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Abstract. Seymour’s decomposition theorem for regular matroids is a fundamental result with4
a number of combinatorial and algorithmic applications. In this work we demonstrate how this5
theorem can be used in the design of parameterized algorithms on regular matroids. We consider6
the problem of covering a set of vectors of a given finite dimensional linear space (vector space)7
by a subspace generated by a set of vectors of minimum size. Specifically, in the Space Cover8
problem, we are given a matrix M and a subset of its columns T ; the task is to find a minimum9
set F of columns of M disjoint with T such that the linear span of F contains all vectors of T . For10
graphic matroids this problem is essentially Steiner Forest and for cographic matroids this is a11
generalization of Multiway Cut.12

Our main result is the algorithm with running time 2O(k) · ||M ||O(1) solving Space Cover in13
the case when M is a totally unimodular matrix over rationals, where k is the size of F . In other14
words, we show that on regular matroids the problem is fixed-parameter tractable parameterized by15
the rank of the covering subspace.16
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1. Introduction. We consider the problem of covering a subspace of a given19

finite dimensional linear space (vector space) by a set of vectors of minimum size.20

The input of the problem is a matrix M given together with a function w assigning21

a nonnegative weight to each column of M and a set T of terminal column-vectors22

T of M . The task is to find a minimum set of column-vectors F of M (if such a set23

exists) which is disjoint with T and generates a subspace containing the linear space24

generated by T . In other words, T ⊆ span(F ), where span(F ) is the linear span of F .25

We refer to this problem as the Space Cover problem.26

The Space Cover problem encompasses various problems arising in different27

domains. The Minimum Distance problem in coding theory asks for a minimum28

dependent set of columns in a matrix over GF(2). This problem can be reduced to29

Space Cover by finding for each column t in matrix M a minimum set of columns30

in the remaining part of the matrix that cover T = {t}. The complexity of this31

problem was asked by Berlekamp et al. [2] and remained open for almost 30 years.32

It was resolved only in 1997, when Vardy showed it to be NP-complete [43]. The33

parameterized version of the Minimum Distance problem, namely Even Set, asks34

whether there is a dependent set F ⊆ X of size at most k. The parameterized35

complexity of Even Set is a long-standing open question in the area, see e.g. [10].36

In the language of matroid theory, the problem of finding a minimum dependent set37

is known as Matroid Girth, i.e. the problem of finding a circuit in matroid of38

minimum length [44]. In machine learning this problem is known as the Subspace39
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Recovery problem [22]. This problem also generalizes the problem of computing40

the rank of a tensor.41

For our purposes, it is convenient to rephrase the definition of the Space Cover42

problem in the language of matroids. Given a matrix N , let M = (E, I) denote the43

matroid where the ground set E corresponds to the columns of N and I denote the44

family of subsets of linearly independent columns. This matroid is called the vector45

matroid corresponding to matrix N . Then for matroids, finding a subspace covering46

T corresponds to finding F ⊆ E \ T , F ∈ I, such that |F | ≤ k and T is spanned47

by F . Let us remind that in a matroid set F spans T , denoted by T ⊆ span(F ), if48

r(F ) = r(T ∪ F ). Here r : 2E → N0 is the rank function of M . (We use N0 to denote49

the set of nonnegative integers.)50

Then Space Cover is defined as follows.51

Space Cover Parameter: k
Input: A binary matroid M = (E, I) given together with its matrix representa-
tion over GF(2), a weight function w : E → N0, a set of terminals T ⊆ E, and a
nonnegative integer k.
Question: Is there a set F ⊆ E \ T with w(F ) ≤ k such that T ⊆ span(F )?

52

Since a representation of a binary matroid is given as a part of the input, we always53

assume that the size of M is ||M || = |E|. For regular matroids, testing matroid54

regularity can be done efficiently, see e.g. [42], and when the input binary matroid55

is regular, the requirement that the matroid is given together with its representation56

can be omitted.57

It is known (see, e.g., [28]) that Space Cover on special classes of binary ma-58

troids, namely graphic and cographic matroids, generalizes two well-studied optimiza-59

tion problems on graphs, namely Steiner Tree and Multiway Cut. Both problems60

play fundamental roles in parameterized algorithms.61

Recall that in the Steiner Forest problem we are given a (multi) graph G, a62

weight function w : E → N, a collection of pairs of distinct vertices63

{x1, y1}, . . . , {xr, yr} of G, and a nonnegative integer k. The task is to decide whether64

there is a set F ⊆ E(G) with w(F ) ≤ k such that for each i ∈ {1, . . . , r}, graph G[F ]65

contains an (xi, yi)-path. To see that Steiner Forest is a special case of Space66

Cover, for instance (G,w, {x1, y1}, . . . , {xr, yr}, k) of Steiner Forest, we construct67

the following graph. For each i ∈ {1, . . . , r}, we add a new edge xiyi to G and assign68

an arbitrary weight to it; notice that we can create multiple edges this way. Denote69

by G′ the obtained multigraph and let T be the set of added edges and let M(G′) be70

the graphic matroid associated with G′. Then a set of edges F ⊆ E(G) forms a graph71

containing all (xi, yi)-paths if an only if T ⊆ span(F ) in M(G′).72

The special case of Steiner Forest when x1 = x2 = · · · = xr, i.e. when set73

F should form a connected subgraph spanning all demand vertices, is the Steiner74

Tree problem, the fundamental problem in network optimization. By the classical75

result of Dreyfus and Wagner [12], Steiner Tree is fixed-parameter tractable (FPT)76

parameterized by the number of terminals. The study of parameterized algorithms77

for Steiner Tree has led to the design of important techniques, such as Fast Subset78

Convolution [3] and the use of branching walks [33]. Research on the parameterized79

complexity of Steiner Tree is still on-going, with recent significant advances for80

the planar version of the problem [37]. Algorithms for Steiner Tree are frequently81

used as a subroutine in FPT algorithms for other problems; examples include vertex82

cover problems [21], near-perfect phylogenetic tree reconstruction [4], and connectivity83
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augmentation problems [1].84

The dual of Space Cover, i.e., the variant of Space Cover asking whether there85

is a set F ⊆ E \ T with w(F ) ≤ k such that T ⊆ span(F ) in the dual matroid M∗,86

is equivalent to the Restricted Subset Feedback Set problem. In this problem87

the task is for a given matroid M , a weight function w : E → N0, a set T ⊆ E and88

a nonnegative integer k, to decide whether there is a set F ⊆ E \ T with w(F ) ≤ k89

such that matroid M ′ obtained from M by deleting the elements of F has no circuit90

containing an element of T . Hence, Space Cover for cographic matroids is equivalent91

to Restricted Subset Feedback Set for graphic matroids. Restricted Subset92

Feedback Set for graphs was introduced by Xiao and Nagamochi [45], who showed93

that this problem is FPT parameterized by |F |. Let us note that in order to obtain an94

algorithm for Space Cover with a single-exponential dependence in k, we also need95

to design a new algorithm for Space Cover on cographic matroids which improves96

significantly the running time achieved by Xiao and Nagamochi [45].97

Multiway Cut, another fundamental graph problem, is the special case of Re-98

stricted Subset Feedback Set, and therefore of Space Cover. In the Mul-99

tiway Cut problem we are given a (multi) graph G, a weight function w : E → N,100

a set S ⊆ V (G), and a nonnegative integer k. The task is to decide whether there101

is a set F ⊆ E(G) with w(F ) ≤ k such that the vertices of S are in distinct con-102

nected components of the graph obtained from G by deleting edges of F . Indeed, let103

(G,w, S, k) be an instance of Multiway Cut. We construct graph G′ by adding a104

new vertex u and connecting it to the vertices of S. Denote by T the set of added105

edges and assign weights to them arbitrarily. Then (G,w, S, k) is equivalent to the106

instance (M(G′), w, T, k) of Restricted Subset Feedback Set. If |S| = 2, Mul-107

tiway Cut is exactly the classical min-cut problem which is solvable in polynomial108

time. However, as it was proved by Dahlhaus et al. [6] already for three terminals109

the problem becomes NP-hard. Marx, in his celebrated work on important separa-110

tors [31], has shown that Multiway Cut is FPT when parameterized by the size of111

the cut |F |.112

While Steiner Tree is FPT parameterized by the number of terminal ver-113

tices, the hardness results for Multiway Cut with three terminals yields that Space114

Cover parameterized by the size of the terminal set T is Para-NP-complete even if115

restricted to cographic matroids. This explains why a meaningful parameterization116

of Space Cover is by the rank of the span and not the size of the terminal set.117

It follows from the result of Downey et al. [11] on the hardness of the Maximum-118

Likelihood Decoding problem, that Space Cover is W[1]-hard for binary ma-119

troids when parameterized by k even if restricted to the inputs with one terminal120

and unit-weight elements. However, it is still possible to establish the tractability of121

the problem on a large class of binary matroids. Sandwiched between graphic and122

cographic (where the problem is FPT) and binary matroids (where the problem is123

intractable) is the class of regular matroids.124

Our results. Our main theorem establishes the tractability of Space Cover on125

regular matroids.126

Theorem 1.1. Space Cover on regular matroids is solvable in time 2O(k) ·127

||M ||O(1).128

We believe that due to the generality of Space Cover, Theorem 1.1 will be useful129

in the study of various optimization problems on regular matroids. As an example,130

we consider the Rank h-Reduction problem, see e.g. [26]. Here we are given a131

binary matroid M and positive integers h and k, the task is to decide whether it is132
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possible to decrease the rank of M by at least h by deleting k elements. For graphic133

matroids, this is the h-Way Cut problem, which is for a connected graph G and134

positive integers h and k, to decide whether it is possible to separate G into at least135

h connected components by deleting at most k edges. By the celebrated result of136

Kawarabayashi and Thorup [27], h-Way Cut is FPT parameterized by k even if h is137

a part of the input. The result of Kawarabayashi and Thorup cannot be extended to138

cographic matroids; we show that for cographic matroids the problem is W[1]-hard139

when parameterized by h+ k. On the other hand, by making use of Theorem 1.1, we140

solve Rank h-Reduction in time 2O(k)·||M ||O(h) on regular matroids (Theorem 8.3).141

Let us also remark that the running time of our algorithm is asymptotically142

optimal: unless Exponential Time Hypothesis fails, there is no algorithm of running143

time 2o(k) · ||M ||O(1) solving Space Cover on graphic (Steiner Tree) or cographic144

(Multiway Cut) matroids, see e.g. [5].145

Related work. The main building block of our algorithm is the fundamental theo-146

rem of Seymour [38] on a decomposition of regular matroids. Roughly speaking (we147

define it properly in Section 4), Seymour’s decomposition provides a way to decom-148

pose a regular matroid into much simpler base matroids that are graphic, cographic149

or of constant size. Then all “communication” between base matroids is limited to150

“cuts” of small rank (we refer to the monograph of Truemper [42] and the survey of151

Seymour [40] for the introduction to matroid decompositions). This theorem has a152

number of important combinatorial and algorithmic applications. Among the classic153

algorithmic applications of Seymour’s decomposition are the polynomial time algo-154

rithms of Truemper [41] (see also [42]) for finding maximum flows, and shortest routes155

and the polynomial algorithm of Golynski and Horton [20] for constructing a mini-156

mum cycle basis. More recent applications of Seymour’s decomposition can be found157

in approximation, on-line and parameterized algorithms. Goldberg and Jerrum [19]158

used Seymour’s decomposition theorem for obtaining a fully polynomial randomized159

approximation scheme (FPRAS) for the partition function of the ferromagnetic Ising160

model on regular matroids. Dinitz and Kortsarz in [8] applied the decomposition161

theorem for the Matroid Secretary problem. In [14], Gavenciak, Král and Oum162

initiated the study of the Minimum Spanning Circuit problem for matroids that163

generalizes the classical Cycle Through Elements problem for graphs. The prob-164

lem asks for a matroid M , a set T ⊆ E and a nonnegative integer `, whether there is165

a circuit C of M with T ⊆ C of size at most `. Gavenciak, Král and Oum [14] proved166

that the problem is FPT when parameterized by ` if |T | ≤ 2. Recently, in [13], we167

extended this result by showing that Minimum Spanning Circuit is FPT parame-168

terized by k = `− |T |.169

On a very superficial level, all the algorithmic approaches based on Seymour’s170

decomposition theorem utilize the same idea: solve the problem on base matroids and171

then “glue” solutions into a global solution. Of course, such a view is a significant172

oversimplification. First of all, the original decomposition of Seymour in [38] was not173

meant for algorithmic purposes and almost every time to use it algorithmically one has174

to apply nontrivial adjustments to the original decomposition. For example, in order175

to solve Matroid Secretary on regular matroids, Dinitz and Kortsarz in [8] have to176

give a refined decomposition theorem suitable for their algorithmic needs. Similarly, in177

order to use the decomposition theorem for approximation algorithms, Goldberg and178

Jerrum in [19] have to add several new ingredients to original Seymour’s construction.179

We face exactly the same nature of difficulties in using Seymour’s decomposition180

theorem. Our starting point is the variant of Seymour’s decomposition theorem proved181
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by Dinitz and Kortsarz in [8]. However, even the decomposition of Dinitz and Korsatz182

cannot be used as a black box for our purposes. Our algorithm, while recursively183

constructing a solution has to transform the decomposition “dynamically”. This184

occurs when the algorithm processes cographic matroids “glued” with other matroids185

and for that part of the algorithm the transformation of the decomposition is essential.186

2. Organization of the paper and outline of the algorithm. In this section187

we explain the structure of the paper and give a high-level overview of our algorithm.188

2.1. Organization of the paper. The remaining part of the paper is organizied189

as follows. In Section 3 we give basic definitions and prove some simple auxiliary190

results. In Section 4 we define decompositions of regular matroids. In Section 5191

we provide a number of reduction rules for Space Cover which will be used in192

the algoritm. In Section 6 we provide algorithms for basic matroids: graphic and193

cographic. The algorithm for the general case, which is the most technical part of the194

paper, is described in Section 7. In Section 8 we discuss the application of our main195

result to the Rank h-Reduction problem. We conclude with some open questions196

in Section 9.197

2.2. Outline of the algorithm. One of the crucial components of our algorithm198

is the classical theorem of Seymour [38] on a decomposition of regular matroids and199

in Section 4 we briefly introduce these structural results. Roughly speaking, the200

theorem of Seymour says that every regular matroid can be decomposed via “small201

sums” into basic matroids which are graphic, cographic and very special matroid of202

constant size called R10. Our general strategy is: First solve Space Cover on basic203

matroids, second move through matroid decomposition and combine solutions from204

basic matroids. However when it comes to the implementation of this approach, many205

difficulties arise. In what follows we give an overview of our algorithm.206

To describe the decomposition of matroids, we need the notion of “`-sums” of207

matroids; we refer to [36, 42] for a formal introduction to matroid sums. However,208

for our purpose, it is sufficient that we restrict ourselves to binary matroids and up209

to 3-sums [38].210

Definition 2.1 (⊕-Sums of matroids). For two binary matroids M1 and M2,211

the sum of M1 and M2, denoted by M1 ⊕ M2, is the matroid M with the ground212

set E(M1)4 E(M2) whose cycles are all subsets C ⊆ E(M1)4 E(M2) of the form213

C = C1 4 C2, where C1 is a cycle of M1 and C2 is a cycle of M2. We will be using214

only the following sums.215

(⊕1) If E(M1) ∩ E(M2) = ∅ and E(M1), E(M2) 6= ∅, then M is the 1-sum of M1216

and M2 and we write M = M1 ⊕1 M2.217

(⊕2) If |E(M1) ∩ E(M2)| = 1, the unique e ∈ E(M1) ∩ E(M2) is not a loop or218

coloop of M1 or M2, and |E(M1)|, |E(M2)| ≥ 3, then M is the 2-sum of M1219

and M2 and we write M = M1 ⊕2 M2.220

(⊕3) If |E(M1) ∩ E(M2)| = 3, the 3-element set Z = E(M1) ∩ E(M2) is a221

circuit of M1 and M2, Z does not contain a cocircuit of M1 or M2, and222

|E(M1)|, |E(M2)| ≥ 7, then M is the 3-sum of M1 and M2 and we write223

M = M1 ⊕3 M2.224

An {1, 2, 3}-decomposition of a matroid M is a collection of matroids M, called225

the basic matroids and a rooted binary tree T in which M is the root and the elements226

of M are the leaves such that any internal node is 1, 2 or 3-sum of its children.227

By the celebrated result of Seymour [38], every regular matroid M has an {1, 2, 3}-228

decomposition in which every basic matroid is either graphic, cographic, or isomorphic229
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to R10. Moreover, such a decomposition (together with the graphs whose cycle and230

bond matroids are isomorphic to the corresponding basic graphic and cographic ma-231

troids) can be found in time polynomial in |E(M)|. The matroid R10 is a binary232

matroid represented over GF(2) by the 5 × 10-matrix whose columns are formed by233

vectors that have exactly three non-zero entries (or rather three ones) and no two234

columns are identical.235

In this paper we use a variant of Seymour’s decomposition suggested by Dinitz236

and Kortsarz in [8]. With a regular matroid one can associate a conflict graph, which237

is an intersection graph of the basic matroids. In other words, the nodes of the238

conflict graph are the basic matroids and two nodes are adjacent if and only if the239

intersection of the corresponding matroids is nonempty. It was shown by Dinitz and240

Kortsarz in [8] that every regular matroid M can be decomposed into basic matroids241

such that the corresponding conflict graph is a forest. Thus every node of this forest242

is one of the basic matroids that are either graphic, or cographic, or isomorphic to243

R10 (we can relax this condition and allow variations of R10 obtained by adding244

parallel elements to participate in a decomposition). Two nodes are adjacent if the245

corresponding matroids have some elements in common, the edge connecting these246

nodes corresponds to 2-, or 3-sum. We complement this forest into a conflict tree T247

by edges which correspond to 1-sums. As it was shown by Dinitz and Kortsarz, then248

regular matroid M can be obtained from T by taking the sums between adjacent249

matroids in any order.250

In matroid language, it is much more convenient to speak in terms of minimal251

dependent sets, i.e. circuits. In this language, a set F ⊆ E(M) \ T spans T ⊆ E(M)252

in matroid M if and only if for every t ∈ T , there is a circuit C of M such that253

t ∈ C ⊆ F ∪ {t}. In what follows, we often will use an equivalent reformulation of254

Space Cover, namely the problem of finding a minimum-sized set F , such that for255

every terminal element t, the set F ∪ {t} contains a circuit with t.256

We start our algorithm with solving Space Cover on basic matroids in Section 6.257

The problem is trivial for R10. If M is a graphic matroid, then there is a graph G258

such that M is isomorphic to the cycle matroid M(G) of G. That is, the circuits of259

M(G) are exactly the cycles of G. Hence, F ⊆ E(G) spans t = uv ∈ E(G) if and only260

if F contains an (u, v)-path. By this observation, we can reduce an instance of Space261

Cover to an instance of Steiner Forest. The solution to Steiner Forest is very262

similar to the classical algorithm for Steiner Tree [12].263

Recall that Space Cover on cographic matroids is equivalent to Restricted264

Edge-Subset Feedback Edge Set. Xiao and Nagamochi proved in [45] that this265

problem can be solved in time (12k)6k2k · nO(1) on n-vertex graphs. To get a single-266

exponential in k algorithm for regular matroids, we improve this result and construct267

a single-exponential algorithm for Space Cover on cographic matroids. We consider268

a graph G such that M is isomorphic to the bond matroid M∗(G) of G. The set of269

circuits of M is the set of inclusion-minimal edge cut-sets of G, and we can restate270

Space Cover as a cut problem in G: for a given set T ⊆ E(G), we need to find271

a set F ⊆ E(G) \ T such that the edges of T are bridges of G − F . To resolve this272

problem, we use a powerful technique of Marx [31] based on important separators or273

cuts. Unfortunately, for our purposes this technique cannot be applied directly and274

web have to introduce special important edge-cuts tailored for Space Cover. We275

call such edge-cuts semi-important and obtain structural results for semi-important276

cuts. Then a branching algorithm based on the enumeration of semi-important cuts277

solves the problem in time 2O(k) · nO(1).278
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The algorithm for the general case is described in Section 7. Suppose that we279

have an instance of Space Cover for a regular matroid M . First, we apply some280

reduction rules described in Section 5 to simplify the instance. In particular, for281

technical reasons we allow zero weights of elements, but a nonterminal element of zero282

weight can always be taken into a solution. Hence, we can contract such elements.283

Also, if the set of terminals T contains a circuit C, then the deletion from M of any284

e ∈ C leads to an equivalent instance of the problem. This way, we can bound the285

number of terminals in the parameter k.286

In the next step, we construct a conflict tree T . If T has one node, then M is287

graphic, cographic or a copy of R10, and we solve the problem directly. Otherwise, we288

select arbitrarily a root node r of T , and its selection defines the parent-child relation289

on T . We say that u is a sub-leaf if its children are leaves of T . Clearly, such a node290

exists and can be found in polynomial time. Let a basic matroid Ms be a sub-leaf of291

T . We say that a child of Ms is a 1, 2 or 3-leaf respectively if the edge between Ms292

and the leaf corresponds to 1, 2 or 3-sum respectively. We either reduce a leaf M`293

that is a child of Ms by deleting M` from the decomposition and modifying Ms, or294

we branch on M` or Ms. For each branch, we delete M` or/and modify Ms in such a295

way that the parameter k decreases.296

The case when there is an 1-leaf M` is trivial, because we can solve the problem297

for M` independently. For the cases of 2 and 3-leaves, we recall that a solution F298

together with T is a union of circuits and analyze the possible structure of these299

circuits.300

If M` is a 2-leaf, we have two cases: either M` contains a terminal or not. If M`301

contains no terminal, we are able to delete M` from the decomposition and assign to302

the unique element e ∈ E(Ms) ∩ E(M`) the minimum weight of F` ⊆ E(M`) \ {e}303

that spans e in M`. If T` = E(M`) ∩ T 6= ∅, then we have three possible cases for304

F` = E(M`) ∩ F , where F is a (potential) solution:305

i) F` spans T` and e in M`, then we can use the elements of F` that together306

with e form a circuit of M` to span t ∈ T \ T`,307

ii) the symmetric case, where F` ∪ {e} spans T` and we need the elements of308

F \ F` that together with e form a circuit to span the elements of T`, and309

iii) F` spans T` in M` and no element of F` is needed to span the remaining310

terminals.311

Respectively, we branch according to these cases. It can be noticed that in ii), we have312

a degenerate possibility that e spans T`. Then the branching does not decrease the313

parameter. To avoid this situation, we observe that if there is t ∈ T` that is parallel314

to e in M`, then we modify the decomposition by deleting t from M` and by adding315

a new element t to M` that is parallel to e.316

The analysis of the cases when we have only 3-leaves is done in similar way317

but is more complicated. If we have a 3-leaf M` that contains terminals, then we318

branch. Here we have 6 types of branches, and the total number of branches is 15.319

Moreover, for some of branches, we have to solve a special variant of the problem320

called Restricted Space Cover for the leaf to break the symmetry. If there is321

no a 3-leaf with terminals, then our strategy depends on the type of Ms that can be322

graphic or cographic.323

If Ms is a graphic matroid, then we consider a graph G such that the cycle matroid324

M(G) is isomorphic to Ms and assume that M(G) = Ms. If M` is a 3-leaf, then the325

elements of E(Ms) ∩ E(M`) form a cycle Z of size 3 in G. We delete M` from the326

decomposition and modify G as follows: construct a new vertex u and join u with the327

vertices of Z be edges. Then we assign the weights to the edges of Z and the edges328
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incident to u to emulate all possible selections of elements of M` for a solution.329

As with the basic matroids, the case of cographic matroids proved to be most330

difficult. If Ms is cographic, then there is a graph G such that the bond matroid331

M∗(G) is isomorphic to Ms. Recall that the circuits of M∗(G) are exactly the minimal332

edge cut-sets of G. In particular, the intersections of the sets of elements of the 3-leafs333

with E(Ms) are mapped by an isomorphism of Ms and M∗(G) to minimal cut-sets of334

G. We analyze the structure of these cuts. It is well-known that minimum cut-sets335

of odd size form a tree-like structure (see [7]). In our case, we can assume that G has336

no bridges, but still G is not necessarily 3 connected. We show that we always can337

find an isomorphism α of Ms to M∗(G) and a 3-leaf M` such that a minimal cut-set338

Z = α(E(Ms) ∩ E(M`)) separates G into two components in such a way with the339

following condition: There is a component H such that H has no bridges, moreover,340

no element of a basic matroid M ′ 6= Ms is mapped by α to an edge of H. In the341

case of a graphic sub-leaf, we are able to get rid of a leaf by making a simple local342

adjustment of the corresponding graph. For the cographic case, this approach does343

not work as we are working with cuts. Still, if H contains no terminal, then we make a344

replacement but we are replacing the leaf M` and H in G simultaneously by a gadget.345

If H has terminals, we branch on H: we decompose further M∗(G) into a sum of two346

cographic matroids and obtain a new leaf of the considered sub-leaf from H. Then347

we either reduce the new leaf if it is an 1-leaf or branch on it if it is a 2 or 3-leaf.348

3. Preliminaries. Parameterized Complexity. Parameterized complexity is349

a two dimensional framework for studying the computational complexity of a problem.350

One dimension is the input size n and another one is a parameter k. It is said that a351

problem is fixed parameter tractable (or FPT), if it can be solved in time f(k) · nO(1)352

for some function f . We refer to the recent books of Cygan et al. [5] and Downey and353

Fellows [10] for the introduction to parameterized complexity.354

It is standard for a parameterized algorithm to use (data) reduction rules, i.e.,355

polynomial or FPT algorithms that either solve an instance or reduce it to another356

one that typically has a smaller input size and/or a lesser value of the parameter. A357

reduction rule is safe if it either correctly solves the problem or outputs an equivalent358

instance.359

Our algorithm for Space Cover uses the bounded search tree technique or360

branching. It means that the algorithm includes steps, called branching rules, on361

which we either solve the problem directly or recursively call the algorithm on several362

instances (branches) for lesser values of the parameter. We say that a branching rule363

is exhaustive if it either correctly solves the problem or the considered instance is a364

yes-instance if and only if there is a branch with a yes-instance.365

Graphs. We consider finite undirected (multi) graphs that can have loops or multiple366

edges. We use n and m to denote the number of vertices and edges of the considered367

graphs respectively if it does not create confusion. For a graph G and a subset368

U ⊆ V (G) of vertices, we write G[U ] to denote the subgraph of G induced by U .369

We write G − U to denote the subgraph of G induced by V (G) \ U , and G − u if370

U = {u}. Respectively, for S ⊆ E(G), G[S] denotes the graph induced by S, i.e.,371

the graph with the edges S whose vertices are the vertices of G incident to the edges372

of S. We denote by G − S the graph obtained from G by the deletion of the edges373

of G; for a single element set, we write G − e instead of G − {e}. For e ∈ E(G),374

we denote by G/e the graph obtained by the contraction of e. Since we consider375

multigraphs, it is assumed that if e = uv, then to construct G/e, we delete u and v,376

construct a new vertex w, and then for each ux ∈ E(G) and each vx ∈ E(G), where377
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x ∈ V (G) \ {u, v}, we construct new edge wx (and possibly obtain multiple edges),378

and for each e′ = uv 6= e, we add a new loop ww. A set S ⊆ E(G) is an (edge) cut-set379

if the deletion of S increases the number of components. A cut-set S is (inclusion)380

minimal if any proper subset of S is not a cut-set. A bridge is a cut-set of size one.381

