(F1) + recdist(F2) ≤ �. We show that F is of type D and then we
will be done. To show this, we need to prove conditions (a) and (b) in the definition of type of a sub-
graph. First, we show that the number of components in F is equal to |P |. Consider a block P ∈ P.
Let {P1, P2, . . . , Pa } be the blocks of P1 that are contained inside P . Similarly, let {P ′1, P ′2, . . . , P ′b }
be the blocks of P2 that are contained inside P . Consider the auxiliary graph Gaux where the ver-
tices correspond to {P1, P2, . . . , Pa } ∪ {P ′1, P ′2, . . . , P ′b } and there is an edge between two blocks
if there is a vertex ofG that belongs to both blocks. By definition of a partition join, the graphGaux

must be connected. Now, by the induction hypothesis, {P1, P2, . . . , Pa } correspond to components
{C1,C2, . . . ,Ca } in F1. Similarly, {P ′1, P ′2, . . . , P ′b } correspond to components {C ′1,C ′2, . . . ,C ′b }
in F2. Since Gaux is a connected graph,

⋃
1≤j≤a C

j ∪⋃1≤k≤b C
′k must also be a connected graph.

Thus, the block P of P corresponds to a component of F . Similarly, consider a component C of
F . Let {C1,C2, . . . ,Ca } be the components of F1 ∩C and {C ′1,C ′2, . . . ,C ′b } be the components of
F2 ∩C . By the induction hypothesis, these components correspond to blocks {P1, P2, . . . , Pa } in P1

and {P ′1, P ′2, . . . , P ′b } in P2. Since C is connected, the graph Gaux is also connected. This means
that all of these blocks must be in the same block P of P. Thus, a component of F corresponds
bijectively to a block P ∈ P. We can order the components such that the ordering matches the
ordering of the corresponding blocks in P. Second, the subgraph F1 contained the terminals of K ′1
and the subgraph F2 contained the terminals of K ′2. Thus, by definition, the subgraph F contains
the terminal set K ′ = K ′1 ∪ K ′2. Therefore, the subgraph F is of type D and recdist(F ) ≤ �.

In all other cases, the proof follows by similar arguments. �

The next lemma helps us relate an optimal rectilinear Steiner tree to the values computed for the
tableA[, ]. First we recall the definition of c[, , ]. For a subsetX ⊆ Xt , and a partition P ofX with q
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blocks, let c[t ,X ,P] be the minimum weight of the subgraph F of St such that the following hold:
(i) F has q connected components C1, . . . ,Cq such that ∅ � Pj = Xt ∩V (Cj ), (ii) Xt ∩V (F ) = X ,
and (iii) K ∩Vt ⊆ V (F ). If there is no such subgraph F , then the value of c[t ,X ,P] is∞.

Lemma 3.8. Let T = (T , {Xt }t ∈V (T ) ) be a nice tree decomposition of T = T̂ ∪Topt. For a node t ,
let Xt be the corresponding bag, X ⊆ Xt , P be a partition of X ,Vt be the union of bags in the subtree

rooted at t , and K ′ = K ∩Vt . Then A[i, (Xt ,X ,P,K ′)] ≤ c[t ,X ,P].

Proof. Recall that z∗ is a fixed terminal. We add z∗ to all bags in T . This new decomposition
still satisfies all properties of a tree decomposition. The width of this new tree decomposition
increases by at most 1. This is no longer a nice tree decomposition as per the definition in Section 2.
However, we will call a bag in the new tree decomposition with the same name as in the initial
nice tree decomposition (e.g., leaf bag). For ease of presentation, we use T = (T , {Xt }t ∈V (T ) ) to
denote the new tree decomposition ofT . Note that all leaf bags and the root bag contain only one
element, z∗. Let r be the root of T . For any node t ∈ V (T ), we define the level of t as the height of
the subtree rooted at t . Recall that the height of a node t is the number of vertices in the longest
downward path to a leaf from that node. Note that leaves in T other than root r have level 1
and the level of r is the height of T . By Proposition 2.1, the level of any node in T is at most N .
For any node t ∈ V (T ), we use �t to denote the level of t . For any t , we denote the graph St as
(Vt , {e | e is introduced in the subtree rooted at t }), where Vt is the union of bags present in the
subtree rooted at t .

We prove the following statement: for any t ∈ V (T ), X ⊆ Xt and a partition P of X , it is true
that A[�t , (Xt ,X ,P,K ∩Vt )] ≤ c[t ,X ,P]. We prove the statement using induction on the level
of the node t . The base case is when �t = 1. In this case, Xt = {z∗}. If X = {z∗} and P = {{z∗}},
by definition A[1, (Xt ,X , {X },K ∩Vt )] = 0 = c[t ,X , {X }]. Otherwise, A[1, (Xt ,X ,P,K ∩Vt )] =
∞ = c[t ,X , {X }]. Let t be a node inV (T ), X ⊆ Xt and P be a partition of X such that 1 < �t ≤ N .
Let K ′ = K ∩Vt . If (Xt \ X ) ∩ K � ∅, then by definition c[t ,X ,P] = ∞ and so the statement holds.

Suppose (Xt \ X ) ∩ K = ∅. Since T̂ is a Steiner tree for K , T ⊆ V (T̂ ). Since X is a bag in the tree

decomposition T , all terminals in a connected componentC of T̂ − Xt are either fully contained in
Vt or none of the terminals in the componentC are present inVt . Thus, there are connected com-

ponents C1, . . . ,C ĵ of T̂ − Xt such that K ′ = K ∩Vt = K ∩ (Xt ∪
⋃ĵ

j=1V (Cj )). This implies that

(Xt ,X ,P,K ′) is a type. Let P = {P1, . . . , Pq } and F be a witness subgraph for the value c[t ,X ,P].
In other words, recdist(F ) = c[t ,X ,P] and the following conditions hold: (i) F has q connected
componentsC1, . . . ,Cq such that ∅ � Pj = Xt ∩V (Cj ), (ii)Xt ∩V (F ) = X , and (iii) K ∩Vt ⊆ V (F ).
We analyze cases based on the nature of the node t .

Case 1: t is an introduce vertex node. Let t ′ be the child of t and {v} = Xt \ X ′t . Note that
the level of t ′ is �t − 1. If v � V (F ), then c[t ′,X ,P] ≤ recdist(F ). By Equations (6) and (2),
A[�t , (Xt ,X ,P,K ′)] ≤ A[�t − 1, (X ′t ,X ,P,K ′)]. By the induction hypothesis, it holds thatA[�t −
1, (X ′t ,X ,P,K ′)] ≤ c[t ′,X ,P] ≤ recdist(F ) = c[t ,X ,P]. Ifv ∈ V (F ), thenv appears as an isolated
vertex in F , because by definition of an introduce vertex bag,v is an isolated vertex in St . This im-
plies that c[t ′,X \ {v},P \ {{v}}] ≤ recdist(F ). By Equations (6) and (2), A[�t , (Xt ,X ,P,K ′)] ≤
A[�t − 1, (X ′t ,X \ {v},P \ {{v}},K ′)]. By the induction hypothesis, A[�t − 1, (X ′t ,X \ {v},P \
{{v}},K ′)] ≤ c[t ′,X \ {v},P \ {{v}}] ≤ recdist(F \ {v}) = recdist(F ) = c[t ,X ,P].

Case 2: t is an introduce edge node. Let t be labeled with the edge uv and t ′ be the
child of t . In other words, {u,v} ⊆ Xt ′ = Xt . Note that the level of t ′ is �t − 1. If uv � E (F ),
then c[t ′,X ,P] ≤ recdist(F ). By Equations (6) and (3), we know that A[�t , (Xt ,X ,P,K ′)] ≤
A[�t − 1, (X ′t ,X ,P,K ′)]. By the induction hypothesis, A[�t − 1, (X ′t ,X ,P,K ′)] ≤ c[t ′,X ,P] ≤
recdist(F ) = c[t ,X ,P].
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Suppose uv ∈ E (F ). Let C ′1, . . . ,C
′
q′ are the connected components of F − uv . Consider the par-

tition P′ to be {V (C ′1) ∩ X , . . . ,V (C ′q′ ) ∩ X }. This implies that c[t ′,X ,P′] ≤ recdist(F \ {uv}) =
recdist(F ) − recdist(uv ). By induction hypothesis, A[�t − 1, (Xt ′,X ,P′,K ′)] ≤ c[t ′,X ,P′] ≤
recdist(F ) − recdist(uv ). The property of F implies that in the partition P′, if we merge the blocks
containing u and v , we get the partition P. Thus, by Equations (6) and (3),A[�t , (Xt ,X ,P,K ′)] ≤
A[�t − 1, (Xt ′,X ,P′,K ′)] + recdist(uv ) ≤ recdist(F ).

