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Abstract

We consider the fundamental Matroid Theory problem of finding a circuit in a matroid
spanning a set T of given terminal elements. For graphic matroids this corresponds to the
problem of finding a simple cycle passing through a set of given terminal edges in a graph.
The algorithmic study of the problem on regular matroids, a superclass of graphic matroids,
was initiated by Gavenčiak, Král’, and Oum [ICALP’12], who proved that the case of the
problem with |T | = 2 is fixed-parameter tractable (FPT) when parameterized by the length
of the circuit. We extend the result of Gavenčiak, Král’, and Oum by showing that for
regular matroids

• the Minimum Spanning Circuit problem, deciding whether there is a circuit with
at most ` elements containing T , is FPT parameterized by k = `− |T |;

• the Spanning Circuit problem, deciding whether there is a circuit containing T , is
FPT parameterized by |T |.

We note that extending our algorithmic findings to binary matroids, a superclass of regular
matroids, is highly unlikely: Minimum Spanning Circuit parameterized by ` is W[1]-hard
on binary matroids even when |T | = 1. We also show a limit to how far our results can be
strengthened by considering a smaller parameter. More precisely, we prove that Minimum
Spanning Circuit parameterized by |T | is W[1]-hard even on cographic matroids, a proper
subclass of regular matroids.

1 Introduction

Deciding if a given graph G contains a cycle passing through a specified set T of terminal edges
or vertices is the classical problem in graph theory. The study of this problem can be traced back
to the fundamental theorem of Dirac from 1960s about the existence of a cycle in k-connected
graph passing through a given set of k vertices [11]. According to Kawarabayashi [19] “...cycles
through a vertex set or an edge set are one of central topics in all of graph theory.” We refer
to [18] for an overview on the graph-theoretical study of the problem, including the famous
Lovász-Woodall Conjecture.

The algorithmic version of this question, is there a polynomial time algorithm deciding if a
given graph contains a cycle passing through the set of terminal vertices or edges, is the problem
of a fundamental importance in graph algorithms. Since the problem generalizes the classical
Hamiltonian cycle problem, it is NP-complete. However, for a fixed number of terminals the
problem is solvable in polynomial time. The case |T | = 1 with one terminal vertex or edge
is trivially solved by the breadth first search. The case of |T | = 2 can be reduced to finding
a flow of size 2 between two vertices in a graph. The case of |T | = 3 is already nontrivial
and was shown to be solvable in linear time in [22], see also [15]. The fundamental result of
Robertson and Seymour on the disjoint path problem [28] implies that the problem can be
solved in polynomial time for a fixed number of terminals. Kawarabayashi in [19] provided
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a quantitative improvement by showing that the problem is solvable in polynomial time for
|T | = O((log logn)1/10), where n is the size of the input graph. Björklund et al. [2] gave a
randomized algorithm solving the problem in time 2|T |nO(1). The algorithm of Björklund et
al. solves also the minimization variant of the problem, where the task is to find a cycle of
minimum length passing through terminal vertices. We refer to the book of Cygan et al. [7]
for an overview of different techniques in parameterized algorithms for solving problems about
cycles and paths in graphs.

Matroids are combinatorial objects generalizing graphs and linear independence. The study
of circuits containing certain elements of a matroid is one of the central themes in matroid theory.
For graphic matroids, the problem of finding a circuit spanning (or containing) a given set of
elements corresponds to finding in a graph a simple cycle passing through specified edges. The
classical theorem of Whitney [34] asserts that any pair of elements of a connected matroid are in
a circuit. Seymour [31] obtained a characterization of binary matroids with a circuit containing
a triple of elements. See also [8, 24, 27] and references there for combinatorial results about
circuits spanning certain elements in matroids. However, compared to graphs, the algorithmic
aspects of “circuits through elements” in matroids are much less understood.

In their work on deciding first order properties on matroids of locally bounded branch-width,
Gavenčiak et al. [16] initiated the algorithmic study of the following problem.

Input: A binary matroid M with a ground set E, a weight function w : E → N,
a set of terminals T ⊆ E, and a nonnegative integer `.

Task: Decide whether there is a circuit C of M with w(C) ≤ ` such that
T ⊆ C.

Minimum Spanning Circuit

Here and further we assume that the set of natural numbers N = {1, 2, . . .}, that is, it does not
include 0.

Since graphic matroids are binary, this problem is a generalization of the problem of finding
a cycle through a given set of edges in a graph. By the result of Vardy [33] about the Min-
imum Distance problem from coding theory, Minimum Spanning Circuit is NP-complete
even when T = ∅. Gavenčiak et al. [16] observed that the hardness result of Downey et al.
from [14] also implies that Minimum Spanning Circuit is W[1]-hard on binary matroids with
unit-weights elements when parameterized by ` even if |T | = 1. Parameterized complexity of
Minimum Spanning Circuit for T = ∅ on binary matroids, i.e. the case when we ask about
the existence of a circuit of length at most `, is known as Even Set in parameterized complex-
ity and is a long standing open problem in the area. The intractability of the problem changes
when we restrict the input binary matroid to be regular, i.e. matroid which has a representation
by rows of a totally unimodular matrix. In particular, Gavenčiak et al. show that for |T | = 2,
Minimum Spanning Circuit is fixed parameter tractable (FPT) being parameterized by ` by

giving time ``
`O(`)

nO(1) algorithm, where n is the number of elements in the input matroid. Re-
call that all graphic and cographic matroids are regular and thus algorithmic results for regular
matroids yield algorithms on graphic and cographic matroids.

Our results. In this work we show, and this is the main result of the paper, that on regular
matroids Minimum Spanning Circuit is FPT being parameterized by ` without any additional
condition on the size of the terminal set. Actually, we obtain the algorithm for “stronger”
parameterization k = `− w(T ). The running time of our algorithm is 2O(k

2 log k) · nO(1).
Our approach is based on the classical decomposition theorem of Seymour [30]. Roughly

speaking, the theorem allows to decompose a regular matroid by making use of 1,2, and 3-sums
into graphic, cographic matroids and matroid of a fixed size. (We refer to Section 3 for the
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precise formulation of the theorem). Thus to solve the problem on regular matroids, one has to
understand how to solve a certain extension of the problem on graphic and cographic matroids
(matroids of constant size are usually trivial), and then employ Seymour’s theorem to combine
solutions. This is exactly the approach which was taken by Gavenčiak et al. in [16] for solving
the problem for |T | = 2, and this is the approach we adapt in this paper. However, the details
are very different. In particular, in order to use the general framework, we have to solve the
problem on cographic matroids, which is already quite non-obvious. Gavenčiak et al. [16] adapt
the method of Kawarabayashi and Thorup [21] who used it to prove that finding an edge-cut
with at most s edges that separates the input graph into at least k component is FPT when
parameterized by s. This approach works for |T | = 2 and probably may be extended for the
case when the number of terminals is bounded, but we doubt that it could be applied for the
parameterization by k = ` − w(T ). Hence, in order to solve Minimum Spanning Circuit
on cographic matroids, we use the recent framework of recursive understanding developed by
Chitnis et al. in [5] for the Minimal Terminal Cut problem. In this problem, we are
given a a connected graph G with a terminal set of edges T ⊆ E(G) and terminal vertex sets
R1, R2 ⊆ V (G), and the task is to find a cut C of small weight satisfying a number of constraints:
(a) this cut should be a minimal cut-set, (b) it should contain all edges of T , and (c) it should
separate R1 from R2, meaning that G − C contains distinct connected components X1 and
X2 such that Ri ⊆ Xi for i ∈ {1, 2}. We believe that this problem is interesting on its own.
Finally, constructing a solution by going through Seymour’s matroid decomposition when |T |
is unbounded is also a non-trivial procedure requiring a careful analyses.

With a similar approach, we also obtain an algorithm for the following decision version of
the problem, where we put no constrains on the size of the circuit.

Input: A binary matroid M with a ground set E and a set of terminals T ⊆ E.
Task: Decide whether there is a circuit C of M such that T ⊆ C.

Spanning Circuit

We show that on regular matroids Spanning Circuit is FPT parameterized by |T |.
The remaining part of the paper is organized as follows. In Section 2 we introduce basic

notions used in the paper. In Section 3 we briefly introduce the fundamental structural results
of Seymour [29] about regular matroids. We also explain the refinement of the decomposition
theorem of Seymour [29] given by Dinitz and Kortsarz in [10] that is more convenient for the
algorithmic purposes. We conclude this section by some structural results about circuits in
regular matroids. Section 4 contains the algorithm for Minimal Terminal Cut. In Section 5
we give the algorithm for Minimum Spanning Circuit on regular matroids. First, we solve the
extended variant of Minimum Spanning Circuit on matroids that are basic for the Seymour’s
decomposition [29]. Then, we explain how to obtain the general result. We follow the same
scheme in Section 6 for Spanning Circuit parameterized by |T |. In Section 7 we provide some
hardness observations and state open problems.

2 Preliminaries

Parameterized Complexity. Parameterized complexity is a two dimensional framework for
studying the computational complexity of a problem. One dimension is the input size n and
another one is a parameter k. It is said that a problem is fixed parameter tractable (or FPT), if
it can be solved in time f(k) ·nO(1) for some function f . We refer to the recent books of Cygan
et al. [7] and Downey and Fellows [12] for an introduction to parameterized complexity.

It is standard for a parameterized algorithm to use (data) reduction rules, i.e., polynomial
or FPT algorithms that either solve an instance or reduce it to another one that typically has

3



a lesser input size and/or a lesser value of the parameter. We say that reduction rule is safe if
it either correctly solves the problem or outputs an equivalent instance of the problem without
increasing the parameter.

Graphs. We consider finite undirected (multi) graphs that can have loops or multiple edges.
Throughout the paper we use n to denote the number of vertices and m the number of edges of
considered graphs unless it crates confusion. For a graph G and a subset U ⊆ V (G) of vertices,
we write G[U ] to denote the subgraph of G induced by U . We write G − U to denote the
subgraph of G induced by V (G) \ U , and G− u if U = {u}. Respectively, for S ⊆ E(G), G[S]
denotes the graph induced by S, i.e., the graph with the set of edges S whose vertices are the
vertices of G incident to the edges of S. We denote by G − S the graph obtained from G by
the deletion of the edges of G; for a single element set, we write G− e instead of G− {e}. For
e ∈ E(G), we denote by G/e the graph obtained by the contraction of e. Since we consider
multigraphs, it is assumed that if e = uv, then to construct G/e, we delete u and v, construct
a new vertex w, and then for each ux ∈ E(G) and each vx ∈ E(G), where x ∈ V (G) \ {u, v},
we construct new edge wx (and possibly obtain multiple edges), and for each e′ = uv 6= e, we
add a new loop ww. For a vertex v, we denote by NG(v) the (open) neighborhood of v, i.e., the
set of vertices that are adjacent to v in G. For a set S ⊆ V (G), NG(S) = (∪v∈SNG(v)) \ S. We
denote by NG[v] = NG(v)∪{v} the closed neighborhood of v. To vertices u and v are true twins
if NG[u] = NG[v], and u and v are false twins if NG(u) = NG(v).

Cuts. Let G be a graph. A cut (A,B) of a graph G is a partition of V (G) into two disjoint
sets A and B. A set S ⊆ E(G) is an (edge) cut-set if the deletion of S increases the number of
components. A cut-set S is (inclusion) minimal if any proper subset of S is not a cut-set. A
bridge is a cut-set of size one. For two disjoint vertex sets of vertices A and B of a graph G,
E(A,B) = {uv ∈ E(G) | u ∈ A, v ∈ B}. Clearly, E(A,B) is an edge cut-set, and for any cut-set
S ⊆ E(G), there is a cut (A,B) with S = E(A,B). Notice also that E(A,B) is a minimal
cut-set of a connected graph G if and only if G[A] and G[B] are connected.

Matroids. We refer to the book of Oxley [26] for the detailed introduction to matroid theory.
Recall that a matroid M is a pair (E, I), where E is a finite ground set of M and I ⊆ 2E is a
collection of independent sets that satisfy the following three axioms:

I1. ∅ ∈ I,

I2. if X ∈ I and Y ⊆ X, then Y ∈ I,

I3. if X,Y ∈ I and |X| < |Y |, then there is e ∈ Y \X such that X ∪ {e} ∈ I.

We denote the ground set of M by E(M) and the set of independent set by I(M) or simply
by E and I if it does not creates confusion. If a set X ⊆ E is not independent, then X
is dependent. Inclusion maximal independent sets are called bases of M . We denote the set
of bases by B(M) (or simply by B). The matroid M∗ with the ground set E(M) such that
B(M∗) = B∗(M) = {E \B | B ∈ B(M)} is dual to M .

An (inclusion) minimal dependent set is called a circuit of M . We denote the set of all
circuits of M by C(M) or simply C if it does not create a confusion. The circuits satisfy the
following conditions (circuit axioms):

C1. ∅ /∈ C,

C2. if C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2,

C3. if C1, C2 ∈ C, C1 6= C2, and e ∈ C1∩C2, then there is C3 ∈ C such that C3 ⊆ (C1∪C2)\{e}.
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An one-element circuit is called loop, and if {e1, e2} is a two-element circuit, then it is said that
e1 and e2 are parallel. An element e is coloop if e is a loop of M∗ or, equivalently, e ∈ B for
every B ∈ B. A circuit of M∗ is called cocircuit of M . A set X ⊆ E is a cycle of M if X either
empty or X is a disjoint union of circuits. By S(M) (or S) we denote the set of all cycles of M .
The sets of circuits and cycles completely define matroid. Indeed, a set is independent if and
only if it does not contain a circuit, and the circuits are exactly inclusion minimal nonempty
cycles.

Let M be a matroid, e ∈ E(M). The matroid M ′ = M − e is obtained by deleting e if
E(M ′) = E(M) \ {e} and I(M ′) = {X ∈ I(M) | e /∈ X}. We say that M ′ is obtained from
M by adding a parallel to e element if E(M ′) = E(M) ∪ {e′}, where e′ is a new element, and
I(M ′) = I(M) ∪ {(X \ {e}) ∪ {e′} | X ∈ I(M) and e ∈ X}. It is straightforward to verify that
I(M ′) satisfies the axioms I.1-3, i.e., M ′ is a matroid with the ground set E(M) ∪ {e′}. It is
also easy to see that {e, e′} is a circuit, that is, e and e′ are parallel elements of M ′.

We can observe the following.

Observation 2.1. Let {e1, e2}, C ∈ C for a matroid M . If e1 ∈ C and e2 /∈ C, then C ′ =
(C \ {e1}) ∪ {e2} is a circuit.

Proof. By the axiom C3, ({e1, e2} ∪ C) \ {e1} = (C \ {e1}) ∪ {e2} = C ′ contains a circuit C ′′.
Suppose that C ′′ 6= C ′. Notice that because C \ {e1} contains no circuit, e2 ∈ C ′′. As e1 /∈ C ′′,
we obtain that ({e1, e2} ∪ C ′′) \ {e2} contains a circuit, but ({e1, e2} ∪ C ′′) \ {e2} is a proper
subset of C; a contradiction. Hence, C ′′ = C ′, i.e., C ′ is a circuit.

Matroids associated with graphs. Let G be a graph. The cycle matroid M(G) has the
ground set E(G) and a set X ⊆ E(G) is independent if X = ∅ or G[X] has no cycles. Notice
that C is a circuit of M(G) if and only if C induces a cycle of G. The bond matroid M∗(G)
with the ground set E(G) is dual to M(G), and X is a circuit of M∗(G) if and only if X is a
minimal cut-set of G. Respectively, Minimum Spanning Circuit for a cycle matroid M(G) is
to decide whether G has a cycle C of weight at most ` that goes through the edges of T , and
for a bond matroid M∗(G) it is to decide whether G has a minimal cut-set C of weight at most
` that contains T . We say that M is a graphic matroid if M is isomorphic to M(G) for some
graph G. Respectively, M is cographic if there is graph G such that M is isomorphic to M∗(G).
Notice that e ∈ E is a loop of a cycle matroid M(G) if and only if e is a loop of G, and e is a
loop of M∗(G) if and only if e is a bridge of G.

Notice also that by the addition of an element parallel to e ∈ E for M(G) we obtain M(G′)
for the graph G′ obtained by adding a new edge with the same end vertices as e. Respectively, by
adding of an element parallel to e ∈ E for M∗(G) we obtain M∗(G′) for the graph G′ obtained
by subdividing e. Hence, adding or deleting a parallel element of graphic or cographic matroid
does not put it outside the corresponding class.

Matroid representations. Let M be a matroid and let F be a field. An n × m-matrix A
over F is a representation of M over F if there is one-to-one correspondence f between E and
the set of columns of A such that for any X ⊆ E, X ∈ I if and only if the columns f(X) are
linearly independent (as vectors of Fn); if M has such a representation, then it is said that M
has a representation over F . In other words, A is a representation of M if M is isomorphic to
the column matroid of A, i.e., the matroid whose ground set is the set of columns of A and a
set of columns is independent if and only if these columns are linearly independent. A matroid
is binary if it can be represented over GF(2). A matroid is regular if it can be represented over
any field. In particular, graphic and cographic matroids are regular.

As we are working with binary matroids, we assume that for an input matroid, we are given
its representation over GF(2). Then it can be checked in polynomial time whether a subset of
the ground set is independent by checking the linear independence of the corresponding columns.
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3 Structure of regular matroids

Our results for regular matroids use the structural decomposition for regular matroids given
by Seymour [29]. Recall that, for two set X and Y , X 4 Y = (X \ Y ) ∪ (Y \X) denotes the
symmetric difference of X and Y . For our purpose we also need the following observation.