Matroids. We refer to the book of Oxley [36] for the detailed introduction to the382

matroid theory. Recall that a matroid M is a pair (E, I), where E is a finite ground383

set of M and I ⊆ 2E is a collection of independent sets that satisfy the following three384

axioms:385

I1. ∅ ∈ I,386

I2. if X ∈ I and Y ⊆ X, then Y ∈ I,387

I3. if X,Y ∈ I and |X| < |Y |, then there is e ∈ Y \X such that X ∪ {e} ∈ I.388

We denote the ground set of M by E(M) and the set of independent set by I(M) or389

simply by E and I if it does not create confusion. If a set X ⊆ E is not independent,390

then X is dependent. Inclusion maximal independent sets are called bases of M . We391

denote the set of bases by B(M) (or simply by B). The matroid M∗ with the ground392

set E(M) such that B(M∗) = B∗(M) = {E \B | B ∈ B(M)} is dual to M . The bases393

of M∗ are cobases of M .394

A function r : 2E → Z0 such that for any Y ⊆ E, r(Y ) = max{|X| | X ⊆395

Y and X ∈ I} is called the rank function of M . Clearly, X ⊆ E is independent if396

and only if r(X) = |X|. The rank of M is r(M) = r(E). Repectively, the corank397

r∗(M) = r(M∗).398

Recall that a set X ⊆ E spans e ∈ E if r(X ∪ {e}) = r(X), and span(X) = {e ∈399

E | X spans e}. Respectively, X spans a set T ⊆ E if T ⊆ span(X). Let T ⊆ E.400

Notice that if F ⊆ T spans every element of T , then an independent set of maximum401

size F ′ ⊆ F spans T as well by the definition. Hence, we can observe the following.402

Observation 3.1. Let T ⊆ E for a matroid M , and let F ⊆ E\T be an inclusion403

minimal set such that F spans T . Then F is independent.404

An (inclusion) minimal dependent set is called a circuit of M . We denote the set405

of all circuits of M by C(M) or simply C if it does not create a confusion. The circuits406

satisfy the following conditions (circuit axioms):407

C1. ∅ /∈ C,408

C2. if C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2,409

C3. if C1, C2 ∈ C, C1 6= C2, and e ∈ C1 ∩ C2, then there is C3 ∈ C such that410

C3 ⊆ (C1 ∪ C2) \ {e}.411

An one-element circuit is called loop, and if {e1, e2} is a two-element circuit, then it412

is said that e1 and e2 are parallel. An element e is coloop if e is a loop of M∗ or,413

equivalently, e ∈ B for every B ∈ B. A circuit of M∗ is called cocircuit of M . A set414

X ⊆ E is a cycle of M if X either empty or X is a disjoint union of circuits. By S(M)415

(or S) we denote the set of all cycles of M . We often use the property that the sets416

of circuits and cycles completely define matroid. Indeed, a set is independent if and417

only if it does not contain a circuits, and the circuits are exactly inclusion minimal418

nonempty cycles.419

We can observe the following.420

Observation 3.2. Let {e1, e2} ∈ C for distinct e1, e2 ∈ E and let C ∈ C for a421

matroid M . If e1 ∈ C and e2 /∈ C, then C ′ = (C \ {e1}) ∪ {e2} is a circuit.422

Proof. By axiom C3, ({e1, e2} ∪ C) \ {e1} = (C \ {e1}) ∪ {e2} = C ′ contains a423

circuit C ′′. Suppose that C ′′ 6= C ′. Notice that because C \ {e1} contains no circuit,424

we have that e2 ∈ C ′′. As e1 /∈ C ′′, we obtain that ({e1, e2} ∪ C ′′) \ {e2} contains a425
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circuit, but ({e1, e2} ∪ C ′′) \ {e2} is a proper subset of C, which is a contradiction.426

Hence, C ′′ = C ′ and thus C ′ is a circuit.427

Often it is convenient to express the property that a set X spans an element e in428

terms of circuits or, equivalently, cycles.429

Observation 3.3. Let e ∈ E and X ⊆ E \ {e} for a matroid M . Then e ∈430

span(X) if and only if there is a circuit (cycle) C such that e ∈ C ⊆ X ∪ {e}.431

Proof. Denote by r the rank function of M . Let e ∈ span(X). Then r(X∪{e}) =432

r(X). Let Y be an independent set such that Y ⊆ X and r(X) = r(Y ). We have433

that r(Y ∪ {e}) ≤ r(X ∪ {e}) = r(X) = r(Y ). Hence, Y ∪ {e} is not independent.434

Therefore, there is a circuit (cycle) C such that C ⊆ Y ∪ {e} ⊆ X ∪ {e}. Because Y435

is independent, we have that C 6⊆ Y and e ∈ C. Hence e ∈ C ⊆ X ∪ {e}.436

Suppose that there is a circuit C such that e ∈ C ⊆ X ∪ {e}. Let Y = C ∩ X.437

Since e ∈ C and e /∈ X, we have that Y is a proper subset of C, i.e., Y is independent.438

Denote by Z an (inclusion) maximal independent set such that Y ⊆ Z ⊆ X and let439

Z ′ be a maximal independent set such that Z ′ ⊆ X∪{e}. If |Z ′| > |Z|, then by axiom440

I3, there is e′ ∈ Z ′ \ Z such that Z ∪ {e′} is independent. Because Z is a maximal441

independent set such that Y ⊆ Z ⊆ X, it follows that e′ /∈ X. Hence, e′ = e, but442

then C = Y ∪{e} ⊆ Z ∪{e} contradicting the independence of Z ∪{e}. It means that443

|Z| = |Z ′|. Therefore, r(X) ≤ r(X ∪ {e}) = |Z ′| = |Z| ≤ r(X). Hence, e ∈ span(X).444

Finally, if there is a cycle C such that e ∈ C ⊆ X ∪ {e}, then there is a circuit445

C ′ ⊆ C such that e ∈ C ′ ⊆ X ∪ {e} and, therefore, e ∈ span(X) by the previous446

case.447

By Observation 3.3, we can reformulate Space Cover in the following equivalent448

form.449

Space Cover (reformulation) Parameter: k
Input: A binary matroid M = (E, I) given together with its matrix representa-
tion over GF(2), a weight function w : E → N0, a set of terminals T ⊆ E, and a
nonnegative integer k.
Question: Is there a set F ⊆ E \ T with w(F ) ≤ k such that for any e ∈ T ,
there is a circuit (or cycle) C such that e ∈ C ⊆ F ∪ {e}?

450

We use this equivalent definition in the majority of the proofs without referring451

to Observation 3.3.452

Let M be a matroid and e ∈ E(M) is not a loop. We say that M ′ is obtained453

from M by adding of a parallel to e element if E(M ′) = E(M) ∪ {e′}, where e′ is a454

new element, and I(M ′) = I(M) ∪ {(X \ {e}) ∪ {e′} | X ∈ I(M) and e ∈ X}. It is455

straightforward to verify that I(M ′) satisfies the axioms I.1-3, i.e., M ′ is a matroid456

with the ground set E(M) ∪ {e′}. It is also easy to see that {e, e′} is a circuit, that457

is, e and e′ are parallel elements of M ′.458

Deletions and contractions. Let M be a matroid, e ∈ E(M). The matroid M ′ =459

M − e is obtained by deleting e if E(M ′) = E(M) \ {e} and I(M ′) = {X ∈ I(M) |460

e /∈ X}. It is said that M ′ = M/e is obtained by contracting e if M ′ = (M − e)∗. In461

particular, if e is not a loop, then I(M ′) = {X \ {e} | e ∈ X ∈ I(M)}. Notice that462

deleting an element in M is equivalent to contracting it in M∗ and vice versa. Let463

X ⊆ E(G). Then M − X denotes the matroid obtained from M by the deletion of464

the elements of X and M/X is the matroid obtained by the consecutive contractions465

of the elements of X. The restriction of M to X, denoted by M |X, is the matroid466

obtained by the deletion of the elements of E(G) \X.467
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Matroids associated with graphs. Let G be a graph. The cycle matroid M(G)468

has the ground set E(G) and a set X ⊆ E(G) is independent if X = ∅ or G[X] has no469

cycles. Notice that C is a circuit of M(G) if and only if C induces a cycle of G. The470

bond matroid M∗(G) with the ground set E(G) is dual to M(G), and X is a circuit471

of M∗(G) if and only if X is a minimal cut-set of G. It is said that M is a graphic472

matroid if M is isomorphic to M(G) for some graph G. Respectively, M is cographic473

if there is graph G such that M is isomorphic to M∗(G). Notice that e ∈ E is a loop474

of a cycle matroid M(G) if and only if e is a loop of G, and e is a loop of M∗(G) if475

and only if e is a bridge of G. Notice also that by the addition of an element parallel476

to e ∈ E for M(G) we obtain M(G′) for the graph G′ obtained by adding a new edge477

with the same end vertices as e. Respectively, by adding of an element parallel to478

e ∈ E for M∗(G) we obtain M∗(G′) for the graph G′ obtained by subdividing e.479

Matroid representations. Let M be a matroid and let F be a field. An n ×m-480

matrix A over F is a representation of M over F if there is one-to-one correspondence481

f between E and the set of columns of A such that for any X ⊆ E, X ∈ I if and482

only if the columns f(X) are linearly independent (as vectors of Fn); if M has such a483

representation, then it is said that M has a representation over F . In other words, A is484

a representation of M if M is isomorphic to the column matroid of A, i.e., the matroid485

whose ground set is the set of columns of A and a set of columns is independent if486

and only if these columns are linearly independent. A matroid is binary if it can be487

represented over GF(2). A matroid is regular if it can be represented over any field.488

In particular, graphic and cographic matroids are regular. Notice that any matroid489

obtained from a regular matroid by deleting and contracting its elements is regular.490

Observe also that the matroid obtained from a regular matroid by adding a parallel491

element is regular as well.492

We stated in the introduction that we assume that we are given a representation493

over GF(2) of the input matroid of an instance of Space Cover. Then it can be494

checked in polynomial time whether a subset of the ground set is independent by495

checking the linear independence of the corresponding columns.496

We use the following observation about cycles of binary matroids.497

Observation 3.4 (see [36]). Let C1 and C2 be circuits (cycles) of a binary498

matroid M . Then C1 4 C2 is a cycle of M .499

The dual of Space Cover. We recall the definition of Restricted Subset Feed-500

back Set.501

Restricted Subset Feedback Set
Input: A binary matroid M , a weight function w : E → N0, T ⊆ E, and a
nonnegative integer k.
Question: Is there a set F ⊆ E\T with w(F ) ≤ k such that matroid M ′ = M−F
has no circuit containing an element of T .

502

This problem is dual to Space Cover.503

Proposition 3.1. Restricted Subset Feedback Set on matroid M is equiv-504

alent to Space Cover on the dual of M .505

Proof. Let M be a binary matroid and T ⊆ E. By Observation 3.3, it is sufficient506

to show that for every F ⊆ E \ T , M − F has no circuit containing an element of T507

if and only if for each t ∈ T there is a cocircuit C of M such that t ∈ C ⊆ F ∪ {t}.508

Suppose that for each t ∈ T , there is a cocircuit C of M such that t ∈ C ⊆509

F ∪ {t}. We show that M − F has no circuit containing an element of T . To obtain510
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a contradiction, assume that there is t ∈ T and a circuit C ′ of M such that t ∈ C ′511

and C ′ ∩ F = ∅. Let C be a cocircuit of M such that t ∈ C ⊆ F ∪ {t}. Then512

C ∩ C ′ = {t}, but it contradicts the well-known property (see [36]) that for every513

circuit and every cocircuit of a matroid, their intersection is either empty of contains514

at least two elements.515

Suppose now that M−F has no circuit containing an element of T . In particular,516

it means that T is independent in M , and hence in M −F . Then there is a basis B of517

M−F such that T ⊆ B. Clearly, B is an independent set of M . Hence, there is a basis518

B′ of M such that B ⊆ B′. Consider cobasisB∗ = E \B′. Let t ∈ T . The set B∗∪{t}519

contains a unique cocircuit C and t ∈ C. We claim that C ⊆ F ∪ {t}. To obtain a520

contradiction, assume that there is e ∈ C \ (F ∪ {t}). Since C ∩B′ = {t}, e /∈ B and,521

therefore, e /∈ B′. The set B ∪ {e} contains a unique circuit C ′ of M − F such that522

e ∈ C ′. Notice that C ′ is a circuit of M as well. Observe that e ∈ C ∩ C ′ ⊆ {e, t}.523

Since C ∩ C ′ 6= ∅, |C ∩ C ′| ≥ 2. Hence, t ∈ C ′. We obtain that C ′ is a circuit of M524

containing t but C ′ ∩ F = ∅; a contradiction.525

The variant of Restricted Subset Feedback Set for graphs, i.e.,526

Restricted Subset Feedback Set for graphic matroids, was introduced by Xiao527

and Nagamochi in [45]. They proved that this problem can be solved in time 2O(k log k)·528

nO(1) for n-vertex graphs. In fact, they considered the problem without weights, but529

their result can be generalized for weighted graphs. They also considered the un-530

weighted variant of the problem without the restriction F ⊆ E \S. They proved that531

this problem can be solved in polynomial time. We observe that this results holds for532

binary matroids. More formally, we consider the following problem.533

Subset Feedback Set
Input: A binary matroid M , T ⊆ E and a nonnegative integer k.
Question: Is there a set F ⊆ E \ T with |F | ≤ k such that the matroid M ′

obtained from M by the deletion of the elements of F has no circuits containing
elements of T .

534

Proposition 3.2. Subset Feedback Set is solvable in polynomial time.535

Proof. To see that Subset Feedback Set is solvable in polynomial time, it is536

sufficient to notice that it is dual to the similar variant of Space Cover without537

weights and without the condition F ⊆ E \ T . The proof of this claim is almost the538

same as the proof of Proposition 3.1; the only difference is that F ⊆ E spans T in M539

if and only if for every t ∈ T \F , there is a circuit C such that t ∈ C ⊆ F ∪ {t}. This540

variant of Space Cover is solvable in polynomial time because the set of minimum541

size that spans T can be chosen to be a maximal independent subset of T .542

Notice also that if we allow weights but do not restrict F ⊆ E \ T , then this543

variant of Space Cover is at least as hard as the original variant of the problem,544

because by assigning the weight k + 1 to the elements of T we can forbid their usage545

in the solution.546

Restricted Space Cover problem. For technical reasons, in the algorithm we have547

to solve the following restricted variant of Space Cover on graphic and cographic548

matroids.549
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Restricted Space Cover Parameter: k
Input: Matroid M with a ground set E, a weight function w : E → N0, a set of
terminals T ⊆ E, a nonnegative integer k, and e∗ ∈ E with w(e∗) = 0 and t∗ ∈ T .
Question: Is there a set F ⊆ E \ T with w(F ) ≤ k such that T ⊆ span(F ) and
t∗ ∈ span(F \ {e∗})?

550

In fact, we have to solve this problem only in one special case (see Branching551

Rule 7.2) when we deal with 3-sums in our branching algorithm and have to break552

symmetry between summands to be able to recurse. Nevertheless, we cannot avoid553

solving this variant of the problem separately for graphic and cographic matroids.554

We conclude the section by some hardness observations.555

Proposition 3.3. Space Cover is W[1]-hard for binary matroids when parame-556

terized by k even if restricted to the inputs with one terminal and unit-weight elements.557

Proof. Downey et al. proved in [11] that the following parameterized problem is558

W[1]-hard:559

Maximum-Likelihood Decoding Parameter: k
Input: A binary n × m matrix A, a target binary n-element vector s, and a
positive integer k.
Question: Is there a set of at most k columns of A that sum to s?

560

The W[1]-hardness is proved in [11] for nonzero s; in particular, it holds if s is the561

vector of ones.562

Let (A, s, k) be an instance of Maximum-Likelihood Decoding for nonzero s.563

We define the matrix A′ by adding the column s to A. Let M be the column matroid564

of A′ and T = {s}. For every e ∈ E(M), we set w(e) = 1.565

Suppose that there are at most k columns of A that sum to s. Then there are at566

most k linearly independent columns that sum to s. Clearly, these columns span s in567

M . If there is a set F ⊆ E(M) \ {s} of size at most k that spans s, then there is a568

circuit C of M such that s ∈ C ⊆ F ∪ {s}. It immediately implies that the sum of569

columns of C is the zero vector and, therefore, the columns of C \ {s} sum to s.570

We noticed that Steiner Tree is a special case of Space Cover for the cycle ma-571

troid of an input graph. This reduction together with the result of Dom, Lokshtanov572

and Saurabh [9] that Steiner Tree has no polynomial kernel (we refer to [5] for the573

formal definitions of kernels) unless P ⊆ coNP/poly immediately implies the following574

statement.575

Proposition 3.4. Space Cover has no polynomial kernel unless576

P ⊆ coNP/poly even if restricted to graphic matroids and the inputs with unit-weight577

elements.578

Finally, it was proved by Dahlhaus et al. [6] that Multiway Cut is NP-complete579

even if |S| = 3. It implies as the following proposition.580

Proposition 3.5. The version of Space Cover, where the parameter is |T |, is581

Para-NP-complete even if restricted to cographic matroids and the inputs with unit-582

weight elements.583

4. Regular matroid decompositions. In this section we describe matroid de-584

composition theorems that are pivotal for algorithm for Space Cover. In particular585

we start by giving the structural decomposition for regular matroids given by Sey-586

mour [38]. Recall that, for two sets X and Y , X4Y = (X \Y )∪ (Y \X) denotes the587
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symmetric difference of X and Y . To describe the decomposition of matroids we need588

the notion of “`-sums” of matroids for ` = 1, 2, 3. We already defined these sums in589

Section 2, Definition 2.1 (see also [36, 42]). If M = M1 ⊕` M2 for some ` ∈ {1, 2, 3},590

then we write M = M1 ⊕M2.591

Definition 4.1. A {1, 2, 3}-decomposition of a matroid M is a collection of ma-592

troids M, called the basic matroids and a rooted binary tree T in which M is the root593

and the elements of M are the leaves such that any internal node is either 1-, 2- or594

3-sum of its children.595

We also need the special binary matroid R10 to be able to define the decomposition596

theorem for regular matroids. It is represented over GF(2) by the 5×10-matrix whose597

columns are formed by vectors that have exactly three non-zero entries (or rather three598

ones) and no two columns are identical. Now we are ready to give the decomposition599

theorem for regular matroids due to Seymour [38].600

Theorem 4.2 ([38]). Every regular matroid M has an {1, 2, 3}-decomposition in601

which every basic matroid is either graphic, cographic, or isomorphic to R10. More-602

over, such a decomposition (together with the graphs whose cycle and bond matroids603

are isomorphic to the corresponding basic graphic and cographic matroids) can be604

found in time polynomial in |E(M)|.605

4.1. Modified Decomposition. For our algorithmic purposes we will not use606

the Theorem 4.2 but rather a modification proved by Dinitz and Kortsarz in [8].607

Dinitz and Kortsarz in [8] first observed that some restrictions in the definitions of608

2- and 3-sums are not important for the algorithmic purposes. In particular, in the609

definition of the 2-sum, the unique e ∈ E(M1)∩E(M2) is not a loop or coloop of M1610

or M2, and |E(M1)|, |E(M2)| ≥ 3 could be dropped. Similarly, in the definition of611

3-sum the conditions that Z = E(M1)∩E(M2) does not contain a cocircuit of M1 or612

M2, and |E(M1)|, |E(M2)| ≥ 7 could be dropped. We define extended 1-, 2- and 3-613

sums by omitting these restrictions. Clearly, Theorem 4.2 holds if we replace sums by614

extended sums in the definition of the {1, 2, 3}-decomposition. To simplify notation,615

we use ⊕1,⊕2,⊕3 and ⊕ to denote these extended sums. Finally, we also need the616

notion of a conflict graph associated with a {1, 2, 3}-decomposition of a matroid M617

given by Dinitz and Kortsarz in [8].618

Definition 4.3 ([8]). Let (T,M) be a {1, 2, 3}-decomposition of a matroid M .619

The intersection (or conflict) graph of (T,M) is the graph GT with the vertex set M620

such that distinct M1,M2 ∈M are adjacent in GT if and only if E(M1)∩E(M2) 6= ∅.621

Dinitz and Kortsarz in [8] showed how to modify a given decomposition in order622

to make the conflict graph a forest. In fact they proved a slightly stronger condition623

that for any 3-sum (which by definition is summed along a circuit of size 3), the624

circuit in the intersection is contained entirely in two of the lowest-level matroids. In625

other words, while the process of summing matroids might create new circuits that626

contain elements that started out in different matroids, any circuit that is used as the627

intersection of a sum existed from the very beginning.628

Let (T,M) be a {1, 2, 3}-decomposition of a matroid M . A node of V (T ) with629

degree at least 2 is called an internal node of T . Note that with each internal node t of630

T one can associate a matroid Mt, but also the set of elements that is the intersection631

of the ground sets of its children (and is thus not in the ground set of Mt). This set632

is either the empty set (if Mt is the 1-sum of its children), a single element (if it is633

the 2-sum), or three elements that form a circuit in both of its children (if it is the 3-634

This manuscript is for review purposes only.



COVERING VECTORS BY SPACES: REGULAR MATROIDS 15

sum). For an internal node t, let ZMt
denote this set. Essentially, corresponding to an635

internal node of t ∈ V (T ) with children t1 and t2, denote by ZMt
= E(Mt1)∩E(Mt2)636

its sum-set.637

Let t be an internal node of T and t1 and t2 be its children. Using the terminology638

of Dinitz and Kortsarz in [8], we say that ZMt is good if all the elements of ZMt belong639

to the same basic matroid that is a descendant of Mt1 in T and they belong to the same640

basic matroid that is a descendant of Mt2 in T . We say that a {1, 2, 3}-decomposition641

of M is good if all the sum-sets are good. We state the result of [8] in the following642

form that is convenient for us.643

Theorem 4.4 ([8]). Every regular matroid M has a good {1, 2, 3}-decomposition644

in which every basic matroid is either graphic, cographic, or isomorphic to a matroid645

obtained from R10 by (possibly) adding parallel elements. Moreover, such a decompo-646

sition (together with the graphs whose cycle and bond matroids are isomorphic to the647

corresponding basic graphic and cographic matroids) can be found in time polynomial648

in ||M ||.649

Using this theorem, for a given regular matroid, we can obtain in polynomial650

time a good {1, 2, 3}-decomposition with a collection M of basic matroids, where651

every basic matroid is either graphic, or cographic, or is isomorphic to a matroid ob-652

tained from R10 by deleting some elements and adding parallel elements and deleting.653

Then we obtain a conflict forest GT , whose nodes are basic matroids and the edges654

correspond to extended 2- or 3-sums such that their sum-sets are the elements of the655

basic matroids that are the endpoints of the corresponding edge. By adding bridges656

between components of GT corresponding to 1-sums, we obtain a conflict tree T for657

a good {1, 2, 3}-decomposition, whose edges correspond to extended 1, 2 or 3-sums658

between adjacent matroids. Hence we obtain the following corollary.659

Corollary 4.5. For a given regular matroid M , there is a (conflict) tree T660

whose set of nodes is a set of matroids M, where each element of M is a graphic661

or cographic matroid, or a matroid obtained from R10 by adding (possibly) parallel662

elements, that has the following properties:663

i) if two distinct matroids M1,M2 ∈ M have nonempty intersection, then M1664

and M2 are adjacent in T ,665

ii) for any distinct M1,M2 ∈M, |E(M1) ∩ E(M2)| = 0, 1 or 3,666

iii) M is obtained by the consecutive performing extended 1, 2 or 3-sums for667

adjacent matroids in any order.668

Moreover, T can be constructed in a polynomial time.669

If T is a conflict tree for a matroid M , we say that M is defined by T .670

5. Elementary reductions for Space Cover. In this section we give some671

elementary reduction rules that we apply on the instances of Space Cover and672

Restricted Space Cover to make it more structured and thus easier to design673

an FPT algorithm. Throughout this section we will assume that the input matroid674

M = (E, I) is regular.675

5.1. Reduction rules for Space Cover. Let (M,w, T, k) be an instance of676

Space Cover, where M is a regular matroid. For technical reasons, we permit the677

weight function w to assign 0 to the elements of E. However, observe that if M has a678

nonterminal element e with w(e) = 0, then we can always include it in a (potential)679

solution. This simple observation is formulated in the following reduction rule.680

Reduction Rule 5.1 (Zero-element reduction rule). If there is an element681
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e ∈ E \ T with w(e) = 0, then contract e.682

The next rule is used to remove irrelevant terminals.683

Reduction Rule 5.2 (Terminal circuit reduction rule). If there is a circuit684

C ⊆ T , then delete an arbitrary element e ∈ C from M .685

Lemma 5.1. Reduction Rule 5.2 is safe.686

Proof. We first prove the forward direction. Suppose that there is a circuit C ⊆ T687

and e ∈ C. Clearly, if F ⊆ E \ T spans T , then F spans T \ {e} as well. For the688

reverse direction, assume that F ⊆ E \T spans T \{e}. Let C = {e, e1, . . . , er}. Since689

F ⊆ E \ T spans T \ {e}, there are circuits C1, . . . , Cr such that ei ∈ Ci ⊆ F ∪ {ei}.690

By Observation 3.4, C̃ = (C14 . . .4Cr)4C is a cycle. However, observe that C̃ only691

contains elements from F ∪ {e}. In fact, since e /∈ Ci for i ∈ {1, . . . , r}, e ∈ C̃ and692

thus there is a circuit C ′ such that e ∈ C ′ ⊆ C̃. This implies that e ∈ C ′ ⊆ F ∪ {e}693

and thus F spans e. This completes the proof.694

Now we remove irrelevant nonterminals. It is clearly safe to delete loops as there695

always exists a solution F such that F ∈ I.696

Reduction Rule 5.3 (Loop reduction rule). If e ∈ E \ T is a loop, then697

delete e.698

We remark that it is safe to apply Reduction Rule 5.3 even for Restricted Space699

Cover. Our next rule removes parallel elements.700

Reduction Rule 5.4 (Parallel reduction rule). If there are two elements701

e1, e2 ∈ E \ T such that e1 and e2 are parallel and w(e1) ≤ w(e2), then delete e2.702

Lemma 5.2. Reduction Rule 5.4 is safe.703

Proof. Let e1, e2 ∈ E \ T be parallel elements such that w(e1) ≤ w(e2). Then,704

by Observations 3.2, for any F ⊆ E \ T that spans T such that e2 ∈ F , F ′ =705

(F \ {e2}) ∪ {e1} also spans T . Hence, it is safe to delete e2.706

To sort out the trivial yes-instance or no-instance after the exhaustive applications of707

the above rules, we apply the next rule.708

Reduction Rule 5.5 (Stopping rule). If T = ∅, then return yes and stop.709

Else, if E \ T = ∅ or |T | > k, then return no and stop.710

Lemma 5.3. Reduction Rule 5.5 is safe.711

Proof. Indeed if T = ∅, then we have a yes-instance of the problem, and if T 6= ∅712

and E \ T = ∅, then the considered instance is a no-instance. If we cannot apply713

Reduction Rule 5.2 (Terminal circuit reduction rule), then T is an independent714

set of M . Hence, if F ⊆ E \ T spans T , |F | ≥ |T |. Since we have no element with715

zero weight after the exhaustive application of Reduction Rule 5.1 (Zero-element716

reduction rule), if k < |T |, then the input instance is a no-instance.717

5.2. Reduction rules for Restricted Space Cover. For718

Restricted Space Cover, we use the following modifications of Reduction719

Rules 5.1-5.5, where applicable. Proofs of these rules are analogous to its counter-part720

for Space Cover and thus omitted.721

Reduction Rule 5.6 (Zero-element reduction rule∗). If there is an ele-722

ment e ∈ E \ (T ∪ {e∗}) with w(e) = 0, then contract e.723

Reduction Rule 5.7 (Terminal circuit reduction rule∗). If there is a cir-724

cuit C ⊆ T , then delete an arbitrary element e ∈ C such that e 6= t∗ from M . If t∗ is725
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a loop, then delete t∗.726

Reduction Rule 5.8 (Parallel reduction rule∗). If there are two elements727

e1, e2 ∈ E \T such that e1 and e2 are parallel, e1 6= e∗ and w(e1) ≤ w(e2), then delete728

e2.729

Since w(e∗) = 0, we obtain the following variant of Reduction Rule 5.5.730

Reduction Rule 5.9 (Stopping rule∗). If T = ∅, then return yes and stop.731

Else, if E \ T = ∅ or |T | > k + 1, then return no and stop.732

5.3. Final lemma. If we have an independence oracle for M = (E, I) or if733

we can check in polynomial time using a given representation of M whether a given734

subset of E belongs to I, then we get the following lemma.735

Lemma 5.4. Reduction Rules 5.1-5.9 can be applied in time polynomial in ||M ||.736

6. Solving Space Cover for basic matroids. In this section we solve (Re-737

stricted) Space Cover on basic matroids that are building blocks of regular ma-738

troid. In particular, we solve Space Cover for R10 and (Restricted) Space739

Cover for graphic and cographic matroids. We first give an algorithm on R10, fol-740

lowed by algorithms on graphic matroids based on algorithms for Steiner Tree and741

its generalization. Finally, we give algorithms on cographic matroids based on ideas742

inspired by important separators.743

6.1. Space Cover on R10. In this section we give an algorithm for Space744

Cover about matroids that could be obtained from R10 by either adding parallel745

elements, or by deleting elements or by contracting elements. Observe that an instance746

of (Restricted) Space Cover for such a matroid is reduced to an instance with747

a matroid that has at most 20 elements by the exhaustive application of Terminal748

circuit reduction rule and Parallel reduction rule. Indeed, in the worst case we749

obtain the matroid from R10 by adding exactly one parallel element for each element750

of R10. Since the matroid, M = (E, I), of the reduced instance has at most 20751

elements we can solve Space Cover by examining all subsets of E of size at most k.752

This brings us to the following.753

Lemma 6.1. Space Cover can be solved in polynomial time for matroids that can754

be obtained from R10 by adding parallel elements, element deletions and contractions.755

6.2. Space Cover for graphic matroids. Recall that Steiner Forest re-756

stated below can be seen as a special case of Space Cover on graphic matroids by757

a simple reduction.758

Steiner Forest Parameter: k
Input: A (multi) graph G, a weight function w : E → N, a collection of pairs of
distinct vertices (demands) {x1, y1}, . . . , {xr, yr} of G, and a nonnegative integer
k
Question: Is there a set F ⊆ E(G) with w(F ) ≤ k such that for any i ∈
{1, . . . , r}, G[F ] contains an (xi, yi)-path?