Case 3: t is a forget node. Let t ′ be the child of t and {w } = Xt ′ \ Xt . Note that the level
of t ′ is �t − 1. If w � V (F ), then c[t ′,X ,P] ≤ recdist(F ). By the induction hypothesis, A[�t −
1, (Xt ′,X ,P,K ′)] ≤ c[t ′,X ,P] ≤ recdist(F ). By Equations (6) and (4), A[�t , (Xt ,X ,P,K ′)] ≤
A[�t − 1, (Xt ′,X ,P,K ′)] ≤ recdist(F ).

Suppose w ∈ V (F ). Let Cj be the component of F containing w . Note that Pj = V (Cj ) ∩ X . Let
P′ be a partition obtained from P, by adding w to the block Pj . Then P′ is a partition of X ∪
{w }. This implies that c[t ′,X ∪ {w },P′] ≤ recdist(F ). By the induction hypothesis,A[�t ′, (Xt ′,X ∪
{w },P′,K ′)] ≤ c[t ′,X ∪ {w },P′] ≤ recdist(F ). By Equations (6) and (4), A[�t , (Xt ,X ,P,K ′)] ≤
A[�t − 1, (Xt ′,X ∪ {w },P′,K ′)] ≤ recdist(F ).

Case 4: t is a join node. Let t1 and t2 be the children of t . Here, Xt = Xt1 = Xt2 , and the level
of Xtj

, j ∈ {1, 2}, is at most �t − 1. Note that the level of one of the children must be exactly
�t − 1. Without loss of generality, we assume that the level of Xt1 is exactly �t − 1, whereas
the level of Xt2 is �t2 , which could be less than �t − 1. Let F1 be the graph with vertex set
as V (F ) ∩Vt1 and edge set as E (F ) ∩ E (St1 ). Let F2 be the graph with vertex set as V (F ) ∩Vt2

and edge set as E (F ) \ E (F1). Note that F = F1 ∪ F2. Let K ′1 = V (F1) ∩ K and K ′2 = V (F2) ∩ K .
Since all connected components in V (F ) contain at least one vertex from X and Xt is a bag
in the tree decomposition, all connected components in F1 and F2 contain at least one ver-
tex from X . Let C ′1, . . . ,Cq′ be the connected components of F1 and C ′′1 , . . . ,C

′′
q′′ be the con-

nected components in F2. Let P1 = {X ∩V (C ′i ), . . . ,X ∩V (C ′q′ )} and P2 = {X ∩V (C ′′i ), . . . ,X ∩
V (C ′′q′′ )}. Thus, c[t1,X ,P1] ≤ recdist(F1) and c[t2,X ,P2] ≤ recdist(F2). By the induction hy-

pothesis, A[�tj
, (Xtj

,X ,Pj ,K
′
j )] ≤ c[tj ,X ,Pj ] for j ∈ {1, 2}. The definitions of F , F1 and F2 im-

ply that P = P1 	 P2. By Equations (5) and (6), it follows that A[�t , (Xt ,X ,P,K ′)] ≤ A[�t −
1, (Xt ,X ,P1,K

′
1)] +A[�t2 , (Xt ,X ,P2,K

′
2)] ≤ recdist(F1) + recdist(F2) = recdist(F ). �

Finally, we describe the subexponential algorithm for Rectilinear Steiner Tree.

Theorem 3.9. Rectilinear Steiner Tree has a deterministic algorithm with running time

2O (
√

n log n)nO (1) .

Proof. We take as input a set K of n terminal points, the Hanan grid G of K , and the weight

function recdist. Then, using Lemma 3.1, we compute a shortest path RST T̂ . By Lemma 3.4, we

know that there is an optimal Steiner tree Topt with tw(T̂ ∪Topt) ≤ 41
√
n. Based on the short-

est path RST T̂ , we apply Lemma 3.6 to enumerate all possible types D of G. We fix an integer
N = 3( |V (G ) | + |E (G ) |) and a terminal z∗ in K . For each i ∈ [N ] and each type D, the algorithm
computes values A[i,D], according to Equations (1) and (6). The values in A[, ] are filled in the
increasing order of i . Finally, the algorithm outputs mini ∈[N ]A[i, ({z∗}, {z∗}, {{z∗}},T )].

For the hypothetical subgraph T , fix an optimal nice tree decomposition T , rooted at node r .
Add a fixed terminal z∗ to each bag of the nice tree decomposition (as described in the proof of
Lemma 3.8). The treewidth of this new tree decomposition is at most 41

√
n + 1. In addition, by

Proposition 2.1, the height of the tree decomposition is at most N . Let t be a node in the tree
decomposition, of level �t . Let Xt be the bag of t andVt be the union of bags in the subtree rooted
at t . Let K ′ = K ∩Vt . Suppose X ⊆ Xt and P is a partition of X . By definition, c[t ,X ,P] is the size
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of a subgraph of type (Xt ,X ,P,K ′). Then, Lemmas 3.7 and 3.8 imply that A[�t , (Xt ,X ,P,K ′)] =
c[t ,X ,P]. In particular, for the root r of the tree decomposition, A[�r , ({z∗}, {z∗}, {{z∗}},K )] =
c[r , {z∗}, {{z∗}}]. Notice that c[r , {z∗}, {{z∗}}] is the size of a minimum Steiner tree of G.

However, by Lemma 3.7, for all i ∈ [N ], if A[i, ({z∗}, {z∗}, {{z∗}},K )] = �, then there is a sub-
graph F that connects all terminals of K and that satisfies recdist(F ) ≤ �. As the algorithm outputs
mini ∈[N ]A[i, ({z∗}, {z∗}, {{z∗}},K )], it must output the weight of a minimum rectilinear Steiner
tree of G. This proves the correctness of the algorithm.

The size of the tableA[, ] is N · 2O (
√

n log n) , and each entry can be filled in time 2O (
√

n log n)nO (1) .

Thus, the running time of the algorithm is 2O (
√

n log n)nO (1) . Using standard back-tracking tricks,
we can also output an optimal RST. This concludes the proof. �

4 SUBEXPONENTIAL ALGORITHM FOR RECTILINEAR STEINER ARBORESCENCE

In this section, we give an outline for the subexponential algorithm for Rectilinear Steiner Ar-
borescence, since the algorithm is essentially the same as that for Rectilinear Steiner Tree. We
are again given K and the root vertex r ∈ K as an input of Rectilinear Steiner Arborescence.
Furthermore, let |K | = n andG be the Hanan grid of K . We assume that the root vertex r is placed
at (0, 0) in R2. Recall that recdistG is the weight function defined on the edges ofG, and when the
context becomes clear we simply denote it as recdist. The steps of the algorithm are very similar to
those in the algorithm for Rectilinear Steiner Tree. Analogous to a shortest path RST, we define
a rectilinear Steiner arborescence, called shortest path RSA, for a graphG. Then, for a shortest path

RSA T̂ , we show that there exists an optimal rectilinear Steiner arborescence Topt such that the

treewidth of T̂ ∪Topt is O (
√
n). We then use this information to design our dynamic programming

algorithm for Rectilinear Steiner Arborescence.

4.1 Shortest Path RSA and Its Properties

For a given G, we define a shortest path RSA similar to the definition of a shortest path RST. The
definition is given next for completeness.

We give an arbitrary ordering {r , z1, . . . zk } on the terminals such that the root is the first vertex

in the ordering. We define a shortest path RSA, Ŝ , through a constructive greedy process. Initially,
we set T1 to a r − z1 monotone path. This is a rectilinear Steiner arborescence of {r , z1}. In the
i-th step, we compute a rectilinear Steiner arborescence Ti+1 of {z1, . . . zi+1} from Ti as follows.
If zi+1 ∈ V (Ti ), then we set Ti+1 = Ti . Otherwise, for each vertex u ∈ Ti let �1u be the length of a
shortest u − zi+1 path. Let �2u be the length of the shortest r − u path that exists inTi . In addition, �
denotes the length of a shortest r − zi+1 path. Let N ⊆ V (Ti ) be the set of vertices such that for each
u ∈ N , �1u + �

2
u = �. Letu∗ ∈ N be a vertex for which �1u∗ is minimized. If there is only one monotone

zi+1 − u∗ path, then let Q be that path. Otherwise, there are two monotone zi+1 − u∗ paths such
that one path has a horizontal edge incident with u∗ and other has a vertical edge incident with
u∗. If there is a horizontal edge inTi that is incident withu∗, then we chooseQ to be the monotone
zi+1 − u∗ path such that the edge in Q incident with u∗ is a horizontal edge. Otherwise, we choose
Q to be the monotone zi+1 − u∗ path such that the edge in Q incident with u∗ is a vertical edge.
Then, we constructTi+1 by adding the monotone path Q toTi . After n − 1 iterations, we construct

a tree T̂ = Tn of G, which is a Steiner arborescence of K . This is our shortest path RSA.
By arguments similar to Lemma 3.1, it is possible to construct a shortest path RSA in polynomial

time.