Observation 3.1 (see [26]). Let C1 and C2 be circuits (cycles) of a binary matroid M . Then
C1 4 C2 is a cycle of M .

To describe the decomposition of matroids we need the notion of “r-sums” of matroids.
However for our purpose it is sufficient that we restrict ourselves to binary matroids and up to
3-sums. We refer to [32, Chapter 8] for a more detailed introduction to matroid sums. Let M1

and M2 be binary matroids. The sum of M1 and M2, denoted by M1 4M2, is the matroid M
with the ground set E(M1)4 E(M2). The cycles of M are all subsets C ⊆ E(M1)4 E(M2)
of the form C1 4 C2, where C1 is a cycle of M1 and C2 is a cycle of M2. This does indeed
define a binary matroid [29] as can be seen from Observation 3.1, in which the circuits are the
minimal nonempty cycles and the independent sets are (as always) the sets that do not contain
any circuit. For our purpose the following special cases of matroid sums are sufficient.

1. If E(M1) ∩ E(M2) = ∅ and E(M1), E(M2) 6= ∅, then M is the 1-sum of M1 and M2 and
we write M = M1 ⊕1 M2.

2. If |E(M1) ∩ E(M2)| = 1, the unique e ∈ E(M1) ∩ E(M2) is not a loop or coloop of M1

or M2, and |E(M1)|, |E(M2)| ≥ 3, then M is the 2-sum of M1 and M2 and we write
M = M1 ⊕2 M2.

3. If |E(M1) ∩ E(M2)| = 3, the 3-element set Z = E(M1) ∩ E(M2) is a circuit of M1 and
M2, Z does not contain a cocircuit of M1 or M2, and |E(M1)|, |E(M2)| ≥ 7, then M is
the 3-sum of M1 and M2 and we write M = M1 ⊕3 M2.

If M = M1 ⊕r M2 for some r ∈ {1, 2, 3}, then we write M = M1 ⊕M2.

Definition 3.1. A {1, 2, 3}-decomposition of a matroid M is a collection of matroidsM, called
the basic matroids and a rooted binary tree T in which M is the root and the elements of M
are the leaves such that any internal node is either 1-, 2- or 3-sum of its children.

We also need the special binary matroid R10 to be able to define the decomposition theorem
for regular matroids. It is represented over GF(2) by the 5 × 10-matrix whose columns are
formed by vectors that have exactly three non-zero entries (or rather three ones) and no two
columns are identical. Now we are ready to give the decomposition theorem for regular matroids
due to Seymour [29].

Theorem 1 ([29]). Every regular matroid M has an {1, 2, 3}-decomposition in which every basic
matroid is either graphic, cographic, or isomorphic to R10. Moreover, such a decomposition
(together with the graphs whose cycle and bond matroids are isomorphic to the corresponding
basic graphic and cographic matroids) can be found in time polynomial in |E(M)|.

For our algorithmic purposes we will not use the Theorem 1 but rather a modification proved
by Dinitz and Kortsarz in [10]. Dinitz and Kortsarz in [10] observed that some restrictions in
the definitions of 2- and 3-sums are not important for the algorithmic purposes. In particular,
in the definition of the 2-sum, the unique e ∈ E(M1) ∩ E(M2) is not a loop or coloop of
M1 or M2, and |E(M1)|, |E(M2)| ≥ 3 could be dropped. Similarly, in the definition of 3-
sum the conditions that Z = E(M1) ∩ E(M2) does not contain a cocircuit of M1 or M2, and
|E(M1)|, |E(M2)| ≥ 7 could be dropped. We define extended 1-, 2- and 3-sums by omitting these
restrictions. Clearly, Theorem 1 holds if we replace sums by extended sums in the definition
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of the {1, 2, 3}-decomposition. To simplify notations, we use ⊕1,⊕2,⊕3 and ⊕ to denote these
extended sums. Finally, we also need the notion of a conflict graph associated with a {1, 2, 3}-
decomposition of a matroid M given by Dinitz and Kortsarz in [10].

Definition 3.2 ([10]). Let (T,M) be a {1, 2, 3}-decomposition of a matroid M . The intersection
(or conflict) graph of (T,M) is the graph GT with the vertex setM such that distinct M1,M2 ∈
M are adjacent in GT if and only if E(M1) ∩ E(M2) 6= ∅.

Dinitz and Kortsarz in [10] showed how to modify a given decomposition in order to make
the conflict graph a forest. In fact they proved a slightly stronger condition that for any 3-
sum (which by definition is summed along a circuit of size 3), the circuit in the intersection
is contained entirely in two of the lowest-level matroids. In other words, while the process of
summing matroids might create new circuits that contain elements that started out in different
matroids, any circuit that is used as the intersection of a sum existed from the very beginning.

We state the result of [10] in the following form that is convenient for us.

Theorem 2 ([10]). For a given regular matroid M , there is a (conflict) tree T , whose set of
nodes is a set of matroids M, where each element of M is a graphic or cographic matroid, or
a matroid obtained from R10 by (possible) deleting some elements and adding parallel elements,
that has the following properties:

i) if two distinct matroids M1,M2 ∈ M have nonempty intersection, then M1 and M2 are
adjacent in T ,

ii) for any distinct M1,M2 ∈M, |E(M1) ∩ E(M2)| = 0, 1 or 3,

iii) M is obtained by the consecutive performing extended 1, 2 or 3-sums for adjacent matroids
in any order.

Moreover, T can be constructed in a polynomial time.

If T is a conflict tree for a matroid M , we say that M is defined by T .
In our algorithms we are working with rooted conflict trees. Fixing a root r in T defines the

natural parent-child, descendant and ancestor relationships on the nodes of T . Our algorithms
are based on performing bottom-up traversal of the tree T . We say that a node M` of T is a
leaf if it has no children, and Ms is a sub-leaf if it has at least one child and the children of Ms

are leaves. Let M` be a leaf and let Ms be its adjacent sub-leaf. We say that M` is an h-leaf
for h ∈ {1, 2, 3} if the edge between Ms and M` corresponds to the extended h-sum.

As in Minimum Spanning Circuit and Spanning Circuit we are looking for circuits
containing terminals, we need some results about the structure of circuits of matroids and
matroid sums.

Lemma 3.1. Let Z = {e1, e2, e3} be a circuit of a binary matroid M . Let also C be a circuit
of M such that C ∩Z = {e3}. If C ′ = C4Z is not a circuit, then C ′ is a disjoint union of two
circuits C1 and C2 containing e1 and e2 respectively, and C1 4 Z and C2 4 Z are circuits.

Proof. By Observation 3.1, C ′ is a cycle of M . If C ′ is not a circuit, then C ′ is a disjoint union
of circuits of M . If C ′ contains a circuit C ′′ such that C ′′ ∩ Z = ∅, then C ′′ ⊂ C contradicting
the condition that C is a minimal dependent set. Hence, each circuit of C ′ contains an element
of Z. Since Z ∩C ′ = {e1, e2}, C ′ is a disjoint union of two circuits C1 and C2 containing e1 and
e2 respectively.

Suppose that, say C1 4 Z, is not a circuit. Then by the above, C1 4 Z is a disjoint union
of two circuits C ′2 and C ′3 containing e2 and e3 respectively. But then C ′′ = C2 4 C ′2 is a cycle
and C ′′ ⊂ C contradicting that C is a circuit. Hence, C1 4 Z and C2 4 Z are circuits.
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Lemma 3.2. Let Z = {e1, e2, e3} be a circuit of a binary matroid M . Let also C be a circuit
of M such that C ∩ Z = {e1, e2}. Then C ′ = C 4 Z is a circuit of M .

Proof. By Observation 3.1, C ′ is a cycle of M . Because e3 ∈ C ′, there is a circuit C ′′ ⊆ C ′

containing e3. If C ′′ 6= C ′, then the cycle C ′′4Z ⊂ C contradicting the fact that C is a circuit.
Hence, C ′ = C ′′, i.e., C ′ is a circuit.

Lemma 3.3. Let M = M1⊕rM2 for r ∈ {1, 2, 3}, where M1 and M2 are binary matroids, and
Z = E(M1) ∩ E(M2).

i) If r = 1, then C(M) = C(M1) ∪ C(M2).

ii) If r = 2 and Z = {e}, then

C(M) = {C ∈ C(M1) | e /∈ C} ∪ {C ∈ C(M2) | e /∈ C}
∪ {C1 4 C2 | C1 ∈ C(M1), C2 ∈ C(M2), e ∈ C1, e ∈ C2}.

iii) If r = 3, then

C(M) ={C ∈ C(M1) | Z ∩ C = ∅} ∪ {C ∈ C(M2) | Z ∩ C = ∅}
∪{C1 4 C2 | C1 ∈ C(M1), C2 ∈ C(M2), C1 ∩ Z = {e} and C2 ∩ Z = {e}

for some e ∈ Z, and C1 4 Z ∈ C(M1) or C2 4 Z ∈ C(M2)}.

Proof. The claims i) and ii) follow directly from the definitions of the extended 1 and 2-sums.
Hence, we have to prove only iii). Recall that Z is a circuit of M1 and M2 in the case of the
extended 3-sum.

Let C be a circuit of M . If C ⊆ E(Mi) for i ∈ {1, 2}, then C is a cycle of Mi and, by
minimality, C is a circuit of Mi. Assume that C \E(Mi) 6= ∅ for each i ∈ {1, 2}. By definition,
C = C1 4 C2 and C1 ∩ Z = C2 ∩ Z, where C1 and C2 are cycles of M1 and M2 respectively.

If Z ⊆ E(C1), then by Observation 3.1, C ′ = C1 4 Z ⊆ C is a cycle of M1. Hence, C ′ is
a cycle of M contradicting that C is a minimal dependent set. Therefore 1 ≤ |C1 ∩ Z| ≤ 2.
Suppose that |C1 ∩ Z| = 2. Consider C ′1 = C1 4 Z and C ′2 = C2 4 Z. By Observation 3.1, C ′i
is a cycle of Mi, i ∈ {1, 2}. Clearly, C = C ′1 4 C ′2, but now |C ′1 ∩ Z| = |C ′2 ∩ Z| = 1. It means,
that we always can assume that C = C14 C2, where C1 ∩ Z = {e} and C2 ∩ Z = {e} for some
e ∈ Z.

Suppose that one of the cycles C1 and C2, say C1, is not a circuit. Then C1 is a disjoint
union of circuits of M1. This union contains a circuit C ′1 with e ∈ C ′1. Then C ′ = C ′14C2 ⊂ C
is a cycle of M contradicting the minimality of C. Hence, C1 and C2 are circuits of M1 and M2

respectively.
Suppose that C ′1 = C14Z and C ′2 = C24Z are not circuits of M1 and M2 respectively. By

Lemma 3.1, for i ∈ {1, 2}, C ′i is a disjoint union of two circuits C1
i and C2

i of Mi containing e1
and e2 respectively for distinct e1, e2 ∈ Z \{e}. Then C ′ = C1

14C1
2 is a cycle of M contradicting

the minimality of C. Hence, for each i ∈ {1, 2}, C ′i is a circuit of Mi.
In the opposite direction, if C is a circuit of M1 or M2 such that C ∩ Z = ∅, then C is a

circuit of M . Suppose now that C = C1 4 C2, where C1 and C2 are circuits of M1 and M2

respectively, C1 ∩Z = {e} and C2 ∩Z = {e} for some e ∈ Z, and C14Z or C24Z is a circuit
of M1 or M2 respectively. We show that C is a circuit of M .

To obtain a contradiction, assume that C is not a circuit. By Observation 3.1, C is a cycle
of M . Therefore, there is a circuit C ′ ⊂ C. If C ′ ⊆ E(M1) or C ′ ⊆ E(M2), then C ′ ⊂ C1

or C ′ ⊂ C2, but this contradicts the condition that C1 and C2 are circuits of M1 and M2

respectively. Hence, C ′ \ E(M1) 6= ∅ and C ′ \ E(M2) 6= ∅. As we already proved above,
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C ′ = C ′1 4 C ′2, where C ′i is a circuit of Mi, i ∈ {1, 2}, and C ′i ∩ Z = {e′} and C ′2 ∩ Z = {e′}
for some e′ ∈ Z. Clearly, C ′1 \ {e′} ⊆ C1 \ {e} and C ′2 \ {e′} ⊆ C2 \ {e} and at least one of the
inclusions is proper. If e′ = e, then C ′1 ⊆ C1 and C ′2 ⊆ C2 and at least one of the inclusions is
proper contradicting the fact that C1 and C2 are circuits of M1 and M2 respectively. Hence,
e′ 6= e. If C ′1 \ {e′} = C1 \ {e}, then {e, e′} = C ′1 4 C1. This contradicts the condition that Z
is a circuit. Hence, C ′1 \ {e′} ⊂ C1 \ {e}. But then C ′1 ⊂ C1 4 Z, and therefore C1 4 Z is not
a circuit of M1. Symmetrically, C2 4 Z is not a circuit of M2; a contradiction. Hence, C is a
circuit of M .

We conclude this section by the following lemma about circuits in graphic and cographic
matroids.

Lemma 3.4. Let Z = {e1, e2, e3} be a circuit of a binary matroid M . Let also C be a circuit
of M such that C ∩ Z = {e3}. Then the following holds:

i) If M = M(G) for a graph G, then C ′ = C 4 Z is a circuit of M if and only if C induces
a cycle of G− v, where v is the vertex of G incident with e1 and e2.

ii) If M = M∗(G) for a connected graph G, then C ′ = C 4 Z is a circuit of M if and only
if C = E(A,B) for a cut (A,B) of G such that G[A] and G[B] are connected graphs and
either e1, e2 ∈ E(G[A]), or e1, e2 ∈ E(G[B]).

Proof. The first claim is straightforward. To show ii), recall that C is a minimal cut-set of G.
Hence, there is a cut (A,B) of G such that C = E(A,B) and G[A] and G[B] are connected.

Assume that e1 ∈ E(G[A]) and e2 ∈ E(G[B]). Since Z is a minimal cut-set of G, we have
that e1 and e2 are bridges of G[A] and G[B] respectively. Then C 4 Z is a cut-set separating
G into 3 components. Hence C ′ is not a minimal cut-set, which is a contradiction. Therefore,
either e1, e2 ∈ E(G[A]), or e1, e2 ∈ E(G[B]).

Suppose now that C = E(A,B) for a cut (A,B) of G such that G[A] and G[B] are connected
and e1, e2 ∈ E(G[A]). Because Z is a minimal cut-set, {e1, e2} is a minimal cut-set of G[A]. Let
(A1, A2) be a cut of G[A] such that E(A1, A2) = {e1, e2}. Assume that the end-vertex of e3 in
A is in A1. Since Z is a minimal cut-set, the edges of C \ {e3} join A2 with B. It implies, that
C 4 Z is a minimal cut-set that separates A2 and A1 ∪B.

4 Minimal cut with specified edges

To construct an algorithm for Minimum Spanning Circuit for regular matroids, we need an
algorithm for cographic matroids. Let G be a connected graph, and let T ⊆ E(G) be a set of
terminal edges. For sets R1, R2 ⊆ V (G), we say that C ⊆ E(G) is (R1, R2)-terminal cut-set if
C is (a) a minimal cut-set; (b) C ⊇ T ; and (c) G− C contains distinct connected components
X1 and X2 such that Ri ⊆ Xi for i ∈ {1, 2}.

We will need solve the following auxiliary parameterized problem

Input: A connected graph G, a weight function w : E(G)→ N, a set of termi-
nals T ⊆ E(G), sets R1, R2 ⊆ V (G), and a positive integer k.

Task: Decide whether G contains an (R1, R2)-terminal cut-set C such that
w(C)− w(T ) ≤ k.

Minimal Terminal Cut parameterized by k

We say that an (R1, R2)-terminal cut-set C with the required weight is a solution of Minimal
Terminal Cut. Observe that if in the instance of Minimal Terminal Cut we have R1∩R2 6=
∅, then the problem does not have a solution and this is a no-instance.
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In what follows, we prove that Minimal Terminal Cut is FPT. In the special case when
R1 = R2 = ∅, Minimal Terminal Cut essentially asks for a minimum weight minimal cut of
a graph that contains specified edges. We believe that this graph problem is interesting in its
own.

Theorem 3. Minimal Terminal Cut is solvable in time 2O(k
2 log k) · nO(1).

The proof of Theorem 3 is technical and is given in the remaining part of the section. It
is based on a (non-trivial) application of the recent algorithmic technique of recursive under-
standing introduced by Chitnis et al. in [5] (see also [6] for more details).

4.1 Preliminaries

First, we introduce some notions required for the proof of Theorem 3.
Let G be a graph, X ⊆ V (G). We say that G′ is obtained from G by the contraction of

X, if we get G′ by deleting the vertices of X and replacing by a vertex x, and then each edge
uv ∈ E(G) with u, v ∈ X is replaced by a loop xx, and each edge uv ∈ E(G) with u ∈ X and
v /∈ X is replaced by xv. Notice that while contracting, we do not reduce the number of edges,
and that we can obtain loops and multiple edges by this operation. For simplicity, we do not
distinguish edges of the original graph from the edges obtained from them by contracting a set
if it does not create confusions. For an edge weighted graph, we assume that every new edge has
the same weight as the edge it replaces. To simplify notations, throughout this section we also
assume that if the contraction is done for some set X ⊆ V (G) in an instance (G,w, T,R1, R2, k)
of Minimal Terminal Cut, then if X ∩ Ri 6= ∅ for i ∈ {1, 2}, then the vertex obtained from
X is in Ri, and if a terminal edge is replaced, then the obtained edge is included in T .

