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Abstract12

We present approximation and exact algorithms for piecewise regression of univariate and bivariate13

data using fixed-degree polynomials. Specifically, given a set S of n data points (x1, y1), . . . , (xn, yn) ∈14

Rd × R where d ∈ {1, 2}, the goal is to segment xi’s into some (arbitrary) number of disjoint pieces15

P1, . . . , Pk, where each piece Pj is associated with a fixed-degree polynomial fj : Rd → R, to minimize16

the total loss function λk +
∑n

i=1(yi − f(xi))2, where λ ≥ 0 is a regularization term that penalizes17

model complexity (number of pieces) and f :
⊔k

j=1 Pj → R is the piecewise polynomial function18

defined as f |Pj = fj . The pieces P1, . . . , Pk are disjoint intervals of R in the case of univariate data19

and are disjoint axis-aligned rectangles in the case of bivariate data. Our error approximation allows20

use of any fixed-degree polynomial, and not just linear functions.21

Our main results are the following. For univariate data, we present a (1 + ε)-approximation22

algorithm with time complexity O( n
ε

log 1
ε
), assuming that data is presented in sorted order of23

xi’s. For bivariate data, we present three results: a sub-exponential exact algorithm with running24

time nO(
√

n); a polynomial-time constant-approximation algorithm; and a quasi-polynomial time25

approximation scheme (QPTAS). The bivariate case is believed to be NP-hard in the folklore but26

we could not find a published record in the literature, so in this paper we also present a hardness27

proof for completeness.28
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1 Introduction32

Line, or curve, fitting is a classical problem in statistical regression and data analysis, where33

the goal is to find a simple predictive model that best fits an observed data set. For instance,34

given a set of two-dimensional points (xi, yi), i = 1, . . . , n, the least-square line fitting problem35

is to find a linear function f : y = ax+b minimizing the cumulative error
∑n
i=1(yi−(axi+b))2.36

This problem is easily solved in O(n) time because the coefficients of the optimal line have a37

simple closed form solution in terms of input data. In most cases, however, a single line is a38

poor fit for the data, and instead the goal is to segment the data into multiple piece, with39

each piece represented by its own linear function. This problem of poly-line (or piecewise40

linear) fitting has been studied widely in computational geometry, where the goal is either41

to minimize the total error for a given number of pieces [8, 10], or to minimize the number42

of pieces for a given upper bound on the error [8], under a variety of error measures. In a43

related but technically different vein of work on “curve simplification”, the approximation44

must also form a polygonal chain—that is, the pieces representing neighboring segments must45
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23:2 Piecewise Polynomial Regression

form a continuous curve, and it is conjectured that finding a polygonal chain of k pieces with46

minimum L2 error is NP-hard. In our regression setting, such continuity is not required.47

These best-fit formulations with a “hard-coded” value for the number of pieces k, however,48

suffer from the problem of having to specify k, rather than letting the structure in the data49

dictate the choice. This can be circumvented by running the algorithm for multiple values50

of k, and then stopping with the smallest number of pieces with an acceptable error. A51

significant issue, however, is the inherent tradeoff between the number of pieces and the52

error—the larger number of pieces, the smaller the error—which is recognized as the problem53

of “overfitting” in statistics and machine learning. In order to avoid this overfitting problem,54

regression typically uses “regularization” and includes a penalty term for the size of the55

representation (model) in the objective, often called the “loss” function. By optimizing the56

loss function, the algorithm automatically balances the two competing criteria: number of57

pieces k and approximation error.58

In particular, suppose we have a set of data points (xi, yi) ∈ Rd × R, for i = 1, . . . , n.59

We call (xi, yi) univariate data if d = 1 and bivariate if d = 2. We will consider piecewise60

approximation of these data points using polynomial functions of any fixed degree g, where61

linear functions are the special case when the degree is one. Our goal is to segment xi’s into62

some (arbitrary) number of disjoint pieces P1, . . . , Pk, each associated with a constant-degree63

polynomial function fj , to minimize the total loss function64

λk +
n∑
i=1

(yi − f(xi))2,65

where λ > 0 is a pre-specified penalty term for regularizing the model complexity (number of66

pieces) and f :
⊔k
j=1 Pj → R is the piecewise polynomial function defined as f |Pj

= fj . The67

pieces P1, . . . , Pk are disjoint intervals in R in the case of univariate data and are disjoint68

axis-aligned rectangles in R2 in the case of bivariate data.69

Even for piecewise linear approximation of univariate data, the best bound currently70

known is Ω(kn2) [2, 9, 15], and it is an important open problem to either find a sub-quadratic71

algorithm or prove a Ω(n2) lower bound. We make progress on this problem by presenting a72

linear-time approximation scheme for this problem.73

I Theorem 1. There exists a (1 + ε)-approximation algorithm for univariate piecewise74

polynomial regression which runs in O(nε log 1
ε ) time (excluding the time for pre-sorting).75

For bivariate data, we obtain the following three results, including a sub-exponential76

time exact algorithm, a polynomial-time constant-approximation algorithm, and a quasi-77

polynomial time approximation scheme (QPTAS).78

I Theorem 2. There exists an exact algorithm for bivariate piecewise polynomial regression79

which runs in nO(
√
n) time.80

I Theorem 3. There exists a constant-approximation algorithm for bivariate piecewise81

polynomial regression which runs in polynomial time.82

I Theorem 4. There exists a QPTAS for bivariate piecewise polynomial regression.83

Finally, while the bivariate case (and hence the case of more than two variables) is believed84

to be NP-hard in the folklore, we could not find a published record in the literature, so we85

also present a hardness proof for completeness.86

I Theorem 5. Bivariate piecewise regression is NP-hard for all fixed degree polynomials,87

including piecewise constant or piecewise linear functions.88
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Related work. Curve fitting and piecewise regression related problems are well-studied89

in computational geometry [6, 8] and statistics [16], as well as in database theory under90

the name histogram approximation [11, 14]. The main focus of research in computational91

geometry has been to approximate a curve, or a set of points sampled from a curve, by92

a fixed-size polygonal chain to minimize some measure of error, such as L1, L2, L∞ error93

or Hausdorff error. For instance, Goodrich [10] presented an O(n logn)-time algorithm to94

compute a polyline (or a connected piecewise linear function) in the plane that minimizes95

the maximum vertical distance from a set of n points to the polyline, which improves from96

the algorithms of [12, 18]. Aronov et al. [8] gave an FPTAS for the polyline fitting problem97

with the min-sum and least-square error measure. Specifically, they considered two problems:98

minimizing the total error for a given number of pieces of the polyline, and minimizing the99

number of pieces of the polyline for a given upper bound on the error. Agarwal et al. [6]100

consider approximation under Hausdorff and Frechet distances. Unlike these computational101

geometric models, in regression and in database theory, the piecewise approximation is not102

required to be “connected”; instead, the goal is to partition the data into a given number103

k of pieces, each represented by a simple function. Such an optimal histogram (piecewise104

approximation) can be constructed in O(kn2) time, where k is the number of pieces [11, 14]. A105

similar dynamic programming algorithm can also compute an optimal “regularized” piecewise106

approximation, where the number of pieces k is not fixed but included in the objective107

function, in O(kn2) time, where k is the number of pieces in the optimal solution [15]. In108

machine learning, “segmented” piecewise regression aims to recover a function f , which is109

promised to be piecewise linear with an unknown number k pieces. A common assumption110

in that line of work is that data samples are drawn from a “tame” distribution, such as111

Gaussian, with i.i.d. noise [1, 9]. In that model also, the best known algorithm for computing112

an optimal piecewise function has complexity O(kn2) [1].113

Finally, for bivariate data, Agarwal and Suri [7] considered the problem of computing a114

piecewise linear surface with smallest number of pieces whose vertical distance from data115

points is at most ε. They showed that the problem is NP-hard and gave a polynomial-time116