Lemma 4.1. Given a set K of terminal points, and the Hanan gridG of K , a shortest path RSA T̂ of

K can be constructed in polynomial time.
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Similar to Lemma 3.2, we can give a bound on the bend vertices of a shortest path RSA.

Lemma 4.2. The number of bend vertices in T̂ is at most n.

4.2 Supergraph of an Optimal RSA with Bounded Treewidth

LetK be an input set of n points for Rectilinear Steiner Arborescence, r ∈ K is a root terminal,

and G is the Hanan grid of K . In this part, given a shortest path RSA T̂ , we show the existence of
an optimum rectilinear Steiner arborescence Topt of K with the property that the treewidth of

T̂ ∪Topt is O (
√
n). Similar to Lemma 3.3, we can show that there is an optimal rectilinear Steiner

arborescence with a bounded number of bend vertices.

Lemma 4.3. Let K be a set of n terminals in R2, with a root terminal r ∈ K and G the Hanan grid

of K . Then there is an optimum rectilinear Steiner arborescence of K in G such that the number of

bend vertices of the Steiner arborescence in G is at most 3n.

After finding a shortest path RSA as described by Lemma 4.1, we prove the following struc-
tural lemma. This lemma is analogous to Lemma 3.4 but with some points of deviation due to the
problem definition. For completeness, we give the additional details of the proof in the following.

Lemma 4.4. Given a set K of n points, with r ∈ K as the root terminal, and a shortest path RSA T̂
of K , there is an optimal rectilinear Steiner arborescenceTopt of K with the property that the treewidth

of T̂ ∪Topt is at most 41
√
n.

Proof. We choose an optimum rectilinear Steiner arborescence of K and prove it satisfies the
required property. Among the optimum Steiner arborescences with minimum number of bend

vertices, we select an arborescence Topt that has maximum edge intersection with T̂ .

We show that T̂ ∪Topt has O (
√
n) treewidth. For the sake of contradiction, suppose T̂ ∪Topt

has treewidth greater than 41
√
n. Again, we can assume that n ≥ 4, as otherwise we can greedily

find out the best rectilinear Steiner arborescence from the constant-sized Hanan grid. Then, by

Proposition 2.7, there is a 9
√
n × 9

√
n grid H appearing as a minor in T̂ ∪Topt. Let P (H ) = {Cv |v ∈

V (H )} be a minor model ofH . For a vertexv ∈ V (H ), if any vertex ofCv is a terminal vertex ofG, a

bend vertex of T̂ , or a bend vertex ofTopt, then we mark the vertex v in H . By Lemmas 4.2 and 4.3,
the number of vertices of H that get marked is at most 5n. By the arguments given in Lemma 3.4,
we can find from H a 2 × 2 grid H ′ in H , where none of the vertices are marked. With arguments
similar to Claim 2, we can also find a subgrid G ′ in G (in some sense contained in H ′) that has the
following properties:

(1) No vertex in G ′ is a terminal vertex of G or a bend vertex for T̂ or Topt.

(2) There are four verticesu1, . . . ,u4 that are of degree exactly 4 in T̂ ∪Topt. All other vertices

are of degree exactly 2 in T̂ ∪Topt.
(3) There are horizontal paths P12 = u1 − u2, P34 = u3 − u4 and vertical paths P13 = u1 − u3,

P24 = u2 − u4. Each of the internal vertices of these paths are of degree 2 in the grid G.

(4) Either all horizontal paths belong to Topt and not T̂ or all vertical paths belong to exactly

T̂ and not Topt, or vice versa. These are the only two possibilities.

The following observation tells us about the position of the vertices in G ′, with respect to the
origin, where the root terminal is positioned. �

Observation 7. Let K be a set of terminals with the root terminal r placed at the origin. Let G be

the Hanan grid of K and Tmml be an edge minimal Steiner arborescence for K . Let u,v ∈ V (Tmml) be

a pair of vertices with the following properties:
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• Either ux = vx � rx and uy < ry < vy or uy = vy � ry and ux < rx < vx .

• The monotone u −v path Q is a subgraph of Tmml.

Then it cannot be the case that all internal vertices of Q have degree 2 in Tmml.

Proof. Without loss of generality, assume that ux = yx � rx and uy < ry < vy are true. For the
sake of contradiction, let the monotoneu −v pathQ be a subgraph ofTmml such that every internal
vertex of Q is degree 2 in Tmml. Let T ′ be the graph obtained by deleting the internal vertices and
edges of Q . Since for each z ∈ K there is a unique r − z path in Tmml, if z is still connected to r in
T ′, then the r − z path is still a shortest r − z path. We show that all terminals are still connected
to r inT ′. This implies thatT ′ is a Steiner arborescence, thereby contradicting the edge minimality
of Tmml.

Suppose there is a terminal z such that the r − z path Q ′ of Tmml had an edge in common with
E (Q ). Since every internal vertex of Q is of degree 2 in Tmml, it must be the case that the entire
path Q is a subpath of Q ′. By definition of Q , the entire path cannot be contained in the grid
defined by r and z. However, from Observation 5, it cannot be the case that Q is a shortest r − z
path. Thus, for no terminal z, does the r − z path in Tmml intersect with Q . Thus, each terminal
z remains connected to r in T ′. Hence, we conclude that such a path Q cannot exist in an edge
minimal Steiner arborescence Tmml. �

By definition, both T̂ andTopt are minimal rectilinear Steiner arborescences. Then, by Observa-

tion 7, it follows that G ′ lies in one of the quadrants of R2. For the sake of the proof, we assume
without loss of generality that G ′ lies in the first quadrant of R2. In addition, without loss of gen-

erality, let the horizontal paths belong to Topt and the vertical paths belong to T̂ . Let the length of
P12 be �. By the definition of the subgrid G ′, the length of P34 is also �. Let the length of P13 be p.
This is also the length of P24. Suppose � > p. Then, we consider the Steiner arborescence formed
by deleting, in Topt, the path P12 and adding the path P24. The resulting Steiner arborescence has
weight strictly less than that of weight of Topt. This contradicts the choice of Topt. Hence, this is
not possible.

Now, suppose � ≤ p. Consider the two paths P13 and P24. They are paths of T̂ . By construction
and by Observation 4, they cannot be subpaths of a path added in a single construction step, as

otherwise they will not be part of a shortest path. Also by construction, one of them is added to T̂
before the other. Without loss of generality, let P13 be added before P24. By construction, P24 is a
subpath of a path P that was added in some step i , to connect a terminal z to the already constructed
Ti−1. By definition of H ′ and G ′, this terminal must lie outside the region formed by the subgrid
G ′. Since P24 was part of a shortest path between Ti−1 and z, z must lie on a row strictly higher

than the rows of G ′. Since, u1 and u2 are not bend vertices in T̂ , they have neighbors u ′1 and u ′2 in

T̂ . In addition, u ′1 and u ′2 are on the same row, and u ′1 is on the same column as u1,whereas u ′2 is on
the same column as u2. Let Pu′1

be the path from r to u ′1 in Ti−1, Pu′2
be the subpath of P between r

and u ′2, and Pz be the subpath of P between u ′2 and z. By definition of a shortest path, the subpath
Pu′2

is a shortest path between r and u ′2, and the subpath Pz is a shortest path between u ′2 and z.
LetGu′1

≤s G be the grid defined by r ,u ′1 as its diagonal points andGu′2
≤s G be the grid defined by

r ,u ′2 as its diagonal points. Due to the position of the vertex r ,Gu′1
≤s Gu′2

. Then, by Observation 5,
Pu′1
∪ P ′ is a shortest path between r and u ′2, as is Pu′2

. This implies that Pu′1
∪ P ′ ∪ Pz is a shortest

r − z path. Notice that P is of weight at least (u ′2,u2,u4). Since � ≤ p, this implies that P is of weight

strictly more that the path P ′. However, by the description of construction of T̂ , the path P ′ ∪ Pz

is a better candidate than the path P in step i . This contradicts the choice of adding the path P to
form Ti . Therefore, it is not possible that � ≤ p.
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Thus, we obtain a contradiction to the fact that T̂ ∪Topt has a grid minor greater than 9
√
n. This

proves that T̂ ∪Topt has treewidth at most 41
√
n.

4.3 Dynamic Programming Algorithm for Rectilinear Steiner Arborescence:

An Overview

In this section, we describe the general ideas of the subexponential algorithm for Rectilinear
Steiner Arborescence, since it is very similar to the algorithm for Rectilinear Steiner Tree.
The full details of the algorithm are given in Appendix A. Due to Lemma 4.4, we know that given

a shortest path RSA T̂ , there exists an optimal Steiner arborescenceTopt such that the treewidth of

T = T̂ ∪Topt is at most 41
√
n. Note that we do not know the subgraph T . However, we simulate a

dynamic programming algorithm by storing all of the information needed to compute an optimal
Steiner arborescence on the tree decomposition of T .

