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Abstract

We design the first subexponential-time (parameterized) algorithms for several cut and cycle-hitting
problems onH-minor free graphs. In particular, we obtain the following results (where k is the solution-
size parameter).

• 2O(
√
k log k) ·nO(1) time algorithms for EDGE BIPARTIZATION and ODD CYCLE TRANSVERSAL;

• a 2O(
√
k log4 k) · nO(1) time algorithm for EDGE MULTIWAY CUT and a 2O(r

√
k log k) · nO(1) time

algorithm for VERTEX MULTIWAY CUT (with undeletable terminals), where r is the number of
terminals to be separated;

• a 2O((r+
√
k) log4(rk)) ·nO(1) time algorithm for EDGE MULTICUT and a 2O((

√
rk+r) log(rk)) ·nO(1)

time algorithm for VERTEX MULTICUT (with undeletable terminals), where r is the number of
terminal pairs to be separated;

• a 2O(
√
k log g log4 k) ·nO(1) time algorithm for GROUP FEEDBACK EDGE SET and a 2O(g

√
k log(gk)) ·

nO(1) time algorithm for GROUP FEEDBACK VERTEX SET, where g is the size of the group.

• In addition, our approach also gives nO(
√
k) time algorithms for all above problems with the excep-

tion of nO(r+
√
k) time for EDGE/VERTEX MULTICUT and (ng)O(

√
k) time for GROUP FEEDBACK

EDGE/VERTEX SET.

All of our FPT algorithms (the first four items above) are randomized, as they use known randomized
kernelization algorithms as sub-routines.

We obtain our results by giving a new decomposition theorem on graphs of bounded genus, or more
generally, an h-almost-embeddable graph for an arbitrary but fixed constant h. Our new decomposition
theorem generalizes known Contraction Decomposition Theorem. Prior studies on this topic exhibited
that the classes of planar graphs [Klein, SICOMP, 2008], graphs of bounded genus [Demaine, Hajiaghayi
and Mohar, Combinatorica 2010] and H-minor free graphs [Demaine, Hajiaghayi and Kawarabayashi,
STOC 2011] admit a Contraction Decomposition Theorem. In particular we show the following. Let
G be a graph of bounded genus, or more generally, an h-almost-embeddable graph for an arbitrary but
fixed constant h. Then for every p ∈ N, there exist disjoint sets Z1, . . . , Zp ⊆ V (G) such that for
every i ∈ {1, . . . , p} and every Z ′ ⊆ Zi, the treewidth of G/(Zi\Z ′) is upper bounded by O(p+ |Z ′|),
where the constant hidden in O(·) depends on h. Here G/(Zi\Z ′) denotes the graph obtained from G
by contracting every edge with both endpoints in Zi\Z ′. When Z ′ = ∅, this corresponds to classical
Contraction Decomposition Theorem.
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1 Introduction

The study of subexponential time parameterized algorithms on planar and H-minor free graphs has been
one of the most active sub-areas of parameterized algorithms, which led to exciting results and powerful
methods. Examples include Bidimensionality [16], applications of Baker’s layering technique [28, 23, 60,
4], bounds on the treewidth of the solution [27, 41, 40, 52], and pattern coverage [28, 54]. The central theme
of all these results is that planar graphs exhibit the “square root phenomenon”: parameterized problems
whose fastest parameterized algorithm run in time f(k)nO(k) or 2O(k) on general graphs admit f(k)nO(

√
k)

or even 2O(
√
k)nO(1) time algorithms when input is restricted to planar or H-minor free graphs.

Another central research direction within parameterized algorithms is the study of cut and cycle hitting
problems such as MULTIWAY CUT, MULTICUT, ODD CYCLE TRANSVERSAL and DIRECTED FEEBDACK

VERTEX SET. The existence of f(k)nO(1) time algorithms for these problems were considered major open
problems [24], and the algorithms developed for these problems [3, 5, 53, 48, 57] and their generaliza-
tions [6, 8, 7, 12, 13, 30, 42, 37, 45, 46, 51, 61] have become standard textbook material [11]. Our paper is
concerned with the following question:

Does the square root phenomenon apply to cut and cycle hitting problems?

Despite substantial previous progress this question still remains largely unresolved. In fact, for most of these
problems even an algorithm with running time nO(

√
k) is not known, when input is restricted to planar or

H-minor free graphs. Here k is solution size. In this paper, we make substantial progress on this question.

1.1 Previous work on cut and cycle hitting problems on planar graphs

In most cut problems, we have an input graph G, a set of terminals T ⊆ V (G), a set R of unordered
pairs of vertices in T , called terminal pairs, and a positive integer k, and the objective is to test whether we
can delete at most k edges (or vertices), say S, so that “certain demands on terminal pairs in R are met”.
When we demand that for every terminal pair (t1, t2) ∈ R, the vertices t1 and t2 lie in different connected
components ofG−S, this corresponds to EDGE MULTICUT. When the setR of pairs of terminals comprises
all the pairs of vertices in the set T of terminals, it corresponds to EDGE MULTIWAY CUT (also known as
MULTITERMINAL CUT). Thus, naturally cut problems have three parameters: (a) size of the set of terminal
(r) (or the the number of request pairs); (b) the solution size k; and (c) the combined parameter r + k.

Dahlhaus et al. [14] initiated an algorithmic study of EDGE MULTIWAY CUT, and showed that the
problem is NP-complete on general graphs when |T | ≥ 3, and on planar graphs when |T | is part of
the input. They complemented the result on planar graphs by designing an algorithm with running time
O((4r)rn2r−1 log n). Klein and Marx, revisited this problem in 2012, and designed an algorithm with run-
ning time 2O(r)nO(

√
r) [40]. Marx [49] also showed that, this algorithm is essentially tight. That, is they

showed that the problem is W[1]-hard. In fact, Marx [49] showed that unless Exponential Time Hypothesis
(ETH) is false, there is no algorithm solving the problem in time f(r)nO(

√
r), for some function f depend-

ing on r alone. de Verdière [15] generlized this result to EDGE MULTICUT and to graphs of genus g. In
particular, he designed an algorithm with running time (g + r)O(g+r)nO(

√
g2+gr) [15]; which is shown to

be optimal in [10]. Finally, Cohen-Addad et al. [9] designed (1 + ε)-approximation algorithm for EDGE

MULTICUT running in time (g + r)O((g+r)3)(1
ε )
O(
√
g+r)n log n. In the last two results r = |R|.

While, EDGE MULTIWAY CUT and EDGE MULTICUT, parameterized by |T | and |R|, on planar graphs
and graphs of bounded genus have been studied in literature, there is only one such result with respect
to solution size k, as a parameter. In a seminal result Pilipczuk et al. [56] designed a polynomial kernel
for STEINER TREE on graphs of bounded genus and utilized it together with a known algorithm to design
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2O(
√
k log k)nO(1) time algorithm for STEINER TREE on graphs of bounded genus. Using a duality between

STEINER TREE and EDGE MULTIWAY CUT on planar graphs, Pilipczuk et al. [56] also designed a polyno-
mial kernel for EDGE MULTIWAY CUT on planar graphs. Using this kernel they designed 2O(

√
k log k)nO(1)

time algorithm for EDGE MULTIWAY CUT on planar graphs.
A subexponential time algorithm for FEEDBACK VERTEX SET (deleting vertices to hit all cycles) on

H-minor free graphs follows from the the theory of Bidimensionality [16]. However, if we are only in-
terested in hitting odd cycles (ODD CYCLE TRANSVERSAL), theory of Bidimensionality [16] does not
apply. Lokshtanov et al. [47] gave the first 2O(

√
k log k)nO(1) time randomized algorithm for ODD CYCLE

TRANSVERSAL on planar graphs. Later, Jansen et al. [35] designed deterministic polynomial kernels for
ODD CYCLE TRANSVERSAL and VERTEX MULTIWAY CUT. Using this kernel the algorithm of Loksh-
tanov et al. [47] can be made deterministic. Finally, we would also like to mention results on SUBSET TSP.
Marx et al. [52] gave 2O(

√
k log k)nO(1) time algorithm for SUBSET TSP on edge-weighted directed planar

graphs. Earlier, Klein and Marx [41] obtained a similar result for SUBSET TSP on undirected planar graphs.

1.2 Our results

In this paper we take a significant step forward in understanding the parameterized complexity of cut and
cycle hitting problems on H-minor free graphs.

We provide an algorithmic framework that allows us to design the first nO(
√
k) time algorithm for

several cut and cycle hitting problems on H-minor free graphs in a uniform way. This includes the
first nO(

√
k) time algorithm for EDGE MULTIWAY CUT, VERTEX MULTIWAY CUT, EDGE

BIPARTIZATION, and ODD CYCLE TRANSVERSAL on H-minor free graphs.

Algorithms running in time nO(
√
k) are subexponential but they are not parameterized subexponential

algorithms; that is they are not of the form 2o(k)nO(1). We incorporate a notion of candidate sets, a notion
weaker than polynomial kernels, in our framework and design parameterized subexponential algorithms
for several aforementioned problems. A parameterized problem is said to admit a kernel, if there is a
polynomial time algorithm (the degree of polynomial is independent of k), called a kernelization algorithm,
that reduces the input instance (I, k) down to an instance (I ′, k′) with size bounded by a function p(k) in
k, while preserving the answer. This reduced instance is called a p(k) kernel for the problem. If p(k) is
(quasi)-polynomial then we say that a parameterized problem admits a (quasi)-polynomial kernel [11, 29].
Randomized kernels of (quasi)-polynomial size is known for several cut problems [43, 44, 34, 62, 63] on
general graphs. For these problems, it is natural to first apply the kernelization algorithm and then run the
nO(
√
k) time algorithm on the obtained kernel to design parameterized subexponential algorithms. There are

two difficulties with this approach.

1. Even though we start with a graph G that excludes some fixed graph H as a minor, it is not necessary
that the output graph G′ will also exclude H as a minor, as we are running a kernelization algorithm
for general graphs.

2. The reduced parameter k′ could become kO(1), and thus running nO(
√
k) time algorithm on kernel

may not yield the desired result.

In most of the known kernelization algorithm k′ ≤ k and hence, the second difficulty can be overcome.
However, the first constraint is more challenging and requires making the known kernelization algorithm
return an instance in the desired family of graphs. That is, if G is the family of input graphs, then we would
like the kernelization algorithm also to return the output graph G′ ∈ G. We overcome this difficulty by

2



observing that known kernelization algorithm for cut problems can be made to output a “candidate set” of
size (quasi)-polynomial in k. A candidate set is a set Cand ⊆ V (G) (resp., Cand ⊆ E(G)), satisfying that
(I, k) has a solution of size at most k if and only if I has a solution of size at most k that is contained in Cand.
By incorporating candidate set in our framework, we obtain the following parameterized subexponential
algorithms.

• In the ODD CYCLE TRANSVERSAL (resp., EDGE BIPARTIZATION) problem input is a graph G and
integer k. The task is to determine whether there exists a set S of at most k vertices (resp., edges) so
that G−S is bipartite. We give a 2O(

√
k log k) ·nO(1) time algorithm for ODD CYCLE TRANSVERSAL

and for EDGE BIPARTIZATION.

• In the VERTEX MULTIWAY CUT (resp., EDGE MULTIWAY CUT) problem input is a graph G a vertex
set T ⊆ V (G) of size r, and an integer k. The task is to determine whether there exists a set S of
at most k vertices in V (G) \ T (resp., edges in E(G)) such that no connected component of G − S
contains at least two vertices from T . We obtain a 2O(r

√
k log k) · nO(1) time algorithm for VERTEX

MULTIWAY CUT and a 2O(
√
k log4 k) · nO(1) time algorithm for EDGE MULTIWAY CUT. Note that the

running time of the algorithm for VERTEX MULTIWAY CUT depends on r while the one for EDGE

MULTIWAY CUT does not.

• In the VERTEX MULTICUT (resp., EDGE MULTICUT) problem input is a graph G, together with
r vertex pairs (s1, t1), . . . , (sr, tr). The task is to determine whether there exists a vertex subset
S ⊆ V (G) \ {si, ti : i ≤ r} (resp., edge subset S ⊆ E(G)) such that no connected component of
G−S contains both si and ti for any i ≤ r. We obtain a 2O((

√
rk+r) log(rk)) ·nO(1) time algorithm for

VERTEX MULTICUT and a 2O((r+
√
k) log4(rk)) · nO(1) time algorithm for EDGE MULTICUT.

• In the GROUP FEEDBACK VERTEX SET (resp., GROUP FEEDBACK EDGE SET) problem input is a
graphG, together with a function Λ : V (G)×V (G)→ Σ and an integer k, where Σ is a group of size g
and Λ satisfies Λ(u, v)×Λ(v, u) = 1. The task is to determine whether there exists S ⊆ V (G) (resp.,
S ⊆ E(G)) of size at most k such that G− S has no non-null cycles. Here a non-null cycle is a cycle
(v0, v1, . . . , vm = v0) in the graph satisfying

∏m
i=1 Λ(vi−1, vi) 6= 1. We obtain a 2O(g

√
k log(gk))·nO(1)

time algorithm for GROUP FEEDBACK VERTEX SET and a 2O(
√
k log g log4 k) · nO(1) time algorithm

for GROUP FEEDBACK EDGE SET.

For convenience, in the rest of the paper, we use the following abbreviations for the problem names:
ODD CYCLE TRANSVERSAL (OCT), EDGE BIPARTIZATION (EB), VERTEX MULTIWAY CUT (VMWC),
EDGE MULTIWAY CUT (EMWC), VERTEX MULTICUT (VMC), EDGE MULTICUT (EMC), GROUP FEED-
BACK VERTEX SET (GFVS), and GROUP FEEDBACK EDGE SET (GFES).

1.3 Methods: algorithms via a contraction decomposition theorem

One of the modern tools to design polynomial-time approximation schemes (PTASs) and FPT algorithms
on planar graphs or more generally on H-minor free graphs is to prove strengthening of the classic Baker’s
layering technique [1]. This generally yields, in what is known as (Vertex) Edge Decomposition Theo-
rems [1, 26, 17, 22, 25] (see [55] for a detailed introduction). There are several problems for which an
optimal solution with respect to subgraphs or minors of a graph is not larger than an optimal solution with
respect to the graph itself. For those, (Vertex) Edge Decomposition Theorem [1, 26, 17, 22, 25] are much
more relevant. However, it is easy to observe that classical problems such as DOMINATING SET, BISECTION

and TRAVELING SALESMAN PROBLEM (TSP), are not closed under taking subgraph or minors. Neverthe-
less, they are closed under another useful graph operation, namely, edge contraction. That is, if G is a graph
and H is obtained from G by a series of edge contractions, then the “solution size’’ of H is not larger than
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that of G. Such problems naturally led to the following notion of contraction decomposition, which is most
relevant to our studies in this paper.

[The notion of a Contraction Decomposition Theorem (CDT)] Let G be a graph (say, which belongs to
a prespecified graph class C) and let k ∈ N. Then, the edge set of G can be partitioned into k + 1 sets
(possibly empty) in such a way that contracting any of these sets in G yields a graph of treewidth at most
f(k). Moreover, such a partition, together with tree decompositions of width at most f(k) of the respective
graphs, can be found in polynomial time.

A CDT is known for planar graphs [39, 38] (initially for a variation of contraction called compression),
graphs of bounded genus [20], H-minor free graphs [19] and unit disk graphs [55]. In all of these works,
the treewidth is bounded by a linear function of k. That is, f(k) = O(k). However, for most known
applications on these classes of graphs, any computable function f of k suffices. In this paper, we prove a
generalization of CDT on graph of bounded genus, or more generally, on h-almost-embeddable graph for
an arbitrary but fixed constant h, and apply a non-trivial dynamic programming algorithm on Robertson-
Seymour decomposition theorem for H-minor free graphs [58].

To describe our results and especially the new CDT, we only focus on planar graphs in the introduction.
Our generalization can be expressed in the context of planar graphs as follows.

Lemma 1. Let G be a planar graph. Then for any p ∈ N, there exist disjoint sets Z1, . . . , Zp ⊆ V (G) such
that for every i ∈ [p] and every Z ′ ⊆ Zi, tw(G/(Zi\Z ′)) = O(p+ |Z ′|). Furthermore, the sets Z1, . . . , Zp
can be computed in polynomial time.

Here G/V denote the graph obtained from G by contracting each edge in the induced subgraph G[V ].
To see why the above lemma implies the contraction decomposition theorem, let E1, . . . , Ep be the edges
in G[Z1], . . . , G[Zp]. Since Z1, . . . , Zp are disjoint, E1, . . . , Ep are also disjoint and thus there exists a
partition E′1, . . . , E

′
p of the edges of G such that Ei ⊆ E′i. Then we have tw(G/E′i) ≤ tw(G/Ei) =

tw(G/Zi) = O(p). A very important difference however is that, in our result, we still have control on the
treewidth of the resulting graph, even if we do not contract all the edges of each Ei.

To see an example where this difference is crucial, let us consider the EDGE BIPARTIZATION problem
on planar graphs, where the goal is to find a set S of k edges such that G − S is bipartite. Using known
techniques (see Lemma 5 below), we can find in polynomial time a set Cand of size kO(1) such that we only
need to look inside Cand for the solution. Let Z1, . . . , Zp be the sets obtained from applying Lemma 1 with
p =
√
k, and E1, . . . , Ep be the sets of edges in G[Z1], . . . , G[Zp]. Because we are looking for a solution

S of size k and E1, . . . , Ep are disjoint, it means that one of these sets, say Ei, contains less than
√
k edges

of S. As we are looking for a solution S ⊆ Cand, there are at most kO(
√
k) possible sets for Si := S ∩ Ei.

Therefore, by trying all the possibilities of i and Si, we can assume that the algorithm knows Si. Denoting
Z ′ the set of vertices adjacent to edges in Si, it means that we have |Z ′| = O(

√
k) and thus our lemma

implies that tw(G/(Zi \Z ′)) = O(
√
k). A pretty standard DP argument shows that EDGE BIPARTIZATION

on a graph H can be solved in time 2O(tw(H))nO(1), and we will be able to adapt this argument to solve
EDGE BIPARTIZATION in G in time 2O(tw(G/(Zi\Z′)))nO(1) = 2O(

√
k)nO(1). Indeed, while some of the

vertices in G/(Zi \ Z ′) can correspond to a large connected component C of G[Zi \ Z ′], the fact that we
have contracted only edges which are not in the solution means that C is bipartite, and in the DP we only
have to guess which side of C will belongs to which side of the final bipartition of G− S.

A similar approach using only the contraction decomposition Theorem would fail, as it requires that one
set completely avoids the solution. Therefore p needs to be greater than k, and we obtain a decomposition
of a graph after contraction of treewidth at least k, which cannot lead to a subexponential-time algorithm.

In order to prove Lemma 1 we will consider the vertex-face incidence (VFI) graph of G, which is
a bipartite graph containing on one side the set of vertices of G and on the other side the set of faces.
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Moreover, a vertex is adjacent to a face if it belongs to its boundary. Classically, if the VFI graph of a planar
graph has diameter at most p, then tw(G) = O(p). The deep faces of G refer to the faces farthest from the
outer face o of G, i.e., the faces have the maximum distance from o in the VFI of G. The following lemma
is an essential part of our proof (which is a special case of Lemma 12).

Lemma 2. Let G be a planar graph such that the VFI graph of G has diameter p. For each deep face f of
G, let κ(f) be a set of at most q vertices on the boundary of f . Then there exists a tree decomposition of G
of width O(p+ q) where for every deep face f of G, κ(f) is contained in some bag of the decomposition.

The key idea for proving the above lemma (without going into details) is the following. We draw inside
each deep face f of G a |κ(f)| × |κ(f)| grid and connecting the vertices in the first row of the grid to the
vertices in κ(f). The resulting graph G′ is still planar. Since the grids are drawn in the deep faces of G,
the VFI graph of G′ has diameter O(p + q), so there is a tree decomposition of G′ of width O(p + q).
We then exploit the well-linked property of grids to show how to modify this tree decomposition (without
significantly increasing its width) to force the vertices in each κ(f) to be contained in the same bag.

With Lemma 2, let us explain roughly how to obtain the sets Z1, . . . , Zp of Lemma 1. Let G be a planar
graph and assumed that the embedding is fixed. Consider now a BFS in the VFI graph of G starting from
the outer face. Let L0, L1, . . . , Lm denote the different levels of the BFS. In particular, we will be interested
in the odd levels L2i+1 = L′i for i ≤ m/2. As L0 is the outer face and the VFI graph is bipartite, the L′i
form a partition of the vertices of G. An interesting way to understand the L′i is by noting that L′1 is exactly
the boundary of the outer face of G, L′2 is exactly the boundary of the outerface of G− L′1 and so on.

For every i ∈ [p], we now define each Zi as the union of the L′j for j = i (mod p). Let Z ′ be a subset
of vertices in Zi. In order to understand what happens when we contract the edges of G[Zi \ Z ′], let us
partition the graph into G≤ := G[L′1 ∪ · · · ∪ L′i] and G> := G[L′i+1 ∪ · · · ∪ L′m/2] the rest. The idea is
to apply some sort of inductive argument in G> and then combine the tree decomposition with the one of
G≤/(Zi \ Z ′). First note that, because G≤ consists of the first 2i < 2p layers of the BFS in the VFI graph
of G, we have that the diameter in the VFI graph of G≤ is O(p). Moreover, we know L′i is the outerface
of G[L′i+1 ∪ · · · ∪ L′m/2] which means that L′i is a cut between G≤ and G>. Moreover, it means that every
connected component of G> sits inside one face of G≤ whose boundary is a cycle of L′i. Let C1, . . . , Cr
denote the connected components of G> and ∂1, . . . , ∂r the set of cycles bounding the associated faces
f1, . . . , fr (we assume here for simplification that f1, . . . , fr are different, and it is easy to see that they are
all deep faces of G). As all the ∂i are inside Li, it means that in G/(Zi\Z ′), each ∂j will be contracted into
a cycle ∂′j of size 1 + |Z ′ ∩ ∂j | = O(|Z ′|).

The idea of the proof is then to compute inductively a tree decomposition for each Cj/(Zi\Z ′) as well
as G≤/(Zi\Z ′) and merge them together. In order to do that efficiently, we require that each ∂′j appears in
one bag of the decomposition of G≤/(Zi\Z ′) so that we can append the tree decomposition of Cj/(Zi\Z ′)
to this bag. In order to obtain such a tree decomposition of G≤/(Zi\Z ′) we will use Lemma 2. We let
κ(fj) include, for every vertex v in the contracted cycle ∂′j , a vertex in the cycle ∂j corresponding to v.
Thus, |κ(fj)| = |∂′j | = O(|Z ′|). By Lemma 2, G≤ has a tree decomposition of width O(p+ |Z ′|) in which
every κ(fj) is contained in some bag. This tree decomposition then induces an O(p + |Z ′|)-width tree
decomposition of G≤/(Zi\Z ′) in which every ∂′j is contained in some bag.

So far we sketched our results in only the context of planar graphs. Of course, our actual results are
much more general, and require more technical proofs. We prove Lemma 1 for almost-embeddable graphs,
which is a class of graphs generalizing the class of bounded-genus graphs. With this in hand, we solve
our problems by doing dynamic programming on the famous “almost-embeddable” tree decomposition of
an H-minor-free graph introduced by Robertson and Seymour [58]. Specifically, the generalized version
of Lemma 1 allows us to apply Baker’s technique with a second-level dynamic programming to efficiently
compute the DP table at each node of the Robertson-Seymour tree decomposition.
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Organization. The rest of the paper is organized as follows. In Section 3, we present the generic frame-
work for solving our problems on H-minor-free graphs, which all of our algorithms follow. In Section 4,
we prove our main technical lemma (Lemma 6). In Section 5, we apply our framework in Section 3 to solve
each of our problems individually. Finally, in Section 6, we conclude the paper.

2 Preliminaries

Basic notations. Let G be a graph. We use V (G) and E(G) to denote the vertex set and the edge set of
G, respectively. For V ⊆ V (G), we use G[V ] to denote the induced subgraph of G on V and use G− V to
denote the induced subgraph of G on V (G)\V . The notation G/V denotes the graph obtained from G by
contracting all edges in G[V ], or equivalently, contracting every connected component of G[V ] to a single
vertex. We denote by NG(V ) the set of vertices in V (G)\V that are neighboring to at least one vertex in V .