O(logn)-approximation algorithm.117

Organization. Section 2 introduces some basic notations and concepts used throughout the118

paper. Our linear-time approximation scheme for univariate data (Theorem 1) is presented119

in Section 3. Our algorithms for bivariate data are presented in Section 4, with the exception120

that the sub-exponential time exact algorithm (Theorem 2) is presented in Appendix C. The121

hardness result for bivariate data (Theorem 5) is presented in Appendix D. Also, due to122

limited space, some proofs and details are deferred to the appendix.123

2 Basic notations and concepts124

In this section, we introduce some basic notations and concepts which will be use throughout125

the paper. For an integer g ≥ 0, we use R[x]g and R[x, x′]g to denote the family of all126

univariate and bivariate polynomial functions with degree at most g. A univariate (resp.,127

bivariate) piecewise polynomial function of degree at most g is a function f :
⊔k
j=1 Pj → R,128

where P1, . . . , Pk are disjoint intervals in R1 (disjoint axis-parallel rectangles in R2) and129

f |Pj = fj |Pj for some fj ∈ R[x]g (resp., fj ∈ R[x, x′]g), for all j ∈ {1, . . . , k}. The intervals130

(resp., rectangles) P1, . . . , Pk are the pieces of f , and the number k is the complexity of f ,131

denoted by |f |. Clearly, the notion of piecewise polynomial functions can be generalized132

to higher dimensions (i.e., more variables), where the pieces becomes axis-parallel boxes.133

CVIT 2016



23:4 Piecewise Polynomial Regression

But in most part of this paper, we only study univariate and bivariate piecewise polynomial134

functions. Let Γ dg denote the family of piecewise polynomial functions with d variables and135

of degree at most g. For a dataset S = {(xi, yi) ∈ Rd × R}ni=1 of points, we define the error136

of a function f ∈ Γ dg for S as137

σS(f) = λ · |f |+
n∑
i=1

(yi − f(xi))2,138

where λ > 0 is a pre-specified parameter; we set σS(f) =∞ if the domain of f does not cover139

all xi’s. For a fixed constant g, the piecewise polynomial regression problem takes S and λ140

as the input, and aims to find the function f∗ ∈ Γ dg that minimizes σS(f∗). As mentioned141

before, we usually study the case d = 1 or d = 2. Note that without loss of generality, we142

can assume λ = 1 by scaling the y-values of the points in S. Therefore, for convenience, we143

make this assumption throughout the paper.144

3 A linear-time approximation scheme for univariate data145

We consider the piecewise polynomial regression problem for univariate data. Let g ≥ 0 is146

a fixed constant. The input of the problem is a dataset S = {(xi, yi) ∈ R × R}ni=1 where147

x1 ≤ · · · ≤ xn. Note that we do not assume that x1, . . . , xn are distinct. Our goal is to148

find the function f∗ ∈ Γ 1
g that minimizes σS(f∗) (recall that λ = 1 by assumption). Using149

dynamic programming, this problem can be straightforwardly solved in O(n2) time. However,150

no subquadratic-time algorithm was known.151

In this section, we present the first linear-time approximation scheme for the problem.152

Specifically, we show that, for any ε > 0, one can find a function f ∈ Γ 1
g in O(nε log 1

ε ) time153

such that σS(f) ≤ (1 + ε) · opt, where opt = minf∗∈Γ 1
g
σS(f∗), provided that the points in S154

are pre-sorted by their x-coordinates. For a, b ∈ [n] satisfying a ≤ b, we define155

f [a, b] = arg min
f∈R[x]g

b∑
i=a

(yi − f(xi))2 and δ[a, b] = min
f∈R[x]g

b∑
i=a

(yi − f(xi))2.156

I Lemma 6. If a′ ≤ a and b′ ≥ b, then δ[a′, b′] ≥ δ[a, b]. Furthermore, for a sequence of157

numbers a0, a1, . . . , ar where a−1 ≤ a0 < · · · < ar ≤ b, we have δ[a, b] ≥
∑r
j=1 δ[aj−1 +1, aj ].158

Let ε > 0 be a given approximation factor. Since we are interested in the asymptotical159

running time, we may assume that ε is sufficiently small, say ε ≤ 1. Let ε̃ > 0 be the number160

satisfying (1 + ε̃)2 = 1 + ε. We have ε/3 ≤ ε̃ ≤ ε since ε ≤ 1. For an index i ∈ [n], we say i161

is a left (resp., right) break point if xi−1 < xi (resp., xi+1 > xi).162

Before introducing our algorithm, we first establish a structural lemma of an approximation163

solution. For a function f ∈ Γ 1
g and a piece P of f , the cost of P is defined as

∑
xi∈P (yi −164

f(xi))2. Thus, σS(f) is equal to the sum of |f | and the costs of the pieces of f .165

I Lemma 7. There exists a function f ∈ Γ 1
g such that σS(f) ≤ (1 + ε̃) · opt and each piece166

of f is either a single point or of cost at most 2/ε̃.167

Proof. Let f∗ ∈ Γ 1
g be an optimal solution, i.e., σS(f∗) = opt. Consider a piece P ∗ of f∗.168

Without loss of generality, we may assume that P ∗ = [xa, xb] for some a, b ∈ [n] where169

a is a left break point and b is a right break point. Since f∗ is optimal, the cost of P ∗170

is equal to δ[a, b]. We replace P ∗ with r < ε̃ · δ[a, b] + 1 pieces P1, . . . , Pr as follows. We171

say a pair (a′, a′′) of indices with a′ ≤ a′′ legal if xa′ = xa′′ or δ[a′, a′′] ≤ 2/ε̃. Starting172
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with a0 = a − 1, we create a sequence a0, a1, a2, . . . of indices, where ai+1 is the largest173

right break point in {ai + 1, . . . , b} such that (ai + 1, ai+1) is legal. The sequence ends at174

some ar = b. We first claim that r < ε̃ · δ[a, b] + 1. We observe that δ[ai + 1, ai+2] > 2/ε̃175

for all i ∈ {0, 1, . . . , r − 2}. To see this, note that all ai’s are right break points. If176

δ[ai + 1, ai+2] ≤ 2/ε̃, then (ai + 1, ai+2) is legal, which contradicts with the fact that ai+1 is177

the largest right break point in {ai + 1, . . . , b} such that (ai + 1, ai+1) is legal. Now consider178

the sum
∑br/2c−1
i=0 δ[a2i + 1, a2(i+1)]. Each summand of this sum is greater than 2/ε̃. On the179

other hand, we have δ[a, b] ≥
∑br/2c−1
i=0 δ[a2i+ 1, a2(i+1)] by Lemma 6. It directly follows that180

br/2c < ε̃ · δ[a, b]/2 and hence r < ε̃ · δ[a, b] + 1. We define Pi = [xai−1+1, xai
] for i ∈ [r]. As181

mentioned above, we replace the piece P ∗ of f∗ with the pieces P1, . . . , Pr. We call P1, . . . , Pr182

the sub-pieces of P ∗. We do this for all pieces of f∗, and collect all the sub-pieces. Our183

function f ∈ Γ 1
g is constructed as follows. The pieces of f are just the sub-pieces, therefore184

the domain of f is contained in the domain of f∗. On each piece P = [xa, xb] of f , we define185

f|P as the polynomial f [a, b] restricted to P , and thus the cost of the piece P is δ[a, b]. Thus,186

f ∈ Γ 1
g . Furthermore, by our construction, each piece of f is either a single point or of cost187

at most 2/ε̃. It now suffices to show that σS(f) ≤ (1 + ε̃) · σS(f∗). Consider a specific piece188