759

In this section, we “reverse this reduction” in a sense and use this reversed reduction760

to solve (Restricted) Space Cover. In particular we utilize an algorithm for761

Steiner Forest to give an FPT algorithm for (Restricted) Space Cover on762

graphic matroids. It seems a folklore knowledge that Steiner Forest is FPT when763

parameterized by the number of edges in a solution. We provide this algorithm here764

for completeness.765
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6.2.1. A single-exponential algorithm for Steiner Forest. Our algorithm766

is based on the FPT algorithm for the following well-known parameterization of767

Steiner Tree. Let us remind that in Steiner Tree, we are given a (multi) graph768

G, a weight function w : E → N, a set of vertices S ⊆ V (G) called terminals, and a769

nonnegative integer k. The task is to decide whether there is a set F ⊆ E(G) with770

w(F ) ≤ k such that the subgraph of G induced by F is a tree that contains the771

vertices of S.772

It was already shown by Dreyfus and Wagner [12] in 1971, that Steiner Tree773

can be solved in time 3p ·nO(1), where p is the number of terminals. The current best774

FPT-algorithms for Steiner Tree are given by Björklund et al. [3] and Nederlof [33]775

(the first algorithm demands exponential in p space and the latter uses polynomial776

space) and runs in time 2p ·nO(1). Finally, we are ready to describe the algorithm for777

Steiner Forest.778

Lemma 6.2. Steiner Forest is solvable in time 4k · nO(1).779

Proof. Let (G,w, {x1, y1}, . . . , {xr, yr}, k) be an instance of Steiner Forest.780

Consider the auxiliary graph H with V (H) = ∪ri=1{xi, yi} and781

E(H) = {x1, y1}, . . . , {xr, yr}. Let S1, . . . , St denote the sets of vertices of the con-782

nected components of H. Recall, that a set F ⊆ E(G) with w(F ) ≤ k is said to783

be a solution-forest for Steiner Forest is for any i ∈ {1, . . . , r}, G[F ] contains a784

(xi, yi)-path. Now notice that F ⊆ E(G), of weight at most k, is a solution-forest785

to an instance (G,w, {x1, y1}, . . . , {xr, yr}, k) of Steiner Forest if and only if the786

vertices of Si are in the same component of G[F ] for every i ∈ {1, . . . , t}. We will use787

this correspondence to obtain an algorithm for Steiner Forest.788

Now we bound the number of vertices in V (H). Let F be a minimal forest-789

solution. First of all observe that since the weights on edges are positive, we have790

that |F | ≤ k. The vertices of Si must be in the same component of G[F ], thus we791

have that |F | ≥
∑t

i=1(|Si| − 1). Hence,
∑t

i=1 |Si| ≤ |F | + t. If
∑t

i=1 |Si| > |F | + t792

we return that (G,w, {x1, y1}, . . . , {xr, yr}, k) is a no-instance. So from now onwards793

assume that
∑t

i=1 |Si| ≤ |F | + t. Furthermore, since F is a minimal forest-solution,794

each connected component of G[F ] has size at least 2 and thus t ≤ k. Thus, we have795

an instance with |V (H)| ≤ 2k and t ≤ k.796

For I ⊆ {1, . . . , t}, let W (I) denote the minimum weight of a Steiner tree for the797

set of terminals ∪i∈ISi. We assume that W (I) = +∞ if such a tree does not exist.798

Furthermore, if the minimum weight of a Steiner tree is at least k + 1 then also we799

assign W (I) = +∞. All the 2t values of W (I) corresponding to I ⊆ {1, . . . , t} can be800

computed in time 2|V (H)| · nO(1) = 4k · nO(1) using the results of [3] or [33].801

For J ⊆ {1, . . . , t}, let W ′(J) denote the minimum weight of a solution-forest for802

the sets Sj , where j ∈ J . That is, W ′(J) is assigned the minimum weight of a set803

F ⊆ E(G) such that the vertices of Sj for j ∈ J are in the same component of G[F ].804

Furthermore, if such a set F does not exist or the weight is at least k+ 1 then W ′(J)805

is assigned +∞. Clearly, W ′(∅) = 0. Notice that (G,w, {x1, y1}, . . . , {xr, yr}, k) is a806

yes-instance for Steiner Forest if and only if W ′({1, . . . , t}) ≤ k. Next, we give the807

recurrence relation for the dynamic programming algorithm to compute the values of808

W ′(J).809

(6.1) W ′(J) = min
I⊆J
I 6=∅

{
W ′(J \ I) +W (I)

}
.810

We claim that the above recurrence holds for every J ⊆ {1, . . . , t}. To prove the811
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forward direction of the claim, assume that F ⊆ E(G) is a set of edges of minimum812

weight such that the vertices in Sj , j ∈ J , are in the same component of G[F ]. Let X813

be a set of vertices of an arbitrary component of G[F ] and L denote the set of edges814

of this component. Let I = {i ∈ J | Si ⊆ X}. Notice that by the minimality of F ,815

I 6= ∅. Since W (I) ≤ w(L) and W ′(J \ I) ≤ w(F \ L), we have that816

W ′(J) = w(F ) = w(F \ L) + w(L) ≥W ′(J \ I) +W (I) ≥ min
I⊆J
I 6=∅

{
W ′(J \ I) +W (I)

}
.817

818

To show the opposite inequality, consider a nonempty set I ⊆ J , and let L be the set819

of edges of a Steiner tree of minimum weight for the set of terminals ∪i∈ISi and let820

F be the set of edges of a Steiner forest of minimum weight for the sets of terminals821

Sj for j ∈ J \ I. Then we have that for F ′ = L∪F , the vertices of Si are in the same822

component of G[F ′] for each i ∈ J . Hence,823

(6.2) W ′(J) ≤ w(L) + w(F ) = W ′(J \ I) +W (I).824

Because (6.2) holds for any nonempty I ⊆ J , we have that

W ′(J) ≤ min
I⊆J
I 6=∅

{
W ′(J \ I) +W (I)

}
.

We compute the values for W ′(J) in the increasing order of the sizes of J ⊆825

{1, . . . , t}. Towards this we use Equation 6.1 and the fact that W ′(∅) = 0. Each826

entry of W ′(J) can be computed by taking a minimum over 2|J| pre-computed entries827

in W ′ and W . Thus, the total time to compute W ′ takes (
∑t

i=0

(
t
i

)
2i) · nO(1) =828

3t · nO(1) = 3k · nO(1). Having computed W ′, we return yes or no based on whether829

W ′({1, . . . , t}) ≤ k. This completes the proof.830

6.2.2. An algorithm for Space Cover on graphic matroids. Now using831

the algorithm for Steiner Forest mentioned in Lemma 6.2, we design an algorithm832

for Space Cover on graphic matroids.833

Lemma 6.3. Space Cover can be solved in time 4k · ||M ||O(1) on graphic ma-834

troids.835

Proof. Let (M,w, T, k) be an instance of Space Cover where M is a graphic836

matroid. First, we exhaustively apply Reduction Rules 5.1-5.5. Thus, by Lemma 5.4,837

in polynomial time we either solve the problem or obtain an equivalent instance,838

where M has no loops and the weights of nonterminal elements are positive. To839

simplify notation, we also denote the reduced instance by (M,w, T, k). Observe that840

M remains to be graphic. It is well-known that given a graphic matroid, in polyno-841

mial time one can find a graph G such that M is isomorphic to the cycle matroid842

M(G) [39]. Assume that T = {x1y1, . . . , xryr} is the set of edges of G corresponding843

to the terminals of the instance of Space Cover. We define the graph G′ = G− T .844

Recall that F ⊆ E(G) \ T spans T if and only if for each e ∈ T , there is a cycle845

C of G such that e ∈ C ⊆ F ∪ {e}. Clearly, the second condition can be rewrit-846

ten as follows: for any i ∈ {1, . . . , r}, G[F ] contains an (xi, yi)-path. It means that847

the instance (G′, w, {x1, y1}, . . . , {xr, yr}, k) of Steiner Forest is equivalent to the848

instance (M,w, T, k) of Space Cover. Now we apply Lemma 6.2 on the instance849

(G′, w, {x1, y1}, . . . , {xr, yr}, k) of Steiner Forest to solve the problem.850
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6.2.3. An Algorithm for Restricted Space Cover on graphic matroids.851

Besides solving Space Cover, we need to solve Restricted Space Cover on852

graphic matroids. In fact, Restricted Space Cover can be reduced to Steiner853

Forest. On the other hand, we can solve this problem by modifying the algorithm854

for Steiner Forest from Lemma 6.2, this provides a better running time.855

Lemma 6.4. Restricted Space Cover can be solved in time 6k · ||M ||O(1) on856

graphic matroids.857

Proof. Let (M,w, T, k, e∗, t∗) be an instance of Restricted Space Cover,858

where M is a graphic matroid. First, we exhaustively apply Reduction Rules 5.3859

and 5.6-5.9. Thus, by Lemma 5.4, in polynomial time we either solve the problem860

or obtain an equivalent instance. Notice that it can happen that e∗ is deleted by861

Reduction Rules 5.3 and 5.6-5.9. For example, if e∗ is a loop then it can be deleted862

by Reduction Rule 5.3. In this case we obtain an instance of Space Cover and can863

solve it using Lemma 6.3. From now onwards we assume that e∗ is not deleted by our864

reduction rules.865

To simplify notation, we use (M,w, T, k, e∗, t∗) to denote the reduced instance.866

If we started with graphic matroid then it remains so even after applying Reduc-867

tion Rules 5.3 and 5.6-5.9. Furthermore, given M , in polynomial time we can find868

a graph G such that M is isomorphic to the cycle matroid M(G) [39]. Let T =869

{x1y1, . . . , xryr} denote the set of edges of G corresponding to the terminals of the870

instance of Restricted Space Cover. Without loss of generality assume that871

t∗ = x1y1. Let G′ and G∗e denote the graphs G−T and G−{e∗}, respectively. Recall872

that, F ⊆ E(G) \T spans T if and only if for each e ∈ T , there is a cycle C of G that873

contains e and all the edges in C are contained in F ∪{e}. Clearly, the second condi-874

tion can be rewritten as follows: for every i ∈ {1, . . . , r}, G[F ] contains a (xi, yi)-path.875

For Restricted Space Cover, we additionally have the condition that F \ {e∗}876

spans t∗. That is, G[F ] contains a (x1, y1)-path that does not contain e∗. In terms877

of graphs, we obtain a special variant of Steiner Forest. We solve the problem by878

slightly modifying the algorithm of Dreyfus and Wagner [12] and Lemma 6.2.879

As in the proof of Lemma 6.2, we consider the auxiliary graph H with V (H) =880

∪ri=1{xi, yi} and E(H) = {x1, y1}, . . . , {xr, yr}. Let S1, . . . , St denote the sets of881

vertices of the connected components of H. Without loss of generality we assume882

that x1, y1 ∈ S1. Let F be a minimal solution. It is clear that G[F ] is a forest.883

Notice that F ⊆ E(G)− T , of weight at most k, is a minimal solution to an instance884

(G,w, {x1, y1}, . . . , {xr, yr}, e∗, t∗, k) of Restricted Space Cover if and only if the885

vertices of Si are in the same component of G[F ] for every i ∈ {1, . . . , t} and the886

unique path between x1 and y1 in the component containing S1 does not contain887

e∗. We will use this correspondence to obtain an algorithm for the special variant of888

Steiner Forest and hence Restricted Space Cover.889

Now we bound the number of vertices in V (H). Let F be a minimal solution. First890

of all observe that since the weights on edges are positive, with an exception of e∗, we891

have that |F | ≤ k+1. The vertices of Si must be in the same component of G[F ], thus892

we have that |F | ≥
∑t

i=1(|Si| − 1). Hence,
∑t

i=1 |Si| ≤ |F |+ t. If
∑t

i=1 |Si| > |F |+ t893

we return that (G,w, {x1, y1}, . . . , {xr, yr}, e∗, t∗, k) is a no-instance. So from now894

onwards assume that
∑t

i=1 |Si| ≤ |F |+ t. Furthermore, since F is a minimal solution895

each connected component of G[F ] has size at least 2 and thus t ≤ k + 1. Thus, we896

have an instance with |V (H)| ≤ 2k + 1 and t ≤ k + 1.897

Given I ⊆ {1, . . . , t}, by ZI , we denote ∪i∈ISi. For I ⊆ {1, . . . , t}, let W (I)898

denote the minimum weight of a tree R in G′ such that ZI ⊆ V (R) and if x1, y1 ∈ ZI ,899
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then the (x1, y1)-path in R does not contain e∗. We assume that W (I) = +∞ if such900

a tree does not exist. Furthermore, if the minimum weight of such a tree R is at least901

k+ 1 then also we assign W (I) = +∞. Notice that if |ZI | > k+ 2, then W (I) ≥ k+ 1902

as any tree that contains ZI has at least |ZI | − 1 > k + 1 edges and only e∗ can have903

weight 0. In this case we can safely set W (I) = +∞, because we are interested in904

trees of weight at most k. Thus from now onwards we can assume that |ZI | ≤ k + 2.905

We compute the values of I ⊆ {1, . . . , t} such that 1 ∈ I by modifying the algorithm906

of Dreyfus and Wagner [12]. Next we present this modified algorithm to compute the907

values of W .908

For a vertex v ∈ V (G) and X ⊆ ZI , let c(v,X, `) be the minimum weight of a909

subtree R′ of G′ with at most ` edges such that910

i) X ⊆ V (R′),911

ii) v ∈ V (R),912

iii) if x1, y1 ∈ X, then the (x1, y1)-path in R′ does not contain e∗,913

iv) if x1 ∈ X and y1 /∈ X, then the (x1, v)-path in R′ does not contain e∗, and914

v) if y1 ∈ X and x1 /∈ X, then the (y1, v)-path in R′ does not contain e∗.915

We assume that c(v,X, `) = +∞ if such a tree R′ does not exist.916

Initially we set917

c(v,X, 0) =

{
0 if {v} = X,

+∞ if {v} 6= X.
918

We compute c(v,X, `) using the following auxiliary recurrences. For an ordered pair
of vertices (u, v) such that uv ∈ E(G′),

c′(u, v,X, `) =

{
+∞ if uv = e∗ and |X ∩ {x1, y1}| = 1,

c(v,X, `− 1) + w(uv) otherwise.

For an ordered pair of vertices (u, v) such that uv ∈ E(G′), a nonempty Y ⊆ X, and
two nonnegative integers `1 and `2 such that ` = `1 + `2 + 1,

c′′(u, v,X, Y, `1, `2) =


+∞ if uv = e∗ and

|Y ∩ {x1, y1}| = 1,

c(u,X \ Y, `1)

+c(v, Y, `2) + w(uv) otherwise.

Finally,919

c(u,X, `) = min

{
c(u,X, `− 1), min

v∈NG′ (u)
c′(u, v,X),920

min
v∈NG′ (u)

{
c′′(u, v,X \ Y, Y, `1, `2) | ∅ 6= Y ⊆ X, `1 + `2 = `− 1

}}
.921

922

For all v ∈ V (G), we fill the table c(v, ·, ·) as follows. We iteratively consider the923

values of ` starting from 1 and ending at k and for each value of ` we consider the924

subsets of ZI in the increasing order of their size. If there is a vertex v ∈ V (G) with925

c(v, ZI , k + 1) ≤ k then we set W (I) = c(v, ZI , k + 1), else, we set W (I) = +∞.926

The correctness of the computation of W (I) can be proved by standard dynamic927

programming arguments. In fact, it essentially follows along the lines of the proof of928

Dreyfus and Wagner [12]. The only difference is that we have to take into account929

the conditions iii) to v) that are used to ensure that the (x1, y1)-path in the obtained930
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tree avoids e∗. Since |Z| ≤ k+ 2, the computation of W (I) for a given I can be done931

in time 3k · nO(1). Thus, all the 2t values of W (I) corresponding to I ⊆ {1, . . . , t}932

such that 1 ∈ I can be computed in time 6k · nO(1).933

Next, we show how we can compute W (I) for I ⊆ {2, . . . , t}. Recall that x1, y1 ∈934

S1 and thus for I ⊆ {2, . . . , t}, W (I) just denotes the minimum weight of a Steiner tree935

for the set of terminals ZI in the graph G′. Hence, for I ⊆ {2, . . . , t}, we can compute936

W (I) by using the algorithm of Dreyfus and Wagner [12] without modification. We937

could also compute W (I) using the results of [3] or [33]. Thus, we can compute all938

the 2t values of W (I) corresponding to I ⊆ {1, . . . , t} in 6k · nO(1) time.939

Now we use the table W to solve the instance (M,w, T, k, e∗, t∗) of Restricted940

Space Cover. As in the proof of Lemma 6.2, for each J ⊆ {1, . . . , t}, denote by941

W ′(J) the minimum weight of a set F ⊆ E(G′) such that the vertices of ZJ are in942

the same component of G′[F ] and if 1 ∈ J then the (x1, y1)-path in G′[F ] avoids e∗.943

Furthermore, if such a set F does not exist or has weight at least k + 1 then we set944

W ′(J) = +∞.945

Clearly, W ′(∅) = 0. Notice that (M,w, T, k, e∗, t∗) is a yes-instance for Re-946

stricted Space Cover if and only if W ′({1, . . . , t}) ≤ k. Next we give the re-947

currence relation for the dynamic programming algorithm to compute the values of948

W ′(J).949

(6.3) W ′(J) = min
I⊆J
I 6=∅

{
W ′(J \ I) +W (I)

}
.950

The proof of the correctness of the recurrence given in Equation 6.3 is verbatim same951

to the proof of recurrence given in Equation 6.1 in the proof of Lemma 6.2.952

We compute the values for W ′(J) in the increasing order of size of J ⊆ {1, . . . , t}.953

Towards this we use Equation 6.3 and the fact that W ′(∅) = 0. Each entry of W ′(J)954

can be computed by taking a minimum over 2|J| pre-computed entries in W ′ and W .955

Thus, the total time to compute W ′ takes (
∑t

i=0

(
t
i

)
2i) ·nO(n) = 3t ·nO(1) = 3k ·nO(1).956

Having computed W ′ we return yes or no based on whether W ′({1, . . . , t}) ≤ k. This957

completes the proof.958

6.3. (Restricted) Space Cover for cographic matroids. In this section we959

design algorithms for (Restricted) Space Cover on co-graphic matroids. By the960

results of Xiao and Nagamochi [45], Space Cover can be solved in time 2O(k log k) ·961

||M ||O(1), but to obtain a single-exponential in k algorithm we use a different ap-962

proach based on the enumeration of important separators proposed by Marx in [31].963

However, for our purpose we use the similar notion of important cuts and we follow964

the terminology given in [5] to define these objects.965

To introduce this technique, we need some additional definitions. Let G be a966

graph and let X,Y ⊆ V (G) be disjoint. A set of edges S is an X − Y separator if S967

separates X and Y in G, i.e., every path that connects a vertex of X with a vertex968

of Y contains an edge of S. If X is a single element set {u}, we simply write that S969

is a u − Y separator. An X − Y -separator is minimal if it is an inclusion minimal970

X−Y separator. It will be convenient to look at minimal (X,Y )-cuts from a different971

perspective, viewing them as edges on the boundary of a certain set of vertices. If G972

is an undirected graph and R ⊆ V (G) is a set of vertices, then we denote by ∆G(R)973

the set of edges with exactly one endpoint in R, and we denote dG(R) = |∆G(R)|974

(we omit the subscript G if it is clear from the context). We say that a vertex y is975

reachable from a vertex x in a graph G if G has an (x, y)-path. For a set X, a vertex y976
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is reachable from X if it is reachable from a vertex of X. Let S be a minimal (X,Y )-977

cut in G and let RG(X) be the set of vertices reachable from X in G \ S; clearly, we978

have X ⊆ RG(X) ⊆ V (G) \ Y . Then it is easy to see that S is precisely ∆(RG(X)).979

Indeed, every such edge has to be in S (otherwise a vertex of V (G) \ R would be980

reachable from X) and S cannot have an edge with both endpoints in RG(X) or both981

endpoints in V (G)\RG(X), as omitting any such edge would not change the fact that982

the set is an (X,Y )-cut, contradicting minimality. When the context is clear we omit983

the subscript and the set X while defining R.984

Proposition 6.5 ([5]). If S is a minimal (X,Y )-cut in G, then S = ∆G(R),985

where R is the set of vertices reachable from X in G \ S.986

Therefore, we may always characterize a minimal (X,Y )-cut S as ∆(R) for some set987

X ⊆ R ⊆ V (G) \ Y .988

Definition 6.6. [5, Definition 8.6] [Important cut] Let G be an undirected graph989

and let X,Y ⊆ V (G) be two disjoint sets of vertices. Let S ⊆ E(G) be an (X,Y )-cut990

and let R be the set of vertices reachable from X in G \ S. We say that S is an991

important (X,Y )-cut if it is inclusion-wise minimal and there is no (X,Y )-cut S′992

with |S′| ≤ |S| such that R ⊂ R′, where R′ is the set of vertices reachable from X in993

G \ S′.994

Theorem 6.7. [30, 32], [5, Theorems 8.11 and 8.13] Let X,Y ⊆ V (G) be two995

disjoint sets of vertices in graph G and let k ≥ 0 be an integer. There are at most996

4k important (X,Y )-cuts of size at most k. Furthermore, the set of all important997

(X,Y )-cuts of size at most k can be enumerated in time O(4k · k · (n+m)).998

For a partition (X,Y ) of the vertex set of a graph G, we denote by E(X,Y )999

the set of edges with one end vertex in X and the other in Y . For a set of bridges1000

B of a graph G and a bridge uv ∈ B, we say that u is a leaf with respect to B, if1001

the component of G− B that contains u has no end vertex of any edge of B \ {uv}.1002

Clearly, for any set of bridges, there is a leaf with respect to it. Also we can make the1003

following observation.1004

Observation 6.1. For the bond matroid M∗(G) of a graph G and T ⊆ E(G), a1005

set F ⊆ E(G) \ T spans T if and only if the edges of T are bridges of G− F .1006

6.3.1. An algorithm for Space Cover on cographic matroids. For our1007

purpose we need a slight modification to the definition of important cuts. We start1008

by defining the object we need and proving a combinatorial upper bound on it.1009

Definition 6.1. Let G be a graph s ∈ V (G) be a vertex and T ⊆ V (G) \ {s}1010

be a subset of terminals. We say that a set W ⊆ V (G) is interesting if (a) G[W ] is1011

connected, (b) s ∈W and |T ∩W | ≤ 1.1012

Next we define a partial order on all interesting sets of a graph.1013

Definition 6.2. Let G be a graph s ∈ V (G) be a vertex and T ⊆ V (G) \ {s}1014

be a subset of terminals. Given two interesting sets W1 and W2 we say that W1 is1015

better than W2 and denote by W2 � W1 if (a) W2 ⊆ W1, |∆(W1)| ≤ |∆(W2)| and1016

T ∩W1 ⊆ T ∩W2.1017

Definition 6.3. Let G be a graph s ∈ V (G) be a vertex, T ⊆ V (G) \ {s} be a1018

subset of terminals and k be a nonnegative integer. We say that an interesting set1019

W is a (s, T, k)-semi-important set if |∆(W )| ≤ k and there is no set W ′ such that1020

W � W ′. That is, W is a maximal set under the relation �. Furthermore, ∆(W )1021

corresponding to a (s, T, k)-semi-important set is called a (s, T, k)-semi-important cut.1022
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Now we have all the necessary definitions to state our lemma that upper bounds1023

the number of semi-important sets and semi-important cuts.1024

Lemma 6.8. For every graph G, a vertex s ∈ V (G), a subset T ⊆ V (G) \ {s} and1025

a nonnegative integer k, there are at most 4k(1 + 4k+1) (s, T, k)-semi-important cuts1026

with |∆(W )| = k. Moreover, all such sets can be listed in time 16knO(1).1027

Proof. Observe that (s, T, k)-semi-important cuts and (s, T, k)-semi-important1028

sets are in bijective correspondence and thus bounding one implies a bound on the1029

other. In what follows we upper bound the number of (s, T, k)-semi-important sets.1030

Let F denote the set of all (s, T, k)-semi-important sets. There are two kinds of1031

(s, T, k)-semi-important sets, those that do not contain any vertex of T and those1032

that contain exactly one vertex of T . We denote the set of (s, T, k)-semi-important1033

sets of first kind by F0 and the second kind by F1. We first bound the size of F0.1034

We claim that for every set W ∈ F0, ∆(W ) is an important (s, T )-cut of size k in1035