Again, if we knew the subgraph T of G such that there is an optimal Steiner arborescence fully
contained in T , we could design a dynamic programming algorithm for Rectilinear Steiner
Arborescence over the tree decomposition ofT . This algorithm is similar in ideas to the algorithm
for Steiner Tree over a tree decomposition of a given graph. However, again the difficulty for us is
that we do not knowT . Suppose we had (T ,X′ = {X ′t }t ∈V (T ) ), which is a nice tree decomposition

ofT , of width at most 41
√
n, where T is a rooted tree. Let the root node be t̃ . From this, we obtain

a new tree decomposition (T ,X = {Xt }t ∈V (T ) ) by adding the input root terminal r to each bag
X ′t , t ∈ V (T ). We continue to name a bag Xt as we named X ′t —for instance, if X ′t was a leaf bag,
then so is Xt and so on. Notice that the treewidth of (T ,X) increases by at most 1, but the root
and leaf bags of T are identical to the singleton set {r }. For a node t , let Vt be the union of all
bags present in the subtree of T rooted at t . For a node t , we define a graph Gt = (Vt ,Et = {e ∈
G : e is introduced in the subtree rooted at t }). A relevant definition for this problem is that of
a locally rooted subgraph. A forest F ≤s G, with connected components C1, . . . ,Cq , is called a
locally rooted subgraph if each component Ci has a special vertex or a root vertex ri . Let us give a
brief intuition behind the definition of a locally rooted subgraph. Consider an optimal rectilinear
Steiner arborescence of T , and let F be the restriction in the subgraph Gt . Then F will be a forest
C1, . . . ,Cq . Moreover, by definition of an arborescence, in each component Ci there is a unique
vertex ri through which the unique shortest path between r and any vertex v ∈ Ci passes. Thus,
F can be thought of as a locally rooted subgraph. The aim is to again build an optimal rectilinear
Steiner arborescence bottom-up from the leaf bags of the tree decomposition.

Thus, the important step in the algorithm for Rectilinear Steiner Arborescence is to com-
pute the following information about locally rooted subgraphs: for each bag Xt , X ⊆ Xt , a parti-
tion P = (P1, . . . , Pq ) of X , and a set Xsp = {r1, . . . , rq } such that ri ∈ Pi , for each i ∈ [q], the value
c[t ,X ,P,Xsp] is the minimum weight of a locally rooted subgraph F of Gt with the following
properties:

(1) F has exactly q connected components C1, . . . ,Cq such that ∅ � Pi = Xt ∩V (Ci ) for all
i ∈ [q]. In other words, P corresponds to connected components of F .

(2) Xt ∩V (F ) = X . In other words, the vertices of Xt \ X are untouched by F .
(3) K ∩Vt ⊆ V (F ). In other words, all terminal vertices in Gt belong to F .
(4) For each i ∈ [q], and each vertex w ∈ V (Ci ) \ {ri }, the w − ri path in F is a shortest path

in G and there is a ri − r shortest path in G that has ri as an internal vertex.

Suppose we know the values c[t ,X ,P,Xsp] for each tuple (t ,X ,P,Xsp), where t ∈ V (T ),X ⊆
Xt , P is a partition of X , and Xsp is a set of vertices such that there is exactly one vertex from

each block of P. Then by definition, c[t̃ , {r }, {{r }}, {r }] corresponds to the weight of a minimum
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Steiner arborescence. Thus, knowing the function c[·] is enough to know the weight of an optimal

rectilinear Steiner arborescence of K in T . In our case, we do not know the graph T = T̂ ∪Topt

and a tree decomposition of T , and therefore we do not know how to calculate the function c[·].
However, we know that the treewidth ofT is at most 41

√
n. As argued in the case of Rectilinear

Steiner Tree, this implies that the number of choices for bags in a tree decomposition of T is

at most nO (
√

n) . Notice that properties (1) through (3) are the same as the properties maintained
for calculating the function c[·] for Rectilinear Steiner Tree on a tree decomposition of T .
Property (4) is necessary to solve the Rectilinear Steiner Arborescence problem. Each vertex
ri ∈ Xsp can be thought of as a local root vertex for the component Ci of F .

Now that we do not know the graph T and therefore do not have a desired tree decomposition
of T , we work around this bottleneck as in the case of Rectilinear Steiner Tree by defining
types. A type is the analogue of a tuple (t ,X ,P,Xsp), as input for the function c[·] defined earlier
for Rectilinear Steiner Arborescence, such that the following hold:

(i) Y is a subset of V (G ) of size at most 41
√
n + 2.

(ii) P is a partition of Y ′ with q blocks.

(iii) There exists a set of components C1, . . . ,Cq in T̂ \ Y such that K ′ = K ∩ (Y ′ ∪⋃q
i=1V (Ci )).

(iv) Ysp has exactly one vertex ri from each block Pi ∈ P.

In a type (Y ,Y ′,P,Ysp,K
′), Y represents a potential bag Y of a node (say t ) in a tree decomposi-

tion ofT . The set Y ′, partition P, and Ysp have the same meaning as that in the tuple (t ,Y ′,P,Ysp)
for the function c[·] for Rectilinear Steiner Arborescence over a tree decomposition of an input
graph. The set K ′ is the set of terminals in the graphGt . Again, similar to Lemma 3.6, we can show

that the number of types for Rectilinear Steiner Arborescence is bounded by 2O (
√

n log n)nO (1)

and that the set of all types can be found in as much time.
In the following, we explain the steps of our algorithm, which are very similar to that of the

Rectilinear Steiner Tree algorithm. The differences in the two algorithms are mainly techni-
calities due to the differences in the definitions of the two problems. Otherwise, the ideas for both
algorithms are very similar. We fix an integer N = |3(V (G ) | + |E (G ) |). Just like the algorithm for
Rectilinear Steiner Tree, this algorithm computes values A[i,D], where i ∈ [N ] and D is a
type. As before, we want the table A[, ] to contain all of the information that is necessary for
computing the function c[·] defined earlier for Rectilinear Steiner Tree, over a tree decompo-
sition ofT . Since we do not know the graphT , we assume a hypothetical nice tree decomposition
T = (T ,X = {Xt }t ∈V (T ) ) of T of width at most 41

√
n. We may also assume that the nice tree de-

composition is rooted at a node t̃ ∈ T . Recall that the level of a vertex t ∈ T is the height of the sub-
tree of T rooted at t . From Proposition 2.1, the level of any node of T is at most N . Suppose t ∈ T
is a node at level i and corresponds to the bag Xt . Let Vt be the union of bags present in the sub-
tree rooted at t . Let the graphGt be defined as (Vt , {e | e is introduced in the subtree rooted at t }).
Let K ′ = Vt ∩ K . Then, for any X ⊆ Xt , a partition P of X , and a set Xsp defined with exactly
one vertex from each block of P, A[i, (Xt ,X ,P,Xsp,T

′)] = c[t ,X ,P,Xsp]. As mentioned be-
fore, c[t ,X ,P,Xsp] is the minimum weight of the locally rooted subgraph F of Gt such that
the following hold: (i) F has q connected components C1, . . . ,Cq such that ∅ � Pj = Xt ∩V (Cj ),
(ii) Xt ∩V (F ) = X , (iii) K ∩Vt ⊆ V (F ), and (iv) for each j ∈ [q], and each vertex w ∈ V (Cj ) \ {r j },
and each vertex w ∈ V (Cj ) \ {r j }, the w − r j path in F is a shortest path in G and there is a r j − r
shortest path in G that has r j as an internal vertex. For other pairs (i,D), we do not guarantee
that the value of A[i,D] is meaningful. As we had motivated the ideas behind the algorithm for
Rectilinear Steiner Tree, the main idea behind this algorithm is that we pretend that a tree
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decomposition for T is given to us, even though in reality we do not even know the graph T . The
full details of the algorithm can be found in Appendix A.

In the end, we obtain our desired subexponential algorithm.

Theorem 4.5. Rectilinear Steiner Arborescence can be solved in time 2O (
√

n log n)nO (1) .

5 CONCLUSION

We exhibit deterministic subexponential algorithms for Rectilinear Steiner Tree and Rectilin-

ear Steiner Arborescence. Both algorithms run in 2O (
√

n log n)nO (1) time. Finding a lower bound
for the running time of an algorithm and exhibiting an algorithm with optimal running time, for
both problems, remain open for investigation.

APPENDIX

A DYNAMIC PROGRAMMING ALGORITHM FOR RECTILINEAR STEINER

ARBORESCENCE

For the sake of completeness, in this section we provide full details of the subexponential algo-
rithm for Rectilinear Steiner Arborescence. Recall from Lemma 4.4 that given a shortest path

RSA T̂ , there exists an optimal Steiner arborescence Topt such that the treewidth of T = T̂ ∪Topt

is at most 41
√
n. As in the case of the Rectilinear Steiner Tree problem, we do not know the

graphT . However, our objective is to design a dynamic programming algorithm where each state
contains all of the information needed to compute an optimal Steiner arborescence on the tree
decomposition of T .