P ∗ = [xa, xb] of f∗, and suppose P1, . . . , Pr are the sub-pieces of P ∗. As argued before, the189

cost of P ∗ is δ[a, b]. Let c∗(P ∗) = δ[a, b] + 1 and c(P ∗) be the sum of the costs of P1, . . . , Pr190

(regarded as pieces of f) plus r. We have showed that r < ε̃ · δ[a, b] + 1. By Lemma 6, the191

sum of the costs of P1, . . . , Pr is at most δ[a, b]. Therefore, c(P ∗) ≤ (1 + ε̃) · c∗(P ∗). Note192

that σS(f∗) =
∑
P∗∈P∗ c

∗(P ∗) and σS(f) =
∑
P∗∈P∗ c(P ∗), where P∗ denote the set of all193

pieces of f∗. It immediately follows that σS(f) ≤ (1 + ε̃) · σS(f∗). J194

For convenience, we say a function f ∈ Γ 1
g is S-light if each piece of f is either a single195

point or of cost at most 2/ε̃. Similarly, for a subset S′ ⊆ S, we say a function f ∈ Γ 1
g is196

S′-light if each piece of f is either a single point or of cost with respect to S′ (i.e., the sum of197

only the square error of the points in S′) at most 2/ε̃.198

For a right break point b ∈ [n] and an integer i ≥ 0, let ai(b) ∈ [b] be the smallest left199

break point such that δ[ai(b), b] ≤ (1 + ε̃)i − 1; if such a left break point does not exist, we200

set ai(b) to be the largest left break point that is smaller than or equal to b. We define an201

index set A(b) = {ai(b) : i ≥ 0 and (1 + ε̃)i−1 − 1 ≤ 2/ε̃}. We say an interval I is canonical202

if I = [xa, xb] for some a, b ∈ [n] such that b is a right break point and a ∈ A(b). A function203

f ∈ Γ 1
g is canonical if all pieces of f are canonical intervals. Based on Lemma 7, we have the204

following observation.205

I Lemma 8. There exists a canonical function f ∈ Γ 1
g such that σS(f) ≤ (1 + ε) · opt.206

Proof. We claim that for any S-light function f0 ∈ Γ 1
g , there exists a canonical function207

f ∈ Γ 1
g such that σS(f) ≤ (1+ ε̃) ·σS(f0). By Lemma 7, this claim directly implies the lemma.208

We prove the claim using induction on the number r of distinct x-coordinates of the points209

in S, i.e., distinct elements in {x1, . . . , xn}. If r = 1, then x1 = · · · = xn and the interval210

I = [x1, xn] is a single point. Furthermore, in this case, 1 is the unique left break point, hence211

1 ∈ A(n) and I is canonical. Therefore, the claim clearly holds. Assume that the claim holds212

if the number of distinct x-coordinates of the points in S is less than r, and consider the case213

where the number is r. Let f0 ∈ Γ 1
g be a S-light function, and we want to show that there214

exists a canonical function f ∈ Γ 1
g such that σS(f) ≤ (1 + ε̃) ·σS(f0). Consider the rightmost215

piece P of f0. Without loss of generality, we may assume that P = [xa, xn] for some left break216

point a ∈ [n]. Let c(P ) be the cost of P . We consider two cases, c(P ) ≤ 2/ε̃ and c(P ) > 2/ε̃.217

If c(P ) ≤ 2/ε̃, we define i as the smallest integer such that (1 + ε̃)i ≥ c(P ) + 1. Therefore,218

(1 + ε̃)i−1 ≤ c(P ) + 1 ≤ (1 + ε̃)i. Since c(P ) ≤ 2/ε̃, we have (1 + ε̃)i−1 − 1 ≤ 2/ε̃ and hence219

CVIT 2016
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ai(n) ∈ A(n). By the definition of ai(n), we have ai(n) ≤ a and δ[ai(n), n] ≤ (1 + ε̃)i − 1,220

i.e., δ[ai(n), n] + 1 ≤ (1 + ε̃)i. Since (1 + ε̃)i−1 ≤ c(P ) + 1, we further deduce that221

δ[ai(n), n] + 1 ≤ (1 + ε̃) · (c(P ) + 1). Now we define S′ = {(x1, y1), . . . , (xa−1, ya−1)} ⊆ S222

and S′′ = {(x1, y1), . . . , (xai(n)−1, yai(n)−1)} ⊆ S. Let f ′0 ∈ Γ 1
g be the function obtained by223

restricting f0 to the union of the pieces other than P . Then f ′0 is both S′-light and S′′-light.224

Note that the number of distinct x-coordinates of the points in S′′ is strictly less than r, as225

ai(n) is a left break point. Therefore, by our induction hypothesis, there exists some canonical226

function f ′′ ∈ Γ 1
g such that σS′′(f ′′) ≤ (1 + ε̃) ·σS′′(f0) ≤ (1 + ε̃) ·σS′(f0), and we can assume227

without loss of generality that all pieces of f ′′ are contained in the range (−∞, xai(n)−1]. We228

define our function f as the “combination” of f ′′ and f [ai(n), n]. Specifically, the pieces of229

f consists of all pieces of f ′′ and the interval [xai(n), xn]. On the piece [xai(n), xn], f is the230

same as f [ai(n), n]. On the other pieces, f is the same as f ′′. Clearly, f ∈ Γ 1
g . Also, f is231

canonical because f ′′ is canonical and [xai(n), xn] is a canonical interval. Finally, we have232

σS(f) = σS′′(f ′′) + δ[ai(n), n] + 1
≤ (1 + ε̃) · σS′(f0) + (1 + ε̃) · (c(P ) + 1)
= (1 + ε̃) · σS(f0).

233

In the case c(P ) > 2/ε̃, P must be a single point as f0 is S-light. Thus, xa = xn and a is234

the largest left break point smaller than or equal to n, which implies a0(n) = a and hence P235

is canonical. By our induction hypothesis, there exists some canonical function f ′′ ∈ Γ 1
g such236

that σS′(f ′′) ≤ (1 + ε̃) · σS′(f0), where S′ = {(x1, y1), . . . , (xa−1, ya−1)}. Without loss of237

generality, we may assume all pieces of f ′′ are contained in the range (−∞, xa−1]. Similarly to238

the above, We define f as the combination of f ′′ and f [a, n]. Since σS′(f ′′) ≤ (1 + ε̃) ·σS′(f0)239

and the cost of P is at least δ[a, n], we have σS(f) ≤ (1 + ε̃) · σS(f0). J240

According to the above lemma, to compute a (1 + ε)-approximation solution for the241

problem, it suffices to find the canonical function f ∈ Γ 1
g that minimizes σS(f). This can be242

simply solved using the dynamic programming algorithm shown in Algorithm 1.243

Algorithm 1 Approximate-Regression-1D(S)

1: t← 0 and opt0 ← 0
2: for t from 1 to n do
3: if t is a right break point then
4: ã← arg mina∈A(t){opta−1 + (δ[a, t] + 1)}
5: optt ← optã−1 + (δ[ã, t] + 1)
6: return optn

The correctness of Algorithm 1 is clear. Next, we show that how to implement Algorithm 1244

in O(nε log 1
ε ) time. We first observe that |A(b)| = O( 1

ε log 1
ε ) for all right break points b ∈ [n].245

Therefore, if we already have all index sets A(b) and all f [a, b], δ[a, b] where a ∈ A(b) in hand,246

Algorithm 1 can be directly implemented in O(nε log 1
ε ) time. In other words, it suffices to247

compute all A(b) and all f [a, b], δ[a, b] where a ∈ A(b) in O(nε log 1
ε ) time. We show how to248

achieve this in Appendix B.249

I Theorem 1. There exists a (1 + ε)-approximation algorithm for univariate piecewise250

polynomial regression which runs in O(nε log 1
ε ) time (excluding the time for pre-sorting).251
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4 Algorithms for bivariate data252

