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The edit operation that contracts edges, which is a fundamental operation in the theory of graph minors, has
recently gained substantial scientific attention from the viewpoint of Parameterized Complexity. In this paper,
we examine an important family of graphs, namely the family of split graphs, which in the context of edge
contractions, is proven to be significantly less obedient than one might expect. Formally, given a graph G
and an integer k , Split Contraction asks whether there exists X ⊆ E (G ) such that G/X is a split graph
and |X | ≤ k . Here, G/X is the graph obtained from G by contracting edges in X . Guo and Cai [Theoretical
Computer Science, 2015] claimed that Split Contraction is fixed-parameter tractable. However, our findings
are different. We show that Split Contraction, despite its deceptive simplicity, is W[1]-hard. Our main
result establishes the following conditional lower bound: under the Exponential Time Hypothesis, Split
Contraction cannot be solved in time 2o (ℓ2 ) · nO (1) where ℓ is the vertex cover number of the input graph.
We also verify that this lower bound is essentially tight. To the best of our knowledge, this is the first tight
lower bound of the form 2o (ℓ2 ) · nO (1) for problems parameterized by the vertex cover number of the input
graph. In particular, our approach to obtain this lower bound borrows the notion of harmonious coloring from
Graph Theory, and might be of independent interest.
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1 INTRODUCTION

Graph modification problems have been extensively studied since the inception of Parameterized
Complexity in the early 90’s. The input of a typical graph modification problem consists of a graph
G and a positive integer k , and the objective is to edit k vertices (or edges) so that the resulting
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Aspects of Computer Science (STACS 2017).
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graph belongs to some particular family F of graphs. These problems are not only mathematically
and structurally challenging, but have also led to the discovery of several important techniques in
the field of Parameterized Complexity. It would be completely appropriate to say that solutions
to these problems played a central role in the growth of the field. In fact, just over the course of
the last couple of years, parameterized algorithms have been developed for Chordal Editing
[10], Unit Interval Editing [8], Interval Vertex (Edge) Deletion [7, 9], Proper Interval
Completion [3], Interval Completion [4] Chordal Completion [5, 25, 34], Cluster Editing
[24], Threshold Editing [18], Chain Editing [18], Trivially Perfect Editing [19, 20] and Split
Editing [26]. This list is not comprehensive but rather illustrative.

The focus of all of these papers, and in fact, of the vast majority of papers on parameterized graph
editing problems, has so far been limited to edit operations that delete vertices, delete edges or
add edges. Using a different terminology, these problems can also be phrased as follows. For some
particular family of graphs, F , we say that a graphG belongs to F + kv , F + ke or F − ke if some
graph in F can be obtained by deleting at most k vertices from G , deleting at most k edges from G
or adding at most k edges to G, respectively. Recently, a methodology for proving lower bounds
on running times of algorithms for such parameterized graph editing problems was proposed by
Bliznets et al. [2]. Furthermore, a well-known result by Cai [5] states that in case F is a hereditary
family of graphs with a finite set of forbidden induced subgraphs, then the graph modification
problem defined by F and the aforementioned edit operations admit a simple FPT algorithm.
In recent years, a different edit operation has begun to attract significant scientific attention.

This operation, which is arguably the most natural edit operation apart from deletions/insertions of
vertices/edges, is the one that contracts an edge. Here, given an edge (u,v ) in the input graph, we
remove the edge from the graph and merge its two endpoints. Edge contraction is a fundamental
operation in the theory of graph minors. Using our alternative terminology, we say that a graph
G belongs to F /ke if some graph in F can be obtained by contracting at most k edges in G.
Then, given a graphG and a positive integer k , F -Edge Contraction asks whetherG belongs to
F /ke . For several families of graphs F , early papers by Watanabe et al. [43, 44] and Asano and
Hirata [1] showed that F -Edge Contraction is NP-complete. In the framework of Parameterized
Complexity, these problems exhibit properties that are quite different from those of problems where
we only delete or add vertices and edges. Indeed, for these problems, the result by Cai [5] does not
hold. In particular, Lokshtanov et al. [38] and Cai and Guo [6] independently showed that if F is
either the family of Pℓ-free graphs for some ℓ ≥ 5 or the family of Cℓ-free graphs for some ℓ ≥ 4,
then F -Edge Contraction is W[2]-hard.
To the best of our knowledge, Heggernes et al. [31] were the first to explicitly study F -Edge

Contraction from the viewpoint of Parameterized Complexity. They showed that in case F is
the family of trees, F -Edge Contraction is FPT but does not admit a polynomial kernel, while
in case F is the family of paths, the corresponding problem admits a faster algorithm and an
O (k )-vertex kernel. Golovach et al. [27] proved that if F is the family of planar graphs, then
F -Edge Contraction is again FPT. Moreover, Cai and Guo [6] showed that in case F is the family
of cliques, F -Edge Contraction is solvable in time 2O (k logk ) ·nO (1) , while in case F is the family
of chordal graphs, the problem is W[2]-hard. Heggernes et al. [32] developed an FPT algorithm
for the case where F is the family of bipartite graphs. Later, a faster algorithm was proposed by
Guillemot and Marx [29].

A recent paper by Cai and Guo [30] studied the case where F is the family of split graphs, which
corresponds to the following problem.
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Split Contraction Parameter: k
Input: A graph G and an integer k .
Question: Does there exist X ⊆ E (G ) such that G/X is a split graph and |X | ≤ k?

Cai and Guo [30] claimed to design an algorithm that solves Split Contraction in time
2O (k2 ) · nO (1) , which proves that the problem is FPT. Our initial objective was to either speed-up
their algorithm or obtain a tight conditional lower bound. In fact, it seemed plausible that Split
Contraction, like F -Edge Contraction where F is the family of cliques, is solvable in time
2O (k logk ) · nO (1) . The algorithm by Cai and Guo [30] first computes a set of vertices of small size
whose removal renders the graph into a split graph. Then, it is based on case distinction. In case
the remaining graph contains a large clique, the problem is solved in time 2O (k logk ) · nO (1) , and
otherwise it is solved in time 2O (k2 ) · nO (1) . In particular, in case the clique is small, the minimum
size of a vertex cover of the input graph is small—it can be bounded by O (k ). Thus, the bottleneck
of the proposed algorithm is captured by graphs having small vertex covers. Interestingly, our first
main result, given in Section 3, proves that it is unlikely to overcome the difficulty imposed by such
graphs.

Theorem 1.1. Unless the ETH fails, Split Contraction parameterized by ℓ, the size of a minimum

vertex cover of the input graph, does not have an algorithm running in time 2o (ℓ2 ) · nO (1) . Here, n is

the number of vertices in the input graph.

To the best of our knowledge, under the Exponential Time Hypothesis (ETH) [13, 33], this is the
first tight lower bound of this form for problems parameterized by the vertex cover number of the
input graph. Lately, there has been increasing scientific interest in the examination of lower bounds
of forms other than 2o (s ) ·nO (1) for some parameters s . For example, lower bounds that are “slightly
super-exponential”, i.e. of the form 2o (s log s ) · nO (1) for various parameters s , have been studied in
[37]. Cygan et al. [14] obtained a lower bound of the form 22o (k ) · nO (1) , where k is the solution size,
for the Edge Cliqe Cover problem. Very recently, Marx and Mitsoue [39] have further obtained
lower bounds of the forms 22o (w )

· nO (1) and 222
o (w )

· nO (1) , where w is the treewidth of the input
graph, for choosability problems.
In order to derive our main result, we make use of a partitioning of the vertex set V (G ) into

independent setsC1, . . . ,Ct such that for each i, j ∈ [t], i , j , |E (G[Ci ∪Cj ])∩E (G ) | ≤ 1. Essentially,
this coloring can be viewed as a proper coloring f : V (G ) → [t] with the additional property that
between any two color classes we have at most one edge. (Here, we use the standard notation
[t] = {1, 2, . . . , t }.) This kind of coloring, called harmonious coloring [21, 36, 40], has been studied
extensively in the literature. We are not aware of uses of harmonious coloring in deriving lower
bound results and believe that this approach could be of independent interest.
After we had established Theorem 1.1, we took a closer look at the algorithm by Cai and Guo

[30], and were not able to verify some of their arguments (see Phase 2 of their algorithm). We next
prove that unless FPT=W[1], the algorithm by Cai and Guo [30] is incorrect, as the problem is
W[1]-hard (Section 4).

Theorem 1.2. Split Contraction is W[1]-hard when parmeterized by the size of a solution.

We find this result surprising: one might a priori expect that “contraction to split graphs” should
be easy as split graphs have structures that seem relatively simple. Indeed, many NP-hard problems
admit simple polynomial-time algorithms if restricted to split graphs. Consequently, our result
can also be viewed as a strong evidence of the inherent complexity of the edit operation which
contracts edges. Furthermore, some of the ideas underlying the constructions of this reduction, such
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as the exploitation of properties of a special case of the Perfect Code problem to analyze budget
constraints involving edge contractions, might be used to establish other W[1]-hard results for
problems of similar flavors. We remark that despite errors in the paper [30], it can be verified that
the lower bound given by Theorem 1.1 is tight. For the sake of completeness, we give a standalone
FPT algorithm for Split Contraction that runs in time 2O (ℓ2 ) · nO (1) .

2 PRELIMINARIES

We denote the set of natural numbers by N. For k ∈ N, we denote the set {1, 2, . . . ,k } by [k].
We use standard terminology from the book of Diestel [15] for terms that are not explicitly

defined here. We consider only finite simple graphs. For a graph G, by V (G ) and E (G ) we denote
the vertex and edge sets of the graph G, respectively. For a vertex v ∈ V (G ), we denote the degree
of v , i.e the number of edges incident with v in G by dG (v ). For v ∈ V (G ), we denote the set
{u ∈ V (G ) | (v,u) ∈ E (G )} by NG (v ). We drop the subscript G from dG (v ) and NG (v ) when the
context is clear. For a vertex subset S ⊆ V (G ), G[S] denotes the subgraph of G induced by S , i.e.
the graph with the vertex set S and the edge set {(v,u) ∈ E (G ) | v,u ∈ S }. We denote the graph
G[V (G ) \S] byG −S . We say that two disjoint vertex subsets, say S, S ′ ⊆ V (G ), are adjacent if there
exist v ∈ S and v ′ ∈ S ′ such that (v,v ′) ∈ E (G ). Furthermore, an edge (u,v ) ∈ E (G ) is between
S, S ′ if u ∈ S and v ∈ S ′ (or v ∈ S and u ∈ S ′).