G. For a contradiction assume that there is a set W ∈ F0 such that ∆(W ) is not an1036

important (s, T )-cut of size k in G. Then there exists a set W ′ such that W ( W ′,1037

s ∈W ′, W ′ ∩ T = ∅ and |∆(W ′)| ≤ |∆(W )|. However, this implies that W �W ′ – a1038

contradiction. Thus, for every set W ∈ F0, ∆(W ) is an important (s, T )-cut of size k1039

in G and thus, by Theorem 6.7 we have that |F0| ≤ 4k.1040

Now we bound the size of F1. Towards this we first modify the given graph G1041

and obtain a new graph G′. We first add a vertex t /∈ V (G) as a sink terminal. Then1042

for every vertex vi ∈ T we add k + 1 new vertices Zi = {v1i , . . . , v
k+1
i } and add an1043

edge viz, for all z ∈ Zi. Now for every vertex vji ∈ Zi we make 2k + 3 new vertices1044

Zj
i = {vj1i , . . . , v

j2k+3

i } and add an edge tz, for all z ∈ Zj
i . Now we claim that for every1045

set W ∈ F1, ∆(W ) is an important (s, t)-cut of size 2k+ 1 in G′. For a contradiction1046

assume that there is a set W ∈ F1 such that ∆(W ) is not an important (s, t)-cut of1047

size 2k+1 in G′. Then there exists a set W ′ such that W (W ′, s ∈W ′, W ′∩{t} = ∅1048

and |∆(W ′)| ≤ |∆(W )|. That is, ∆(W ′) is an important cut dominating ∆(W ). Since1049

W ∈ F1, there exists a vertex (exactly one) say w ∈ T such that w ∈ W . Observe1050

that W ′ can not contain (a) any vertex but w from T and (b) any vertex from the1051

set Zi, vi ∈ T . If it does then |∆(W ′)| will become strictly more than 2k + 1. This1052

together with the fact that G[W ′] is connected we have that it does not contain any1053

newly added vertex. That is, W ′ ⊆ V (G) and contains only w from T . However,1054

this implies that W � W ′ – a contradiction. Thus, for every set W ∈ F1, ∆(W ) is1055

an important (s, t)-cut of size 2k + 1 in G′ and thus, by Theorem 6.7 we have that1056

|F1| ≤ 42k+1. Thus, |F0|+ |F1| ≤ 4k + 42k+1. This concludes the proof.1057

Lemma 6.9. Let M∗(G) be the bond matroid of G, T ⊆ E(G), and suppose that1058

F ⊆ E(G) \ T spans T . Let also x be an end vertex of an edge xy of T such that1059

x is either in a leaf block or in a degree two block in G − F , Y is the set of end1060

vertices of the edges of T distinct from x, G′ = G − T and let W = RG′−F (x).1061

Then there is a (x, Y, k)-semi-important set W ′ such that |∆G′(W ′)| ≤ |∆G′(W )| and1062

F ′ = (F \∆G′(W )) ∪∆G′(W ′) spans T in M∗(G).1063

Proof. It is clear that W is an interesting set. If W is a semi-important set and1064

∆G′(W ) is a (x, Y, k)-semi-important cut of G′, then the claim holds for W ′ = W .1065

Assume that ∆G′(W ) is not a (x, Y, k)-semi-important cut. Then there is a (x, Y, k)-1066

semi-important set W ′ of G′ such that W � W ′. Recall that this implies that (a)1067

G′[W ′] is connected, (b) W ( W ′, (c) s ∈ W ′, (d) |Y ∩W ′| ≤ 1 and |∆G′(W ′)| ≤1068

|∆G′(W )|. Since G′ does not have any edge of T we have that ∆G′(W ′) ∩ T = ∅.1069

Hence, F ′ = (F \∆G′(W )) ∪∆G′(W ′) is disjoint from T . That is, F ′ ⊆ E(G) \ T .1070
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To prove that F ′ spans T , it is sufficient to show that for every uv ∈ T , there1071

is a minimal cut-set C∗uv of G such that uv ∈ C∗uv ⊆ F ′ ∪ {uv}. Let uv ∈ T \ {xy}.1072

To obtain a contradiction, suppose there is no minimal cut-set Ĉuv in G such that1073

uv ∈ Ĉuv ⊆ F ′ ∪ {uv}. Then, there is a (u, v)-path P in G such that P has no edge1074

of F ′ ∪{uv}. On the other hand G has a cut-set Cuv such that uv ∈ Cuv ⊆ F ∪{uv}.1075

This implies that every path between u and v that exists in G−(F ′∪{uv}), including1076

P , must contain an edge of Cuv such that it is present in ∆G′(W ) (these are the1077

only edges we have removed from F ). By our assumption we know that P does not1078

contain any edge from ∆G′(W ) (else we will be done). Now we know that W can1079

contain at most one vertex from Y . Since W does not contain both end-points of an1080

edge in T we have that at most one of u or v belongs to W . First let us assume that1081

W ∩ {u, v} = ∅. Thus by the definition of semi-important set, W ′ ∩ Y ⊆ W ∩ Y , we1082

have that u, v is outside of W ′. However, we know that ∆G′(W ) contains an edge1083

of P and thus contains a vertex z ∈ W that is on P . Since W ( W ′ we have that1084

∆G(W ′) contains at least two edges of P . However, none of these edges are present1085

in ∆G′(W ′). The only edges G′ misses are those in T and thus the edges present in1086

∆G(W ′) ∩ E(P ) must belong to T . Let Z denote the set of end-points of edges in1087

∆G(W ′) ∩ E(P ). Observe that, Z ∩ S′ = Z ∩ S. Let z1 denote the first vertex on1088

P belonging to W ′ (or W ) and z2 denote the last vertex on P belonging to W ′ (or1089

W ), respectively, when we walk along the path P starting from u. Since z1 and z21090

belongs to W and G[W ] is connected we have that there is a path Qz1z2 in G[W ].1091

Let Puz1 denote the subpath of P between u and z1 and let Pz2v denote the subpath1092

of P between z2 and v. This implies that the path P ′ between u and v obtained by1093

concatenating Puz1Qz1z2Pz2v does not intersect ∆G′(W ). Observe that P ′ does not1094

contain any edge of ∆G′(W ) and F ′∪{uv}. This is a contradiction to our assumption1095

that every path between u and v that exists in G− (F ′ ∪ {uv}) must contain an edge1096

of Cuv such that it is present in ∆G′(W ).1097

Now we consider the case when |W ∩ {u, v}| = 1 and say W ∩ {u, v} is u. We1098

know that ∆G′(W ) contains an edge of P . Since W (W ′ we have that ∆G(W ′) also1099

contains at least one edge of P . However, none of these edges are present in ∆G′(W ′).1100

The only edges G′ misses are those in T and thus the edges present in ∆G(W ′)∩E(P )1101

must belong to T . Let Z denote the set of end-points of edges in ∆G(W ′) ∩ E(P ).1102

Observe that, Z ∩ S′ = Z ∩ S. Let z1 denote the first vertex on P belonging to W ′1103

(or W ) when we walk along the path P starting from v. Since z1 and u belongs to W1104

and G[W ] is connected we have that there is a path Quz1 in G[W ]. Let Pw1v denote1105

the subpath of P between w2 and v. This implies that the path P ′ between u and1106

v obtained by concatenating Puz1Pz1v does not intersect ∆G′(W ). Observe that P ′1107

does not contain any edge of ∆G′(W ) and F ′ ∪ {uv}. This is a contradiction to our1108

assumption that every path between u and v that exists in G − (F ′ ∪ {uv}) must1109

contain an edge of Cuv such that it is present in ∆G′(W ). This completes the proof.1110

Lemma 6.10. Space Cover can be solved in time 2O(k) · ||M ||O(1) on cographic1111

matroids.1112

Proof. Let (M,w, T, k) be an instance of Space Cover, where M is a cographic1113

matroid.1114

First, we exhaustively apply Reduction Rules 5.1-5.5. Thus, by Lemma 5.4, in1115

polynomial time we either solve the problem or obtain an equivalent instance, where1116

M has no loops, the weights of nonterminal elements are positive and |T | ≤ k. To1117

simplify notation, we also denote the reduced instance by (M,w, T, k). Observe that1118

M remains to be cographic. It is well-known that given a cographic matroid, in1119
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polynomial time one can find a graph G such that M is isomorphic to the bond1120

matroid M∗(G) [39].1121

Next, we replace the weighted graph G by the unweighted graph G′ as follows.1122

For any nonterminal edge uv, we replace uv by w(uv) parallel edges with the same1123

end vertices u and v if w(uv) ≤ k, and we replace uv by k + 1 parallel edges if1124

w(uv) > k. There is F ⊆ E(G) \ T of weight at most k such that F spans T in G1125

if and only if there is F ′ ⊆ E(G′) \ T of size at most k such that F ′ spans T in G′.1126

In other words, we have that I = (M∗(G′), w′, T, k), where w′(e) = 1 for e ∈ E(G′),1127

is an equivalent instance of the problem. Notice that Reduction Rule 5.2 (Terminal1128

circuit reduction rule) for M∗(G′) can be restated as follows: if there is a minimal1129

cut-set R ⊆ T , then contract any edge e ∈ R in the graph G′.1130

It is well known that if H is a forest on n vertices then there are at least n
2 vertices1131

of degree at most two. Suppose that I is a yes-instance, and F ⊆ E(G′) \ T of size1132

at most k spans T . We know that in G′ − F every edge of T is a bridge and we let1133

the degree of a connected component C of G′−F −T , denoted by d∗(C,G′−F −T ),1134

be equal to the number of edges of T it is incident to. Notice that if we shrink each1135

connected component to a single vertex then we get a forest on at most |T |+1 ≤ k+11136

vertices and thus there are at least |T |/2 components such that d∗(C,G′ − F − T )1137

is at most two. Let I = (M∗(G′), w′, T, k) denote our instance. Let Q denote the1138

set of end vertices of edges in T and Z ⊆ Q. We assume by guessing all possibilities1139

in Step 3 that Z has the following property: If I is a yes-instance with a solution1140

F ⊆ E(G′)\T , then Z is the set of end vertices of terminals that are in the connected1141

components C of G− F − T such that d∗(C,G′ − F − T ) ≤ 2. Initially Z = ∅.1142

Algorithm ALG-CGM takes as instance (I,Q, Z) and executes the following steps.1143

1. While there is a minimal cut-set R ⊆ T of G do the following. Denote by1144

Z1 ⊆ Z the set of z ∈ Z such that z is incident to exactly one t ∈ T , and let1145

Z2 ⊆ Z be the set of z ∈ Z such that z is incident to two edges of T . Clearly,1146

Z1 and Z2 form a partition of Z. Find a minimal cut-set R ⊆ T and select1147

xy ∈ R. Contract xy and denote the contracted vertex by z. Set T = T \{xy}1148

and recompute Q. If x, y ∈ Z1 or if x /∈ Z or y /∈ Z, then set Z = Z \ {x, y}.1149

Otherwise, if x, y ∈ Z and {x, y} ∩ Z2 6= ∅, set Z = (Z \ {x, y}) ∪ {z}.1150

2. If Z is empty go to next step. Else, pick a vertex s ∈ Z and finds all1151

the (s, Y, k) semi-important set W in G′ − T such that ∆(W ) ≤ k, where1152

Y = W \{s}, using Lemma 6.8. For each such semi-important set W , we call1153

the algorithm ALG-CGM on (M∗(G′ −∆(W )), w′, T, k − |∆(W )|), W and Z.1154

By Lemma 6.9, I is a yes-instance if and only if one of the obtained instances1155

is a yes-instance of Space Cover.1156

3. Guess a subset Z ⊆ Q with the property that if I is a yes-instance with a1157

solution F ⊆ E(G′)\T , then Z is the set of end vertices of terminals that are1158

in the connected components C of G−F −T such that d∗(C,G′−F −T ) ≤ 2.1159

In particular, we do not include in Z the vertices that are incident to at least1160

3 edges of T . Now call ALG-CGM on (I,Q, Z). By the properties of the forest1161

we know that the size of |Z| ≥ |T |2 .1162

Notice that because on Step 2 there are no minimal cut-sets R ⊆ T , for each1163

considered semi-important set W , ∆(W ) is not empty. It means that the parameter1164

decreases in each recursive call. Moreover, by considering semi-important cuts of size i1165

for i = {1, . . . , k}, we decrease the parameter by at least i. Let ` = |Q|− |Z|. Because1166

there are at most 4i(1 + 4i+1) semi-important sets of size i, we have the following1167
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recurrences for the algorithm:1168

T (`, k) ≤ 2`T

(
`− `

4
, k

)
(6.4)1169

T (`, k) ≤
k∑

i=1

(4i(1 + 4i+1))T (`, k − i)(6.5)1170

By induction hypothesis we can show that the above recurrences solve to 16`84k. Since1171

` ≤ 2k we get that the above algorithm runs in time 2O(k) ·nO(1). This completes the1172

proof.1173

6.3.2. An algorithm for Restricted Space Cover. For1174

Restricted Space Cover we need the following variant of Lemma 6.9.1175

Lemma 6.11. Let M∗(G) be the bond matroid of G, T ⊆ E(G), t∗ ∈ T , e∗ =1176

uv ∈ E(G). Suppose that F ⊆ E(G) \ T spans T and F \ {e∗} spans t∗. Let also1177

x be an end vertex of an edge xy of T such that x is either in a leaf block or in a1178

degree two block in G − F , Y is the set of end vertices of the edges of T distinct1179

from x, G′ = G − T and let W = RG′−F (x). If u, v /∈ RG′−F (x), then there is a1180

(x, Y ∪ {u, v}, k)-semi-important set W ′ such that |∆G′(W ′)| ≤ |∆G′(W )| and for1181

F ′ = (F \∆G′(W ))∪∆G′(W ′), it holds that u, v /∈ RG′−F ′(x), F ′ spans T in M∗(G)1182

and F ′ \ {e∗} spans t.1183

The proof of Lemma 6.11 uses exactly the same arguments as the proof of1184

Lemma 6.9. The only difference is that we have to find a (x, Y ∪ {u, v}, k)-semi-1185

important set W ′ that separates x and {u, v}. To guarantee it, we can replace e∗ by1186

k + 1 parallel edges for k = |∆G′(W ′)| with the end vertices being u and v and use a1187

(x, Y ∪{u, v}, k)-semi-important set in the obtained graph. Modulo this modification,1188

the proof is analogous to Lemma 6.9 and hence omitted. Next we give the algorithm1189

for Restricted Space Cover on cographic matroids.1190

Lemma 6.12. Restricted Space Cover can be solved in time 2O(k) · ||M ||O(1)1191

on cographic matroids.1192

Proof. The proof uses the same arguments as the proof of Lemma 6.10. Hence,1193

we only sketch the algorithm here.1194

Let (M,w, T, k, e∗, t∗) be an instance of Restricted Space Cover, where M1195

is a cographic matroid. First, we exhaustively apply Reduction Rules 5.3 and 5.6-5.9.1196

Thus, by Lemma 5.4, in polynomial time we either solve the problem or obtain an1197

equivalent instance, where M has no loops, the weights of nonterminal elements are1198

positive and |T | ≤ k + 1. Notice that it can happen that e∗ is deleted by Reduction1199

Rules 5.3 and 5.6-5.9. For example, if e∗ is a loop then it can be deleted by Reduction1200

Rule 5.3. In this case we obtain an instance of Space Cover and can solve it using1201

Lemma 6.10. From now onwards we assume that e∗ is not deleted by our reduction1202

rules.1203

To simplify notation, we use (M,w, T, k, e∗, t∗) to denote the reduced instance. If1204

we started with cographic matroid then it remains so even after applying Reduction1205

Rules 5.3 and 5.6-5.9. Furthermore, given M , in polynomial time we can find a graph1206

G such that M is isomorphic to the bond matroid M∗(G) [39]. Let e∗ = pq.1207

Next, we replace the weighted graph G by the unweighted graph G′ as follows.1208

For any nonterminal edge uv 6= e∗, if w(uv) ≤ k then we replace uv by w(uv) parallel1209

edges with the same end vertices u and v. On the other hand if w(uv) > k then we1210

replace uv by k+ 1 parallel edges. Recall that w(e∗) = 0. Nevertheless, we replace e∗1211
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by k + 1 parallel edges with the end vertices p and q to forbid including pq to a set1212

that spans t∗.1213

Suppose that (M,w, T, k, e∗, t∗) is a yes-instance and let F ⊆ E(G) \ T is a1214

solution. Recall that in G − F every edge of T is a bridge and the degree of a1215

connected component C of G′ − F − T , denoted by d∗(C,G − F − T ), is equal to1216

the number of edges of T it is incident to. Notice that if we shrink each connected1217

component to a single vertex then we get a forest on at most |T |+ 1 ≤ k+ 1 vertices1218

and thus there are at least |T |/2 components such that d∗(C,G− F − T ) is at most1219

two. Only two components can contain p or q. Hence, there are at least |T |/2−2 such1220

components that do not include p, q. Moreover, there is at least one such component,1221

because F \ {e} spans t∗. Let Q denote the set of end vertices of edges in T and1222

Z ⊆ Q. Initially Z = ∅, but we assume that Z is the set of end vertices of terminals1223

that are in the connected components C of degree one of the graph obtained from G′1224

by deleting the edges of a solution and the terminals and, moreover, p, q /∈ C.1225

Our algorithm ALG-CGM-restricted takes as instance (G′, T, k,Q,Z) and proceeds1226

as follows.1227

1. While there is a minimal cut-set R ⊆ T of G do the following. Denote by1228

Z1 ⊆ Z the set of z ∈ Z such that z is incident to exactly one t ∈ T , and let1229

Z2 ⊆ Z be the set of z ∈ Z such that z is incident to two edges of T . Clearly,1230

Z1 and Z2 form a partition of Z. Find a minimal cut-set R ⊆ T and select1231

xy ∈ R such that xy 6= t∗ if R 6= {t∗} and let xy = t∗ otherwise. Contract1232

xy and denote the obtained vertex z. Set T = T \ {xy} and recompute W . If1233

x, y ∈ Z1 or if x /∈ Z or y /∈ Z, then set Z = Z \ {x, y}. Otherwise, if x, y ∈ Z1234

and {x, y} ∩ Z2 6= ∅, set Z = (Z \ {x, y}) ∪ {z}.1235

2. If t∗ /∈ T , then delete the edges pq. Notice that t∗ /∈ T only if we already1236

constructed a set that spans t∗. Hence, it is safe to get rid of e∗ of weight 0.1237

3. If Z is empty go to the next step. Else, pick a vertex s ∈ Z and find all the1238

(s, Y, k) semi-important sets W in G′ − T such that ∆(W ) ≤ k, where1239

Y =

{
(Q \ {s}) ∪ {p, q}, if t∗ ∈ T,
Q \ {s}, if t∗ /∈ T,

1240

using Lemma 6.8. Notice that if t∗ ∈ T , then there are k + 1 copies of pq.1241

Hence, W separates s from p and q. For each such semi-important set W , we1242

call the algorithm ALG-CGM-restricted on (G′ −∆(W ), T, k − |∆(W )|, Q, Z).1243

We use Lemma 6.11 to argue that the branching step is safe.1244

4. Guess a subset Z ⊆ Q with the property that Z is the set of end vertices1245

of terminals that are in the connected components C of degree at most two1246

of the graph obtained from G′ by the deletion of edges of a solution and the1247

terminals and, moreover, p, q /∈ C. In particular, we do not include in Z1248

the vertices that are incident to at least 3 edges of T . Now call ALG-CGM-1249

restricted on (G′, T, k,W,Z). Notice, that by the properties of the forest we1250

know that Z 6= ∅ and the size of |Z| ≥ |T |2 − 2.1251

Notice that because of Step 3 there are no minimal cut-sets R ⊆ T and thus1252

for each considered semi-important set W , ∆(W ) is not empty. It means that the1253

parameter decreases in each recursive call. Moreover, by considering semi-important1254

cuts of size i for i = {1, . . . , k}, we decrease the parameter by at least i. Let ` =1255

|Q| − |Z|. Because there are at most 4i(1 + 4i+1) semi-important sets of size i, we1256

This manuscript is for review purposes only.



COVERING VECTORS BY SPACES: REGULAR MATROIDS 29

have the following recurrences for the algorithm:1257

T (`, k) ≤ 2`T

(
`− `

4
+ 2, k

)
(6.6)1258

T (`, k) ≤
k∑

i=1

(4i(1 + 4i+1))T (`, k − i)(6.7)1259

As in the proof of Lemma 6.10 using induction hypothesis we can show that the above1260

recurrences solve to 16`84k. Since ` ≤ 2k+ 1 we get that the above algorithm runs in1261

time 2O(k) · nO(1). This completes the proof.1262

7. Solving Space Cover for regular matroids. In this section we conjure1263

all that have developed so far and design an algorithm for Space Cover on regular1264

matroids, running in time 2O(k) · ||M ||O(1). To give a clean presentation of our algo-1265

rithm we have divided the section into three parts. We first give some generic steps,1266

followed by steps when matroid in consideration is either graphic or cographic and1267

ending with a result that ties them all.1268

Let (M,w, T, k) be the given instance of Space Cover. First, we exhaustively1269

apply Reduction Rules 5.1-5.5. Thus, by Lemma 5.4, in polynomial time we either1270

solve the problem or obtain an equivalent instance, where M has no loops and the1271

weights of nonterminal elements are positive. To simplify notation, we also denote1272

the reduced instance by (M,w, T, k). We say that a matroid M is basic if it can be1273

obtained from R10 by adding parallel elements or M is graphic or cographic. If M is1274

a basic matroid then we can solve Space Cover using Lemmas 6.1, or 6.3 or 6.101275

respectively in time 2O(k) · ||M ||O(1). This results in the following lemma.1276

Lemma 7.1. Let (M,w, T, k) be an instance of Space Cover. If M is a basic1277

matroid then Space Cover can be solved in time 2O(k) · ||M ||O(1).1278

From now onwards we assume that the matroid M in the instance (M,w, T, k)1279

is not basic. Now using Corollary 4.4, we find a conflict tree T . Recall that the1280

set of nodes of T is the collection of basic matroids M and the edges correspond1281

to 1-, 2− and 3-sums. The key observation is that M can be constructed from M1282

by performing the sums corresponding to the edges of T in an arbitrary order. Our1283

algorithm is based on performing bottom-up traversal of the tree T . We select an1284

arbitrarily node r as the root of T . Selection of r, as the root, defines the natural1285

parent-child, descendant and ancestor relationship on the nodes of T . We say that u1286

is a sub-leaf if its children are leaves of T . Observe that there always exists a sub-leaf1287

in a tree on at least two nodes. Just take a node which is not a leaf and is farthest1288

from the root. Clearly, this node can be found in polynomial time.1289

Throughout, this section we fix a sub-leaf of T – a basic matroid Ms.1290

We say that a child of Ms is a 1-, 2- or 3-leaf, respectively, if the edge1291

between Ms and the leaf corresponds to 1-, 2- or 3-sum, respectively.1292

We first modify the decomposition by an exhaustive application of the following rule.1293

1294

Reduction Rule 7.1 (Terminal flipping rule). If there is a child M` of1295

a sub-leaf Ms such that there is e ∈ E(Ms) ∩ E(M`) that is parallel to a terminal1296

t ∈ E(M`) ∩ T in M`, then delete t from M` and add t to Ms as an element parallel1297

to e.1298

The safeness of Reduction Rule 7.1 follows from the following observation.1299
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Observation 7.1 ([8]). Let M = M1 ⊕M2. Suppose that there is e′ ∈ E(M2) \1300

E(M1) such that e′ is parallel to e ∈ E(M1) ∩ E(M2). Then M = M ′1 ⊕M ′2, where1301

M ′1 is obtained from M1 by adding a new element e′ parallel e and M ′2 is obtained1302

from M ′2 by the deletion of e′.1303

Proof of Observation 7.1 is implicit in [8]. Furthermore Reduction Rule 7.1 can1304

be applied in polynomial time. Notice also allowed to a matroid obtained from R101305

by adding parallel elements to be a basic matroid of a decomposition. Thus, we get1306

the following lemma.1307

Lemma 7.2. Reduction Rule 7.1 is safe and can be applied in polynomial time.1308

From now we assume that there is no child M` of Ms such that there exists an1309

element e ∈ E(Ms) ∩ E(M`) that is parallel to a terminal t ∈ E(M`) ∩ T in M`. In1310

what follows we do a bottom-up traversal of T and at each step we delete one of the1311

child of Ms. A child of Ms is deleted either because of an application of a reduction1312

rule or because of recursively solving the problem on a smaller sized tree. It is possible1313

that, while recursively solving the problem, we could possibly modify (or replace) Ms1314

to encode some auxiliary information that we have already computed while solving1315

the problem. We start by giving some generic steps that do not depend on the types1316

of either Ms or its child. Throughout the section, given the conflict tree T , we denote1317

by MT the matroid defined by T .1318

7.1. Few generic steps. We start by giving a reduction rule that is useful when1319

we have 1-leaf. The reduction rule is as follows.1320

Reduction Rule 7.2 (1-Leaf reduction rule). If there is a child M` of Ms1321

that is a 1-leaf, then do the following.1322

(i) If E(M`) ∩ T = ∅, then delete M` from T .1323
(ii) If E(M`) ∩ T 6= ∅, then find the minimum k′ ≤ k such that (M`, w`, T ∩1324

E(M`), k
′) is a yes-instance of Space Cover using Lemmas 6.1, or 6.31325

or 6.10, respectively, depending on which primary matroid M` is. Here, w` is1326

the restriction of w on E(M`). If (M`, w`, T ∩E(M`), k
′) is a no-instance for1327

every k′ ≤ k then we return no. Let T ′ be obtained from T by deleting the1328

node M`. Furthermore, for simplicity, let MT ′ be denoted by M ′, restriction1329

of w to E(MT ′) by w′ and T ∩ E(MT ′) be denoted by T ′. Our new instance1330

is (M ′, w′, T ′, k − k′).1331

Safeness of the reduction rule follows by the definition of 1-sum, and it can be applied1332

in time 2O(k) · ||M ||O(1). Thus we get the following result.1333

Lemma 7.3. Reduction Rule 7.2 is safe and can be applied in 2O(k) · ||M ||O(1)1334

time.1335

7.1.1. Handling 2-leaves. For 2-leaves, we either reduce a leaf or apply a re-1336

cursive procedure based on whether the leaf contains a terminal or not.1337

Reduction Rule 7.3 (2-Leaf reduction rule). If there is a child M` of Ms1338

that is a 2-leaf with E(Ms) ∩ E(M`) = {e} and T ∩ E(M`) = ∅, then find the min-1339

imum k′ ≤ k such that (M`, w`, {e}, k′) is a yes-instance of Space Cover using1340

Lemmas 6.1, or 6.3 or 6.10, respectively, depending on which primary matroid M`1341

is. Here, w`(e
′) = w(e′) for e′ ∈ E(M`) \ {e} and w`(e) = 0. If (M`, w`, {e}, k′) is1342

a no-instance for every k′ ≤ k then we set k′ = k + 1. Let T ′ be obtained from T1343

by deleting the node M`. Furthermore, for simplicity, let MT ′ be denoted by M ′. We1344

define w′ on E(M ′) as follows: for every e∗ ∈ E(MT ′), e∗ 6= e, set w′(e∗) = w(e∗)1345

and let w′(e) = k′. Our new instance is (M ′, w′, T, k).1346
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Lemma 7.4. Reduction Rule 7.3 is safe and can be applied 2O(k) · ||M ||O(1) time.1347

Proof. To show that the rule is safe, denote by M ′ the matroid defined by T ′ =1348