Tree decomposition and treewidth. A tree decomposition T of a graph G is a tree T where each node
t ∈ T is associated with a bag β(t) ⊆ V (G) such that (i)

⋃
t∈T β(t) = V (G), (ii) for any edge (u, v) ∈

E(G), there exists t ∈ T with u, v ∈ β(t), and (iii) for any v ∈ V (G), the nodes t ∈ T with v ∈ β(t) form a
connected subset in T . The width of T is maxt∈T |β(t)|−1. The treewidth of a graphG, denoted by tw(G)
is the minimum width of a tree decomposition of G. It is sometimes more convenient to consider rooted
trees. Throughout this paper, we always view the underlying tree of a tree decomposition as a rooted tree.
A tree decomposition is binary if its underlying (rooted) tree is binary. The following result is well-known.

Lemma 3 ([11]). Given a graph G with |V (G)| = n and tw(G) = w, a binary tree decomposition of G of
width O(w) can be computed in 2O(w)nO(1) time.

Let T be a tree decomposition of a graph G, and T be the underlying (rooted) tree of T . The adhesion
of a non-root node t ∈ T , denoted by σ(t), is defined as σ(t) = β(t) ∩ β(t′) where t′ is the parent of t. For
convenience, we also define the adhesion of the root of T as the empty set. The adhesion size of T is the
maximum size of the adhesion of a node t ∈ T . For a node t ∈ T , we define the γ-set of t, denoted by γ(t),
as γ(t) =

⋃
s∈Tt β(s) where Tt is the subtree of T rooted at t. The torso of t, denoted by tor(t), is the graph

obtained from G[β(t)] by making σ(s) a clique for all children s of t, i.e., adding edges between any two
vertices u, v ∈ β(t) such that u, v ∈ σ(s) for some child s of t.

Almost-embeddable graphs and graph minors. The class of almost-embeddable graphs is a general-
ization of the class of bounded-genus graphs. The formal definition of almost-embeddable graphs (Defini-
tion 13) will be given in Section 4, because it is technical and we only need the formal definition in Section 4
when proving Lemma 6. Roughly speaking, a graph G is h-almost-embeddable if it can be partitioned into
an apex set A ⊆ V (G) of size at most h, a subgraph G0 that can be embedded in a surface of (Euler)
genus h, and h disjoint vortices G1, . . . , Gh which admit h-width path decompositions and can be attached
to faces of (the embedded) G0 in a well-structured way. The almost-embeddable structure of G refers to
the “witness” of the almost-embeddability of G (i.e., the partition of G into the apex set, the embeddable
subgraph G0, and the vortices, together with the way that the vortices are attached to G0).

A graph H is a minor of a graph G if H can be obtained from G by deleting vertices, deleting edges,
and contracting edges. A graph G is H-minor-free if H is not a minor of G. One of the most important
results in graph minor theory by Robertson and Seymour [58] states that every H-minor-free graph (for a
fixed H) admits a tree decomposition with O(1) adhesion size and O(1)-almost-embeddable torsos.

Lemma 4 (Robertson-Seymour decomposition). Let H be a fixed graph. Then for some constant h >
0 depending on H , every H-minor-free graph G admits a tree decomposition TRS with adhesion size at
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most h in which the torso of each node is h-almost-embeddable. In addition, TRS has the property that
G[γ(t)\σ(t)] is connected and σ(t) = NG(γ(t)\σ(t)) for all node t. Such a tree decomposition (and the
almost-embeddable structures of the torsos) can be computed in polynomial time.

Proof sketch. The fact that any H-minor free graph G admits a tree decomposition TRS of adhesion size at
most h whose torsos are h-almost-embeddable (for some constant h > 0 depending on H) follows from
the profound work of Robertson and Seymour [58]; we call such a tree decomposition Robertson-Seymour
decomposition. Several algorithms have been developed to compute a Robertson-Seymour decomposition
(and the almost-embeddable structures of the torsos) in polynomial time [18, 31, 36]. To further make the
tree decomposition TRS satisfy the additional property, we do some simple modifications on TRS. Roughly
speaking, for each node t where G[γ(t)\σ(t)] is disconnected, we split the subtree rooted at t into multiple
subtrees each of which corresponds to a connected component of G[γ(t)\σ(t)]. For each node t where
σ(t) 6= NG(γ(t)\σ(t)), we remove the vertices in σ(t)\NG(γ(t)\σ(t)) from the bags of all nodes in the
subtree rooted at t. These modifications are standard, so we defer the details to Appendix A. We can
guarantee that after these modifications, TRS still has bounded adhesion size and almost-embeddable torsos.
Thus, the resulting TRS is what we want.

Candidate sets for vertex/edge-deletion problems. All problems studied in this paper are vertex-deletion
(resp., edge-deletion) problems, in which a feasible solution is a set of vertices (resp., edges) of the input
graph such that after deleting them the resulting graph satisfies certain conditions. Let I be an instance of a
parameterized vertex-deletion (resp., edge-deletion) problem with input graphG and solution-size parameter
k ∈ N. A candidate set for I is a set Cand ⊆ V (G) (resp., Cand ⊆ E(G)) such that I has a solution of
size at most k iff I has a solution of size at most k that is contained in Cand. It was known that all problems
studied in this paper admit small candidate sets that can be computed using polynomial-time randomized
algorithms with high success probability.

Lemma 5 (small candidate set lemma). One can compute candidate set for the following problems in poly-
nomial time, by randomized algorithms, with success probability at least 1−1/2n (where n is the size of the
input graph): candidate sets for EB and OCT instances of size kO(1), EMWC and GFES of size kO(log3 k),
EMC of size (r + k)O(log3(r+k)), VMWC of size kO(r), VMC of size kO(

√
r), GFVS of size kO(g).

Proof sketch. Proof of this lemma is implicit in literature [44, 63]. Known kernels for all these problems
actually first compute a candidate set and then apply reduction rules (in fact, an appropriate torso operation)
to reduce the graph size. The candidate sets for EB, OCT, VMWC, VMC, and GFVS follow from the work
[44], while the candidate sets for EMWC, EMC, and GFES follow from the work [63]. See Appendix B for
a more detailed discussion about the references for each of these problems.

3 The generic framework

All of our algorithms follow the same framework. Before discussing the framework, let us first observe
some common features of the problems to be studied.

1. Small candidate sets. All problems we study admit small-size candidate sets that can be computed
efficiently (Lemma 5). Our framework will make use of these small candidate sets. However, even
without the candidate sets in Lemma 5, our framework still works and leads to algorithms with nO(

√
k)

kind running time, by using the trivial candidate set, i.e., the entire vertex set or edge set.

2. Tree-decomposition dynamic programming. Given a tree decomposition T of the input graph of
width w, all problems we study can be solved by applying standard dynamic programming (DP) on
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T in time depending on w. For example, consider the OCT problem on a graph G. Let T be a tree
decomposition of G of width w, and T be the underlying (rooted) tree of T . We can do DP on T
by considering the nodes of T from bottom to top. Specifically, we compute a DP table at each node
t ∈ T in which every entry corresponds to a sub-problem on G[γ(t)] with a constraint on the “state”
of the vertices in σ(t) in the solution: which vertices in σ(t) are in the OCT, which vertices are on
one side of the remaining bipartite graph, and which vertices are on the other side; the entry stores
an optimal solution for that sub-problem. Since β(t) ≤ w + 1, one can compute the DP table at t in
2O(w) time provided the DP tables of all children of t, by simply enumerating the states of the vertices
in β(t). In this way, we solve the OCT problem in 2O(w) · nO(1) time.

3. Contraction-friendly for tree-decomposition DP. On top of the solvability by tree-decomposition
DP, the problems we study have a very important feature, which we call contraction-friendly. That is,
if we know that some parts of the graph is disjoint from the solution, then we can contract these parts
and do DP on a tree decomposition T of the graph after the contraction, in time depending on the
width of T . For example, consider again the OCT problem on a graphG. Suppose we somehow know
that a set X ⊆ V (G) of vertices are not in the solution OCT, so G[X] must be bipartite. We then
contract the connected components of G[X] and compute a tree decomposition T for the resulting
graph G/X of width w = O(tw(G/X)). Let T be the underlying tree of T . The bag β(t) of each
node t ∈ T contains at most w + 1 vertices of G/X , each of which either corresponds to a single
vertex in G or a connected component of G[X]. How can we do DP on T in time depending on w?
We do it in a similar fashion as above. At each node t ∈ T , we compute a DP table in which every
entry corresponds to a sub-problem on the pre-image of (G/X)[γ(t)] in G with a constraint on the
state of the vertices in the pre-image of σ(t) in the solution. However, the pre-image of σ(t) can have
a large size, because a connected component of G[X] might be large. The key observation here is
that each connected component of G[X] can have only two possible states in the solution. Indeed,
each connected component of G[X], as a connected bipartite graph, has a unique bipartite structure,
i.e., can be uniquely partitioned into two independent sets Γ1 and Γ2. Since X is disjoint from the
solution OCT, Γ1 and Γ2 must belong to opposite sides of the remaining bipartite graph (and hence
there are only two possibilities). Therefore, the pre-image of σ(t) can have in total 2O(|σ(t)|) = 2O(w)

possible states in the solution, and thus the size of the DP table at t is 2O(w). For the same reason, the
pre-image of β(t) can have 2O(|β(t)|) = 2O(w) possible states in the solution; by enumerating these
states, one can compute the DP table at t in 2O(w) time (provided the DP tables of all children of t).
In this way, the entire problem can be solved in 2O(w) · nO(1) time.

Our algorithmic framework can be applied to any vertex/edge-deletion problems onH-minor-free graphs
that have the above features. Essentially, if we are given a candidate set Cand of the problem and we are
able to do DP in f(~r, w) · nO(1) time on a w-width tree decomposition of the graph after contracting some
part that is disjoint from the solution, then our framework gives an algorithm for the problem that runs in
|Cand|O(

√
k) · f(~r,

√
k) · nO(1) time; here ~r denotes the parameter(s) of the problem other than the solution-

size parameter k (e.g., the number of terminals in VMWC/EMWC, the group size in GFVS/GFES, etc.).
Note that any vertex-deletion (resp., edge-deletion) problem admits a trivial candidate set of size O(n)
(resp., O(n2)), i.e., the entire vertex set V (G) (resp., edge set E(G)). Therefore, even without the small
candidate sets in Lemma 5, our framework can lead to algorithms with f(~r,

√
k) · nO(

√
k) running time.

Next, we discuss our framework in detail. Consider a problem instance with graph G which is H-
minor-free and solution-size parameter k ∈ N. First of all, we use Lemma 5 to compute a small candidate
set Cand ⊆ V (G) or Cand ⊆ E(G) for the instance. By the definition of a candidate set, we now only
need to decide whether there exists a solution inside Cand of size at most k. Since G is H-minor-free,
by Lemma 4, we can compute in polynomial time a tree decomposition TRS of G with adhersion size at
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most h in which each torso is h-almost-embeddable (for some constant h > 0), together with the almost-
embeddable structures of the torsos. Let TRS be the underlying (rooted) tree of TRS. By Lemma 4, TRS also
satisfies the property that for all t ∈ TRS, G[γ(t)\σ(t)] is connected and σ(t) = NG(γ(t)\σ(t)).

In a high level, our algorithm solves the problem using dynamic programming on the tree decomposition
TRS. However, the width of TRS could be large, so doing DP in a standard way does not work. Fortunately,
TRS has some useful properties. First, the adhesion size of TRS is bounded by h, i.e., |σ(t)| ≤ h for all
t ∈ TRS. This means, though the width of TRS can be large, the DP table to be computed at each node
t ∈ TRS only has a constant size. Therefore, the main challenge actually occurs in how to implement a
single step of the DP procedure, that is, how to compute the DP table of a node t ∈ TRS, provided the DP
tables of all children of t. To this end, we exploit the second good property of TRS: the torso of each node
t ∈ TRS is h-almost-embeddable. In order to use this property, we establish the following structural lemma
about almost-embeddable graphs, which serves as a technical core of our framework.

Lemma 6. Let G be an h-almost-embeddable graph, for some constant h. Then for any p ∈ N, there exist
disjoint sets Z1, . . . , Zp ⊆ V (G) such that for any i ∈ [p] and Z ′ ⊆ Zi, tw(G/(Zi\Z ′)) = O(p + |Z ′|),
where the constant hidden in O(·) depends on h. Furthermore, if the almost-embeddable structure of G is
given, then Z1, . . . , Zp can be computed in polynomial time.

To see how powerful Lemma 6 is, let us first consider a special case where the tree TRS only has one
node, the root rt. That is, the graph G = G[β(rt)] = tor(rt) itself is h-almost-embeddable. We observe
that Lemma 6 almost directly solves our problems in this case (and in particular solves the problems on
bounded-genus graphs). Again, we use the OCT problem as an example. Set p = b

√
kc and we compute

the disjoint sets Z1, . . . , Zp ⊆ V (G) in Lemma 6. We apply (a variant of) Baker’s technique on Z1, . . . , Zp.
Specifically, we observe that G has an OCT of size at most k iff for some i ∈ [p] and Z ′ ⊆ Zi ∩ Cand with
|Z ′| ≤ k/p, G has an OCT of size at most k that is disjoint with Zi\Z ′. The “if” part is obvious. To see
the “only if” part, suppose G has an OCT of size at most k. Then by the definition of candidate sets, G has
an OCT Voct of size at most k that is contained in Cand. Since Z1, . . . , Zp are disjoint, there exists some
i ∈ [p] such that |Voct ∩ Zi| ≤ k/p. Define Z ′ = Voct ∩ Zi. Since Voct ⊆ Cand, we have Z ′ ⊆ Zi ∩ Cand.
Also, we have Voct ∩ (Zi\Z ′) = ∅, which implies the “only if” part. Therefore, to solve the problem, it now
suffices to test, for every pair (i, Z ′) where i ∈ [p] and Z ′ ⊆ Zi ∩ Cand with |Z ′| ≤ k/p, whether G has
an OCT of size at most k that is disjoint from Zi\Z ′. How many pairs (i, Z ′) are there to be considered?
Since |Cand| = kO(1) for OCT, the total number of such pairs is bounded by p · kO(k/p) = kO(

√
k). To

solve the problem for each pair (i, Z ′), we recall the “contraction-friendly” feature of OCT (discussed at
the beginning of this section). As we know that Zi\Z ′ is disjoint from the solution, we can contract the
connected components of G[Zi\Z ′] and do DP on a tree decomposition of the resulting graph G/(Zi\Z ′).
By Lemma 6, tw(G/(Zi\Z ′)) = O(p + |Z ′|) = O(

√
k), and thus the DP procedure takes 2O(

√
k) · nO(1)

time. In this way, we solve the OCT problem in kO(
√
k) · nO(1) time for this special case.

The general case where |TRS| > 1 is more involved. Recall that we want to do a single step of DP on
TRS: computing the DP table of a node t ∈ TRS provided the DP table of the children of t. Each entry of
this DP table corresponds to a sub-problem on G[γ(t)] with some constraint on the configuration of σ(t)
in the solution. More formally, each such sub-problem can be represented by a pair (λ, l) where λ is a
configuration of σ(t) (which is problem-specific) and l ∈ [k] is an upper bound on the solution size (we
denote this sub-problem as Probλ,l). The sub-problem Probλ,l asks if there exists a solution for G[γ(t)] of
size at most l that is contained in Cand and is compatible with the configuration λ of σ(t); the corresponding
entry of the DP table stores the YES/NO answer to the sub-problem Probλ,l. Thus, computing the DP table
of t is equivalent to solving a set of sub-problems on G[γ(t)]. To this end, our basic idea is similar to the
above, i.e., applying Baker’s technique onG[γ(t)], contracting the part that is disjoint from the solution, and
doing a second-level DP on a tree decomposition of the graph after the contraction. However, Lemma 6 can
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only give us a decomposition on β(t) because only tor(t) is almost-embeddable, while what we need is a
decomposition on γ(t) in order to apply Baker’s technique. Therefore, we first need to establish a corollary
of Lemma 6, which extends a decomposition on β(t) obtained by Lemma 6 to a “decomposition” on γ(t).
Consider a node t ∈ TRS and a set C of children of t. Let UC =

⋃
s∈C(γ(s)\σ(s)). We define GCt as the

graph obtained from G[γ(t)\UC ] by making σ(s) a clique for all s ∈ C. In other words, GCt is obtained
from G[γ(t)\UC ] by adding, for all s ∈ C and all u, v ∈ σ(s) that are not adjacent in G[γ(t)\UC ], an edge
(u, v). With this definition, we have GCt = tor(t) if C consists of all children of t and GCt = G[γ(t)] if
C = ∅. Lemma 6 implies the following corollary.

Corollary 7. For any node t ∈ TRS and p ∈ [n], one can compute in polynomial time Y1, . . . , Yp ⊆
γ(t)\σ(t) satisfying the following conditions.
(i) For any child s of t and any i ∈ [p], either γ(s)\σ(s) ⊆ Yi or γ(s) ∩ Yi = ∅.
(ii) For any vertex v ∈ γ(t), there are at most h indices i ∈ [p] such that v ∈ Yi.
(iii) For any i ∈ [p] and Y ′ ⊆ Yi, tw(GCit /(Yi\Y ′)) = O(p + |Y ′|), where Ci is the set of children s of t
satisfying γ(s) ∩ Yi = ∅.

Proof. Since tor(t) is h-almost-embeddable, we can use Lemma 6 to compute the disjoint setsZ∗1 , . . . , Z
∗
p ⊆

β(t) satisfying tw(tor(t)/(Z∗i \Z ′)) = O(p+ |Z ′|) for any i ∈ [p] and Z ′ ⊆ Z∗i . Setting Zi = Z∗i \σ(t) for
i ∈ [p], we have Zi ⊆ β(t)\σ(t) and for any Z ′ ⊆ Zi,

tw(tor(t)/(Zi\Z ′)) = tw(tor(t)/(Z∗i \(Z ′ ∪ σ(t))) = O(p+ |Z ′ ∪ σ(t)|) = O(p+ |Z ′|).

We then obtain Y1, . . . , Yp by “extending” Z1, . . . , Zp to γ(t)\σ(t) as follows. We define Yi as the union
of Zi and γ(s)\σ(s) for all children s of t such that σ(s) ∩ Zi 6= ∅. By this construction, it is clear that
Y1, . . . , Yp satisfy condition (i). To see that condition (ii) is also satisfied, observe that for each child s of
t and each i ∈ [p], γ(s)\σ(s) ⊆ Yi only if σ(s) ∩ Zi 6= ∅. Since |σ(s)| ≤ h and Z1, . . . , Zp are disjoint,
γ(s)\σ(s) ⊆ Yi for at most h indices i ∈ [p]. It follows that condition (ii) holds for any v ∈ γ(t)\β(t). For
v ∈ β(t), we have v ∈ Yi iff v ∈ Zi and hence condition (ii) also holds.

The rest of the proof is dedicated to verifying condition (iii). This part carefully uses of the facts that
tw(tor(t)/(Zi\Z ′)) = O(p + |Z ′|), G[γ(t)\σ(t)] is connected, and σ(t) = NG(γ(t)\σ(t)). The proof is
somehow tedious but technically not difficult, so the reader can feel free to skip this part.

Let i ∈ [p] and Y ′ ⊆ Yi. We want to show tw(GCit /(Yi\Y ′)) = O(p + |Y ′|). For u, v ∈ β(t), we say
the pair (u, v) is bad if u, v ∈ Yi\Y ′ and u, v belong to different connected components of GCit [Yi\Y ′], and
is good otherwise. Note that if u, v ∈ β(t) are connected by an edge in G, then (u, v) is good because u
and v are also connected by an edge in GCit [Yi\Y ′]. Let G′ be the graph obtained from GCit by adding edges
(u, v) for all good pair (u, v) of vertices in β(t) such that (u, v) ∈ E(tor(t)). We notice thatGCit /(Yi\Y ′) is
a subgraph of G′/(Yi\Y ′), because GCit is a subgraph of G′ and two vertices belong to the same connected
component of GCit [Yi\Y ′] iff they belong to the same connected component of G′[Yi\Y ′]. So it suffices to
show tw(G′/(Yi\Y ′)) = O(p + |Y ′|). Define Z ′ = (Y ′ ∩ β(t)) ∪ (

⋃
s∈C′ Zi ∩ σ(s)), where C ′ is the set

of children s of t satisfying (γ(s)\σ(s)) ∩ Y ′ 6= ∅. We have the following properties about Z ′.

Claim 1. Zi\Z ′ ⊆ Yi\Y ′.

Proof of Claim 1. By construction, we have Zi ⊆ Yi. Furthermore, we have Y ′ ∩ Zi ⊆ Y ′ ∩ β(t) ⊆ Z ′.
Therefore, Zi\Z ′ ⊆ Zi\(Y ′ ∩ Zi) = Zi\Y ′ ⊆ Yi\Y ′. C

Claim 2. tw(tor(t)/(Zi\Z ′)) = O(p+ |Y ′|).

Proof of Claim 2. We have |C ′| ≤ |Y ′| because the sets γ(s)\σ(s) are disjoint for all children s of t. It
follows that |Z ′| ≤ (h + 1) · |Y ′| = O(|Y ′|). Also, we have Z ′ ⊆ Zi since Y ′ ∩ β(t) ⊆ Yi ∩ β(t) = Zi.
Therefore, by the property of Z1, . . . , Zp, tw(tor(t)/(Zi\Z ′)) = O(p+ |Z ′|) = O(p+ |Y ′|). C
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Claim 3. For any u, v ∈ Zi\Z ′ that (u, v) is an edge of tor(t), (u, v) is also an edge of G′.

Proof of Claim 3. It suffices to show that (u, v) is good. As observed before, if u, v are connected by an
edge in G, then (u, v) is good. So assume (u, v) is not an edge of G. But (u, v) is an edge of tor(t),
thus u, v ∈ σ(s) for some child s of t. It follows that u, v ∈ σ(s) ∩ Zi. If (γ(s)\σ(s)) ∩ Y ′ 6= ∅,
then s ∈ C ′ and σ(s) ∩ Zi ⊆ Z ′, which contradicts with the facts that u, v ∈ σ(s) ∩ Zi and u, v /∈ Z ′.
Therefore, (γ(s)\σ(s)) ∩ Y ′ = ∅. On the other hand, since u, v ∈ σ(s) ∩ Zi, we have σ(s) ∩ Zi 6= ∅.
By the construction of Yi, this implies γ(s)\σ(s) ⊆ Yi. As a result, γ(s)\σ(s) ⊆ Yi\Y ′. By assumption,
G[γ(s)\σ(s)] is connected and σ(s) = NG(γ(s)\σ(s)). Thus, u and v belong to the same connected
component of G[(γ(s)\σ(s)) ∪ {u, v}]. Because (γ(s)\σ(s)) ∪ {u, v} ⊆ Yi\Y ′, G[(γ(s)\σ(s)) ∪ {u, v}]
is a subgraph of G[Yi\Y ′], which is in turn a subgraph of GCit [Yi\Y ′]. This implies u, v belong to the same
connected component of GCit [Yi\Y ′] and hence (u, v) is good. C

Note that Claim 1 and Claim 3 imply that the vertices in each connected component of tor(t)[Zi\Z ′] are
contained in the same connected component of G′[Yi\Y ′]. With this in hand, we shall show that a “large”
induced subgraph ofG′/(Yi\Y ′) is a minor of tor(t)/(Zi\Z ′). For convenience, we writeG1 = G′/(Yi\Y ′)
and G2 = tor(t)/(Zi\Z ′). Let π1 : V (G′)→ V (G1) and π2 : β(t)→ V (G2) be the natural quotient maps
(which map each vertex to its corresponding vertex in the contracted graph). Define B = π1(β(t)).

Claim 4. G1[B] is a minor of G2. In particular, tw(G1[B]) ≤ tw(G2) = O(p+ |Y ′|).

Proof of Claim 4. Since the vertices in each connected component of tor(t)[Zi\Z ′] are contained in the same
connected component of G′[Yi\Y ′], we have π1(v) = π1(v′) for any v, v′ ∈ β(t) such that π2(v) = π2(v′).
Thus, there exists a unique map f : V (G2) → B such that f ◦ π2 = π1|β(t). We show that (1) G2[f−1(b)]
is connected for all b ∈ B and (2) for each edge (b, b′) of G1[B], there exist v ∈ f−1(b) and v′ ∈ f−1(b′)
such that (v, v′) is an edge in G2. Note that these two properties imply that G1[B] is a minor of G2.