For a set X, we denote by P(X) the set of all partitions of X. We assume that P(X) = ∅
if X = ∅.

The main idea behind the recursive understanding technique [5] is the following. We try to
find a minimal cut-set of bounded size that separates an input graph into two sufficiently big
parts. If such a cut-set exists, then we solve the problem recursively for one of the parts and
replace this part by an equivalent graph of bounded size; the equivalence here means that the
replacement keeps all essential solutions of the original part. In our case, the replacement is
obtained by contracting some edges. This way, we obtain a graph of smaller size. If the input
graph has no cut-set with the required properties, then it either has a bounded size or has high
connectivity. In the case of the bounded size graph we can apply brute force, and if the graph
is highly connected, then we can exploit this property to solve the problem. To define formally
what we mean by high connectivity, we need the following definition.

Definition 4.1 ([5]). Let G be a connected graph and let p, q be positive integers. A cut (A,B)
of G is called a (q, p)-good edge separation if

i) |A|, |B| > q,

ii) |E(A,B)| ≤ p,

iii) G[A] and G[B] are connected.

Let G be a connected graph and let p, q be positive integers. We say that G is (q, p)-
unbreakable if there is no cut (A,B) of G such that

i) |A|, |B| > q, and

ii) |E(A,B)| ≤ p,

Chitnis et al. proved the following lemma [5].
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Lemma 4.1 ([5]). There exists a deterministic algorithm that, given a connected graph G
along with integers p and q, in time 2O(min{p,q} log(p+q)) · n3 log n either finds a (q, p)-good edge
separation, or correctly concludes that no such separation exists.

We use this lemma to show the following.

Lemma 4.2. There exists a deterministic algorithm that, given a connected graph G along with
integers p and q, in time 2O(min{p,q} log(p+q)) · n3 log n either finds a (q, p)-good edge separation,
or correctly concludes that G is (pq, p)-unbreakable.

Proof. We use Lemma 4.1 to find a (q, p)-good edge separation. If the algorithm returns a (q, p)-
good edge separation, we return it. Assume that the algorithm reported that no such separation
exists. We claim that G is (pq, p)-unbreakable. To obtain a contradiction, assume that (A,B)
is a cut of G such that |A|, |B| > pq and |E(A,B)| ≤ p. Consider G[A]. Because G is connected
and |E(A,B)| ≤ p, G[A] has at most p components. Hence, G has a component HA with at
least q + 1 vertices. Symmetrically, we obtain that G[B] has a components HB with at least
q + 1 vertices. Let C be a minimum cut-set in G that separates V (HA) and V (HB). Clearly,
|C| ≤ p. Let (A′, B′) be the cut of G with V (HA) ⊆ A′, V (HB) ⊆ B′ and E(A′, B′) = C.
We have that (A′, B′) is a (q, p)-good separation, but it contradicts the assumption that the
algorithm reported that there is no such a separation.

We use Lemma 4.2 to find a (q, p)-good edge separation for appropriate p and q. If such
a cut (A,B) exists, we solve the problem recursively for one of the parts, say, for G[A]. But
to be able to obtain a solution for the original instance, we should combine solutions for the
both parts. We use the fact that G[A] is separated from the remaining part of the graph by a
small number of vertices that are the end-vertices of the edges of the cut-set which are called
border terminals. (In fact, we keep 2p border terminals to execute the recursive step.) As we
want to find all essential solutions for G[A] to replace this graph by a graph of bounded size, we
have to take into account all possibilities for the part of a solution in B to separate the border
terminals.

This leads us to the following definition. Let (G,w, T,R1, R2, k) be an instance of Minimal
Terminal Cut given together with a set X ⊆ V (G) of border terminals of G. We say that an
instance (Ĝ, w, T, R̂1, R̂2, k̂) of Minimal Terminal Cut is obtained from (G,w, T,R1, R2, k)
by border contraction if k̂ ≤ k and there is a partition (X1, . . . , Xt) ∈ P(X) and partition
(I1, I2) of {1, . . . , t}, where Ii can be empty, such that Ĝ is obtained by consecutively contracting
X1, . . . , Xt, and setting R̂i = Ri∪{xj | j ∈ Ii} for i ∈ {1, 2}, where each xj is the vertex obtained
from Xj by contraction. Let us note that the total number of different border contractions of a
given instance depends only on the size of X and k and is k · |X|O(|X|).

It leads us to the following auxiliary problem. In this problem we have to output a solution
(if there is any) for each of the instances of Minimal Terminal Cut obtained by all possible
border contractions of a given instance. Notice that this is not a decision problem.

Input: A connected graph G, a weight function w : E(G)→ N, a set of termi-
nals T ⊆ E(G), sets R1, R2 ⊆ V (G), a positive integer k, and a sets of
border terminals X ⊆ V (G) with |X| ≤ 4k.

Task: Output for each possible instance of Minimal Terminal Cut which
can be obtained from (G,w, T,R1, R2, k) by border contractions of X
a solution, if there is any. In a case when a border contraction instance
has no solution, output ∅.

Border Contractions parameterized by k
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Thus an output for Border Contractions is a family of edge sets, where the total number
of edges in the solution is at most k · (4k)4k ·24k = 2O(k log k). Notice also that to solve Minimal
Terminal Cut, we can apply an algorithm for Border Contractions for the special case
X = ∅.

4.2 High connectivity phase

In this section we construct an algorithm for Border Contractions for the case when an
input graph is (pq, p)-unbreakable for p = 2k and q = k2 · 24k+4k log 4k + 4k+ 1; we fix the values
of p and q for the remaining part of Section 4. First, we solve Minimal Terminal Cut and
then explain how to obtain the algorithm for Border Contractions.

Lemma 4.3. Let G be a graph with an edge weight function w : E(G)→ N, T ⊆ E(G) and let
k be a positive integer. It can be decided in time 2O(k) ·nO(1) whether there is a cut (A,B) of G
such that T ⊆ E(A,B), and w(E(A,B) \ T ) ≤ k.

Proof. We show the lemma by the reduction of the problem to the Odd Cycle Transversal
(OCT) problem. Let us remind that in the OCT problem we are given a graph G and a positive
integer k, the task is to decide whether there is a set of at most k vertices S such that G− S is
bipartite. Since OCT is known to be solvable in time 2O(k) · nO(1), this will prove the lemma.

Let G be a graph with an edge weight function w : E(G) → N, T ⊆ E(G), and let k be a
positive integer. Recall that we allow loops and multiple edges. To slightly simplify reduction,
we first exhaustively apply two simple reduction rules.

If e ∈ T is a loop, then e /∈ E(A,B) for any cut (A,B). If a loop e /∈ T , then e is irrelevant.
Hence we have the following reduction rule.

Reduction Rule 4.1 (Loop reduction rule). Let e ∈ E(G) be a loop. If e 6∈ T , then delete
e. Otherwise (if e ∈ T ) report that there is no required cut (A,B).

Clearly, any two parallel edges are either both included in a cut-set or both are excluded
from it. Notice also that the weights of terminals are irrelevant. Hence, we can safely apply the
following rule.

Reduction Rule 4.2 (Parallel terminal reduction rule). If there are two parallel edges
e1, e2 ∈ T , delete one of them and change the weight of the remaining edge to 1.

From now on we assume that the rules cannot be applied. We construct (unweighted) graph
G′ from G as follows.

• Subdivide each edge uv /∈ T , that is, add a new vertex zuv and replace uv by uzuv and
vzuv; we call the new vertices subdivision vertices.

• Replace each subdivision vertex zuv by r = min{w(uv), k + 1} false twins, i.e., we replace
zuv by r vertices adjacent to u and v; denote by Zuv the set of obtained vertices.

• Replace each vertex v of V (G) by k + 1 false twins, i.e., we replace v by k + 1 vertices
with the same neighbors as v; denote by Uv the set of obtained vertices.

Notice that because of reduction rules, G′ is a simple graph. We claim that there is a cut (A,B)
of G such that T ⊆ E(A,B), and w(E(A,B) \ T ) ≤ k if and only of (G′, k) is a yes-instance of
OCT.

Suppose that (A,B) is a cut of G such that T ⊆ E(A,B), and w(E(A,B) \ T ) ≤ k. We
construct the set S ⊆ V (G′) by including in S the set of vertices Zuv for each uv ∈ E(A,B)\T .
Then G′ − S is bipartite.
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Suppose that there is S ⊆ V (G′) of size at most k such that G′ − S is bipartite. Without
loss of generality we assume that S is an inclusion minimal set with this property. Because S
is minimal, if x and y are false twins of G, then either x, y ∈ S, or x, y /∈ S. Let (X,Y ) be
a bipartition of G′ − S. Since |Uv| > k, we have that Uv ∩ S = ∅ for v ∈ V (G). Notice also
that we can assume that either Uv ⊆ X or Uv ⊆ Y for v ∈ V (G), as otherwise, if there is
v ∈ V (G) such that Uv ∩X 6= ∅ and Uv ∩ Y 6= ∅, then the vertices of Uv are isolated vertices
of G′ − S. Let A = {v ∈ V (G) | Uv ⊆ X} and B = {v ∈ V (G) | Uv ⊆ Y }. Clearly, (A,B) is
a cut of G. Let uv ∈ T . Assume that Uu ⊆ X. Then Uv ⊆ Y and, therefore, uv ∈ E(A,B).
Let uv ∈ E(A,B) \ T and assume that u ∈ A and v ∈ B. Then Uu ⊆ X and Uv ⊆ Y .
Hence, Zuv ⊆ S. Since |Zuv| = min{w(uv), k + 1} and |S| ≤ k, the total weight of the edges of
E(A,B) \ T is at most k.

This proves the correctness of the reduction. Since OCT can be solved in time 2.3146k ·nO(1)
by the results of Lokshtanov et al. [23], we get the claim of the lemma.

Let (A1, B1) and (A2, B2) be cuts of a graph G. We define the distance between these cuts
as

dist((A1, B1), (A2, B2)) = min{|A1 4A2|, |A1 4B2|}.

The following structural lemmata are crucial for our algorithm.

Lemma 4.4. Let G be a graph with an edge weight function w : E(G) → N, set of terminals
T ⊆ E(G), and let k be a positive integer. Let (A1, B1) and (A2, B2) be cuts of G such that
T ⊆ E(Ai, Bi) and w(E(Ai, Bi) \ T ) ≤ k for i ∈ {1, 2}. Then w(E(A1 4A2, A1 4B2)) ≤ 2k.

Proof. Notice that (A1 4 A2, A1 4 B2) is a cut of G. For each i ∈ {1, 2}, we have that
T ⊆ E(Ai, Bi). Therefore, the set

E(A1 ∩A2, A1 ∩B2) ∪ E(B1 ∩A2, B1 ∩B2) ∪ E(A2 ∩A1, A2 ∩B1) ∪ E(B2 ∩A1, B2 ∩B1)

does not contain edges from T .
Hence,

E(A1 ∩A2, A1 ∩B2) ∪ E(A2 ∩B1, B1 ∩B2) ⊆ E(A2, B2) \ T,

and therefore,
w(E(A1 ∩A2, A1 ∩B2) ∪ E(A2 ∩B1, B1 ∩B2) ≤ k.

Symmetrically,
w(E(A1 ∩A2, A2 ∩B1) ∪ E(A1 ∩B2, B1 ∩B2)) ≤ k.

Since
A1 4A2 = (A1 ∩B2) ∪ (A2 ∩B1) and A1 4B2 = (A1 ∩A2) ∪ (B1 ∩B2),

the claim follows.

Let us recall that in this section we fix p = 2k and q = k24k+4k log 4k + 4k + 1.

Lemma 4.5. Let G be a connected (pq, p)-unbreakable graph with an edge weight function
w : E(G) → N, T ⊆ E(G) and let k be a positive integer. Let (A1, B1) and (A2, B2) be cuts of
G such that T ⊆ E(Ai, Bi) and w(E(Ai, Bi) \ T ) ≤ k for i ∈ {1, 2}. Then

dist((A1, B1), (A2, B2)) ≤ pq.

Proof. Aiming towards a a contradiction, we assume that dist((A1, B1), (A2, B2)) > pq. Let us
note that (A1 4 A2, A1 4 B2) is a partition of V (G). Since dist((A1, B1), (A2, B2)) > pq, we
have that |A1 4 A2| > pq and |A1 4 B2| > pq. By Lemma 4.4, w(E(A1 4 A2, A1 4 B2)) ≥
|A1 4A2, A1 4B2)| ≤ 2k = p; contradicting the assumption that G is (pq, p)-unbreakable.
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Our algorithm for Minimal Terminal Cut uses the random separation technique proposed
by Cai, Chan and Chan [4]. For derandomization, we use the following lemma proved by Chitnis
et al. [5].

Lemma 4.6 ([5]). Given a set U of size n, and integers 0 ≤ a, b ≤ n, one can in time
2O(min{a,b} log(a+b)) · n log n construct a family F of at most 2O(min{a,b} log(a+b)) · log n subsets of
U , such that the following holds: for any sets A,B ⊆ U , A ∩ B = ∅, |A| ≤ a, |B| ≤ b, there
exists a set S ∈ F with A ⊆ S and B ∩ S = ∅.

Now we are ready to give the algorithm for Minimal Terminal Cut for unbreakable
graphs.

Lemma 4.7. Minimal Terminal Cut can be solved in 2O(k
2 log k)nO(1) time for (pq, p)-

unbreakable graphs.

Proof. Let (G,w, T,R1, R2, k) be an instance of Minimal Terminal Cut, where G is (pq, p)-
unbreakable. If n ≤ pq, we solve the problem by the brute force selection of at most k edges in
time 2O(k

2 log k)nO(1). From now we assume that n > pq.
Using Lemma 4.3, we find a cut (A,B) of G such that T ⊆ E(A,B) and w(E(A,B)\T ) ≤ k.

If such a cut does not exist, we conclude that we are a given a no-instance.
Let (G,w, T,R1, R2, k) be a yes-instance and let C = E(A′, B′) be a solution. Without loss

of generality, we assume that dist((A,B), (A′, B′)) = |A4 A′|. By Lemma 4.5, |A4 A′| ≤ pq.
It means, that to solve the problem, we can either find a cut (A′, B′) or, equivalently, A4 A′

with these properties or conclude correctly that such a cut does not exist. First, we describe a
randomized algorithm which finds A4A′ and then explain how to derandomize it.

We randomly color the vertices of V (G) \ (R1 ∪ R2) by two colors red and blue with the
probabilities 1 − 1

pq and 1
pq respectively. We are looking for a set X ⊆ V (G) such that the

following holds:

i) |X| ≤ pq.

ii) For A′ = A4X and B′ = V (G) \A′, C = E(A′, B′) is a solution for (G,w, T,R1, R2, k).

iii) The vertices of X are red and the vertices of NG(X) are blue.

We say that C = E(A′, B′) is a colorful solution.
The vertices of G are colored in red and in blue induce subgraphs that we call red and blue

correspondingly. We also say that H is a red component if H is a connected component of the
red (respectively, blue) subgraph of G. Because of i)–iii), we have the following properties:

• if H is a red component, then either V (H) ⊆ X or V (H) ∩X = ∅,

• if v ∈ V (G) is colored blue, then v /∈ X.

We use i)–iii) and these properties to obtain reduction rules that recolor red components in
blue, that is, each vertex of such a component becomes blue. We apply these rules exhaustively.

Since T ⊆ E(A′, B′) if C = E(A′, B′) is a solution for (G,w, T,R1, R2, k), we get the
following rule.

Reduction Rule 4.3 (T -reduction rule). If there is uv ∈ T such that u is red and v is blue,
then recolor the red component H containing u in blue.

We say that uv ∈ E(G) is a crossing edge for a red component H if u ∈ V (H), v /∈ V (H),
and either u ∈ A and v ∈ B or u ∈ B and v ∈ A. Notice that v is colored blue. Notice also
that if H is a red component without crossing edges and V (H) ⊆ X, then for A′ = A4X and
B′ = V (G) \A′, V (H)∩A′ and V (H)∩B′ induce components of G[A′] and G[B′] respectively.
If |V (H)| ≤ pq, then we have that G[A′] or G[B′] is not connected, because |V (G)| > pq. Hence,
V (H) ∩X = ∅ if C = E(A′, B′) is a solution for (G,w, T,R, k). It gives us the next rule.
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Reduction Rule 4.4 (Crossing reduction rule). If there is a red component H without
crossing edges, then recolor H blue.

After the exhaustive applications of Rules 4.3 and 4.4, each red component H has crossing
edges and these crossing edges are not in T . Since w(E(A,B) \ C) ≤ k, the total number
of crossing edges is at most k and, therefore, there are at most k red components. Because
X is a union of some red components, we check all possibilities for X (the number of all
possibilities is at most 2k), and for each choice, we check whether C = E(A′, B′) is a solution
for (G,w, T,R1, R2, k). If we do not succeed in finding a solution for at least one of the choices,
then we return that there is no solution.

Since Rules 4.3 and 4.4 can be run in polynomial time, a colorful solution for (G,w, T,R1, R2, k)
can be found in time 2k · nO(1).