A split graph is a graph G whose vertex set V (G ) can be partitioned into two sets, A and B, such
that G[A] is a clique while B is an independent set, i.e. G[B] is an edgeless graph. A graph G is
called a sub-cubic graph if for each v ∈ V (G ), we have d (v ) ≤ 3. A path in a graph is a sequence of
vertices v1,v2, . . . ,vl such that for all i ∈ [l − 1], (vi ,vi+1) ∈ E (G ). Furthermore, we say that such
a path is a path between v1 and vl . A graph is called connected if there is a path between every pair
of vertices. A maximal connected-graph is called a component in a graph. A vertex subset S ⊆ V (G )
is said to cover an edge (u,v ) ∈ E (G ) if Y ∩ {u,v} , ∅. A vertex subset S ⊆ V (G ) is called a vertex
cover inG if it covers all the edges inG . A minimum vertex cover is S ⊆ V (G ) such that S is a vertex
cover and for all S ′ ⊆ V (G ) such that S ′ is a vertex cover, we have |S | ≤ |S ′ |.
For e = (v,u) ∈ E (G ), the result of contracting the edge e in G is the graph obtained by the

following operation.We add a vertexwe and make it adjacent to the vertices in (N (v )∪N (u))\{v,u}
and delete v,u from the graph. We often call such an operation contraction of the edge e . For
E ′ ⊆ E (G ), the graphG/E ′ denotes the graph obtained by contracting the edges of E ′ inG . We note
that the order in which the edges in E ′ are contracted is insignificant.
A graph G is isomorphic to a graph H if there exists a bijective function ϕ : V (G ) → V (H ) such

that for v,u ∈ V (G ), (v,u) ∈ E (G ) if and only if (ϕ (v ),ϕ (u)) ∈ E (H ). A graph G is contractible to a
graphH if there exists E ′ ⊆ E (G ) such thatG/E ′ is isomorphic toH . In other words,G is contractible
to H if there exists a surjective function φ : V (G ) → V (H ) with the following properties.
• For all h,h′ ∈ V (H ), (h,h′) ∈ E (H ) if and only if W (h),W (h′) are adjacent in G. Here,
W (h) = {v ∈ V (G ) | φ (v ) = h}.
• For all h ∈ V (H ), G[W (h)] is connected.

LetW = {W (h) | h ∈ V (H )}. Observe thatW defines a partition of the vertex set of G. We call
W a H -witness structure of G. The sets inW are called witness-sets.

Parameterized Complexity. A parameterized problem Π is a subset of Γ∗ × N, where Γ is a
finite alphabet. An instance of a parameterized problem is a tuple (x ,k ), where x is a classical
problem instance, and k is called the parameter. A central notion in parameterized complexity is
fixed-parameter tractability (FPT) which means, for a given instance (x ,k ), decidability in time
f (k ) · p ( |x |), where f is an arbitrary function of k and p is a polynomial in the input size. On
the one hand, to prove that a problem is FPT, it is possible to give an explicit algorithm, called
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a parameterized algorithm, which solves it in time f (k ) · p ( |x |). On the other hand, to show that
a problem is unlikely to be FPT, it is possible to use polynomial-time reductions analogous to
those employed in Classical Complexity. Here, the concept of W[1]-hardness replaces the one of
NP-hardness, and we need not only construct an equivalent instance in FPT time, but also ensure
that the size of the parameter in the new instance depends only on the size of the parameter in
the original instance. For more details on Parameterized Complexity, we refer the reader to the
books of Downey and Fellows [17], Flum and Grohe [23], Niedermeier [41], and the recent book by
Cygan et al. [13].

3 LOWER BOUND FOR SPLIT-CONTRACTION PARAMETERIZED BY VERTEX

COVER

In this section we show that unless the ETH fails, Split Contraction does not admit an algorithm
running in time 2o (ℓ2 )nO (1) , where ℓ is the size of a minimum vertex cover of the input graph G
on n vertices. We complement it by giving an algorithm in Section 5) for Split Contraction
parameterized by ℓ, running in time 2O (ℓ2 )nO (1) .

To obtain our lower bound, we give an appropriate reduction from Vertex Cover on sub-cubic
graphs. For this we utilise the fact that Vertex Cover on sub-cubic graphs does not have an
algorithm running in time 2o (n)nO (1) unless the ETH fails [33, 35]. For the ease of presentation we
split the reduction into two steps. The first step comprises of reducing a special case of Vertex
Cover on sub-cubic graphs, which we call Sub-Cubic Partitioned Vertex Cover (Sub-Cubic
PVC) to Split Contraction. In the second step we show that there does not exist an algorithm
running in time 2o (n)nO (1) for Sub-Cubic PVC. We remark that the reduction from Vertex Cover
on sub-cubic graphs (Sub-Cubic VC) to Sub-Cubic PVC is a Turing reduction.

3.1 Reduction from Sub-Cubic Partitioned Vertex Cover to Split Contraction

In this section we give a reduction from Sub-Cubic Partitioned Vertex Cover to Split Con-
traction. Next, we formally define Sub-Cubic Partitioned Vertex Cover.

Sub-Cubic Partitioned Vertex Cover (Sub-Cubic PVC)
Input: A sub-cubic graph G; an integer t ; for i ∈ [t], an integer ki ≥ 0; a partition P =
{C1, . . . ,Ct } ofV (G ) such that t ∈ O (

√
|V (G ) |) and for all i ∈ [t],Ci is an independent set and

|Ci | ∈ O (
√
|V (G ) |). Furthermore, for i, j ∈ [t], i , j, |E (G[Ci ∪Cj ]) ∩ E (G ) | = 1.

Question: Does G have a vertex cover X such that for all i ∈ [t], |X ∩Ci | ≤ ki?

We first explain (informally) the ideas behind our reduction. Let X be a hypothetical vertex
cover we are looking for. Recall that we assume the ETH holds and thus we are allowed to use
2o (n)nO (1) time to obtain our reduction. We will use this freedom to design our reduction and
to construct an instance (G ′,k ′) of Split Contraction. For i ∈ [t], in V (G ′), we have a vertex
corresponding to each possible intersection of X with Ci on at most ki vertices. Furthermore, we
have a vertex ci ∈ V (G ′) corresponding to each Ci , for i ∈ [t]. We want to make sure that for each
(u,v ) ∈ E (G ), we choose an edge of E (G ′) (in the solution to Split Contraction) that is incident
to a vertex which corresponds to a subset containing one of u or v and one of ci or c j . Furthermore,
we want to force these selected vertices to be contracted to the clique side in the resulting split
graph. We crucially exploit the fact that there is exactly one edge between every Ci ,Cj pair, where
i, j ∈ [t], i , j. Finally, we will add a clique, say Γ, of size 3t and make each of its vertices adjacent
to many pendant vertices, which ensures that after contracting the solution edges, the vertices of Γ
remain in the clique side. We will assign appropriate adjacencies between the vertices of Γ and ci ,
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Fig. 1. Reduction from Sub-Cubic PVC to Split Contraction.

for i ∈ [t]. This will guide us in selecting edges for the solution of the contraction problem. We
now move to the formal description of the construction used in the reduction.

Construction. Let (G,P = {C1,C2, . . . ,Ct },k1, . . . ,kt ) be an instance of Sub-Cubic PVC and
n = |V (G ) |. We create an instance of Split Contraction (G ′,k ′) as follows. For i ∈ [t], let Si =
{vY | Y ⊆ Ci and |Y | ≤ ki }. That is, Si comprises of vertices corresponding to subsets ofCi of size at
most ki . For each i ∈ [t], we add five verticesbi , ci ,xi ,yi , zi toV (G ′). The vertices {xi ,yi , zi | i ∈ [t]}
induce a clique (on 3t vertices) in G ′. We add the edges (bi , sY ), (ci , sY ), (xi , sY ), (yi , sY ), (zi , sY )
for all sY ∈ Si to E (G ′). For i, j ∈ [t], i , j, we add the edges (ci ,x j ), (ci ,yj ), (ci , zj ) to E (G ′). For
i, j ∈ [t], i , j and sY ∈ S j , we add the edge (ci , sY ) in E (G ′) if and only if Y covers the unique edge
between Ci and Cj . For all i ∈ [t], we add 4t + 2 pendant vertices, b ′ij , j ∈ [4t + 2], to bi . Similarly,
for all i ∈ [t], we add 4t + 2 pendant vertices c ′ij , x ′ij , y ′ij , and z ′ij , j ∈ [4t + 2], to ci , xi , yi and zi ,
respectively. The pendant vertices are added in order to make sure that the vertices resulting after
the contraction of their witness sets belong to the clique side. This completes the construction of
the graph G ′. Observe that {bi , ci ,xi ,yi , zi | i ∈ [t]} forms a minimum vertex cover of G ′ of size
5t . Finally, we set k ′ = 2t . The resulting instance of Split Contraction is (G ′,k ′). We refer the
reader to Figure 1 for an illustration of the construction.
In the next few lemmas (Lemma 3.1 to 3.6) we prove certain properties of the instance (G ′,k ′)

of Split Contraction. This will be helpful later for establishing the equivalence between the
original instance (G,P = {C1,C2, . . . ,Ct },k1, . . . ,kt ) of Sub-Cubic PVC and the instance (G ′,k ′)
of Split Contraction. In Lemma 3.1 to 3.6 we will use the following notations. We use T to
denote a solution to Split Contraction in (G ′,k ′) and H = G ′/T with Ĉ , Î being a partition of
V (H ) inducing a clique and an independent set, respectively, in H . We let φ : V (G ′) → V (H ) be the
surjective function defining the contractibility of G ′ to H , andW be the H -witness structure of G ′.

In the following lemmawe show that the vertices (or their contracted counterparts)bi , ci ,xi ,yi , zi ,
for i ∈ [t], always belong to the clique side (which is Ĉ , in our case).

Lemma 3.1. Let (G ′,k ′) be a YES instance of Split Contraction. Then, for allv ∈ {bi , ci ,xi ,yi , zi |
i ∈ [t]}, we have φ (v ) ∈ Ĉ .
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Proof. Consider v ∈ {bi , ci ,xi ,yi , zi | i ∈ [t]}. Recall that there are 4t + 2 = 2k ′ + 2 pendant
vertices v ′ij , for j ∈ [2k ′ + 2] adjacent to v . At most k ′ edges in {(v ′ij ,v ) | j ∈ [2k ′ + 2]} can belong
to T . Therefore, there exist j1, j2 ∈ [2k ′ + 2], j1 , j2 such that no edge incident to v ′ij1 or v

′i
j2 is in T .

In other words, for h1 = φ (v ′ij1 ) and h2 = φ (v ′ij2 ),W (h1) andW (h2) are singleton sets. SinceW is a
H -witness structure of G ′, (h1,h2) < E (H ). Therefore, at least one of h1,h2 belongs to Î , say h1 ∈ Î .
This implies that φ (v ) ∈ Ĉ . □

Next lemma shows that for each i ∈ [t], there is an edge (bi , sYi ) ∈ T . This will be helpful in
selecting of a subset of vertices of size at most ki from Si .

Lemma 3.2. Let (G ′,k ′) be a YES instance of Split Contraction. Then, for all i ∈ [t], there exists
sYi ∈ Si such that (bi , sYi ) ∈ T .

Proof. Towards a contradiction assume that there is i ∈ [t] such that for all sY ∈ Si , (bi , sY ) < T .
Recall that NG′ (bi ) = Si ∪ {b

′i
j | j ∈ [4t + 2]}. Let h = φ (bi ) and A = {bj , c j ,x j ,yj , zj | j ∈ [t], j , i}.

There exists v ∈ A such that |W (h′) | = 1, where h′ = φ (v ). This follows from the fact that at
most 2k ′ = 4t vertices in A can be incident to an edge in T , although |A| = 5(t − 1) > 4t , as t can
be assumed to be larger than 6, else the graph has constantly many edges and we can solve the
problem in polynomial time. From Lemma 3.1 it follows that (h,h′) ∈ E (H ), butW (h),W (h′) are not
adjacent in G ′, contradicting thatW is an H -witness structure of G ′. Hence the claim follows. □

For each i ∈ [t], we arbitrarily choose a vertex s⋆Yi ∈ Si such that (bi , s⋆Yi ) ∈ T . The existence of
such a vertex is guaranteed by Lemma 3.2. In Lemma 3.1 we proved that the contracted counterparts
of vertices ci and bi , for i ∈ [t] belong to Ĉ . Our next goal will to show that for each i ∈ [t], vertices
bi , ci and s⋆Yi belong to the same witness set, which does not contain any other vertex. The above is
shown using Lemma 3.3 to 3.6.