To see (1), consider a vertex b ∈ B. Since G1 = G′/(Yi\Y ′), π−1
1 (b) is either a single vertex in

β(t)\(Yi\Y ′) or (the vertex set of) a connected component of G′[Yi\Y ′]. If π−1
1 (b) is a single vertex in

β(t)\(Yi\Y ′), then |f−1(b)| = 1 and thus G2[f−1(b)] is connected. So assume π−1
1 (b) is a connected

component of G′[Yi\Y ′]. Consider two vertices v, v′ ∈ f−1(b); we want to show v and v′ are connected
by a path in G2[f−1(b)]. Let u ∈ π−1

2 (v) and u′ ∈ π−1
2 (v′). Now u, u′ ∈ π−1

1 (b), so u and u′ are
connected by a path (u, a1, . . . , aq, u

′) in G′[π−1
1 (b)]. Define J = {j ∈ [q] : aj ∈ β(t)} and suppose

J = {j1, . . . , jq′} where j1 < · · · < jq′ . We claim that (u, aj1 , . . . , ajq′ , u
′) is a path connecting u and u′

in tor(t). Consider u and aj1 . Since a1, . . . , aj1−1 /∈ β(t) and (a1, . . . , aj1−1) is a path in G′, we must have
a1, . . . , aj1−1 ∈ γ(s)\σ(s) for some child s of t. Because u is neighboring to a1 and aj1 is neighboring to
aj1−1 inG′, we have u, aj1 ∈ σ(s) and hence (u, aj1) is an edge in tor(t). By the same argument, we deduce
any two consecutive vertices in the sequence (u, aj1 , . . . , ajq′ , u

′) are connected by an edge in tor(t). Thus,
(u, aj1 , . . . , ajq′ , u

′) is a path in tor(t). Since a1, . . . , aq ∈ π−1
1 (b), we have π2(aj1), . . . , π2(ajq′ ) ∈ f

−1(b).
As a result, (v, π2(aj1), . . . , π2(ajq′ ), v

′) is a path connecting v and v′ in G2[f−1(b)].
To see (2), consider an edge (b, b′) in G1[B]. As mentioned before, each of π−1

1 (b) and π−1
1 (b′) is either

a single vertex in β(t)\(Yi\Y ′) or (the vertex set of) a connected component of G′[Yi\Y ′]. We first notice
that π−1

1 (b) and π−1
1 (b′) cannot both be connected components of G′[Yi\Y ′], because the images of the

connected components of G′[Yi\Y ′] under π1 form an independent set in G1 but (b, b′) is an edge in G1.
Without loss of generality, assume π−1

1 (b) is a single vertex in β(t)\(Yi\Y ′), which implies |f−1(b)| = 1.
Let v be the only vertex in f−1(b). If π−1

1 (b′) is also a single vertex in β(t)\(Yi\Y ′), then (v, v′) is an edge
in G2 where v′ is the only vertex in f−1(b′). If π−1

1 (b′) is a connected component of G′[Yi\Y ′], then there
must be a witness vertex u′ ∈ π−1

1 (b′) such that (π−1
1 (b), u′) is an edge in G′. If u′ ∈ β(t), we are done

because (π−1
1 (b), u′) is also an edge in tor(t) and thus (v, v′) is an edge in G2 for v′ = π2(u′) ∈ f−1(b).

So assume u′ /∈ β(t). Then u′ ∈ γ(s)\σ(s) for some child s of t. Since π−1
1 (b) ∈ β(t) and (π−1

1 (b), u′)
is an edge in G′, we must have π−1

1 (b) ∈ σ(s). Furthermore, because π−1
1 (b′) is a connected component
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of G′[Yi\Y ′] and π−1
1 (b′) contains at least one vertex in β(t) (as b′ ∈ B), π−1

1 (b′) must contain a vertex
u∗ ∈ σ(s) in order to connecting u′ and the vertex in β(t). Observe that (π−1

1 (b), u∗) is an edge in tor(t),
since π−1

1 (b), u∗ ∈ σ(s). As a result, (v, v′) is an edge in G2 for v′ = π2(u∗) ∈ f−1(b′).
Once we have conditions (1) and (2), we see that G1[B] is a minor of G2. Therefore, tw(G1[B]) ≤

tw(G2). By Claim 2, tw(G2) = O(p+ |Y ′|) and thus tw(G1[B]) = O(p+ |Y ′|). C

Now we are ready to show tw(G1) = O(p+ |Y ′|), i.e., tw(G′/(Yi\Y ′)) = O(p+ |Y ′|). By Claim 4,
tw(G1[B]) = O(p + |Y ′|). Let T0 be a tree decomposition of G1[B] of width w = O(p + |Y ′|), and T0

the underlying (rooted) tree of T0. We now modify T0 to obtain a tree decomposition of G1 as follows.
Consider the vertices in V (G1)\B. For each v ∈ V (G1)\B, π−1

1 (v) is either (1) a connected component
of G′[Yi\Y ] that does not contain any vertex in β(t) or (2) a single vertex in Y ′\β(t). We say v is a
type-1 vertex for case (1), and a type-2 vertex for case (2). For each type-1 vertex v ∈ V (G1)\B, since
G′[π−1

1 (v)] is connected and π−1
1 (v)∩ β(t) = ∅, we have π−1

1 (v) ⊆ γ(s)\σ(s) for some child s of t. Thus,
NG′(π

−1
1 (v))∩β(t) ⊆ σ(s). We now claim that NG′(π

−1
1 (v))∩β(t) forms a clique in G′. First, any vertex

u ∈ NG′(π
−1
1 (v)) is not in Yi\Y ′, for otherwise u and π−1

1 (v) belong to the same connected component of
G′[Yi\Y ], which implies u ∈ π−1

1 (v), contradicting with the fact u ∈ NG′(π
−1
1 (v)). It follows that (u, u′)

is good for all u, u′ ∈ NG′(π
−1
1 (v)) ∩ β(t). Second, NG′(π

−1
1 (v)) ∩ β(t) forms a clique in tor(t) because

NG′(π
−1
1 (v))∩β(t) ⊆ σ(s). Therefore,NG′(π

−1
1 (v))∩β(t) forms a clique inG′, by the construction ofG′.

Note that NG1(v) ∩ B = π1(NG′(π
−1
1 (v)) ∩ β(t)), because π−1

1 (v′) is a single vertex in NG′(π
−1
1 (v)) for

all v′ ∈ NG1(v). This implies that NG1(v)∩B forms a clique in G1[B]. Thus, there is a node tv ∈ T0 such
thatNG1(v)∩B ⊆ β(tv). We now add a new node t∗v to T0 with bag β(t∗v) = (NG1(v)∩B)∪{v} as a child
of tv. We do this for all type-1 vertices v ∈ V (G1)\B. After this, we add all type-2 vertices in V (G1)\B
to the bag of every node of T0 (including the newly added ones). As one can easily verify, this results in a
tree decomposition of G1. Finally, it suffices to bound the width of this tree decomposition. Before adding
the type-2 vertices to the bags, the size of each bag is at most w (recall that w is the width of the original
T0). Since the number of type-2 vertices is at most |Y ′\β(t)|, the width of the final tree decomposition is
bounded by w + |Y ′\β(t)| = O(p+ |Y ′|).

With Corollary 7 in hand, we are ready to apply Baker’s technique to compute the DP table of t (provided
the DP tables of the children of t). Recall that computing the DP table of t is equivalent to solving a set of
sub-problems Probλ,l on G[γ(t)], where Probλ,l asks if there exists a solution (contained in Cand) of size at
most l ∈ [k] that is compatible with the configuration λ of σ(t). Now we define another set of sub-problems
on G[γ(t)] as follows. For a configuration λ of σ(t), a number l ∈ [k], and a set Y ⊆ γ[t], we define
Probλ,l,Y as a sub-problem on G[γ(t)] that asks if there exists a solution (contained in Cand) of size at most
l that is compatible with the configuration λ and in addition is disjoint from Y (for edge-deletion problems,
a solution is disjoint from Y if none of the edges in the solution is incident to a vertex in Y ). It is clear that
the answer to Probλ,l is YES if the answer to Probλ,l,Y is YES for some Y ⊆ γ[t]. Next, we are going to
reduce the task of solving the sub-problems Probλ,l to solving a set of sub-problems Probλ,l,Y , by applying
Corollary 7. Set p = b

√
kc and compute the sets Y1, . . . , Yp ⊆ γ(t)\σ(t) in Corollary 7. Then we construct

a set Π of pairs (i, Y ′) where i ∈ [p] and Y ′ ⊆ Yi satisfying three conditions: (1) |Π| = |Cand|O(
√
k), (2)

|Y ′| = O(k/p) for all (i, Y ′) ∈ Π , and (3) the answer to Probλ,l is YES iff the answer to Probλ,l,Yi\Y ′ is
YES for some (i, Y ′) ∈ Π . To this end, we consider vertex-deletion and edge-deletion problems separately.

For vertex-deletion problems, Cand ⊆ V (G). We simply define Π as the set of all pairs (i, Y ′) where
i ∈ [p] and Y ′ ⊆ Yi ∩ Cand satisfying |Y ′| ≤ hk/p. Clearly, |Π| ≤ p · |Cand|hk/p = |Cand|O(

√
k).

Also, it is obvious that Π satisfies condition (2). To see Π satisfies condition (3), it suffices to verify the
“only if” part (as the “if” part is obvious). Suppose the answer to Probλ,l is YES and consider a solution
Vsol ⊆ γ(t) ∩ Cand to Probλ,l. We have |Vsol| ≤ l. Due to property (ii) of Corollary 7, each vertex in
γ(t) is contained in at most h Yi’s. Therefore, there exists i ∈ [p] such that |Vsol ∩ Yi| ≤ hl/p ≤ hk/p.
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Setting Y ′ = Vsol ∩ Yi, we now have (i, Y ′) ∈ Π and Vsol ∩ (Yi\Y ′) = ∅. Thus, Vsol is also a solution to
Probλ,l,Yi\Y ′ , which implies that the answer to Probλ,l,Yi\Y ′ is YES.

For edge-deletion problems, Cand ⊆ E(G). Let Cand′ ⊆ V (G) be the set of vertices of G that are
incident to the edges in Cand. We have |Cand′| ≤ 2|Cand|. We define Π as the set of all pairs (i, Y ′) where
i ∈ [p] and Y ′ ⊆ Yi ∩ Cand′ satisfying |Y ′| ≤ 2hk/p. Clearly, |Π| ≤ p · |Cand′|2hk/p = |Cand|O(

√
k)

and Π satisfies condition (2). To see Π satisfies condition (3), again it suffices to verify the “only if” part.
Suppose the answer to Probλ,l is YES and consider a solution Esol ⊆ E(G[γ(t)]) ∩ Cand to Probλ,l. We
have |Esol| ≤ l. Let Vsol ⊆ γ(t) ∩ Cand′ consist of vertices incident to the edges in Esol; so we have
|Vsol| ≤ 2l. By the same argument as in the vertex-deletion problems, we see there exist i ∈ [p] such that
|Vsol ∩ Yi| ≤ 2hl/p ≤ 2hk/p. Setting Y ′ = Vsol ∩ Yi, we now have (i, Y ′) ∈ Π and Vsol is disjoint from
Yi\Y ′ (hence Esol is disjoint from Yi\Y ′). Thus, Esol is also a solution to Probλ,l,Yi\Y ′ , which implies that
the answer to Probλ,l,Yi\Y ′ is YES.

By the above argument, to solve a sub-problem Probλ,l, it suffices to solve the sub-problems Probλ,l,Yi\Y ′
for all (i, Y ′) ∈ Π . To this end, we recall the “contraction-friendly” feature of our problems. Since
Probλ,l,Yi\Y ′ looks for a solution that is disjoint from Yi\Y ′, the “contraction-friendly” feature allows
us to contract the connected components of Yi\Y ′ and do DP on a tree decomposition of the resulting
graph G[γ(t)]/(Yi\Y ′). If the treewidth of G[γ(t)]/(Yi\Y ′) was small, we can solve Probλ,l,Yi\Y ′ effi-
ciently. Unfortunately, we are not able to bound the treewidth of G[γ(t)]/(Yi\Y ′). However, by property
(iii) of Corollary 7, we have tw(GCit /(Yi\Y ′)) = O(p + |Y ′|) = O(

√
k). So the idea here is to begin

with an O(
√
k)-width tree decomposition of GCit /(Yi\Y ′) and modify it to obtain a tree decomposition

of G[γ(t)]/(Yi\Y ′) that “almost” has width O(
√
k) and has some other good properties. For convenience

of exposition, in what follows, we do not distinguish the vertices in γ(t)\(Yi\Y ′) with their images in
G[γ(t)]/(Yi\Y ′), and similarly the vertices in V (GCit )\(Yi\Y ′) with their images in GCit /(Yi\Y ′). Note
that σ(t) ⊆ γ(t)\(Yi\Y ′) and γ(s) ⊆ γ(t)\(Yi\Y ′) for all s ∈ Ci (by the definition of Ci); so they can be
viewed as sets of vertices in G[γ(t)]/(Yi\Y ′).

Lemma 8. For any (i, Y ′) ∈ Π , one can construct in 2O(
√
k)nO(1) time a tree decomposition T ∗ of

G[γ(t)]/(Yi\Y ′) with underlying (rooted) tree T ∗ which has the following properties:
(i) each node of T ∗ has at most 3 children;
(ii) the root rt of T ∗ has only one child rt′, where σ(rt′) = σ(t) and β(rt) = σ(t);
(iii) for any node t∗ ∈ T ∗, either β(t∗) = O(

√
k) or t∗ is a leaf of T ∗ satisfying β(t∗) = γ(s) and

σ(t∗) = σ(s) for some s ∈ Ci.

Proof. Consider a pair (i, Y ′) ∈ Π . We write G1 = GCit /(Yi\Y ′), G′1 = G[V (GCit )]/(Yi\Y ′), G2 =
G[γ(t)]/(Yi\Y ′). We first notice that GCit [Yi\Y ′] = G[Yi\Y ′], because σ(s) ∩ Yi = ∅ for all s ∈ Ci.
Furthermore, G[V (GCit )] is a subgraph of GCit and the two graphs share the same vertex set. It follows that
G′1 is a subgraph of G1 which has the same vertex set as G1. On the other hand, we have V (GCit ) ⊆ γ(t),
so G′1 is an induced subgraph of G2. Therefore, V (G1) can be viewed as a subset of V (G2) and we have
V (G2) = V (G1) ∪ (

⋃
s∈Ci γ(s)); for convenience, we do not distinguish the vertices in V (G1) with their

corresponding vertices in V (G2).
Since tw(G1) = O(p + |Y ′|) = O(

√
k) by property (iii) of Corollary 7, we can use Lemma 3 to

compute in 2O(
√
k)nO(1) time a binary tree decomposition T ∗ for G1 of width O(

√
k). Let T ∗ be the

underlying (rooted) tree of T ∗. We are going to modify T ∗ to a tree decomposition of G2 satisfying the
three desired properties. In the first step of modification, we add the vertices in σ(t) to the bags of all nodes
of T ∗. Then we create a new root rt for T ∗ with bag β(rt) = σ(t) and let the orginal root rt′ of T ∗ be the
only child of rt. Clearly, the resulting T ∗ is still a binary tree decomposition ofG1 of widthO(

√
k), because

|σ(t)| ≤ h. In the second step of modification, we add some new nodes (with bags) to T ∗ as follows. For
each s ∈ Ci, σ(s) forms a clique in GCit and σ(s) ∩ Yi = ∅ by the definition of Ci. Thus, σ(s) also forms
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a clique in G1. So there exists a node t∗ ∈ T ∗ such that σ(s) ⊆ β(t∗); we call t∗ the support node of s (if
there exist multiple t∗ ∈ T ∗ satisfying σ(s) ⊆ β(t∗), we arbitrarily pick one as the support node of s). Note
that different nodes in Ci can have the same support node in T ∗. Now consider a node t∗ ∈ T ∗. Suppose
t∗ is the support node of s1, . . . , sq ∈ Ci. We define a binary tree Tq with bags as follows. Define T0 as
the empty tree. For j ∈ [q], define Tj as the tree consisting of a root node with bag

⋃j
j′=1 σ(sj′) whose left

subtree is Tj−1 and right subtree is a single node with bag γ(sj). Note that Tq has exactly q leaves in which
the j-th leftmost leaf has bag γ(sj) and adhesion σ(sj). Also note that the bag of any internal node of Tq is
a subset of β(t∗), and thus is of size O(

√
k). We then add the tree Tq to T ∗ as a subtree of t∗, and call Tq

the heavy subtree of t∗. We do this for every t∗ ∈ T ∗. This completes the modification of T ∗.
We now verify that the resulting T ∗ is indeed a tree decomposition of G2 with the three desired proper-

ties. Call a node in T ∗ new if it is newly added to T ∗ during our modification and old if it is originally in T ∗.
Properties (i) and (ii) follow directly from our construction. To see property (iii), we observe a one-to-one
correspondence between the nodes in Ci and the new leaves in T ∗. Indeed, each s ∈ Ci corresponds to a
leaf s∗ in the heavy subtree of its support node in T ∗, where we have β(s∗) = γ(s) and σ(s∗) = σ(s). It is
clear that this correspondence is one-to-one. Consider a node s∗ ∈ T ∗. If s∗ is an old node or is an internal
node in a heavy subtree, then |β(s∗)| = O(

√
k). If s∗ is a new leaf (i.e., a leaf of a heavy subtree), then

it corresponds to some s ∈ Ci and we have β(s∗) = γ(s) and σ(s∗) = σ(s). So property (iii) holds. To
show T ∗ is a tree decomposition of G2, consider an edge (u, v) of G2. If u, v ∈ V (G1), then (u, v) is an
edge of G1 and thus u, v ∈ β(t∗) for some old node t∗ in T ∗, since the original T ∗ is a tree decomposition
of G1. Otherwise, one of u and v must be contained in γ(s)\σ(s) for some s ∈ Ci, say u ∈ γ(s)\σ(s).
Then v ∈ γ(s) as σ(s) = NG(γ(s)\σ(s)). Therefore, u, v ∈ β(s∗) = γ(s), where s∗ is the new leaf in T ∗

corresponding to s. Now it suffices to show that for any vertex v ∈ V (G2), the nodes whose bags containing
v form a connected subset in T ∗. Call a node in T ∗ a v-node if its bag contains v. If v ∈ γ(s)\σ(s) for some
s ∈ Ci, then the only v-node in T ∗ is the new leaf corresponding to s. Otherwise, we have v ∈ V (G1).
Since the original T ∗ is a tree decomposition of G1, the old v-nodes form a connected subset in T ∗ (which
we denote by X). If t∗ is an old v-node, then v may also be contained in (the bags of the nodes of) the
heavy subtree of t∗. By our construction, if v is contained in a heavy subtree T0, then the v-nodes in T0

form a connected subset that contains the root of T0. Therefore, the v-nodes in each heavy subtree form a
connected subset in T ∗ that is adjacent to X . It follows that the v-nodes form a connected subset in T ∗.

For a pair (i, Y ′) ∈ Π , to solve the sub-problems Probλ,l,Yi\Y ′ , we compute the tree decomposition T ∗

in the above lemma and try to do DP on T ∗. If the width of T ∗ was exactly O(
√
k), we are good. But T ∗

can have some “heavy” leaves, whose bags might be large. However, by property (iii) of Lemma 8, each
leaf t∗ ∈ T ∗ with β(t∗) not bounded by O(

√
k) satisfies γ(t∗) = β(t∗) = γ(s) and σ(t∗) = σ(s) for some

s ∈ Ci. Therefore, the DP table of t∗ to be computed is nothing but the DP table of s (in the DP procedure on
TRS). Recall that when we reach t in the DP procedure on TRS, the DP tables of all children s of t are already
computed. In other words, we have the DP tables of these leaves for free. As such, when doing DP on T ∗,
we do not need to worry about the heavy leaves. The property (i) of Lemma 8 allows us to do DP more
conveniently on T ∗ (for some of our problems). Finally, once the DP on T ∗ is done, the DP table of the child
rt′ of the root rt of T ∗ encodes the answers to all the sub-problems Probλ,l,Yi\Y ′ , because σ(rt′) = σ(t) and
γ(rt′) consists of all vertices of G[γ(t)]/(Yi\Y ′), by property (ii) of Lemma 8. After all pairs (i, Y ′) ∈ Π
are considered, we solve all Probλ,l,Yi\Y ′ , which in turn solves all Probλ,l and computes the DP table of t.
For a specific problem, if we are able to do DP in f(~r, w) · nO(1) time on a w-width tree decomposition
of the graph after contracting some part disjoint from the solution, then solving each Probλ,l,Yi\Y ′ takes

f(~r,
√
k) · nO(1) time, and solving Probλ,l,Yi\Y ′ for all (i, Y ′) ∈ Π takes |Cand|O(

√
k) · f(~r,

√
k) · nO(1)

time since |Π| = |Cand|O(
√
k). As a result, the main DP procedure on TRS (i.e., the entire algorithm) takes

|Cand|O(
√
k) · f(~r,

√
k) · nO(1) time.
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This completes the exposition of the generic framework of our algorithms. The only missing piece now
is the DP procedures for various problems, which are standard (and mostly known in literature). We shall
give detailed discussions for each of our algorithms individually in Section 5.

4 Proof of Lemma 6

This section is dedicated to proving Lemma 6. In Section 4.1, we first review some basic notions about
surface-embedded graphs and establish two technical lemmas (Lemma 9 and Lemma 12) which will be
used in the proof of Lemma 6. These two lemmas (especially Lemma 12) might be of independent interest.
Then in Section 4.2, we construct the sets Z1, . . . , Zp in Lemma 6. Finally, in Section 4.3, we prove the sets
Z1, . . . , Zp we construct satisfy the desired property.

4.1 Results for surface-embedded graphs

We begin with introducing some basic notions about surface-embedded graphs. Let Σ be a connected
orientable surface. A Σ-embedded graph is represented as a pair (G, η) where G is the graph and η is an
embedding of G to Σ. For any subgraph G′ of G, η induces an embedding of G′ to Σ; for convenience,
we usually use the same notation “η” to denote this subgraph embedding. A face of (G, η) refers to (the
closure of) a connected component of Σ\η(G), where η(G) is the image of G on Σ under the embedding
η. We denote by Fη(G) the set of faces of (G, η). The boundary of a face f ∈ Fη(G), denoted by ∂f , is the
subgraph of G consisting of all vertices and edges that are incident to f (under the embedding η). Note that
f itself is a face in its boundary subgraph (∂f, η), i.e., f ∈ Fη(∂f).

Lemma 9. Let f ∈ Fη(G) be a face of a Σ-embedded graph (G, η). Then for any face f ′ ∈ Fη(∂f) of
(∂f, η) such that f ′ 6= f , the graph ∂f ′ has O(g) connected components and the maximum degree of ∂f ′ is
O(g), where g = gns(Σ).

Proof. We first figure out what the faces of (∂f ′, η) are. As mentioned before, f ′ itself is a face of (∂f ′, η).
In addition, since ∂f ′ is a subgraph of ∂f , there must be another face f0 ∈ Fη(∂f ′) such that f ⊆ f0. By
definition, each edge of ∂f ′ is incident to f ′. Also, each edge of ∂f ′ is incident to f0, because it is incident
to f in (∂f, η). Note that one edge can be incident to at most two faces in a surface-embedded graph, and
thus the edges of ∂f ′ are only incident to f ′ and f0. It follows that f ′ and f0 are the only two faces of
(∂f ′, η), i.e., Fη(∂f ′) = {f ′, f0}, because any face of (∂f ′, η) must be incident to some edge of ∂f ′.

Based on this observation, we further argue that ∂f ′ has no vertex of degree 0 or 1. Similarly to the
edges, each vertex of ∂f ′ is incident to f ′ (by definition) and also incident to f0 since it is incident to f in
(∂f, η). But vertices of degree 0 or 1 can only be incident to one face in a surface-embedded graph. Thus,
every vertex of ∂f ′ has degree at least 2.