Let (T ,X′ = {X ′t }t ∈V (T ) ) be a potential nice tree decomposition of T , of width at most 41
√
n,

where T is a rooted tree. Let the root node be t̃ . From this, we obtain a new tree decomposition
(T ,X = {Xt }t ∈V (T ) ) by adding the input root terminal r to each bag X ′t , t ∈ V (T ). We continue to
name a bag Xt as we named X ′t —that is, if X ′t was a leaf bag, then so is Xt and so on. Notice that
the treewidth of (T ,X) increases by at most 1, but the root and leaf bags of T are identical to the
singleton set {r }. For a node t , letVt be the union of all bags present in the subtree of T rooted at t .
For a node t , we define a graphGt = (Vt ,Et = {e ∈ G : e is introduced in the subtree rooted at t }).
Recall the definition of a locally rooted subgraph. A forest F ≤s G, with connected components
C1, . . . ,Cq , is called a locally rooted subgraph if each component Ci has a special vertex or a root
vertex ri . The reason for considering locally rooted subgraphs was as follows. Consider an optimal
rectilinear Steiner arborescence of T , and let F be the restriction in the subgraph Gt . Then, F will
be a forestC1, . . . ,Cq . Moreover, by definition of an arborescence, in each componentCi there is a
unique vertex ri through which the unique shortest path between r and any vertex v ∈ Ci passes.
Thus, F can be thought of as a locally rooted subgraph. We wish to build an optimal rectilinear
Steiner arborescence bottom-up from the leaf bags of the tree decomposition.

To do this, we first look at a function c[·] for Rectilinear Steiner Arborescence: for each
bag Xt , X ⊆ Xt , a partition P = (P1, . . . , Pq ) of X , and a set Xsp = {r1, . . . , rq } such that ri ∈ Pi , for
each i ∈ [q], the value c[t ,X ,P,Xsp] is the minimum weight of a locally rooted subgraph F of Gt

with the following properties:

(1) F has exactly q connected components C1, . . . ,Cq such that ∅ � Pi = Xt ∩V (Ci ) for all
i ∈ [q]. In other words, P corresponds to connected components of F .

(2) Xt ∩V (F ) = X . In other words, the vertices of Xt \ X are untouched by F .
(3) K ∩Vt ⊆ V (F ). In other words, all terminal vertices in Gt belong to F .
(4) For each i ∈ [q], and each vertex w ∈ V (Ci ) \ {ri }, the w − ri path in F is a shortest path

in G and there is a ri − r shortest path in G that has ri as an internal vertex.
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Again, the number of blocks in P is q, and this variable is used throughout the section to denote
the number of blocks of the partition in question. Suppose we know the values c[t ,X ,P,Xsp] for
each tuple (t ,X ,P,Xsp), where t ∈ V (T ),X ⊆ Xt , P is a partition of X , and Xsp is a set of vertices

such that there is exactly one vertex from each block of P. Then by definition, c[t̃ , {r }, {{r }}, {r }]
corresponds to the weight of a minimum Steiner arborescence. Thus, knowing the function c[·]
is enough to know the weight of an optimal rectilinear Steiner arborescence of K in T . In our

case, we do not know the graphT = T̂ ∪Topt and a tree decomposition ofT , but we know that the

treewidth of T is at most 41
√
n. As argued in the case of Rectilinear Steiner Tree, this implies

that the number of choices for bags in a tree decomposition of T is at most nO (
√

n) . Notice that
properties (1) through (3) are same as the properties for defining the function c[·] for Rectilinear
Steiner Tree on a tree decomposition of T . Property (4) is necessary to solve the Rectilinear
Steiner Arborescence problem. Each vertex ri ∈ Xsp can be thought of as a local root vertex for
the componentCi of F . Let us repeat the intuition behind this property. Suppose F was a subgraph
of an edge minimal Steiner arborescenceT ∗ rooted at r . In addition, for each i ∈ [q], ri is the unique
vertex in Ci that has minimum distance to r in T . Then, for each i ∈ [q],w ∈ Ci , the w − r path
in T ∗ satisfies property (4). In particular, if T ∗ was an optimal Steiner arborescence, property (4)

holds for F . The number of choices for Xsp, which is a subset of X , is at most 2
√

n .
In fact, if there are two vertices u,v such that there is a u − r shortest path inG that has v as an

internal vertex, we say thatu has the shortness property withv . Notice that the shortness property is
transitive. In other words, if u has the shortness property withv andw has the shortness property
with u, then w has the shortness property with v . Whether a vertex u has the shortness property
with v can be tested by checking if, in G, the length of a shortest u −v path plus the length of a
shortest v − r path equals the length of a shortest u − r path.

We explain the algorithm more formally. We first define a type that is the analogue of a tuple
(t ,X ,P,Xsp), as input for the function c[·] defined previously for Rectilinear Steiner Arbores-
cence.

Definition A.1. A type is a tuple (Y ,Y ′ ⊆ Y ,P,Ysp,K
′) such that the following hold:

(i) Y is a subset of V (G ) of size at most 41
√
n + 2.

(ii) P is a partition of Y ′ with q blocks.

(iii) There exists a set of components C1, . . . ,Cq in T̂ \ Y such that K ′ = K ∩ (Y ′ ∪⋃q
i=1V (Ci )).

(iv) Ysp has exactly one vertex ri from each block Pi ∈ P.

In a type (Y ,Y ′,P,Ysp,K
′), Y represents a potential bag Y of a node (say t ) in a tree decomposi-

tion ofT . The set Y ′, partition P, and Ysp have the same meaning as that of the tuple (t ,Y ′,P,Ysp)
for the function c[·] for Rectilinear Steiner Arborescence over a tree decomposition of an in-
put graph. The setK ′ is the set of terminals in the graphGt . We can show that the number of types
is bounded.

Lemma A.2. There is a 2O (
√

n log n)nO (1) time algorithm B enumerating all of the types.

Proof. The number of choices for Y is n
√

n . Once a Y is fixed, the number of choices for Y ′

is O (2
√

n ), whereas the number of choices for the partition P, of Y ′, is O (
√
n
√

n
). By definition

of the Hanan grid G, each vertex in G has at most four neighbors. Thus, T̂ − Y has at most 4
√
n

components. On fixing a Y , the choices for K ′ correspond to the 2O (
√

n) choices of at most 4
√
n

components of T̂ − Y . This gives us the desired bound on the number of suitable types. �
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In the following, we explain the steps of our algorithm, which are very similar to that of the Rec-
tilinear Steiner Tree algorithm. The differences in the two algorithms are mainly technicalities
due to the differences in the definitions of the two problems. Otherwise, the ideas for both the
algorithms are very similar. For the sake of completeness, we give the full algorithm for Rectilin-
ear Steiner Arborescence in this article. We fix an integer N = |3(V (G ) | + |E (G ) |). Just like the
dynamic programming algorithm for Rectilinear Steiner Tree, this algorithm computes values
A[i,D], where i ∈ [N ] and D is a type. As before, we want the tableA[, ] to contain all of the in-
formation that is necessary for correctly computing the function c[·] for Rectilinear Steiner Ar-
borescence. Since we do not know the graphT , we assume a hypothetical nice tree decomposition
T = (T ,X = {Xt }t ∈V (T ) ) of T of width at most 41

√
n. We may also assume that the nice tree de-

composition is rooted at a node t̃ ∈ T . Recall that the level of a vertex t ∈ T is the height of the sub-
tree of T rooted at t . From Proposition 2.1, the level of any node of T is at most N . Suppose t ∈ T
is a node at level i and corresponds to the bag Xt . Let Vt be the union of bags present in the sub-
tree rooted at t . Let the graphGt be defined as (Vt , {e | e is introduced in the subtree rooted at t }).
Let K ′ = Vt ∩ K . Then, for any X ⊆ Xt , a partition P of X , and a set Xsp defined with exactly
one vertex from each block of P, A[i, (Xt ,X ,P,Xsp,T

′)] = c[t ,X ,P,Xsp]. As mentioned be-
fore, c[t ,X ,P,Xsp] is the minimum weight of the locally rooted subgraph F of Gt such that
the following hold: (i) F has q connected components C1, . . . ,Cq such that ∅ � Pj = Xt ∩V (Cj ),
(ii) Xt ∩V (F ) = X , (iii) K ∩Vt ⊆ V (F ), and (iv) for each j ∈ [q], and each vertex w ∈ V (Cj ) \ {r j },
the w − r j path in F is a shortest path in G and w has the shortness property with r j . For other
pairs (i,D), we do not guarantee that the value ofA[i,D] is meaningful. As we had motivated the
ideas behind the algorithm for Rectilinear Steiner Tree, the main idea behind this algorithm is
that we pretend that a tree decomposition for T is given to us, even though in reality we do not
even know the graph T .