Lemma 3.3. Let (G ′,k ′) be a YES instance of Split Contraction and (bi , s
⋆
Yi
) ∈ T for i ∈ [t]. Then,

for hi = φ (s⋆Yi ), we have |W (hi ) | ≥ 3. Furthermore, there is an edge in T incident to bi or s
⋆
Yi

other

than (bi , s
⋆
Yi
).

Proof. Suppose there exists i ∈ [t], hi = φ (s⋆Yi ) such that |W (hi ) | < 3. Recall that |W (hi ) | ≥ 2,
since bi ∈ W (hi ). Let A = {x j ,yj , zj | j ∈ [t], j , i}. From Lemma 3.2, it follows that for each
j ∈ [t], there is an edge (bj , s⋆Yj ) ∈ T , therefore the number of edges in T incident to a vertex in A is
bounded by k ′ − t = t . But |A| = 3t − 3 > 2t , therefore, there exists a ∈ A such that for ha = φ (a),
|W (ha ) | = 1. From Lemma 3.1, (hi ,ha ) ∈ E (H ), thereforeW (hi ) andW (ha ) must be adjacent inG ′.
But a < N ({bi , s

⋆
Yi
}), henceW (hi ) andW (ha ) are not adjacent in G ′, contradicting thatW is an

H -witness structure of G ′.
Since |W (hi ) | ≥ 3 and G[W (hi )] is connected, at least one of s⋆Yi ,bi must be adjacent to an edge

in T which is not (s⋆Yi ,bi ). □

Lemma 3.4. Let (G ′,k ′) be a YES instance of Split Contraction. Then, for all i ∈ [t], we have
|W (hi ) | ≥ 2 where hi = φ (ci ).

Proof. Towards a contradiction assume that there exists i ∈ [t],hi = φ (ci ), such that |W (hi ) | < 2.
Let A = {c j | j ∈ [t], j , i} ∪ {xi ,yi , zi }. From Lemma 3.2 it follows that the edge (bj , s

⋆
Yj
) ∈ T , for

each j ∈ [t]. By Lemma 3.3 it follows that there is an edge in T that is adjacent to exactly one
of {bj , s⋆Yj } in T , for all j ∈ [t]. Therefore, at most t vertices in A can be incident to an edge in T ,
while |A| = t + 2. This implies that there exists a ∈ A, ha = φ (a) such that |W (ha ) | = 1. Observe
that none of the vertices in A are adjacent to ci in G ′. Therefore, it follows thatW (hi ),W (ha ) are
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not adjacent in G ′. But Lemma 3.1 implies that (hi ,ha ) ∈ E (H ), a contradiction toW being an
H -witness structure of G ′. □

Lemma 3.5. Let (G ′,k ′) be a YES instance of Split Contraction and (bi , s
⋆
Yi
) ∈ T for i ∈ [t]. Then,

for each i ∈ [t], we have |W (hi ) | = 3 where hi = φ (s⋆Yi ).

Proof. For i ∈ [t], let hi = φ (s⋆Yi ). From Lemma 3.3 we know that |W (hi ) | ≥ 3. Let C = {ci |
i ∈ [t]} and S = {{bi , s⋆Yi } | i ∈ [t]}. From Lemma 3.3 and 3.4 it follows that each c ∈ C must be
incident to an edge in T and each S ∈ S must have a vertex which is incident to an edge in T
with the other endpoint not in S . Since |C | = |S| = t and (bi , s

⋆
Yi
) ∈ T , for all i ∈ [t], there are at

most t edges in T that are incident to a vertex in C and a vertex in S ∈ S. Therefore, each c ∈ C is
incident to exactly one edge in T . Similarly, each S ∈ S is incident to exactly one edge in T with
one endpoint in S and the other not in S . This implies that exactly one vertex c ∈ C belongs to
W (hi ) for i ∈ [t], and c does not belong toW (hj ), where i , j, i, j ∈ [t]. Also note that none of
the vertices in {xi ,yi , zi | i ∈ [t]} can be incident to an edge in T . Similarly, none of the vertices
in {b ′ij , c ′ij ,x ′ij ,y ′ij , z ′ij | i ∈ [t], j ∈ [4t + 2]} can be incident to an edge in T . Hence, we get that
|W (hi ) | = 3, concluding the proof. □

Lemma 3.6. Let (G ′,k ′) be a YES instance of Split Contraction and (bi , s
⋆
Yi
) ∈ T for i ∈ [t]. Then,

for all i ∈ [t], we have ci ∈W (hi ) where hi = φ (s⋆Yi ).

Proof. Suppose for some i ∈ [t], ci <W (hi ) where hi = φ (s⋆Yi ). From Lemma 3.3 and 3.4, and
k ′ = 2t , it follows that there exists some j ∈ [t] such that ci ∈W (hj ), where hj = φ (s⋆Yj ). By our
assumption, j , i . From Lemma 3.5 we know that |W (hj ) | = 3, thereforeW (hj ) = {bj , s

⋆
Yj
, ci }.

Moreover, by Lemma 3.4 and 3.5 and since k ′ = 2t , |W (xi ) | = 1. However, we then get that
W (hj ),W (xi ) are not adjacent in G ′. By Lemma 3.1, we obtain a contradiction to the assumption
thatW is an H -witness structure of G ′. This completes the proof. □

We are now ready to prove the main equivalence lemma of this section.
Lemma 3.7. (G,P = {C1,C2, . . . ,Ct },k1, . . . ,kt ) is a YES instance of Sub-Cubic PVC if and only

if (G ′,k ′) is a YES instance of Split Contraction.

Proof. In the forward direction, letY be a vertex cover inG such that for each i ∈ [t], |Y∩Ci | ≤ ki .
For i ∈ [t], we let Yi = Y ∩Ci . LetT = {(bi , sYi ), (ci , sYi ) | i ∈ [t]}. LetH = G ′/T , φ : V (G ′) → V (H )
be the underlying surjective map andW be the H -witness structure of G ′. To show that T is
a solution to Split Contraction in (G ′,k ′), it is enough to show that H is a split graph. Let
I = ∪i ∈[t ] (Si \ {sYi }) ∪ {b

′i
j , c
′i
j ,x

′i
j ,y

′i
j , z

′i
j | i ∈ [t], j ∈ [4t + 2]}. Recall that for each v ∈ I ,

|W (φ (v )) | = 1. Furthermore, for v,v ′ ∈ I , (v,v ′) < E (G ′). Hence, it follows that Î = {φ (v ) | v ∈ I }
induces an independent set inH . Let C1 = {xi ,yi , zi | i ∈ [t]}. Recall thatG ′[C1] is a clique and from
the construction of T , |W (φ (c )) | = 1 for all c ∈ C1. Therefore, Ĉ1 = {φ (c ) | c ∈ C1} induces a clique
in H . Let C2 = {sYi | i ∈ [t]}, hi = φ (sYi ) for i ∈ [t], and Ĉ2 = {hi | i ∈ [t]}. From the construction
ofT , we haveW (hi ) = {bi , ci , sYi } for all i ∈ [t]. Observe that for c1 ∈ Ĉ1 and c2 ∈ Ĉ2,W (c1),W (c2)

are adjacent in G ′, therefore, (c1, c2) ∈ E (H ). Consider hi ,hj ∈ Ĉ2, where i, j ∈ [t], i , j. Recall
W (hi ) = {bi , sYi , ci } andW (hj ) = {bj , sYj , c j }. Since Y is a vertex cover, at least one of Yi or Yj
covers the unique edge betweenCi andCj inG , say Yi covers the edge betweenCi andCj . But then
(sYi , c j ) ∈ E (G

′), therefore (hi ,hj ) ∈ E (H ). The above argument implies that Ĉ = Ĉ1 ∪ Ĉ2 induces
a clique in H . Furthermore, V (H ) = Î ∪ Ĉ. This implies that H is a split graph.
In the reverse direction, let T be a solution to Split Contraction in (G ′,k ′). Let H = G ′/T ,

φ : V (G ′) → V (H ) be the underlying surjective map andW be the H -witness structure of G ′.
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From Lemma 3.2, it follows that for all i ∈ [t], there exists sYi ∈ Si such that (bi , sYi ) ∈ T . For
i ∈ [t], let Yi be the set such that (bi , sYi ) ∈ T . We let Y = ∪i ∈[t ]Yi . For i ∈ [t], from the definition
of the vertices in Si , it follows that |Y ∩ Ci | ≤ ki . We will show that Y is a vertex cover in G.
Towards a contradiction assume that there exists i, j ∈ [t], i , j, such that Y does not cover the
unique edge between Ci and Cj . From Lemmas 3.2 and 3.6 it follows thatW (hi ) = {bi , sYi , ci }
andW (hj ) = {bj , sYj , c j }, where hi = φ (sYi ) and hj = φ (sYj ). From Lemma 3.1 it follows that
(hi ,hj ) ∈ E (H ). Therefore,W (hi ) andW (hj ) are adjacent in G ′. Recall that NG′ (bi ) ∩W (hj ) = ∅,
NG′ (bj ) ∩W (hi ) = ∅, (ci , c j ), (sYi , sYj ) < E (G ′). Therefore, at least one of (ci , sYj ), (c j , sYi ) must
belong to E (G ′), say (ci , sYj ) ∈ E (G

′). But then by construction it follows that Yj ⊆ Y covers the
unique edge between Ci and Cj in G, a contradiction. This completes the proof. □

Finally, we restate Theorem 1.1 and prove its correctness.

Theorem 3.8. Unless the ETH fails, Split Contraction parameterized by ℓ, the size of a minimum

vertex cover of the input graph, does not have an algorithm running in time 2o (ℓ2 ) · nO (1) . Here, n
denotes the number of vertices in the input graph.

Proof. Towards a contradiction assume that there is an algorithm A for Split Contraction,
parameterized by ℓ, the size of a minimum vertex cover, running in time 2o (ℓ2 )nO (1) . Let (G,P =
{C1,C2, . . . ,Ct },k1, . . . ,kt ) be an instance of Sub-Cubic PVC. We create an instance (G ′,k ′) of
Split Contraction as described in the Construction, running in time 2o (n) · nO (1) , where n =
|V (G ) |. Recall that in the instance created, the size of a minimum vertex cover is ℓ = 5t = O (

√
n).

Then we use algorithm A for deciding if (G ′,k ′) is a YES instance of Split Contraction and
return the same answer for Sub-Cubic PVC on (G,P,k1, . . . ,kt ). The correctness of the answer
returned follows from Lemma 3.7. But then we can decide whether (G,P,k1, . . . ,kt ) is a YES

instance of Sub-Cubic PVC in time 2o (n) · nO (1) , which contradicts ETH assuming Theorem 3.9.
This concludes the proof. □

3.2 Reduction from Sub-Cubic VC to Sub-Cubic PVC

Finally, to complete our proof we show that Sub-Cubic PVC on graphs with n vertices can not
be solved in time 2o (n)nO (1) unless the ETH fails. In this section we give a Turing reduction from
Sub-Cubic VC to Sub-Cubic PVC that will imply our desired assertion.