Now we are ready to prove the lemma. Let #V , #E , #F , #C be the numbers of vertices, edges, faces,
connected components of (∂f ′, η). By Euler’s formula, −#V + #E −#F + #C = O(g), where g is the
genus of Σ. We have shown that #F = |Fη(∂f ′)| = 2. Therefore, (#E + #C)−#V = O(g). Since every
vertex of ∂f ′ has degree at least 2, we have #E ≥ #V , which implies #C = O(g). It suffices to show that
the maximum degree of ∂f ′ isO(g). Since (#E +#C)−#V = O(g), we have 2#E−2#V = O(g). Note
that 2#E − 2#V =

∑
v∈V (∂f ′)(deg(v) − 2). We have deg(v) − 2 ≥ 0 for all v ∈ V (∂f ′), as each vertex

of ∂f ′ has degree at least 2. Thus, deg(v)− 2 ≤ 2#E − 2#V = O(g) for all v ∈ V (∂f ′). As a result, the
maximum degree of ∂f ′ is O(g).

The vertex-face incidence (VFI) graph of (G, η) is a bipartite graph with vertex set V (G) ∪ Fη(G) and
edges connecting every pair (v, f) ∈ V (G) × Fη(G) such that v is incident to f (or equivalently, v is a
vertex in ∂f ). For a subset F ⊆ Fη(G) of faces, let F+ ⊆ V (G) ∪ Fη(G) denote the subset consisting of
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all f ∈ F and all v ∈ V (G) that are on the boundary of some face in F , i.e., F+ = (
⋃
f∈F V (∂f)) ∪ F .

We then define the VFI graph of (G, η) restricted to F as the induced subgraph G∗[F+], where G∗ is the
VFI graph of (G, η). We notice the following simple fact.

Fact 10. For any F ⊆ Fη(G), if
⋃
f∈F f is connected (as a subspace of Σ), then the VFI graph of (G, η)

restricted to F is connected. In particular, the VFI graph of (G, η) is connected.

Proof. Let F ⊆ Fη(G) such that
⋃
f∈F f is connected. We denote byG∗F the VFI graph of (G, η) restricted

to F . First, we notice that any two faces f, f ′ ∈ F satisfying f ∩ f ′ 6= ∅ are in the same connected
component of G∗F . Indeed, if f ∩ f ′ 6= ∅, then V (∂f) ∩ V (∂f ′) 6= ∅ and thus f → v → f ′ is a path from f
to f ′ inG∗F for any v ∈ V (∂f)∩V (∂f ′). It follows that all f ∈ F belong to the same connected component
of G∗F , because

⋃
f∈F f is connected. Note that F is a dominating set of G∗F by the definition of G∗F . Thus,

G∗F is connected. Finally, since the VFI graph of (G, η) is nothing but G∗Fη(G) and
⋃
f∈Fη(G) f = Σ is

connected, the VFI graph of (G, η) is connected.

Let G∗ be the VFI graph of (G, η). For two vertices v, v′ ∈ V (G), the vertex-face distance between
v and v′ in (G, η) is defined as the shortest-path distance between v and v′ in G∗. In the same way, we
can define the vertex-face distance between a vertex and a face of (G, η), or between two faces of (G, η).
The vertex-face diameter of (G, η), denoted by diam∗(G, η), is the maximum vertex-face distance between
vertices/faces of (G, η) (or equivalently, the graph diameter of G∗). The following lemma follows easily
from the work [26] of Eppstein.

Lemma 11. Let (G, η) be a Σ-embedded graph where the genus of the surface Σ is O(1). Then we have
tw(G) = O(diam∗(G, η)).

Proof. We obtain another graph from G by adding new vertices and edges as follows. For each face f ∈
Fη(G), we add a new vertex vf and edges connecting vf with all vertices in ∂f . Let G′ be the resulting
graph. We notice that the embedding η of G can be extended to an embedding of G′ to Σ. Indeed, we can
embed each vf in the interior of the face f and draw the edges connecting vf to the vertices in ∂f inside
f . Thus, G′ is a bounded-genus graph. Furthermore, the VFI graph G∗ of G can be viewed as a subgraph
of G′ which has the same vertex set as G′, if we identify each f ∈ Fη(G) with the vertex vf of G′. As
such, the diameter of G′ is smaller than or equal to the diameter of G∗, where the latter is diam∗(G, η).
By the work [26] of Eppstein, the treewidth of a bounded-genus graph is linear in its diameter. So we have
tw(G) ≤ tw(G′) = O(diam∗(G, η)).

The notion of vertex-face distance/diameter can be generalized to the situation where the faces of
(G, η) are weighted. Let w : Fη(G) → N be a weight function on the faces of (G, η). Recall that
G∗ is the VFI graph of (G, η). Consider a simple path π = (a0, a1, . . . , am) in G∗, and write Fπ =
Fη(G) ∩ {a0, a1, . . . , am}. The cost of π under the weight function w is defined as m +

∑
f∈Fπ w(f),

i.e., the length of π plus the total weights of the faces that π goes through. We define the w-weighted
vertex-face distance between vertices/faces a, a′ ∈ V (G) ∪ Fη(G) in (G, η) as the minimum cost of a path
connecting a and a′ in G∗ under the weight function w. Note that w-weighted vertex-face distances satisfy
the triangle inequality, although they do not necessarily form a metric because the w-weighted vertex-face
distance from a face f ∈ Fη(G) to itself is w(f) rather than 0. The w-weighted vertex-face diameter of
(G, η), denoted by diam∗w(G, η), is the maximum w-weighted vertex-face distance between vertices/faces
of (G, η). Clearly, whenw is the zero function, thew-weighted vertex-face distance/diameter coincides with
the “unweighted” vertex-face distance/diameter defined before. We prove the following important lemma,
which can be viewed as a generalization of Lemma 11.
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Lemma 12. Let (G, η) be aΣ-embedded graph where the genus of the surfaceΣ isO(1) and κ : Fη(G)→
2V (G) be a map satisfying κ(f) ⊆ V (∂f). Then we have tw(Gκ) = O(diam∗wκ(G, η)), where Gκ is the
graph obtained from G by making κ(f) a clique for all f ∈ Fη(G) and wκ : Fη(G) → N is a weighted
function on the faces of (G, η) defined as wκ(f) = |κ(f)|.

Proof. We first construct another graph G′ from G by adding, for each face f ∈ Fη(G), a new vertex vf
and edges connecting vf with all vertices in κ(f). Also, we extend the embedding η of G to an embedding
of G′ to Σ by drawing vf in the interior of the face f and drawing the edges connecting vf to the vertices
in κ(f) inside f . For convenience, we still use the notation η to denote the embedding of G′ to Σ. Note
that the degree of each new vertex vf is wκ(f). Next, we replace each vf with a grid as follows. Consider
a vertex vf . Let e1, . . . , ewκ(f) be the edges adjacent to vf sorted in clockwise order around vf under the
embedding η. Now we replace vf with a wκ(f)×wκ(f) grid Γf and let the edge ei connect to the i-th grid
vertex in the top row of Γf for i ∈ [wκ(f)]. We do this for every vf and let G′′ be the resulting graph. The
way we replace vf with Γf allows us to modify the embedding of vf and e1, . . . , ewκ(f) to an embedding
of Γf and the new e1, . . . , ewκ(f) inside f . Specifically, we take a small neighborhood X of vf in Σ that
is homeomorphism to a disk. We “clear” the drawing of vf and e1, . . . , ewκ(f) in the interior of X , and
then draw Γf in the interior of X with curves connecting the i-th grid vertex in the top row of Γf with the
intersection point of (the image of) ei and the boundary of X . In other words, we can extend the embedding
η of G to an embedding of G′′ to Σ, which we still denote by η for convenience.

Claim 1. diam∗(G′′, η) = O(diam∗wκ(G, η)).

Proof of Claim 1. Since the VFI graph of (G′′, η) is connected, it suffices to show that the vertex-face
distance between any two vertices u, v ∈ V (G′′) in (G′′, η) isO(diam∗wκ(G, η)). There are two possibilities
for the vertex u (resp., v): it is either a vertex in G or a vertex in Γf for some f ∈ Fη(G). We first consider
the case where both u and v are vertices in G (the other cases are similar). Let (u, f0, v1, f1 · · · , vq, fq, v)
be the path in the VFI of (G, η) with the minimum cost under the weight function wκ, where f0, f1 . . . , fq ∈
Fη(G) and v1, . . . , vq ∈ V (G). So we have 2q + 2 +

∑q
i=0wκ(fi) ≤ diam∗wκ(G, η). For convenience, we

write v0 = u and vq+1 = v. We claim that the vertex-face distance between vi−1 and vi in (G′′, η) is at most
2wκ(fi−1) + 2. Since vi−1 (resp., vi) is incident to fi−1 in (G, η) and η embeds the grid Γfi−1

inside fi−1,
there exists a grid vertex v′i−1 (resp., v′i) in Γfi−1

whose vertex-face distance to vi−1 (resp., vi) in (G′′, η) is
2. Note that the vertex-face distance between any two grid vertices in Γfi−1

is at most 2wκ(fi−1)− 2. Thus,
the vertex-face distance between vi−1 and vi in (G′′, η) is at most 2wκ(fi−1) + 2. This further implies the
the vertex-face distance between u and v in (G′′, η) is O(q +

∑q
i=0wκ(fi)), which is O(diam∗wκ(G, η)).

The case where u and/or v is a vertex in some grid Γf can be handled similarly. Specifically, if u is in
Γf and v is in G (resp., a vertex in Γf ′), then we can show that the vertex-face distance between u and v
in (G′′, η) is linear in the wκ-weighted vertex-face distance from f to v (resp., f ′) in (G, η). As a result,
diam∗(G′′, η) = O(diam∗wκ(G, η)). C

By Claim 1 and Lemma 11, we have tw(G′′) = O(diam∗wκ(G, η)). Let T be a tree decomposition of
G′′ of width w = O(diam∗wκ(G, η)), and T be the underlying tree of T . Our next plan is to modify T
to obtain an O(w)-width tree decomposition of a graph that contains Gκ as a minor. To this end, we first
introduce the notion of central nodes. Let t ∈ T be a node. Then T − {t} is a forest. We say a tree T ′ in
the forest T − {t} contains a vertex v ∈ V (G′′) if v ∈ β(t′) for some t′ ∈ T ′. Note that every vertex in
V (G′′)\β(t) is contained in exactly one tree in the forest T − {t}, because T is a tree decomposition. For
a subset V ⊆ V (G′′) of vertices in G′′, we denote by µ(t, V ) the maximum number of vertices in V \β(t) a
tree in T − {t} contains. We say t is central for V if µ(t, V ) ≤ |V |/2, i.e., each tree in the forest T − {t}
contains at most |V |/2 vertices in V \β(t).

Claim 2. For any V ⊆ V (G′′), there exists a node in T that is central for V .
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Proof of Claim 2. We begin from an arbitrary node t ∈ T and keep walking in T until we reach a central
node for V in the following way. If t is a central node for V , we are done. Otherwise, there exists a (unique)
tree T ′ in the forest T − {t} which contains more than |V |/2 vertices in V \β(t); let t′ ∈ T ′ be the node
adjacent to t. We then go from t to t′. To see this walk always terminates, it suffices to show that when we
go from t to t′, we cannot go back to t in the next step. Indeed, if we go from t to t′, then the tree in T −{t}
containing t′ contains more than |V |/2 vertices in V \β(t), which implies the tree in T − {t′} containing t
contains less than |V |/2 vertices in V \β(t). So we will not go back to t from t′ in the next step. C

Let κ̂(f) ⊆ V (Γf ) consist of the vertices in the last row of the grid Γf . By Claim 2, for each f ∈ Fη(G),
there exists a central node tf ∈ T for κ̂(f). We “drag” the vertices in κ̂(f)\β(tf ) to the node tf for each
f ∈ Fη(G) as follows. Consider a face f ∈ Fη(G) and a node t ∈ T . We define a set αf (t) ⊆ κ̂(f)\β(t)
as follows. As argued before, every vertex in κ̂(f)\β(t) is contained in exactly one tree in the forest
T − {t}. Let αf (t) consist of all v ∈ κ̂(f)\β(t) such that tf /∈ Tv where Tv is the tree in T − {t}
containing v. We then add all vertices in

⋃
f∈Fη(G) αf (t) to the bag β(t) for all t ∈ T . We show that after

this modification, T is still a tree decomposition of G′′ of width O(w) satisfying an additional condition:
for any f ∈ Fη(G), there is a node whose bag contains κ̂(f). For convenience of exposition, for each
node t ∈ T , we write β∗(t) as the bag of t after the modification and β(t) as the bag of t before the
modification, i.e., β∗(t) = β(t) ∪ (

⋃
f∈Fη(G) αf (t)). It is easy to verify that for every f ∈ Fη(G) and

every v ∈ κ̂(f)\β(tf ), the nodes t ∈ T such that v ∈ αf (t) form a path from tf to a node adjacent to the
connected set {t ∈ T : v ∈ β(t)}. Thus, for every vertex v ∈ V (G′′), the nodes t ∈ T such that v ∈ β∗(t)
form a connected set in T . This implies that T is a tree decomposition of G′′ after the modification, because
we only add vertices to the bags in the modification. Also, it is clear that T satisfies the additional condition,
since κ̂(f)\β(tf ) ⊆ αf (tf ) and hence κ̂(f) ⊆ β∗(tf ). Therefore, it suffices to show that the width of T is
O(w), i.e., |β∗(t)| = O(w) for all t ∈ T . Consider a node t ∈ T . Recall that µ(t, V ) denotes the maximum
number of vertices in V \β(t) a tree in T − {t} can contain. The key observation is the following.

Claim 3. wκ(f)− µ(t, κ̂(f)) = O(|β(t) ∩ V (Γf )|) for any f ∈ Fη(G).

Proof of Claim 3. Suppose the forest T −{t} consists of q trees T1, . . . , Tq. As argued before, each vertex in
κ̂(f)\β(t) is contained in exactly one of T1, . . . , Tq. We say two vertices v, v′ ∈ κ̂(f)\β(t) are separated
if v and v′ are contained in different trees in {T1, . . . , Tq}, and two sets K,K ′ ⊆ κ̂(f) are separated if
v and v′ are separated for any v ∈ K\β(t) and v′ ∈ K ′\β(t). We first show that one can partition κ̂(f)
into two separated subsets K and K ′ such that both of them are of size at least (wκ(f) − µ(t, κ̂(f)))/2.
If |κ̂(f) ∩ β(t)| ≥ (wκ(f) − µ(t, κ̂(f)))/2, then we simply let K be a subset of κ̂(f) ∩ β(t) of size
(wκ(f)− µ(t, κ̂(f)))/2 and K ′ = κ̂(f)\K. We have |K ′| = wκ(f)− |K| = (wκ(f) + µ(t, κ̂(f)))/2 and
it is clear that K and K ′ are separated as K\β(t) = ∅. If |κ̂(f) ∩ β(t)| < (wκ(f) − µ(t, κ̂(f)))/2, then
κ̂(f)\β(t) ≥ (wκ(f) − µ(t, κ̂(f)))/2. Let i ∈ [q] be the smallest index such that T1, . . . , Ti contains at
least (wκ(f) − µ(t, κ̂(f)))/2 vertices in κ̂(f)\β(t). Then we define K as the set of vertices in κ̂(f)\β(t)
that are contained in T1, . . . , Ti and define K ′ = κ̂(f)\K. Clearly, K and K ′ are separated and |K| ≥
(wκ(f) − µ(t, κ̂(f)))/2. To see |K ′| ≥ (wκ(f) − µ(t, κ̂(f)))/2, observe that T1, . . . , Ti−1 contains less
than (wκ(f) − µ(t, κ̂(f)))/2 vertices in κ̂(f)\β(t). Since Ti can contain at most µ(t, κ̂(f)) vertices in
κ̂(f)\β(t), we have |K| ≤ (wκ(f)+µ(t, κ̂(f)))/2 and thus |K ′| = wκ(f)−|K| ≥ (wκ(f)−µ(t, κ̂(f)))/2.

Next, we show that min{|K|, |K ′|} ≤ |β(t) ∩ V (Γf )|, which directly proves the claim because we
have min{|K|, |K ′|} ≥ (wκ(f) − µ(t, κ̂(f)))/2. We first observe that for any path π in G′′ connecting a
vertex v ∈ K and a vertex v′ ∈ K ′, β(t) must contain at least one vertex on π. Indeed, because T is a tree
decomposition of G′′ (before the modification) and π is a connected subgraph of G′′, the nodes whose bags
contain at least one vertex on π form a connected subset in T . This connected subset must contain t, since
either {v, v′}∩β(t) 6= ∅ or v and v′ are vertices in κ̂(f)\β(t) that are contained in different trees in T −{t}
(asK andK ′ are separated). With this observation, we are ready to show min{|K|, |K ′|} ≤ |β(t)∩V (Γf )|.
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We have min{|K|, |K ′|} ≤ |κ̂(f)\β(t)| ≤ wκ(f). If |β(t) ∩ V (Γf )| ≥ wκ(f), we are done. So assume
|β(t)∩V (Γf )| < wκ(f). We say β(t) hits a row/column of the grid Γf if there is a vertex in the row/column
that is contained in β(t). We claim that either all the columns of Γf containing the vertices in K are hit by
β(t) or all the columns of Γf containing the vertices in K ′ are hit by β(t), which implies |β(t) ∩ V (Γf )| ≥
min{|K|, |K ′|}. Suppose this is not true, then there exist v ∈ K and v′ ∈ K ′ such that the columns C and
C ′ containing v and v′ are not hit by β(t). Since Γf has wκ(f) rows and |β(t) ∩ V (Γf )| < wκ(f), there is
at least one row R of Γf that is not hit by β(t). Consider the path π in Γf connecting v and v′ which goes
through C, R, and C ′. Since C,R,C ′ are not hit by β(t), none of the vertices on π is contained in β(t).
This contradicts with the fact that β(t) contains at least one vertex on each path in G′′ connecting a vertex
in K and a vertex in K ′. Therefore, min{|K|, |K ′|} ≤ |β(t) ∩ V (Γf )|. C

With Claim 3 in hand, we now show |β∗(t)| = O(|β(t)|) = O(w). We shall show that |αf (t)| =
O(|β(t) ∩ V (Γf )|) for all f ∈ Fη(G), which implies |β∗(t)| = O(|β(t)|) because |β∗(t)| ≤ |β(t)| +∑

f∈Fη(G) |αf (t)| and
∑

f∈Fη(G) |β(t) ∩ V (Γf )| ≤ |β(t)|. If µ(t, κ̂(f)) ≤ wκ(f)/2, then by Claim 3
we have wκ(f) = O(|β(t) ∩ V (Γf )|) and thus |αf (t)| ≤ wκ(f) = O(|β(t) ∩ V (Γf )|). So assume
µ(t, κ̂(f)) > wκ(f)/2 and let T ′ be the tree in the forest T − {t} that contains µ(t, κ̂(f)) vertices in
κ̂(f)\β(t). Observe that tf ∈ T ′ for otherwise µ(tf , κ̂(f)) ≥ µ(t, κ̂(f)) > wκ(f)/2. Therefore, αf (t) is
the set of vertices in κ̂(f)\β(t) that are not contained in T ′. So we have

|αf (t)| = |κ̂(f)\β(t)| − µ(t, κ̂(f)) ≤ wκ(f)− µ(t, κ̂(f)) = O(|β(t) ∩ V (Γf )|),

where the last equality follows from Claim 3.
Now we have seen that after the modification, T is a tree decomposition of G′′ of width O(w) satisfying

that for any f ∈ Fη(G), there is a node whose bag contains κ̂(f). Equivalently, T is an O(w)-width tree
decomposition of the graph G∗ obtained from G′′ by making κ̂(f) a clique for all f ∈ Fη(G). Note that
G∗ contains Gκ as a minor. Indeed, if we contract the edges on each column of the grid Γf and the edges
connecting the vertices in κ(f) with the vertices in the first row of Γf for all f ∈ Fη(G), then we obtain Gκ

from G∗. As a result, tw(Gκ) = O(w) = O(diam∗wκ(G, η)), which completes the proof.

4.2 Constructing the sets Z1, . . . , Zp

Now we begin the proof of Lemma 6. Let us recall the formal definition of almost-embeddable graphs.
Since this definition is somehow involved, we first need to introduce some basic notions. A facial disk of
a Σ-embedded graph (G, η) is a (topological) disk in Σ whose interior is disjoint from the image of (G, η)
in Σ. Clearly, a facial disk of (G, η) is contained in some face of (G, η). For a disk D in Σ, we define
V (G) ∩η D ⊆ V (G) as the set of vertices whose images under η lie in D. If D is a facial disk of (G, η),
then the images of the vertices in V (G)∩ηD under η are all on the boundary of D; in this case, the vertices
in V (G) ∩η D can be sorted in clockwise or counterclockwise order along the boundary of D. A path
decomposition is a tree decomposition in which the underlying tree is a path.

Definition 13 (almost-embeddable graphs). For an integer h > 0, a graph G is h-almost-embeddable if
there exists A ⊆ V (G) with |A| ≤ h such that we can write G− A = G0 ∪G1 ∪ · · · ∪Gh and there exist
an embedding η of G0 in a surface Σ of genus h, d disjoint facial disks D1, . . . , Dh of (G0, η), and h pairs
(τ1,P1), . . . , (τh,Ph) such that the following conditions hold for all i ∈ [h].

• G1, . . . , Gh are mutually disjoint.

• V (G0) ∩η Di = V (G0) ∩ V (Gi). Set qi = |V (G0) ∩η Di| = |V (G0) ∩ V (Gi)|.

• τi = (vi,1, . . . , vi,qi) is a permutation of the vertices in V (G0) ∩η Di that is compatible with the
clockwise or counterclockwise order along the boundary of Di;
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• Pi is a path decomposition of Gi of width at most h whose underlying path πi = (ui,1, . . . , ui,qi) is of
length qi − 1 and satisfies vi,j ∈ β(ui,j) for all j ∈ [qi].

We call A the apex set, G0 the embeddable skeleton, and G1, . . . , Gh the vortices attached to the disks
D1, . . . , Dh. Also, we call each pair (τi,Pi) the witness pair of the vortexGi, for i ∈ [h]. These components
together are called the almost-embeddable structure of G.

Let G be an h-almost-embeddable graph with apex set A ⊆ V (G), embeddable skeleton G0 with an
embedding η to a genus-h surface Σ, and vortices G1, . . . , Gh attached to disjoint facial disks D1, . . . , Dh

in (G0, η) with witness pairs (τ1,P1), . . . , (τh,Ph). Let p ∈ N be the given number. In this section, we
construct the disjoint sets Z1, . . . , Zp ⊆ V (G) in Lemma 6, and then in the next section we show these sets
satisfy the desired property.

In our construction, the sets Z1, . . . , Zp will all be subsets of V (G0). In the first step, we add some
“virtual” edges toG0. Consider an index i ∈ [h]. Suppose τi = (vi,1, . . . , vi,qi). By definition, vi,1, . . . , vi,qi
are the vertices of (G0, η) that lie on the boundary of Di, sorted in clockwise or counterclockwise order.
For convenience, we write vi,0 = vi,qi . We then add the edges (vi,j−1, vi,j) for all j ∈ [qi] to G0, and call
them virtual edges. Furthermore, we draw these virtual edges inside (the interior of) the disk Di without
crossing (this is possible because v1, . . . , vqi are sorted along the boundary of Di). The images of these
virtual edges then enclose a disk D′i in Di. We do this for all indices i ∈ [h]. Let G′0 denote the resulting
graph after adding the virtual edges. Since D1, . . . , Dh are disjoint facial disks in (G0, η), the images of the
virtual edges do not cross each other or cross the original edges in (G0, η). Therefore, the drawing of the
virtual edges extends η to an embedding of G′0 to Σ; for simplicity, we still use the notation η to denote this
embedding. Note that the disks D′1, . . . , D

′
h are faces of (G′0, η), which we call vortex faces.

Now fix an arbitrary point xout ∈ Σ that is disjoint from the image of G′0 under η, or equivalently, in the
interior of a face of (G′0, η). For any Σ-embedded graph whose image is disjoint from xout, we call the face
containing xout the outer face of the graph. Let o ∈ Fη(G′0) be the outer face of (G′0, η). For any vertex
v ∈ V (G′0) = V (G0), the vertex-face distance between o and v in (G′0, η) is an odd number (since o is a
face and v is a vertex). We define Li ⊆ V (G′0) as the subset consisting of all vertices v ∈ V (G′0) such that
the vertex-face distance between o and v in (G′0, η) is 2i − 1. Let m ∈ N be the largest number such that
Lm 6= ∅. By Fact 10, the VFI graph of (G′0, η) is connected, and hence L1, . . . , Lm forms a partition of
V (G′0). We call Li the i-th layer of (G′0, η). For convenience, we write Li+

i− =
⋃i+

i=i− Li for two indices
i−, i+ ∈ [m] that i− ≤ i+, and write L≥i = Lmi and L>i = Lmi+1 for i ∈ [m]. Define ` : V (G′0) → [m] as
the function which maps each v ∈ V (G′0) to the unique index i ∈ [m] such that v ∈ Li. One can easily see
the following properties of L1, . . . , Lm.