Our next aim is to evaluate the probability of existence of a colorful solution for (G,w, T,R1, R2, k)
if (G,w, T,R1, R2, k) is a yes-instance of Minimal Terminal Cut. Assume that (G,w, T,R1, R2, k)
is a yes-instance and C = E(A′, B′) is a solution, where (A′, B′) is a cut of G. We assume that
dist((A,B), (A′, B′)) = |A4A′|. Let X = A4A′. By Lemma 4.5, |X| = dist((A,B), (A′, B′)) ≤
pq. By Lemma 4.4, |E(X,V (G) \X)| ≤ 2k and, therefore, |NG(X)| ≤ 2k. Then the probability
that the vertices of X are colored red and the vertices of NG(X) are colored blue is at least
(1 − 1

pq )pq · 1
(pq)2k

≥ 1
4(pq)2k

if pq ≥ 2. If we run our randomized algorithm N = 4(pq)2k times,

then the probability that we do not have a colorful solution for each of the N random colorings,
is at most (1 − 1

4(pq)2k
)N ≤ e−1. It means, that it is sufficient to run the algorithm N times

to claim that if we do not find a solution for N random colorings, then with probability at
least 1 − e−1 > 0, (G,w, T,R1, R2, k) is a no-instance. In other words, we have a true-biased
Monte-Carlo algorithm which runs in time N · 2k · nO(1) if the initial partition (A,B) is given.
Since p = 2k and q = k24k+4k log 4k + 4k+ 1 and the initial partition (A,B) can be found in time
2O(k) · nO(1), see Lemma 4.3, the total running time is 2O(k

2 log k) · nO(1).
To derandomize the algorithm, we use Lemma 4.6 for a = q, b = p and U = V (G). We

construct the family F of subsets of V (G) described in Lemma 4.6, and instead of random
colorings, for each S ∈ F , we consider the coloring of G such that the vertices of S are colored
red and the vertices of V (G)\S are blue. Lemma 4.6 guarantees that (G,w, T,R1, R2, k) is a yes-
instance of Minimal Terminal Cut if and only if we have a colorful solution for at least one of
|F| colorings. Since F can be constructed in time 2O(k

2 log k) ·nO(1) and |F| = 2O(k
2 log k) ·nO(1),

the running time of the derandomized algorithm is 2O(k
2 log k) · nO(1).

We use Lemma 4.7, to solve Border Contractions.

Lemma 4.8. Border Contractions can be solved in time 2O(k
2 log k) · nO(1) for (pq, p)-

unbreakable graphs.

Proof. Let (G,w, T,R1, R2, k,X) be an instance of Border Contractions. Let us recall that
the output of Border Contractions consists of solutions of Minimal Terminal Cut for
all possible border contractions (Ĝ, w, T, R̂1, R̂2, k̂) of (G,w, T,R1, R2, k,X). Notice that if G
is (pq, p)-unbreakable, then each graph Ĝ is (pq, p)-unbreakable as well, because contractions
of sets do not violate this property. We apply Lemma 4.7 for each instance (Ĝ, w, T, R̂, k̂) of
Minimal Terminal Cut. Since the number of all possible border contractions is in 2O(k log k),
the total running time required to output the family of edge sets for Border Contractions
is in 2O(k

2 log k) · nO(1).

4.3 Proof of Theorem 3

We are ready to proceed with the proof of Theorem 3, which says that Minimal Terminal
Cut is solvable in time 2O(k

2 log k) ·nO(1). We give a recursive algorithm solving the more general
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Border Contractions. Then to solve Minimal Terminal Cut we solve the special case
X = ∅ of Border Contractions. Recall that we fixed p = 2k and q = k24k+4k log 4k + 4k+ 1.

Let (G,w, T,R1, R2, k,X) be an instance of Border Contractions.
It is convenient to sort out a trivial case first. Notice that if for (G,w, T,R1, R2, k,X) the

set of terminal edges is a cut-set of the input graph but not a minimal cut-set, then this is a
no-instance. It gives us the following rule.

Reduction Rule 4.5 (Stopping rule). If graph G− T has at least two components without
border terminals, then output the empty set for every partition (X1, . . . , Xt) and every partition
(I1, I2) of {1, . . . , t}.

From now we assume that Stopping rule is not applicable to the given instance.
We apply Lemma 4.2 on G. If G is (pq, p)-unbreakable, then we apply Lemma 4.8 to solve

the problem. Otherwise, the algorithm from Lemma 4.2 returns a (q, p)-good edge separation
(U,W ) of G.

The set of border terminals X has size at most 4k = 2p. Hence, |X ∩U | ≤ p or |C ∩W | ≤ p.
Assume without loss of generality that |X ∩ U | ≤ p. Let T ′ = T ∩ E(G[U ]), R′1 = R1 ∩ U ,
R′2 = R2∩U , and denote by w′ the restriction of w on E(G[U ]). We also define the set of border
terminals

X ′ = (X ∩ U) ∪ {v ∈ V (G[U ]) | v is incident with an edge of E(U,W )};

observe that |X ′| ≤ 2p = 4k, because |E(U,W )| ≤ p. We consider the instance
(G[U ], w′, T ′, R′1, R

′
2, k,X

′) of Border Contractions and solve the problem recursively.
Recall that the output of Border Contractions for (G[U ], w′, T ′, R′1, R

′
2, k,X

′) is a family
of solutions C for all possible border contractions. In other words, this is a family of solutions
for instances (Ĝ′, w′, T ′, R̂′1, R̂

′
2, k̂) for all k̂ ≤ k such that a solution exist, and ∅ if there is no

solutions. Each Ĝ′ and R̂′i is constructed as follows: for every partition (X1, . . . , Xt) ∈ P(X ′)
and every partition (I1, I2) of {1, . . . , t}, where Ii can be empty, we construct Ĝ′ by consecutively
contracting X1, . . . , Xt, and set R̂′i = R′i∪{xj | j ∈ Ii} for i ∈ {1, 2}, where each xj is the vertex
obtained from Xj by the contraction. For each of the subproblems, solution C is a set of edges
of G[U ].

Denote by L the union of all sets generated by the algorithm for (G[U ], w′, T ′, R′1, R
′
2, k,X

′).
Let G′′ be the graph obtained from G by contracting the edges of E(G[U ]) \ (L∪T ). Denote by
α : V (G)→ V (G′′) the mapping that maps each vertex v ∈ V (G) to the vertex obtained from v
by edge contractions. Let R′′1 = α(R1), R

′′
2 = α(R2) and X ′′ = α(X). Notice that the edges of T

are not contracted. Denote by T ′′ the edges of G′′ obtained from T ; clearly, for each uv ∈ T , we
have α(u)α(v) ∈ T ′′. For every uv ∈ E(G) that was not contracted, the weight of the obtained
edge α(u)α(v) is w′′(α(u)α(v)) = w(uv). We obtain a new instance (G′′, w′′, T ′′, R′′1 , R

′′
2 , k,X

′′)
of Border Contractions. As before, we do not distinguish between the edges obtained by
contracting edges or the original edges; thus T ′′ = T .

We claim that the original (G,w, T,R1, R2, k,X) and new (G′′, w′′, T ′′, R′′1 , R
′′
2 , k,X

′′) in-
stances are equivalent in the following sense: There is a solution (in fact, every solution) for
(G′′, w′′, T ′′, R′′1 , R

′′
2 , k,X

′′) that is a solution for (G,w, T,R1, R2, k,X), and there is a solution
for (G,w, T,R1, R2, k,X) that is a solution for (G′′, w′′, T ′′, R′′1 , R

′′
2 , k,X

′′).

Lemma 4.9. For every partition (X1, . . . , Xt) ∈ P(X), every partition (I1, I2) of {1, . . . , t},
and every nonnegative k̂ ≤ k, the instances (Ĝ, w, T, R̂1, R̂2, k̂) and (Ĝ′′, w′′, T ′′, R̂′′1 , R̂

′′
2 , k̂) of

Minimal Terminal Cut are equivalent, where Ĝ is constructed from G by consecutive con-
tracting X1, . . . , Xt, R̂i = Ri ∪ {xj | j ∈ Ii} for i ∈ {1, 2}, where each xj is the vertex obtained
from Xj by contraction, and, respectively, Ĝ′′ is constructed from G′′ by consecutive contracting
α(X1), . . . , α(Xt), R̂

′′
i = R′′i ∪ {xj | j ∈ Ii} for i ∈ {1, 2}, where each xj is the vertex obtained

from α(Xj) by contraction.
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Proof. Let P = (X1, . . . , Xt) ∈ P(X), (I1, I2) be a partition of {1, . . . , t} and k̂ ≤ k.
Suppose that (Ĝ, w, T, R̂1, R̂2, k̂) is a yes-instance and denote by C a corresponding solution.

Denote by (A,B) the cut of Ĝ such that C = E(A,B) and assume that R̂1 ⊆ A and R̂2 ⊆ B.
Let C ′ = C ∩ E(G[U ]) and k′ = w(C ′ \ T ).

We construct the partition P ′ ∈ P(X ′) in two stages. Recall that some of the border
terminals in instance (G[U ], w′, T ′, R′1, R

′
2, k,X

′) could be also border terminals in the original
instance. We include two such border terminals in the same set of P ′ if they are in the same
set of P . This way we obtain partition (Y1, . . . , Ys) of X ′. Then we replace two distinct sets
Yi and Yj , i, j ∈ {1, . . . , s}, by their union if they can be “connected” in Ĝ by a path avoiding
G[U ] and C. More precisely, if there are vertices x ∈ Yi and y ∈ Yj such that Ĝ contains an
(x′, y′)-path, where x′ and y′ are the vertices of Ĝ that are x or y, or obtained by contracting
set containing x or y respectively, such that this path does not contain edges of G[U ] and C.
Notice that for any pair of such vertices x an y, either x′, y′ ∈ A or x′, y′ ∈ B, i.e., we never
contract two vertices from different parts of the cut (A,B). Denote by (X ′1 . . . , X

′
r) the obtained

partition P ′ of X ′. We define the partition (I ′1, I
′
2) of {1, . . . , r} by including j ∈ {1, . . . , r} in

I1 if X ′j is obtained by contracting vertices of A and we put j in I2 otherwise. Consider the

instance (Ĝ′, w′, T ′, R̂′1, R̂
′
2, k̂) of Minimal Terminal Cut, where Ĝ′ is constructed form G[U ]

by contracting X ′1, . . . , X
′
r, and R̂′i = R′i∪{xj | j ∈ I ′i} for i ∈ {1, 2}, where each xj is the vertex

obtained from X ′j by contraction.

By the construction of P ′ and (I ′1, I
′
2), we have that (Ĝ′, w′, T ′, R̂′1, R̂

′
2, k̂) is a yes-instance.

Hence, for instance (G[U ], w′, T ′, R′1, R
′
2, k,X

′) the output of Border Contractions contains
a solution C ′′ for this choice of P ′ and (I ′1, I

′
2), and w(C ′′\T ) ≤ k′. Again, by the construction, we

have that S = (C\C ′)∪C ′′ is a solution for (Ĝ′′, w′′, T ′′, R̂′′1 , R̂
′′
2 , k̂). Hence (Ĝ′′, w′′, T ′′, R̂′′1 , R̂

′′
2 , k̂)

is a yes-instance of Minimal Terminal Cut.
Finally, if (Ĝ′′, w′′, T ′′, R̂′′1 , R̂

′′
2 , k̂) is a yes-instance, then

(Ĝ, w, T, R̂1, R̂2, k̂) is a yes-instance, because G′′ is obtained from G by contracting nonterminal
edges, and every solution for (Ĝ′′, w′′, T ′′, R̂′′1 , R̂

′′
2 , k̂) is a solution for (Ĝ, w, T, R̂1, R̂2, k̂).

By Lemma 4.9, that instead of deciding whether instance (G,w, T,R1, R2, k,X) is a yes-
instance of Border Contractions, we can solve the problem on instance (G′′, w′′, T ′′, R′′1 , R

′′
2 , k,X

′′).
What remains is to bound the size of G′′, and this is what the next lemma does.

Lemma 4.10. |V (G′′)| < |V (G)|.

Proof. Recall that G′′ is the graph obtained from G by contracting the edges of E(G[U ])\(L∪T ),
where L is the union of all sets generated by the algorithm for Border Contractions for
(G[U ], w′, T ′, R′1, R

′
2, k,X

′). Notice that for any C in a solution for (G[U ], w′, T ′, R′1, R
′
2, k,X

′),
w(C \ T ) ≤ k. Hence, |C \ T | ≤ k. Since |X ′| ≤ 4k, the total number of sets in the output is
at most k · 24t · (4t)4t. Therefore, the graph H obtained from G[U ] by contracting the edges of
E(G[U ]) \ (L ∪ T ) has at most k2 · 24t · (4t)4t nonterminal edges. Notice that G[U ]− T has at
most 4k+ 1 components, because of Rule 4.5. Hence, H has at most k2 · 24t · (4t)4t + 4k+ 1 ≤ q
vertices. Since (U,W ) is a (q, p)-good edge separation, |V (H)| < |U |. As we replace G[U ] by H
to construct G′′, the claim follows.

Lemma 4.10 shows that we reduce the size of an input graph at each iterative step. Together
with Lemma 4.8, it implies that Border Contractions is solvable in time 2O(k

2 log k) · nO(1).
This concludes the proof of Theorem 3.

5 Solving Minimum Spanning Circuit on regular matroids

This section is devoted to the proof of the first main result of the paper.
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Theorem 4. Minimum Spanning Circuit is solvable in time 2O(k
2 log k) · nO(1) on regular

n-element matroids, where k = `− w(T ).

The remaining part of the section contains the proof of the theorem. For technical reasons,
in our algorithm we solve a special variant of Minimum Spanning Circuit. In particular, in
our algorithm, the information about circuits in M will be derived from circuits of size 3. We
need the following technical definition.

Definition 5.1 (Circuit constraints and extensions). Let M be a binary matroid given
together with a set of terminals T ⊆ E(M), and a family X of pairwise disjoint circuits of M of
size 3, which are also disjoint with T . Then a circuit constraint for M,T and X is an 8-tuple
(M,T,X , P,Z, w,W, k), where

• P is a mapping assigning to each X ∈ X a nonempty set P (X) of subsets of X of size 1
or 2,

• Z is either the empty set, or is a pair of the form (Z, t), where Z is a circuit of size 3
disjoint with the circuits of X and with terminals T , and t is an element of Z,

• w is a weight function, w : E \ L→ N, where L = ∪X∈XX,

• W = {wX | X ∈ X} is a family of weight functions, where wX : P (X) → N for each
X ∈ X , and

• k is an integer.

We say that a circuit C of M is a feasible extension satisfying circuit constraint (M,T,X , P,Z, w,W, k)
(or just feasible when it is clear from the context) if

• C ∩X ∈ P (X) for each X ∈ X ,

• if Z 6= ∅, then C 4 Z is a circuit of M and Z ∩ C = {t}, and

• w(C \ (T ∪ L)) +
∑

X∈X wX(C ∩X) ≤ k.

We consider the following auxiliary problem.

Input: A circuit constraint (M,T,X , P,Z, w,W, k).
Task: Decide whether there is an extension satisfying the circuit constraint.

Extended Minimum Circuit parameterized by k

Notice that Minimum Spanning Circuit parameterized by k = ` − w(T ) is the special case
of Extended Minimum Circuit for X = ∅ and Z = ∅. We call a circuit C satisfying the
requirements of the problem, i.e. which is an extension satisfying the corrsponding circuit
constraint, by a solution. We also refer to the value ω(C) = w(C \ (T ∪L)) +

∑
X∈X wX(C ∩X)

as to the weight of C.
In Section 5.1 we solve Extended Minimum Circuit on matroids of basic types, and in

Section 5.2 we construct the algorithm for regular matroids.

5.1 Solving Minimum Spanning Circuit on basic matroids

First, we consider matroids obtained from R10 by deleting elements and adding parallel elements.

Lemma 5.1. Extended Minimum Circuit can be solved in polynomial time on the class of
matroids that can be obtained from R10 by adding parallel elements and deleting some elements.
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Proof. Let (M,T,X , P,Z, w,W, k) be an instance of Extended Minimum Circuit, where M
is a matroid obtained from R10 by adding parallel elements and deleting some elements. Since
M has no circuit of odd size, X = ∅ and Z = ∅. If e1, e2 ∈ E \ T are parallel, then any circuit
C contains at most one of the elements e1, e2, and if e1 ∈ C, then C ′ = (C \ {e1}) ∪ {e2} is a
circuit by Observation 2.1. It means that we can apply the following reduction rule:

Reduction Rule 5.1. If there are parallel e1, e2 ∈ E \ T and w(e1) ≤ w(e2), then delete e2.

The matroid obtained from M by the exhaustive application of the rule has at most 10 nonter-
minal elements. Hence, the problem can be solved by brute force: for each set S of nonterminal
elements we check whether S∪T is a circuit and find a circuit of minimum weight it it exists.

To construct an algorithm for Extended Minimum Circuit for graphic matroids, we
consider the following parameterized problem:

Input: A graph G, a weight function w : E(G) → N, a set of terminals T ⊆
E(G), and a positive integer k.

Task: Does G have a cycle C with T ⊆ E(C) such that w(E(C))−w(T ) ≤ k?

Cycle Through Terminals parameterized by k

We show that Cycle Through Terminals is FPT. This problem can be solved in time
2knO(1) by making use of the randomized algorithm of Björklund et al. [2]. As the running time
of our algorithms for Minimum Spanning Circuit is dominated by the running time of the
algorithm for cographic matroids, we give here a deterministic algorithm with a worse constant
in the base of the exponent. The algorithm is based of the color coding technique of Alon et
al. [1].