Let (G,k ) be an instance of Sub-Cubic VC and n = |V (G ) |. We first create a new instance (G ′,k ′)
of Sub-Cubic VC satisfying certain properties. We start by computing a harmonious coloring of
G using t ∈ O (

√
n) color classes such that each color class contains at most O (

√
n) vertices. A

harmonious coloring on bounded degree graphs can be computed in polynomial time using at most
O (
√
n) colors with each color class having at most O (

√
n) vertices [21, 36, 40]. LetC1, . . . ,Ct be the

color classes. Recall that between each pair of the color classes, Ci ,Cj for i, j ∈ [t], i , j, we have
at most one edge. If for some i, j ∈ [t], i , j, there is no edge between a vertex in Ci and a vertex
in Cj , then we add a new vertex xi j in Ci and a new vertex x ji in Cj and add the edge (xi j ,x ji ).
Observe that we add a matching corresponding to a missing edge between a pair of color classes.
In this process we can add at most t − 1 new vertices to a color class Ci , for i ∈ [t]. Therefore, the
number of vertices in Ci for i ∈ [t] after addition of new vertices is also bounded by O (

√
n). We

denote the resulting graph by G ′ with partition of vertices C1, . . . ,Ct (including the newly added
vertices, if any). Observe that the number of vertices n′ in G ′ is at most O (n). Letm be the number
of matching edges added in G to obtain G ′ and let k ′ = k +m. It is easy to see that (G,k ) is a YES
instance of Sub-Cubic VC if and only if (G ′,k ′) is a yes instance of Sub-Cubic VC.

We will now be working with the instance (G ′,k ′) of Sub-Cubic VCwith the partition of vertices
C1, . . . ,Ct obtained by extending the color classes of the harmonious coloring of G we started
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with. We guess the size of the intersection of the vertex cover in G ′ with each Ci , for i ∈ [t]. That
is, for i ∈ [t], we guess an integer 0 ≤ k ′i ≤ min( |Ci |,k

′), such that ∑i ∈[t ] k
′
i = k ′. Finally, we let

(G ′,P = {C1, . . . ,Ct },k
′
1, . . . ,k

′
t ) be an instance of Sub-Cubic PVC. Notice that G ′ and P satisfies

all the requirements for (G ′,P = {C1, . . . ,Ct },k
′
1, . . . ,k

′
t ) to be an instance of Sub-Cubic PVC. It

is easy to see that (G ′,k ′) is a YES instance of Sub-Cubic VC if and only if for some guess of ki ,
for i ∈ [t], (G ′,P = {C1, . . . ,Ct },k

′
1, . . . ,k

′
t ) is a YES instance of Sub-Cubic PVC. This finishes the

reduction from Sub-Cubic VC to Sub-Cubic PVC.

Theorem 3.9. Unless the ETH fails, Sub-Cubic PVC does not admit an algorithm running in time

2o (n) · nO (1) , for a graph with n vertices.

Proof. Towards a contradiction assume that there is an algorithmA for Sub-Cubic PVC running
in time 2o (n) · nO (1) . Let (G,k ) be an instance of Sub-Cubic VC. We apply the above mentioned
reduction to create an instance (G ′,k ′) of Sub-Cubic VCwith vertex partitionsC1, . . . ,Ct such that
t ∈ O (

√
n) and |Ci | ∈ O (

√
n), for all i ∈ [t]. Furthermore, there is exactly one edge between Ci ,Cj ,

for i, j ∈ [t], i , j , andCi induces an independent set inG ′. For each guess 0 ≤ k ′i ≤ min( |Ci |,k
′) of

the size of intersection of vertex cover with Ci , for i ∈ [t], we solve the instance (G ′,P,k ′1, . . . ,k ′t ).
By the exhaustiveness of the guesses of the size of intersection for each partition, (G ′,k ′) is a
YES instance of Sub-Cubic VC if and only if for some guess k ′1, . . . ,k ′t , (G ′,P,k ′1, . . . ,k ′t ) is a
YES instance of Sub-Cubic PVC. We emphasize the fact that the number of guesses we make is
bounded by

√
n
O (
√
n)
= 2o (n) , since |Ci | ∈ O (

√
n) and t ∈ O (

√
n). But then we have an algorithm for

Sub-Cubic VC running in time 2o (n) · nO (1) , contradicting the ETH. This concludes the proof. □

4 W[1]-HARDNESS OF SPLIT CONTRACTION

In this section we show that Split Contraction parameterized by the solution size is W[1]-hard.
Towards this we first define an intermediate problem from which we give the desired reduction.

Special Red-Blue Perfect Code (SRBPC) Parameter: k
Input: A bipartite graph G with vertex set V (G ) partitioned into red set R and blue set
B. Furthermore, R is partitioned (disjoint) into R1 ⊎ R2 ⊎ . . . ⊎ Rk and for all r , r ′ ∈ R,
dG (r ) = dG (r

′). That is, every vertex in R has the same degree, say d .
Question: Does there exist X ⊆ R, such that for all b ∈ B, |N (b) ∩ X | = 1 and for all i ∈ [k],
|Ri ∩ X | = 1?

SRBPC is a variant of Perfect Code which is known to be W[1]-hard [16]. We postpone the
W[1]-hardness proof of SRBPC to Section 4.2 and first give a parameterized reduction from SRBPC
to Split Contraction, showing that Split Contraction is W[1]-hard.

4.1 Reduction from SRBPC to Split Contraction

Let (G,R = R1⊎,R2⊎. . .⊎Rk ,B) be an instance of SRBPC. We will assume that |B| = dk , otherwise,
the instance is a trivial NO instance of SRBPC. For technical reasons we assume that |B| = ℓ > 4k
(and hence d > 4). Such an assumption is valid because otherwise, the problem is FPT. Indeed, if
|B| = ℓ ≤ 4k then for every partition P1, . . . , Pk of B into k parts such that each part is non-empty,
we first guess a permutation π on k elements and then for every i ∈ [k], we check whether there
exists a vertex rπ (i ) ∈ Rπ (i ) that dominates exactly all the vertices in Pi (and none in other parts Pj ,
j , i). Clearly, all this can be done in time 2O (k logk )nO (1) . Furthermore, we also assume that k ≥ 2 ,
else the problem is solvable in polynomial time. Now we give the desired reduction. We construct
an instance (G ′,k ′) of Split Contraction as follows. Initially, V (G ′) = R ∪ B and E (G ′) = E (G ).
For all b,b ′ ∈ B, b , b ′, we add the edge (b,b ′) to E (G ′). That is, we transform B into a clique.
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Fig. 2. W[1]-Hardness of Split Contraction.

Let t = 2k + 2 . For each bi ∈ B, we add a set of t vertices yi1, . . . ,yit each adjacent to bi in G ′. We
add a vertex s adjacent to every vertex r ∈ R in G ′. Also, we add a set of t vertices q1, . . . ,qt each
adjacent to s in G ′. For each i ∈ [k], we add a vertex xi adjacent to each vertex r ∈ Ri . Finally, for
all i ∈ [k], we add a set of t verticesw i

1, . . . ,w
i
t adjacent to xi in G ′. We set the new parameter k ′

to be 2k . This completes the description of the reduction. We refer the reader to Figure 2 for an
illustration of the reduction.

In the next four lemmas (Lemma 4.1 to 4.4) we prove certain structural properties of the instance
(G ′,k ′) of Split Contraction. Thesewill later be used in showing that (G,R = R1⊎R2⊎. . .⊎Rk ,B)
is a YES instance of SRBPC if and only if (G ′,k ′) is a YES instance of Split Contraction. For
the next four lemmas, we let S be a solution to Split Contraction in (G ′,k ′) and H = G ′/S
with Ĉ , Î being a partition of V (H ) inducing a clique and an independent set, respectively, in H .
Let φ : V (G ) → V (H ) denote the function defining the contractibility of G to H , andW be the
H -witness structure of G.

In the following lemma, we show that the vertices in B, s and xi , for i ∈ [k] (or their contracted
counterparts) always belong to the clique side (which is Ĉ , for our case).

Lemma 4.1. Let (G ′,k ′) be a YES instance of Split Contraction. Then, for all v ∈ ({s} ∪ B ∪ {xi |
i ∈ [k]}), we have φ (v ) ∈ Ĉ .

Proof. We only give an argument for the vertex s . The argument for vertices in B∪{xi | i ∈ [k]}
is analogous and thus omitted. Recall that there are t pendant vertices q1, . . . ,qt adjacent to s , where
t = 2k+2. At most 2k < t edges in {(qi , s ) | i ∈ [t]} can belong to S . Therefore, there exist j1, j2 ∈ [t],
j1 , j2 such that no edge incident to qj1 or qj2 is in S . In other words, for h1 = φ (qj1 ) and h2 = φ (qj2 ),
W (h1) andW (h2) are singleton sets. SinceW is a H -witness structure of G ′, (h1,h2) < E (H ).
Therefore, at least one of h1,h2 belongs to Î , say h1 ∈ Î . This implies that φ (s ) ∈ Ĉ . □

Next lemma shows that for each i ∈ [k], there is a vertex ri ∈ Ri , such that the edge (xi , ri ) ∈ S .
This will be helpful in selecting a vertex from Ri (while constructing a desired type of dominating
set in the graph G).
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Lemma 4.2. Let (G ′,k ′) be a YES instance of Split Contraction. Then, for all i ∈ [k], there exists
ri ∈ Ri such that (xi , ri ) ∈ S .

Proof. Towards a contradiction assume that there exists an index i ∈ [k] such that for all r ∈ Ri ,
(xi , r ) < S . Let h = φ (xi ). Observe that the edges in S can only be incident to at most 4k vertices
and thus there exists j ∈ [ℓ] (ℓ = |B| > 4k) such that for h′ = φ (bj ),W (h′) is a singleton set. From
Lemma 4.1, we know that h,h′ ∈ Ĉ . Hence,W (h) andW (h′) are adjacent in G ′. Thus there is a
vertex v ∈W (h) and v ′ ∈W (h′) such that (v,v ′) ∈ E (G ′). Since |W (h′) | = 1, we have that v ′ = bj .
But (xi ,bj ) < E (G ′), hence v , xi . Observe that v is a vertex of degree at least 2 in G ′ and all the
neighbors of xi with degree at least 2 are in Ri . Hence it follows that there exists r ∈ Ri such that
r ∈W (h). The solution S must contain all the edges of a spanning tree of G[W (h)]. Any spanning
tree of G[W (h)] must contain an edge (xi , r

′) where r ′ ∈ Ri (possibly r ′ = r ) since all the paths
between xi and r in G must contain a vertex in Ri . This is contrary to our assumption that for all
r ∈ Ri , (xi , r ) < S . This completes the claim. □

For each i ∈ [k] we arbitrarily choose a vertex r⋆i ∈ Ri such that e⋆i = (xi , r
⋆
i ) ∈ S . The existence

of such a vertex is guaranteed by Lemma 4.2. Note that we have already used a budget of (at least)
k edges, which are precisely the edges e⋆i , for i ∈ [k]. In our next lemma (Lemma 4.3), we show that
for each i ∈ [k], there is an edge ei , e⋆i in S . We note that the existence of such k edges (for each
i ∈ [k]) will guarantee that we have used all our budget. This will be helpful in ensuring that the
vertex we select from Ri (for the desired type of dominating set for G) is r⋆i , and there is exactly
one such selected vertex, for each i ∈ [k].
Lemma 4.3. Let (G ′,k ′) be a YES instance of Split Contraction. Then, for all i ∈ [k] and

hi = φ (r⋆i ), we have |W (hi ) | ≥ 3. Furthermore, there is an edge ei , e⋆i in S incident to exactly one of

xi , r
⋆
i and not incident to the vertices in {w i

1, . . . ,w
i
t }.