In this section, we present our algorithms for piecewise polynomial regression for bivariate253

data. The input of the problem is a dataset S = {((xi, x′i), yi) ∈ R2 ×R}ni=1, and our goal is254

to find a function f∗ ∈ Γ 2
g that minimizes σS(f∗) (recall that λ = 1 by assumption).255

Let ∆ > 0 be a sufficiently small number such that 3∆ ≤ |xi − xj | for all i, j ∈ [n]256

with xi 6= xj and 3∆ ≤ |x′i − x′j | for all i, j ∈ [n] with x′i 6= x′j . Define X = {xi −∆ : i ∈257

[n]} ∪ {xi + ∆ : i ∈ [n]} and X ′ = {x′i −∆ : i ∈ [n]} ∪ {x′i + ∆ : i ∈ [n]}. We say a rectangle258

[x−, x+]× [x′−, x′+] is regular if x−, x+ ∈ X ∪ {−∞,∞} and x′−, x′+ ∈ X ′ ∪ {−∞,∞}. Let259

Rreg denote the set of all regular rectangles. The total number of different regular rectangles260

is O(n4), i.e., |Rreg| = O(n4), because |X| = O(n) and |X ′| = O(n). Note that if R is a261

regular rectangle, then for any i ∈ [n], the point (xi, x′i) is either contained in the interior of262

R or outside R. We say a regular rectangle R is nonempty if (xi, x′i) ∈ R for some i ∈ [n],263

and empty otherwise. For a nonempty rectangle R, we define264

δR = 1 + min
f∈R[x,x′]g

∑
(xi,x′i)∈R

(yi − f(xi, x′i))2.265

Note that δR can be computed in nO(1) time using the standard approach for least-square266

polynomial regression. For a set R of regular rectangles, denote by R• ⊆ R the subset of267

nonempty rectangles, and define σS(R) =
∑
R∈R• δR. A regular region refers to a subset of268

R2 that is the union of regular rectangles.269

An orthogonal partition (OP) Π of a region K ⊆ R2 is a set of interior-disjoint (axis-270

parallel) rectangles whose union is K (see Figure 1 for an illustration). An OP Π is regular if271

all rectangles in Π are regular. The following lemma shows that our problem can be reduced272

to computing a regular OP Π of the plane which minimizes σS(Π).273

K

Figure 1 An orthogonal partition (OP) of the region K

I Lemma 9. For any f ∈ Γ 2
g , there exists a regular OP Π of R2 such that |Π| ≤ 5|f |+ 1274

and σS(Π) ≤ σS(f). Conversely, given a regular OP Π of R2, one can compute in nO(1)
275

time a function f ∈ Γ 2
g such that σS(f) = σS(Π).276

Using the reduction of Lemma 9, we establish our algorithms for piecewise polynomial277

regression for bivariate data. Section 4.1 presents a polynomial-time constant-approximation278

algorithm (Theorem 3), and Section 4.2 presents a QPTAS (Theorem 4). Due to limited279

space, our sub-exponential exact algorithm (Theorem 2) is deferred to Appendix C, as it280

follows easily from Lemma 9 and the planar separator theorem.281

4.1 A polynomial-time constant-approximation algorithm282

In this section, we present a polynomial-time constant-approximation algorithm for the283

problem. Let Π∗ be a regular OP of R2 that minimizes σS(Π∗). In order to describe our284
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algorithm, we need to introduce the notion of binary OP (and regular binary OP).285

R

Figure 2 A binary OP of the rectangle R

I Definition 10 (binary OP). Let R be an axis-parallel rectangle. A binary OP of R is an286

OP defined using the following recursive rule:287

• The trivial partition {R} is a binary OP of R.288

• If ` is a horizontal or vertical line that partitions R into two smaller rectangles R1 and R2,289

and Π1 (resp., Π2) are binary OPs of R1 (resp., R2), then Π1 ∪Π2 is a binary OP of R.290

A binary OP is regular if it only consists of regular rectangles.291

See Figure 2 for an illustration of binary OP. The basic idea of our approximation292

algorithm is to, instead of computing an optimal regular OP, compute an optimal binary293

regular OP, i.e., a regular binary OP Π of R2 that minimizes σS(Π). This task can be solved294

in polynomial time by a simple dynamic programming algorithm as follows. Suppose we295

want to compute an optimal binary regular OP Π of a regular rectangle R. Then Π is either296

the trivial partition {R} of R, or there exists a horizontal or vertical line ` separating R297

into two rectangles R1 and R2, and Π = Π1 ∪Π2 where Π1 (resp., Π2) is a regular binary298

OPs of R1 (resp., R2). In the latter case, the equation of the line ` must be x = x̃ for some299

x̃ ∈ X or x′ = x̃′ for some x̃′ ∈ X ′, because Π has to be a regular OP. This implies that300

R1 and R2 are regular rectangles. Furthermore, Π1 and Π2 must be optimal regular binary301

OPs of R1 and R2, respectively, in order to minimize σS(Π). Therefore, if we already know302

the optimal regular binary OPs of all regular rectangles R′ such that area(R′) < area(R),303

then an optimal regular binary OPs of R can be computed in O(n) time. The details of our304

algorithm is shown in Algorithm 2, which computes an optimal regular binary OP of R2.305

Since |Rreg| = O(n4), it is clear that Algorithm 2 runs in polynomial time.306

Let Πbin be the optimal regular binary OP of R2 computed by Algorithm 2 and Π∗ be307

the regular OP of R2 that minimizes σS(Π∗). We shall show that σS(Πbin) = O(σS(Π∗)).308

To this end, we need the following two lemmas.309

I Lemma 11. For any regular OP Π of R2, there exists a regular binary OP Π ′ of R2 such310

that |Π ′| = O(|Π•|) and for any R′ ∈ Π ′• there exists R ∈ Π• such that R′ ⊆ R.311

I Lemma 12. Let Π and Π ′ be two regular OP of R2. If for any R′ ∈ Π ′• there exists312

R ∈ Π• such that R′ ⊆ R, then we have σS(Π ′)− σS(Π) ≤ |Π ′•| − |Π•|.313

By Lemma 11, there exists a regular binary OP Π ′ of R2 such that |Π ′•| ≤ O(|Π∗• |)314

and for any R′ ∈ Π ′• there exists R ∈ Π∗• such that R′ ⊆ R. Then by Lemma 12,315

we have σS(Π ′)/σS(Π∗) = 1 + (σS(Π ′) − σS(Π∗))/σS(Π∗) ≤ 1 + (|Π ′•| − |Π∗• |)/|Π∗• | =316

|Π ′•|/|Π∗• | = O(1). Because Πbin is an optimal regular binary OP of R2, we further have317

σS(Πbin) ≤ σS(Π ′) ≤ O(σS(Π∗)). We have σS(Π∗) ≤ opt by the first statement of Lemma 9,318

and hence σS(Πbin) ≤ O(opt). Using the second statement of Lemma 9, we then compute a319

function f ∈ Γ 2
g in O(n · |Πbin|) = O(n5) time such that σS(f) = σS(Πbin) ≤ O(opt).320
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Algorithm 2 OptBinPartition(S)