We write a recurrence relation for A[i,D], where i ∈ [N ] and D is a type. The motivation for
the recurrence relation is similar to that for the recurrence in the subexponential algorithm of
Rectilinear Steiner Tree.

A[1,D] =

{
0 if D = ({r }, {r }, {{r }}, {r }, {r })
∞ otherwise

(7)

To define A[i,D] for i ∈ [N ] \ {1} and a type D = (Y ,Y ′,P,Ysp,K
′), we first define many inter-

mediate values and take the minimum over all such values.
For all v ∈ Y ,

Iv [i,D] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

∞ if v � Y ′ and v ∈ K
∞ if v ∈ Y ′ but {v} � P

A[i − 1, (Y \ {v},Y ′,P,Ysp,K
′] if v � Y ′ and v � K

A[i − 1, (Y \ {v},Y ′ \ {v},P \ {{v}},Ysp \ {v},K ′ \ {v})] if v ∈ Y ′.

(8)

Intuitively, if Y is a bag corresponding to a node t in a tree decomposition ofT and K ′ is the set of
terminals in Gt , then Equation (8) corresponds to the computation of the function c[t ,Y ′,P,Ysp]
of Rectilinear Steiner Arborescence.

For all u,v ∈ Y such that u,v belong to the same block P of P and uv ∈ E (G ), we do the follow-
ing. Letw be the vertex that belongs to P ∩ Ysp. We first define a set P of pairs (P′,Y ′sp) on Y ′. For

a pair (P′,Y ′sp), P′ denotes a partition of Y ′, whereas Y ′sp is defined by taking exactly one vertex

per block of P′. For a pair (P′,Y ′sp) to belong to P , they must be exactly one of the following kinds
of pairs:

(1) The vertices u,v belong to the same block of P′. For each block P ′ ∈ P′, and vertex v ∈
P ′ ∩ Y ′sp, every vertex of P ′ has the shortness property with v .
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(2) The vertices u,v belong to distinct blocks Pu , Pv , respectively, of P′. For each block P ′ ∈
P′, and vertexv ∈ P ′ ∩ Y ′sp, every vertex of P ′ has the shortness property withv . Assume

u∗ ∈ Y ′sp ∩ Pu and v∗ ∈ Y ′sp ∩ Pv . Then, exactly one of the two possibilities holds:
• It holds that u∗ = w , v∗ = v . The vertex v has the shortness property with u and there-

fore the shortness property with w .
• It holds that v∗ = w , u∗ = v . The vertex u has the shortness property with v and there-

fore the shortness property with w .

Then, for the pair u,v ∈ Y ,

Iuv [i,D] = min

{
min

(P′,Y ′sp )∈P

{
A[i − 1, (Y ,Y ′,P′,Y ′sp,K

′)] + recdist(uv )
}
,A[i − 1,D]

}
. (9)

Note that if {u,v} � Y ′ or u and v are in same block of P, then Equation (9) gives Iuv [i,D] =
A[i − 1,D]. Equation (9) corresponds to the computation of values in the introduce edge node
where the edge uv is introduced.

For all w ∈ V (G ),

Fw [i,D] = min
⎧⎪⎨
⎪
⎩

min
P′

{
A[i − 1, (Y ∪ {w },Y ′ ∪ {w },P′,Ysp,K

′)]
}
,

A[i − 1, (Y ∪ {w },Y ′,P,Ysp,K
′)]

⎫⎪⎬
⎪
⎭
, (10)

where P′ in the inner minimum varies over all partitions obtained by adding w to one of the
existing blocks, and w was not a local root vertex. Equation (10) corresponds to computation in a
forget node where w is forgotten.

Let Q be the set of tuples, (P1,P2,Y
1
sp,Y

2
sp), that satisfies the following properties:

(1) P1 	 P2 = P.
(2) Ysp ⊆ Y 1

sp ∪ Y 2
sp.

(3) For i ∈ [2], Y i
sp is defined with exactly one vertex from each block of Pi . All vertices in a

block of Pi have the shortness property with the vertex of Y i
sp in that block.

(4) Let P1 and P2 be blocks of P1 and P2, respectively. Then |P1 ∩ P2 | ≤ 1. A vertex in P1 ∩ P2

belongs to at least one of Y 1
sp and Y 2

sp. We call such a vertex an intersection vertex.

(5) For any block P ∈ P, let it be formed by {P11, P12, . . . , P1a } ∈ P1 and {P21, P22, . . . , P2b } ∈
P2. Let Y ′1 be the subset of Y 1

sp defined by {P11, P12, . . . , P1a }. Let Y ′2 be the subset of Y 2
sp

defined by {P21, P22, . . . , P2b }. Let rP = P ∩ Ysp. Consider the auxiliary bipartite graph H =
(A � B,E (H )) where the vertices in A correspond to {P11, P12, . . . , P1a , P21, P22, . . . , P2b }
and B = Y ′1 ∪ Y ′2 . An edge is added between a vertex u ∈ A and v ∈ B if the block corre-
sponding to u contains the intersection vertex corresponding to v . This auxiliary graph
H must be a tree for (P1,P2,Y

1
sp,Y

2
sp) to be a tuple of Q. For a vertex v ∈ B, let Rv be

the rP −v path in H . Let Lv = {v = v1,v2, . . . , rP = v� } be the sequence of intersection
vertices obtained from Rv . Then for two consecutive vertices {vj ,vj+1} in Lv , vj has the
shortness property with vj+1.

With respect to the set Q, we define the following equation.

J [i,D] = min
P=P1	P2

(P1,P2,Y
1
sp,Y

2
sp )∈Q

K ′1∪K ′2=K ′

i′≤i−1

{
A[i − 1, (Y ,Y ′,P1,Y

1
sp,K

′
1)] +A[i ′, (Y ,Y ′,P2,Y

2
sp,K

′
2)]
}

(11)

Equation (11) corresponds to a computation in a join node.
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We define A[i,D] for i ∈ [N ] \ {1} and type D = (Y ,Y ′,P,Ysp,K
′) as follows.

A[i,D] = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

min
v ∈Y

Iv [i,D]

min
uv∈E (G )

u,v∈Y

Iuv [i,D]

min
w ∈V (G )

Fw [i,D]

J [i,D]

(12)

For each i ∈ [N ] and each type D, we associate withA[i,D] a locally rooted subgraph ofT . We say
that a locally rooted subgraph F is of type (Y ,Y ′,P,Ysp,K

′), whereP = {P1, . . . Pq } if the following
hold:

(a) The number of connected components in F is equal to |P | = q. In addition,V (Cj ) ∩ Y = Pj .
(b) V (F ) ∩ K = K ′.
(c) For each j ∈ [q], r j ∈ Pj .
(d) For each j ∈ [q], and each w ∈ Cj , the r j −w path in F is a shortest path in G and there is

a shortest r −w path in G with r j appearing as an internal vertex.

The next lemma shows the relation between the function A[·] and the set of locally rooted
subgraphs of T .

Lemma A.3. Let i ∈ [N ] and D be a type. Furthermore, let A[i,D] be computed by Equation (12),

and have a finite value �. Then there is a locally rooted subgraph F , of typeD, such that recdist(F ) ≤ �.

Proof. We show the statement using induction on i .

Case 1: Base case. Since the graph ({r }, ∅) is of type ({r }, {r }, {{r }}, {r }, {r }), the base case holds
trivially.

Now, let 1 < i ≤ N and D = (Y ,Y ′,P,Ysp,K
′) be a type and A[i,D] = �. We need to show that

there is a locally rooted subgraph F of G such that F has type D and recdist(F ) ≤ �.
Case 2. We know that A[i,D] is computed using Equation (12), which is a minimum over a

set of values. Suppose A[i,D] = Iv [i,D] = � for some v ∈ Y . If v � Y ′ and v � K , then by Equa-
tion (8), � = Iv [i,D] = A[i − 1, (Y \ {v},Y ′,P′,Ysp,K

′)]. By the induction hypothesis, there is a
locally rooted subgraph F that is of type D ′ = (Y \ {v},Y ′,P′,Ysp,K

′) and recdist(F ) ≤ �. Since
D and D ′ are satisfying types, conditions (a) through (d) in the definition of satisfying types im-
ply that F is of type D as well. If v ∈ Y ′, then � = Iv [i,D] = A[i − 1,D ′′ = (Y \ {v},Y ′ \ {v},P \
{v},Ysp \ {v},K ′ \ {v})]. By the induction hypothesis, there is a locally rooted subgraph F such that
recdist(F ) ≤ � and F is of type D ′′. This implies that the graph F ′ = F ∪ ({v}, ∅) is of type D and
recdist(F ′) = recdist(F ) ≤ �.