T − M` and let w′(e′) = w(e′) for e′ ∈ E(M ′) \ {e} and w′(e) = k′. By 2-Leaf1349

reduction rule, there is a cycle C of M` such that e ∈ C and the weight w(C \{e}) =1350

k′ is minimum among all cycles that include e.1351

Suppose that (M,w, T, k) is a yes-instance of Space Cover. Let F ⊆ E(M) \ T1352

be a set of weight at most k that spans T . If F ∩ E(M`) = ∅, then F spans T in M ′1353

and because e /∈ F , the weight of F is the same as before. Hence, (M ′, w′, T, k) is a1354

yes-instance. Assume that F∩E(M`) 6= ∅. Let F ′ = (F∩E(M ′)∪{e}. For each t ∈ T ,1355

there is a circuit Ct of M such that t ∈ Ct ⊆ F ∪ {t}. Because F ∩E(M`) 6= ∅, there1356

is t ∈ T such that Ct ∩E(M`) 6= ∅. By the definition of 2-sums, there are cycles C ′t of1357

M ′ and C ′′t of M` such that Ct = C ′t4C ′′t and we have that e ∈ C ′t∩C ′′t , because Ct is1358

a circuit, i.e., an inclusion-minimal nonempty cycle. Since w(C ′′t \ {e}) ≥ w(C \ {e}),1359

we have that w(F ′) ≤ k. To show that F ′ spans T , consider t ∈ T and a cycle Ct of1360

M such that t ∈ Ct ⊆ F ∪ {t}. If Ct ⊆ E(M ′), then Ct ⊆ F ′ ∪ {t} and F ′ spans t1361

in M ′. If Ct ∩ E(M`) 6= ∅, then there are cycles C ′t of M ′ and C ′′t of M` such that1362

e ∈ C ′t ∩ C ′′t and Ct = C ′t 4 C ′′t . Because C ′t ⊆ F ′ ∪ {t}, we have that F ′ spans t.1363

Assume now that (M ′, w′, T, k) is a yes instance. Let F ′ ⊆ E(M ′) \ T be a set of1364

weight at most k that spans T in M ′. If e /∈ F ′, then F ′ spans T in M and (M,w, T, k)1365

is a yes-instance. Suppose that e ∈ F ′. Let F = F ′4C. Clearly, w(F ) = w(F ′) ≤ k.1366

We have to show that F spans T . Let t ∈ T . There is a cycle C ′t in M ′ such that1367

t ∈ C ′t ⊆ F ′ ∪ {t}. If e /∈ C ′, then C ′t ⊆ F ∪ {t} and F spans t. If e ∈ C ′t, then for1368

Ct = C ′t 4 C, we have that t ∈ Ct ⊆ F ∪ {t} and it implies that F spans t.1369

The rule can be applied in time 2O(k) · ||M ||O(1) by Lemma 7.1. In fact, it can1370

be done in polynomial time, because we are solving Space Cover for the sets of1371

terminal of size one. It is easy to see that if M` is graphic, then the problem can be1372

reduced to finding a shortest path, and if M` is cographic, then we can reduce it to1373

the minimum cut problem.1374

Reduction Rule 7.3 takes care of the case when M` has no terminal. If it has1375

a terminal then we recursively solve the problem as described below in Branching1376

Rule 7.1, and if any of these recursive calls of the algorithm returns yes then we1377

return that the given instance is a yes-instance. Recall that F ⊆ E(M) \ T is a1378

solution for (M,w, T, k) if and only if for every t ∈ T , there is a circuit Ct such1379

that t ∈ Ct ⊆ F ∪ {t}. The three branches in the rule correspond to the structure1380

of these circuits Ct in a potential solution with respect to Ms ⊕2 M`: (i) there is1381

t ∈ T ∩ E(M`) such that Ct contains elements of both M` and Ms, (ii) there is1382

t ∈ T ∩E(Ms) such that Ct contains elements of both M` and Ms, and (iii) for every1383

t ∈ T , either Ct ⊆ E(M`) or Ct ⊆ E(Ms).1384

Branching Rule 7.1 (2-Leaf branching). If there is a child M` of Ms that1385

is a 2-leaf with E(Ms)∩E(M`) = {e} and T ∩E(M`) = T` 6= ∅, then do the following.1386

Let M ′ the matroid defined by T ′ = T −M` and let T ′ = T \T`. Consider the following1387

three branches.1388

(i) Let w′(e′) = w(e′) for e′ ∈ E(M ′) \ {e} and w′(e) = 0. Define w`(e
′) =1389

w(e′) for e′ ∈ E(M`) \ {e} and w`(e) = 0. Find the minimum k1 ≤ k1390

such that (M`, w`, T` ∪ {e}, k1) is a yes-instance of Space Cover using1391

Lemmas 6.1, or 6.3 or 6.10, respectively, depending on the type of M`. If1392

(M`, w`, T` ∪ {e}, k1) is a no-instance for every k1 ≤ k, then we return no1393

and stop. Otherwise, solve the problem on the instance (M ′, w′, T ′, k − k1).1394

(ii) Let w′(e′) = w(e′) for e′ ∈ E(M ′) \ {e} and w′(e) = 0. Define w`(e
′) = w(e′)1395
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for e′ ∈ E(M`) \ {e} and w`(e) = 0. Find the minimum k2 ≤ k such that1396

(M`, w`, T`, k2) is a yes-instance of Space Cover using Lemmas 6.1, or 6.31397

or 6.10, respectively, depending on the type of M`. If (M`, w`, T`, k2) is a1398

no-instance for every k2 ≤ k, then we return no and stop. Otherwise, solve1399

the problem on the instance (M ′, w′, T ′ ∪ {e}, k − k2).1400
(iii) Let w′(e′) = w(e′) for e′ ∈ E(M ′) \ {e} and w′(e) = k + 1. Define w`(e

′) =1401

w(e′) for e′ ∈ E(M`)\{e} and w`(e) = k+1. Find the minimum k3 ≤ k such1402

that (M`, w`, T`, k3) is a yes-instance of Space Cover using Lemmas 6.1,1403

or 6.3 or 6.10, respectively, depending on the type of M`. If (M`, w`, T`, k3)1404

is a no-instance for every k3 ≤ k, then we return no and stop. Otherwise,1405

solve the problem on the instance (M ′, w′, T ′, k − k3).1406

Lemma 7.5. Branching Rule 7.1 is exhaustive and in each recursive call the pa-1407

rameter strictly reduces. Each call of the rule takes 2O(k) · ||M ||O(1) time.1408

Proof. To show correctness, assume first that (M,w, T, k) is a yes-instance of1409

Space Cover. Let F ⊆ E(M) \ T be a set of weight at most k that spans T .1410

Without loss of generality we assume that F is inclusion-minimal and, therefore, F is1411

independent by Observation 3.1. For each t ∈ T , there is a circuit Ct of M such that1412

t ⊆ Ct ⊆ F ∪ {t}. We have the following three cases.1413

Case 1. There is Ct such that t ∈ T ′ and Ct ∩E(M`) 6= ∅. Let F` = F ∩E(M`) and1414

F ′ = (F ∩ E(M ′)) ∪ {e}. We claim that F` spans T` ∪ {e} in M` and F ′ spans T ′ in1415

M ′.1416

First, we show that F` spans T` ∪ {e} in M`. Since there is a circuit Ct such1417

that t ∈ T ′ and Ct ∩ E(M`) 6= ∅, there are cycles C ′t of M ′ and C ′′t of M` such that1418

Ct = C ′t 4 C ′′t and e ∈ C ′t ∩ C ′′t . Because e ∈ C ′′t and C ′′t \ {e} ⊆ F`, we have that1419

F` spans e in M`. Let t′ ∈ T`. Since F spans t′ in M , there is a cycle Ct′ of M such1420

that t′ ∈ Ct′ ⊆ F ∪{t′}. If Ct′ \ t′ ⊆ E(M`), then F` spans t′, because Ct′ \ {t′} ⊆ F`.1421

Suppose that Ct′∩E(M ′) 6= ∅. Then by the definition of 2-sum, there are cycles C ′t′ of1422

M ′ and C ′′t′ of M` such that e ∈ C ′t′ ∩C ′′t′ and Ct′ = C ′t′4C ′′t′ . Consider C = C ′′t 4C ′′t′ .1423

By Observation 3.4, C is a cycle. As C \ {e} ⊆ F`, e ∈ C ′′t′ ∩ C ′′t and t′ /∈ C ′′t , we1424

obtain that C is a cycle of M` and t′ ∈ C ⊆ F` ∪ {t′}. Therefore, F` spans t′.1425

To prove that F ′ spans T ′ in M ′, consider t′ ∈ T ′. Since F spans t′ in M , there1426

is a circuit Ct′ of M such that t′ ∈ Ct′ ⊆ F ∪ {t′}. If Ct′ \ t′ ⊆ E(M ′), then F ′1427

spans t′, because Ct′ \ {t′} ⊆ F ′. Suppose that Ct′ ∩ E(M`) 6= ∅. Then by the1428

definition of 2-sum, there are cycles C ′t′ of M ′ and C ′′t′ of M` such that e ∈ C ′t′ ∩ C ′′t′1429

and Ct′ = C ′t′ 4 C ′′t′ . Observe that C ′t′ \ {t′} ⊆ F ′ and, therefore, F ′ spans t′ in M ′.1430

Since F` spans T` ∪ {e} in M`, w(F`) ≥ k1. Because w(F ′) + w(F`) = w(F ) ≤ k1431

if the weight of e in M ′ is 0, w(F ′) ≤ k − k1 in this case. Hence, (M ′, w′, T ′, k − k1)1432

is a yes-instance for the first branch.1433

Case 2. There is Ct such that t ∈ T` and Ct ∩ E(M ′) 6= ∅. This case is symmetric1434

to Case 1, and by the same arguments, we show that (M ′, w′, T ′ ∪ {e}, k − k2) is a1435

yes-instance for the second branch.1436

Otherwise, we have the remaining case.1437

Case 3. For any t ∈ T ′, Ct ⊆ E(M ′) \ {e}, and for any t ∈ T`, Ct ⊆ E(M`) \ {e}.1438

Let F` = F ∩ E(M`) and F ′ = (F ∩ E(M ′)). Observe that F` spans T` in M` and1439

F ′ spans T ′ in M ′. In particular, w(F`) ≥ k3. Since w(F ′) + w(F`) = w(F ) ≤ k,1440

(M ′, w′, T ′, k − k3) is a yes-instance for the third branch.1441

Suppose now that we have a yes-answer for one of the branches. We consider 31442
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cases depending on the branch.1443

Case 1. (M ′, w′, T ′, k−k1) is a yes-instance for the first branch. Let F` ⊆ E(M`) be1444

a set of weight at most k1 that spans T` ∪ {e} in M` and let F ′ be a set of weight at1445

most k−k1 that spans T ′ in M ′. Consider F = F ′4F`. Clearly, w(F ) ≤ k. We claim1446

that F spans T . Let t ∈ T . Suppose that t ∈ T`. Notice that e /∈ F`, as e is a terminal1447

in the instance (M`, w`, T` ∪ {e}, k1). It implies that F` spans t in M . Assume now1448

that t ∈ T ′. Since F ′ spans t, there is a cycle Ct of M ′ such that t ∈ Ct ⊆ F ′ ∪ {t} .1449

If e /∈ Ct, then Ct \ {t} and, therefore, F spans t in M . Suppose that e ∈ Ce. The set1450

F` spans e in M`. Hence, there is a cycle Ce of M` such that e ∈ Ce ⊆ F` ∪ {e}. Let1451

C ′t = Ct4Ce. By definition, C ′t is a cycle of M . Because t ∈ C ′t and e /∈ Ct′ , we have1452

that C ′t \ {t} spans t. As C ′t ⊆ F , F spans t. Because F is a set of weight at most k1453

that spans T , (M,w, T, k) is a yes-instance.1454

Case 2. (M ′, w′, T ′ ∪ {e}, k − k2) is a yes-instance for the second branch. This case1455

is symmetric to Case 1, and we use the same arguments to show that (M,w, T, k) is1456

a yes-instance.1457

Case 3. (M ′, w′, T ′, k − k3) is a yes-instance for the third branch. Let F` ⊆ E(M`)1458

be a set of weight at most k1 that spans T` in M` and let F ′ be a set of weight at1459

most k − k1 that spans T ′ in M ′. Notice that e /∈ F` and e /∈ F ′, because the weight1460

of e is k + 1 in M` and M ′. Let F = F ′ ∪ F`. Clearly, w(F ) ≤ k. Let t ∈ T . Then1461

F` spans t in M . If t ∈ T ′, then F ′ spans t in M . Hence, F spans T . Therefore,1462

(M,w, T, k) is a yes-instance.1463

Notice that M` has no nonterminal elements of zero weight for the first and third1464

branches and the elements of T` are not loops, because of the application of the1465

reduction rules. Hence, k1, k3 ≥ 1. For the second branch, e has the zero weight, but1466

F` has no terminals parallel to e, because of Terminal flipping rule, hence, k2 ≥ 11467

as well. We conclude that all recursive calls are done for the parameters that are1468

strictly lesser that k.1469

The claim that each call of the rule (without recursive steps) takes 2O(k) ·||M ||O(1)1470

time follows from Lemma 7.1.1471

7.1.2. Handling 3-leaves. In this section we assume that all the children of Ms1472

are 3-leaves. The analysis of this cases is done along the same lines as for the case of1473

2-leaves. However, this case is significantly more complicated.1474

Observation 7.2. Let M be a matroid obtained from R10 by adding some parallel1475

elements. Then any circuit of M has even size.1476

It immediately implies that Ms and its children are graphic or cographic matroids.1477

For 3-sums, it is convenient to make the following observation.1478

Observation 7.3. Let M = M1⊕3M2. If C is a cycle of M , then there are cycles1479

C1 and C2 of M1 and M2 respectively such that C = C14C2 and either C1 ∩C2 = ∅1480

or |C1∩C2| = 1. Moreover, if C is a circuit of M , then either C is a circuit of M1 or1481

M2, or there are circuits C1 and C2 of M1 and M2 respectively such that C = C14C21482

and |C1 ∩ C2| = 1.1483

Proof. Let Z = C1∩C2. Recall that Z is a circuit of M1 and M2. Let C = C14C21484

and |C1 ∩ C2| ≥ 2. Consider C ′1 = C1 4 Z and C ′2 = C2 4 Z. We have that C ′1 and1485

C ′2 are cycles of M1 and M2 respectively by Observation 3.4 and |C ′1 ∩ C ′2| ≤ 1. It1486

remains to notice that C = C ′14C ′2. The second claim immediately follows from the1487

fact that a circuit is an inclusion-minimal nonempty cycle.1488
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We use Observation 7.3 to analyze the structure of a solution of Space Cover1489

for matroid sums. If M = M1 ⊕3 M2 and for t ∈ T , a circuit C such that t ∈ C ⊆1490

F ∪ {t} for a solution F has nonempty intersection with E(M1) and E(M2), then1491

C = C14C2 for cycles C1 and C2 of M1 and M2 respectively and, moreover, it could1492

be assumed that C1 and C2 are circuits. By Observation 7.3, we can always assume1493

that C1 ∩ C2 = {e} for e ∈ E(M1) ∩ E(M2). Using this assumption, we say that C1494

goes through e in this case.1495

We also need the following observation about circuits of size 3.1496

Observation 7.4. Let M be a binary matroid, w : E(M) → N0. Let also C =1497

{e1, e2, e3} be a circuit of M . Suppose that F ⊆ E(M) \ C is a set of minimum1498

weight such that M has circuits (cycles) C1 and C2 such that e1 ∈ C1 ⊆ F ∪{e1} and1499

e2 ∈ C2 ⊆ F ∪{e2}. Then F is a subset of E(M)\C of minimum weight such that for1500

each i ∈ {1, 2, 3}, M has a circuit (cycle) Ci such that ei ∈ Ci ⊆ F ∪ {ei}. Moreover,1501

for any distinct i, j ∈ {1, 2, 3}, F is a subset of minimum weight of E(M)\C such that1502

M has circuits (cycles) Ci and Cj such that ei ∈ Ci ⊆ F∪{ei} and ej ∈ Cj ⊆ F∪{ej}.1503

Proof. Let C ′ = C1 4 C2 4 C. Because M is binary, C ′ is a cycle by Observa-1504

tion 3.4. Since {e1} = C ∩ C1, {e2} = C ∩ C2 and e3 /∈ C1 ∪ C2 = F , C ′ contains1505

a circuit C3 such that e3 ∈ C3 ⊆ C ′ ⊆ F ∪ {e3}. Hence, the first claim holds by1506

symmetry. Also by symmetry, the second claim is fulfilled.1507

If a child of Ms has terminals, then we recursively solve the problem as described1508

below in Branching Rule 7.2 and if any of these recursive calls returns yes then we1509

return that the given instance is a yes-instance. Similarly to Reduction Rule 7.1, each1510

branch corresponds to the behavior of circuits Ct with the property that for t ∈ T ,1511

there is t ∈ Ct ⊆ F ∪ {t} for a potential solution F . Since for 3-sums the structure is1512

more complicated, we obtain 15 branches of 6 types.1513

Branching Rule 7.2 (3-Leaf branching). If there is a child M` of Ms that1514

is a 3-leaf with E(Ms) ∩ E(M`) = Z and T ∩ E(M`) = T` 6= ∅, then let M ′ the1515

matroid defined by T ′ = T − M` and let T ′ = T \ T`. We set w′(e) = w(e) for1516

e ∈ E(M ′) \ Z and w`(e) = w(e) for e ∈ E(M`) \ Z. We let Z = {e1, e2, e3} and1517

consider the following branches of six types.1518

(i) Let w`(eh) = k + 1 for h ∈ {1, 2, 3}. For each i ∈ {1, 2, 3} do the following.1519

Set w′(ei) = 0 and w′(eh) = k + 1 for h ∈ {1, 2, 3} such that h 6= i. Find1520

the minimum k
(1)
i ≤ k such that (M`, w`, T` ∪ {ei}, k(1)i ) is a yes-instance1521

of Space Cover using Lemmas 6.3 or 6.10, respectively, depending on the1522

type of M`. If (M`, w`, T` ∪ {ei}, k(1)i ) is a no-instance for every k
(1)
i ≤ k,1523

then we return no and stop. Otherwise, solve the problem on the instance1524

(M ′, w′, T ′, k − k(1)i ).1525
(ii) Let w`(eh) = k + 1 for h ∈ {1, 2, 3}. Set w′(e1) = w′(e2) = 0 and w′(e3) =1526

k + 1. Find the minimum k(2) ≤ k such that (M`, w`, T` ∪ {e1, e2}, k(2))1527

is a yes-instance of Space Cover using Lemmas 6.3 or 6.10, respectively,1528

depending on the type of M`. If (M`, w`, T` ∪ {e1, e2}, k(2)) is a no-instance1529

for every k(2) ≤ k, then we return no and stop. Otherwise, solve the problem1530

on the instance (M ′, w′, T ′, k − k(2)).1531
(iii) For any two distinct i, j ∈ {1, 2, 3}, do the following. Let h ∈ {1, 2, 3} such1532

that h 6= i, j. Set w`(ei) = 0 and w`(ej) = w`(eh) = k + 1. Let w′(ej) =1533

0 and w′(ei) = w′(eh) = k + 1. Find the minimum k
(3)
ij ≤ k such that1534

(M`, w`, T`∪{ej}, k(3)ij , ei, ej) is a yes-instance of Restricted Space Cover1535

using Lemmas 6.4 or 6.12, respectively, depending on the type of M`. If1536
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(M`, w`, T` ∪ {ej}, k(3)ij , ei, ej) is a no-instance for every k
(3)
ij ≤ k, then we1537

return no and stop. Otherwise, solve the problem on the instance (M ′, w′, T ′∪1538

{ei}, k − k(3)ij ).1539

(iv) Let w′(eh) = k + 1 for h ∈ {1, 2, 3}. For each i ∈ {1, 2, 3} do the following.1540

Set w`(ei) = 0 and w`(eh) = k + 1 for h ∈ {1, 2, 3} such that h 6= i. Find1541

the minimum k
(4)
i ≤ k such that (M`, w`, T`, k

(4)
i ) is a yes-instance of Space1542

Cover using Lemmas 6.3 or 6.10, respectively, depending on the type of M`.1543

If (M`, w`, T`, k
(4)
i ) is a no-instance for every k

(4)
i ≤ k, then we return no and1544

stop. Otherwise, solve the problem on the instance (M ′, w′, T ′∪{ei}, k−k(4)i ).1545

(v) Let w`(e1) = w`(e2) = 0 and w`(e3) = k+ 1. Set w′(e1) = w′(e2) = w′(e3) =1546

k + 1. Find the minimum k(5) ≤ k such that (M`, w`, T`, k
(5)) is a yes-1547

instance of Space Cover using Lemmas 6.3 or 6.10, respectively, depending1548

on the type of M`. If (M`, w`, T`, k
(5)) is a no-instance for every k(5) ≤ k1549

then we return no and stop. Otherwise, solve the problem on the instance1550

(M ′, w′, T ′ ∪ {e1, e2}, k − k(5)).1551
(vi) Set w`(e1) = w`(e2) = w`(e3) = k + 1 and w′(e1) = w′(e2) = w′(e3) =1552

k + 1. Find the minimum k(6) ≤ k such that (M`, w`, T`, k
(6)) is a yes-1553

instance of Space Cover using Lemmas 6.3 or 6.10, respectively, depending1554

on the type of M`. If (M`, w`, T`, k
(6)) is a no-instance for every k(6) ≤ k,1555

then we return no and stop. Otherwise, solve the problem on the instance1556

(M ′, w′, T ′, k − k(6)).1557

Note that the branching of the third type is the only place of our algorithm where1558

we are solving Restricted Space Cover.1559

Lemma 7.6. Branching Rule 7.2 is exhaustive and in each recursive call the pa-1560

rameter strictly reduces. Each call of the rule takes 2O(k) · ||M ||O(1) time.1561

Proof. To show correctness, assume first that (M,w, T, k) is a yes-instance of1562

Space Cover. Let F ⊆ E(M) \ T be a set of weight at most k that spans T .1563

Without loss of generality we assume that F is inclusion minimal and, therefore, F1564

is independent by Observation 3.1. For each t ∈ T , there is a circuit Ct of M such1565

that t ⊆ Ct ⊆ F ∪ {t}. We have the following five cases corresponding to the types of1566

branches.1567

Case 1. There is i ∈ {1, 2, 3} such that a)there is t ∈ T ′ such that Ct ∩ E(M`) 6= ∅1568

and Ct goes through ei, and b)for any t ∈ T , there is no circuit Ct that goes through1569

eh ∈ Z for h 6= i. Let F` = F ∩ E(M`) and F ′ = (F ∩ E(M ′)) ∪ {ei}. We claim that1570

F` spans T` ∪ {ei} in M` and F ′ spans T ′ in M ′.1571

First, we show that F` spans T` ∪ {ei} in M`. By a), there is t ∈ T ′ such that1572

Ct ∩E(M`) 6= ∅ and Ct goes through ei. Hence, there are cycles C ′t of M ′ and C ′′t of1573

M` respectively such that Ct = C ′t4C ′′t and C ′t∩C ′′t = {ei}. Because C ′′t \{ei} ⊆ F`,1574

we obtain that F` spans ei in M`. Let t′ ∈ T`. Since F spans t′ in M , there is a1575

circuit Ct′ of M such that t′ ∈ Ct′ ⊆ F ∪ {t′}. If Ct′ \ t′ ⊆ E(M`), then F` spans1576

t′, because Ct′ \ {t′} ⊆ F`. Suppose that Ct′ ∩ E(M ′) 6= ∅. By b), Ct′ goes through1577

ei. Then there are cycles C ′t′ of M ′ and C ′′t′ of M` such that {ei} = C ′t′ ∩ C ′′t′ and1578

Ct′ = C ′t′ 4 C ′′t′ . Consider C = C ′′t 4 C ′′t′ . By Observation 3.4, C is a cycle. As1579

C \ {ei} ⊆ F`, {ei} = C ′′t′ ∩ C ′′t and t′ /∈ C ′′t , we obtain that C is a cycle of M` and1580

t′ ∈ C ⊆ F` ∪ {t′}. Therefore, F` spans t′.1581

To prove that F ′ spans T ′ in M ′, consider t′ ∈ T ′. Since F spans t′ in M , there1582

is a circuit Ct′ of M such that t′ ∈ Ct′ ⊆ F ∪ {t′}. If Ct′ \ t′ ⊆ E(M ′), then F ′ spans1583

t′, because Ct′ \ {t′} ⊆ F ′. Suppose that Ct′ ∩ E(M`) 6= ∅. Then by the definition1584
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of 3-sum and b), there are cycles C ′t′ of M ′ and C ′′t′ of M` such that {ei} = C ′t′ ∩ C ′′t′1585

and Ct′ = C ′t′ 4 C ′′t′ . Observe that C ′t′ \ {t′} ⊆ F ′ and, therefore, F ′ spans t′ in M ′.1586

Since F` spans T`∪{ei} in M`, w(F`) ≥ k(1)i . Because w(F ′)+w(F`) = w(F ) ≤ k1587

if the weight of ei in M ′ is 0, w(F ′) ≤ k−k(1)i in this case. Hence, (M ′, w′, T ′, k−k(1)i )1588

is a yes-instance for a branch of type (i).1589

Case 2. There are distinct i, j ∈ {1, 2, 3} such that a)there is t ∈ T ′ such that1590

Ct ∩E(M`) 6= ∅ and Ct goes through ei, b) there is t ∈ T ′ such that Ct ∩E(M`) 6= ∅1591

and Ct goes through ej . Let F` = F ∩ E(M`) and F ′ = (F ∩ E(M ′)) ∪ {e1, e2}. We1592

claim that F` spans T` ∪ {e1, e2} in M` and F ′ spans T ′ in M ′.1593

We prove first that F` spans T` ∪ {ei, ej} in M`. By a), there is t ∈ T ′ such that1594

Ct ∩E(M`) 6= ∅ and Ct goes through ei. Hence, there are cycles C ′t of M ′ and C ′′t of1595

M` respectively such that Ct = C ′t4C ′′t and C ′t∩C ′′t = {ei}. Because C ′′t \{ei} ⊆ F`,1596

obtain that F` spans ei in M`. By the same arguments and b), we have that F` spans1597

ej in M`. Let h ∈ {1, 2, 3} such that h 6= i, j. Since F` spans ei and ej in M`, there1598

are cycles Ci and Cj of M` such that ei ∈ Ci ⊆ F` ∪ {ei} and ej ∈ Cj ⊆ F` ∪ {ej}.1599

Consider C = Ci 4 Cj 4 Z. By Observation 3.4, C is a cycle of M`. Notice that1600

eh ∈ C ⊆ F` ∪ {eh}. Hence, F` spans eh. Because F` spans Z = {e1, e2, e3}, in1601

particular, F` spans e1 and e2. Let t ∈ T`. Since F spans t in M , there is a circuit1602

Ct of M such that t ∈ Ct ⊆ F ∪ {t}. If Ct \ t ⊆ E(M`), then F` spans t, because1603

Ct\{t} ⊆ F`. Suppose that Ct∩E(M) 6= ∅. We have that Ct goes through eh for some1604

h ∈ {1, 2, 3}. Then there are cycles C ′t of M ′ and C ′′t of M` such that {eh} = C ′t ∩C ′′t1605

and Ct = C ′t 4 C ′′t . Consider C = Ch 4 C ′′t′ . By Observation 3.4, C is a cycle of M`.1606

Notice that t ∈ C ⊆ F` ∪ {t} and, therefore, F` spans t.1607

Now we show that F ′ spans T ′ in M ′. Let t ∈ T ′. Since F spans t in M , there is a1608

circuit Ct of M such that t ∈ Ct ⊆ F ∪{t}. If Ct\t ⊆ E(M ′), then F ′ spans t, because1609