1: N ← |Rreg|
2: sort the rectangles in Rreg as R1, . . . , RN such that area(R1) ≤ · · · ≤ area(RN )
3: for i from 1 to N do
4: Π[Ri]← {Ri} and opt[Ri]← σS(Π[Ri])
5: suppose Ri = [x−, x+]× [x′−, x′+]
6: for all z ∈ X such that x− < z < x+ do
7: R′i ← [x−, z]× [x′−, x′+] and R′′i ← [z, x+]× [x′−, x′+]
8: if opt[Ri] > opt[R′i] + opt[R′′i ] then
9: Π[Ri]← Π[R′i] ∪Π[R′′i ] and opt[Ri]← σS(Π[Ri])
10: for all z′ ∈ X ′ such that x′− < z′ < x′+ do
11: R′i ← [x−, x+]× [x′−, z′] and R′′i ← [x−, x+]× [z′, x′+]
12: if opt[Ri] > opt[R′i] + opt[R′′i ] then
13: Π[Ri]← Π[R′i] ∪Π[R′′i ] and opt[Ri]← σS(Π[Ri])
14: return Π[R2]

I Theorem 3. There exists a constant-approximation algorithm for bivariate piecewise321

polynomial regression which runs in polynomial time.322

4.2 A quasi-polynomial-time approximation scheme323

In this section, we design a quasi-polynomial-time approximation scheme (QPTAS) for the324

problem, that is, a (1 + ε)-approximation algorithm which runs in nlogO(1) n time for any325

fixed ε > 0. To this end, we borrow an idea from the geometric independent set literature326

[4, 3, 5, 13], which combines the cutting lemma and the planar separator theorem. We need327

the following cutting lemma.328

I Lemma 13. Given a set R of interior-disjoint regular rectangles and a number 1 ≤ r ≤ |R|,329

there exists a regular OP Π of R2 with |Π| = O(r) such that each rectangle in Π intersects330

at most |R|/r rectangles in R.331

Proof. This lemma follows directly from a result of [3] (Lemma 3.12). The original statement332

in Lemma 3.12 of [3] only claims the existence of a partition Π of R2 satisfying the desired333

properties. However, by the construction in [3], if R consists of regular rectangles, then the334

partition Π is a regular OP. J335

Using the above cutting lemma and the (weighted) planar separator theorem, we can336

obtain the following corollary.337

I Corollary 14. Given a set R of interior-disjoint regular rectangles in R2 and a number338

1 ≤ r ≤ |R|, there exists a set Σ of O(
√
r) interior-disjoint regular rectangles such that each339

rectangle in Σ intersects at most |R|/r rectangles in R and for each connected component U340

of K\(
⋃
R∈Σ R), there are at most 2

3 |R| rectangles in R that are entirely contained in U .341

Now we are ready to describe our QPTAS. Let r = ω(1) be an integer parameter to be342

determined later and c be a sufficiently large constant. For a regular region K ⊆ R2 and343

an integer m, we denote by optK,m as the minimum σS(Π) for a regular OP Π of K with344

|Π•| ≤ m. We shall design a procedure AppxPartition(S,K,m), which computes a regular345

OP Π of the regular region K such that σS(Π) is “not much larger” than optK,m (note that346

we do not require |Π•| ≤ m); what we mean by “not much larger” will be clear shortly.347
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Algorithm 3 shows how AppxPartition(S,K,m) works step-by-step, and here we provide348

an intuitive explanation of the algorithm. Let Π∗ be a (unknown) regular OP of K such349

that |Π∗| ≤ m and σS(Π∗) = optK,m. We consider two cases separately: |Π∗• | ≤ r and350

|Π∗• | > r. The for-loop of Line 2-6 handles the case |Π∗• | ≤ r. We simply guess the (at351

most) r rectangles in Π∗• . Note that when we correctly guess Π∗• , i.e., Π = Π∗• in Line 2,352

any regular OP Π ′ of K such that Π ⊆ Π ′ satisfies σS(Π ′) = σS(Π) = σS(Π∗• ) = σS(Π∗),353

because (xi, x′i) /∈ K\(
⋃
R∈Π R) for all i ∈ [n]. Therefore, in the case |Π∗• | ≤ r, we already354

have |Πopt| ≤ optK,m after the for-loop of Line 2-6. The remaining case is |Π∗• | > r, which355

implies m > r. This case is handled in the for-loop of Line 8-15. We guess the set Σ356

described in Corollary 14 with R = Π∗• (Line 8 of Algorithm 3), which consists of at most357

c
√
r interior-disjoint regular rectangles (recall that c is sufficiently large). Let U be the set358

of connected components of K\(
⋃
R∈Σ R). By Corollary 14, for each R ∈ Σ, the regular359

region K ∩ R intersects at most |Π∗• |/r (and hence at most m/r) rectangles in R, and360

for each U ∈ U , the closure of U contains at most 2
3 |Π

∗
• | rectangles (and hence at most361

2
3m) in R. We then recursively call AppxPartition(S,K ∩ R,m/r) for all R ∈ Σ and362

AppxPartition(S,Closure(U), 3
4m) for all U ∈ U ; see Line 11-12 of Algorithm 3. Each363

recursive call returns us a regular OP of the corresponding sub-region of K; we set Π to be364

the union of all the returned regular OPs, which is clearly a regular OP of K (Line 13 of365

Algorithm 3). Intuitively, σS(Π) should be “not much larger” than σS(Π∗) if our guess for366

Σ is correct. More precisely, we have the following observation.367

I Lemma 15.
∑
R∈Σ optK∩R,m/r +

∑
U∈U optClosure(U), 3

4m
≤ (1 +O(1/

√
r)) · σS(Π∗).368

Proof. We first show that there exists a regular OP Π of K satisfying (i) |Π•| − |Π∗• | =369

O(|Π∗• |/
√
r), (ii) each rectangle in Π is either contained in some R ∈ Σ or interior-disjoint370

with all R ∈ Σ, (iii) each R ∈ Σ contains at most m/r nonempty rectangles in Π and371

Closure(U) contains at most 3
4m nonempty rectangles in Π for each U ∈ U . Consider the372

regular OP Π∗ of K. We further partition each rectangle R∗ ∈ Π∗ into smaller (regular)373

rectangles as follows. Let m(R∗) denote the number of rectangles in Σ that intersect (the374

interior of) R∗. Since the rectangles in Σ are interior-disjoint, the boundaries of these375

m(R∗) rectangles cut R∗ into m(R∗) + 1 regions (which are not necessarily rectangles). Now376

we construct the vertical decomposition the boundaries of these m(R∗) rectangles inside377

R∗ as follows (similarly to what we did in the proof of Lemma 9). For each top (resp.,378

bottom) vertex of the m(R∗) rectangles, if the vertex is contained in the interior of R∗,379

we shoot an upward (resp., downward) vertical ray from the vertex, which goes upwards380

(resp., downwards) until hitting the boundary of R∗ or the boundary of some other R ∈ Σ.381

See Figure 3 for an illustration. Including one ray cuts R∗ into one more piece, and the382

total number of the rays we shoot is at most 4m(R∗). Therefore, the vertical decomposition383

induces a regular OP of R∗ into at most 5m(R∗)+1 rectangles. We do this for every rectangle384

R∗ ∈ Π∗. After that, we obtain our desired regular OP Π. Next, we verify that Π satisfies385

the three conditions. We have |Π•| ≤
∑
R∗∈Π∗• (5m(R∗) + 1) =

∑
R∗∈Π∗• 5m(R∗) + |Π∗• |386

since each rectangle R∗ ∈ Π∗• is partitioned into at most 5m(R∗) + 1 smaller rectangles in387

Π (note that the rectangles in Π∗\Π∗• do not contribute any nonempty rectangle to Π).388

Because |Σ| = O(
√
r) and each rectangle in Σ intersects at most |Π∗• |/r = |Π∗• |/r rectangles389

in Π∗• , we have
∑
R∗∈Π∗• m(R∗) = O(|Π∗• |/

√
r). It follows that |Π•| − |Π∗• | = O(|Π∗• |/

√
r),390

i.e., Π satisfies condition (i). Conditions (ii) follows directly from our construction of Π.391