Case 3. Suppose A[i,D] = Iuv [i,D] = � for some u,v ∈ Y such that uv ∈ E (G ). If u and v are
in the same block of P, then A[i,D] = A[i − 1,D] = �. By the induction hypothesis, there is
a locally rooted subgraph F that is of type D and recdist(F ) ≤ �. However, suppose u and v
are in different blocks of P. If A[i,D] = A[i − 1,D] = �, then again by the induction hypoth-
esis, we have a locally rooted subgraph of type D and weight at most �. Otherwise, A[i,D] =
A[i − 1, (Y ,Y ′,P′,Y ′sp,K

′)] + recdist(uv ) for a pair (P′,Y ′sp) ∈ P . By the induction hypothesis,

there is a locally rooted subgraph F ′ with type D ′ = (Y ,Y ′,P′,Y ′sp,K
′), such that recdist(F ′) ≤

� − recdist(uv ) and there is no u −v path in F ′. By definition of pairs in P and transitivity of the
shortness property, the graph F = F ′ ∪ ({u,v}, {uv}) is a locally rooted subgraph that has type D,
by satisfying all of properties (a) through (d). Since recdist(F ) ≤ � we are done.
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Case 4. When A[i,D] = Fw [i,D] = �, for some w ∈ V (G ), then the arguments are similar to
case 1.

Case 5. Suppose A[i,D] = A[i − 1, (Y ,Y ′,P1,Y
1
sp,K

′
1)] +A[i − 1, (Y ,Y ′,P2,Y

2
sp,K

′
2)] = �, for a

tuple (P1,P2,Y
1
sp,Y

2
sp) ∈ Q and for K ′1 ∪ K ′2 = K ′. By the induction hypothesis, for j ∈ [2], there is

a locally rooted subgraph Fj of type D j = (Y ,Y ′,Pj ,Y
j
sp,K

′
j ). By the last two properties of the tuple

(P1,P2,Y
1
sp,Y

2
sp), if F1 and F2 are forests, then F1 ∪ F2 is also a forest. In addition, by transitivity

of the shortness property, it follows that F = F1 ∪ F2 is a locally rooted subgraph of type D. Since,
recdist(F ) ≤ recdist(F1) + recdist(F2) ≤ �, this proves the hypothesis. �

The next lemma links an optimal rectilinear Steiner arborescence to the values computed for the
tableA[, ]. First, we recall the definition of c[, , ]. For a subsetX ⊆ Xt , a partition P ofX , and a set
Xsp defined by selecting exactly one vertex from each block ofP, let c[t ,X ,P,Xsp] be the minimum
weight of the subgraph F of Gt such that the following hold: (i) F has q connected components
C1, . . . ,Cq such that ∅ � Pj = Xt ∩V (Cj ), (ii) Xt ∩V (F ) = X , (iii) K ∩Vt ⊆ V (F ), and (iv) for each
j ∈ [q], and each vertex w ∈ V (Cj ) \ {r j }), the w − r j path in F is a shortest path in G and w has
the shortness property with r j . If there is no such subgraph F , then the value c[t ,X ,P,Xsp] is∞.

Lemma A.4. Let T = (T , {Xt }t ∈V (T ) ) be a nice tree decomposition ofT . For a node t , let Xt be the

corresponding bag, X ⊆ Xt , P be a partition of X , and Xsp be a set defined by selecting exactly one

vertex from each block t of P. LetVt be the union of bags in the subtree rooted at t , and K ′ = K ∩Vt .

Then A[i, (Xt ,X ,P,Xsp,K
′)] ≤ c[t ,X ,P,Xsp].

Proof. Recall the nice tree decomposition T = (T , {X ′t }t ∈V (T ) ), of T , rooted at a node t̃ . To
each bag in T , we add the root terminal r , thereby obtaining a new tree decomposition T ′ =
(T , {X ′t }t ∈V (T ) ). The treewidth of the new tree decomposition is at most 1 more than that of the
old tree decomposition. For the ease of presentation, we useT = (T , {Xt }t ∈V (T ) ) to denote the new
tree decomposition ofT . Note that all leaf bags and the root bagX t̃ , of T , contain only one element
r . As before, for any node t ∈ V (T ), the level of t is the height of the subtree rooted at t . Note that
leaves in T other than root t̃ have level 1. The level of t̃ is the height of T . By Proposition 2.1, the
level of any node in T is at most N . For any node t ∈ V (T ), we use �t to denote the level of t . For
any t , we denote the graph St as (Vt , {e | e is introduced in the subtree rooted at t }), where Vt is
the union of bags present in the subtree rooted at t .

We prove the following statement: for any t ∈ V (T ), X ⊆ Xt , a partition P = {P1, . . . , Pq } of
X , and a set Xsp = {r1, . . . , rq } such that r j ∈ Pj , it holds that A[�t , (Xt ,X ,P,Xsp,K ∩Vt )] ≤
c[t ,X ,P,Xsp]. We prove the statement using induction on the level of the node t . The base case is
when �t = 1. In this case, X = {r }. If X = {r } and P = {{r }}, by definition A[1, (Xt ,X , {X },X ,K ∩
Vt )] = 0 = c[t ,X , {X },X ]. Otherwise, A[1, (Xt ,X ,P,X ,K ∩Vt )] = ∞ = c[t ,X , {X },X ]. Let t be a
node in V (T ), X ⊆ Xt , P be a partition of X , Xsp be a set defined by selecting exactly one ver-
tex from each block of P, and 1 < �t ≤ N . Let K ′ = K ∩Vt . If (Xt \ X ) ∩ K � ∅, then by definition

c[t ,X ,P,Xsp] = ∞ and so the statement holds. Suppose (Xt \ X ) ∩ K = ∅. Since T̂ is a Steiner ar-

borescence for K , K ⊆ V (T̂ ). SinceXt is a bag in the tree decomposition T , each terminal in a con-

nected component C of T̂ − Xt is either fully contained in Vt or none of the terminals in the com-

ponent C are present in Vt . Thus, there exists a set of connected components C1, . . . ,C ĵ of T̂ − Xt

such that K ′ = K ∩Vt = T ∩ (Xt ∪
⋃ĵ

j=1V (Cj )). This implies that (Xt ,X ,P,Xsp,K
′) is a type. Let

P = {P1, . . . , Pq }, Xsp = {r1, . . . , rq } such that r j ∈ Pj , and let F be a witness subgraph for the
value c[t ,X ,P,Xsp]. In other words, recdist(F ) = c[t ,X ,P,Xsp] and the following conditions hold:
(i) F has q connected components C1, . . . ,Cq such that ∅ � Pj = Xt ∩V (Cj ), (ii) Xt ∩V (F ) = X ,
(iii) K ∩Vt ⊆ V (F ), and (iv) for each j ∈ [q], and each vertex w ∈ V (Cj ) \ {r j }), the w − r j path in
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F is a shortest path in G and w has the shortness property with r j . We look at cases based on the
nature of the node t .

Case 1: t is an introduce vertex node. Let t ′ be the child of t and {v} = Xt \ X ′t . Note that
the level of t ′ is �t − 1. If v � V (F ), then c[t ′,X ,P,Xsp] ≤ recdist(F ). By Equations (8) and (12),
A[�t , (Xt ,X ,P,Xsp,K

′)] ≤ A[�t − 1, (X ′t ,X ,P,Xsp,K
′)]. By the induction hypothesis,

A[�t − 1, (X ′t ,X ,P,Xsp,K
′)] ≤ c[t ′,X ,P,Xsp] ≤ recdist(F ) = c[t ,X ,P,Xsp].

Ifv ∈ V (F ), thenv appears as an isolated vertex in F , becausev is an isolated vertex in St . By defini-
tion of Xsp, v must belong to Xsp. This implies that c[t ′,X \ {v},P \ {{v}},Xsp \ {v}] ≤ recdist(F ).
By Equations (8) and (12),

A[�t , (Xt ,X ,P,Xsp,K
′)] ≤ A[�t − 1, (X ′t ,X \ {v},P \ {{v}},Xsp \ {v},K ′)].

By the induction hypothesis, A[�t − 1, (X ′t ,X \ {v},P \ {{v}},Xsp \ {v},K ′)] ≤ c[t ′,X \ {v},P \
{{v}},Xsp \ {v}] ≤ recdist(F \ {v}) = recdist(F ) = c[t ,X ,P,Xsp].

Case 2: t is an introduce edge node. Let t be labeled with the edge uv and t ′ be the child of t . In
other words, {u,v} ⊆ Xt ′ = Xt . Note that the level of t ′ is �t − 1. Ifuv � E (F ), then c[t ′,X ,P,Xsp] ≤
recdist(F ). By Equations (9) and (12), we know that

A[�t , (Xt ,X ,P,Xsp,K
′)] ≤ A[�t − 1, (X ′t ,X ,P,Xsp,K

′)].