Proof. Towards a contradiction assume that for some i ∈ [k] and hi = φ (r⋆i ), |W (hi ) | < 3. From
our assumption that (xi , r⋆i ) ∈ S we have that xi ∈W (hi ). Also, note that there is a set B ′ ⊆ B of at
least ℓ − 2k vertices such that for hb = φ (b), |W (hb ) | = 1. This follows from the fact that at most 2k
vertices in B can be incident to an edge in S . Let B̂ = B ′ \N (r⋆i ). We claim that |B̂ | ≥ ℓ−2k−d > 0.
Towards the claim observe that if (G,R,B) is a YES instance of SRBPC then ℓ = dk . The last
assertion follows from the fact that every vertex in R has degree exactly d and we are seeking a
solution X ⊆ R , such that for all b ∈ B, |N (b) ∩X | = 1 and for all i ∈ [k], |Ri ∩X | = 1. That is, the
set X is of size k and it partitions B. This implies that d > 4, since ℓ = dk > 4k . Thus, combining
this with the fact that k ≥ 2 we have that |B̂ | ≥ ℓ − 2k − d = (d − 2)k − d > 0. This completes
the claim. Since the size of |W (hi ) | < 3 and it contains xi and r⋆i we have thatW (hi ) = {xi , r

⋆
i }.

Now, consider b̂ ∈ B̂ with ĥ = φ (b̂). Observe thatW (hi ) andW (ĥ) are not adjacent in G, however
since xi ∈ W (hi ) Lemma 4.1 implies that hi ∈ Ĉ . But then (ĥ,hi ) ∈ E (H ), a contradiction. This
implies that for all i ∈ [k] and hi = φ (r⋆i ) we have |W (hi ) | ≥ 3. However, since hi , ĥ ∈ Ĉ there
must be a vertex inW (hi ) that is adjacent to a vertex inW (ĥ). But sinceW (ĥ) = {b̂},W (hi ) must
contain a vertex that is adjacent to b̂. But, none of the vertices in {w i

1, · · · ,w
i
t } are adjacent to b̂.

Thus,W (hi ) must contain a vertex that is adjacent to either xi or r⋆i but not to any of the vertices in
{w i

1, · · · ,w
i
t }. Let such a vertex be zi and let it be adjacent to r⋆i (or xi ). Since a solution to (G ′,k ′)

can be formed by taking spanning trees of each of the witness sets, we can assume that S contains a
spanning tree ofW (hi ) that contains the edge ei = (zi , r

⋆
i ) (or ei = (zi ,xi )) and e⋆i . This completes

the proof of the lemma. □

From Lemma 4.2 we know that for each i ∈ [k], we have r⋆i ∈ Ri such that (xi , r⋆i ) ∈ S . Similarly,
from Lemma 4.3 we know that, for each i ∈ [k], there is an edge incident to one of xi , ri other
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than e⋆i = (xi , r
⋆
i ) in every solution. Recall that for i, j ∈ [k], i , j none of xi , ri is adjacent to x j , r j .

Hence, it follows that we have already used up our budget of k ′ = 2k by forcing certain types of
edges to be in S . Finally, we prove Lemma 4.4, where we prove that s and r⋆i , for i ∈ [k], belong to
the same witness set. This will be crucial in proving that the set {r⋆i | i ∈ [k]} forms a solution for
the instance (G,R = R1 ⊎ R2 ⊎ . . . ⊎ Rk ,B) of SRBPC.

Lemma 4.4. Let (G ′,k ′) be a YES instance of Split Contraction. Then, for all i ∈ [k], r⋆i ∈
W (φ (s )).

Proof. Let hs = φ (s ) and R̂ = {r⋆i | i ∈ [k], r⋆i ∈ W (hs )}. For a contradiction assume that
|R̂ | < k , otherwise the claim trivially holds. By Lemma 4.2, for each i ∈ [k], e⋆i = (xi , r

⋆
i ) ∈ S . This

implies that for all r⋆i ∈ R̂, xi ∈W (hs ) and hence |W (hs ) | ≥ 2|R | + 1. From Lemma 4.3 we know
that there exists an edge ei , e⋆i ∈ S incident to either xi or r⋆i and not incident to any vertex
in {w i

1, . . . ,w
i
t }. Thus, every edge in S is incident to either xi or r⋆i . This implies that for every

vertex z ∈ {q1, . . . ,qt } ∪ {y
j
1, . . . ,y

j
t | j ∈ [ℓ]}, |W (φ (z)) | = 1. Now we show that there exists a

vertex in B that is not adjacent to any vertex inW (hs ). We start proving the claim that S does
not contain an edge of the form (r⋆i ,bj ), where i ∈ [k] and bj ∈ B. Suppose not. Consider the sets
R̂b = {r

⋆
i ∈ R̂ | (r

⋆
i ,b) ∈ S,b ∈ B} and B̂ = {b ∈ B | (r⋆i ,b) ∈ S, i ∈ [k]}. By our assumption we

have |R̂b | = q > 0. Moreover, for each b ∈ B̂, we have φ (s ) and φ (b) are adjacent in H and |B̂ | ≤ q.
Observe that |W (φ (s )) ∩R| ≤ k −q, andW (φ (s )) ∩ R̂b = ∅. From Lemma 4.1, φ (s ) must be adjacent
inH to each φ (b), where b ∈ B. Since degree of each vertex in R is d therefore, φ (s ) can be adjacent
in H to at most d (k − q) vertices φ (b), where b ∈ B \ B̂. As d > 4, there is a vertex b ∈ B \ B̂
such that φ (s ) and φ (b) are non-adjacent in H , which is not possible. This concludes the proof of
the claim. The claim allows us to assume that the only vertices inW (hs ) that can be adjacent to a
vertex in B are in R̂. However, every vertex in R̂ has exactly d neighbors in B. This together with
the fact that |B| = ℓ = dk > d |R̂ | implies that there exists a subset B ′ of size d (k − |R̂ |) such that
none of these vertices are adjacent to any vertex in R̂. However, at most (k − |R̂ |) vertices in B ′ can
be incident to an edge in S . This implies that there exists a vertex b ∈ B ′ with h = φ (b) such that
it is not incident to any edge in S and thus |W (h) | = 1. But then we can conclude thatW (h) and
W (hs ) are not adjacent in G ′. However, by Lemma 4.1 we know that hs ,h ∈ Ĉ and thus there is
an edge (h = φ (b),hs ) ∈ E (H

′), a contradiction. This contradicts our assumption that |R̂ | < k and
gives us the desired result. □

We are now ready to prove the equivalence between the instance (G,R,B) of SRBPC and the
instance (G ′,k ′) of Split Contraction.

Lemma 4.5. (G,R = R1 ⊎ . . . ⊎ Rk ,B) is a YES instance of SRBPC if and only if (G ′,k ′) is a YES
instance of Split Contraction.

Proof. In the forward direction, let Z = {ri | ri ∈ Ri , i ∈ [k]} ⊆ R be a solution to (G,R,B) of
SRBPC. Let Z ′ = {(ri ,xi ), (ri , s ) | i ∈ [k]}. Observe that |Z ′ | = 2k . Let T = {ri ,xi | i ∈ [k]}. We
define the following surjective function φ : V (G ′) → V (G ′) \T . If v ∈ T ∪ {s} then φ (v ) = s , else
φ (v ) = v . Observe thatG ′[W (s )] is connected and for all v ∈ V (G ′) \ (T ∪ {s}),W (v ) is a singleton
set. Consider the graph H with V (H ) = V (G ′) \T and (v,u) ∈ E (H ) if and only if φ−1 (v ),φ−1 (u)
are adjacent inG ′. Note that the graphsG ′/Z ′ and H are isomorphic, therefore we prove that H is a
split graph. Let Ĉ = {φ (v ) | B ∪ {s}} and Î = V (H ) \ Ĉ . For v,u ∈ Î , φ−1 (v ) = {v} and φ−1 (u) = {u}
and {v}, {u} are non-adjacent in G ′. Therefore, (v,u) < E (H ). This proves that Î is an independent
set in H . For b,b ′ ∈ B ⊂ Ĉ , (b,b ′) ∈ E (G ′), therefore (φ (v ),φ (u)) ∈ E (H ). Since Z is a solution to
SRBPC in (G,R,B), for b ∈ B, there exists ri ∈ Z such that (b, ri ) ∈ E (G ′), therefore,W (s ) and b
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are adjacent inG ′. Hence, (φ (s ),φ (b)) ∈ E (H ′). This finishes the proof that Ĉ induces a clique in H
and that H is a split graph.
In the reverse direction, let S be a solution to (G ′,k ′) of Split Contraction, and denote

H = G ′/S . LetW be the H -witness structure of G, φ be the associated surjective function and
hs = φ (s ). From Lemmas 4.2 and 4.4 it follows that for all i ∈ [k], there exists r⋆i ∈ Ri such that
(xi , r

⋆
i ) ∈ S and r⋆i ,xi ∈W (hs ). Let Z = {r⋆i | i ∈ [k]}. We will show that Z is a solution to SRBPC

in (G,R,B). Since |W (hs ) | ≥ k ′ + 1 = 2k + 1, it holds that for all v ∈ V (H ) \ {hs }, |W (v ) | = 1.
This implies that for all b ∈ B, b <W (hs ). Also observe that since xi ∈W (hs ) for all i ∈ [k] and
|W (hs ) | = k

′+ 1 = 2k + 1, we have that |W (hs )∩Ri | = 1. This implies that |Z | = k and |Z ∩Ri | = 1,
for all i ∈ [k]. To show that Z is indeed a solution, it is enough to show that for all bj ∈ B,
|Z ∩ N (bj ) | = 1. Towards a contradiction, assume there exists bj ∈ B such that |Z ∩ N (bj ) | , 1.
Let hbj = φ (bj ). We consider the following two cases.

• If |Z ∩ NG′ (bj ) | < 1. Recall thatW (hbj ) = {bj }. Furthermore, NG′ (bj ) ⊆ R ∪ {y
j
1, . . . ,y

j
t },

Z = W (hs ) ∩ R and by our assumption Z ∩ NG′ (bj ) = ∅. But thenW (hs ) andW (hbj ) are
not adjacent in G ′. However, Lemma 4.1 implies that (hs ,hbj ) ∈ E (H ), contradicting our
assumption that |Z ∩ N (bj ) | < 1.
• If |Z ∩ NG′ (bj ) | > 1, then there exist j, j ′ ∈ [k], j , j ′ such that r⋆j , r⋆j′ ∈ NG′ (b). Then it
follows that | ∪i ∈[k] N (r⋆i ) | < ℓ = dk . But then there exists b ′ ∈ B such thatW (φ (b ′)) and
W (hs ) are non-adjacent in G ′, contradicting that (φ (b ′),hs ) ∈ E (H ) from Lemma 4.1.

This completes the proof. □

By Lemma 4.5 and theW[1]-hardness of SRBPC (Theorem 4.10), we clearly have the proof of
Theorem 1.2: “Split Contraction is W[1]-hard when parmeterized by the size of a solution”.

4.2 W[1]-Hardness of Special Red-Blue Perfect Code

In this section we show that SRBPC is W[1]-hard parameterized by the solution size. We give a
reduction fromMulti-Colored Cliqe to SRBPC. The problemMulti-Colored Cliqe is known
to beW[1]-hard [22], and is formally defined below.

Multi-Colored Cliqe (MCC) Parameter: k
Input: A k-partite graph G with vertex partition V1, . . . ,Vk of V (G ).
Question: Does there exist X ⊆ V (G ) such that for all i ∈ [k], |X ∩ Vi | = 1 and G[X ] is a
clique?

The intuitive description of the reduction we are going to construct below is as follows. Let
(G,V1, . . . ,Vk ) of be an instance of MCC. We will often refer to the setsVi as color classes. For each
color class we create a vertex selection gadget. Then we have edge selection gadgets which ensure
that between every pair of color classes an edge is selected. The vertex selection gadget ensures
that the vertex chosen is the same as the one incident to the edge chosen by the edge selection
gadget. Finally, we have a coherence gadget which ensures that all the edges that are incident to a
color class are incident to the same vertex in this color class.
For technical reasons we will assume that the number of vertices in G is 2t , for some t ∈ N.