It suffices to show condition (iii). Let R ∈ Σ be a rectangle. By our construction of Π,392

inside each R∗ ∈ Π∗ that intersects (the interior of) R, there is exactly one rectangle in393

Π that is contained in R. Since R only intersects at most |Π∗• |/r nonempty rectangles394

in Π∗ and |Π∗• | ≤ m, R contains at most m/r nonempty rectangles in Π. Let U ∈ U395
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Figure 3 The vertical decomposition inside R∗. The grey rectangles are those in Σ. The rectangle
with bolder boundary is R∗.

be a connected component of K\(
⋃
R∈Σ R). Denote by Π∗• (U) ⊆ Π∗• be the subset of396

rectangles that intersect U . Clearly, the number of nonempty rectangles in Π that are397

contained in Closure(U) is at most
∑
R∗∈Π∗• (U)(5m(R∗) + 1) = |Π∗• (U)|+O(|Π∗• |/

√
r). By398

Corollary 14, Closure(U) entirely contains at most 2
3 |Π

∗
• | rectangles in Π∗• (U). All the other399

rectangles in Π∗• (U) are partially contained in Closure(U). Note that if a rectangle is partially400

contained in Closure(U), then it intersects some R ∈ Σ. Therefore, the number of rectangles401

in Π∗• (U) that are partially contained in Closure(U) is bounded by O(|Π∗• |/
√
r), because402

|Σ| = O(
√
r) and each rectangle in Σ intersects at most |Π∗• |/r rectangles in Π∗• . It follows403

that |Π∗• (U)| = 2
3 |Π

∗
• |+O(|Π∗• |/

√
r) and the number of rectangles in Π that are contained in404

Closure(U) is bounded by 2
3 |Π

∗
• |+O(|Π∗• |/

√
r), which is no more than 3

4m because |Π∗• | ≤ m405

and we require r = ω(1).406

Now we are ready to prove the lemma. Let Π be the regular OP of K we constructed407

above. Condition (ii) above guarantees that each rectangle in Π is either contained in some408

R ∈ Σ or contained in Closure(U) for some U ∈ U . For each R ∈ Σ, let Π(R) ⊆ Π denote409

the subset of rectangles contained in R. Similarly, for each U ∈ U , let Π(U) ⊆ Π denote410

the subset of rectangles contained in Closure(U). Condition (iii) above guarantees that411

|Π(R)•| ≤ m/r for all R ∈ Σ and |Π(U)•| ≤ 3
4m for all U ∈ U . So we have412

σS(Π) =
∑
R∈Σ

σS(Π(R)) +
∑

R∈U∈U
σS(Π(U)) ≥

∑
R∈Σ

optK∩R,m/r +
∑
U∈U

optClosure(U), 3
4m
.413

On the other hand, we have σS(Π)− σS(Π∗) ≤ |Π•| − |Π∗• | = O(|Π∗• |/
√
r) by Lemma 12414

and condition (i) above. Because |Π∗• | ≤ σS(Π∗), we further have σS(Π) ≤ (1 +O(1/
√
r)) ·415

σS(Π∗). Combining the two inequalities above gives us the inequality in the lemma. J416

I Corollary 16. Let Πopt be the regular OP of K returned by AppxPartition(S,K,m).417

Then we have σS(Πopt) ≤ (1 +O(1/
√
r))O(logm) · optK,m.418

Proof. As before, let Π∗ be a (unknown) regular OP of K such that |Π∗• | ≤ m and σS(Π∗) =419

optK,m. We prove that σS(Πopt) ≤ (1 +O(1/
√
r))log3/4 m · optK,m by induction on m. In the420

base case where m ≤ r, we have σS(Πopt) ≤ σS(Π∗) = optK,m after the for-loop of Line 2-6421

(as argued before). Now suppose m > r. If |Π∗• | ≤ r, then we still have σS(Πopt) ≤ optK,m422

after the for-loop of Line 2-6 (as argued before). So it suffices to consider the case |Π∗• | > r.423

We show that when we correctly guess the set Σ in Line 8, the regular OPΠ ofK we construct424

in Line 13 satisfies σS(Π) ≤ (1 +O(1/
√
r))log3/4 m · optK,m. Let U be the set of connected425

components of K\(
⋃
R∈Σ R), as in Line 10. We have Π = (

⋃
R∈Σ ΠR) ∪ (

⋃
U∈U ΠU ) where426
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ΠR = AppxPartition(S,K ∩ R,m/r) and ΠU = AppxPartition(S,Closure(U), 3
4m).427

Recall that r = ω(1), and hence m/r ≤ 3
4m. By our induction hypothesis and Lemma 15,428

σS(Π) =
∑
R∈Σ

σS(ΠR) +
∑
U∈U

σS(ΠU )

≤ (1 +O(1/
√
r))log3/4 m−1 ·

(∑
R∈Σ

optK∩R,m/r +
∑
U∈U

optClosure(U), 3
4m

)
≤ (1 +O(1/

√
r))log3/4 m−1 · (1 +O(1/

√
r)) · σS(Π∗)

= (1 +O(1/
√
r))log3/4 m · σS(Π∗),

429

which completes the proof. J430

Algorithm 3 AppxPartition(S,K,m)

1: Πopt ← ∅ and opt←∞
2: for all Π ⊆ Rreg with |Π| ≤ r do
3: if the rectangles in Π are interior-disjoint and contained in K then
4: construct an arbitrary regular OP Π ′ of K such that Π ⊆ Π ′
5: if σS(Π ′) < opt then Πopt ← Π ′ and opt← σS(Π ′)
6: if m ≤ r then return Πopt

7: for all Σ ⊆ Rreg with |Σ| ≤ c
√
r do

8: if the rectangles in Σ are interior-disjoint then
9: U ← Components(K\(

⋃
R∈Σ R))

10: ΠR ← AppxPartition(S,K ∩R,m/r) for all R ∈ Σ
11: ΠU ← AppxPartition(S,Closure(U), 3

4m) for all U ∈ U
12: Π ← (

⋃
R∈Σ ΠR) ∪ (

⋃
U∈U ΠU )

13: if σS(Π) < opt then Πopt ← Π and opt← σS(Π)
14: return Πopt

By Corollary 16, if we set r = c′ · (log2 n/ε2) for a sufficiently large constant c′, then431

for any regular region K and any m = O(n), the procedure AppxPartition(S,K,m) will432

return a regular partition Πopt of K such that σS(Πopt) ≤ (1 + ε) · optK,m. To solve our433

problem, we only need to call AppxPartition(S,R2, 5n+ 1), which will return a regular434

partition Πopt of R2 such that σS(Πopt) ≤ (1 + ε) · optR2,5n+1. By the first statement of435

Lemma 9, we have optR2,5n+1 ≤ opt. Therefore, it suffices to use the second statement of436

Lemma 9 to compute a function f ∈ Γ 2
g such that σS(f) = σS(Πopt) ≤ (1 + ε) · opt.437

Time complexity. If m ≤ r, the procedure AppxPartition(S,K,m) takes nO(r) =438

nO(log2 n/ε2) time. In the case m > r, there are nO(
√
r) sets Σ to be considered in Line 8.439

For each Σ, we have c
√
r recursive calls in Line 11 and nO(1) recursive calls in Line 12,440

and all the other work in the for-loop of Line 8-15 can be done in nO(1) time. In addi-441

tion, Line 1-6 takes nO(r) time. Therefore, if we use T (m) to denote the running time of442

AppxPartition(S,K,m), we have the recurrence443

T (m) =
{
nO(
√
r) · T (m/r) + nO(

√
r) · T

( 3
4m
)

+ nO(r) if m > r,

nO(r) if m ≤ r,444

which solves to T (m) = nO(
√
r logm+r). Since our initial call is AppxPartition(S,R2, 5n+1),445

the total running time of our algorithm is nO(
√
r logn+r) = nO(log2 n/ε2).446

I Theorem 4. There exists a QPTAS for bivariate piecewise polynomial regression.447
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A Missing proofs496