Fact 14. If two vertices u, v ∈ V (G′0) are incident to a common face of (G′0, η), |`(u)− `(v)| ≤ 1. Also, if
two vertices u, v ∈ V (G′0) are neighboring in G′0, |`(u)− `(v)| ≤ 1.

Proof. Let u, v ∈ V (G′0). If u and v are incident to a common face of (G′0, η), then the vertex-face distance
between u and v in (G′0, η) is 2. Note that the vertex-face distance between o and u (resp., v) in (G′0, η) is
2`(u) − 1 (resp., 2`(v) − 1). By the triangle inequality, we have |(2`(u) − 1) − (2`(v) − 1)| ≤ 2, which
implies |`(u)− `(v)| ≤ 1. If u and v are neighboring in G′0, then u and v are incident to a common face of
(G′0, η). Indeed, there exists a face of (G′0, η) incident to the edge (u, v), and hence incident to both u and
v. Therefore, |`(u)− `(v)| ≤ 1.

Fact 15. Let oi be the outer face of (G′0[L≥i], η). The following statements are true.
(i) oi is incident to all vertices in Li but no vertex in L>i.
(ii) oi is the outer face of (G′0[L′], η) for any L′ that Li ⊆ L′ ⊆ L≥i.
(iii) The image of any vertex v ∈ Li−1

1 in Σ under η lies in the interior of oi.
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Proof. We prove the statements by induction on i. The base case is i = 1. We have L≥1 = V (G′0), and
hence o1 = o (recall that o is the outer face of (G′0, η)). Note that o is incident to exactly the vertices
whose vertex-face distance to o is 1, i.e., the vertices in L1. Therefore, o1 is incident to all vertices in
L1 but no vertex in L≥2. Now consider a set L′ that L1 ⊆ L′ ⊆ L≥1. Since (G′0[L′], η) is a subgraph
of (G′0[L≥1], η) = (G′0, η), the outer face oL′ of (G′0[L′], η) contains o. On the other hand, (∂o, η) is a
subgraph of (G′0[L1], η), which is in turn a subgraph of (G′0[L′], η). So oL′ is contained in the outer face of
(∂o, η), which is clearly o. Thus, we have oL′ = o = o1. So statements (i) and (ii) hold for i = 1, while
statement (iii) also holds since L0

1 = ∅.
Suppose the statements hold for all i < j, and we want to show they hold for i = j. Consider the outer

face oj of (G′0[L≥j ], η). To verify statement (i), we first show that oj is incident to all vertices in Lj . We
have oj−1 ⊆ oj as (G′0[L≥j ], η) is a subgraph of (G′0[L≥j−1], η). Let v ∈ Lj be a vertex. The vertex-face
distance between o and v in (G′0, η) is 2j−1, so there is a shortest path π = (o, v1, f1, . . . , vj−1, fj−1, v) in
the VFI of (G′0, η) connecting o and v where v1, . . . , vj−1 ∈ V (G′0) and f1, . . . , fj−1 ∈ Fη(G′0). Since π
is a shortest path, the vertex-face distance between o and vj−1 in (G′0, η) is 2j − 3, i.e., vj−1 ∈ Lj−1. Note
that vj−1 is incident to fj−1. Also, vj−1 is incident to oj−1, by our induction hypothesis. Therefore, if we
remove vj−1 from (G′0[L≥j−1], η), then fj−1 will be “merged” to the outer face of the resulting graph. It
follows that fj−1 ⊆ oj . Since v is incident to fj−1, it is also incident to oj . This shows oj is incident to all
vertices in Lj . Next, we show that oj is incident to no vertex in L>j . Consider a vertex v ∈ L>j and a face
f ∈ Fη(G′0) of (G′0, η) incident to v. By Fact 14, for any vertex v′ ∈ V (G′0) incident to f , |`(v′)−`(v)| ≤ 1
and hence `(v′) ≥ j. In other words, all vertices incident to f are contained in L≥j . Therefore, f is also a
face of (G′0[L≥j ], η). Note that f 6= o since o is only incident to the vertices in L1. It follows that xout /∈ f
and thus f is not the outer face of (G′0[L≥j ], η). This shows oj is incident to no vertex in L>j . So statement
(i) follows.

Next, we verify statement (ii). Since (G′0[L′], η) is a subgraph of (G′0[L≥j ], η), the outer face oL′ of
(G′0[L′], η) contains oj . On the other hand, because oj is not incident to any vertex in L>j , (∂oj , η) is a
subgraph of (G′0[Lj ], η), which is in turn a subgraph of (G′0[L′], η). So oL′ is contained in the outer face of
(∂oj , η), which is clearly oj . Thus, oL′ = oj and statement (ii) holds.

Finally, we verify statement (iii). By our induction hypothesis, the image of any v ∈ Lj−2
1 lies in the

interior of oj−1 and hence in the interior of oj as oj−1 ⊆ oj . So it suffices to consider the vertices in
Lj−1. Again, by the induction hypothesis, all vertices in Lj−1 are incident to oj−1 and hence their images
are contained in oj . To further show that they are contained in the interior of oj , observe that the image
of any vertex in V (G′0)\L≥j must lie in the interior of some face of (G′0[L≥j ], η), simply because η is an
embedding. Therefore, the images of the vertices inLj−1 lie in the interior of oj , proving statement (iii).

We say a face f ∈ Fη(G′0) hits a layer Li if f is incident to some vertex in Li. By Fact 14, any face
of (G′0, η) can hit at most two layers, which must be consecutive. Recall the vortex faces D′1, . . . , D

′
h. If

some layer Li is hit by some vortex face, we say Li is a bad layer. Since a face can hit at most two layers
and there are h vortex faces, the number of bad layers is at most 2h. Now set p′ = p + 2h. We say a
number q ∈ [p′] is bad if it is congruent to the index of a bad layer modulo p′, i.e., q ≡ i (mod p′) for
some i ∈ [m] such that Li is a bad layer, and is good otherwise. As there are at most 2h bad layers, there
are at most 2h bad numbers in [p′]. So we can always find p good numbers q1, . . . , qp ∈ [p′]. We then
construct the sets Z1, . . . , Zp by simply defining Zi as the union of all layers whose indices are congruent
to qi modulo p′, i.e., Zi =

⋃b(m−qi)/p′c
j=0 Ljp′+qi . Note that Zi ⊆ V (G′0) = V (G0) ⊆ V (G) for i ∈ [p] and

Z1, . . . , Zp are disjoint. Furthermore, it is clear that Z1, . . . , Zp can be computed in polynomial time given
the almost-embeddable structure of G.
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4.3 Bounding the treewidth of G/(Zi\Z ′)

To prove Lemma 6, it now suffices to show the sets Z1, . . . , Zp constructed in the previous section satisfy
that for any i ∈ [p] and Z ′ ⊆ Zi, tw(G/(Zi\Z ′)) = O(p + |Z ′|). Without loss of generality, it suffices
to consider the case i = 1, as the constructions of Z1, . . . , Zp are the same. Let Z ′ ⊆ Z1 be an arbitrary
subset. Our goal is to show tw(G/(Z1\Z ′)) = O(p+ |Z ′|).

Recall that Z1 =
⋃b(m−q)/p′c
j=0 Ljp′+q for some good number q ∈ [p′]. For simplicity of exposition, let

us define Li = ∅ for any integer i ∈ (−∞, 0] ∪ [m + 1,+∞) and write ij = (j − 2)p′ + q for any j ∈ N.
Then we can write Z1 =

⋃m′

j=1 Lij , where m′ = b(m− q)/p′c+ 2. We first observe a relation between the
treewidth of G/(Z1\Z ′) and the treewidth G′0/(Z1\Z ′).

Lemma 16. tw(G/(Z1\Z ′)) = O(h · tw(G′0/(Z1\Z ′)) + h).

Proof. We first notice that G[Z1\Z ′] = G0[Z1\Z ′] = G′0[Z1\Z ′]. We have G − A = G0 ∪ (
⋃h
i=1Gi).

The vertices in the intersection of G0 and the vortices G1, . . . , Gh are all on the boundaries of the vortex
faces D′1, . . . , D

′
h. Hence, these vertices all lie in the bad layers of G′0, while Z1 is the union of the good

layers Lj1 , . . . , Ljm′ . This implies Z1 ⊆ V (G0)\(
⋃h
i=1 V (Gi)) and thus G[Z1\Z ′] = G0[Z1\Z ′]. To see

G0[Z1\Z ′] = G′0[Z1\Z ′], recall that G′0 is obtained from G0 by adding some virtual edges. The virtual
edges are all on the boundaries of the vortex faces D′1, . . . , D

′
h, and thus are disjoint from Z1. So we have

G0[Z1\Z ′] = G′0[Z1\Z ′]. Based on this fact, we see that G0/(Z1\Z ′) is a subgraph of G′0/(Z1\Z ′) which
has the same vertex set as G′0/(Z1\Z ′), and G0/(Z1\Z ′) is also a subgraph of G/(Z1\Z ′). Therefore, the
vertex set of G′0/(Z1\Z ′) is a subset of the vertex set of G/(Z1\Z ′).

Now let T ∗ be a tree decomposition ofG′0/(Z1\Z ′) of width w and T ∗ be the underlying tree of T ∗. We
are going to modify T ∗ to a tree decomposition ofG/(Z1\Z ′) of widthO(hw+h), which proves the claim.
To this end, we apply the same argument as in [16] (Lemma 5.8). For convenience, we do not distinguish the
vertices in V (G)\(Z1\Z ′) with their images inG/(Z1\Z ′). For each vertex v ofG′0/(Z1\Z ′), we use T ∗(v)
to denote the subset of nodes in T ∗ whose bags contain v, which is connected as T ∗ is a tree decomposition.
Consider a vortex Gi with the witness pair (τi,Pi). Suppose σi = (vi,1, . . . , vi,qi). Then Pi is a path
decomposition of Gi with path P = (ui,1, . . . , ui,qi) such that vi,j ∈ β(ui,j) for all j ∈ [qi]. We then add
the bag β(ui,j) of Pi to the bags of all vertices in T ∗(vi,j). We do this for all vorticesG1, . . . , Gh. After that,
we add the apex set A to the bags of all vertices in T ∗. It is easy to verify that T ∗ (after the modification)
is a tree decomposition of G/(Z1\Z ′). Indeed, the bags of T ∗ cover every edge of G/(Z1\Z ′): the edges
in G0/(Z1\Z ′) are covered by the original bags of T ∗, the edges in each vortex Gi are covered by the bags
of the path decomposition Pi (which are added to the bags of the corresponding vertices in T ∗), and the
edges adjacent to the apex set A are also covered because we add A to all bags of T ∗. Furthermore, for
any vertex v of G/(Z1\Z ′), the nodes whose bags containing v are connected in T ∗; this follows from the
fact that (vi,1, . . . , vi,qi) forms a path in G′0/(Z1\Z ′) (which consists of virtual edges) for all i ∈ [h] and
thus

⋃j+

j=j− T
∗(vi,j) is connected in T ∗ for any j−, j+ ∈ [qi]. Finally, we observe that the width of T ∗ is

O(hw + h). Consider a node t∗ ∈ T ∗. Originally, the size of the bag β(t∗) is at most w + 1. If a vortex
Gi contains ci vertices in (the original) β(t∗), then we added ci bags of the path decomposition Pi to β(t∗).
Since the vortices G1, . . . , Gh are disjoint, each vertex in β(t∗) can be contained in at most one vortex,
which implies

∑h
i=1 ci ≤ w + 1. Therefore, we added at most w + 1 bags of the path decompositions

P1, . . . ,Ph to β(t∗), each of which has size O(h). So after this step, the size of β(t∗) is O(hw). Then after
we added the apex set A to β(t∗), the size β(t∗) is O(hw + h) because |A| ≤ h.

With the above lemma in hand, it now suffices to show tw(G′0/(Z1\Z ′)) = O(p + |Z ′|). We shall
construct explicitly a tree decomposition of G′0/(Z1\Z ′) of width O(p + |Z ′|). To this end, we first need
to define a support tree Tsupp as follows. Roughly speaking, Tsupp is a tree that interprets the containment
relation between the connected components of G′0[L>i1 ], . . . , G′0[L>im′ ]. The depth of Tsupp is m′. The
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root (i.e., the node in the 0-th level) of Tsupp is a dummy node. For all j ∈ [m′], the nodes in the j-th
level of Tsupp are one-to-one corresponding to the connected components of G′0[L>ij ]. The parent of the
nodes in the first level is just the root. The parents of the nodes in the lower levels are defined as follows.
Consider a node t ∈ Tsupp in the j-th level for j ≥ 2, and let Ct be the connected component of G′0[L>ij ]
corresponding to t. Since G′0[L>ij ] is a subgraph of G′0[L>ij−1 ], Ct is contained in a unique connected
component of G′0[L>ij−1 ], which corresponds to a node t′ in the (j − 1)-th level. We then define the parent
of t as t′. For each node t ∈ Tsupp, we associate to t a set Vt ⊆ V (G′0) defined as follows. If t is the root of
Tsupp, Vt = ∅. Suppose t is in the j-th level for j ∈ [m′] and is corresponding to the connected component
Ct of G′0[L>ij ]. Then let Vt consist of all vertices v ∈ V (Ct) satisfying ij < `(v) ≤ ij+1. We notice the
following simple fact.

Fact 17. The support tree Tsupp and the associated sets Vt satisfy the following properties.
(i) {Vt}t∈Tsupp is a partition of V (G′0).
(ii) The vertices in each connected component of G′0[Z1\Z ′] are contained in the same Vt.
(iii) If two vertices v ∈ Vt and v′ ∈ Vt′ are neighboring in G′0 and t 6= t′, then either t is the parent of t′ or
t′ is the parent of t.

Proof. To show property (i), we first observe that every vertex v ∈ V (G′0) belongs to Vt for some t ∈ Tsupp.
Indeed, there exists some j ∈ [m′] such that ij < `(v) ≤ ij+1. Then v ∈ L>ij and thus v is contained in
some connected component C of G′0[L>ij ]. Let t ∈ Tsupp be the node in the j-th level corresponding to C.
We have v ∈ Vt. Next, we show Vt ∩ Vt′ = ∅ if t 6= t′. Suppose t (resp., t′) is in the j-th (resp., j′-th) level.
If j < j′, then Vt ∩ Vt′ = ∅, as `(v) ≤ ij+1 ≤ ij′ < `(v′) for all v ∈ Vt and v′ ∈ Vt′ . Similarly, we have
Vt∩Vt′ = ∅ if j > j′. So it suffices to consider the case j = j′. In this case, since t 6= t′, t and t′ correspond
to different connected components of G′0[L>ij ] which contain the vertices in Vt and Vt′ respectively. Hence,
Vt ∩ Vt′ = ∅. This shows {Vt}t∈Tsupp is a partition of V (G′0).

Next, we verify property (ii). Consider a connected component C of G′0[Z1\Z ′]. Since Z1 =
⋃m′

j=1 Lij
and by Fact 14 the layers Li1 , . . . , Lim′ are non-adjacent in G′0 (i.e., there is no edge in G′0 connecting two
layers Lij and Lij′ for j 6= j′), the vertices in C must be contained in the same layer Lij for some j ∈ [m′].
Also, since C is connected, it must belong to some connected component ofG′0[L>ij−1 ], which corresponds
to a node t ∈ Tsupp in the (j − 1)-th level. By definition, the vertices in C are contained in Vt.

Finally, we show property (iii). Now let v ∈ Vt and v′ ∈ Vt′ be two vertices neighboring in G′0 and
assume t 6= t′. Suppose t (resp., t′) is in the j-th (resp., j′-th) level. By Fact 14, |`(v) − `(v′)| ≤ 1, which
implies |j − j′| ≤ 1. If j = j′, then Vt and Vt′ belong to different connected components of G′0[L>ij ] and
thus v and v′ cannot be neighboring in G′0. So we have either j = j′ + 1 or j′ = j + 1. Without loss of
generality, assume j = j′ + 1. Let t∗ ∈ Tsupp be the parent of t, and we claim that t∗ = t′. Indeed, both t∗

and t′ are in the j′-th level of Tsupp. If t∗ 6= t′, then t∗ and t′ correspond to different connected components
Ct∗ and Ct′ of G′0[L>ij ] respectively. Note that v is contained in Ct∗ and v′ is contained in Ct′ , which
contradicts with the fact that v and v′ are neighboring. Thus t∗ = t′.

Now let us consider the graphs G′0[Vt]/(Vt ∩ (Z1\Z ′)) for t ∈ Tsupp. For convenience, we write
Jt = G′0[Vt]/(Vt ∩ (Z1\Z ′)). By properties (i) and (ii) of Fact 17, each Jt is actually an induced subgraph
ofG′0/(Z1\Z ′) and these induced subgraphs are disjoint and cover all vertices ofG′0/(Z1\Z ′). Furthermore,
by property (iii) of Fact 17, the induced subgraph Jt is only adjacent to the induced subgraphs at the parent
and the children of t. Based on this observation, our next plan is the following. We shall construct, for
each node t ∈ Tsupp, a tree decomposition T ∗t of Jt of width O(p + |Z ′|) with a good property: for each
child s of t, there is a bag of T ∗t which contains all vertices of Jt that are neighboring to Js in G′0/(Z1\Z ′).
By exploiting this good property, we can then “glue” the tree decompositions {T ∗t }t∈Tsupp along the edges
of Tsupp to obtain a tree decomposition for G′0/(Z1\Z ′) of width O(p + |Z ′|). In what follows, we first
describe the gluing step and then show how to construct the tree decompositions {T ∗t }t∈Tsupp .
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Suppose now we already have the tree decompositions {T ∗t }t∈Tsupp . Let T ∗t be the underlying (rooted)
tree of T ∗t . We are going to glue the trees T ∗t together to obtain a new tree T ∗ and then give each node in
T ∗ a bag so that it becomes a tree decomposition T ∗ of G′0/(Z1\Z ′). Consider a non-root node s ∈ Tsupp
with parent t. By the good property of the tree decomposition T ∗t , there is a node t∗ ∈ T ∗t whose bag β(t∗)
contains all vertices of Jt that are neighboring to Js in G′0/(Z1\Z ′); we call t∗ the portal of s. We add an
edge to connect the root of T ∗s and t∗. We do this for all non-root nodes in Tsupp. After that, we glue all trees
T ∗t together and obtain the new tree T ∗. Next, we associate to each node s∗ ∈ T ∗ a bag β(s∗) as follows.
Consider a node s∗ ∈ T ∗ and suppose s∗ originally belongs to T ∗s for s ∈ Tsupp. If s is the root, we simply
define β(s∗) as the bag of s∗ in the tree decomposition T ∗s . If s is not the root, let t be the parent of s in
Tsupp and t∗ ∈ T ∗t be the portal of s. We define β(s∗) as the union of the bag of s∗ in T ∗s and the bag of t∗

in T ∗t . Let T ∗ be the tree T ∗ with the associated bags.

Fact 18. T ∗ is a tree decomposition of G′0/(Z1\Z ′) of width O(p+ |Z ′|).

Proof. By construction, each bag of T ∗ is either a bag or the union of two bags of some tree decompositions
in {T ∗t }t∈Tsupp . By assumption, the width of each T ∗t is O(p + |Z ′|) and hence the size of the bags of T ∗
is also O(p + |Z ′|). So it suffices to show that T ∗ is a tree decomposition of G′0/(Z1\Z ′). We first show
that every edge e of G′0/(Z1\Z ′) is covered by some bag of T ∗. As observed before, either e belongs to the
induced subgraph Jt for some t ∈ Tsupp or e connects a vertex in Js for some s ∈ Tsupp and a vertex in Jt
where t is the parent of s in Tsupp. In the first case, since T ∗t is a tree decomposition of Jt, there is a node
t∗ ∈ T ∗t whose bag contains the two endpoints of e. Note that the bag of t∗ in T ∗ contains the the bag of
t∗ in T ∗t , and hence also contains the two endpoints of e. In the second case, let t∗ ∈ T ∗t be the portal of
s. Then the bag of t∗ in T ∗t contains the endpoint of e in Jt, because it contains all vertices of Jt that are
neighboring to Js in G′0/(Z1\Z ′). Also, there is a node s∗ ∈ T ∗s whose bag in T ∗s contains the endpoint of
e in Js. The bag of s∗ in T ∗, which is by definition the union of the bag of s∗ in T ∗s and the bag of t∗ in
T ∗t , contains both endpoints of e. Finally, we show that for any vertex v of G′0/(Z1\Z ′), the nodes of T ∗

whose bags contain v are connected in T ∗. Suppose v ∈ Vt for t ∈ Tsupp. Observe that v is contained in
the bags of two types of nodes in T ∗. The first type are the nodes which originally belong to T ∗t and whose
bags in T ∗t contain v. The second type are all nodes which originally belong to T ∗s for some child s of t
such that the bag of the portal of s in T ∗t contains v. The nodes of the first type are connected in T ∗ because
they are connected in T ∗t . The nodes of the second type form some connected parts each of which consists
of the nodes originally belonging to T ∗s for some child s of t. The part corresponding to T ∗s is adjacent to
the portal of s, which is a node of the first type since its bag in T ∗t contains v. In sum, the nodes of the first
type are connected and each connected part formed by the nodes of the second type is adjacent to a node of
the first type. Therefore, the nodes whose bags contain v are connected in T ∗.

We have seen above that given the tree decompositions {T ∗t }t∈Tsupp , one can construct a tree decompo-
sition of G′0/(Z1\Z ′) of width O(p + |Z ′|), which implies tw(G′0/(Z1\Z ′)) = O(p + |Z ′|) and further
implies tw(G/(Z1\Z ′)) = O(p + |Z ′|) by Lemma 16. Therefore, to complete the proof, we only need
to show the existence of the tree decompositions {T ∗t }t∈Tsupp . Recall that T ∗t is required to be a tree de-
composition of Jt = G′0[Vt]/(Vt ∩ (Z1\Z ′)) of width O(p + |Z ′|) such that for each child s of t in Tsupp,
there is a bag of T ∗t which contains Nt,s ⊆ Vt, the set of all vertices of Jt that are neighboring to Js in
G′0/(Z1\Z ′). Note that this requirement is equivalent to saying that T ∗t is a tree decomposition of J ′t of
width O(p + |Z ′|), where J ′t is the graph obtained from Jt by making Ns,t a clique for all children s of t
(because each clique in a graph is contained in some bag of its tree decomposition). So it now suffices to
prove tw(J ′t) = O(p+ |Z ′|) for all t ∈ Tsupp.

Fix j ∈ [m′] and let us show that tw(J ′t) = O(p + |Z ′|) for all nodes t in the j-th level of Tsupp. Set
i− = ij + 1 and i+ = ij+1. Recall that the sets Vt for the nodes t in the j-th level correspond to the
vertices of G′0 in the layers Li− , . . . , Li+ . Consider the graph (G′0[Li

+

i− ], η). We say a face f ∈ Fη(G′0[Li
+

i− ])
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of (G′0[Li
+

i− ], η) is deep if it is not contained in the outer face of (G′0[Li+ ], η), and is shallow otherwise.
For each deep face f ∈ Fη(G

′
0[Li

+

i− ]), we denote by Cf the set of connected components of G′0[Z1\Z ′]
that intersect ∂f . For each pair (f, C) where f ∈ Fη(G′0[Li

+

i− ]) is a deep face and C ∈ Cf , we arbitrarily
choose a vertex uf,C in the intersection of ∂f and C. Let Uf = {uf,C : C ∈ Cf}. We define a function

κ : Fη(G
′
0[Li

+

i− ])→ 2L
i+

i− as

κ(f) =

{
Uf ∪ (Z ′ ∩ V (∂f)) if f is deep,
∅ if f is shallow.

Clearly, we have κ(f) ⊆ V (∂f). Consider the graph obtained fromG′0[Li
+

i− ] by making κ(f) a clique for all
f ∈ Fη(G′0[Li

+

i− ]), which we denote by (G′0[Li
+

i− ])κ. We observe the following relation between the graph
(G′0[Li

+

i− ])κ and the graphs J ′t.

Fact 19. J ′t is a minor of (G′0[Li
+

i− ])κ for any node t in the j-th level of Tsupp.