Ct \ {t} ⊆ F ′. Suppose that Ct ∩E(M`) 6= ∅. Then there are cycles C ′t of M ′ and C ′′t1610

of M` such that {eh} = C ′t ∩ C ′′t for some h ∈ {1, 2, 3} and Ct = C ′t′ 4 C ′′t . If h = 11611

or h = 2, then C ′t \ {t} ⊆ F ′ and, therefore, F ′ spans t′ in M ′. Let h = 3. Consider1612

C = C ′t 4 Z. Now t ∈ C ⊆ F ′ ∪ {t}. Because C is a cycle of M ′ by Observation 3.4,1613

F ′ spans t in M ′.1614

Since F` spans T` ∪ {e1, e2} in M`, w(F`) ≥ k(2). Because w(F ′) + w(F`) =1615

w(F ) ≤ k, w(F ′) ≤ k−k(2) in this case. Hence, (M ′, w′, T ′, k−k(2)) is a yes-instance1616

for a branch of type (ii).1617

Case 3. There are distinct i, j ∈ {1, 2, 3} such that a)there is t ∈ T` such that1618

Ct ∩E(M ′) 6= ∅ and Ct goes through ei, b) there is t′ ∈ T ′ such that Ct′ ∩E(M`) 6= ∅1619

and Ct′ goes through ej , and c) for any t′′ ∈ T , there is no circuit Ct′′ that goes through1620

eh ∈ Z for h 6= i, j. Let F` = (F ∩ E(M`)) ∪ {ei} and F ′ = (F ∩ E(M ′)) ∪ {ej}. We1621

claim that F` spans T` ∪ {ej} and F` \ {ei} spans ej in M` and F ′ spans T ′ ∪ {ei} in1622

M ′.1623

We prove that F` spans T`∪{ej}. By b), there is t′ ∈ T ′ such that Ct′∩E(M`) 6= ∅1624

and Ct′ goes through ej . Then there are cycles C ′t′ and C ′′t′ of M ′ and M` respectively1625

such that Ct′ = C ′t′ 4 C ′′t′ and C ′t′ ∩ C ′′t′ = {ej}. Because ej ∈ C ′′t′ ⊆ F` ∪ {ej} and1626

ei /∈ C ′′t′ , F` \ {ei} spans ej in M`. Let t′′ ∈ T`. There is a circuit Ct′′ of M such that1627

t′′ ∈ Ct′′ ⊆ F ∪ {t′′}. If Ct′′ \ {t′′} ⊆ E(M`), then Ct′′ \ {t′′} ⊆ F` and F` spans t′′ in1628

M`. Assume that Ct′′ ∩E(M ′) 6= ∅. Then there are cycles C ′t′′ and C ′′t′′ of M ′ and M`1629

respectively such that Ct′′ = C ′t′′ 4 C ′′t′′ and C ′t′′ ∩ C ′′t′′ = {eh} for some h ∈ {1, 2, 3}.1630

By c), either h = i of h = j. If h = i, then eh ∈ F` and, therefore, C ′′t′′ \ {t′} ⊆ F`.1631

Hence, F` spans t′′ in this case. Assume that h = j and consider C = C ′′t′′ 4 C ′′t′ .1632
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Notice that C is a cycle of M` by Observation 3.4 and t′′ ∈ C ⊆ F` ∪ {t′′}. Hence, F`1633

spans t′′.1634

The proof of the claim that F ′ spans T ′∪{ei} in M ′ is done by the same arguments1635

using symmetry.1636

Since F` spans T`∪{ej} in M`, w(F`) ≥ k(3)ij . Because w(F ′)+w(F`) = w(F ) ≤ k,1637

w(F ′) ≤ k− k(3)ij in this case. Hence, (M ′, w′, T ′ ∪ {ei}, k− k(3)ij ) is a yes-instance for1638

a branch of type (iii).1639

Case 4. There is i ∈ {1, 2, 3} such that a)there is t ∈ T` such that Ct ∩ E(M ′) 6= ∅1640

and Ct goes through ei, and b)for any t ∈ T , there is no circuit Ct that goes through1641

eh ∈ Z for h 6= i. Notice that this case is symmetric to Case 1. Using the same1642

arguments, we prove that (M ′, w′, T ′ ∪{ei}, k− k(4)i ) is a yes-instance for a branch of1643

type (iv).1644

Case 5. There are distinct i, j ∈ {1, 2, 3} such that a)there is t ∈ T` such that1645

Ct ∩E(M ′) 6= ∅ and Ct goes through ei, b) there is t ∈ T ′ such that Ct ∩E(M ′) 6= ∅1646

and Ct goes through ej . This case is symmetric to Case 2. Using the same arguments,1647

we obtain that (M ′, w′, T ′ ∪ {e1, e2}, k − k(5)) is a yes-instance for a branch of type1648

(v).1649

If the conditions of Cases 1–5 are not fulfilled, we get the last case.1650

Case 6. For any t ∈ T , either Ct ⊆ E(M`) or Ct ⊆ E(M ′). Let F` = F ∩ E(M`)1651

and F ′ = F ∩ E(M ′). We have that F` spans T` and F ′ spans T ′. Notice that1652

w(F`) ≥ k(6). Because w(F ′) +w(F`) = w(F ) ≤ k, we have that (M ′, w′, T ′, k− k(6))1653

is a yes-instance for a branch of type (vi).1654

Assume now that for one of the branches, we get a yes-answer. We show that1655

the original instance (M,w, T, k) is a yes-instance. To do it, we consider 6 cases1656

corresponding to the types of branches. We use essentially the same arguments in all1657

the cases: we take a solution F ′ for the instance obtained in the corresponding branch1658

and combine it with a solution F` of the instance for M` to obtains a solution for the1659

original instance.1660

Case 1. (M ′, w′, T ′, k − k
(1)
i ) is a yes-instance of a branch of type (i). Let F` ⊆1661

E(M`) \ (T` ∪ {ei}) with w`(F`) ≤ k
(1)
i be a set that spans T` ∪ {ei} in M`. Clearly,1662

k
(1)
i ≤ k. Consider F ′ ⊆ E(M ′) \ T ′ with w′(F ′) ≤ k − k(1)i that spans T ′ in M ′. Let1663

F = (F ′ \ {ei})∪F`. Notice that Z ∩F` = ∅, because w`(eh) = k+ 1 for h ∈ {1, 2, 3}.1664

Similarly, eh /∈ F ′ for h ∈ {1, 2, 3} such that h 6= i, because w′(eh) = k + 1. Hence,1665

F ⊆ E(M) \ T . It is easy to see that w(F ) ≤ k. We show that F spans T in M .1666

Let t ∈ T . Suppose first that t ∈ T`. There is a circuit Ct of M` such that1667

t ∈ Ct ⊆ F` ∪ {t}. It is sufficient to notice that Ct is a cycle of M and, therefore, F1668

spans t in M . Let t ∈ T ′. There is a circuit Ct of M ′ such that t ∈ Ct ⊆ F ′ ∪ {t}.1669

If Ct \ {t} ⊆ F , i.e., ei /∈ Ct, then F ′ spans t. Suppose that ei ∈ Ct. Recall that F`1670

spans ei in M`. Hence, there is a cycle C(i) of M` such that ei ∈ C(i) ⊆ F` ∪ {ei}.1671

Let C ′t = Ct 4 C(i). By the definition of 3-sums, C ′t is a cycle of M . We have that1672

t ∈ C ′t ⊆ F ∪ {t} and, therefore, F spans t.1673

Case 2. (M ′, w′, T ′, k − k(2)) is a yes-instance of a branch of type (ii). Let F` ⊆1674

E(M`) \ (T` ∪ {e1, e2}) with w`(F`) ≤ k
(1)
i be a set that spans T` ∪ {e1, e2} in M`.1675

Clearly, k(2) ≤ k. Consider F ′ ⊆ E(M ′) \ T ′ with w′(F ′) ≤ k = k(2) that spans T ′ in1676

M ′. Let F = (F ′ \ {e1, e2}) ∪ F`. Notice that Z ∩ F` = ∅, because w`(eh) = k + 1 for1677
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h ∈ {1, 2, 3}. Similarly, e3 /∈ F ′, because w′(e3) = k + 1. Hence, F ⊆ E(M) \ T . It is1678

easy to see that w(F ) ≤ k. We show that F spans T in M .1679

Let t ∈ T . Suppose first that t ∈ T`. There is a circuit Ct of M` such that1680

t ∈ Ct ⊆ F` ∪ {t}. It is sufficient to notice that Ct is a cycle of M and, therefore, F1681

spans t in M . Let t ∈ T ′. There is a circuit Ct of M ′ such that t ∈ Ct ⊆ F ′ ∪ {t}.1682

If Ct \ {t} ⊆ F , i.e., e1, e2 /∈ Ct, then F ′ spans t. Suppose that e1 ∈ Ct and1683

e2 /∈ Ct. Recall that F` spans e1 in M`. Hence, there is a cycle C(1) of M` such that1684

e1 ∈ C(1) ⊆ F` ∪ {e1}. Let C ′t = Ct 4 C(1). By the definition of 3-sums, C ′t is a1685

cycle of M . We have that t ∈ C ′t ⊆ F ∪ {t} and, therefore, F spans t. If e1 /∈ Ct1686

and e2 ∈ Ct, then we observe that F` spans e2 in M` and there is a cycle C(2) of M`1687

such that e2 ∈ C(2) ⊆ F` ∪ {e1}. Then we conclude that F spans t using the same1688

arguments as before using symmetry. Suppose that e1, e2 ∈ Ct. Consider the cycle1689

C ′t = Ct4 C(1)4 C(2) of M . We have that t ∈ C ′t ⊆ F ∪ {t} and, therefore, F spans1690

t.1691

Case 3. (M ′, w′, T ′ ∪ {ei}, k − kij(3)) is a yes-instance of a branch of type (iii). Let1692

F` ⊆ E(M`) \ (T` ∪ {ej}) with w`(F`) ≤ k(3)ij be a set that spans T` ∪ {ej} in M` such1693

that F \ {ei} spans ej . Clearly, k
(3)
ij ≤ k. Consider F ′ ⊆ E(M ′) \ (T ′ ∪ {ei}) with1694

w′(F ′) ≤ k − k(3)ij that spans T ′ ∪ {e − i} in M ′. Let F = (F ′ \ {ej}) ∪ (F` \ {ei}).1695

Notice that eh /∈ F` = ∅ for h ∈ {1, 2, 3} such that h 6= i, because w`(eh) = k + 1,1696

and eh /∈ F ′ = ∅ for h ∈ {1, 2, 3} such that h 6= j, because w′(eh) = k + 1. Hence,1697

F ⊆ E(M) \ T . It is straightforward that w(F ) ≤ k. We show that F spans T in M .1698

Let t ∈ T . Suppose first that t ∈ T`. There is a circuit Ct of M` such that1699

t ∈ Ct ⊆ F` ∪ {t}. If ei /∈ F`, then Ct \ {t} ⊆ F and, therefore, F spans t in M .1700

Suppose that ei ∈ Ct. Because F ′ spans ei in M ′, there is a cycle C(i) of M ′ such1701

that ei ∈ C(i) ⊆ F ′ ∪ {ei}. Suppose that ej /∈ C(i). Let C ′t = Ct 4 C(i). We1702

have that C ′t is a cycle of M and t ∈ C ′t ⊆ F ∪ {t}. Hence, F spans t. Suppose1703

now that ej ∈ C(i). Since F` \ {ei} spans ej , there is a cycle C(j) of M` such that1704

ej ⊆ C(j) ⊆ (F` \ {ei}) ∪ {ej}. Let C ′t = Ct 4 C(i) 4 C(j). We obtain that C ′t is a1705

cycle of M and t ∈ C ′t ⊆ F ∪ {t}. Hence, F spans t. The proof for the case t ∈ T ′1706

uses the same arguments using symmetry.1707

Case 4. (M ′, w′, T ′ ∪ {ei}, k − ki(4)) is a yes-instance of a branch of type (iv). This1708

case is symmetric to Case 1 and is analyzed in the same way. We consider a set1709

F` ⊆ E(M`) \ T` with w`(F`) ≤ k
(4)
i that spans T` in M` and F ′ ⊆ E(M ′) \ T ′ with1710

w′(F ′) ≤ k− k(4)i that spans T ′ ∪ {ei} in M ′. Let F = F ′ ∪ (F` \ {ei}). We have that1711

F ⊆ E(M) \ T has weight at most k and spans T in M .1712

Case 5. (M ′, w′, T ′ ∪ {e1, e2}, k − k(5)) is a yes-instance of a branch of type (v).1713

This case is symmetric to Case 2 and is analyzed in the same way. We consider a set1714

F` ⊆ E(M`) \ T` with w`(F`) ≤ k(5) that spans T` in M` and F ′ ⊆ E(M ′) \ T ′ with1715

w′(F ′) ≤ k − k(5) that spans T ′ ∪ {e1, e2} in M ′. Let F = F ′ ∪ (F` \ {e1, e2}). We1716

have that F ⊆ E(M) \ T has weight at most k and spans T in M .1717

It remains to consider the last case.1718

Case 6. (M ′, w′, T ′, k − k(6)) is a yes-instance of a branch of type (v). Let F` ⊆1719

E(M`) \ T` with w`(F`) ≤ k(6) be a set that spans T` in M` and let F ′ ⊆ E(M ′) \ T ′1720

be a set with w′(F ′) ≤ k − k(6) that spans T ′ in M ′. Notice that for i ∈ {1, 2, 3},1721

ei /∈ F` and ei /∈ F ′, because w`(ei) = w′(ei) = k+ 1. Consider F = F ′F ∪F`. Clearly,1722

w(F ) ≤ k. We show that F spans T in M .1723
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Let t ∈ T . If t ∈ T`, then there is a circuit Ct of M` such that t ∈ Ct ⊆ F` ∪ {t}.1724

Since Ct ⊆ E(M`), we have that F` spans t in M . If t ∈ T ′, then by the same1725

arguments, F ′ spans t not only in M ′ but also in M .1726

Since we always have that k
(1)
i , k(2), k

(3)
ij , k

(4)
i , k(5), k(6) ≥ 1, the recursive calls are1727

done for the parameters that are strictly less than k. This completes the proof.1728

The claim that each call of the rule (without recursive steps) takes 2O(k) ·||M ||O(1)1729

time follows from Lemmas 6.4, 6.12 and 7.1.1730

From now onwards we assume that there is no child of Ms with ter-1731

minals. Recall that Ms is either a graphic or cographic matroid. The1732

subsequent steps depend on the type of Ms and are considered in sep-1733

arate sections.1734

7.2. The case of a graphic sub-leaf. Throughout this section we assume that1735

Ms is a graphic matroid. Let G be a graph such that its cycle matroid M(G) is1736

isomorphic to Ms. We assume that M(G) = Ms. Recall that the circuits of M(G)1737

are exactly the cycles of G. We reduce leaves in this case by the following reduction1738

rule. In this reduction rule we first solve a few instances of Space Cover and later1739

use the solutions to these instances to reduce the graph and re-define the weight1740

function.1741

Reduction Rule 7.4 (Graphic 3-leaf reduction rule). For a child M` of1742

Ms with T ∩ E(M`) = ∅, do the following. Let Z = {e1, e2, e3} = E(Ms) ∩ E(M`).1743

Set w`(e) = w(e) for e ∈ E(M`) \ Z, w`(e1) = w`(e2) = w`(e3) = k + 1.1744

(i) For each i ∈ {1, 2, 3}, find the minimum ki ≤ k such that (M`, w`, {ei}, ki)1745

is a yes-instance of Space Cover using Lemmas 6.3 or 6.10, respectively,1746

depending on the type of M`. If (M`, w`, {ei}, ki) is a no-instance for every1747

ki ≤ k, then we set ki = k + 1.1748

(ii) Find the minimum k′ ≤ k such that (M`, w`, {e1, e2}, k′) is a yes-instance of1749

Space Cover using Lemmas 6.3 or 6.10, respectively, depending on the type1750

of M`. If (M`, w`, {e1, e2}, k′) is a no-instance for every k′ ≤ k, then we set1751

k′ = k + 1. If k′ ≤ k, then we find an inclusion minimal set F` ⊆ E(M`) \ Z1752

of weight k′ that spans e1 and e2. Observe that Lemmas 6.3 or 6.10 are only1753

for decision version. However, we can apply standard self reducibility tricks1754

to make them output a solution also. There are circuits C1 and C2 of M` such1755

that e1 ∈ C1 ⊆ F`∪{e1}, e2 ∈ C2 ⊆ F`∪{e2} and F` = (C1\{e1})∪(C2\{e2}).1756

Notice that C1 and C2 can be found by finding inclusion minimal subsets of1757

F` that span e1 and e2, respectively.1758

Recall that Z induces a cycle of G. Denote by v1, v2, and v3 the vertices of the cycle.1759

Furthermore, let v1, v2, and v3 be incident to e3, e1, e1, e2 and e2, e3, respectively.1760

We construct the graph G′ by adding a new vertex u and making it adjacent to v1,1761

v2 and v3. Notice that because the circuits of M(G) are cycles of G, any circuit of1762

M(G) is also a circuit of M(G′). Let M ′ the matroid defined by the conflict tree T ′ =1763

T −M` and where Ms is replaced by M(G′). The weight function w′ : E(M ′)→ N is1764

defined by setting w′(e) = w(e) for e ∈ E(M ′) \ (Z ∪ {v1u, v2u, v3u}), w′(e1) = k1,1765

w′(e2) = k2, and w′(e3) = k3. If if k′ ≤ k then we set w′(v1u) = w(C1 \ (C2 ∪ {e1})),1766

w′(v3u) = w(C1 \ (C2 ∪ {e2})) and w′(v1u) = w(C1 ∩ C2); else we set w′(v1u) =1767

w′(v2u) = w′(v3u) = k + 1. The reduced instance is denoted by (M ′, w′, T, k).1768

The construction of G′ and Observation 7.4 immediately imply the following obser-1769

vation.1770
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Observation 7.5. For any distinct i, j ∈ {1, 2, 3},

w′(ei) + w′(ej) = ki + kj ≥ k′ = w′(v1u) + w′(v2u) + w′(v3u)

and if k′ ≤ k then w′(viu) +w′(vju) ≥ w′(vivj). Also, if w′(ei) +w′(ej) ≤ k for some1771

distinct i, j ∈ {1, 2, 3}, then k′ ≤ k.1772

We use Observation 7.5 to prove that the rule is safe.1773

Lemma 7.7. Reduction Rule 7.4 is safe and can be applied in 2O(k) · ||M ||O(1)1774

time.1775

Proof. Denote by M ′′ the matroid defined by T ′ = T −M`. To prove that the1776

rule is safe, first assume that (M,w, T, k) is a yes-instance. Then there is an inclusion1777

minimal set F ⊆ E(M) \T of weight at most k that spans T . If F ∩E(M`) = ∅, then1778

F spans T in M ′ as well and (M ′, w′, T, k) is a yes-instance. Suppose from now that1779

F ∩ E(M`) 6= ∅.1780

For each t ∈ T , there is a circuit Ct of M such that t ∈ C ⊆ F ∪ {t}. If1781

Ct ∩ E(M`) 6= ∅, Ct = C ′t 4 C ′′t , where C ′t is a cycle of M ′′ and C ′′t is a cycle of M`.1782

By Observation 7.3, we can assume that C ′t ∩C ′′t contains the unique element ei, i.e.,1783

Ct goes through ei. To simplify notation, it is assumed that v4 = v1. We consider1784

the following three cases.1785

Case 1. There is a unique ei ∈ Z such that for any t ∈ T , either Ct ⊆ E(M ′′) or Ct1786

goes through ei. Let F ′ = (F ∩ E(M ′′)) ∪ {ei}.1787

We show that F ′ spans T in M ′. Let t ∈ T . If Ct ⊆ E(M ′′), then t ∈ Ct ⊆1788

(F ∩ E(M ′′)) ∪ {t} and, therefore, F ′ spans t in M ′. Suppose that Ct ∩ E(M`) 6= ∅.1789

Then Ct = C ′t4C ′′t , where C ′t is a cycle of M ′′, C ′′t is a cycle of M` and C ′t∩C ′′t = {ei}.1790

We have that t ∈ C ′t ∪ {t} and C ′t \ {t} ⊆ F ′ spans t.1791

Because F ∩ E(M`) 6= ∅ and F is inclusion minimal spanning set, there is t ∈ T1792

such that Ct goes through ei. Let Ct = C ′t 4 C ′′t , where C ′t is a cycle of M ′′, C ′′t is1793

a cycle of M` and C ′t ∩ C ′′t = {ei}. Notice that C ′′t \ {ei} spans ei in M`. Hence,1794

w`(C
′′
t \ {ei}) ≥ ki. Because w′(ei) = ki, we conclude that w′(F ′) ≤ w(F ).1795

Since F ′ ⊆ E(M ′) \T spans T and has the weight at most k in M ′, (M ′, w′, T, k)1796

is a yes-instance.1797

Case 2. There are two distinct ei, ej ∈ Z such that for any t ∈ T , either Ct ⊆ E(M ′′),1798

or Ct goes through ei, or Ct goes through ej , and at least one Ct goes through ei and1799

at least one Ct goes through ej . Let F ′ = (F ∩ E(M ′′)) ∪ {v1u, v2u, v3u}.1800

We claim that F ′ spans T in M ′. Let t ∈ T . If Ct ⊆ E(M ′′), then t ∈ Ct ⊆ (F ∩1801

E(M ′′)) ∪ {t} and, therefore, F ′ spans t in M ′. Suppose that Ct ∩E(M`) 6= ∅. Then1802

Ct = C ′t4C ′′t , where C ′t is a cycle of M ′′, C ′′t is a cycle of M` and either C ′t∩C ′′t = {ei}1803

or C ′t ∩C ′′t = {ej}. By symmetry, let C ′t ∩C ′′t = {ei}. Because ei, viu, vi+1u induce a1804

cycle of the graph G′, {ei, viu, vi+1u} is a circuit of M ′ and C ′′′t = C ′t4{ei, viu, vi+1u}1805

is a cycle of M ′. We have that t ∈ C ′′′t ∪ {t} and C ′′′t \ {t} ⊆ F ′ spans t.1806

Because F ∩E(M`) 6= ∅, there is t ∈ T such that Ct goes through ei and there is1807

t′ ∈ T such that Ct′ goes through ej . Let Ct = C ′t 4 C ′′t and Ct′ = C ′t′ 4 C ′′t′′ , where1808

C ′t, C
′
t′ are cycles of M ′′, C ′′t , C

′′
t′ are cycles of M` and C ′t∩C ′′t = {ei}, C ′t′∩C ′′t′ = {ej}.1809

Notice that C ′′t \ {ei} spans ei in M` and C ′′t′ \ {ej} spans ej . Hence, w`((C
′′
t \ {ei})∪1810

(C ′′t′ \ {ej})) ≥ w`(F`) = k′ by Observation 7.4. Because w′({v1u, v2u, v3u}) = k′,1811

w′(F ′) ≤ w(F ).1812

Since F ′ ⊆ E(M ′) \T spans T and has the weight at most k in M ′, (M ′, w′, T, k)1813

is a yes-instance.1814
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Case 3. For each i ∈ {1, 2, 3}, there is t ∈ T such that Ct goes through ei. As in1815

Case 1, we set F ′ = (F ∩ E(M ′′)) ∪ {v1u, v2u, v3u} and use the same arguments to1816

show that F ′ ⊆ E(M ′) \ T spans T and has the weight at most k in M ′.1817

Assume now that the reduced instance (M ′, w′, T, k) is a yes-instance. Let F ′ ⊆1818

E(M ′) \ T be an inclusion minimal set of weight at most k that spans T in M ′. Let1819

S = {e1, e2, e3, v1u, v2u, v3u}. If F ′∩S = ∅, then F ′ ⊆ E(M) and, therefore, F ′ spans1820

T in M as well. Assume from now that F ′ ∩ S 6= ∅. By Observation 3.1 and because1821

{v1, v2, v3} separates u from V (G) \ {v1, v2, v3} in G′, the edges of F ′ ∩ S induce a1822

tree in G′. Moreover, u is incident to either 2 or 3 edges of this tree. We consider the1823

following cases depending on the structure of the tree.1824

Case 1. One one the following holds: i) v1u, v2u, v3u ∈ F ′ or ii) |{v1u, v2u, v3u}∩1825

F ′| = 2 and {e1, e2, e3}∩F ′ 6= ∅ or iii)|{e1, e2, e3}∩F ′| ≥ 2. We define F = (F ′\S)∪F`.1826

Clearly, F ⊆ E(M) \ T . Notice also that w′(F ∩ S) ≥ k′ by Observation 7.5 and,1827

therefore, w(F ) ≤ k. To show that (M,w, T, k) is a yes-instance, we prove that F1828

spans T in M .1829

Let t ∈ T . Since F ′ spans t in M ′, there is a circuit Ct of M ′ such that t ∈1830

Ct ⊆ F ′ ∪ {t}. If Ct ∩ S = ∅, then Ct \ {t} spans t in M . Suppose that Ct ∩ S 6= ∅.1831

As S induces a complete graph on 4 vertices in G′ and {v1, v2, v3} separate u from1832

V (G)\{v1, v2, v3}, we conclude that there is i ∈ {1, 2, 3} such that C ′t = (Ct\S)∪{ei}1833

is a cycle of M ′. Notice that C ′t is also a cycle of M ′′. By the definition of F` and1834

Observation 7.4, there is a cycle C ′′t of M` such that ei ∈ C ′′t ⊆ F` ∪ {ei}. Consider1835

the cycle C ′′′t = C ′t 4 C ′′t of M . We have that t ∈ C ′′′t ⊆ F and, therefore, F spans t.1836

If the conditions i)–iii) of Case 1 are not fulfilled, then F ′ ∩ S = {ei} for some1837

i ∈ {1, 2, 3}.1838

Case 2. F ′ ∩ S = {ei} for some i ∈ {1, 2, 3}. By the definition of w′(ei) = ki,1839

there is a circuit C of M` such that ei ∈ C ⊆ (E(M`)\Z)∪{ei} and w`(C \{ei}) = ki.1840

Let F = F ′ 4 C. Clearly, w(F ) ≤ k. We show that F spans T .1841

Let t ∈ T . Since F ′ spans t in M ′, there is a circuit Ct of M ′ such that t ∈1842

Ct ⊆ F ′ ∪ {t}. If Ct ∩ S = ∅, then Ct spans t in M . Suppose that Ct ∩ S 6= ∅, i.e.,1843

Ct ∩ S = {ei}. Notice that Ct is also a cycle of M ′′. Consider the cycle C ′t = Ct4C.1844

Since t ∈ C ′t ⊆ F ∪ {t}, F spans t.1845

From the description of Reduction Rule 7.4 and Lemma 7.1, it can be deduced1846

that Reduction Rule 7.4 can be applied in time 2O(k) · ||M ||O(1).1847

7.3. The case of a cographic sub-leaf. Now we have reached the final step1848

of our algorithm. Throughout this section we assume that Ms is a cographic matroid.1849

Let G be a graph such that the bond matroid of G is isomorphic to Ms. The algorithm1850

that constructs a good {1, 2, 3}-decomposition could be also be used to output the1851

graph G Without loss of generality, we can assume that G is connected. Also, recall1852

that the circuits of the bond matroid M∗(G) are exactly minimal cut-sets of G.1853

The isomorphism between Ms and M∗(G) is not necessarily unique. We could1854

choose any isomorphism between Ms and M∗(G) that is beneficial for our algorithmic1855

purposes. Indeed, in what follows we fix an isomorphism that is useful in designing1856

our algorithm. Let M
(1)
` , . . . ,M

(s)
` denote those leaves of the conflict tree T that are1857

also the children of Ms. Let Zi = E(Ms)∩E(M
(i)
` ), i ∈ {1, . . . , s}. If Ms has a parent1858