Note that this can be easily achieved by adding dummy vertices to an arbitrary color class with no
edge incident to them. This results in at most doubling of the number of vertices in the graph. For
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S1,ρ(2)

S1,ρ(3)

S1,ρ(4)

S1,ρ(5) S1,ρ(k)

E1k

E12

E13

E14

E15

C1,ρ(2)

C1,ρ(4) C1,ρ(k)

C1,ρ(3)

A1,ρ(k)A1,ρ(4)

A1,ρ(3) A1,ρ(2)

Fig. 3. Illustration of edges between Vertex Selection Gadget, Coherence Gadget for i = 1, and Edge Selection

Gadget.

our purposes, we also assign a unique t-bit-string to each vertex v ∈ V (G ). Next, we move to the
description of the instance (G ′,R,B) of SRBPC that we create.

Edge Selection Gadget. For i, j ∈ [k], i , j , we create an edge selection gadget Ei j as follows. For
each edge (u,v ) ∈ E (G ), such that u ∈ Vi and v ∈ Vj , we add a vertex euv to Ei j . We emphasize the
fact that Ei j and Eji denote the same set. Similarly, for an edge (u,v ) ∈ E (G ), the vertices evu and
euv are the same vertex. The symmetry in the indices/subscripts holds only for the edge selection
gadgets.
For the description of the vertex selection and coherence gadgets we will need the following

notation. For i ∈ [k], the set Ti = {j ∈ [k] | j , i} has a natural total ordering ρi , specifically the
order given by the relation < defined on N. Therefore, by ρi (j ) we denote the position of j in the
total ordering of Ti (1st position is denoted by 1). We will slightly abuse the notation and drop the
subscript i from ρi whenever it is clear from the context.
Vertex Selection Gadget. For each color class i ∈ [k] we have a vertex selection gadget Si . For
i ∈ [k], Si consists of k − 1 sets of vertices Si,ρ (j ) , where j ∈ [k] \ {i}. Here, Si,ρ (j ) is a set of
2t vertices denoted by x i,ρ (j )0 ,x

i,ρ (j )
1 , . . . ,x

i,ρ (j )
t−1 ,y

i,ρ (j )
0 ,y

i,ρ (j )
1 , . . . ,y

i,ρ (j )
t−1 . The intuition behind the

construction of the set Si,ρ (j ) is to encode the bit representation of the vertices in Vi . The size of
Si,ρ (j ) is twice the size of the bit-representation for achieving the degree constraints of the vertices
in the instance of SRBPC to be created.
Coherence Gadget. Consider i ∈ [k] and j ∈ [k] \ {i}. We have a set Ci,ρ (j ) containing copies of
vertices in Vi , i.e. |Ci,ρ (j ) | = |Vi |. For a vertex v ∈ Vi , its copy in Ci,ρ (j ) is denoted by ci,ρ (j )v . Also,
we have a set Ai,ρ (j ) containing a vertex ai,ρ (j )

ℓ
, for each ℓ ∈ [t]. The set Ai,ρ (j ) is added only to

ensure some degree constraints in the construction. For each u ∈ Ai,ρ (j ) and v ∈ Ci,ρ (j ) , we add the
edge (u,v ) to E (G ′), i.e.,G ′[Ai,ρ (j ) ∪Ci,ρ (j )] is a complete bipartite graph. ByAi we denote the set
∪j ∈[k]\{i }Ai,ρ (j ) .
We now move to the description of the edges between vertex selection, edge selection and

coherence gadgets. We refer the reader to Figure 3 for an illustration of the reduction.
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Si,ρ(j)
Vi Vj

u v

Eij
euv

x
i,ρ(j)
0 x

i,ρ(j)
1 x

i,ρ(j)
t−1 y

i,ρ(j)
t−1y

i,ρ(j)
1y

i,ρ(j)
0

Fig. 4. Edges between Ei j and Si j , assuming the bit-string associated with v has b0 = 1 and bℓ = 0 for all
ℓ ∈ [t − 1].

Edges between gadgets. Let i, j ∈ [k], i , j, and u ∈ Vi ,v ∈ Vj such that (u,v ) ∈ E (G ). Recall
that corresponding to the edge (u,v ), we have a vertex euv in Ei j (which is the same as Eji ). Let
b0b1 . . .bt−1 be the unique bit-string assigned to u. We add an edge between x i,ρ (j )

ℓ
∈ Si,ρ (j ) and euv

inG ′ if and only if bℓ = 1, here ℓ ∈ {0, . . . , t − 1}. Similarly, we add an edge between yi,ρ (j )
ℓ

∈ Si,ρ (j )
and euv inG ′ if and only if bℓ = 0; here, ℓ ∈ {0, . . . , t −1}. Refer to Figure 4 for a pictorial illustration.
We now describe the edges between Ci,ρ (j ) and Si,ρ (j ) . We will assume modulo k-arithmetics

for the computation of indices. We note that the notation ρ is used only for ease in specification
and modulo index computation to work properly. For i, j ∈ [k], i , j and v ∈ Vi , there is a vertex
c
i,ρ (j )
v ∈ Ci,ρ (j ) . Let b0b1 . . .bt−1 be the unique bit-string assigned to v . We add an edge between
x
i,ρ (j )
ℓ

∈ Si,ρ (j ) and c
i,ρ (j )
v in G ′ if and only if bℓ = 0, here ℓ ∈ {0, . . . , t − 1}. Similarly, we add an

edge between yi,ρ (j )+1
ℓ

∈ Si,ρ (j )+1 and c
i,ρ (j )
v in G ′ if and only if bℓ = 1, here ℓ ∈ {0, . . . , t − 1}. This

finishes the description of the graph G ′.
Now we move on to partitioning the vertices in V (G ′) into two sets R and B. Then we further

partition R. For i, j ∈ [k], i , j we add all the vertices in Ci,ρ (j ) and Ei j to R. All the remaining
vertices are added to the set B. The set R is partitioned into Ei j and Ci,ρ (j ) , where i , j. Observe
that since Ei j = Eji for all i , j we have k (k − 1) +

(
k
2

)
parts of R and the degree of each vertex in

R is 2t . This completes the description of the instance (G ′,R,B) of SRBPC.
We will prove some lemmas (Lemma 4.6 to 4.8) that will help us in establishing the equivalence

between the two instances. In Lemma 4.6 we consider the case when (G ′,R,B) is a YES instance of
SRBPC and has a solution R. Consider the case when euv ∈ R (which corresponds to the selection
of edge (u,v ) for the MCC instance, to establish the reverse direction), where u ∈ Vi and v ∈ Vi .
Then we show that the vertices corresponding to u and v in the setsCi,ρ (j ) andCi,ρ (j )−1, andCj,ρ (i )
and Cj,ρ (i )−1, respectively also belong to the set R. The above will be helpful in showing that the
edges selected are incident to the vertices selected for their respective color classes.

Lemma 4.6. Let (G ′,R,B) be a YES instance of SRBPC and R be one of its solution. If for some

i, j ∈ [k], i , j, u ∈ Vi , v ∈ Vj we have euv ∈ R then the following holds.

• c
i,ρ (j )
u , c

i,ρ (j )−1
u ∈ R.

• c
j,ρ (i )
v , c

j,ρ (i )−1
v ∈ R.

Proof. We give proof only for the first part of the lemma. The second one follows from an
analogous argument. Consider i, j ∈ [k], i , j, u ∈ Vi , v ∈ Vj , such that euv ∈ R. Let b̄u =
b0b1 . . .bt−1 be the unique bit-string assigned to u. Observe that all the vertices x i,ρ (j )

ℓ
with bℓ = 1,

for ℓ ∈ {0, . . . , t − 1} are adjacent to euv . Since R is a solution, it must contain a vertex from Ci,ρ (j ) .
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Let the unique vertex in R∩Ci,ρ (j ) be c
i,ρ (j )
w . Supposew , u. Consider the difference in the bit-string

representation b̄w , ofw and b̄u . Sincew , u, b̄w and b̄u differs in at least one position, let the first
such position be q. If bq = 1 (qth bit in b̄u ) then qth bit in b̄w is 0. But then, x i,ρ (j )q is adjacent to
two vertices, namely euv and ci,ρ (j )w , contradicting that R is a solution. If bq = 0, then x

i,ρ (j )
q is not

adjacent to euv and ci,ρ (j )u . Recall that N (x
i,ρ (j )
q ) ⊆ Ei j ∪Ci,ρ (j ) . Hence, x

i,ρ (j )
q is non-adjacent to

any vertex in R, a contradiction. Therefore, u = w and ci,ρ (j )u ∈ R. A similar argument can be given
for proving ci,ρ (j )−1u ∈ R. This completes the proof. □

In our next lemma (Lemma 4.7), we consider the case when a vertex say ci,ρ (j )u is selected from the
set Ci,ρ (j ) in a solution R for the instance (G ′,R,B) of SRBPC. We then show that edges incident
to u must be selected for each color class Vj (j , i). That is, for each j ∈ [k] \ {i}, there is some
v ∈ Vj such that euv ∈ R.

Lemma 4.7. Let (G ′,R,B) be a YES instance of SRBPC and R be a solution. If for some i, j ∈ [k], i , j

and u ∈ Vi we have c
i,ρ (j )
u ∈ R then there exists some v ∈ Vj such that euv ∈ R.

Proof. Towards a contradiction assume that for some i, j ∈ [k], i , j and u ∈ Vi we have
c
i,ρ (j )
u ∈ R and for all v ∈ Vj , euv < R. Let b̄u = b0b1 . . .bt−1 be the unique bit-string assigned to u.
For all ℓ ∈ {0, . . . , t − 1} such that bℓ = 0, x i,ρ (j )

ℓ
is adjacent to ci,ρ (j )u . Since R is a solution it must

contain a vertex ewz ∈ Ei j , where w ∈ Vi and z ∈ Vj . By assumption w , u. But by Lemma 4.6,
c
i,ρ (j )
w ∈ R, contradicting that |R ∩Ci,ρ (j ) | = 1. This implies thatw = u. □

In the following lemma (Lemma 4.8), we consider the case when for i, j ∈ [k], where i , j, a
vertex say c

i,ρ (j )
u ∈ Ci,ρ (j ) is selected in a solution R to the SRBPC instance (G ′,R,B). Then we

show that for each for each ℓ ∈ [k] \ {i} we have ci,ρ (ℓ)u ∈ R. The above will be useful to argue that
for each i , the vertices selected from the setsCi,ρ (ℓ) , for ℓ ∈ [k] \ {i}, correspond to the same vertex
in Vi . This will be useful in the selection of exactly one vertex for each Vi , for theMCC instance
(G,V1, . . . ,Vk ).

Lemma 4.8. Let (G ′,R,B) be a YES instance of SRBPC and R be a solution. If for some i, j ∈ [k], i , j

and u ∈ Vi we have c
i,ρ (j )
u ∈ R then for all ℓ ∈ [k] \ {i} we have ci,ρ (ℓ)u ∈ R.

Proof. Follows from Lemma 4.6 and 4.7. □

We are now ready to establish the equivalence of the instance (G,V1, . . . ,Vk ) of MCC and the
instance (G ′,R,B) of SRBPC.

Lemma 4.9. (G,V1, . . . ,Vk ) is a YES instance of MCC if and only if (G ′,R,B) is a YES instance of

SRBPC.