Lemma 5.2. Cycle Through Terminals is solvable in time 2O(k) · nO(1).

Proof. Let (G,w, T, k) be an instance of Cycle Through Terminals. First, we exhaustively
apply the following reduction rules.

Reduction Rule 5.2 (Stopping Rule). If G[T ] is not a disjoint union of paths or G[T ] has
at least k + 1 components, then return a no-answer and stop.

Reduction Rule 5.3 (Dissolving Rule). If there is a vertex v incident to two distinct edges
vx, vy ∈ T , then do the following:

• delete each edge e ∈ E(G) \ T incident to v;

• delete v and replace vx, vy by an edge xy and set w(xy) = 1; set T = (T \{vx, vy})∪{xy}.

It is straightforward to see that the rules are safe. Assume that we do not stop when
applying Rule 5.2, and, to simplify notations, we use (G,w, T, k) to denote the instance obtained
after applying Dissolving Rule. Let T = {x1y1, . . . , xryr}. Notice that the edges of T are
independent, i.e, have no common end-vertices, and r ≤ k. If r = 1, then we find a shortest
(x1, y1)-path in G− x1y1 using the Dijkstra’s algorithm [9]. If the weight of the path is at most
k, we are done. Otherwise, we have a no-instance.

We assume from now that r ≥ 2. Let U = {x1, . . . , xr} ∪ {y1, . . . , yr} and denote h = k− r.
Observe that any cycle C such that T ⊆ E(C) and w(E(C) \ T ) ≤ k has at most k vertices
and, therefore, at most h vertices in V (G) \ U . We use the color coding technique [1] to find a
cycle C of minimum weight with at most k vertices such that T ⊆ E(C). First, we describe a
randomized true-biased Monte-Carlo algorithm and then explain how to derandomize it.
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We color the vertices of V (G) \ U by h colors uniformly at random. Denote by c(v) the
color of v ∈ V (G) \ U . Our aim is to find a colorful cycle C in G of minimum weight such that
T ⊆ E(C) and the vertices of V (C) \ U have distinct colors.

First, for each set of colors X ⊆ {1, . . . , h}, for each pair {i, j} of distinct i, j ∈ {1, . . . , r}
and each u ∈ {xi, yi} and v ∈ {xj , yj}, we find a (u, v)-path P of minimum weight such that
V (P )∩U = {u, v} and the internal vertices of P are colored by distinct colors from X. It can be
done in a standard way by dynamic programming across subsets (see [1, 7]). For completeness,
we sketch how to find the weight of such a path.

Denote for z ∈ V (G) \ {xi, yi}, by s(X,u, z) the minimum weight of a (u, z)-path P in G
with all internal vertices in V (G) \U such that V (P ) \U are colored by distinct colors from X;
we assume that s(X,u, z) = +∞ if such a path does not exist. We also assume slightly abusing
notations that s(X,u, u) = 0 for any X ⊆ {1, . . . , h}. Clearly,

s(∅, u, z) =

{
w(uz) if uz ∈ E(G) and z ∈ U \ {xi, yi},
+∞ otherwise.

If X 6= ∅, it is straightforward to verify that for z ∈ V (G) \ U , s(X,u, z) =

=

{
min{s(X \ {c(z)}, u, x) + w(xz) | xz ∈ E(G), x ∈ (V (G) \ U) ∪ {u}} if c(z) ∈ X,
+∞ if c(z) /∈ X,

and for z ∈ U \ {xi, yi},

s(X,u, z) = min{s(X,u, x) + w(xz) | xz ∈ E(G), x ∈ (V (G) \ U) ∪ {u}}.

Using these recurrences, we compute s(X,u, v) for all X ∈ {1, . . . , h} and v ∈ U \ {xi, yi} in
time 2h · nO(1). We do these computations for all u ∈ {xi, yi} for every i ∈ {1, . . . , r}.

Using the table of values of s(X,u, v), we compute the table of values of c′(X,Y, v) for
v ∈ {xi, yi}, where i ∈ {2, . . . , r}, X ⊆ {1, . . . , h} and Y ∈ {2, . . . , r} \ {i}, where c′(X,Y, v) is a
minimum weight of a (y1, v)-path P in G such that E(P )∩T = {xjyj | j ∈ X} and the vertices
V (P ) \ U are colored by distinct colors from X. Notice that c′({1, . . . , h}, {2, . . . , r}, y1) is the
minimum weight of a cycle C containing the edges of T with |V (C) \ U | ≤ h. For Y = ∅,

c′(X,Y, v) = c(X, y1, v).

For Y 6= ∅, we have that

c′(X,Y, v) = min{min{c′(X \X ′, Y \ {j}, xj) + w(xjyj) + c(X ′, yj , v),

c′(X \X ′, Y \ {j}, yj) + w(xjyj) + c(X ′, xj , v)} | X ′ ⊆ X, j ∈ {1, . . . , r}}.

The correctness of the recurrence is proved by the standard arguments. We obtain that the table
of values of c′(X,Y, v) can be constructed in time 2h2r ·nO(1). Hence, c′({1, . . . , h}, {2, . . . , r}, y1)
can be computed in time 2k · nO(1).

We have that in time 2k ·nO(1) we can check whether we have a colorful solution, i.e., a cycle
C of weight at most w(T ) + k such that T ⊆ E(C) and the vertices of V (C) \U are colored by
distinct colors. If we have a colorful solution, then we return it.

Notice that if C is a solution for (G,w, T, k), that is, T ⊆ E(C) and w(E(C) \ T ) ≤ k,
then the probability that the vertices of V (C) \ U are colored by distinct colors from the set
{1, . . . , h} is at least h!/hh ≥ e−k. Hence, it is sufficient to repeat the algorithm for ek random
colorings to claim that the probability that (G,w, T, k) has a solution but our algorithm returns

a no-answer for ek random colorings is at most (1−1/ek)e
k ≤ 1/e, that is, we have a true biased

Monte-Carlo FPT algorithm that runs in time (2e)k · nO(1).
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This algorithm can be derandomized by the standard tools [1, 7] by replacing the random
colorings by perfect hash functions. The currently best family of perfect hash functions is
constructed by Naor et al. in [25].

Lemma 5.3. Extended Minimum Circuit can be solved in time 2O(k) ·|E(M)|O(1) on graphic
matroids.

Proof. Let (M,T,X , P,Z, w,W, k) be an instance of Extended Minimum Circuit, where
M is a graphic matroid. We find G such that M is isomorphic to M(G) in polynomial time
using the results of Seymour [30] and assume that M = M(G). Notice that we can assume
without loss of generality that G is connected. We reduce the problem to Cycle Through
Terminals. If |X | > k, then we have a trivial no-instance. Assume from now that |X | ≤ k and
let X = {X1, . . . , Xr}.

First, we solve the problem for the case Z = ∅. If C is a solution, then C ∩X ∈ P (X) for
X ∈ X . For each Xi ∈ X , we guess a set Yi ∈ P (Xi) such that C ∩Xi = Yi for a hypothetic
solution C. Since Yi has size 1 or 2, we have at most 6k possibilities to guess Y1, . . . , Yr. If∑r

i=1wXi(Yi) > k, then we discard the guess. Assume that
∑r

i=1wXi(Yi) ≤ k. We define the
graph G′ = G − ∪ri=1(Xi \ Yi), T ′ = T ∪ (∪ri=1Yi) and k′ = k −

∑r
i=1wXi(Yi). We also define

w′(e) = w(e) for e ∈ E(G′) \ T ′ and set w′(e) = 1 for e ∈ T ′. Then we solve Cycle Through
Terminals for (G′, w′, T ′, k′) using Lemma 5.2. It is straightforward to see that we have a
solution C for the considered instance of Extended Minimum Circuit such that C ∩Xi = Yi
for i ∈ {1, . . . , r} if and only if (G′, w′, T ′, k′) is a yes-instance of Cycle Through Terminals.

Assume now that Z = (Z, t). Clearly, Z induces a cycle in G. Let u be a vertex of this cycle
that is not incident to the edge t. We construct the instances of Cycle Through Terminals
for every guess of Y1, . . . , Yr in almost the same way as before. The difference is that we delete
u from the obtained graph, define t to be a terminal and reduce the parameter by w(t). Notice
that if a terminal is incident to u, we have a no-instance for the considered guess. Lemma 3.4
i) immediately implies the correctness of the reduction.

Since Cycle Through Terminals can be solved in time 2O(k) · nO(1) by Lemma 5.2 for
each constructed instance and we consider at most 6k instances and each instance is constructed
in polynomial time, the total running time is 2O(k) ·nO(1). Because G is connected, we can write
the running time as 2O(k) · |E(M)|O(1).

We use Theorem 3 to solve Extended Minimum Circuit on cographic matroids.

Lemma 5.4. Extended Minimum Circuit can be solved in time 2O(k
2 log k) · |E(M)|O(1) on

cographic matroids.

Proof. Let (M,T,X , P,Z, w,W, k) be an instance of Extended Minimum Circuit, where M
is a cographic matroid. We find G such that M is isomorphic to M∗(G) in polynomial time
using the results of Seymour [30] and assume that M = M(G). Notice that we can assume
without loss of generality that G is connected. We reduce the problem to Minimal Terminal
Cut.

If |X | > k, then we have a trivial no-instance. Assume from now that |X | ≤ k and let
X = {X1, . . . , Xr}. If C is a solution, then C ∩ X ∈ P (X) for X ∈ X . For each Xi ∈ X , we
guess a set Yi ∈ P (Xi) such that C ∩ Xi = Yi for a hypothetic solution C. Since Yi has size
1 or 2, we have at most 6k possibilities to guess Y1, . . . , Yr. If s =

∑r
i=1wXi(Yi) > k, then

we discard the guess. If Z = (Z, t) and s + w(t) > k, then we also can discard the guess.
Assume that it is not the case. We construct G′ by contracting the edges of ∪ri=1(Xi \ Yi); for
simplicity, we do not distinguish the edges of G′ obtained by contractions from the edges of
the original graph. If Z = ∅, then we set T ′ = T ∪ (∪ri=1Yi), R1 = ∅ and k′ = k − s, and if
Z = (Z, t), then T ′ = T ∪ ∪ri=1Yi ∪ {t}, R1 is defined to be the set containing the end-vertices
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of the edges of Z \ {t} and k′ = k − s − w(t). We also define w′(e) = w(e) for e ∈ E(G′) \ T ′
and set w′(e) = 1 for e ∈ T ′. Then we solve Minimal Terminal Cut for (G′, w′, T ′, R1, ∅, k′)
using Theorem 3. If Z = ∅, then it is straightforward to see that we have a solution C for the
considered instance of Extended Minimum Circuit such that C ∩Xi = Yi for i ∈ {1, . . . , r}
if and only if (G′, w′, T ′, k′) is a yes-instance of Cycle Through Terminals. If Z = (Z, t),
then correctness follows from Lemma 3.4 ii).

Since Minimal Terminal Cut can be solved in time 2O(k
2 log k) · nO(1) by Theorem 3 for

each constructed instance and we consider at most 6k instances and each instance is constructed
in polynomial time, the total running time is 2O(k

2 log k) ·nO(1). Because G is connected, we can
write the running time as 2O(k

2 log k) · |E(M)|O(1).

5.2 Proof of Theorem 4

Now we are ready to give an algorithm for Minimum Spanning Circuit parameterized by
k = ` − w(T ) on regular matroids. Let (M,w, T, `) be an instance of Minimum Spanning
Circuit, where M is regular. We consider it to be an instance (M,T,X , P,Z, w,W, k) of
Extended Minimum Circuit, where X = ∅ and Z = ∅. If M can be obtained from R10 by
the addition of parallel elements or is graphic or cographic, we solve the problem directly using
Lemmas 5.1–5.4. Assume that it is not the case. Using Theorem 2, we find a conflict tree T .
Recall that the set of nodes of T is the collection of basic matroidsM and the edges correspond
to extended 1-, 2− and 3-sums. We select a node r of T containing an element of T as a root.

We say that an instance (M,T,X , P,Z, w,W, k) of Extended Minimum Circuit is consis-
tent (with respect to T ) if Z = ∅ and for any X ∈ X , X ∈ E(M ′) for some M ′ ∈M. Clearly, the
instance obtained from the original input instance (M,w, T, `) of Minimum Spanning Circuit
is consistent. We use reduction rules that remove leaves keeping this property.

Let M` ∈ M be a matroid that is a leaf of T . We construct reduction rules depending on
whether M` is 1, 2 or 3-leaf. Denote by Ms its neighbor in T . Let also T ′ be the tree obtained
from T be the deletion of M`, and let M ′ be the matroid defined by T ′. Clearly, M = M ′⊕M`.

Throughout this section, we say that a reduction rule is safe if it either correctly solves
the problem or returns an equivalent instance of Extended Minimum Circuit together with
corresponding conflict tree of the obtained matroid that is consistent and the value of the
parameter does not increase.

From now, let (M,T,X , P,Z, w,W, k) be a consistent instance of Extended Minimum
Circuit. Denote L = ∪X∈XX.

Reduction Rule 5.4 (1-Leaf reduction rule). If M` is a 1-leaf, then do the following.

i) If T ∩ E(M`) 6= ∅ or there is X ∈ X such that X ⊆ E(M`), then stop and return a
no-answer,

ii) Otherwise, return the instance (M ′, T,X , P, ∅, w′,W, k), where w′ is the restriction of w
on E(M ′) \ L, and solve it using the conflict tree T ′.

Since the root matroid contains at least one terminal, Lemma 3.3 i) immediately implies the
following lemma.

Lemma 5.5. Reduction Rule 5.4 is safe and can be implemented to run in time polynomial in
|E(M)|.

Reduction Rule 5.5 (2-Leaf reduction rule). IfM` is a 2-leaf, then let {e} = E(M`)∩E(Ms)
and do the following.
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i) If T ∩ E(M`) = ∅ and there is no X ∈ X such that X ⊆ E(M`), then find a circuit C`

of M` containing e with minimum w(C` \ {e}) ≤ k. If there is no such a circuit, then
set w′(e) = k + 1, and let w′(e) = w(C` \ {e} otherwise. Assume that w′(e′) = w(e′)
for e′ ∈ E(M ′) \ L. Return the instance (M ′, T,X , P, ∅, w′,W, k) and solve it using the
conflict tree T ′.

ii) Otherwise, if T ∩ E(M`) 6= ∅ or there is X ∈ X such that X ⊆ E(M`), consider T` =
(T ∩ E(M`)) ∪ {e} and X` = {X ∈ X | X ⊆ E(M`)}. Define P`, w`, W` by restricting
the corresponding functions by E(M`) assuming additionally that w`(e) = 1. Find the
minimum k` ≤ k such that (M`, T`,X`, P`, ∅, w`,W`, k`) is a yes-instance of Extended
Minimum Circuit. Stop and return a no-answer if such k` does not exist. Otherwise, do
the following. Set T ′ = (T ∩ E(M ′)) ∪ {e} and X ′ = {X ∈ X | X ⊆ E(M ′)}. Define P ′,
w′, W ′ by restricting the corresponding functions by E(M ′) assuming additionally that
w′(e) = 1. Return the instance (M ′, T ′,X ′, P ′, ∅, w′,W ′, k − k`) and solve it using the
conflict tree T ′.

Lemma 5.6. Reduction Rule 5.5 is safe and can be implemented to run in time 2O(k
2 log k) ·

|E(M)|O(1).

Proof. Clearly, if the rule returns a new instance, then it is consistent with respect to T ′ and
the parameter does not increase.

We show that the rule either correctly solves the problem or returns an equivalent instance.
Suppose that (M,T,X , P,Z, w,W, k) is a consistent yes-instance. We prove that the rule

returns a yes-instance. Denote by C a circuit of M that is a solution for the instance. We
consider two cases corresponding to the cases i) and ii) of the rule.

Case 1. T ∩ E(M`) = ∅ and there is no X ∈ X such that X ∈ E(M`). If C ⊆ E(M ′), then
by Lemma 3.3 ii), C is a circuit of M ′. It is straightforward to see that C is a solution for
(M ′, T,X , P, ∅, w′,W, k). Suppose that C ∩E(M`) 6= ∅. Then C = C14C2, where C1 ∈ C(M ′),
C2 ∈ C(M2) and e ∈ C1∩C2 by Lemma 3.3 ii). It remains to observe that C1 is a feasible circuit
for (M ′, T,X , P, ∅, w′,W, k) and its weight is at most the weight of C. Hence, C1 is a solution
for (M ′, T,X , P, ∅, w′,W, k) and the algorithm returns is a yes-instance.

Case 2. T ∩ E(M`) 6= ∅ or there is X ∈ X such that X ⊆ E(M`). Then by Lemma 3.3 ii),
C = C1 4 C2, where C1 ∈ C(M ′), C2 ∈ C(M2) and e ∈ C1 ∩ C2. We have that C2 is a solution
for (M`, T`,X`, P`, ∅, w`,W`, k

′), where k′ ≤ k is the weight of C2 and the algorithm does not
stop. Also we have that C1 is a solution for (M ′, T ′,X ′, P ′, ∅, w′,W ′, k − k`) as C1 is feasible
and its weight is ω(C)− k′ ≤ k − k`, i.e., the rule returns a yes-instance.

Suppose now that the instance constructed by the rule is a yes-instance with a solution C ′.
We show that the original instance (M,T,X , P,Z, w,W, k) is a yes-instance. We again consider
two cases.