Proof. By definition, Jt = G′0[Vt]/(Vt ∩ (Z1\Z ′)). So there is a quotient map π : Vt → V (Jt) = V (J ′t),
which is surjective. The vertex set of (G′0[Li

+

i− ])κ is Li
+

i− and Vt ⊆ Li
+

i− . So it suffices to show that for any
u, v ∈ V (J ′t), if (u, v) is an edge in J ′t, then there exist û ∈ π−1(u) and v̂ ∈ π−1(v) such that (û, v̂) is an
edge in (G′0[Li

+

i− ])κ; if this is true, then J ′t is a minor of (G′0[Li
+

i− ])κ[Vt] and hence a minor of (G′0[Li
+

i− ])κ.
If (u, v) is an edge in Jt, then there exist û ∈ π−1(u) and v̂ ∈ π−1(v) such that (û, v̂) is an edge in
G′0[Vt] and hence an edge in (G′0[Li

+

i− ])κ. So suppose (u, v) is not an edge in Jt. Then we must have
u, v ∈ Ns,t for some child s of t. Suppose C is the connected component of G′0[L>i+ ] corresponding to the
node s. Since C is connected, its image in Σ under η should be contained in a face f ∈ Fη(G′0[Li

+

i− ]) of
(G′0[Li

+

i− ], η). Furthermore, f must be a deep face, because (the image of) C is not contained in the outer
face of (G′0[L≥i+ ]) which is also the outer face of (G′0[Li+ ]) by statement (ii) of Fact 15. We claim that there
exist û ∈ π−1(u) and v̂ ∈ π−1(v) such that û, v̂ ∈ κ(f), which implies (û, v̂) is an edge in (G′0[Li

+

i− ])κ.
Without loss of generality, it suffices to show the existence of û. There are two cases to be considered:
π−1(u) is a single vertex in Vt\(Z1\Z ′) and π−1(u) is a connected component of G′0[Vt ∩ (Z1\Z ′)]. In the
first case, we simply let û be the only vertex in π−1(u). we must have û ∈ Li+ ⊆ Z1 since the vertices
in Li− , . . . , Li+−1 are not adjacent to any vertex in Vs by Fact 14. But û /∈ Z1\Z ′, which implies û ∈ Z ′.
Furthermore, û ∈ ∂f because û is adjacent to some vertex in Vs (and hence adjacent to some vertex in
C) while the image of C in Σ is contained in f . It follows that û ∈ Z1 ∩ ∂f ⊆ κ(f). In the second
case, π−1(u) must intersect ∂f , again because π−1(u) is adjacent to some vertex in Vs. By property (ii) of
Fact 17, a connected component of G′0[Vt ∩ (Z1\Z ′)] is also a connected component of G′0[Z1\Z ′]. Thus,
we have π−1(u) ∈ Cf (recall that Cf is the set of all connected components of G′0[Z1\Z ′] which intersect
∂f ). By our construction of the set Uf , there exists a vertex uf,π−1(u) ∈ Uf which lies in the intersection of
∂f and π−1(u). Setting û = uf,π−1(u), we have û ∈ π−1(u) and û ∈ Uf ⊆ κ(f).

By the above observation, we have tw(J ′t) ≤ tw((G′0[Li
+

i− ])κ) for any node t in the j-th level of Tsupp.
So it suffices to show tw((G′0[Li

+

i− ])κ) = O(p + |Z ′|). Let wκ : Fη(G
′
0[Li

+

i− ]) → N be the weight function
on the faces of (G′0[Li

+

i− ], η) defined as wκ(f) = |κ(f)|. Recall that diam∗wκ(G′0[Li
+

i− ], η) is the wκ-weighted
vertex-face diameter of (G′0[Li

+

i− ], η). By Lemma 12, we have tw((G′0[Li
+

i− ])κ) = O(diam∗wκ(G′0[Li
+

i− ], η)).
In order to bound diam∗wκ(G′0[Li

+

i− ], η), we first need to bound the value of the weight function wκ. Clearly,
wκ(f) = 0 if f is shallow. The following observation helps bound wκ(f) for deep faces f ∈ Fη(G′0[Li

+

i− ]).

Fact 20. Let f ∈ Fη(G′0[Li
+

i− ]) be a deep face of (G′0[Li
+

i− ], η). Then ∂f intersects at mostO(|Z ′|) connected
components of G′0[Z1\Z ′].
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Proof. Let f ∈ Fη(G′0[Li
+

i− ]) be a deep face. Since Z1 =
⋃m′

j=1 Lij , we have Z1 ∩Li
+

i− = Li+ . So it suffices
to show that ∂f intersects O(|Z ′|) connected components of G′0[Li+\Z ′]. Let oi+ ∈ Fη(G′0[Li+ ]) be the
outer face of (G′0[Li+ ], η). By the assumption that f is deep, we have f * oi+ . Note that oi+ is also a
face of (∂oi+ , η), which is clearly the outer face. Because ∂oi+ is a subgraph of G′0[Li+ ] which is in turn
a subgraph of G′0[Li

+

i− ], f must be contained in some face f ′ ∈ Fη(∂oi+) of (∂oi+ , η) other than oi+ . By
statement (i) of Fact 15, all vertices in Li+ are incident to oi+ and thus V (∂oi+) = Li+ . Since f ⊆ f ′ and
f ′ is a face of (∂oi+ , η), any vertex of ∂oi+ incident to f must be on the boundary of f ′, which implies
V (∂f)∩V (∂oi+) ⊆ V (∂f ′), i.e., V (∂f)∩Li+ ⊆ V (∂f ′). Therefore, it suffices to show that ∂f ′ intersects
O(|Z ′|) connected components of G′0[Li+\Z ′]. As f ′ is a face of (∂oi+ , η) and f ′ 6= oi+ , by Lemma 9,
∂f ′ has O(h) connected components and the maximum degree of ∂f ′ is O(h). It is well-known that after
removing α vertices from a graph of maximum degree ∆, the number of connected components of the graph
increases by at most α(∆ − 1) (for completeness, we include a proof for this below). Thus, ∂f ′ − Z ′ has
O(h + |Z ′|(h − 1)) connected components, i.e., O(|Z ′|) connected components. Note that ∂f ′ − Z ′ is a
subgraph ofG′0[Li+\Z ′], so every connected component of ∂f ′−Z ′ is contained in a connected component
ofG′0[Li+\Z ′]. It follows that ∂f ′−Z ′ intersectsO(|Z ′|) connected components ofG′0[Li+\Z ′], and hence
∂f ′ intersects O(|Z ′|) connected components of G′0[Li+\Z ′].

Finally, we prove the statement that after removing α vertices from a graph G of maximum degree ∆,
the number of connected components of G increases by at most α(∆ − 1). It suffices to consider the case
α = 1, because removing vertices can never increase the maximum degree of the graph. Let v be the vertex
to be removed from G and C be the connected component of G containing v. Because C is connected,
every connected component of C − {v} must contain a neighbor of v. But v can have at most ∆ neighbors.
Therefore, C−{v} can have at most ∆ connected components. In other words, after removing v, C splits to
at most ∆ connected components. Hence, the number of connected components of G increases by at most
∆− 1.

The above observation implies that for any deep face f ∈ Fη(G′0[Li
+

i− ]), |Uf | = |Cf | = O(|Z ′|) and thus
wκ(f) = O(|Z ′|). With this in hand, we can finally bound diam∗wκ(G′0[Li

+

i− ], η), which then completes the
entire proof of Lemma 6.

Fact 21. diam∗wκ(G′0[Li
+

i− ], η) = O(p+ |Z ′|).

Proof. Let oi− be the outer face of (G′0[L≥i− ], η), which is also the outer face of (G′0[Li
+

i− ], η) by statement
(ii) of Fact 15. We first show that for any vertex v ∈ Li+i− , the wκ-weighted vertex-face distance between
oi− and v in (G′0[Li

+

i− ], η) is O(p). Suppose v ∈ Li. So the vertex-face distance between the outer face
o of (G′0, η) and v in (G′0, η) is 2i − 1. Let π = (o, v1, f1, . . . , vi−1, fi−1, v) be a shortest path in the
VFI graph of (G′0, η) connecting the outer face o of (G′0, η) and v, where v1, . . . , vi−1 ∈ V (G′0) and
f1, . . . , fi−1 ∈ Fη(G

′
0). Since π is a shortest path, we have vj ∈ Lj for all j ∈ [i − 1]. We claim that

fi− , . . . , fi−1 ∈ Fη(G
′
0[Li

+

i− ]) and fi−+1, . . . , fi−1 are all shallow faces. Let j ∈ {i− + 1, . . . , i − 1}.
Then fj is incident to vj−1 ∈ Lj−1 and vj ∈ Lj . By Fact 14, all vertices incident to fj must lie in Lj−1

or Lj , which implies V (∂fj) ⊆ Lj−1 ∪ Lj ⊆ Li
+

i− . Therefore, fj is also a face of (G′0[Li
+

i− ], η), i.e.,
fj ∈ Fη(G′0[Li

+

i− ]). To see fj is a shallow face, we need to show that fj ⊆ oi+ where oi+ is the outer face
of (G′0[Li+ ], η). Since G′0[Li+ ] is a subgraph of G′0, fj must be contained in some face of (G′0[Li+ ], η).
In addition, as fj is incident to vj−1 and vj−1 is in the interior of oi+ by statement (iii) of Fact 15, fj
cannot be contained in any face of (G′0[Li+ ], η) other than oi+ . Thus, fj ⊆ oi+ . This shows fi− , . . . , fi−1

are all shallow faces of (G′0[Li
+

i− ], η). By statement (i) of Fact 15, oi− is incident to vi− as vi− ∈ Li− .
Thus, we obtain a path (oi− , vi− , fi− , . . . , vi−1, fi−1, v) connecting oi− and v in (G′0[Li

+

i− ], η). The cost of
this path is (2i − 2i− + 1) + wκ(oi−) +

∑i−1
j=i− wκ(fj). Since fi− , . . . , fi−1 are all shallow, wκ(fi−) =

· · · = wκ(fi−1) = 0. Also, oi− is shallow because oi− ⊆ oi+ , so wκ(oi−) = 0. Therefore, the cost of the
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path is 2i − 2i− + 1 = O(p). It follows that the wκ-weighted vertex-face distance between oi− and any
v ∈ Li+i− in (G′0[Li

+

i− ], η) isO(p). By the triangle inequality, this further implies the wκ-weighted vertex-face
distance between any two vertices v, v′ ∈ Li+i− in (G′0[Li

+

i− ], η) is O(p). By Fact 10, every f ∈ Fη(G′0[Li
+

i− ])

is adjacent to some v ∈ Li
+

i− in the VFI graph of (G′0[Li
+

i− ], η). Therefore, the wκ-weighted vertex-face
distance between two faces f, f ′ ∈ Fη(G′0[Li

+

i− ]) in (G′0[Li
+

i− ], η) is O(p + wκ(f) + wκ(f ′)), and the wκ-
weighted vertex-face distance between a vertex v ∈ Li+i− and a face f ∈ Fη(G′0[Li

+

i− ]) isO(p+wκ(f)). Note
that wκ(f) = O(|Z ′|) for all f ∈ Fη(G′0[Li

+

i− ]), which implies that diam∗wκ(G′0[Li
+

i− ], η) = O(p+ |Z ′|).

5 Applications of the framework

In this section, we apply our framework of Section 3 on various problems to obtain sub-exponential algo-
rithms on H-minor free graphs. Given the framework, its application on a problem is fairly straightforward,
except we have to ensure that the problem satisfies the requirements of this framework. First, we apply this
framework on ODD CYCLE TRANSVERSAL and describe all the steps in detail. For other problems, the
applications are similar. Thus, for convenience, we will just describe the changes needed for those problems
omitting the trivial details. In all of our problems, we assume that the input graph is H-minor-free.

5.1 ODD CYCLE TRANSVERSAL and EDGE BIPARTIZATION

First, we consider the ODD CYCLE TRANSVERSAL (OCT) problem. In OCT, we are given a graph G =
(V,E) and a parameter k, and we would like to decide whether there is a subset V ′ ⊆ V of size at most k
such that for each odd cycle C in G, there is a vertex of C that is in V ′. If there is such a subset, we refer
to it as a solution. By abusing the notation, we refer to a solution to the OCT problem also as an OCT. The
distinction should be clear from the context. Following our framework, the first step is to apply Lemma 5
to obtain a candidate set Cand ⊆ V for the instance. Note that this takes only a polynomial time. For our
purpose, it is sufficient to find a solution which is a subset of Cand. Henceforth, by the term solution we
always mean a solution in Cand.

Note that after removing the vertices in an OCT from G, a bipartite graph is left. For such a bipartition,
we arbitrarily define the left and the right side (or partition). Consider any subgraph G1 = (V1, E1) and fix
any solution to OCT on G1. We define a configuration λ of V ′ ⊆ V1 with respect to the solution as a map
V ′ → {0, 1, 2}. The three values 0, 1, 2 denote whether the corresponding vertex v ∈ V ′ is in the OCT,
is in the left side of the residual bipartite graph (after removing the solution OCT) or is in the right side of
the residual bipartite graph. As we want our solution to be a subset of Cand, the 0-vertices must always
come from Cand. Also, as the residual graph is bipartite, any two 1-vertices (resp., 2-vertices) cannot be
neighboring. Otherwise, we say the configuration is not valid.

5.1.1 Contraction-friendly tree-decomposition DP

First, we describe the desired contraction-friendly tree-decomposition DP for OCT. We are given an n-vertex
graph G = (V,E), a (possibly empty) subset X ⊆ V , and a tree-decomposition T of G/X . Let T be the
underlying tree of T . For any 0 ≤ l ≤ k, we would like to decide whether there is a solution to OCT on G
of size l which is disjoint from X . In particular, we would like to use the tree-decomposition T to solve this
problem efficiently. For that purpose, first we define a set of sub-problems on each node t ∈ T . As the bag
β(t) of t might contain contracted vertices, we have to be careful in defining the sub-problems.

To define the sub-problem, we need the following definition. For each subset V ′ of vertices in G/X , let
(G/X)(V ′)−1 be the subgraph of G that is the pre-image of (G/X)[V ′], i.e., (G/X)(V ′)−1 is obtained by
undoing the contractions of all vertices in the induced subgraph (G/X)[V ′].
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Observation 22. The number of distinct (valid) configurations of the vertices in (G/X)(V ′)−1 with respect
to the solutions disjoint from X is 2O(|V ′|).

Proof. For each contracted vertex v of V ′, consider the connected component C in G[X] corresponding
to v. Then as the solutions we seek are disjoint from X , C must be bipartite. Hence, the number of
distinct valid configuration of the vertices in C with respect to such solutions is only 2 depending on which
partition is designated as the left or right. Also, any vertex in V ′ whose pre-image in V (G) is a single vertex
outside X can have 3 configurations. Hence, the number of such distinct configurations of the vertices in
(G/X)(V ′)−1 is at most 3|V

′| = 2O(|V ′|).

Note that given (G/X)(V ′)−1, one can easily compute the 2O(|V ′|) such configurations. For any solution
S and a configuration λ of a set of vertices V ′, we say S is consistent with λ if the 0-vertices of V ′ are in
S, and 1- and 2-vertices of V ′ are in the left and right side of the residual bipartite graph. For every valid
configuration λ of the vertices in (G/X)(σ(t))−1 and 0 ≤ l ≤ k, we define a sub-problem where the goal
is to decide whether there is a solution to OCT on (G/X)(γ(t))−1 which is disjoint from X , is consistent
with λ and uses exactly l vertices of (G/X)(γ(t)\σ(t))−1. Thus, in this sub-problem, the solution contains
0-vertices of σ(t) and l additional vertices from (G/X)(γ(t)\σ(t))−1. We store a DP table L(t) indexed
by (λ, l), for all valid configurations λ of (G/X)(σ(t))−1 and 0 ≤ l ≤ k. The entry of L(t) corresponding
to the pair (λ, l) stores the YES/NO solution for the sub-problem defined by λ and l. By Observation
22, the number of entries in L(t) is 2O(|σ(t)|) · k, and all such relevant configurations can be computed in
2O(|σ(t)|)nO(1) time.

For our application, we cannot assume that the width of T is bounded. Instead, we make two assump-
tions: (i) the bag size of each non-leaf vertex in T is bounded by a parameter w, and (ii) for each leaf t ∈ T ,
either the bag size is bounded by w or the table L(t) is given to us. With these assumptions, we show that
the table entries corresponding to all vertices of T can be computed in time 2O(w)nO(1).

Consider any leaf node t ∈ T . If the table L(t) is given to us, we are done. Otherwise, |β(t)| ≤ w
by assumption. Suppose we want to compute the entry of the table L(t) corresponding to (λ, l). Since
|β(t)| ≤ w, the valid configurations of the vertices in (G/X)(β(t))−1 is 2O(w). We simply enumerate all
these configurations. Each such configuration gives us an OCT S ⊆ β(t) of G[β(t)]. If S is a solution to
the sub-problem (λ, l), the entry should be YES. If none of these S is a solution to the sub-problem (λ, l),
the entry should be NO.

Now consider any non-leaf vertex t ∈ T . We can assume that the tables corresponding to the children of
t are already computed. Fix any configuration λ of the vertices in (G/X)(σ(t))−1 and an integer 0 ≤ l ≤ k.
We want to compute the entry in L(t) with respect to (λ, l). First, we guess a configuration λ′ of the vertices
in (G/X)(β(t)\σ(t))−1 with respect to the solutions disjoint from X . Thus, we have the configuration of
all vertices in β(t). This gives us the configuration λ(s) of σ(s) for each child s of t. We note that the
vertices of β(t) might be shared by multiple children. But, in our sub-problems, the solution size does not
account for the vertices in the adhesion. Thus, these solutions account for disjoint sets of vertices, and hence
the sub-problems can be treated as independent. Let lu be the number of 0-vertices in β(t)\σ(t) with respect
to λ′. Then, we would like to compute a solution, which consists of these 0-vertices and ls vertices from
(G/X)(γ(s)\σ(s))−1 for each child s of t, where l = lu +

∑
s ls. Using the tables of the children, we

can easily compute such a solution if possible, and hence the entry (λ, l) can be computed in polynomial
time. Now, as we need to enumerate all possible 2O(|β(t)\σ(t)|) configurations λ′, it is not hard to see that
computation of each entry takes 2O(|β(t)\σ(t)|)nO(1) time. Hence, the table for t can be computed in time
2O(|β(t)|)nO(1) = 2O(w)nO(1).
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5.1.2 The algorithm

Now, we describe our main algorithm. First, we apply Lemma 4 to compute in polynomial time a tree de-
composition TRS ofGwith adhesion size at most h in which the torso of each vertex is h-almost-embeddable.
Note that h is a constant which depends only on H . Given TRS, the idea is to employ a DP on it to solve
OCT on G. However, we have to be careful here, as the width of TRS can be very large. Next, we describe
our DP based algorithm to solve OCT on TRS.

Let TRS be the underlying tree of TRS. The DP algorithm stores a table M(t) for each vertex t ∈ TRS.
Each entry of M(t) is indexed by a tuple (λ, l) for a configuration λ of σ(t) and an integer 0 ≤ l ≤ k which
stores a boolean value YES/NO based on whether or not there is an OCT for G[γ(t)] such that the OCT is
consistent with λ and uses exactly l vertices of γ(t)\σ(t). That is, the entry with respect to (λ, l) stores the
solution of the problem Probλ,l as defined in our framework. Note that the size of the table M(t) is O(k),
as σ(t) is at most the constant h. Next, we show how to compute the entries of M(t).

Consider any vertex t ∈ TRS. We can assume that the table entries corresponding to the children (if
any) of t are already computed. This is true, as in the base case, we deal with the leaves of TRS. Recall in
our framework, we defined the sub-problem Probλ,l,Y for Y ⊆ γ(t) as the problem asking whether there
is a solution for Probλ,l that is disjoint from Y . First, we apply Corollary 7 on t with p = b

√
kc to obtain

the sets Y1, . . . , Yp ⊆ γ(t)\σ(t). Then, following the framework, we construct the set Π of pairs (i, Y ′),
where i ∈ [p] and Y ′ ⊆ Yi, satisfying three conditions: (1) |Π| = |Cand|O(

√
k), (2) |Y ′| = O(k/p) for

all (i, Y ′) ∈ Π , and (3) for any configuration λ of σ(t) and 0 ≤ l ≤ k, the answer to Probλ,l is YES iff
the answer to Probλ,l,Yi\Y ′ is YES for some (i, Y ′) ∈ Π . Thus, we can focus on a fixed set Y ′ ⊆ Yi and
solve Probλ,l,Yi\Y ′ for all λ and l. Again, following the framework, we apply Lemma 8 to obtain a tree-

decomposition T ∗ of G[γ(t)]/(Yi\Y ′) in time 2O(
√
k)nO(1). We shall apply the DP procedure described

in the previous section on T ∗. Specifically, on each node t∗ of the underlying tree T ∗ of T ∗, we want to
compute the table L(t∗) indexed by (λ, l), for all valid configurations λ of (G[γ(t)]/(Yi\Y ′))(σ(t∗))−1

and 0 ≤ l ≤ k.. Any non-leaf vertex in the underlying tree T ∗ of T ∗ has bag size O(
√
k). However,

for a leaf, the bag size can be large. Nevertheless, by property (iii) in Lemma 8, for such a leaf t∗ ∈ T ∗,
γ(t∗) = β(t∗) = γ(s) and σ(t∗) = σ(s) for some child s of t. Thus, the table L(t∗) is nothing but the table
M(s) for s (in the DP on TRS), and by assumption, the table M(s) is already computed. Therefore, as we
have shown in the previous section, the DP on T ∗ can be done in 2O(

√
k)nO(1) time. Now, by Property (ii)

in Lemma 8, the root rt of T ∗ has only one child rt′, where σ(rt′) = σ(t) and β(rt) = σ(t), which implies
γ(rt′) contains all vertices in G[γ(t)]/(Yi\Y ′). Also note that σ(t) ∩ Yi = ∅, and so σ(t) ∩ (Yi\Y ′) = ∅.
Thus, the vertices of σ(t) are not contracted in T ∗. Hence, the table L(rt′) encodes the answers for the
sub-problems Probλ,l,Yi\Y ′ for all (λ, l). After considering all pairs (i, Y ′) ∈ Π , we solve all sub-problems
Probλ,l,Yi\Y ′ and compute the DP tableM(t) for t. Note that in our solutions, we do not count the vertices of
σ(t). But, this can be easily fixed at the end by adding the 0-vertices for each configuration to the computed
solution and computing the best combined solution.

Now, the DP on T ∗ takes 2O(
√
k)nO(1) time. Also, the total number of pairs (i, Y ′) in Π is |Cand|O(

√
k).

Thus, the computation of M(t) takes in total |Cand|O(
√
k) · 2O(

√
k) · nO(1) time. By Lemma 5, the size

of Cand for OCT is kO(1). Subsequently, we obtain the time bound of 2O(
√
k log k)nO(1). It follows that

the OCT problem on G can be solved in the same time. The computation of the candidate set Cand is
randomized with success probability 1− 1/2n. So we conclude the following.

Theorem 23. ODD CYCLE TRANSVERSAL onH-minor free graphs can be solved in 2O(
√
k log k)nO(1) time

by a randomized algorithm with success probability 1− 1/2n.

Besides computing the candidate set Cand using the randomized algorithm in Lemma 5, we can also use
the trivial candidate set Cand = V (G). In this case, we obtain an nO(

√
k)-time deterministic algorithm.
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Theorem 24. ODD CYCLE TRANSVERSAL on H-minor free graphs can be solved in nO(
√
k) time.

5.1.3 EDGE BIPARTIZATION

The EDGE BIPARTIZATION (EB) problem is similar to OCT, except here we need to remove a subset of
edges. Formally, we are given an H-minor-free graph G = (V,E) and a parameter k, and we would like
to decide whether there is a subset E′ ⊆ E of size at most k such that removal of the edges in E′ from
G gives us a bipartite graph. As we saw in the previous subsection, the main ingredient for applying the
framework is the contraction-friendly tree-decomposition DP. Here, we describe such a DP for EB. The rest
of the algorithm is similar to the one for OCT.

Consider any subgraph G1 = (V1, E1) and fix any solution Esol on G1. We say that Esol is disjoint from
a set of vertices X if the endpoints of the edges in Esol are disjoint from X . We define a configuration λ of
V ′ ⊆ V1 with respect to the solution to be a set of values corresponding to the vertices in V ′, where each
value is in {1, 2}. We note that these values denote whether the corresponding vertex v is in the left side of
the residual bipartite graph (after removing the solution edges) or is in the right side of the residual bipartite
graph. Next, we describe the contraction-friendly tree-decomposition DP for EB.