By the induction hypothesis,

A[�t − 1, (X ′t ,X ,P,Xsp,K
′)] ≤ c[t ′,X ,P,Xsp] ≤ recdist(F ) = c[t ,X ,P,Xsp].

Suppose uv ∈ E (F ). This means that there is a single component C , in F , that contains u,v . Let
rC = C ∩ Xsp. Then, for each vertex w ∈ C , w has the shortness property with rC . Let C ′1, . . . ,C

′
q′

be the connected components of F − uv . Since each component of F is a tree, the component
C breaks into two components, C ′ and C ′′, of F \ {uv}. Without loss of generality, assume that
rC ,u ∈ C ′ and v ∈ C ′′. Notice that any vertex of C ′′ has the shortness property with v , and any
vertex of C ′ continues to have the shortness property with rC . Consider the partition P′ to be
{V (C ′1) ∩ X , . . . ,V (C ′q′ ) ∩ X } and X ′sp = Xsp ∪ {v}. This implies that c[t ′,X ,P′,X ′sp] ≤ recdist(F \
{uv}) = recdist(F ) − recdist(uv ). By the induction hypothesis,

A[�t − 1, (Xt ′,X ,P′,X ′sp,K
′)] ≤ c[t ′,X ,P′,Xsp] ≤ recdist(F ) − recdist(uv ).

The property of F implies that in the partition P′, if we merge the blocks containing u andv , then
we get the partition P. This, along with the definition of X ′sp, implies that the tuple (P′,X ′sp) ∈ P .

Thus, by Equations (9) and (12),

A[�t , (Xt ,X ,P,Xsp,K
′)] ≤ A[�t − 1, (Xt ′,X ,P′,X ′sp,K

′)] + recdist(uv ) ≤ recdist(F ).

Case 3: t is a forget node. Let t ′ be the child of t and {w } = Xt ′ \ Xt . Note that the level
of t ′ is �t − 1. If w � V (F ), then c[t ′,X ,P,Xsp] ≤ recdist(F ). By the induction hypothesis,
A[�t , (Xt ′,X ,P,Xsp,K

′)] ≤ c[t ′,X ,P,Xsp] ≤ recdist(F ). By Equations (10) and (12), it is true that
A[�t , (Xt ,X ,P,Xsp,K

′)] ≤ A[�t − 1, (Xt ′,X ,P,Xsp,K
′)] ≤ recdist(F ).

Supposew ∈ V (F ). Note thatw does not belong to X . Consider the set X ∪ {w } ⊆ Xt ′ . LetCj be
the component of F containingw . Note that Pj = V (Cj ) ∩ X . Since,w � X ,w � Cj ∩ Xsp. Let P′ is
a partition obtained from P, by adding w to the block Pj . Then P′ is a partition of X ∪ {w }. This
implies that c[t ′,X ∪ {w },P′,Xsp] ≤ recdist(F ). By the induction hypothesis,

A[�t ′, (Xt ′,X ∪ {w },P′,Xsp,K
′)] ≤ c[t ′,X ∪ {w },P′,Xsp] ≤ recdist(F ).
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By Equations (10) and (12),

A[�t , (Xt ,X ,P,Xsp,K
′)] ≤ A[�t − 1, (Xt ′,X ∪ {w },P′,Xsp,K

′)] ≤ recdist(F ).

Case 4: t is a join node. Let t1 and t2 be the children of t . Here, Xt = Xt1 = Xt2 and the level of
Xtj
, j ∈ {1, 2}, is at most �t − 1. Note that at least one of the children must have a level exactly �t − 1.

Without loss of generality, letXt1 be that child. It is possible that the level ofXt2 is �t2 , which is less
than �t − 1. Let F1 be the graph with vertex setV (F ) ∩Vt1 and edge set E (F ) ∩ E (St1 ). Let F2 be the
graph with vertex setV (F ) ∩Vt2 and edge set E (F ) \ E (F1). As F was a forest, the graphs F1 and F2

are also forests. Note that F = F1 ∪ F2. LetT ′1 = V (F1) ∩T andT ′2 = V (F2) ∩T . Since all connected
components in V (F ) contain at least one vertex from X and Xt is a bag in the tree decomposi-
tion, all connected components in F1 and F2 contain at least one vertex from X . Let C ′1, . . . ,Cq′

be the connected components of F1 and C ′′1 , . . . ,C
′′
q′′ be the connected components in F2. Let

P1 = {X ∩V (C ′1), . . . ,X ∩V (C ′q′ )} and P2 = {X ∩V (C ′′1 ), . . . ,X ∩V (C ′′q′′ )}. Consider a new block

C ′, from one of the partitions P1 or P2, and assume thatC ′ ⊆ C ∈ P. Let rC ′ be the unique vertex,
inV (C ′), that has minimum distance to the vertex rC ∈ C ∩ Xsp. Then, each vertex inV (C ) has the

shortness property with rC ′ . This way, we obtain, for each j ∈ [2], a set X j
sp defined by taking ex-

actly one vertex from each block of Pj . Thus, c[t1,X ,P1,X
1
sp] ≤ recdist(F1) and c[t2,X ,P2,X

2
sp] ≤

recdist(F2). By the induction hypothesis, A[�tj
, (Xtj

,X ,Pj ,X
j
sp,K

′
j )] ≤ c[tj ,X ,Pj ,X

j
sp] for j ∈

{1, 2}. The definitions of F , F1, and F2 imply that P = P1 	 P2. In addition, notice that the
tuple (P1,P2,X

1
sp,X

2
sp) ∈ Q. By Equations (11) and (12), A[�t , (Xt ,X ,P,Xsp,K

′)] ≤ A[�t −
1, (Xt ,X ,P1,X

1
sp,K

′
1)] +A[�t2 , (Xt ,X ,P2,X

2
sp,K

′
2)] ≤ recdist(F1) + recdist(F2) = recdist(F ). This

concludes the proof. �

Finally, we prove Theorem 4.5 by showing that Rectilinear Steiner Arborescence can be

solved in time 2O (
√

n log n)nO (1) .

Proof of Theorem 4.5. We take as input a set K of n terminal points, the Hanan grid G of K ,
and the weight function recdist. Furthermore, r ∈ K is the root terminal. Then using Lemma 4.1,

we compute a shortest path RSA T̂ . By Lemma 4.4, we know that there is an optimal Steiner tree

Topt with tw(T̂ ∪Topt) ≤ 41
√
n. In addition, from Proposition 2.1, we know that the height of this

tree decomposition is at most 3( |V (G ) | + |E (G ) |). Based on the shortest path RSA T̂ , we apply
Lemma A.2, to enumerate all possible types D of G. We fix an integer N = 3( |V (G ) | + |E (G ) |). For
each i ∈ [N ] and each type D, the algorithm computes values A[i,D], according to Equations (7)
and (12). The values in A[, ] are filled in the increasing order of i . Finally, the algorithm outputs
mini ∈[N ]A[i, ({r }, {r }, {{r }}, {r },K )].

For the hypothetical subgraph T , fix an optimal nice tree decomposition T , rooted at node t̃ .
Add the root terminal r to each bag of the nice tree decomposition (as described in the proof
of Lemma A.4). The treewidth of this tree decomposition is at most 41

√
n + 1. Let t be a node

in the tree decomposition, of level �t . Let Xt be the bag of t and Vt be the union of bags in the
subtree rooted at t . Let K ′ = K ∩Vt . Suppose X ⊆ Xt , P is a partition of X , and the set Xsp is
defined by selecting exactly one vertex from each block of P. By definition, c[t ,X ,P,Xsp] is the
size of a locally rooted subgraph of type (Xt ,X ,P,Xsp,K

′). Then, Lemmas A.3 and A.4 imply that

A[�t , (Xt ,X ,P,Xsp,K
′)] = c[t ,X ,P,Xsp]. In particular, for the root t̃ of the tree decomposition,

A[�t̃ , ({r }, {r }, {{r }}, {r },K )] = c[t̃ , {r }, {{r }}, {r }]. Notice that c[t̃ , {r }, {{r }}, {r }] is the size of a min-
imum rectilinear Steiner arborescence of G.

However, by Lemma A.3, for all i ∈ [N ], if A[i, ({r }, {r }, {{r }}, {r },K )] = �, then there is a locally
rooted subgraph F that connects all terminals of K and satisfies recdist(F ) ≤ �. By description,
the output of the algorithm is mini ∈[N ]A[i, ({r }, {r }, {{r }}, {r },K )]. Therefore, it must output the
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weight of a minimum rectilinear Steiner arborescence of G. This proves the correctness of the
algorithm.

The size of the tableA[, ] is N · 2O (
√

n log n) , and each entry can be filled in time 2O (
√

n log n)nO (1) .

Thus, the running time of the algorithm is 2O (
√

n log n)nO (1) . Using standard back-tracking tricks,
we can also output an optimal RSA. This concludes the proof. �
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