A.1 Proof of Lemma 6497

Since (y − y′)2 ≥ 0 for all y, y′ ∈ R, we have
∑b′

i=a′(yi − f(xi))2 ≥
∑b
i=a(yi − f(xi))2

498

for all f ∈ Γ 1
g . Thus, δ[a′, b′] ≥ δ[a, b]. To prove the second statement, notice that499

δ[aj−1 + 1, aj ] ≤
∑aj

i=aj−1+1(yi − f [a, b](xi))2 for all j ∈ [r]. Therefore,500

δ[a, b] =
b∑
i=a

(yi − f [a, b](xi))2 ≥
r∑
j=1

aj∑
i=aj−1+1

(yi − f [a, b](xi))2 ≥
r∑
j=1

δ[aj−1 + 1, aj ],501

which completes the proof.502

A.2 Proof of Lemma 9503

To see the first statement, let f ∈ Γ 2
g and R1, . . . , Rk be the pieces of f , which are disjoint504

rectangles in R2. Without loss of generality, we may assume that each Ri is a regular505

rectangle; indeed, we can replace each Ri with the smallest regular rectangle R′i containing506

all points (xi, x′i) ∈ Ri and one can easily verify that the new rectangles R′1, . . . , R′k are507

also disjoint. Furthermore, we may assume that each Ri is nonempty. Consider the vertical508

decomposition of R1, . . . , Rk defined as follows. For each top (top-left or top-right) vertex of509

each rectangle Ri, we shoot a upward ray from this vertex, which goes towards the infinity510

until hitting the boundary of some other rectangle Rj . Similarly, for each bottom (bottom-left511

or bottom-right) vertex of each rectangle Ri, we shoot a downward ray from this vertex,512

which goes towards the infinity until hitting the boundary of some other rectangle Rj . The513

boundaries of R1, . . . , Rk and the rays cut the plane into a set Π of rectangles, which are514

regular since R1, . . . , Rk are regular rectangles. See Figure 4 for an illustration. Therefore,515

Π is a regular OP of R2. Furthermore, R1, . . . , Rk ∈ Π by our construction. We claim that516

|Π| ≤ 5|f |+ 1 and σS(Π) ≤ σS(f). Since each rectangle Ri has at most four vertices, the517

total number of rays is at most 4k. Suppose now we insert these rays one by one. Initially,518

the boundaries of R1, . . . , Rk cut the plane into k+ 1 regions. After we insert a ray, the total519

number of regions can increase at most 1. Therefore, at the end, the total number of regions520

(i.e., the number of rectangles in Π) is at most 5k + 1, i.e., 5|f |+ 1. To see σS(Π) ≤ σS(f),521

we may assume σS(f) < ∞, i.e., (xi, x′i) ∈
⋃k
j=1 Rj for all i ∈ [n]. With this assumption,522

the only nonempty rectangles in Π are R1, . . . , Rk. Furthermore, by definition, we have523

δRj
≤ 1 +

∑
(xi,x′i)∈Rj

(yi − f(xi, x′i))2 for all j ∈ [k]. It follows that524

σS(Π) =
k∑
j=1

δRj
≤

k∑
j=1

1 +
∑

(xi,x′i)∈Rj

(yi − f(xi, x′i))2


= |f |+

n∑
i=1

(yi − f(xi, x′i))2

= σS(f).

525

Next, we prove the second statement of the lemma. Let Π be a regular OP of R2. Suppose526

R1, . . . , Rk ∈ Π are the nonempty rectangles in Π. Note that R1, . . . , Rk are interior-disjoint.527

Furthermore, since R1, . . . , Rk are regular, the points (x1, x
′
1), . . . , (xn, x′n) are contained528

in their interiors. Therefore, we can pick R′j ⊆ Rj for j ∈ [k] such that R′1, . . . , R′k are529

disjoint and R′j contains the same subset of {(x1, x
′
1), . . . , (xn, x′n)} as Rj . For j ∈ [k], let530
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R1

R2

R3

R4 R5

Figure 4 The vertical decomposition induced by the rectangles R1, . . . , R5

fj ∈ R[x, x′]g be the polynomial that minimizes
∑

(xi,x′i)∈R′
j
(yi− fj(xi, x′i))2. We then define531

f ∈ Γ 2
g as the function with pieces R′1, . . . , R′k such that f|R′

j
= fj for j ∈ [k]. Clearly, f can532

be constructed in nO(1) time, because |Π| ≤ |Rreg| = O(n4). Also, one can easily verify from533

the construction that σS(f) = σS(Π).534

A.3 Proof of Lemma 11535

Let Π be a regular OP of R2. For each R ∈ Π•, the boundary of R consists of (at most)536

four segments1, which we call the boundary segments of R. Denote by I the set of the537

boundary segments of all rectangles in R ∈ Π•. We have |I| = O(|Π•|). Furthermore, since538

the rectangles in Π• are interior disjoint, the segments in I do not cross each other. A539

classical result of [17] states that for a set of m non-crossing orthogonal segments in the540

plane, there exists a binary OP of R2 with O(m) rectangles such that the interior of each541

rectangle is disjoint with the segments. In addition, according to the construction of [17], the542

binary OP is regular when the given segments are boundary segments of regular rectangles.543

Thus, there exists a regular binary OP Π ′ of R2 with |Π ′| = O(|Π•|) such that the interior544

of R′ does not intersect any segment in I for all R′ ∈ Π ′. It follows that each R′ ∈ Π ′ is545

either contained in some R ∈ Π• or interior-disjoint with all R ∈ Π• and, for any R′ ∈ Π ′•,546

the latter case is impossible and we must have the former case, i.e., there exists R ∈ Π• such547

that R′ ⊆ R.548

A.4 Proof of Lemma 12549

Suppose that for any R′ ∈ Π ′• there exists R ∈ Π• such that R′ ⊆ R. For a rectangle550

R ∈ Π•, we write Π ′R = {R′ ∈ Π ′• : R′ ⊆ R}. Clearly, {Π ′R : R ∈ Π•} is a partition of551

Π ′•. We claim that σS(Π ′R) − δR ≤ |Π ′R| − 1 for any R ∈ Π•. Let f ∈ R[x, x′]g be the552

polynomial such that δR = 1 +
∑

(xi,x′i)∈R(yi − f(xi, x′i))2. For any R′ ∈ Π ′R, we have553

δ′R ≤ 1 +
∑

(xi,x′i)∈R′(yi − f(xi, x′i))2. Note that for each (xi, x′i) ∈ R, there exists exactly554

1 Here we mean “generalized” segments including rays or lines.
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one rectangle R′ ∈ Π ′R such that (xi, x′i) ∈ R′. Therefore, we have555

σS(Π ′R)− δR ≤
∑

R′∈Π′
R

1 +
∑

(xi,x′i)∈R′
(yi − f(xi, x′i))2

− δR
=

∑
R′∈Π′

R

1 +
∑

(xi,x′i)∈R′
(yi − f(xi, x′i))2

−
1 +

∑
(xi,x′i)∈R

(yi − f(xi, x′i))2


= |Π ′R| − 1.