We are given an n-vertex graphG = (V,E), a (possibly empty) subsetX ⊆ V , and a tree-decomposition
T ofG/X . Let T be the underlying tree of T . For any 0 ≤ l ≤ k, we would like to decide whether there is a
solution to EB on G of size l which is disjoint from X . The following observation is similar to Observation
22.

Observation 25. The number of distinct configurations of the vertices in (G/X)(V ′)−1 with respect to the
solutions disjoint from X is 2O(|V ′|).

For any solution S and a configuration λ of a set of vertices V ′, we say S is consistent with λ if the 1-
and 2-vertices of V ′ are in the left and right side of the residual bipartite graph. For any configuration λ of
the vertices in (G/X)(σ(t))−1 and 0 ≤ l ≤ k, we define a sub-problem where the goal is to decide whether
there is a solution to EB on (G/X)(γ(t))−1 which is disjoint from X , consistent with λ and uses exactly l
edges such that at least one endpoint of each edge is not in (G/X)(σ(t))−1. Thus, in this sub-problem, the
solution contains the edges whose both endpoints are 1-vertices (or 2-vertices) among the set of edges E1

in (G/X)(σ(t))−1 and l additional edges from (G/X)(γ(t))−1 which are not in E1. We store the boolean
value (YES/NO) of the solution of this sub-problem in a table L(t) indexed by (λ, l).

We note that it is sufficient to solve the above sub-problem, as the edges used in a solution from
(G/X)(σ(t))−1 can be easily derived from the corresponding configuration. The sub-problem is defined
in this way to avoid any potential multiple counting of a solution edge at different levels. In this setting, if
an edge (u, v) is common to both parent and child sub-problems, the decision to take it or not is uniquely
determined by the configuration corresponding to the children.

By Observation 25, the number of entries that we need to store in L(t) is 2O(|σ(t)|) · k, and all such
relevant configurations can be computed in 2O(|σ(t)|)nO(1) time. With these modified definitions of sub-
problem and DP table, the rest of the algorithm is similar to the one for OCT. Hence, we conclude that
the table entries corresponding to all vertices of T can be computed in time 2O(w)nO(1), where w is the
maximum size of the bags of the non-leaf vertices in T .

Note that by our framework, the total running time of our algorithm is (|Cand|O(
√
k) · 2O(w)) · nO(1),

where w =
√
k. By Lemma 5, the size of Cand for EB is kO(1). Subsequently, we obtain the time bound of

2O(
√
k log k)nO(1).

Theorem 26. EDGE BIPARTIZATION on H-minor free graphs can be solved in 2O(
√
k log k)nO(1) time by a

randomized algorithm with success probability 1− 1/2n.

Same as before, we can use the trivial candidate set Cand = E(G) to obtain an nO(
√
k)-time algorithm.

30



Theorem 27. EDGE BIPARTIZATION on H-minor free graphs can be solved in nO(
√
k) time.

5.2 GROUP FEEDBACK VERTEX SET and GROUP FEEDBACK EDGE SET

For a directed graph G = (V,A), a finite group Σ of size g and a labeling function Λ : A → Σ, (G,Λ)
is called a Σ-labeled graph if for each arc (u, v) ∈ A, (v, u) is also in A and Λ((u, v)) = Λ((v, u))−1.
For a subset of vertices D, we denote by (G\D,Λ) the Σ-graph obtained by removing the vertices in D
from (G,Λ). Similarly, for a subset of arcs A′, we denote by (G\A′,Λ) the Σ-labeled graph obtained by
removing the arcs in A′ from (G,Λ). For a cycle C = {v1, . . . , vt, v1}, let Λ(C) = Λ((v1, v2)) · . . . ·
Λ((vt−1, vt)) ·Λ((vt, v1)). Here · is the group operation. A cycle C is called a non-null cycle if Λ(C) 6= 1Σ.
In the GROUP FEEDBACK VERTEX SET (GFVS) problem, given a Σ-labeled graph (G,Λ) and a parameter
k, the goal is to decide whether there is a set of vertices D such that (G\D,Λ) does not have any non-null
cycle. The GROUP FEEDBACK EDGE SET (GFES) problem is similar, except here the goal is to decide
whether there is a set of arcs A′ such that (G\A′,Λ) does not have any non-null cycle. For simplicity, we
assume that Σ = {1, . . . , g}.

First, we apply our framework on GFVS. We note that OCT is a specialization of GFVS when Σ =
{0, 1} [44]. Indeed, our algorithm for GFVS is an extension of the algorithm for OCT. In the following,
we just describe the contraction-friendly tree-decomposition DP for GFVS. The remaining algorithm is
similar to the one for OCT. Following our framework, the first step is to obtain a candidate set Cand ⊆ V .
Henceforth, by the term solution we always mean a subset of Cand.

For describing our algorithm, we need a definition. For a Σ-labeled graph (G,Λ), µ : V → Σ is called
a consistent labeling iff for each arc (u, v) in G, we have µ(v) = µ(u) · Λ((u, v)).

Lemma 28. [32] A Σ-labeled graph has a consistent labeling iff it does not contain any non-null cycle.

Consider any subgraph G1 = (V1, A1) and fix any solution S of GFVS on G1. Also, consider a con-
sistent labeling µ of the vertices in the graph (G\D,Λ), which exists by the above lemma. We define a
configuration λ of V ′ ⊆ V1 with respect to S to be a set of values corresponding to the vertices in V ′, where
each value is in {0, 1, . . . , g}. We note that these values denote whether the corresponding vertex v is in the
solution (0) or is mapped to the element i ∈ Σ via µ. As we want our solution to be a subset of Cand, the
0-vertices must always come from Cand. We also say that S is compatible with the configuration λ.

Observation 29. The number of distinct configurations of the vertices in (G/X)(V ′)−1 with respect to the
solutions disjoint from X is gO(|V ′|).

Proof. For each contracted vertex v of V ′, consider the connected component C in G[X] corresponding to
v. Then as the solutions we seek are disjoint from X , C must have no non-null cycles. It follows that the
vertices of C has a consistent labeling µ. Now, fix the label of any vertex in C. By definition of consistent
labeling, this also fixes the labeling of the remaining vertices of C. Thus, the number of distinct labelings of
the vertices of C is only g. Hence, the number of distinct configurations of the vertices in C with respect to
the solutions disjoint fromX is only g. Also, any vertex u of V ′\X can have g+1 configurations. Hence, the
number of such distinct configurations of the vertices in (G/X)(V ′)−1 is at most (g+1)|V

′| = gO(|V ′|).

Next, we describe the contraction-friendly tree-decomposition DP for GFVS. A sub-problem is defined
in the same way as for OCT. For any configuration λ of the vertices in (G/X)(σ(t))−1 and 0 ≤ l ≤ k, we
define a sub-problem where the goal is to decide whether there is a solution to GFVS on (G/X)(γ(t))−1

which is disjoint from X , is compatible with λ and uses exactly l vertices of (G/X)(γ(t)\σ(t))−1. We
store the boolean value (YES/NO) of the solution of this sub-problem in a table L(t) indexed by (λ, l).
For simplicity, we assume wlog that all configurations are valid, i.e., for each configuration λ, 1-vertices
of (G/X)(σ(t))−1 come from Cand. By Observation 29, the number of entries that we need to store in
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L(t) is gO(|σ(t)|) · k, and all such relevant configurations can be computed in gO(|σ(t)|)nO(1) time. With
these modified definitions of sub-problem and DP table, the rest of the algorithm is similar to the one for
OCT. Hence, we conclude that the table entries corresponding to all vertices of T can be computed in time
gO(w)nO(1), where w is the maximum size of the bags of the non-leaf vertices in T .

Note that by our framework, the total running time of our algorithm is (|Cand|O(
√
k) · gO(w)) · nO(1),

where w =
√
k. By Lemma 5, the size of Cand for GFVS is kO(g). Subsequently, we obtain the time bound

of 2O(g
√
k log(gk)) · nO(1).

Theorem 30. GROUP FEEDBACK VERTEX SET on H-minor free graphs can be solved in 2O(g
√
k log(gk)) ·

nO(1) time by a randomized algorithm with success probability 1− 1/2n.

By using Cand = V (G), we have the following.

Theorem 31. GROUP FEEDBACK VERTEX SET on H-minor free graphs can be solved in (ng)O(
√
k) time.

5.2.1 GROUP FEEDBACK EDGE SET

The algorithm for GFES is similar to the one for GFVS. Here, we describe the main differences. For
simplicity, we use the terms edge and arc interchangeably. Consider any subgraph G1 = (V1, E1) and fix
any solution Esol on G1. We say that Esol is disjoint from a set of vertices X if the endpoints of the edges in
Esol are disjoint from X . Consider a consistent labeling µ of the vertices in the graph (G\Esol,Λ), which
exists by Lemma 28. We define a configuration λ of V ′ ⊆ V1 with respect to Esol to be a set of values
corresponding to the vertices in V ′, where each value is in {1, . . . , g}. We note that these values denote
whether the corresponding vertex v is mapped to the element i ∈ Σ via µ. We also say that S is compatible
with the configuration λ. The following observation is similar to Observation 29.

Observation 32. The number of distinct configurations of the vertices in (G/X)(V ′)−1 with respect to the
solutions disjoint from X is gO(|V ′|).

Next, we describe the contraction-friendly tree-decomposition DP for GFES. For any configuration λ of
the vertices in (G/X)(σ(t))−1 and 0 ≤ l ≤ k, we define a sub-problem where the goal is to decide whether
there is a solution to GFES on (G/X)(γ(t))−1 which is disjoint from X , consistent with λ and uses exactly
l edges such that at least one endpoint of each edge is not in (G/X)(σ(t))−1. We store the boolean value
(YES/NO) of the solution of this sub-problem in a table L(t) indexed by (λ, l). By Observation 32, the
number of entries that we need to store in L(t) is gO(|σ(t)|) · k, and all such relevant configurations can be
computed in gO(|σ(t)|)nO(1) time. With these modified definitions of sub-problem and DP table, the rest of
the algorithm is similar to the one for EB. Hence, we conclude that the table entries corresponding to all
vertices of T can be computed in time gO(w)nO(1), where w is the maximum size of the bags of the non-leaf
vertices in T .

Note that by our framework, the total running time of our algorithm is (|Cand|O(
√
k) · gO(w)) · nO(1),

where w =
√
k. By Lemma 5, the size of Cand for GFES is kO(log3 k). Subsequently, we obtain the time

bound of 2O(
√
k log g log4 k) · nO(1).

Theorem 33. GROUP FEEDBACK EDGE SET on H-minor free graphs can be solved in 2O(
√
k log g log4 k) ·

nO(1) time by a randomized algorithm with success probability 1− 1/2n.

By using Cand = E(G), we have the following.

Theorem 34. GROUP FEEDBACK EDGE SET on H-minor free graphs can be solved in (ng)O(
√
k) time.
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5.3 VERTEX MULTICUT and EDGE MULTICUT

In VERTEX MULTICUT (VMC), given a graphG = (V,E), a collection U of r pairs of vertices U ⊆ V ×V ,
and an integer k, the goal is to decide if there is a set of k vertices of V \R whose removal separates
each pair of vertices in U where R is the set of vertices appearing in the pairs of U . EDGE MULTICUT

(EMC) is similar, except here we remove a set of k edges. Here R is called the set of terminals. First, we
consider VMC. Following our framework, the first step is to obtain a candidate set Cand ⊆ V . Henceforth,
by the term solution we always mean a subset of Cand. Next, we describe the contraction-friendly tree-
decomposition DP for VMC. Our DP is a natural extension of a DP for bounded treewidth graphs [33].

We are given an n-vertex graphG = (V,E), a (possibly empty) subsetX ⊆ V , and a tree-decomposition
T of G/X . Let T be the underlying tree of T . We would like to solve a sub-problem in (G/X)(γ(t))−1.
Consider any partition Π of R such that each pair in U appears in two different parts. We can have
|R|O(|R|) = rO(r) such distinct partitions. Note that each such partition helps us guess which terminals
will be on the same connected component after removal of a solution. We define sub-problems with respect
to Π, assuming Π is the correct configuration of the terminals. Let α ≤ 2r be the number of parts. We treat
each part as a color between 1 to α.

Consider any subgraph G1 = (V1, E1) and fix any solution S on G1. We define a configuration λ of
V ′ ⊆ V1 with respect to the solution to be a set of values corresponding to the vertices in V ′, where each
value is in {0, 1, 2, . . . , α}. We note that these values denote whether the corresponding vertex v is in S (0),
or is in the i-th connected component along with the vertices ofR in i-th part (i). We say that S is consistent
with λ.

Observation 35. The number of distinct configurations of the vertices in (G/X)(V ′)−1 with respect to the
solutions disjoint from X is αO(|V ′|).

Proof. For each contracted vertex v of V ′, consider the connected component C in G[X] corresponding
to v. Then as the solutions we seek are disjoint from X , all vertices in X have the same value in any
configuration with respect to such a solution. Hence, the number of distinct configurations of the vertices
in C with respect to such solutions is only α depending on the connected component in which they end up.
Also, any vertex u of V ′\X can have at most α + 1 configurations. Hence, the number of such distinct
configurations of the vertices in (G/X)(V ′)−1 is at most (α+ 1)|V

′| = αO(|V ′|).

For any configuration λ of the vertices in (G/X)(σ(t))−1 and 0 ≤ l ≤ k, we define a sub-problem
where the goal is to decide whether there is a solution to VMC on (G/X)(γ(t))−1 which is disjoint from
X , is consistent with λ and uses exactly l vertices of (G/X)(γ(t)\σ(t))−1. We store the boolean value
(YES/NO) of the solution of this sub-problem in a table L(t) indexed by (λ, l). By Observation 35, the
number of entries that we need to store in L(t) is rO(|σ(t)|) · k, and all such relevant configurations can be
computed in rO(|σ(t)|)nO(1) time. With these modified definitions of sub-problem and DP table, the rest
of the algorithm is similar to the one in [33]. Hence, we conclude that the table entries corresponding to
all vertices of T can be computed in time rO(r+w)nO(1), where w is the maximum size of the bags of the
non-leaf vertices in T .

Note that by our framework, the total running time of our algorithm is (|Cand|O(
√
k) · rO(r+w)) · nO(1),

where w =
√
k. By Lemma 5, the size of Cand for VMC is kO(

√
r). Subsequently, we obtain the time bound

of 2O(r
√
k log k) · nO(1).

Theorem 36. VERTEX MULTICUT on H-minor free graphs can be solved in 2O((
√
rk+r) log rk)) ·nO(1) time

by a randomized algorithm with success probability 1− 1/2n.

By using Cand = V (G), we have the following.

Theorem 37. VERTEX MULTICUT on H-minor free graphs can be solved in nO(r+
√
k) time.
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As mentioned in [33], the DP for VMC is almost the same as the DP for EMC. Similarly, the contraction-
friendly tree-decomposition DP for EMC is very similar to the one for VMC. Also, the candidate set size
for EMC is (r + k)O(log3(r+k)). Hence, we obtain the following theorem.

Theorem 38. EDGE MULTICUT on H-minor free graphs can be solved in 2O((r+
√
k) log4(rk)) · nO(1) time

by a randomized algorithm with success probability 1− 1/2n.

Theorem 39. EDGE MULTICUT on H-minor free graphs can be solved in nO(r+
√
k) time.

5.4 VERTEX MULTIWAY CUT and EDGE MULTIWAY CUT

In VERTEX MULTIWAY CUT (VMWC), given a graphG, a subset of r verticesR ⊆ V (G), called terminals,
and an integer k, the goal is to decide if there is a set of at most k vertices of V (G)\R hitting every path
between a pair of terminals. EDGE MULTIWAY CUT (EMWC) is similar, except the goal is to decide if there
is a set of at most k edges of E(G) hitting every path between a pair of terminals.

Note that VMWC is a special case of VMC where we have to separate all r2 pairs of terminals inR×R.
Also, we need to consider only one partition where each terminal belongs to a separate part. Thus, we
readily obtain a contraction free DP that runs in rO(w)nO(1) time.

By our framework, the total running time of our algorithm is (|Cand|O(
√
k) · rO(w)) · nO(1), where

w =
√
k. By Lemma 5, the size of Cand for VMWC is kO(r). Subsequently, we obtain the time bound of

2O(r
√
k log k) · nO(1).

Theorem 40. VERTEX MULTIWAY CUT on H-minor free graphs can be solved in 2O(r
√
k log k) ·nO(1) time

by a randomized algorithm with success probability 1− 1/2n.

By using Cand = V (G), we have the following.

Theorem 41. VERTEX MULTIWAY CUT on H-minor free graphs can be solved in nO(
√
k) time.

5.4.1 EDGE MULTIWAY CUT

We describe the contraction-friendly tree-decomposition DP for EMWC. This DP is partly motivated by
the DP in [21] for Multi-Multiway cut which is a generalization of EMWC. We are given an n-vertex
graph G = (V,E), a (possibly empty) subset X ⊆ V , and a tree-decomposition T of G/X . Let T be
the underlying tree of T . Consider any non-leaf vertex t ∈ T . Note that removal of the solution edges
in EMWC induces a partition of the vertices where each part (or connected component) contains at most
one terminal of R. We would like to guess an optimal partition. Consider any subset V ′ ⊆ β(t), and any
partition Π = {Xi | i ∈ I} of the vertices in (G/X)(V ′)−1 for some index set I . We say a set of edges C
in (G/X)(γ(t))−1 is consistent with Π and vice versa iff

• The endpoints of the edges in C are disjoint from X;

• C separates all the terminals; and

• Let G′ be the subgraph (G/X)(γ(t))−1 after removing the edges in C. Let {Pi | i ∈ I} be the family
of connected components such that Pi ∩ V ′ 6= ∅ for all i ∈ I . Then Xi = Pi for all i ∈ I .

Observation 42. The number of distinct partitions of the vertices in (G/X)(V ′)−1 consistent with sets of
edges is |V ′|O(|V ′|).
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Proof. First note that the number of distinct partitions of the vertices in V ′ is |V ′|O(|V ′|). However, (G/X)
(V ′)−1 might contain many more vertices, as we undo the contraction of the component vertices in V ′. For
each contracted vertex v of V ′, consider the connected component C in G[X] corresponding to v. Then as
the endpoints of the edges in consistent sets C are disjoint from X , all vertices in X must end up in the
same connected component after removal of the edges from C. It follows that the number of such distinct
partitions of the vertices in (G/X)(V ′)−1 is again bounded by |V ′|O(|V ′|).

For any partition Π of the vertices in (G/X)(σ(t))−1, we define a sub-problem where the goal is to find
the minimum size set of edges C in (G/X)(γ(t))−1 which is consistent with Π. It is sufficient to solve this
sub-problem for our purpose, as if we know the minimum value, we can also solve the decision version of
the problem. We store a solution C of this sub-problem in a table L(t) indexed by Π. To compute the table
corresponding to t, we need to merge the tables of its children. In the following, we describe how to merge
the tables of two children. One can easily extend it to more than two children.

Consider any partition Π1 of the vertices in (G/X)(σ(t))−1. We extend this partition to obtain a par-
tition Π2 of the vertices in (G/X)(β(t))−1. For the purpose of extension, we define compatibility of two
partitions. Consider two partitions Π1 = {Xi | i ∈ I} and Π2 = {Yj | j ∈ J}. Also, consider the bipartite
graph B = (I, J, E′) such that (i, j) ∈ E′ iff Xi∩Yj 6= ∅. Then Π1 and Π2 are compatible if E′ is a perfect
matching and for each edge (i, j) ∈ E′, i = j.

Now, fix a partition Π of the vertices in (G/X)(σ(t))−1. We show how to compute the entry L(t)[Π]
by merging tables of two children s1 and s2. First, we take a partition Π′ of the vertices in (G/X)(β(t))−1

which is compatible with Π. Given Π′, the partition of the vertices in (G/X)(σ(s1))−1 (or (G/X)(σ(s2))−1)
compatible with Π′, is also fixed. Let Π1 and Π2 be these two partitions with respect to s1 and s2. The entry
L(t)[Π] = arg min|C|{C = L(s1)[Π1]∪L(s2)[Π2]∪C ′}, where C ′ is a subset of edges {(u, v) | u, v /∈ X}
such that (u, v) is in (G/X)(β(t))−1, but not in (G/X)(γ(s1))−1 or (G/X)(γ(s2))−1, and u and v are con-
tained in different parts of Π′.

The correctness follows from the fact that if an edge (u, v) is common to both parent and child sub-
problems, the decision to take it or not is uniquely determined by the partition corresponding to the children.
Thus, no edge is counted more than once in the computed solution.

Note that computation of a table entry requires enumerating all possible Π′. The number of such par-
titions is bounded by wO(w) by Observation 42, where w is the maximum size of the bags of the non-leaf
vertices in T . By the same observation, the number of entries that we need to store inL(t) is |σ(t)|O(|σ(t)|)·k,
and all such relevant partitions can be computed in |σ(t)|O(|σ(t)|)nO(1) time. Hence, we conclude that the
table entries corresponding to all vertices of T can be computed in time wO(w)nO(1).

By our framework, the total running time of our algorithm is (|Cand|O(
√
k) · wO(w)) · nO(1), where

w =
√
k. By Lemma 5, the size of Cand for EMWC is kO(log3 k). Subsequently, we obtain the time bound

of 2O(
√
k log4 k) · nO(1).

Theorem 43. EDGE MULTIWAY CUT on H-minor free graphs can be solved in 2O(
√
k log4 k) ·nO(1) time by

a randomized algorithm with success probability 1− 1/2n.

By using Cand = E(G), we have the following.

Theorem 44. EDGE MULTIWAY CUT on H-minor free graphs can be solved in nO(
√
k) time.

6 Conclusion and future work

In this paper, we presented a generic framework to design subexponential-time parameterized algorithms
for various cut and cycle hitting problems onH-minor-free graphs, including ODD CYCLE TRANSVERSAL,
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EDGE BIPARTIZATION, VERTEX MULTIWAY CUT, EDGE MULTIWAY CUT, VERTEX MULTICUT, EDGE

MULTICUT, GROUP FEEDBACK VERTEX SET, and GROUP FEEDBACK EDGE SET. Our framework is
robust and can possibly be applied to other problems. For example, it can lead to an nO(

√
k)-time algorithm

for the classical problem BISECTION, because BISECTION is contraction-friendly and there is a known
2O(w)-time DP algorithm on a tree decomposition of width w.

Our framework is based on a new decomposition theorem on almost-embeddable graphs, which states
that for every h-almost-embeddable graph G and every p ∈ N, there exist disjoint sets Z1, . . . , Zp ⊆ V (G)
such that for every i ∈ [p] and every Z ′ ⊆ Zi, tw(G/(Zi\Z ′)) = O(p + |Z ′|). This generalizes the
classical contraction decomposition theorem on planar graphs. We believe this decomposition theorem is
quite powerful and should find applications beyond this paper.