M∗ in T and E(Ms) ∩ E(M∗) 6= ∅, then let Z∗ denote Z∗ = E(Ms) ∩ E(M∗); we1859

emphasize that Z∗ may not exist. Next we define the notion of clean cut.1860
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Definition 7.8. We say that α(Zi) ⊆ E(G) is a clean cut with respect to an1861

isomorphism α : Ms →M∗(G), if there is a component H of G− α(Zi) such that1862

(i) H has no bridge,1863

(ii) E(H) ∩ α(Zj) = ∅ for j ∈ {1, . . . , s}, and1864

(iii) E(H) ∩ α(Z∗) = ∅ if Z∗ exists.1865

We call H a clean component of G− α(Zi).1866

Next we show that given any isomorphism between Ms and M∗(G), we can obtain1867

another isomorphism between Ms and M∗(G) with respect to which we have at least1868

one clean component.1869

Lemma 7.9. There is an isomorphism α : Ms → M∗(G) and a child M
(i)
` of1870

Ms such that α(Zi) is a clean cut with respect to α. Moreover, given any arbitrary1871

isomorphism from Ms to M∗(G), one can obtain such an isomorphism and a clean1872

cut together with a clean component in polynomial time.1873

Proof. We prove the lemma first assuming that Z∗ exists. Let α : Ms → M∗(G)1874

be an isomorphism. Clearly α maps E(Ms) to the edges of G. Suppose that there is1875

p ∈ {1, . . . , s} such that there is a component H of G−α(Zp) with E(H)∩α(Z∗) = ∅.1876

Then we set α0 = α, H(0) = H and i0 = p. Otherwise, let p ∈ {1, . . . , s}. Denote by1877

H1 and H2 the components of G− α(Zp). Because |Z∗| ≤ 3, E(H1)∩ α(Z∗) 6= ∅ and1878

E(H2) ∩ α(Z∗) 6= ∅, there is Hj for j ∈ {1, 2} such that |E(Hj) ∩ α(Z∗)| = 1. Let1879

{e} = E(Hj)∩α(Z∗). Since α(Z∗) is a cut-set, e is a bridge of Hj . By the minimality1880

of α(Z∗), every component of H − e contains an end vertex of an edge of α(Zp).1881

Since |α(Zp)| = 3, we obtain that there is e′ ∈ α(Zp) such that {e, e′} is a minimal1882

cut-set of G. Let α′(x) = α(x) for x ∈ E(Ms) \ {α−1(e), α−1(e′)}, α′(α−1(e)) = e′1883

and α′(α−1(e′)) = e. By Observation 3.2, α′ is an isomorphism of Ms to M∗(G).1884

Notice that now we have a component H of G − α′(Zp) with E(H) ∩ α′(Z∗) = ∅.1885

Respectively, we set α0 = α′, H(0) = H and i0 = p.1886

Assume inductively that we have a sequence (α0, i0, H
(0)), . . . , (αq, iq, H

(q)),1887

where α0, . . . , αq are isomorphisms of Ms to M∗(G), i0, . . . , iq ∈ {1, . . . , s}, H(j)1888

is a component of G−αj(Zij ) for j ∈ {1, . . . , q}, Z∗ ∩E(H(j)) = ∅ for j ∈ {1, . . . , s},1889

and V (H(0)) ⊃ . . . ⊃ V (H(q)).1890

If α(Ziq ) is a clean cut with respect to αq, the algorithm returns (αq, iq, H
(q))1891

and stops. Suppose that α(Ziq ) is not clean cut with respect to αq. We show that we1892

can extend the sequence in this case. To do it, we consider the following three cases.1893

Case 1. H(q) has a bridge e. Because loops of M are deleted by Loop reduction1894

rule, e is not a bridge ofG. Hence, each of the two components ofH(q) contains an end1895

vertex of an edge of αq(Ziq ). Since |Ziq | = 3, there is a component H ′ of H(q)−e that1896

contains an end vertex of a unique edge e′ of αq(Ziq ) and the other component H(q+1)1897

contains end vertices of two edges of αq(Ziq ). We obtain that {e, e′} is a minimal cut-1898

set of G. Let αq+1(x) = αq(x) for x ∈ E(Ms) \ {α−1q (e), α−1q (e′)}, αq+1(α−1q (e)) = e′1899

and αq+1(α−1q (e′)) = e. By Observation 3.2, αq+1 is an isomorphism of Ms to M∗(G).1900

Clearly, H(q+1) is a component of G − αq+1(Ziq ) and V (H(q+1)) ⊂ V (H(q)). Hence,1901

we can extend the sequence by (αq+1, iq+1, H
(q+1)) for iq+1 = iq.1902

Case 2. There is iq+1 ∈ {1, . . . , s} such that αq(Ziq+1
) ⊆ E(H(q)). Because αq(Ziq+1

)1903

is a minimal cut-set of G, we obtain that there is a component H(q+1) of G−αq(Ziq+1)1904

such that V (H(q+1)) ⊂ V (H(q)). We extend the sequence by (αq+1, iq+1, H
(q+1)) for1905

αq+1 = αq.1906

Case 3. There is iq+1 ∈ {1, . . . , s} such that αq(Ziq+1)∩E(H(q)) 6= ∅ but |αq(Ziq+1)∩1907
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E(H(q))| ≤ 2. If |αq(Ziq+1
) ∩ E(H(q))| = 1, then the unique edge e ∈ αq(Ziq+1

) ∩1908

E(H(q)) is a bridge of H(q), because αq(Ziq+1
) is a minimal cut-set. Hence, we1909

have Case 1. Assume that |αq(Ziq+1
) ∩ E(H(q))| = 1. Let H ′ be the component1910

of G − αq(Ziq ) distinct from H(q). Since |Ziq+1 | = 3, we have that |αq(Ziq+1) ∩1911

E(H ′)| = 1, then the unique edge e ∈ αq(Ziq+1
) ∩ E(H ′) is a bridge of H ′. By1912

the same arguments as in Case 1, there is e′ ∈ αq(Ziq ) such that {e, e′} is a min-1913

imal cut-set of G. Using Observation 3.2, we construct the isomorphism αq+1 of1914

Ms to M∗(G) by defining αq+1(x) = αq(x) for x ∈ E(Ms) \ {α−1q (e), α−1q (e′)},1915

αq+1(α−1q (e)) = e′ and αq+1(α−1q (e′)) = e. It remains to observe that G−αq+1(Ziq+1)1916

has a component H(q+1) such that V (H(q+1)) ⊂ V (H(q)) and extend the sequence by1917

(αq+1, iq+1, H
(q+1)).1918

For each j ≥ 1 we have that V (H(j) ⊂ V (H(j−1)). This implies that the sequence

(α0, i0, H
(0)), . . . , (αq, iq, H

(q))

has length at most n. Hence, after at most n iteration we obtain an isomorphism1919

α and a clean cut with respect to α together with a clean component. Since every1920

step in the iterative construction of the sequence (α0, i0, H
(0)), . . . , (αq, iq, H

(q)) can1921

be done in polynomial time, the algorithm is polynomial.1922

Recall that in the beginning we assume that Z∗ is present. The case when Z∗1923

is absent is more simpler and could be proved as in the case when Z∗ is present and1924

thus it is omitted.1925

Using Lemma 7.9, we can always assume that we have an isomorphism of Ms to1926

M∗(G) such that for a child M` of Ms in (T ), Z = E(Ms)∩E(M`) is mapped to a clean1927

cut. To simplify notation, we assume that Ms = M∗(G) and Z is a clean cut with1928

respect to this isomorphism. Denote by H the clean component. Let Z = {e1, e2, e3}1929

and let ei = xiyi for i ∈ {1, 2, 3}, where y1, y2, y3 ∈ V (H). Notice that some y1, y2, y31930

can be the same. We first handle the case when E(H) ∩ T = ∅.1931

7.3.1. Cographic sub-leaf: E(H) ∩ T = ∅.. In this case we give a reduction1932

rule that reduces the leaf M`. Recall that E(M`) ∩ T = ∅. Now we are ready to give1933

a reduction rule analogous to the one for graphic matroid.1934

Reduction Rule 7.5 (Cographic 3-leaf reduction rule). If E(H)∩ T = ∅,1935

then do the following. Set w`(e) = w(e) for e ∈ E(M`) \ Z, w`(e1) = w`(e2) =1936

w`(e3) = k + 1.1937

(i) For each i ∈ {1, 2, 3}, find the minimum k
(1)
i ≤ k such that (M`, w`, {ei}, k(1)i )1938

is a yes-instance of Space Cover using Lemmas 6.3 or 6.10, respectively,1939

depending on the type of M`. If (M`, w`, {ei}, k(1)i ) is a no-instance for every1940

k
(1)
i ≤ k, then we set k

(1)
i = k + 1.1941

(ii) Find the minimum p(1) ≤ k such that (M`, w`, {e1, e2}, p(1)) is a yes-instance1942

of Space Cover using Lemmas 6.3 or 6.10, respectively, depending on the1943

type of M`. If (M`, w`, {e1, e2}, p(1)) is a no-instance for every p(1) ≤ k),1944

then we set p(1) = k + 1. If p(1) ≤ k, then we find an inclusion minimal set1945

F` ⊆ E(M`)\Z of weight p(1) that spans e1 and e2. Observe that Lemmas 6.31946

or 6.10 are only for decision version. However, we can apply standard self1947

reducibility tricks to make them output a solution also. There are circuits1948

C1 and C2 of M` such that e1 ∈ C1 ⊆ F` ∪ {e1}, e2 ∈ C2 ⊆ F` ∪ {e2}1949

and F` = (C1 \ {e1}) ∪ (C2 \ {e2}). Notice that C1 and C2 can be found by1950

finding inclusion minimal subsets of F` that span e1 and e2 respectively. Let1951
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p
(1)
1 = w`(C1\(C2∪{e1})), p(1)2 = w`(C2\(C1∪{e2})) and p

(1)
3 = w`(C1∩C2).1952

If p(1) = k + 1, we set p
(1)
1 = p

(1)
2 = p

(1)
3 = k + 1.1953

Construct an auxiliary graph H ′ from H by adding a vertex u and edges e′1, e
′
2, e
′
3,1954

where e′i = uyi for i ∈ {1, 2, 3}; notice that this could result in multiple edges. Set1955

wh(e) = w(e) for e ∈ E(H) and set wh(e′1) = wh(e′2) = wh(e′3) = k + 1.1956

(iii) For each i ∈ {1, 2, 3}, find the minimum k
(2)
i ≤ k such that1957

(M∗(H ′), wh, {e′i}, k
(2)
i ) is a yes-instance of Space Cover using1958

Lemma 6.10. If (M∗(H ′), wh, {e′i}, k
(2)
i ) is a no-instance for every k

(1)
i ≤ k,1959

then we set k
(2)
i = k + 1.1960

(iv) Find the minimum p(2) ≤ k such that (M∗(H ′), wh, {e′1, e′2}, p(2)) is a yes-1961

instance of Space Cover using Lemma 6.10. If (M∗(H ′), wh, {e′1, e′2}, p(2))1962

is a no-instance for every p(2) ≤ k, then we set p(2) = k+1 . If p(2) ≤ k, then1963

we find an inclusion minimal set Fh ⊆ E(H ′) \Z of weight p(2) that spans e′11964

and e′2. Observe that Lemma 6.10 is only for decision version. However, we1965

can apply standard self reducibility tricks to make it output a solution also.1966

There are circuits C1 and C2 of M∗(H ′) such that e′1 ∈ C1 ⊆ Fh ∪ {e′1},1967

e2 ∈ C2 ⊆ Fh ∪ {e′2} and Fh = (C1 \ {e′1}) ∪ (C2 \ {e′2}). Notice that C1 and1968

C2 can be found by finding inclusion minimal subsets of Fh that span e′1 and1969

e′2 respectively. Let p
(2)
1 = wh(C1 \ (C2 ∪ {e′1})), p

(2)
2 = wh(C2 \ (C1 ∪ {e′2}))1970

and p
(3)
3 = wh(C1 ∩ C2). If p(2) = k + 1, we set p

(2)
1 = p

(2)
2 = p

(2)
3 = k + 1.1971

Construct the graph G′ from G − V (H) by adding three pairwise adjacent vertices1972

z1, z2, z3 and edges x1z1, x2z2, x3z3. Let M ′ the matroid defined by T ′ = T −M`,1973

where Ms is replaced by M∗(G′). The weight function w′ : E(M ′) → N is defined by1974

setting w′(e) = w(e) for e ∈ E(M ′) \ {x1z1, x2z2, x2z3, z1z2, z2z3, z1z3}, w′(xizi) =1975

min{k1i , k2i } for i ∈ {1, 2, 3}. If p(1) ≤ p(2), then w′(z1z3) = p
(1)
1 , w′(z2z3) = p

(1)
2 and1976

w′(z1z2) = p
(1)
3 , and w′(z1z3) = p

(2)
1 , w′(z2z3) = p

(2)
2 and w′(v1v2) = p

(2)
3 otherwise.1977

The reduced instance is (M ′, w′, T, k).1978

Similarl to Observation 7.5, we observe the following using Observation 7.4.1979

Observation 7.6. For each i ∈ {1, 2, 3}, and j, q ∈ {1, 2, 3} \ {i} we have that1980

w′(zizj) + w′(zizq) ≥ w′(xizi). Also, for any distinct i, j ∈ {1, 2, 3} and q ∈ {1, 2}, if1981

k
(q)
i + k

(q)
j ≤ k, then p(q) ≤ k(q)i + k

(q)
j .1982

The next lemma proves the safeness of the Reduction Rule 7.5.1983

Lemma 7.10. Reduction Rule 7.5 is safe and can be applied in 2O(k) · ||M ||O(1)1984

time.1985

Proof. Denote by M ′′ the matroid defined by T ′ = T −M`. To prove that the1986

rule is safe, assume first that (M,w, T, k) is a yes-instance. Then there is an inclusion1987

minimal set F ⊆ E(M) \ T of weight at most k that spans T .1988

Suppose that F ∩ E(M`) = ∅ and F ∩ E(H) = ∅. By the definition of G′, any1989

minimal cut-set C of G such that C ∩Z and C ∩E(H) = ∅ is a minimal cut-set of G′,1990

because H is a connected graph. We obtain that F spans T in M ′ and (M ′, w′, T, k)1991

is a yes-instance.1992

Assume that F ∩ E(M`) 6= ∅ and F ∩ E(H) = ∅. The proof for this case is, in1993

fact, almost identical to the proof for Graphic 3-leaf Reduction Rule.1994

For each t ∈ T , there is a circuit Ct of M such that t ∈ C ⊆ F ∪ {t}. If1995

Ct ∩ E(M`) 6= ∅, Ct = C ′t 4 C ′′t , where C ′t is a cycle of M ′′ and C ′′t is a cycle of1996

M`. By Observation 7.3, we can assume that C ′t and C ′′t are circuits of M ′′ and M`1997
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respectively and C ′t ∩ C ′′t contains the unique element ei, i.e., Ct goes through ei.1998

Notice that every (C ′t \ {ei}) ∪ {xizi} is a minimal cut-set of G′ and, therefore, a1999

circuit of M∗(G′). We consider the following three cases.2000

Case 1. There is a unique ei ∈ Z such that for any t ∈ T , either Ct ⊆ E(M ′′) or Ct2001

goes through ei. Let F ′ = (F ∩ E(M ′′)) ∪ {xizi}.2002

We show that F ′ spans T in M ′. Let t ∈ T . If Ct ⊆ E(M ′′), then t ∈ Ct ⊆ (F ∩2003

E(M ′′)) ∪ {t} and, therefore, F ′ spans t in M ′. Suppose that Ct ∩E(M`) 6= ∅. Then2004

Ct = C ′t4C ′′t , where C ′t is a circuit of M ′′, C ′′t is a circuit of M` and C ′t ∩C ′′t = {ei}.2005

We have that t ∈ C ′t ∪ {t} and ((C ′t \ {ei}) ∪ {xizi}) \ {t} ⊆ F ′ spans t.2006

Because F ∩ E(M`) 6= ∅ and F is inclusion minimal spanning set, there is t ∈ T2007

such that Ct goes through ei. Let Ct = C ′t 4 C ′′t , where C ′t is a circuit of M ′′, C ′′t is2008

a circuit of M` and C ′t ∩ C ′′t = {ei}. Notice that C ′′t \ {ei} spans ei in M`. Hence,2009

w`(C
′′
t \ {ei}) ≤ k

(1)
i . Because w′(xizi) ≤ k(1)i , we conclude that w′(F ′) ≤ w(F ).2010

Since F ′ ⊆ E(M ′) \T spans T and has the weight at most k in M ′, (M ′, w′, T, k)2011

is a yes-instance.2012

Case 2. There are two distinct ei, ej ∈ Z such that for any t ∈ T , either Ct ⊆ E(M ′′),2013

or Ct goes through ei, or Ct goes through ej , and at least one Ct goes through ei and2014

at least one Ct goes through ej . Let F ′ = (F ∩ E(M ′′)) ∪ {z1z2, z2z3, z1z3}.2015

We claim that F ′ spans T in M ′. Let t ∈ T . If Ct ⊆ E(M ′′), then t ∈ Ct ⊆2016

(F ∩ E(M ′′)) ∪ {t} and, therefore, F ′ spans t in M ′. Suppose that Ct ∩ E(M`) 6= ∅.2017

Then Ct = C ′t 4 C ′′t , where C ′t is a circuit of M ′′, C ′′t is a circuit of M` and either2018

C ′t ∩ C ′′t = {ei} or C ′t ∩ C ′′t = {ej}. By symmetry, let C ′t ∩ C ′′t = {ei}. Because2019

{xizi, zizi−1, zizi+1} (here and further it is assumed that z0 = z3 and z4 = z1) is a2020

minimal cut-set of G, {xizi, zizi−1, zizi+1} is a circuit of M ′ and C ′′′t = ((C ′t \ {ei})∪2021

{xizi}) 4 {xizi, zizi−1, zizi+1} is a cycle of M ′. We have that t ∈ C ′′′t ∪ {t} and2022

C ′′′t \ {t} ⊆ F ′ spans t.2023

Because F ∩ E(M`) 6= ∅, there is t ∈ T such that Ct goes through ei and there2024

is t′ ∈ T such that Ct′ goes through ej . Let Ct = C ′t 4 C ′′t and Ct′ = C ′t′ 42025

C ′′t′′ , where C ′t, C
′
t′ are cycles of M ′′, C ′′t , C

′′
t′ are cycles of M` and C ′t ∩ C ′′t = {ei},2026

C ′t′ ∩ C ′′t′ = {ej}. Notice that C ′′t \ {ei} spans ei in M` and C ′′t′ \ {ej} spans ej .2027

Hence, w`((C
′′
t \ {ei}) ∪ (C ′′t′ \ {ej})) ≥ w`(F`) = p(1) by Observation 7.4. Because2028

w′({z1z2, z2z3, z1z3}) ≥ p(1), w′(F ′) ≤ w(F ).2029

Since F ′ ⊆ E(M ′) \T spans T and has the weight at most k in M ′, (M ′, w′, T, k)2030

is a yes-instance.2031

Case 3. For each i ∈ {1, 2, 3}, there is t ∈ T such that Ct goes through ei. As in2032

Case 2, we set F ′ = (F ∩E(M ′′))∪ {z1z2, z2z3, z1z3} and use the same arguments to2033

show that F ′ ⊆ E(M ′) \ T spans T and has the weight at most k in M ′.2034

Suppose that F ∩ E(M`) = ∅ and F ∩ E(H) 6= ∅.2035

For each t ∈ T , there is a circuit Ct of M such that t ∈ C ⊆ F ∪ {t}. By the2036

definition of 1, 2 and 3-sums and Observation 7.3, we have that Ct = C ′t 4 C(1) 42037

. . .4 C(q), where C ′t is a circuit of Ms and each C(1), . . . , C(q) is a circuit of child of2038

Ms in T or a circuit in the matroid defined by the conflict tree T ′′ obtained from T2039

by the deletion of Ms and its children. Notice that if Ct ∩E(H) 6= ∅, then Ct ∩E(H)2040

is a minimal cut-set of H. Moreover, each component of H − Ct ∩ E(H) contains a2041

vertex from the set {y1, y2, y3}.2042

We consider the following three cases.2043

Case 1. There is a unique i ∈ {1, 2, 3} such that for any t ∈ T , either Ct ∩E(H) = ∅2044
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or yi is in one component of H − Ct ∩ E(H) and yi−1, yi+1 are in the other. Let2045

F ′ = (F \ E(H)) ∪ {xizi}.2046

We show that F ′ spans T in M ′. Let t ∈ T . If Ct ∩E(H) = ∅, then F ′ spans t in2047

M ′, because Ct is a circuit of M∗(G′) as H is connected. Suppose that Ct∩E(H) 6= ∅.2048

Consider C ′′t = (Ct \ (Ct ∩ E(H))) ∪ {xizi}. Since (C ′t \ (Ct ∩ E(H))) ∪ {xizi} is a2049

minimal cut-set of G, we obtain that C ′′t \ {t} ⊆ F ′ spans t in M ′.2050

Because F ∩ E(H) 6= ∅, there is t ∈ T such that Ct ∩ E(H) 6= ∅. Observe that2051

w(Ct ∩ E(H)) ≥ k(2)i ≥ w′(xizi). Hence, w′(F ′) ≤ w(F ).2052

Since F ′ ⊆ E(M ′) \T spans T and has the weight at most k in M ′, (M ′, w′, T, k)2053

is a yes-instance.2054

Case 2. There are two distinct i, j ∈ {1, 2, 3} such that for any t ∈ T , either i)2055

Ct ∩ E(H) = ∅ or ii) yi is in one component of H − Ct ∩ E(H) and yi−1, yi+1 are2056

in the other or iii) yj is in one component of H − Ct ∩ E(H) and yj−1, yj+1 are in2057

the other, and for at least one t, ii) holds and for at least one t iii) is fulfilled. Let2058

F ′ = (F \ E(H)) ∪ {z1z2, z2z3, z1z3}.2059

We claim that F ′ spans T in M ′. Let t ∈ T . If Ct ∩E(H) = ∅, then F ′ spans t in2060

M ′, because C ′t is a circuit of M∗(G′) as H is connected. Suppose that Ct∩E(H) 6= ∅.2061

By symmetry, assume without loss of generality that ii) is fulfilled for Ct. Consider2062

C ′′t = (Ct \ (Ct ∩ E(H))) ∪ {zizi−1, zizi+1}. Since (C ′t \ (Ct ∩ E(H))) ∪ {xizi} is a2063

minimal cut-set of G, we obtain that C ′′t \ {t} ⊆ F ′ spans t in M ′.2064

Because there are distinct i, j ∈ {1, 2, 3} such that ii) holds for some t ∈ T iii) for2065

some t′ ∈ T , we have that w(Ct∩E(H))+w(Ct′∩E(H)) ≥ k2 ≥ w′({z1z2, z2z3, z1z3}).2066

Hence, w′(F ′) ≤ w(F ). As F ′ ⊆ E(M ′) \ T spans T and has the weight at most k in2067

M ′, (M ′, w′, T, k) is a yes-instance.2068

Case 3. For each i ∈ {1, 2, 3}, there is t ∈ T such that yi is in one component of2069

H−Ct∩E(H) and yi−1, yi+1 are in the other. As in Case 2, we set F ′ = (F \E(H))∪2070

{z1z2, z2z3, z1z3} and use the same arguments to show that F ′ ⊆ E(M ′) \ T spans T2071

and has the weight at most k in M ′.2072

Finally, assume that F ∩ E(M`) 6= ∅ and F ∩ E(H) 6= ∅. For each t ∈ T , there2073

is a circuit Ct of M such that t ∈ C ⊆ F ∪ {t}. Then there is i ∈ {1, 2, 3} such that2074

Ct = C ′t 4 C ′′t , where C ′t and C ′′t are circuits of M ′′ and M`, and Ct goes through2075

ei, i.e, C ′t ∩ C ′′t = {ei}. Also there is j ∈ {1, 2, 3} such that yj is in one component2076

of H − Ct ∩ E(H) and yj−1, yj+1 are in the other. Notice that i 6= j, as otherwise2077

F contains a dependent set (Ct ∩ E(H)) ∪ {ei}, where yi is in one component of2078

H − Ct ∩ E(H) and yi−1, yi+1 are in the other, contradicting minimality of F . Let2079

F ′ = ((F ∩E(M ′′)) \E(H))∪{xizi, xjzj}. Denote by q ∈ {1, 2, 3} the element of the2080

set distinct from i and j.2081

We claim that F ′ spans T in M ′. Let t ∈ T .2082

If Ct ∩ E(H) = ∅ and Ct ⊆ E(M ′′), then it is straightforward to verify that2083

Ct \ {t} spans t in M ′ and, therefore, F ′ spans t.2084

Suppose that Ct∩E(H) 6= ∅ and Ct ⊆ E(M ′′). Then Ct∩E(H) is a minimal cut-2085

set of H such that a vertex yf is in one component of H −Ct ∩E(H) and yf−1, yf+12086

are in the other. If f = i or f = j, then in the same way as in the case, where2087

F ∩ E(M`) = ∅ and F ∩ E(H) 6= ∅, we have that ((Ct \ E(H)) ∪ {xfzf}) \ {t} spans2088

t. Suppose that f = q. Then we observe that ((Ct \E(H))∪ {xizi, xjyj}) \ {t} spans2089

t. Hence, F ′ spans t.2090

Suppose that Ct ∩ E(H) = ∅ and Ct ∩ E(M`) 6= ∅. Then Ct = C ′t 4 C ′′t , where2091

C ′t and C ′′t are cycles of M ′′ and M` respectively, and Ct goes through some ef2092
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for f ∈ {1, 2, 3}. If f = i or f = j, then in the same way as in the case, where2093

F ∩E(M`) 6= ∅ and F ∩E(H) = ∅, we have that ((C ′t\{ef})∪{xfzf})\{t} ⊆ F ′ spans2094

t. Suppose that f = q. Then we observe that ((C ′t \ {ef}) ∪ {xizi, xjyj}) \ {t} ⊆ F ′2095

spans t, because {x1z1, x2z2, x3z3} is a circuit of M ′.2096

Suppose now that Ct ∩ E(H) 6= ∅ and Ct ∩ E(M`) 6= ∅. Then Ct ∩ E(H) is a2097

minimal cut-set of H such that a vertex yf is in one component of H − Ct ∩ E(H)2098

and yf−1, yf+1 are in the other. Also Ct = C ′t4C ′′t , where C ′t and C ′′t are circuits of2099

M ′′ and M` respectively, and Ct goes through some eg for g ∈ {1, 2, 3}. Notice that2100

f 6= g, as otherwise C ′t contains a dependent set (Ct ∩ E(H)) ∪ {ef} contradicting2101

minimality of circuits. If {f, g} = {i, j}, we obtain that (((C ′t \ E(H)) \ {ef}) ∪2102

{xfzf , xgzg}) \ {t} ⊆ F ′ spans t by the same arguments as in previous cases. If2103

{f, g} 6= {i, j}, then let q′ ∈ {1, 2, 3} be distinct form f, g. Clearly, q′ ∈ {i, j}. Then2104