Case 1. The new instance is constructed by Rule 5.5 i). If e /∈ C ′, then C ′ is a circuit of M by
Lemma 3.3 ii) and, therefore, C ′ is a solution for (M,T,X , P,Z, w,W, k), that is, the original
instance is a yes-instance. Assume that e ∈ C ′. In this case, w′(e) ≤ k. Hence, there is a circuit
C ′′ of M` containing e with w(C ′′ \ {e}) = w′(e). By Lemma 3.3 ii), C = C ′ 4 C ′′ is a circuit
of M . We have that C is a solution for (M,T,X , P,Z, w,W, k) and it is a yes-instance.

Case 2. The new instance is constructed by Rule 5.5 ii). In this case, (M`, T`,X`, P`, ∅, w`,W`, k`)
has a solution C ′′ of weight k`. Notice that e ∈ C ′ ∩C ′′. We have that C = C ′4C ′′ is a circuit
of M by Lemma 3.3 ii). We have that C is a solution for(M,T,X , P,Z, w,W, k) and, therefore,
the original instance is a yes-instance.
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We proved that the rule is safe. To evaluate the running time, notice first that we can
find a a circuit C` of M` containing e with minimum w(C` \ {e}) ≤ k in Rule 5.5 i) in time
2O(k

2 log k) · |E(M`)|O(1) using the observation that we have an instance of Minimum Spanning
Circuit with T = {e} and can apply Lemmas 5.1–5.4 depending on the type of M`

1. We
find k` in Rule 5.5 ii) by solving (M`, T`,X`, P`, ∅, w`,W`, k`) for k` ≤ k using Lemmas 5.1–5.4
depending on the type of M` in time 2O(k

2 log k) · |E(M`)|O(1).

Reduction Rule 5.6 (3-Leaf reduction rule). If M` is a 3-leaf, then let S = {e1, e2, e3} =
E(M`) ∩ E(Ms) and do the following.

i) If T ∩E(M`) = ∅ and there is no X ∈ X such that X ⊆ E(M`), then for each i ∈ {1, 2, 3},
find a circuit C

(i)
` of M` such that C

(i)
` ∩ S = {ei} and C

(i)
` 4 S is a circuit of M` with

minimum w(C
(i)
` \ {ei}) ≤ k. If there is no such a circuit, then set w′(ei) = k + 1, and let

w′(ei) = w(C
(i)
` \ {ei}) otherwise. Assume that w′(e′) = w(e′) for e′ ∈ E(M ′) \ (L ∪ S).

Return the instance (M ′, T,X , P, ∅, w′,W, k) and solve it using the conflict tree T ′.

ii) If there is no X ∈ X such that X ⊆ E(M`), but T` = T ∩ E(M`) 6= ∅ and there is
i ∈ {1, 2, 3} such that C` = T` ∪ {ei} is a circuit of M`, then consider two cases.

– C` 4 S is a circuit of M`. Set w′(ei) = 1 and assume that w′(e′) = w(e′) for e′ ∈
E(M ′)\(S∪L). For each j ∈ {1, 2, 3}\{i}, do the following. Let h ∈ {1, 2, 3}\{i, j}.
Set X` = {S}, P`(S) = {ej}, wS({eh}) = 1 andW` = {wS}. Let w` be a restriction of

w on E(M`). Find a minimum k
(h)
` ≤ k + 1 such that (M`, T`,X`, P`, ∅, w`,W`, k

(h)
` )

is a yes-instance of Extended Minimum Circuit. If there is no such k
(h)
` , then set

w′(ej) = k + 1 and set w′(ej) = k
(h)
` − 1 otherwise. Set T ′ = (T ∩ E(M ′)) ∪ {ei}.

Return the instance (M ′, T ′,X , P, ∅, w′,W, k) and solve it using the conflict tree T ′.
– C`4S is not a circuit of M`. Set w′(ei) = k+ 1 and w′(ej) = 1 for j ∈ {1, 2, 3} \ {i}.

Assume that w′(e′) = w(e′) for e′ ∈ E(M ′)\(L∪S). Set T ′ = (T ∩E(M ′))∪(S\{ei}).
Return the instance (M ′, T ′,X , P, ∅, w′,W, k) and solve it using the conflict tree T ′.

iii) Otherwise, let T` = T ∩ E(M`) and X` = {X ∈ X | X ⊆ E(M`)}. Define P`, w`, W` by
restricting the corresponding functions by E(M`). Construct the set Y of subsets of S
and the function wS : Y → N as follows. Initially, set Y = ∅.

– Define w′`(ei) = 1 for i ∈ {1, 2, 3} and let w′`(e) = w`(e) for e ∈ E(M`)\(L∪S). For i ∈
{1, 2, 3}, find the minimum k

(i)
` ≤ k + 1 such that (M`, T`,X`, P`, (S, ei), w

′
`,W`, k

(i)
` )

is a yes-instance of Extended Minimum Circuit. If such k
(i)
` exists, then add {ei}

in Y and set wS({ei}) = k
(i)
` − 1.

– Let X ′` = X` ∪ {S}. For each i ∈ {1, 2, 3}, do the following. Set P
(i)
` (X) = P`(X) for

X ∈ X` and P
(i)
` (Y ) = {xi}, set w

(i)
S ({ei}) = 1 and W(i)

` = W` ∪ {w
(i)
S }. Find the

minimum k
(i)
` ≤ k + 1 such that (M`, T`,X ′` , P

(i)
` , ∅, w`,W

(i)
` , k

(i)
` ) is a yes-instance of

Extended Minimum Circuit. If such k
(i)
` exists, then add S \ {ei} in Y and set

wS(S \ {ei}) = k
(i)
` − 1.

If Y = ∅, then return a no-answer and stop. Otherwise, set T ′ = T ∩ E(M ′), X ′ = {X ∈
X | X ⊆ E(M ′)} ∪ {S} and for X ∈ X ′, let P ′(X) = P (X) if X ⊆ P (X) and P ′(S) = Y .
Also let W ′ = {wX | X ∈ X ′} and let w′ be the restriction of w on E(M ′). Return the
instance (M ′, T ′,X ′, P ′, ∅, w′,W ′, k) and solve it using the conflict tree T ′.

1In fact, it can be done in polynomial time for this degenerate case
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Lemma 5.7. Reduction Rule 5.6 is safe and can be implemented to run in time 2O(k
2 log k) ·

|E(M)|O(1).

Proof. It is straightforward to see that if the rule returns a new instance, then it is consistent
with respect to T ′ and the parameter does not increase. We show that the rule either correctly
solves the problem or returns an equivalent instance.

Suppose that (M,T,X , P,Z, w,W, k) is a consistent yes-instance. We prove that the rule
returns a yes-instance. Denote by C a circuit of M that is a solution for the instance. We
consider three cases corresponding to the cases i)–iii) of the rule.

Case 1. T ∩ E(M`) = ∅ and there is no X ∈ X such that X ∈ E(M`).
If C ⊆ E(M ′), then by Lemma 3.3 iii), C is a circuit of M ′, and C is a solution for the

instance (M ′, T,X , P, ∅, w′,W, k) returned by Rule 5.6 i), that is, we get a yes-instance. Suppose
that C ∩ E(M`) 6= ∅. Then, by Lemma 3.3 iii), C = C1 4 C2, where C1 ∈ C(M ′), C2 ∈ C(M`),
C1 ∩ S = C2 ∩ S = {ei} for some i ∈ {1, 2, 3}, and C1 4 S is a circuit of M ′ or C2 4 S is a
circuit of M`.

Suppose that C2 4 S is a circuit of M`. Then C2 is a circuit of M` containing ei such that
C2 4 S is a circuit and w(C2 \ {ei}) ≤ k. We have that w′(ei) ≤ w(C2 \ {ei}). Hence, C1 is
a solution for the instance (M ′, T,X , P, ∅, w′,W, k) returned by Rule 5.6 i) and, therefore, the
rule returns a yes-instance.

Assume now that C2 4 Z is a not circuit of M`. By Lemma 3.1, C2 is a disjoint union of

two circuits C
(1)
2 and C

(2)
2 of M` containing eh, ej ∈ Z \ {ei}, and C

(1)
2 4 S and C

(2)
2 4 S are

circuits of M`. We obtain that w′(eh) ≤ w(C
(1)
2 \ {eh}) and w′(ej) ≤ w(C

(2)
2 \ {ej}). Consider

C ′1 = C14S. Because C24S is not a circuit of M`, C
′
1 is a circuit of M ′. Since eh, ej ∈ E(M ′),

we have that C ′1 is a solution for (M ′, T,X , P, ∅, w′,W, k) returned by Rule 5.6 i). Hence, we
get a yes-instance.

Case 2. There is no X ∈ X such that X ⊆ E(M`), but T` = T ∩ E(M`) 6= ∅ and there is
i ∈ {1, 2, 3} such that C` = T` ∪ {ei} is a circuit of M`.

Notice that w′(e) ≥ 1 for e ∈ E(M ′) \L, that is, the instance returned by 5.6 ii) is a feasible
instance of Extended Minimum Circuit. To prove it, observe that if C`4S is a circuit of M`

and j ∈ {1, 2, 3} \ {i}, then k
(h)
` ≥ 2, because any solution C ′ for (M`, T`,X`, P`, ∅, w`,W`, k

(h)
` )

contains at least one element of E(M`) \ (T` ∪ S). Otherwise, we get that C`4 C ′ = {ei, eh} is
a cycle of M` contradicting that S is a circuit of M`.

By Lemma 3.3 iii), C = C1 4 C2, where C1 ∈ C(M ′), C2 ∈ C(M`), C1 ∩ S = C2 ∩ S = {eh}
for some h ∈ {1, 2, 3}, and C1 4 S is a circuit of M ′ or C2 4 S is a circuit of M`.

Assume first that C`4S is a circuit of M`. If h = i, then it is straightforward to verify that
C ′ = C1 4 C` is a solution for the instance (M ′, T ′,X , P, ∅, w′,W, k) returned by Rule 5.6 ii)
and, therefore, the rule returns a yes-instance. Suppose that h ∈ {1, 2, 3} \ {i}. We have that

C2 is a solution for (M`, T`,X`, P`, ∅, w`,W`, k
(h)
` ) constructed in Rule 5.6 ii). Hence, w′(ej) =

k
(h)
` − 1, where k

(h)
` is at most the weight of the solution C2 for (M`, T`,X`, P`, ∅, w`,W`, k

(h)
` )

and j ∈ {1, 2, 3} \ {i, h}. Notice that C` ⊂ C2 4 S, that is, C2 4 S is not a circuit of M`.
Hence, C ′1 = C1 4 S is a circuit of M ′. We obtain that C ′1 is a solution for the instance
(M ′, T ′,X , P, ∅, w′,W, k) returned by Rule 5.6 ii). Hence, we get a yes-instance of the problem.

Suppose now that C` 4 S is not a circuit of M`. We claim that h = i and C2 = C` in
this case. If h = i, then C2 = C` by minimality, because T` ⊆ C2. Suppose that h 6= i. By

Lemma 3.1, C` 4 S is disjoint union of two circuits C
(1)
` and C

(2)
` of M` containing eh and ej

respectively, where j ∈ {1, 2, 3} \ {i, h}. Therefore, C
(1)
` ⊆ C2 and, by minimality, C2 = C

(1)
` ,

but at least one terminal of T` is in C
(2)
` contradicting T` ⊆ C2. Hence, h = i and C2 = C`.

Then C ′1 = C14S is a circuit of M ′ and is a solution for the instance (M ′, T ′,X , P, ∅, w′,W, k)
returned by Rule 5.6 ii) and, therefore, the rule returns a yes-instance.
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Case 3. Cases 1 and 2 do not apply, that is, we are in the conditions of Rule 5.6 iii). By
Lemma 3.3 iii), C = C14C2, where C1 ∈ C(M ′), C2 ∈ C(M`), C1 ∩S = C2 ∩S = {ei} for some
i ∈ {1, 2, 3}, and C14 S is a circuit of M ′ or C24 S is a circuit of M`. Notice that if Rule 5.6

iii) returns an instance, then wS has only positive values, because it always holds that k
(i)
` ≥ 2,

since the conditions of Rule 5.6 ii) are not fulfilled.
Assume first that C2 4 S is a circuit of M`. Notice that C2 is a feasible circuit for

(M`, T`,X`, P`, (S, ei), w
′
`,W`, k`) for k` ≤ k and its weight with respect to this instance is at most

k. Hence, {ei} ∈ Y 6= ∅. It means that we do not stop while executing Rule 5.6 iii) and wS({ei})
is at most the weight of C2. It implies that C1 is a solution for (M ′, T ′,X ′, P ′, ∅, w′,W ′, k) re-
turned by Rule 5.6 iii), i.e., we obtain a yes-instance.

Suppose that C2 4 S is not a circuit of M`. Then C1 4 S is a circuit of M ′. We have

that C2 is a feasible circuit for (M`, T`,X ′` , P
(i)
` , ∅, w`,W

(i)
` , k

(i)
` ) for k` ≤ k and its weight with

respect to this instance is at most k. Hence, S \ {ei} ∈ Y 6= ∅. Therefore, we do not stop
and wS(S \ {ei}) is at most the weight of C2. It implies that C ′1 = C1 4 S is a solution for

(M`, T`,X ′` , P
(i)
` , ∅, w`,W

(i)
` , k

(i)
` ) returned by Rule 5.6 iii), that is, the rule returns a yes-instance.

Suppose now that the instance constructed by the rule is a yes-instance with a solution C ′.
We show that the original instance (M,T,X , P,Z, w,W, k) is a yes-instance.

We consider three cases corresponding to the cases of the rule.

Case 1. The new instance is constructed by Rule 5.6 i). If C ′∩S = ∅, then it is straightforward
to see that C ′ is a solution for the original instance and, therefore, (M,T,X , P,Z, w,W, k) is a
yes-instance. Suppose that C ′ ∩ S 6= ∅. Clearly, |C ′ ∩ S| ≤ 2.

Assume that C ′ ∩ S = {ei} for some i ∈ {1, 2, 3}. Clearly, w′(ei) ≤ k. Hence, M` has
a circuit C ′′ with C ′′ ∩ S = {ei} such that w′(ei) = w(C ′′ \ {ei}) and C ′′ 4 S is a circuit of
M`. By Lemma 3.3 iii), C = C ′ 4 C ′′ is a circuit of M . We obtain that C is a solution for
(M,T,X , P,Z, w,W, k), that is, it is a yes-instance.

Suppose that C ′ ∩ S = {ei, ej} for distinct i, j ∈ {1, 2, 3}. Let h ∈ {1, 2, 3} \ {i, j}. We
have that w′(ei) ≤ k and w′(ej) ≤ k. It means, that M` has circuits C ′′1 and C ′′2 such that
C ′′1 ∩ S = {ei}, C ′′2 ∩ S = {ej} and w′(ei) = w(C ′′1 \ {ei}), w′(ej) = w(C ′′2 \ {ei}). Consider
C ′′ = C ′′1 4C ′′2 . By Observation 3.1, C ′′ is a cycle of M`. Then there is a circuit C ′′′ ⊆ C ′′ of M`

such that C ′′′ ∩S = {eh}. Notice that w(C ′′′ \ {eh} ≤ w′(ei) +w′(ej). By Lemma 3.2, C ′4S is
a circuit of M . Let C = (C ′4 S)4C ′′′. By Lemma 3.3 iii), C is a circuit of M . We have that
C is a solution for (M,T,X , P,Z, w,W, k) and, therefore, it is a yes-instance.

Case 2. The new instance is constructed by Rule 5.6 ii). Recall that C` = T` ∪{ei} is a circuit
of M`. Clearly, 1 ≤ |C ′ ∩ S| ≤ 2.

Suppose first that C` 4 S is a circuit of M`. If |C ′ ∩ S| = 1, then C ′ ∩ S = {ei}. Then
we obtain that C = C ′ 4 C` is a solution for (M,T,X , P,Z, w,W, k) and it is a yes-instance.
Assume that C ′ ∩ S = {ei, ej} for j ∈ {1, 2, 3} \ {i}. Then w′(ej) ≤ k. Then there is a circuit
C ′′ of M` such that C ′′ ∩S = {eh} for h ∈ {1, 2, 3} \ {i, j} that is a solution of weight w′(ej) + 1

for (M`, T`,X`, P`, ∅, w`,W`, k
(h)
` ) considered by Rule 5.6 ii). Notice that C ′ 4 S is a circuit of

M ′ by Lemma 3.2. By Lemma 3.3 iii), we obtain that C = (C ′ 4 S) 4 C ′′ is a solution for
(M,T,X , P,Z, w,W, k) and, therefore, it is a yes-instance.

Assume now that C` 4 S is a not circuit of M`. Then C ′ ∩ S = {eh, ej} for {h, j} =
{1, 2, 3} \ {i}. By Lemma 3.2, C ′4 S is a circuit of M ′, and by Lemma 3.3 iii), we obtain that
C = (C ′ 4 S)4 C` is a solution for (M,T,X , P,Z, w,W, k), that is, it is a yes-instance.

Case 3. The new instance is constructed by Rule 5.6 iii). We have that C ′ ∩ S ∈ Y for the set
Y constructed by the rule.

Assume that C ′ ∩ S = {ei} for i ∈ {1, 2, 3}. Then wS({ei}) ≤ k and, therefore, there is

a solution C ′′ of weight k
(i)
` = wS({ei}) + 1 for the instance (M`, T`,X`, P`, (S, ei), w

′
`,W`, k

(i)
` )
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constructed by the rule. Notice that C ′′4 S is a circuit of M`. We obtain that C = C ′4C ′′ is
a solution for (M,T,X , P,Z, w,W, k) and it is a yes-instance.