Next, we pose some open questions for future study. The first interesting question is whether our de-
composition theorem above generalizes to H-minor-free graphs. In this work, we were only able to prove
the decomposition theorem for almost-embeddable graphs, and hence required a complicated two-layer DP
procedure in order to achieve the algorithmic results on H-minor-free graphs. If the same theorem holds
even for H-minor-free graphs, all problems studied in this paper can be solved much more directly. Further-
more, thanks to a simultaneous work by Marx et al. [50] which showed a similar decomposition theorem
for planar graphs (among many other results), such a decomposition theorem for H-minor-free graphs can
also result in subexponential parameterized algorithms for other important cycle hitting problems on H-
minor-free graphs, such as SUBSET FEEDBACK VERTEX SET, SUBSET ODD CYCLE TRANSVERSAL, etc.
Another open question is whether one can obtain subexponential parameterized algorithms for the problems
studied in the paper with dependence only on k. Note that whereas the running time of our algorithms are
subexponential in k, they also depend on additional parameters such as r and g, for problems like VERTEX

MULTIWAY CUT, VERTEX MULTICUT, EDGE MULTICUT, GROUP FEEDBACK VERTEX SET, and GROUP

FEEDBACK EDGE SET. Removing the dependency on these parameters (or at least making the dependency
subexponential) seems to be an interesting direction for future study. Finally, in a very recent follow-up
work of this paper [2], the authors showed that unit-disk graphs admit a decomposition theorem similar
to the one proved in this paper. One can then ask whether theorems of this type hold for other classes of
geometric intersection graphs, such as disk graphs, unit-ball graphs, string graphs, etc.
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[33] Jiong Guo, Falk Hüffner, Erhan Kenar, Rolf Niedermeier, and Johannes Uhlmann. Complexity and
exact algorithms for vertex multicut in interval and bounded treewidth graphs. Eur. J. Oper. Res.,
186(2):542–553, 2008. doi:10.1016/j.ejor.2007.02.014. 33, 34

[34] Eva-Maria C. Hols and Stefan Kratsch. A randomized polynomial kernel for subset feedback vertex
set. Theory Comput. Syst., 62(1):63–92, 2018. doi:10.1007/s00224-017-9805-6. 2

[35] Bart M. P. Jansen, Marcin Pilipczuk, and Erik Jan van Leeuwen. A deterministic polynomial kernel for
odd cycle transversal and vertex multiway cut in planar graphs. In Rolf Niedermeier and Christophe
Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019,
March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 39:1–39:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.STACS.2019.39. 2

[36] Ken-ichi Kawarabayashi and Paul Wollan. A simpler algorithm and shorter proof for the graph minor
decomposition. In Proceedings of the forty-third annual ACM symposium on Theory of computing,
pages 451–458, 2011. 7, 42, 43

[37] Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Solving hard cut problems
via flow-augmentation. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 149–168. SIAM,
2021. doi:10.1137/1.9781611976465.11. 1

[38] Philip N. Klein. A subset spanner for planar graphs, : with application to subset TSP. In Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006,
pages 749–756, 2006. URL: http://doi.acm.org/10.1145/1132516.1132620, doi:
10.1145/1132516.1132620. 4

[39] Philip N. Klein. A linear-time approximation scheme for TSP in undirected planar graphs with edge-
weights. SIAM J. Comput., 37(6):1926–1952, 2008. doi:10.1137/060649562. 4

[40] Philip N. Klein and Dániel Marx. Solving planar k -terminal cut in O(nc
√
k) time. In Artur Czu-

maj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata, Languages, and
Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Pro-
ceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages 569–580. Springer, 2012.
doi:10.1007/978-3-642-31594-7\_48. 1

[41] Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm for subset TSP on planar
graphs. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1812–1830.
SIAM, 2014. doi:10.1137/1.9781611973402.131. 1, 2

39

https://doi.org/10.1137/1.9781611973105.30
https://doi.org/10.1137/1.9781611973105.30
https://doi.org/10.1016/j.disopt.2010.05.003
https://doi.org/10.1016/j.ejor.2007.02.014
https://doi.org/10.1007/s00224-017-9805-6
https://doi.org/10.4230/LIPIcs.STACS.2019.39
https://doi.org/10.1137/1.9781611976465.11
http://doi.acm.org/10.1145/1132516.1132620
https://doi.org/10.1145/1132516.1132620
https://doi.org/10.1145/1132516.1132620
https://doi.org/10.1137/060649562
https://doi.org/10.1007/978-3-642-31594-7_48
https://doi.org/10.1137/1.9781611973402.131


[42] Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus Wahlström. Fixed-parameter
tractability of multicut in directed acyclic graphs. SIAM J. Discret. Math., 29(1):122–144, 2015.
doi:10.1137/120904202. 1

[43] Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized polynomial ker-
nel for odd cycle transversal. ACM Trans. Algorithms, 10(4):20:1–20:15, 2014. doi:10.1145/
2635810. 2

[44] Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for
kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887. 2, 7, 31, 44, 45

[45] Daniel Lokshtanov, Pranabendu Misra, M. S. Ramanujan, and Saket Saurabh. Hitting selected (odd)
cycles. SIAM J. Discret. Math., 31(3):1581–1615, 2017. doi:10.1137/15M1041213. 1

[46] Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Covering
small independent sets and separators with applications to parameterized algorithms. ACM Trans.
Algorithms, 16(3):32:1–32:31, 2020. doi:10.1145/3379698. 1

[47] Daniel Lokshtanov, Saket Saurabh, and Magnus Wahlström. Subexponential parameterized odd cycle
transversal on planar graphs. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan,
editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India, volume 18 of LIPIcs, pages 424–
434. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.FSTTCS.
2012.424. 2, 44

[48] Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–406, 2006.
doi:10.1016/j.tcs.2005.10.007. 1

[49] Dániel Marx. A tight lower bound for planar multiway cut with fixed number of terminals. In Ar-
tur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata, Languages,
and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Pro-
ceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages 677–688. Springer, 2012.
doi:10.1007/978-3-642-31594-7\_57. 1

[50] Dániel Marx, Pranabendu Misra, Daniel Neuen, and Prafullkumar Tale. A framework for parameter-
ized subexponential algorithms for generalized cycle hitting problems on planar graphs. In Proceedings
of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2085–2127. SIAM,
2022. 36

[51] Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in linear time via treewidth
reduction. ACM Trans. Algorithms, 9(4):30:1–30:35, 2013. doi:10.1145/2500119. 1

[52] Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. On subexponential parameterized algorithms
for steiner tree and directed subset TSP on planar graphs. In Mikkel Thorup, editor, 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages
474–484. IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.00052. 1, 2

[53] Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the size of
the cutset. SIAM J. Comput., 43(2):355–388, 2014. doi:10.1137/110855247. 1

[54] Jesper Nederlof. Detecting and counting small patterns in planar graphs in subexponential param-
eterized time. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,

40

https://doi.org/10.1137/120904202
https://doi.org/10.1145/2635810
https://doi.org/10.1145/2635810
https://doi.org/10.1145/3390887
https://doi.org/10.1137/15M1041213
https://doi.org/10.1145/3379698
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.424
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.424
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1007/978-3-642-31594-7_57
https://doi.org/10.1145/2500119
https://doi.org/10.1109/FOCS.2018.00052
https://doi.org/10.1137/110855247


and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1293–1306. ACM, 2020.
doi:10.1145/3357713.3384261. 1

[55] Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Contraction decomposition in unit disk graphs and
algorithmic applications in parameterized complexity. In Timothy M. Chan, editor, Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pages 1035–1054. SIAM, 2019. doi:10.1137/1.9781611975482.
64. 3, 4

[56] Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Network sparsifica-
tion for steiner problems on planar and bounded-genus graphs. ACM Trans. Algorithms, 14(4):53:1–
53:73, 2018. doi:10.1145/3239560. 1, 2

[57] Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res. Lett.,
32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009. 1

[58] Neil Robertson and Paul D Seymour. Graph minors. xvi. excluding a non-planar graph. Journal of
Combinatorial Theory, Series B, 89(1):43–76, 2003. 4, 5, 6, 7, 42

[59] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003. 44

[60] Siamak Tazari. Faster approximation schemes and parameterized algorithms on (odd-)h-minor-free
graphs. Theor. Comput. Sci., 417:95–107, 2012. doi:10.1016/j.tcs.2011.09.014. 1

[61] Magnus Wahlström. Lp-branching algorithms based on biased graphs. In Philip N. Klein, editor,
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1559–1570. SIAM, 2017. doi:
10.1137/1.9781611974782.102. 1

[62] Magnus Wahlström. On quasipolynomial multicut-mimicking networks and kernelization of multiway
cut problems. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Collo-
quium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Ger-
many (Virtual Conference), volume 168 of LIPIcs, pages 101:1–101:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.101. 2

[63] Magnus Wahlström. On quasipolynomial multicut-mimicking networks and kernelization of multiway
cut problems. CoRR, abs/2002.08825, 2020. URL: https://arxiv.org/abs/2002.08825,
arXiv:2002.08825. 2, 7, 44, 45

41

https://doi.org/10.1145/3357713.3384261
https://doi.org/10.1137/1.9781611975482.64
https://doi.org/10.1137/1.9781611975482.64
https://doi.org/10.1145/3239560
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.1016/j.tcs.2011.09.014
https://doi.org/10.1137/1.9781611974782.102
https://doi.org/10.1137/1.9781611974782.102
https://doi.org/10.4230/LIPIcs.ICALP.2020.101
https://arxiv.org/abs/2002.08825
http://arxiv.org/abs/2002.08825


APPENDIX

A Proof of Lemma 4

The fact that any H-minor free graph admits a tree decomposition of adhesion size at most c whose torsos
are c-almost-embeddable (for some constant c > 0 depending on H) follows from the profound work
of Robertson and Seymour [58]; we call such a tree decomposition Robertson-Seymour decomposition.
Several algorithms have been developed to compute a Robertson-Seymour decomposition (and the almost-
embeddable structures of the torsos) in polynomial time [18, 31, 36]. So it suffices to show how to make a
Robertson-Seymour decomposition have the additional property.

In fact, one can always modify a given tree decomposition of a graph G to make it satisfy the property
that G[γ(t)\σ(t)] is connected and σ(t) = NG(γ(t)\σ(t)) for all node t such that (i) the adhesion size
of the tree decomposition does not increase after the modification and (ii) each torso in the modified tree
decomposition is a subgraph of a torso in the original tree decomposition. To see this, let T be a tree
decomposition of a graph G and T be the underlying (rooted) tree of T . A redundant leaf refers to a leaf
t ∈ T such that β(t) ⊆ β(t′) where t′ is the parent of t. We define an operation Prune, which modifies
T by repeatedly removing redundant leaves until there is no redundant leaf (one can easily verify that the
order of removing the redundant leaves does not matter). Note that after the operation Prune, T is still a tree
decomposition of G. Also note that after Prune, the number of leaves in T is at most n = |V (G)|. Indeed,
after Prune, the bag of each leaf t ∈ T contains a vertex of G that is not contained in the bag of the parent
of t (and thus not contained in the bag of any other node), implying that the number of leaves in T is at
most the number of vertices in G. Besides Prune, we define two operations Split(t) and Clean(t) for a node
t ∈ T . Let Tt denote the subtree of T rooted at t.

• Split(t). Let C1, . . . , Cq be the connected components ofG[γ(t)\σ(t)]. Define Vi = σ(t)∪V (Ci) for
i ∈ [q]. We create q copies of Tt, denoted by T (1)

t , . . . , T
(q)
t . For each node s ∈ Tt, let s(i) denote the

copy of s in T (i)
t and define β(s(i)) = β(s) ∩ Vi as the bag of s(i), for i ∈ [q]. The Split(t) operation

replaces Tt with T (1)
t , . . . , T

(q)
t in T , that is, it deletes Tt from T and then adds T (1)

t , . . . , T
(q)
t as

the subtrees of the parent of t. Note that after doing Split(t), T is still a tree decomposition of
G. Indeed, if (u, v) ∈ E(G) is an edge where u, v ∈ γ(t), then u, v ∈ Vi for some i ∈ [q] and
hence u, v ∈ β(s(i)) for some s ∈ Tt such that u, v ∈ β(s). Furthermore, after doing Split(t),
G[γ(t(i))\σ(t(i))] is connected for all i ∈ [q].

• Clean(t). We have NG(γ(t)\σ(t)) ⊆ σ(t) because every vertex in γ(t)\σ(t) is only contained in
the bags of the nodes in Tt and hence can only be adjacent to the vertices in γ(t). The Clean(t)
operation removes the vertices in σ(t)\NG(γ(t)\σ(t)) from the bags of all nodes in Tt. Note that
after doing Clean(t), T is still a tree decomposition of G. Indeed, if (u, v) ∈ E(G) is an edge where
u ∈ σ(t)\NG(γ(t)\σ(t)) and v ∈ γ(t), then we must have v ∈ σ(t) and hence u, v ∈ β(t′) where t′

is the parent of t. Furthermore, after doing Clean(t), σ(t) = NG(γ(t)\σ(t)).

With the three operations Prune, Split, and Clean in hand, we now modify T in two phases. We say a
node t ∈ T is bad if G[γ(t)\σ(t)] is not connected. In the first phase, we repeat the following procedure:
finding the highest bad node t ∈ T and applying Split(t) followed by Prune. This phase terminates when all
nodes in T are good. We claim that this phase can terminate in O(dn) rounds where d is the original depth
of T and n = |V (G)|. To see this, we define a variant (c1, c2) for T , where c1 is equal to d minus the depth
of the highest bad node t ∈ T and c2 is the number of bad nodes in the same level as t. It is easy to see that
after each round, (c1, c2) decreases lexicographically, i.e., either c1 decreases or c1 remains unchanged and
c2 decreases. Indeed, for any node t ∈ T , doing Split on a descendant of t does not change γ(t) and σ(t).
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Thus, c1 can never increase. Furthermore, when doing Split(t) on a bad node t ∈ T , Tt is replaced with its
copies T (1)

t , . . . , T
(q)
t in which t(1), . . . , t(q) are not bad nodes. So the number of bad nodes in the same level

as t deceases by 1. It follows that after each round, if c1 remains unchanged, then c2 must decrease by 1.
Therefore, (c1, c2) decreases lexicographically after each round. Note that 0 ≤ c1 ≤ d because the Split and
Prune operations do not increase the depth of T . In addition, 0 ≤ c2 ≤ n after each round, since the number
of leaves in T is at most n = |V (G)| after Prune (as observed before). As a result, the first phase has at most
O(dn) rounds and can be done in nO(1) time as long as the original size of T is nO(1). In the second phase,
we repeat the following procedure: finding a node t ∈ T such that σ(t) 6= NG(γ(t)\σ(t)) and applying
Clean(t) followed by Prune. This phase terminates when σ(t) = NG(γ(t)\σ(t)) for all t ∈ T . Clearly, the
second phase has at most O(dn2) rounds and hence can be done in polynomial time, since the resulting tree
after the first phase has size O(dn) and each round of the second phase removes at least one vertex from
one bag. Note that a Clean operation does not change γ(t)\σ(t) for any node t ∈ T . So after the second
phase, G[γ(t)\σ(t)] is still connected for all t ∈ T . Therefore, when the two-phase modification terminates,
the resulting T has the desired property that G[γ(t)\σ(t)] is connected and σ(t) = NG(γ(t)\σ(t)) for all
t ∈ T . Furthermore, the adhesion size of T does not increase after the modification (as all of the three
operations do not increase the adhesion size of T ) and each torso in the resulting T is a subgraph of a torso
in the original T . To see the latter, observe that after Clean and Prune operations, the torso of each node
t ∈ T becomes a subgraph of the original torso of t, as these two operations only remove vertices from bags
or remove nodes from T . In a Split(t) operation, if the subtree Tt is replaced by its copies T (1)

t , . . . , T
(q)
t ,

then the torso of s(i) is a subgraph of the torso of s for any s ∈ Tt and i ∈ [q].
With the above argument, now we are ready to prove the lemma. We first compute a Robertson-Seymour

decomposition TRS of G (and the almost-embeddable structures of the torsos) using a polynomial-time
algorithm [18, 31, 36], where the adhesion size of TRS is at most c and the torso of each node is c-almost
embeddable. Then we apply the above modification to TRS. After this, TRS satisfies the additional condition
that G[γ(t)\σ(t)] is connected and σ(t) = NG(γ(t)\σ(t)) for all node t. Furthermore, the adhesion size
of TRS is still bounded by c and the torso of each node in the modified TRS is a subgraph of a torso in the
original TRS, where the latter is c-almost embeddable. In what follows, we show that any subgraph of an
c-almost-embeddable graph is 3c-almost-embeddable, and thus setting h = 3c completes the proof of the
lemma. (The fact that a subgraph of an almost-embeddable graph is also almost-embeddable should be a
known result, while we cannot find it in the literature. So we include a proof below for completeness.)

Let G be an c-almost-embeddable graph (see Definition 13 for the formal definition of an almost-
embeddable graph) with apex set A ⊆ V (G), embeddable skeleton G0 with an embedding η to a genus-c
surface Σ, and vortices G1, . . . , Gc attached to disjoint facial disks D1, . . . , Dc in (G0, η) with witness
pairs (τ1,P1), . . . , (τc,Pc). Let G′ be a subgraph of G. Define A′ = A ∩ V (G′) and G′i = Gi ∩ G′
for i ∈ {0} ∩ [c]. So we have G′ − A′ = G′0 ∪ G′1 ∪ · · · ∪ G′c. If the vertices in the permutations
τ1, . . . , τc are all vertices in G′, we are done, because in this case G′ is a c-almost-embeddable graph
with apex set A′, embeddable skeleton G′0 (embedded in Σ by the embedding induced by η), vortices
G′1, . . . , G

′
c attached to D1, . . . , Dc with witness pairs (τ1,P ′1), . . . , (τc,P ′c), where P ′i is the path decom-

position of G′i induced by Pi, i.e., every bag of P ′i is the intersection of the corresponding bag of Pi with
V (G′i). The difficult case is that some vertices in τ1, . . . , τc are not included in G′. In this case, we need
to add some vertices to G′0 and modify (τ1,P1), . . . , (τc,Pc) to obtain the witness pairs for the vortices
G′1, . . . , G

′
c. Since the vortices G′1, . . . , G

′
c and the disks D1, . . . , Dc are disjoint, we can consider them

individually. Let i ∈ [c] and suppose τi = (vi,1, . . . , vi,qi). Also, suppose πi = (ui,1, . . . , ui,qi) is the
underlying path of the path decomposition Pi. By definition, we have vi,j ∈ β(ui,j) for all j ∈ [qi]. For
convenience, we write β(ui,0) = ∅. For j ∈ [qi], we say ui,j is an anchor if vi,j /∈ V (G′) and there
exists aj ∈ β(ui,j) ∩ V (G′i) such that aj /∈ β(ui,j−1) and aj /∈ {vi,1, . . . , vi,qi}. Note that for any two
anchors ui,j and ui,j′ where j < j′, we have aj 6= aj′ , because aj′ ∈ β(ui,j′) but aj′ /∈ β(ui,j′−1),
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which implies aj′ /∈ β(ui,j). For each anchor ui,j , we add the vertex aj to G′0 and embed it at the po-
sition η(vi,j) ∈ Σ; this is fine because vi,j /∈ V (G′). For j ∈ [qi] such that vi,j ∈ V (G′), we define
aj = vi,j . Let J = {j ∈ [qi] : vi,j ∈ V (G′) or ui,j is an anchor} and suppose J = {j1, . . . , jq′i}
where j1 < · · · < jq′i . Then we have V (G′0) ∩ V (G′i) = {aj1 , . . . , ajq′

i
}, as we added the aj’s of

the anchors to G′0. Furthermore, aj1 , . . . , ajq′
i

are distinct and are embedded on the boundary of Di in

clockwise or counterclockwise order. Now we define τ ′i = (aj1 , . . . , ajq′
i
). For j−, j+ ∈ [qi], we write

U(j−, j+) =
⋃j+

j=j−(β(ui,j) ∩ V (G′)). For convenience, set j0 = 0 and jq′i+1 = qi + 1. Define a path
π′i = (u′i,j1 , . . . , u

′
i,jq′

i

) where each node u′i,jx is associated with a bag β(u′i,jx) = U(jx−1 + 1, jx+1 − 1).

Clearly, ajx ∈ β(u′i,jx). Let P ′i be the path π′i with the associated bags. One can easily verify that P ′i is
a path decomposition of G′i, because the bag of each node in π′i is the union of some consecutive bags in
Pi intersecting V (G′) and these unions cover all bags in Pi. We show that the width of P ′i as at most 3c.
Consider a node u′i,jx in π′i. We claim that β(u′i,jx) = β(ui,j−) ∪ β(ui,jx) ∪ β(ui,j+) where j− = jx−1 + 1
and j+ = jx+1− 1. We have β(ui,j−)∪β(ui,jx)∪β(ui,j+) ⊆ β(u′i,jx) since β(u′i,jx) = U(j−, j+). To see
β(u′i,jx) ⊆ β(ui,j−)∪ β(ui,jx)∪ β(ui,j+), suppose there is a vertex v ∈ V (G′i) that is in β(u′i,jx) but not in
β(ui,j−) ∪ β(ui,jx) ∪ β(ui,j+). As v ∈ β(u′i,jx) = U(j−, j+), we must have either v ∈ U(j− + 1, jx − 1)
or v ∈ U(jx + 1, j+ − 1). Without loss of generality, assume v ∈ U(j−, jx − 1). Observe that v can be
contained in β(ui,j) only for j ∈ {j− + 1, . . . , jx − 1}, simply because v /∈ β(ui,j−) ∪ β(ui,jx) and the
nodes in πi whose bags contain v must form a connected subset. As such, we have v /∈ {vi,1, . . . , vi,qi},
because j−+1, . . . , jx−1 /∈ J . Also, we have v /∈ V (G′i)\{vi,1, . . . , vi,qi}, for otherwise ui,j∗ is an anchor,
where j∗ ∈ {j− + 1, . . . , jx − 1} is the smallest index such that v ∈ β(ui,j∗). Thus, v /∈ V (G′i) and we
get a contradiction. It follows that β(u′i,jx) = β(ui,j−) ∪ β(ui,jx) ∪ β(ui,j+), which implies β(u′i,jx) ≤ 3c
as the width of Pi is c. Now we use (π′i,P ′i) as the witness pair of G′i. After we do this for all i ∈ [c], we
obtain the witness pairs of all vortices G′1, . . . , G

′
c, which in turn gives us an almost-embeddable structure

for G′ showing it is 3c-almost embeddable.

B Proof of Lemma 5

The result of this lemma is implicit in literature. Thus, for each problem, we point out the references that
give us the desired candidate set. Known kernels for all these problems actually first compute a candidate
set and then apply reduction rules (in fact, an appropriate torso operation) to reduce the graph size.

EB and OCT: It follows from Theorems 6.9, and 6.7, which relies on Lemma 6.5 of [44]. Also, see [47,
Lemma 3]. Here, replace the approximation algorithm for OCT on planar graphs with an approximation
algorithm with factor O(

√
log k) on general graphs [44, Theorem 6.8].

EMWC: See [63, Corollary 4]. Let (G,T, k) be an instance of EMWC. We first reduce the capacity of T to
at most 2k (the number of edges incident to the terminal vertices). Let T = {t1, . . . , tr} be the terminal set,
and let ki = λ(ti, T − ti) be the size of the “isolating min-cut” between terminal ti and all other terminals.
That is, an isolating cut for a terminal ti is a minimum set of edges which disconnects ti from each of
the other terminals in T . It is known that there is a half-integral path-disjoint packing of paths of weight∑r

i=1
ki
2 , hence if

∑
i ki > 2k we can reject the instance (see the book of Schrijver, [59, Corollary 73.2d]).

By applying a reduction rule that contracts an edge into the terminal we can assume that the edges incident
to ti is a min-cut between ti and T − ti. This follows from the pushing lemma ([11, Lemma 8.18]), that
says that for any solution X , for any one terminal t, we can push X so that it contains an “important-cut”
between t and T − t. Further, we know that important-cut is found by a process of starting with a furthest
min-cut, then doing a branching on edges. That is, we select an edge (x, y) leaving the furthest min-cut and
recurse whether an important-cut contains (x, y) or not (see [11, Theorem 8.11]). Hence, it is guaranteed
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to exist an optimal solution X ′ which is at least as far away from t as the furthest (t, T − t)-min-cut. This
implies the reduction rule mentioned above. More explicitly:

Reduction Rule: Let (G,T, k) be an instance of the EMWC problem. Let (t1, v) be an edge adjacent to
a terminal t1, and assume that there is a minimum isolating cut of t1 that does not contain the edge (t1, v).
Then the instances (G′, T, k) and (G,T, k) are equivalent. Here, G′ is the graph that has been obtained by
contracting the edge (t1, v), and calling the newly vertex as t1.

The above description implies that we can obtain an equivalent instance which is a minor of the original
graph and capacity of T to at most 2k. After this we follow the algorithm for EMC given in [63, Corollary 4]
and design the candidate set Z.

EMC: Construction of set Z in [63, Corollary 4].

VMWC: Construction of set Z in [44, Lemma 7.3].

VMC: Construction of set Z ∪ T in [44, Lemma 7.4].

GFVS: Construction of set Z ∪ T in [44, Lemma 7.10].

GFES: The proof is given in [63, Corollary 4]. Important steps of this are as follow. Let (G,φ, k) be an
instance of GFES. Here, φ is a direction-dependent labelling of the edges of G from some multiplicative
group. The algorithm first computes an approximate solution X0 of size O(k log k). Then follows the proof
of [44, Lemma 7.10], and applies [63, Theorem 2 and Corollary 3] to get the desired set Z, as our candidate
set lemma. This concludes the lemma.
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