(((C ′t \E(H))\{ef})∪{xq′zq′})\{t} ⊆ F ′ spans t spans t, because {x1z1, x2z2, x3z3}2105

is a circuit of M ′.2106

Now we show that w′(F ) ≤ k. Recall that there is Ct = C ′t 4 C ′′t , where C ′t2107

and C ′′t are circuits of M ′′ and M`, and Ct goes through ei. Observe that w′(ei) ≤2108

k
(1)
i ≤ w(C ′′t \ {ei}). Recall also that there is Ct such that Ct ∩ E(H) 6= ∅ and yj is2109

in one component of H − Ct ∩ E(H) and yj−1, yj+1 are in the other. We have that2110

w′(xjzj) ≤ k(2)j ≤ w(Ct ∩ E(H)). It implies that w′(F ) ≤ k.2111

We considered all possible cases and obtained that if the original instance2112

(M,w, T, k) is a yes-instance, then the reduced instance (M ′, w′, T, k) is also a yes-2113

instance. Assume now that the reduced instance (M ′, w′, T, k) is a yes-instance. Let2114

F ′ ⊆ E(M ′) \ T be an inclusion minimal set of weight at most k that spans T in M ′.2115

Let S = {x1z1, x2z2, x3z3, z1z2, z2z3, z1z3}. If F ′ ∩ S = ∅, then we have that F ′2116

spans T in M as well. Assume from now that F ′ ∩ S 6= ∅.2117

Notice that |F ′ ∩ {z1z2, z2z3, z1z3}| 6= 1, because z1z2, z2z3, z1z3 induce a cycle2118

in C ′. Observe also that if F ′ ∩ {z1z2, z2z3, z1z3} = {zi−1zi, zizi+1} for some i ∈2119

{1, 2, 3}, then by Observation 7.6 we can replace zi−1zi, zizi+1 by xizi in F using the2120

fact that zi−1zi, zizi+1, xizi is a cut-set of G′. Hence, without loss of generality we2121

assume that either F ′ ∩ {z1z2, z2z3, z1z3} = ∅ or z1z2, z2z3, z1z3 ∈ F ′. We have that2122

|F ′ ∩ {x1z1, x2z2, x3z3}| ≤ 2, because {x1z1, x2z2, x3z3} is a minimal cut-set of G′,2123

and if z1z2, z2z3, z1z3 ∈ F ′, then F ′ ∩ {x1z1, x2z2, x3z3} = ∅ by the minimality of F ′.2124

We consider the cases according to these possibilities.2125

Case 1. z1z2, z2z3, z1z3 ∈ F ′.2126

If p(1) ≤ p(2), then recall that (M`, w`, {e1, e2}, p(1)) of is a yes-instance of Space2127

Cover. Let F` be a set of weight at most p(1) in that spans e1 and e2 in M`.2128

Notice that F` spans e3 by Observation 7.4. Notice also that e1, e2, e3 /∈ F`. We2129

define F = (F ′ \ {z1z2, z2z3, z1z3}) ∪ F`. Clearly, F ⊆ E(M) \ T and w(F ) ≤ k as2130

w′({z1z2, z2z3, z1z3}) = p(1). We claim that F spans T in M . Consider t ∈ T . There2131

is a circuit C ′t of M ′ such that t ∈ C ′t ⊆ F ′ ∪ {t}. If C ′t ∩ {z1z2, z2z3, z1z3} = ∅,2132

then C ′t \ {t} spans t in M . Suppose that C ′t ∩ {z1z2, z2z3, z1z3} 6= ∅. Notice that2133

because z1z2, z2z3, z1z3 form a triangle in G′, C ′t contains exactly two elements of2134

{z1z2, z2z3, z1z3}. By symmetry, assume without loss of generality that z1z2, z2z3 ∈2135

C ′t. There is a circuit C of M` such that e1 ∈ C ⊆ F` ∪ {e1}. Observe that for2136

any X ⊆ E(G′) such that X ∩ S = {z1z2, z1z3}, X is a minimal cut-set of G′ if2137

and only if (X \ {z1z2, z1z3}) ∪ {e1} is a minimal cut-set of G. It implies that Ct =2138

(C ′t \ {z1z2, z1z3}) ∪ (C \ {e1}) ⊆ F is a cycle of M . Hence, F spans t.2139

Suppose that p(2) < p(1). Recall that (M∗(H ′), wh, {e′1, e′2}, p(2)) is a yes-instance2140
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of Space Cover. Let Fh be a set of weight at most p(2) in that spans e′1 and e′2 in2141

M∗(H ′). Notice that Fh spans e′3 by Observation 7.4. Notice also that e′1, e
′
2, e
′
3 /∈ Fh.2142

We define F = (F ′ \ {z1z2, z2z3, z1z3}) ∪ Fh. Clearly, F ⊆ E(M) \ T and w(F ) ≤ k2143

as w′({z1z2, z2z3, z1z3}) = p(2). We claim that F spans T in M . Consider t ∈ T .2144

There is a circuit C ′t of M ′ such that t ∈ C ′t ⊆ F ′ ∪ {t}. If C ′t ∩ {z1z2, z2z3, z1z3} = ∅,2145

then C ′t \ {t} spans t in M . Suppose that C ′t ∩ {z1z2, z2z3, z1z3} 6= ∅. Notice that2146

because z1z2, z2z3, z1z3 form a triangle in G′, C ′t contains exactly two elements of2147

{z1z2, z2z3, z1z3}. By symmetry, assume without loss of generality that z1z2, z2z3 ∈2148

C ′t. There is a circuit C of Mh such that e′1 ∈ C ⊆ Fh ∪ {e′1}. Notice that for any2149

X ⊆ E(G′) such that X ∩ S = {z1z2, z1z3}, X is a minimal cut-set of G′ if and only2150

if (X \ {z1z2, z1z3}) ∪ Y is a minimal cut-set of G for a minimal cut-set Y of H such2151

that y1 is in one component of H − Y and y2, y3 are in the other. It implies that2152

Ct = (C ′t \ {z1z2, z1z3}) ∪ (C \ {e′1}) ⊆ F is a cycle of M . Hence, F spans t.2153

Case 2. F ′ ∩ S = {xizi} for i ∈ {1, 2, 3}.2154

Suppose first that k
(1)
i ≤ k(2)i . Then (M`, w`, {ei}, k(1)i ) is a yes-instance of Space2155

Cover. Let F` be a set of weight at most k
(1)
i in that spans ei in M`. Notice2156

e1, e2, e3 /∈ F`. We define F = (F ′ \ {xizi}) ∪ F`. Clearly, F ⊆ E(M) \ T and2157

w(F ) ≤ k as w′(xizi) = k
(1)
i . We claim that F spans T in M . Consider t ∈ T . There2158

is a circuit C ′t of M ′ such that t ∈ C ′t ⊆ F ′ ∪{t}. If xizi /∈ C ′t, then C ′t \ {t} spans t in2159

M . Suppose that xizi ∈ C ′t. There is a circuit C of M` such that ei ∈ C ⊆ F` ∪ {ei}.2160

Observe that for any X ⊆ E(G′) such that X ∩ S = {xizi}, X is a minimal cut-set2161

of G′ if and only if (X \ {xizi}) ∪ {ei} is a minimal cut-set of G. It implies that2162

Ct = (C ′t \ {xizi}) ∪ (C \ {ei}) ⊆ F is a cycle of M . Hence, F spans t.2163

Assume that k
(2)
i < k

(1)
i . Recall that (M∗(H ′), wh, {e′i}, k

(2)
i ) is a yes-instance of2164

Space Cover. Let Fh be a set of weight at most k
(2)
i in that spans e′i in M∗(H ′).2165

Notice that e′1, e
′
2, e
′
3 /∈ Fh. We define F = (F ′ \ {xizi})∪Fh. Clearly, F ⊆ E(M) \ T2166

and w(F ) ≤ k as w′({xizi}) = k
(2)
i . We claim that F spans T in M . Consider2167

t ∈ T . There is a circuit C ′t of M ′ such that t ∈ C ′t ⊆ F ′ ∪ {t}. If xizi /∈ C ′t, then2168

C ′t \ {t} spans t in M . Suppose that xizi ∈ C ′t. There is a circuit C of Mh such that2169

e′i ∈ C ⊆ Fh ∪ {e′i}. Observe that any X ⊆ E(G′) such that X ∩ S = {xizi}, X is2170

a minimal cut-set of G′ if and only if (X \ {xizi}) ∪ Y is a minimal cut-set of G for2171

a minimal cut-set Y of H such that yi is in one component of H − Y and yi−1, yi+12172

are in the other. It implies that Ct = (C ′t \ {xIzi}) ∪ (C \ {e′i}) ⊆ F is a cycle of M .2173

Hence, F spans t.2174

Case 3. F ′ ∩ S = {xizi, xjzj} for two distinct i, j ∈ {1, 2, 3}.2175

Suppose that w′(xizi) = k
(1)
i and w′(xjzj) = k

(1)
j . By Observation 7.6, p(1) ≤2176

k
(1)
i + k

(1)
j . We have that (M`, w`, {e1, e2}, p(1)) is a yes-instance of Space Cover.2177

Let F` be a set of weight at most p(1) in that spans e1 and e2 in M`. Notice that2178

F` spans e3 by Observation 7.4. Notice also that e1, e2, e3 /∈ F`. We define F =2179

(F ′\{xizi, xjzj})∪F`. Clearly, F ⊆ E(M)\T and w(F ) ≤ k as w′({xizi, xjzj}) ≥ p(1).2180

In the same way as in Case 1, we obtain that F spans T in M .2181

Assume that w′(xizi) = k
(2)
i and w′(xjzj) = k

(2)
j . By Observation 7.6, p(2) ≤2182

k
(2)
i +k

(2)
j . Recall that (M∗(H ′), wh, {e′1, e′2}, p(2)) is a yes-instance of Space Cover.2183

Let Fh be a set of weight at most p(2) in that spans e′1 and e′2 in M∗(H ′). Notice2184

that Fh spans e′3 by Observation 7.4. Notice also that e′1, e
′
2, e
′
3 /∈ Fh. We define2185

F = (F ′\{xizi, xjzj})∪Fh. Clearly, F ⊆ E(M)\T and w(F ) ≤ k as w′({xizi, xjzj}) ≥2186

p(2). By the same arguments as in Case 1, we have that F spans T in M .2187
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Suppose now that w′(xizi) = k
(1)
i and w′(xjzj) = k

(2)
j or, symmetrically,2188

w′(xizi) = k
(2)
i and w′(xjzj) = k

(1)
j . Assume that w′(xizi) = k

(1)
i and w′(xjzj) =2189

k
(2)
j , as the second possibility is analysed by the same arguments. We have that2190

(M`, w`, {ei}, k(1)i ) is a yes-instance of Space Cover. Let F` be a set of weight2191

at most k
(1)
i in that spans ei in M`. Notice e1, e2, e3 /∈ F`. We have also that2192

(M∗(H ′), wh, {e′i}, k
(2)
j ) is a yes-instance of Space Cover. Let Fh be a set of weight2193

at most k
(2)
j in that spans e′j in M∗(H ′). Notice that e′1, e

′
2, e
′
3 /∈ Fh. We de-2194

fine F = (F ′ \ {xizi, xjzj}) ∪ F` ∪ Fh. Clearly, F ⊆ E(M) \ T and w(F ) ≤ k as2195

w′({xizi}) ≤ k
(1)
i and w′({xizi}) ≤ k

(1)
i . We show that F spans T . Consider t ∈ T .2196

There is a circuit C ′t of M ′ such that t ∈ C ′t ⊆ F ′∪{t}. There is a circuit C of M` such2197

that ei ∈ C ⊆ F`∪{ei}, and there is a circuit C ′ of Mh such that e′j ∈ C ⊆ Fh∪{e′j}.2198

If xizi, xjzj /∈ C ′t, then C ′t \ {t} spans t in M . Suppose that xizi ∈ C ′t but xjzj /∈ C ′t.2199

Then by the same arguments as were used to analyse the first possibility of Case 2,2200

we show that Ct = (C ′t \{xizi})∪(C \{ei}) is a cycle of M such that t ∈ Ct ⊆ F ∪{t}.2201

If xizi /∈ C ′t and xjzj ∈ C ′t. Then by the same arguments as were used to analyse2202

the second possibility of Case 2, we obtain that Ct = (C ′t \ {xjzj}) ∪ (C ′ \ {e′j}) is2203

a cycle of M such that t ∈ Ct ⊆ F ∪ {t}. Finally, if xizi, xjzj ∈ C ′t, we consider2204

Ct = (C ′t \ {xjzj})∪ (C \ {ei})∪ (C ′ \ {e′j}) and essentially by the same arguments as2205

in Case 2, obtain that Ct is a cycle of M and t ∈ Ct ⊆ F ∪ {t}. Hence, in all possible2206

cases F spans t.2207

This completes the correctness proof. From the description of Reduction Rule 7.102208

and Lemma 7.1, it follows that Reduction Rule 7.4 can be applied in time 2O(k) ·2209

||M ||O(1).2210

7.3.2. Cographic sub-leaf: E(H)∩T 6= ∅. From now onwards we assume that2211

E(H) ∩ T 6= ∅. We either reduce H or recursively solve the problem on smaller H.2212

Rather than describing these steps, we observe that we can decompose Ms further2213

and apply the already described Reduction Rule 7.2 (1-Leaf reduction rule) or2214

Branching Rules 7.1 (2-Leaf branching) and 7.2 (3-Leaf branching).2215

We use the following fact about matroid decompositions (see [42]).Since we apply2216

the decomposition theorem for the specific case of bond matroids, for convenience we2217

state it in terms of graphs. Let G be a graph. A pair (X,Y ) of nonempty subsets2218

X,Y ⊂ V (G) is a separation of G if X ∪Y = V (G) and no vertex of X \Y is adjacent2219

to a vertex of Y \ Y . For our convenience we assume that (X,Y ) is an ordered pair.2220

The next lemma can be derived from either the general results of [42, Chapter 8], or2221

it can be proved directly using definitions of 1-, 2- and 3-sums and the fact that the2222

circuits of the bond matroid of G are exactly the minimal cut-sets of G.2223

Lemma 7.11. Let (X,Y ) be a separation of a graph G, H1 = G[X] and H2 =2224

G[Y ]− E(G1). Then the following holds.2225

(i) If |X ∩ Y | = 1, then M∗(G) = M∗(H1)⊕1 M
∗(H2).2226

(ii) If |X ∩ Y | = 2, then M∗(G) = M∗(H ′1) ⊕2 M
∗(H ′2), where H ′i is the graph2227

obtained from Hi by adding a new edge e with its end vertices in the two2228

vertices of X ∩ Y for i = 1, 2; E(H ′1) ∩ E(H ′2) = {e}.2229
(iii) If |X ∩Y | = 3 and X ∩Y = {v1, v2, v3}, then M∗(G) = M∗(H ′′1 )⊕2M

∗(H ′′2 ),2230

where for i = 1, 2, H ′′i is the graph obtained from Hi by adding a new vertex2231

v and edges ej = vvj for j ∈ {1, 2, 3}; E(H ′1) ∩ E(H ′2) = {e1, e2, e3}.2232

We use this lemma to decompose Ms = M∗(G). Let Y be the set of end vertices2233

of e1, e2, e3 in V (H). The set Y contains y1, y2, y3, but some of these vertices could2234
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be the same. Let X = (V (G) \ V (H)) ∪ Y . We have that (V (H), X) is a separation2235

of G. We apply Lemma 7.11 to this separation. Recall that Z is a clean cut of G.2236

That means that no edge of H is an element of a matroid that is a node of T distinct2237

from Ms. Therefore, in this way we obtain a good {1, 2, 3}-decomposition with the2238

conflict tree T ′ that is obtained form T by adding a leaf adjacent to Ms. Then we2239

either reduce the new leaf if it is a 1-leaf or branch on it is 2- or 3-leaf. More formally,2240

we do the following.2241

• If |Y | = 1, then let G′ = G[X], decompose M∗(G) = M∗(G′) ⊕1 M
∗(H)2242

and construct a new conflict tree T ′ for the obtained decomposition of M :2243

we replace the node Ms in T by M∗(G′) that remains adjacent to the same2244

nodes as Ms in T and then add a new child M∗(H) of M∗(G′) that is a leaf2245

of T ′. Thus we can apply Reduction Rule 7.2 (1-Leaf reduction rule) on2246

the new leaf.2247

• If |Y | = 2, then let G′ be the graph obtained from G[X] by adding a new2248

edge e with its end vertices being the two vertices of Y . Furthermore, let H ′2249

be the graph obtained from H by adding a new edge e with its end vertices2250

being the two vertices of Y . Now decompose M∗(G) = M∗(G′) ⊕2 M
∗(H ′)2251

and consider a new conflict tree T ′ for the obtained decomposition: Ms is2252

replaced by M∗(G′) and a new leaf M∗(H ′) that is a child of M∗(G′) is added.2253

Notice that because H has no bridges, no terminal t ∈ T ∩ E(H) is parallel2254

to e in M∗(H ′). Thus we can apply Branching Rule 7.1 (2-Leaf branching)2255

on the new leaf.2256

• If |Y | = 3, then Y = {y1, y2, y3}. Let G′ be the graph obtained from G[X]2257

by adding a new vertex v and the edges e′1 = y1v, e′2 = y2v, e′3 = y3v. Let2258

H ′ be the graph obtained from H by adding a new vertex v and the edges2259

e′1 = y1v, e′2 = y2v, e′3 = y3v. Then decompose M∗(G) = M∗(G′)⊕3M
∗(H ′)2260

and consider a new conflict tree T ′ for the obtained decomposition: Ms is2261

replaced by M∗(G′) and a new leaf M∗(H ′) that is a child of M∗(G′) is2262

added. Notice that because H has no bridges, no terminal t ∈ T ∩ E(H)2263

is parallel to e′1, e
′
2, e
′
3 in M∗(H ′). Thus we can apply Branching Rule 7.22264

(3-Leaf branching) on the new leaf.2265

Lemma 7.11 together with Lemmas 7.5 and 7.6 imply the correctness of the above2266

procedure. Furthermore, all the reduction and branching rules can be performed in2267

2O(k) · ||M ||O(1) time.2268

7.4. Proof of Theorem 1.1. Given an instance (M,w, T, k) of Space Cover2269

we either apply a reduction rule or a branching rule and if any of these applications2270

(reduction rule or branching rule) returns no, we return the same. Correctness of the2271

answer follows from the correctness of the corresponding rules.2272

Let (M,w, T, k) be the given instance of Space Cover. First, we exhaustively2273

apply elementary Reduction Rules 5.1-5.5. Thus, by Lemma 5.4, in polynomial time2274

we either solve the problem or obtain an equivalent instance, where M has no loops2275

and the weights of nonterminal elements are positive. To simplify notation, we also2276

denote the reduced instance by (M,w, T, k). If M is a basic matroid (obtained from2277

R10 by adding parallel elements or M is graphic or cographic) then we can solve2278

Space Cover using Lemma 7.1 in time 2O(k) · ||M ||O(1).2279

From now onwards we assume that the matroid M in the instance (M,w, T, k)2280

is not basic. Now using Corollary 4.4, we find a conflict tree T . Recall that the2281

set of nodes of T is the collection of basic matroids M and the edges correspond2282

to 1-, 2− and 3-sums. The key observation is that M can be constructed from M2283
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by performing the sums corresponding to the edges of T in an arbitrary order. Our2284

algorithm is based on performing bottom-up traversal of the tree T . We select an2285

arbitrarily node r as the root of T . Selection of r, as the root, defines the natural2286

parent-child, descendant and ancestor relationship on the nodes of T . We say that2287

u is a sub-leaf if its children are leaves of T . Observe that there always exists a2288

sub-leaf in a tree on at least two nodes. Just take a node which is not a leaf and is2289

farthest from the root. Clearly, this node can be found in polynomial time. Rest of2290

our argument is based on selection a sub-leaf Ms. We say that a child of Ms is a 1-,2291

2- or 3-leaf, respectively, if the edge between Ms and the leaf corresponds to 1-, 2- or2292

3-sum, respectively. If there is a child M` of Ms such that there is e ∈ E(Ms)∩E(M`)2293

that is parallel to a terminal t ∈ E(M`)∩T in M`, then we apply Reduction Rule 7.12294

(Terminal flipping rule). We apply Reduction Rule 7.1 exhaustively. Correctness2295

of this step follows from Lemma 7.2.2296

From now we assume that there is no child M` of Ms such that there exists an2297

element e ∈ E(Ms) ∩ E(M`) that is parallel to a terminal t ∈ E(M`) ∩ T in M`.2298

Now given a sub-leaf Ms and a child M` of Ms, we apply the first rule (reduction or2299

branching) among2300

• Reduction Rule 7.2 (1-Leaf reduction rule)2301

• Reduction Rule 7.3 (2-Leaf reduction rule)2302

• Branching Rule 7.1 (2-Leaf branching)2303

• Branching Rule 7.2 (3-Leaf branching)2304

• Reduction Rule 7.4 (Graphic 3-leaf reduction rule)2305

• Reduction Rule 7.5 (Cographic 3-leaf reduction rule)2306

which is applicable. If none of the above is applicable then we are in a specific2307

subcase of Ms being cographic matroid. That is, the case which is being handled in2308

Section 7.3.1. However, even in this case we modify our instance to fall into one of the2309

cases above. Note that we we do not recompute the decompositions of the matroids2310

obtained by the application of the rules but use the original decomposition modified2311

by the rules. Observe additionally that the elementary Reduction Rules 5.1-5.5 also2312

could be used to modify the decomposition. Clearly, graphic and cographic remain2313

graphic and cographic respectively and we just modify the corresponding graphs but2314

we can delete or contract an element of a copy R10. For this case, observe that2315

Lemma 6.1 still could be applied and these matroids are not participating in 3-sums.2316

Each of the above rules reduces the T by one and thus these rules are only applied2317

O(|E(M)|)) times. The correctness of algorithm follows from Lemmas 7.3, 7.4, 7.5,2318

7.6, 7.7 and 7.10. The only thing that is remaining is the running time analysis.2319

Either we apply reduction rules in polynomial time or in 2O(k) · ||M ||O(1) time.2320

So all the reduction rules can be carried out in O(|E(M)|)) · 2O(k) = 2O(k) · ||M ||O(1)2321

time. By Lemmas 7.5 and 7.6 we know that when we apply Branching Rules 7.1 and2322

7.2 then the parameter reduces in each branch and thus the number of leaves in the2323

search-tree is upper bounded by the recurrence, T (k) ≤ 15T (k − 1), corresponding2324

to the Branching Rule 7.2. Thus, the number of nodes in the search tree is upper2325

bounded by 15k and since at each node we take 2O(k) · ||M ||O(1) time, we have that2326

the overall running time of the algorithm is upper bounded by 2O(k) · ||M ||O(1). This2327

completes the proof.2328

8. Reducing rank. In the h-Way Cut problem, we are given a connected2329

graph G and positive integers h and k, the task is to find at most k edges whose2330

removal increases the number of connected components by at least h. The problem2331

has a simple formulation in terms of matroids: Given a graph G and an integers k,2332
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h, find k elements of the cycle matroid of G whose removal reduces its rank by at2333

least h. This motivated Joret and Vetta [26] to introduce the Rank h-Reduction2334

problem on matroids. Here we define Rank h-Reduction on binary matroids.2335

Rank h-Reduction Parameter: k
Input: A binary matroid M = (E, I) given together with its matrix representa-
tion over GF(2) and two positive integers h and k.
Question: Is there a set X ⊆ E with |X| ≤ k such that r(M)− r(M −X) ≥ h?

2336

As a corollary of Theorem 1.1, we show that on regular matroids Rank h-2337

Reduction is FPT for any fixed h.2338

We use the following lemma.2339

Lemma 8.1. Let M be a binary matroid and let k ≥ h be positive integers. Then2340

M has a set X ⊆ E with |X| ≤ k such that r(M)− r(M −X) ≥ h if and only if there2341

are disjoint sets F, T ⊆ E such that |T | = h, |F | ≤ k − h, and T ⊆ span(F ) in M∗.2342

Proof. Notice that deletion of one element cannot decrease the rank by more than2343

one. Moreover, deletion of e ∈ E decreases the rank if and only if e belongs to every2344

basis of M . Recall that e belongs to every basis of M if and only if e is a coloop (see2345

[36]). It follows that M has a set X ⊆ E with |X| ≤ k such that r(M)−r(M−X) ≥ h2346

if and only if there are disjoint sets F, T ⊆ E such that |T | = h, |F | ≤ k − h and2347

every e ∈ T is a coloop of M − F . Switching to the dual matroid, we rewrite this as2348

follows: M has a set X ⊆ E with |X| ≤ k such that r(M) − r(M − X) ≥ h if and2349

only if there are disjoint sets F, T ⊆ E such that |T | = h, |F | ≤ k−h and every e ∈ T2350

is a loop of M∗/F . It remains to observe that every e ∈ T is a loop of M∗/F if and2351

only if T ⊆ span(F ) in M∗.2352

For graphic matroids, when Rank h-Reduction is equivalent to h-Way Cut,2353

the problem is FPT parameterized by k even if h is a part of the input [27]. Unfor-2354

tunately, similar result does not hold for cographic matroids.2355

Proposition 8.2. Rank h-Reduction is W[1]-hard for cographic matroids pa-2356

rameterized by h+ k.2357

Proof. Consider the bond matroid M∗(G) of a simple graph G. By Lemma 8.1,2358

(M∗(G), h, k) is a yes-instance of Rank h-Reduction if and only if there are disjoint2359

sets of edges F, T ⊆ E(G) such that |T | = h and |F | ≤ k − h and T ⊆ span(F ) in2360

M(G). Recall that T ⊆ span(F ) in M(G) if and only if for every uv ∈ T , G[F ] has a2361

(u, v)-path. Let p ≥ 3 be an integer, k = (p − 1)p/2 and h = (p − 1)(p − 2)/2. It is2362

easy to see that for this choice of h and k, G has disjoint sets of edges F, T ⊆ E(G)2363

such that |T | = h, |F | ≤ k − h and for every uv ∈ T , G[F ] has a (u, v)-path if and2364

only if G has a clique with p vertices. Since it is well-know that it is W[1]-complete2365

with the parameter p to decide whether a graph G has a clique of size p (see [10]), we2366

conclude that Rank h-Reduction is W[1]-hard when parameterized by h+ k.2367

However, by Theorem 1.1, for fixed h, Rank h-Reduction is FPT parameterized2368

by k on regular matroids.2369

Theorem 8.3. Rank h-Reduction can be solved in time 2O(k) · ||M ||O(h) on2370

regular matroids.2371

Proof. Let (M,h, k) be an instance of Rank h-Reduction. By Lemma 8.1,2372

(M,h, k) is a yes-instance if and only if there are disjoint sets F, T ⊆ E such that2373

|T | = h, |F | ≤ k−h and T ⊆ span(F ) in M∗. There are at most ||M ||h possibilities to2374
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choose T . For each choice, we check whether there is F ⊆ E \T such that |F | ≤ k−h2375

and T ⊆ span(F ) in M∗. By Theorem 1.1, it can be done in time 2O(k) · ||M ||O(1).2376

Then the total running time is 2O(k) · ||M ||O(h).2377

9. Conclusion. In this paper, we used the structural theorem of Seymour for2378

designing parameterized algorithm for Space Cover. While structural graph theory2379

and graph decompositions serve as the most usable tools in the design of parameterized2380

algorithms, the applications of structural matroid theory in parameterized algorithms2381

are limited. There is a series of papers about width-measures and decompositions2382

of matroids (see, in particular, [23, 24, 25, 29, 34, 35] and the bibliography therein)2383

but, apart of this specific area, we are not aware of other applications except the2384

works Gavenciak et al. [14] and our recent work [13]. In spite of the tremendous2385

progress in understanding the structure of matroids representable over finite fields2386

[18, 15, 16, 17], this rich research area still remains to be explored from the perspective2387

of parameterized complexity.2388

As a concrete open problem, what about the parameterized complexity of Space2389

Cover on any proper minor-closed class of binary matroids?2390
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