Suppose now that C ′ ∩ S = {ei, ej} for distinct i, j ∈ {1, 2, 3}. Let h ∈ {1, 2, 3} \ {i, j}. We

have that wS({ei, ej}) ≤ k. Hence, there is a solution C ′′ of weight k
(h)
` = w({ei, ej}) + 1 for

the instance (M`, T`,X ′` , P
(i)
` , ∅, w`,W

(i)
` , k

(h)
` ). By Lemma 3.2, C ′ 4 S is a circuit of M ′, and

by Lemma 3.3 iii), C = C ′4C ′′ is a circuit of M . We have that C is a solution for the original
instance (M,T,X , P,Z, w,W, k). Hence, it is a yes-instance.

To complete the proof, it remains to evaluate the running time. Rule 5.6 i) can be executed
in time 2O(k

2 log k) · |E(M)|O(1).2 To see it, observe that to compute w′(ei) for i ∈ {1, 2, 3},
we can solve Extended Minimum Circuit for (M`, ∅, ∅, ∅, (S, ei), w`, k

(i)
` ) for k

(i)
` ≤ k, where

w`(e) = w(e) for e ∈ E(M`) \ (L ∪ S) and w`(ei) = 1 for i ∈ {1, 2, 3}, using Lemmas 5.1–5.4
depending on the type of M`. For Rule 5.6 ii), observe that it can be checked in polynomial time
whether C` = T`∪{ei} and C`4S are circuits of M for i ∈ {1, 2, 3}. Then we can solve the prob-

lem for each (M`, T`,X`, P`, ∅, w`,W`, k
(h)
` ) in time 2O(k

2 log k) · |E(M)|O(1) by Lemmas 5.1–5.4.

Finally, the problem for every auxiliary instance (M`, T`,X`, P`, (S, ei), w
′
`,W`, k

(i)
` ) and every

(M`, T`,X ′` , P
(i)
` , ∅, w`,W

(i)
` , k

(i)
` ) can be solved in time 2O(k

2 log k) · |E(M)|O(1) by Lemmas 5.1–
5.4.

Now we can complete the proof of Theorem 4. Observe that M and the corresponding
conflict tree T can be constructed in polynomial time by Theorem 2, and then we apply the
reduction rules at most |V (T )| − 1 times until we obtain an instance of Extended Minimum
Circuit for a matroid of one of basic types and solve the problem using Lemmas 5.1–5.4.

6 Solving Spanning Circuit on regular matroids

In this section we prove the following theorem.

Theorem 5. Spanning Circuit is FPT on regular matroids when parameterized by |T |.

The remaining part of the section contains the proof of the theorem. Similarly to the proof
of Theorem 4, we solve a special variant of Spanning Circuit. We redefine a simplified variant
of circuit constraint that we need in this section as follows.

Definition 6.1 (Circuit constraints and extensions). Let M be a binary matroid given
together with a set X of nonempty pairwise disjoint subsets of E(M) of size at most 3. Then a
circuit constraint for M and X is an 4-tuple (M,X , P,Z), where

• P is a mapping assigning to each X ∈ X a nonempty set P (X) of subsets of X of size 1
or 2,

• Z is either the empty set, or is a pair of the form (Z, t), where Z is a circuit of size 3
disjoint with the sets of X and t is an element of Z.

We say that a circuit C of M is a feasible extension satisfying circuit constraint (M,X , P,Z)
(or just feasible when it is clear from the context) if

• C ∩X ∈ P (X) for each X ∈ X , and

• If Z 6= ∅, then C 4 Z is a circuit of M and Z ∩ C = {t}.

2In fact, it can be done in polynomial time for this degenerate case.
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Input: A circuit constraint (M,X , P,Z).
Task: Decide whether there is an extension satisfying the circuit constraint.

Extended Spanning Circuit

We also say that a circuit C is a feasible extension satisfying circuit constraint (M,X , P,Z) is

a solution for an instance of Extended Spanning Circuit. Clearly, Spanning Circuit is a
special case of Extended Spanning Circuit for X = {{t} | t ∈ T}, P ({t}) = {t} for t ∈ T ,
and Z = ∅. In Section 6.1 we construct algorithms for Extended Spanning Circuit for basic
matroids and in Section 6.2 we explain how to use these results to solve Spanning Circuit on
regular matroids.

6.1 Solving Extended Spanning Circuit on basic matroids

First, we consider matroids obtained from R10 by deleting elements and adding parallel elements.
Notice that, in fact, such matroids that occur in decompositions have bounded size but, formally,
we have to deal with the possibility that the number of parallel elements added to R10 can be
arbitrary.

Lemma 6.1. Extended Spanning Circuit can be solved in polynomial time on the class of
matroids that can be obtained from R10 by adding parallel elements and deleting some elements.

Proof. Let (M,X , P,Z) be an instance of Extended Spanning Circuit, whereM is a matroid
with a ground set E that is obtained from R10 be adding parallel elements and deleting some
elements. Notice that Z = ∅, because M has no circuits of odd size.

Notice that if e and e′ are parallel elements of M , then for any circuit C of M , either
C = {e, e′} or |C ∩ {e, e′}| ≤ 1. It implies that if |X | > 10, then (M,X , P,Z) is a no-instance,
because for any selection of sets S(X) ∈ P (X), ∪X∈XS(X) contains two parallel elements.
Suppose that this does not occur. Let Y = ∪X∈XX. Let M ′ be the matroid obtained from
M by the exhaustive deletions of elements of E \ Y that are parallel to some other remaining
element of E \ Y . We claim that (M,X , P,Z) is a yes-instance if and only if (M ′,X , P,Z) is a
yes-instance. If C is a circuit of M ′ such that T ⊆ C, then C is a circuit of M as well. Hence,
if (M ′,X , P,Z) is a yes-instance, then (M,X ,P, Z) is a yes-instance of Extended Spanning
Circuit. Suppose that (M,X ,P, Z) is a yes-instance and let a circuit C of M be a solution for
the instance such that |C \ E(M ′)| is minimum. If C ⊆ E(M ′), then C is a circuit of M ′ and
(M ′,X , P,Z) is a yes-instance. Assume that there is e ∈ C \ E(M ′). Then there is e′ ∈ E(M ′)
that is parallel to e in M such that e′ /∈ Y . Consider C ′ = C 4 {e, e′}. By Observation 2.1,
C ′ is a circuit of M . We obtain that C ′ is a solution such that |C ′ \ E(M ′)| < |C \ E(M ′)|; a
contradiction.

It remains to to observe that M ′ has at most 40 elements. Hence, Extended Spanning
Circuit can be solved for (M ′,X , P,Z) in time O(1) by brute force.

Next, we consider graphic matroids. Recall that Björklund, Husfeldt and Taslaman [2]
proved that a shortest cycle that goes through a given set of k vertices or edges in a graph can
be found in time 2k · nO(1). The currently best deterministic algorithm that finds a cycle that
goes through a given set of k vertices or edges was given by Kawarabayashi in [19]. We show
that these results can be applied to solve Extended Spanning Circuit.

Lemma 6.2. Extended Spanning Circuit is FPT on graphic matroids when parameterized
by |X |.
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Proof. Let (M,X , P,Z) be an instance of Extended Spanning Circuit, where M is a graphic
matroid. We find G such that M is isomorphic to M(G) using the results of Seymour [30] and
assume that M = M(G).

First, we show how to solve the problem for the case Z = ∅ and then explain how to modify
the algorithm if Z 6= ∅. Because the sets of X have sizes 2 or 3, |P (X)| ≤ 6 for X ∈ X and
there is at most 6|X | possibilities to guess sets S(X) ∈ P (X) of representatives of the elements
X ∈ X in C. For each guess, let T = ∪X∈XS(X). Consider the graph G′ obtained from G by
the deletion of the elements of (∪X∈XX)\T . Clearly, (M,X , P,Z) has a solution corresponding
to the considered guess of sets S(X) if and only if G′ has a cycle that goes through all the
edges of T . To find such a cycle, we can apply the results of [2] or [19]. If Z = (Z, t), we use
Lemma 3.4 i). We additionally find a vertex v of the cycle of G induced by Z that is not incident
to the specified element t. By Lemma 3.4 i), (M,X , P,Z) has a solution corresponding to the
considered guess of sets S(X) if and only if G′ has a cycle that goes through all the edges of
T ∪ {t} and avoids v. To find such a cycle, we again can apply the results of [2] or [19].

Since we consider at most 6|X | guesses of sets S(X) ∈ P (X) and, for each guess, |T | ≤ 2|X |,
we conclude that the algorithm runs in FPT time.

For cographic matroids, we obtain the following lemma using the results of Robertson and
Seymour [28].

Lemma 6.3. Extended Spanning Circuit is FPT on cographic matroids when parameterized
by |X |.

Proof. Let (M,X , P,Z) be an instance of Extended Spanning Circuit, where M is a co-
graphic matroid. Using the results of Seymour [30], we can in polynomial time find a graph G
such that M is isomorphic to the bond matroid M∗(G). We assume that M = M∗(G). We can
assume without loss of generality that G is connected. Recall that to solve Extended Span-
ning Circuit, we have to check whether there is a cut (A,B) of G such that G[A] and G[B]
are connected and C = E(A,B) satisfies the requirements of Extended Spanning Circuit.

Because the sets of X have sizes 2 or 3, |P (X)| ≤ 6 for X ∈ X and there is at most 6|X |

possibilities to guess sets S(X) ∈ P (X) of representatives of the elements X ∈ X in C. For
each guess, let T = ∪X∈XS(X). If Z = (Z, t), then we additionally include t in T . Consider
the graph G′ obtained from G by the contraction of the elements of (∪X∈XX) \ T .

If there is e ∈ T that is a loop of G′, then (M,X , Z,P) is a no-instance for the guess, since
there is no minimal cut containing e. Assume that the edges of T are not loops. We guess the
placement of the end-vertices of the edges of T in A and B considering at most 2|T | possibilities.
Let TA be the set of end-vertices guessed to be in A, and let TB be the set of end-vertices in
B. If Z = (Z, t), then we additionally put the end-vertices of the edges of Z \ {t} in TB using
Lemma 3.4 ii). Now we have to check whether there is a partition (A,B) of V (G) such that
TA ⊆ A, TB ⊆ B, and G[A] and G[B] are connected. By the celebrated results of Robertson
and Seymour about disjoint paths, one can find in FPT-time with the parameter |TA| + |TB|
disjoint sets of vertices A′ and B′ containing TA and TB respectively such that G[A′] and G[B′]
are connected if such sets exist. If there are no such sets A′ and B′, we conclude that there is no
partition (A,B) with the required properties for the considered guess of TA and TB. Otherwise,
we extend A′ and B′ to the partition of V (G) by the exhaustive applying the following rule: if
there is v ∈ V (G) \ (A′ ∪ B′) that is adjacent to a vertex of A′ or B′, then put v in A′ or B′

respectively. Clearly, we always obtain a partition of V (G), because G is connected.
Since we consider at most 6|X | guesses of sets S(X) ∈ P (X) and, for each guess, |T | ≤ 2|X |

and |TA|+ |TB| ≤ 4|T |+ 4, we conclude that the algorithm runs in FPT time.
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6.2 Proof of Theorem 5

Now we are ready to give an algorithm for Spanning Circuit on regular matroids. Let (M,T )
be an instance of Spanning Circuit, where M is regular. We consider it to be an instance
(M,X , P,Z) of Extended Spanning Circuit, where X = {{t} | t ∈ T}, P (X) = X for
X ∈ X , and Z = ∅. If M can be obtained from R10 by the addition of parallel elements or is
graphic or cographic, we solve the problem directly using Lemmas 6.1–6.3. Assume that it is
not the case. Using Theorem 2, we find a conflict tree T . Recall that the set of nodes of T is the
collection of basic matroids M and the edges correspond to extended 1-, 2− and 3-sums. The
key observation is that M can be constructed from M by performing the sums corresponding
to the edges of T in an arbitrary order. We select an arbitrarily node r of T containing an
element of T as a root. Our algorithm is based on performing bottom-up traversal of the tree
T . We exhaustively apply reduction rules that remove leaves of T until we obtain a basic case
for which we can apply Lemmas 6.1–6.3.

We say that an instance (M,X , P,Z) of Extended Spanning Circuit is consistent (with
respect to T ) if Z = ∅ and for any X ∈ X , X ∈ E(M ′) for some M ′ ∈ M. Clearly, the
instance obtained from the original input instance (M,T ) of Spanning Circuit is consistent.
Our reduction rules keep this property.

Let M` ∈ M be a matroid that is a leaf of T . Denote by Ms its adjacent sub-leaf. We
construct reduction rules depending on whether M` is 1, 3 or 3 leaf.

Throughout this section, we say that a reduction rule is safe if it either correctly solves
the problem or returns an equivalent instance of Extended Spanning Circuit together with
corresponding conflict tree of the obtained matroid that is consistent and the value of the
parameter does not increase.

Reduction Rule 6.1 (1-Leaf reduction rule). If M` is a 1-leaf, then do the following.

i) If there is X ∈ X such that X ∈ E(M`), then stop and return a no-answer,

ii) Otherwise, delete M` from T and denote by T ′ the obtained conflict tree. Return the
instance (M ′,X , P, ∅) and solve it using the conflict tree T ′, where M ′ is the matroid
defined by T ′.

Since the root matroid contains at least one set of X , Lemma 3.3 i) immediately implies the
following lemma.

Lemma 6.4. Reduction Rule 6.1 is safe and can be implemented to run in time polynomial in
|E(M)|.

Reduction Rule 6.2 (2-Leaf reduction rule). IfM` is a 2-leaf, then let {e} = E(M`)∩E(Ms)
and do the following.

i) If there is no X ∈ X such that X ∈ E(M`), then check whether there is a circuit of M`

containing e. If there is no such a circuit, then delete e from Ms. Delete M` from T and
denote by T ′ the obtained conflict tree. Return the instance (M ′,X , P, ∅) and solve it
using the conflict tree T ′, where M ′ is the matroid defined by T ′.

ii) Otherwise, if there is X ∈ X such that X ∈ E(M`), consider X` = {X ∈ X | X ⊆
E(M`)}∪{{e}}. Set P`(X) = P (X) for X ∈ X` such that X 6= {e}, and set P`({e}) = {e}.
Solve Extended Spanning Circuit for (M`,X`, P`, ∅). If (M`,X`, P`, ∅) is a no-instance,
then stop and return a no-answer. Otherwise, do the following. Set X ′ = {X ∈ X | X 6⊆
E(M`)}∪{{e}}. Set P ′(X) = P (X) for X ∈ X ′ such that X 6= {e}, and set P ′({e}) = {e}.
Delete M` from T and denote the obtained conflict tree by T ′. Let M ′ be the matroid
defined by T ′. Return the instance (M ′,X ′, P ′, ∅) and solve it using the conflict tree T ′.
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Lemma 6.5. Reduction Rule 6.2 is safe and can be implemented to run in time f(X ) · nO(1)
for some function f of X only.

Proof. Clearly, if the rule returns a new instance, then it is consistent with respect to T ′ and
the parameter does not increase.

We show that the rule either correctly solves the problem or returns an equivalent instance.
Denote by M̂ the matroid defined by the conflict tree obtained from T by the deletion of the
node M`. Clearly, M = M̂ ⊕2 M`.

Suppose that (M,X , P,Z) is a consistent yes-instance. We prove that the rule returns a
yes-instance. Denote by C a circuit of M that is a solution for (M,X , P,Z). We consider two
cases corresponding to the cases i) and ii) of the rule.

Case 1. There is no X ∈ X such that X ∈ E(M`). If C ⊆ E(M̂), then by Lemma 3.3 ii), C
is a circuit of M ′ constructed by the rule that is either M̂ or the matroid obtained by from M̂
by the deletion of e, because e /∈ C. Suppose that C ∩ E(M`) 6= ∅. Then C = C1 4 C2, where
C1 ∈ C(M̂), C2 ∈ C(M2) and e ∈ C1 ∩ C2 by Lemma 3.3 ii). Because C2 is a circuit of M2

containing e, we do not delete e from Ms and, therefore, C1 is a circuit of M ′ = M̂ constructed
by the rule in this case. It remains to observe that C1 is a solution for (M ′,X , P, ∅). Hence,
(M ′,X , P, ∅) is a yes-instance.

Case 2. There is X ∈ X such that X ∈ E(M`). Then by Lemma 3.3 ii), C = C1 4 C2, where
C1 ∈ C(M̂), C2 ∈ C(M2) and e ∈ C1 ∩ C2. We have that C2 is a solution for (M`,X`, P`, ∅) and
the algorithm does not stop. Also we have that C1 is a solution for (M ′,X ′, P ′, ∅), i.e., the rule
returns a yes-instance.

Suppose now that the instance constructed by the rule is a yes-instance with a solution C ′.
We show that the original instance (M,X , P,Z) is a yes-instance. We again consider two cases.

Case 1. The new instance is constructed by Rule 6.2 i). If e /∈ C ′, then C ′ is a circuit of M
by Lemma 3.3 ii) and, therefore, C ′ is a solution for (M,X , P,Z), that is, (M,X , P,Z) is a
yes-instance. Assume that e ∈ C ′. In this case, e was not deleted by the rule from Ms. Hence,
there is a circuit C ′′ of M` containing e. By Lemma 3.3 ii), C = C ′4C ′′ is a circuit of M . We
have that C is a solution for (M,X , P,Z) and it is a yes-instance.