Proof. In the forward direction, let V = {vi | i ∈ [k]} be a solution toMCC for (G,V1, . . . ,Vk ).
Let b̄i be the unique bit-string assigned to vi , for i ∈ [k]. Also, we let R = {ci,ρ (j )vi | i, j ∈ [k], i ,
j} ∪ {evivj | i, j ∈ [k], i , j}. Observe that |R∩Ci j | = 1, for all i, j ∈ [k], i , j . Similarly, |R∩Ei j | = 1,
for all i, j ∈ [k], i , j. Recall that B = V (G ′) \ R = (∪i ∈[k]Si ) ∪ (∪i ∈[k]Ai ). Here, for i ∈ [k], we
have Si = ∪j ∈[k]\{i }Si,ρ (j ) and Ai = ∪j ∈[k]\{i }Ai,ρ (j ) . Observe that for each i ∈ [k], each vertex
in Ai is adjacent to exactly one vertex in R. Next, we show that for i, j ∈ [k], i , j, each vertex
in Si,ρ (j ) is adjacent to exactly one vertex in R. Recall that Si,ρ (j ) is adjacent only to vertices in
Ci,ρ (j ),Ci,ρ (j )−1 and Ei j . Consider a vertex x i,ρ (j )ℓ

∈ Si,ρ (j ) , for ℓ ∈ {0, . . . , t − 1}. Assume that ℓth

bit of b̄i is 1. This implies that x i,ρ (j )
ℓ

is adjacent to evivj and not adjacent to ci,ρ (j )vi . Also, x i,ρ (j )
ℓ

is
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non-adjacent to any other vertex in R. Hence it follows that |R ∩ N (x
i,ρ (j )
vi ) | = 1. An analogous

argument can be given for the case when ℓth bit of b̄i is 0. Furthermore, we can give a symmetric
argument for a vertexyi,ρ (j )

ℓ
∈ Si,ρ (j ) , where ℓ ∈ {0, . . . , t −1}. This finishes the proof of the forward

direction.
In the reverse direction, let R be a solution to SRBPC for (G ′,R,B). Note that for i, j ∈ [k], i , j ,
|R ∩ Ei j | = 1 and |R ∩Ci,ρ (j ) | = 1. Let X = {v ∈ V (G ) | c

i,ρ (j )
v ∈ R}. It follows from Lemma 4.8 that

for all i ∈ [k], |X ∩Vi | = 1. Consider u,v ∈ X , where u ∈ Vi , v ∈ Vj and i , j. From Lemma 4.8 for
all ℓ ∈ [k], i , ℓ we have ci,ρ (ℓ)u ∈ R and for all ℓ′ ∈ [k], j , ℓ′ we have c j,ρ (ℓ

′)
u ∈ R. This together

with Lemma 4.7 imply that euv ∈ R. Hence (u,v ) ∈ E (G ). Since choice of u,v was arbitrary, it
implies that G[X ] is a clique. □

We are now ready to prove the main theorem of this section.

Theorem 4.10. SRBPC when parameterized by the number of parts in R is W[1]-hard.

Proof. Follows from construction of the instance (G ′,R,B) of SRBPC for the given instance
(G,k ) of MCC, Lemma 4.9, and W[1]-hardness of MCC. □

5 FPT ALGORITHM FOR SPLIT CONTRACTION PARAMETERIZED BY VERTEX

COVER

In this section we give an FPT algorithm for Split Contraction when parameterized by the size
of a minimum vertex cover. In Section 5.1 we give an algorithm running in time 2O (ℓ2 ) · nO (1) for
Split Contraction parameterized by ℓ, the size of minimum vertex cover, when the input graph is
connected. In this section we use the algorithm for solving Split Contraction parameterized by
the size of a minimum vertex cover on connected graphs to solve Split Contraction on general
graphs.
Let (G,k ) be an instance of Split Contraction and C1, . . . ,Ct be the set of connected com-

ponents of G. Observe that except for one connected component in G, every other component
must be contracted to a single vertex, since all the vertices in these components must be part of
the independent set. Also, note that for contracting a component to a single vertex we need to
contract a spanning tree in it. Therefore, for each i ∈ [t] let ki = k −

∑
j ∈[t ]\{i } |V (Cj ) − 1| and solve

the instance (Ci ,ki ). If for any i ∈ [t] the algorithm returns a YES instance then we return that
(G,k ) is a YES instance, otherwise return that (G,k ) is a NO instance. The correctness of the above
algorithm relies on the correctness of the algorithm for connected graphs and thus results in the
following theorem.

Theorem 5.1. Split Contraction admits an algorithm running in time 2O (ℓ2 ) · nO (1) , where ℓ is
the size of the minimum vertex cover of the input graph.

5.1 Algorithm for Split Contraction on Connected Graphs

In this section we give an FPT algorithm for Split Contraction parameterized by the size of a
minimum vertex cover when the input graph is a connected. Let (G,k ) be an instance of Split
Contraction, where G is a connected graph. We start by computing a minimum sized vertex
cover S in G. We prove the following lemma which will be useful for the algorithm.

Lemma 5.2. Let G be a connected graph, S be a minimum vertex cover in G and K ⊆ E (G ) be a set
of minimum size such that G/K is a split graph, then |K | < 2|S |.

Proof. Let T be a dfs-tree of G and LT denote the set of leaves in T . It is well known that
V (T ) \ LT is a connected vertex cover of G and |V (T ) \ LT | ≤ 2|S | [42]. Let ET be the edges in T
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that are non-adjacent to vertices in LT . Observe that G/ET is a split graph. Thus, |K | ≤ |ET | <
|V (T ) \ LT | ≤ 2|S |. □

Let I = V (G ) \ S . Since S is a vertex cover, I is an independent set in G. We define an equivalence
relation R among the vertices in I based on their neighborhood in S . Basically, u,v ∈ I belong to
the same equivalence class if and only if N (u) = N (v ). Let I1, . . . , It be the equivalence classes of
R. Note that t ≤ 2 |S | . We apply the following reduction rules exhaustively.

Reduction Rule 1. If k ≥ 2|S |, then return that (G,k ) is a YES instance.

Lemma 5.3. Reduction Rule 1 is safe.

Proof. The proof follows from Lemma 5.2. □

Reduction Rule 2. If there is an equivalence class Ij , for j ∈ [t] such that |Ij | > 2k + 2, then delete

an arbitrary vertex v ∈ Ij from G. That is, the resulting instance is (G − {v},k ).

Lemma 5.4. Reduction Rule 2 is safe.

Proof. Let (G,k ) be an instance of Split Contraction. Consider j ∈ [t], such that |Ij | > 2k + 2.
Let v ∈ Ij be an arbitrarily chosen vertex from Ij , and letG ′ = G − {v}. We will show that (G,k ) is a
YES instance of Split Contraction if and only if (G ′,k ) is a YES instance of Split Contraction.

In the forward direction let X be a solution to (G,k ),W be the H = G/X -witness structure of G
with φ being the underlying surjective function. If no edge in X is incident to v , then X is also a
solution in (G ′,k ) as G ′/X is an induced subgraph of G/X . Let Xv ⊆ X be those edges which are
incident to v . There is a vertex v ′ ∈ Ij that is not adjacent to any edge in X since |Ij | > 2k + 2. Let
Xv ′ = {(u,v

′) | (u,v ) ∈ Xv }, i.e., Xv ′ is the set of edges obtained by replacing v by v ′ in Xv . Note
that such a replacement is possible because N (v ) = N (v ′). Let X ′ = (X \Xv )∪Xv ′ . Clearly, the size
of |X ′ | ≤ |X | ≤ k . We define the surjective function φ ′ : V (G ′) → V (H ) \ {φ (v ′)} as follows. For
u ∈ V (G ′), u , v ′, φ ′(u) = φ (u) and φ ′(v ′) = φ (v ) (recall, φ (v ) , φ (v ′)). For h ∈ V (H ) \ {φ (v ′)} we
letW ′(h) = φ−1 (h). Let H ′ to be the graph withV (H ′) = V (H ) \ {φ (v ′)} and (h1,h2) ∈ E (H

′) if and
only ifW ′(h1) andW ′(h2) are adjacent in G ′. Since, |W (φ (v ′)) | = 1 we have that for any vertex
h ∈ V (H ′) \ {φ ′(v ′)},W ′(h) =W (h) andW ′(φ ′(v ′)) = (W (φ (v )) \ {v}) ∪ {v ′}. Observe that since
NG (v ) = NG (v

′), we have that for all h ∈ V (H ′), G ′[W (h)] is connected, and hence it follows that
G ′ is contractible to H ′. Furthermore, to show that G ′/X ′ is a split graph, it is enough to show that
H ′ is a split graph. Since NG (v ) = NG (v

′), the graphs H , H ′ differs only in the vertex φ (v ′) ∈ V (H )
(φ (v ′) < V (H ′)). But any induced subgraph of a split graph, is a split graph, hence it follows that
H ′ is a split graph.
In the reverse direction, let X be a solution to Split Contraction in (G ′,k ), H = G ′/X and

φ,W be the underlying surjective function and H -witness structure of G ′, respectively. Observe
that X can be incident to at most 2k vertices in Ij , therefore there are vertices u,u ′ ∈ V (G ′) ∩ Ij ,
u , u ′ which are not incident to any edge in X i.e. |W (φ (u)) | = |W (φ (u ′) | = 1. Let C′ and I ′
be the clique and independent set respectively in H . Note that at least one of φ (u),φ (u ′) belongs
to I ′, say φ (u) ∈ I ′. We define the surjective function φv : V (G ) → V (H ) ∪ {v} as follows. For
x ∈ V (G ) \ {v}, φv (x ) = φ (x ) and φ (v ) = v . Let Hv be the graph with vertex set V (H ) ∪ {v} and
(h,h′) ∈ E (Hv ) if and only ifWv (h) andWv (h

′) are adjacent in G. Notice that φv satisfies all the
properties for it to define the contractibility ofG to Hv . Recall that N (v ) = N (u). But then I ′ ∪ {v}
is an independent set and C′ is a clique, partitioning the vertices ofHv , thereforeHv is a split graph.
But notice that indeed Hv = G/X , hence the claim follows. □

Given an instance (G,k ) to Split Contraction, we apply Reduction Rule 1 and 2 until no
longer applicable. For simplicity we denote the resulting instance where none of the reduction
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rules are applicable by (G,k ) itself. Observe that the number of vertices in G is upper bounded by
(2k + 2) · 2ℓ + ℓ ≤ (4ℓ + 2) · 2ℓ + ℓ = 2O (ℓ) , where ℓ = |S |. This follows from the fact that none of
the reduction rules are applicable and Lemma 5.2.

Observe that the number of vertices in G that are incident to an edge of the solution is bounded
by 2k . We guess X ⊆ V (G ) of size at most 2k , which is incident to at least one edge in the solution.
Note that the number of such guesses is upper bounded by

(2O (ℓ)
2ℓ

)
= 2O (ℓ2 ) . The number of edges

in G[X ] is bounded by O (ℓ2). For each E ′ ⊆ E (G[X ]) of size at most k , we check if G/E ′ is a split
graph. If for all X ⊆ V (G ) and E ′ ⊆ E (G[X ]),G/E ′ is not a split graph then we return that (G,k ) is
a NO instance, otherwise we return that (G,k ) is a YES instance of Split Contraction.

Correctness and running time analysis. Given an instance (G,k ), where G is a connected
graph on n vertices, the algorithm starts by computing a minimum sized vertex cover S in G and
an equivalence relation based on the neighborhood in G. The time required for this step of the
algorithm is bounded by O (1.2738ℓ · nO (1) ), where ℓ = |S | [11]. The algorithm then applies one of
the reduction rules, if applicable. The reduction rules can be applied in polynomial time and their
safeness follows from Lemma 5.3 and 5.4. When none of the reduction rules are applicable then
the algorithm solves the instance in a brute force way and here its correctness is immediate. In
the brute force step the algorithm guess a subset X ⊆ V (G ) of size at most 2k which are incident
to an edge in the solution. The number of such subsets is bounded by 2O (ℓ ·k ) , which in turn is
bounded by 2O (ℓ2 ) . For the guessed subset X , the algorithm tries for all possible sets of edges E ′ of
size at most k in E (G[X ]). The number of such edge subsets is upper bounded by 2O (k logk ) which is
bounded by 2O (ℓ2 ) . Checking ifG/E ′ is a split graph takes linear time [28]. Hence, the total running
time is bounded by 1.2738ℓ · nO (1) + 2O (ℓ2 ) · 2O (ℓ2 ) · nO (1) = 2O (ℓ2 ) · nO (1) .

Theorem 5.5. Split Contraction on connected graphs admits an algorithm running in time

2O (ℓ2 ) · nO (1) , where ℓ is the size of a minimum vertex cover of the input graph.

6 CONCLUSION

In this paper, we have established two important results regarding the complexity of Split Contrac-
tion. First, we have shown that under the ETH, this problem cannot be solved in time 2o (ℓ2 ) · nO (1)
where ℓ is the vertex cover number of the input graph, and this lower bound is tight. To the
best of our knowledge, this is the first tight lower bound of the form 2o (ℓ2 ) · nO (1) for problems
parameterized by the vertex cover number of the input graph. Second, we have proved that Split
Contraction, despite its deceptive simplicity, is actually W[1]-hard with respect to the solution
size. We believe that techniques integrated in our constructions can be used to derive conditional
lower bounds and W[1]-hardness results in the context of other edge contraction problems.

We would like to conclude our paper with the following intriguing question. In the exact setting,
it is easy to see that Split Contraction can be solved in time 2O (n logn) . Can it be solved in
time 2o (n logn)? A negative answer would imply, for instance, that it is neither possible to find a
topological clique minor in a given graph in time 2o (n logn) , which is an interesting open problem
[12]. It might be possible that tools developed in our paper, such as the usage of harmonious
coloring, can be utilized to shed light on such problems.

ACKNOWLEDGMENTS

The research leading to these results has received funding from the European Research Council
(ERC) via grant PARAPPROX, reference 306992.

ACM Trans. Comput. Theory, Vol. 9, No. 4, Article 39. Publication date: March 2019.



Split Contraction: The Untold Story 39:21

REFERENCES

[1] Takao Asano and Tomio Hirata. 1983. Edge-contraction problems. J. Comput. System Sci. 26, 2 (1983), 197–208.
[2] Ivan Bliznets, Marek Cygan, Pawel Komosa, Lukás Mach, and Michal Pilipczuk. 2016. Lower bounds for the parame-

terized complexity of Minimum Fill-In and other completion problems. In Proceedings of the Twenty-Seventh Annual

ACM-SIAM Symposium on Discrete Algorithms, (SODA). ACM-SIAM, Arlington, VA, USA, 1132–1151.
[3] Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, andMichal Pilipczuk. 2015. A Subexponential Parameterized Algorithm

for Proper Interval Completion. SIAM Journal on Discrete Mathematics 29, 4 (2015), 1961–1987.
[4] Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and Michal Pilipczuk. 2018. Subexponential Parameterized Algorithm

for Interval Completion. ACM Transactions on Algorithms 14, 3 (2018), 35:1–35:62.
[5] Leizhen Cai. 1996. Fixed-parameter tractability of graph modification problems for hereditary properties. Inform.

Process. Lett. 58, 4 (1996), 171–176.
[6] Leizhen Cai and Chengwei Guo. 2013. Contracting FewEdges to Remove Forbidden Induced Subgraphs. In Parameterized

and Exact Computation - 8th International Symposium (IPEC). Springer, Cham, Sophia Antipolis, France, 97–109.
[7] Yixin Cao. 2016. Linear Recognition of Almost Interval Graphs. In Proceedings of the 27th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA). ACM-SIAM, Arlington, Virginia, 1096–1115.
[8] Yixin Cao. 2017. Unit interval editing is fixed-parameter tractable. Information and Computation 253 (2017), 109–126.
[9] Yixin Cao and Dániel Marx. 2015. Interval Deletion Is Fixed-Parameter Tractable. ACM Transactions on Algorithms 11,

3 (2015), 21:1–21:35.
[10] Yixin Cao and Dániel Marx. 2016. Chordal Editing is Fixed-Parameter Tractable. Algorithmica 75, 1 (2016), 118–137.
[11] Jianer Chen, Iyad A Kanj, and Ge Xia. 2010. Improved upper bounds for vertex cover. Theoretical Computer Science

411, 40 (2010), 3736–3756.
[12] Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, IvanMihajlin, Jakub Pachocki, and Arkadiusz

Socala. 2017. Tight Lower Bounds on Graph Embedding Problems. J. ACM 64, 3 (2017), 18:1–18:22.
[13] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,

and Saket Saurabh. 2015. Parameterized Algorithms. Springer International Publishing, Switzerland.
[14] Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. 2016. Known Algorithms for Edge Clique Cover are Probably

Optimal. SIAM J. Comput. 45, 1 (2016), 67–83.
[15] Reinhard Diestel. 2012. Graph Theory, 4th Edition. Graduate texts in mathematics, Vol. 173. Springer-Verlag Berlin

Heidelberg, Germany.
[16] Rodney G. Downey and Michael R. Fellows. 1995. Fixed-Parameter Tractability and Completeness II: On Completeness

for W[1]. Theoretical Computer Science 141, 1&2 (1995), 109–131.
[17] Rod G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized complexity. Springer-Verlag, London.
[18] Pål Grønås Drange, Markus Sortland Dregi, Daniel Lokshtanov, and Blair D. Sullivan. 2015. On the Threshold of

Intractability. In Algorithms - 23rd Annual European Symposium (ESA). Springer-Verlag Berlin Heidelberg, Germany,
411–423.

[19] Pål Grønås Drange, Fedor V. Fomin, Michal Pilipczuk, and Yngve Villanger. 2015. Exploring the Subexponential
Complexity of Completion Problems. ACM Transactions on Computation Theory 7, 4 (2015), 14:1–14:38.

[20] Pål Grønås Drange and Michal Pilipczuk. 2018. A Polynomial Kernel for Trivially Perfect Editing. Algorithmica 80
(2018), 3481–3524.

[21] Keith Edwards. 1997. The Harmonious Chromatic Number and the Achromatic Number. In Surveys in Combinatorics.
Cambridge University Press, Cambridge, 13–48.

[22] Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. 2009. On the parameterized
complexity of multiple-interval graph problems. Theoretical computer science 410, 1 (2009), 53–61.

[23] Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer-Verlag Berlin Heidelberg, Germany.
[24] Fedor V Fomin, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Yngve Villanger. 2014. Tight bounds for

parameterized complexity of cluster editing with a small number of clusters. J. Comput. System Sci. 80, 7 (2014),
1430–1447.

[25] Fedor V Fomin and Yngve Villanger. 2013. Subexponential parameterized algorithm for minimum fill-in. SIAM J.

Comput. 42, 6 (2013), 2197–2216.
[26] Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan, Ashutosh Rai, and M. S. Ramanujan.

2015. Faster parameterized algorithms for deletion to split graphs. Algorithmica 71, 4 (2015), 989–1006.
[27] Petr A. Golovach, Pim van ’t Hof, and Daniel Paulusma. 2013. Obtaining planarity by contracting few edges. Theoretical

Computer Science 476 (2013), 38–46.
[28] Martin Charles Golumbic. 2004. Algorithmic graph theory and perfect graphs. Vol. 57. Elsevier, Academic Press.
[29] Sylvain Guillemot and Dániel Marx. 2013. A faster FPT algorithm for Bipartite Contraction. Inform. Process. Lett. 113,

22–24 (2013), 906–912.

ACM Trans. Comput. Theory, Vol. 9, No. 4, Article 39. Publication date: March 2019.



39:22 Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi

[30] Chengwei Guo and Leizhen Cai. 2015. Obtaining split graphs by edge contraction. Theoretical Computer Science 607
(2015), 60–67.

[31] Pinar Heggernes, Pim van ’t Hof, Benjamin Lévêque, Daniel Lokshtanov, and Christophe Paul. 2014. Contracting
Graphs to Paths and Trees. Algorithmica 68, 1 (2014), 109–132.

[32] Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and Christophe Paul. 2013. Obtaining a Bipartite Graph by
Contracting Few Edges. SIAM Journal on Discrete Mathematics 27, 4 (2013), 2143–2156.

[33] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which Problems Have Strongly Exponential
Complexity? J. Comput. System Sci. 63, 4 (2001), 512–530.

[34] Haim Kaplan, Ron Shamir, and Robert Endre Tarjan. 1999. Tractability of Parameterized Completion Problems on
Chordal, Strongly Chordal, and Proper Interval Graphs. SIAM J. Comput. 28, 5 (1999), 1906–1922.

[35] Christian Komusiewicz. 2018. Tight Running Time Lower Bounds for Vertex Deletion Problems. ACM Transactions on

Computation Theory 10, 2, Article 6 (2018), 18 pages.
[36] Sin-Min Lee and John Mitchem. 1987. An Upper Bound for the Harmonious Chromatic Number. Journal of Graph

Theory 11, 4 (1987), 565–567.
[37] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. 2018. Slightly Superexponential Parameterized Problems. SIAM J.

Comput. 47, 3 (2018), 675–702.
[38] Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. 2013. On the hardness of eliminating small induced subgraphs

by contracting edges. In Parameterized and Exact Computation - 8th International Symposium (IPEC). Springer, Cham,
Sophia Antipolis, France, 243–254.

[39] Dániel Marx and Valia Mitsou. 2016. Double-Exponential and Triple-Exponential Bounds for Choosability Problems
Parameterized by Treewidth. In 43rd International Colloquium on Automata, Languages, and Programming, (ICALP).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 28:1–28:15.

[40] Colin McDiarmid and Luo Xinhua. 1991. Upper Bounds for Harmonious Coloring. Journal of Graph Theory 15, 6
(1991), 629–636.

[41] Rolf Niedermeier. 2006. Invitation to fixed-parameter algorithms. Oxford University Press, Oxford.
[42] Carla D. Savage. 1982. Depth-First Search and the Vertex Cover Problem. Inform. Process. Lett. 14, 5 (1982), 233–237.
[43] Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. 1981. On the removal of forbidden graphs by edge-deletion or

by edge-contraction. Discrete Applied Mathematics 3, 2 (1981), 151–153.
[44] Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. 1983. On the NP-hardness of edge-deletion and-contraction

problems. Discrete Applied Mathematics 6, 1 (1983), 63–78.

Received October 2017; revised September 2018

ACM Trans. Comput. Theory, Vol. 9, No. 4, Article 39. Publication date: March 2019.


	Abstract
	1 Introduction
	2 Preliminaries
	3 Lower Bound for Split-Contraction Parameterized by Vertex Cover
	3.1 Reduction from Sub-Cubic Partitioned Vertex Cover to Split Contraction
	3.2 Reduction from Sub-Cubic VC to Sub-Cubic PVC

	4 W[1]-Hardness of Split Contraction
	4.1 Reduction from SRBPC to Split Contraction
	4.2 W[1]-Hardness of Special Red-Blue Perfect Code

	5 FPT Algorithm for Split Contraction Parameterized by Vertex Cover
	5.1 Algorithm for Split Contraction on Connected Graphs

	6 Conclusion
	Acknowledgments
	References