Case 2. The new instance is constructed by Rule 6.2 ii). In this case, (M`,X`, P`, ∅) is a yes-
instance and there is a solution C ′′ for it. Notice that e ∈ C ′∩C ′′. We have that C = C ′4C ′′ is
a circuit of M by Lemma 3.3 ii). We have that C is a solution for (M,X , P,Z) and, therefore,
(M,X , P,Z) is a yes-instance.

We proved that the rule is safe. To evaluate the running time, notice first that we can check
existence of a circuit of M` containing e in Rule 6.2 i) in polynomial time either directly or using
the straightforward observation that we have an instance of Spanning Circuit with T = {e}
and can apply Lemmas 6.1–6.3 depending on the type of M`. The problem for (M`,X`, P`, ∅)
in Rule 6.2 ii) can be solved in FPT time by Lemmas 6.1–6.3 depending on the type of M`,
because |X`| ≤ |X |.

Reduction Rule 6.3 (3-Leaf reduction rule). If M` is a 3-leaf, then let Z = E(M`) ∩
E(Ms) = {e1, e2, e3} and do the following.

i) If there is no X ∈ X such that X ∈ E(M`), then for each i ∈ {1, 2, 3}, solve Extended
Spanning Circuit for the instance (M`, ∅, ∅, (Z, ei)), and if (M`, ∅, ∅, (Z, ei)) is a no-
instance, then delete ei from Ms. Delete M` from T and denote by T ′ the obtained
conflict tree. Return the instance (M ′,X , P, ∅) and solve it using the conflict tree T ′,
where M ′ is the matroid defined by T ′.
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ii) Otherwise, if there is X ∈ X such that X ∈ E(M`), set X` = {X ∈ X | X ⊆ E(M`)} and
P`(X) = P (X) for X ∈ X`. We construct the set R of subsets of Z as follows. Initially,
R = ∅.

– For i ∈ {1, 2, 3}, solve Extended Spanning Circuit for the instance (M`,X`, P`, (Z, ei)),
and if we get a yes-instance, then add {ei} in R.

– For i ∈ {1, 2, 3}, solve Extended Spanning Circuit for the instance (M`,X ′` , P
(i)
` , ∅),

where X ′` = X` ∪{Z} and P
(i)
` (X) = P`(X) for X ∈ X` and L

(i)
` (Z) = {ei}. If we get

a yes instance, then add Z \ {ei} in R.

If R = ∅, then stop and return a no-answer. Otherwise, do the following. Set X ′ = {X ∈
X | X 6⊆ E(M`)} ∪ {Z}. Set P ′(X) = P (X) for X ∈ X ′ such that X 6= Z, and set
P ′(Z) = R. Delete M` from T and denote the obtained conflict tree by T ′. Let M ′ be the
matroid defined by T ′. Return the instance (M ′,X ′, P ′, ∅) and solve it using the conflict
tree T ′.

Lemma 6.6. Reduction Rule 6.3 is safe and and can be implemented to run in time f(X ) ·nO(1)
for some function f of X only.

Proof. Clearly, if the rule returns a new instance, then it is consistent with respect to T ′ and
the parameter does not increase.

We show that the rule either correctly solves the problem or returns an equivalent instance.
Denote by M̂ the matroid defined by the conflict tree obtained from T by the deletion of the
node M`. Clearly, M = M̂ ⊕2 M`.

Suppose that (M,X , P,Z) is a consistent yes-instance. We prove that the rule returns a
yes-instance. Denote by C a circuit of M that is a solution for (M,X , P,Z). We consider two
cases corresponding to the cases i) and ii) of the rule.

Case 1. There is no X ∈ X such that X ∈ E(M`). If C ⊆ E(M̂), then by Lemma 3.3 iii), C
is a circuit of M ′ constructed by the rule that is obtained by from M̂ by the deletion of some
elements of Z, because Z ∩ C = ∅. Suppose that C ∩ E(M`) 6= ∅. Then, by Lemma 3.3 iii),
C = C1 4 C2, where C1 ∈ C(M̂), C2 ∈ C(M`), C1 ∩ Z = C2 ∩ Z = {ei} for some i ∈ {1, 2, 3},
and C1 4 Z is a circuit of M̂ or C2 4 Z is a circuit of M`.

Suppose that C24Z is a circuit ofM`. Then (M`, ∅, ∅, (Z, ei)) is a yes-instance and, therefore,
ei ∈ E(M ′). Hence, C1 is a circuit of M ′ constructed by the rule. We have that C1 is a solution
for (M ′,X , P, ∅). Hence, (M ′,X , P, ∅) is a yes-instance.

Assume now that C2 4 Z is a not circuit of M`. By Lemma 3.1, C2 is a disjoint union of

two circuits C
(1)
2 and C

(2)
2 of M2 containing eh, ej ∈ Z \ {ei}, and C

(1)
2 4 Z and C

(2)
2 4 Z are

circuits of M`. Then (M`, ∅, ∅, (Z, eh)) and (M`, ∅, ∅, (Z, eh)) are yes-instances and, therefore,
eh, ej ∈ E(M ′). Consider C ′1 = C14Z. Because C24Z is a not circuit of M`, C

′
1 is a circuit of

M̂ . Since eh, ej ∈ E(M ′), we have that C ′1 is a solution for (M ′,X , P, ∅). Hence, (M ′,X , P, ∅)
is a yes-instance.

Case 2. There is X ∈ X such that X ∈ E(M`). We have that C = C14C2, where C1 ∈ C(M̂),
C2 ∈ C(M`), C1 ∩ Z = C2 ∩ Z = {ei} for some i ∈ {1, 2, 3}, and C1 4 Z is a circuit of M̂ or
C2 4 Z is a circuit of M`.

Suppose that C2 4 Z is a circuit of M`. Then (M`,X`, P`, (Z, ei)) is a yes-instance and,
therefore, {ei} ∈ R. Since R 6= ∅, the algorithm does not stop. Also we have that C1 is a
solution for (M ′,X ′, P ′, ∅), i.e., the rule returns a yes-instance.

Assume now that C24Z is not a circuit of M`. Then (M`,X ′` , P
(i)
` , ∅) is a yes-instance and,

therefore, Z \ {ei} ∈ R. Since R 6= ∅, the algorithm does not stop. Consider C ′1 = C1 4 Z.
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Notice that C ′1 is a circuit of M̂ . We obtain that C ′1 is a solution for (M ′,X ′, P ′, ∅), i.e., the
rule returns a yes-instance.

Suppose now that the instance constructed by the rule is a yes-instance with a solution C ′.
We show that the original instance (M,X , P,Z) is a yes-instance. We again consider two cases.

Case 1. The new instance is constructed by Rule 6.3 i).
If C ′ ∩ Z = ∅, then C ′ is a circuit of M by Lemma 3.3 iii) and, therefore, C ′ is a solution

for (M,X , P,Z), that is, (M,X , P,Z) is a yes-instance.
Suppose that C ′ ∩ Z = {ei} for some i ∈ {1, 2, 3}. Then, by the construction of the rule,

there is a circuit C ′′ of M` such that C ′′ ∩ Z = {ei} and C ′′ 4 Z is a circuit. By Lemma 3.3
iii), C = C ′ 4 C ′′ is a circuit of M . We have that C is a solution for (M,X , P,Z) and it is a
yes-instance.

Assume that C ′ ∩ Z = {eh, ej} for some distinct h, j ∈ {1, 2, 3}. Let ei be the element of Z
distinct from eh and ej . We have that M` has two circuits Ch and Cj such that Ch ∩Z = {eh},
Cj ∩ Z = {ej}. Then Ch4Cj 4 Z is a cycle of M` by Observation 3.1, and this cycle contains
a circuit Ci such that Ci ∩ Z = {ei}. Consider C ′′ = C ′ 4 Z. By Lemma 3.2, C ′′ is a circuit of
M̂ and C ′′4 Z is a circuit. By Lemma 3.3 iii), we conclude that C = C ′′4Ci is a solution for
(M,X , P,Z) and, therefore, (M,X , P,Z) is a yes-instance.

Case 2. The new instance is constructed by Rule 6.2 ii). In this case, C ′′ ∩ Z ∈ P ′(Z) = R.
Recall that R contains sets of size 1 or 2.

Suppose that C ′ ∩ Z = {ei} for some i ∈ {1, 2, 3}. Then, by the construction of the rule,
there is a solution C ′′ for the instance (M`,X`, P`, (Z, ei)). Notice that C ′′ ∩ Z = {ei} and
C ′′ 4 Z is a circuit of M`. By Lemma 3.3 iii), C = C ′ 4 C ′′ is a circuit of M . We have that C
is a solution for (M,X , P,Z) and it is a yes-instance.

Assume that C ′ ∩ Z = {eh, ej} for some distinct h, j ∈ {1, 2, 3}. Let ei be the element of Z

distinct from eh and ej . There is a solution C ′′ for (M`,X ′` , P
(i)
` , ∅). Recall that C ′′ ∩Z = {ei}.

Consider C ′′′ = C ′ 4 Z. By Lemma 3.2, C ′′′ is a circuit of M̂ and C ′′′ 4 Z is a circuit. Since
C ′′′ ∩Z = {ei}, we obtain that C = C ′′′4C ′′ is a circuit of M . It remains to observe that C is
a solution for (M,X , P,Z) and it is a yes-instance.

We proved that the rule is safe. To evaluate the running time, notice first that we can
check existence of a circuit of M` containing each ei in Rule 6.3 ii) in polynomial time us-
ing Lemmas 6.1–6.3 depending on the type of M`. The problems for (M`,X`, P`, (Z, ei)) and

(M`,X ′` , P
(i)
` , ∅) in Rule 6.3 i) can be solved in FPT time by Lemmas 6.1–6.3 depending on the

type of M`, because |X`| < |X ′` | ≤ |X |.

To complete the proof of Theorem 5, it remains to observe that M and the corresponding
conflict tree T can be constructed in polynomial time by Theorem 2, and then we apply the
reduction rules at most |V (T )| − 1 times until we obtain an instance of Extended Spanning
Circuit for a matroid of one of basic types and solve the problem using Lemmas 6.1–6.3.

7 Lower bounds and open questions

In this paper we gave FPT algorithms for Minimum Spanning Circuit and Spanning Circuit
for regular matroids. We conclude with a number of open algorithmic questions about circuits
in matroids. We also discuss here certain algorithmic limitations for extending our results.

Larger matroid classes. The first natural question is whether our results can be extended to
other classes of matroids? There is no hope (of course up to certain complexity assumptions)
that our results can be extended to binary matroids. Downey et al. proved in [14] that the
following problem is W[1]-hard being parameterized by k. (We refer to the book of Downey
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and Fellows [13] for the definition of W-hierarchy.) In the Maximum-Likelihood Decoding
problem we are given a binary n×m matrix A, a target binary n-element vector ~s, and a positive
integer k. The question is whether there is a set of at most k columns of A that sum to ~s? As
it was observed by Gavenciak et al. [16], the result of Downey et al. immediately implies the
following proposition.

Proposition 7.1 ([16]). Minimum Spanning Circuit is W[1]-hard on binary matroids with
unit-weights elements when parameterized by ` even when |T | = 1.

Let us note that Minimum Spanning Circuit with |T | = 0 on binary matroids is equivalent
to Even Set, which parameterized complexity is a long standing open question, see e.g. [13].

However Proposition 7.1 does not rule out a possibility that our results can be extended
from the class of regular matroids to any proper minor-closed class of binary, and even more
generally, representable over some finite field, matroids. It is very likely that the powerful
structural theorems obtained by Geelen et al. in order to settle Rota’s conjecture, see [17] for
further discussions, can shed some light on this question.

Solving both problems on transversal matroids is another interesting problem.

Stronger parameterization. Björklund et al. in [2] gave a randomized algorithm that finds
a shortest cycle through a given set T of vertices or edges in a graph in time 2|T | · nO(1).
Hence Minimum Spanning Circuit parameterized by w(T ) is (randomized) FPT on graphic
matroids if the weights are encoded in unary. Unfortunately, it is possible to show that Minimum
Spanning Circuit is W[1]-hard already on cographic matroids for this parameterization.

Theorem 6. Minimum Spanning Circuit is W[1]-hard on cographic matroids with unit-
weights elements when parameterized by |T |.

Proof. We reduce the following variant of the Multicolored Clique problem. In the Reg-
ular Multicolored Clique we are given a regular graph G, a positive integer parameter k,
and a partition V1, . . . , Vk of V (G). The task is to decide whether G have a clique K such that
|Vi ∩ K| = 1 for i ∈ {1, . . . , k}. Regular Multicolored Clique parameterized by k was
shown to be W[1]-hard by Cai in [3].

Let (G, k, V1, . . . , Vk) be an instance of Regular Multicolored Clique, and assume that
G is a d-regular n-vertex graph. Assume without loss of generality that k < d < n − 1. We
construct the graph H as follows.

• Construct a copy of G.

• For each i ∈ {1, . . . , k}, construct a vertex vi and edges viu for u ∈ Vi.

• Construct n pairwise adjacent vertices x1, . . . , xn and make them adjacent to the vertices
of G.

• Construct p = 2n2 pairwise adjacent vertices y1, . . . , yp and make each of them adjacent
to x1, . . . , xn.

• Construct edges y1v1, . . . , y1vk and set T = {y1v1, . . . , y1vk}.

We put ` = n+ (n+ d− k + 1)k.
We claim that (G, k, V1, . . . , Vk) is a yes-instance of Regular Multicolored Clique if

and only if H has a minimal cut-set C of size at most ` such that T ⊆ C.
Suppose that K is a clique in G with |Vi ∩K| = 1 for i ∈ {1, . . . , k}. Consider the partition

(A,A) of V (G) with A = {v1, . . . , vk} ∪K. It is straightforward to verify that H[A] and H[A]
connected. Therefore C = E(A,A) is a minimal cut-set. The vertices v1, . . . , vk have n − k
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neighbors in V (G)∩A in total and all their neighbors are distinct. Also each vi is adjacent to y1 ∈
A. Since G is d-regular, each vertex u ∈ K has d−k+ 1 neighbors in V (G)∩A and n neighbors
x1, . . . , xn among the remaining vertices of A. Hence, |C| = (n− k) + k+ (n+ d− k+ 1)k = `.

Assume now that H has a minimal cut-set C of size at most ` such that T ⊆ C. Let (A,A)
be the partition of V (H) with E(A,A) = C. We also assume that y1 ∈ A. Then v1, . . . , vk ∈ A.

First, we show that xi, yj ∈ A for i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. To obtain a contra-
diction, assume that at least one of these vertices is in A. Because {x1, . . . , xn} ∪ {y1, . . . , yn}
is a clique of size 2n2 + n and T ⊆ E(A,A), we have that |E(A,A)| ≥ 2n2 + n − 1 + k >
n+ (n+ d− k + 1)k = ` contradicting |E(A,A)| ≤ `.

Because H[A] is connected and v1, . . . , vk ∈ A, there is ui ∈ Vi such that ui ∈ A for each
i ∈ {1, . . . , k}. Let A′ = {v1, . . . , vk}∪{u1, . . . , uk}. The vertices v1, . . . , vk have n−k neighbors
in total in V (G) ∩ A′ and all their neighbors are distinct. Also each vi is adjacent to y1 ∈ A′.
Since G is d-regular, each vertex ui has at least d − k + 1 neighbors in V (G) ∩ A′, and all the
vertices u1, . . . , uk are incident to (d − k + 1)d edges of G with exactly one end-vertex in A′ if
and only if {u1, . . . , uk} is a clique of G. Also each vertex ui is adjacent to x1, . . . , xk. Therefore,
|E(A′, A′)| ≥ (n− k) + k + (n+ d− k + 1)k = `, and |E(A′, A′)| = ` if and only if {u1, . . . , uk}
is a clique of G.

Since xi, yj ∈ A for i ∈ {1, . . . , n} and j ∈ {1, . . . , p}, A′ \ A ⊆ V (G). Because G is d-
regular and each vertex of G is adjacent to exactly one vertex vi and the vertices x1, . . . , xn,
` = |E(A,A)| ≥ |E(A′, A′)|+ |A′ \A|(n− d− 1) ≥ |E(A′, A′)| ≥ `. As d < n− 1, we obtain that
A = A′. Hence, {u1, . . . , uk} is a clique of G.

To complete the proof, we observe that H has a minimal cut-set C of size at most ` such
that T ⊆ C if and only if (M(H), w, T, `) is a yes-instance of Minimum Spanning Circuit
with the weight function w(e) = 1 for e ∈ E(H).

Interestingly, Theorem 6 does not rule out a possibility that for a fixed numbers of terminals
Minimum Spanning Circuit is still resolvable in polynomial time, or in other words that
it is in XP parameterized by |T |. We conjecture that this is not the case. More precisely,
is Minimum Spanning Circuit NP-complete on cographic matroids for a fixed number, say
|T | = 3, terminal elements?

Other circuit problems. We do not know if our technique could be adapted to solve the
following variant of the spanning circuit problem. Given a regular matroid M with a set of
terminals, decide whether M contains a circuit of size at least ` spanning all terminals. We
leave the complexity of this problem parameterized by ` open.

Another interesting variation of Minimum Spanning Circuit and Spanning Circuit
is the problem where we seek for a circuit of a given parity containing a given set of terminal
elements T . For graphs (or graphic matroids), Kawarabayshi et al. [20] proved that the problem
is FPT parameterized by |T |. The complexity of this problem on cographic matroids is open.
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