556

Thus, σS(Π ′)− σS(Π) =
∑
R∈Π• σS(Π ′R)−

∑
R∈Π• δR ≤

∑
R∈Π•(|Π

′
R| − 1) = |Π ′•| − |Π•|.557

A.5 Proof of Corollary 14558

We shall used the following weighted version of the planar separator theorem. Let G = (V,E)559

be a planar graph with m vertices where each vertex has a non-negative weight, and W be560

the total weight of the vertices. The weighted planar separator theorem states that one can561

partition the vertex set V into three parts V1, V2, Σ such that (i) there is no edge between562

V1 and V2, (ii) |Σ| ≤ O(
√
m), and (iii) the total weight of the vertices in Vi is at most 2

3W563

for i ∈ {1, 2}.564

Let Π be the regular partition of R2 described in Lemma 13 satisfying that |Π| = O(r)565

and each rectangle in Π intersects at most |R|/r rectangles in R. Consider the planar graph566

GΠ induced by Π. We assign each vertex of GΠ (i.e., each rectangle in Π) a non-negative567

weight as follows. For each rectangle R ∈ R, let m(R) be the number of rectangles in Π568

that intersects R. The weight of each rectangle R′ ∈ Π is the sum of 1/r(R) for all R ∈ R569

that intersects R′. Note that the total weight W is equal to |R| because each rectangle in R570

contributes exactly 1 to the total weight. Applying the weighted planar separator theorem571

to the vertex-weighted graph GΠ , we now partition Π into three parts V1, V2, Σ such that572

(i) there is no edge between V1 and V2 in GΠ , (ii) |Σ| ≤ O(
√
r), and (iii) the total weight573

of the vertices in Vi is at most 2
3 |R| for i ∈ {1, 2}. The separator Σ is just the desired set of574

interior-disjoint regular rectangles described in the corollary. The fact that each rectangle575

in Σ intersects at most |R|/r rectangles in R follows directly from the property of Π. So576

it suffices to show that each connected component of K\(
⋃
R∈Σ R) intersects at most 3

4 |R|577

rectangles in R. Let U be a connected component of K\(
⋃
R∈Σ R). The rectangles in Π that578

are contained in the closure of U induces a connected subgraph of GΠ , and hence they either579

all belong to V1 or all belong to V2 (because there is no edge between V1 and V2 in GΠ). It580

follows that the total weight of these rectangles is at most 2
3 |R|, which further implies that581

the number of rectangles in R that are (entirely) contained in the closure of U is at most582

2
3 |R|.583

B Implementation details of our algorithm for univariate data584

Recall that we want to compute A(b) and all f [a, b], δ[a, b] where a ∈ A(b) in O(nε log 1
ε )585

time. To this end, we first do some preprocessing such that given a polynomial f ∈ R[x]g586

and a, b ∈ [n] with a ≤ b, we can compute
∑b
i=a(yi − f(xi))2 in O(1) time. For all integers587

p, q ≥ 0 such that p, q ≤ 2g, we compute the prefix sums of the sequence (xp1y
q
1, . . . , x

p
ny

q
n)588

of numbers. This can be done in O(n) time since g is a constant. With these prefix sums,589

given integers p, q ≥ 0 with p, q ≤ 2g and indices a, b ∈ [n] with a ≤ b, we can compute590 ∑b
i=a x

p
i y
q
i in O(1) time, because

∑b
i=a x

p
i y
q
i =

∑b
i=1 x

p
i y
q
i −

∑a−1
i=1 x

p
i y
q
i . Now observe that591
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for a polynomial f ∈ R[x]g the function (y− f(x))2 is a polynomial of degree at most 2g with592

variables x and y. So we can write (y − f(x))2 =
∑
p+q≤2g ep,q · xpyq where the coefficients593

ep,q can be easily computed in O(1) time given f . It follows that for a, b ∈ [n] with a ≤ b,594

b∑
i=a

(yi − f(xi))2 =
∑

p+q≤2g

(
ep,q ·

b∑
i=a

xpyq

)
.595

Therefore, with the computed prefix sums, we can compute
∑b
i=a(yi − f(xi))2 for any given596

a, b ∈ [n] with a ≤ b in O(1) time. It follows that knowing f [a, b], one can computes δ[a, b]597

in O(1) time, because δ[a, b] =
∑b
i=a(yi − f [a, b](xi))2.598

Now we are able to discuss how to compute all A(b) and all f [a, b], δ[a, b] where a ∈ A(b).599

Specifically, for a number i ≥ 0 such that (1 + ε̃)i−1 − 1 ≤ 2/ε̃, we want to compute ai(b)600

and f [ai(b), b], δ[ai(b), b] for all right break points b ∈ [n] in O(n) time. We observe that601

the indices ai(b) satisfy the following monotonicity: for two right break points b, b′ ∈ [n]602

where b ≤ b′, we have ai(b) ≤ ai(b′). This allows us to solve the problem using a simple603

sliding-window approach shown in Algorithm 4, where Compute(S, i) computes ai(b) and604

f [ai(b), b], δ[ai(b), b] for all right break points b ∈ [n]. It is clear that Algorithm 4 runs in605

O(n) time as long as in the while loop of Line 2-12, we can maintain f [a, b] and δ[a, b] in606

O(1) time whenever a or b changes. As discussed above, with our preprocessing, one can607

computes δ[a, b] in O(1) time given f [a, b]. Therefore, our actual task here is to maintain608

f [a, b] in O(1) time. We observe that each change of a and b in the while loop of Line 2-12609

is either a← a− 1 or b← b− 1. To maintain f [a, b], we need the expression for f [a, b] in610

terms of the points (xa, ya), . . . , (xb, yb). For a (g + 1)-dimensional vector β = (β0, . . . , βg),611

we define poly[β] ∈ R[x]g as the polynomial
∑g
j=0 βj · xj . Also, we define612

Xa,b =


1 xa · · · xga
1 xa+1 · · · xga+1
...

...
. . .

...
1 xb · · · xgb

 and ya,b = (ya, . . . , yb)T .613

It is well known that f [a, b] = poly[βa,b] where βa,b = (XT
a,bXa,b)−1(XT

a,bya,b). Note that614

XT
a,bXa,b is a (g+1)×(g+1) matrix and XT

a,bya,b is a (g+1)-dimensional vector. Furthermore,615

XT
a,bXa,b and XT

a,bya,b can be easily maintained in O(1) time for the operations a← a− 1616

and b← b− 1 (simply by modifying each of their entries). With XT
a,bXa,b and XT

a,bya,b in617

hand, βa,b and f [a, b] can be directly computed in O(1) time. This allows us to maintain618

f [a, b] in O(1) time in the while loop of Line 2-12. As a result, we obtain a linear-time619

approximation scheme for piecewise polynomial regression for univariate data, assuming the620

data points are pre-sorted.621

C A sub-exponential time exact algorithm for bivariate data622

We present a simple exact algorithm for piecewise polynomial regression for bivariate data,623

which runs in nO(
√
n) time. Our algorithm first computes a regular OP Π of the plane624

such that σS(Π) ≤ σS(Π ′) for all regular OP Π ′ of the plane satisfying |Π ′| ≤ 5n + 1,625

and then uses the second statement of Lemma 9 to compute a function f ∈ Γ 2
g such that626

σS(f) = σS(Π) in O(n · |Π|) = O(n2) time. We claim that σS(f) = opt. It is clear that627

σS(f) ≥ opt. To see σS(f) ≤ opt, it suffices to show σS(Π) ≤ opt. Let f∗ ∈ Γ 2
g be the628

function such that σS(f∗) = opt. Note that |f∗| ≤ n, for otherwise fopt has an “empty” piece629

which can be removed to make σS(f∗) smaller. Therefore, by the first statement of Lemma 9,630
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Algorithm 4 Compute(S, i) . Computing ai(b), f [ai(b), b], δ[ai(b), b]

1: b← n and a← b

2: while b ≥ 1 do
3: if b is a right break point then
4: while δ[a, b] ≤ (1 + ε̃)i − 1 do
5: if a is a left break point then
6: ai(b)← a

7: associate f [a, b] and δ[a, b] with ai(b)
8: a← a− 1
9: b← b− 1
10: if a > b then a← a− 1

there exists a regular OP Π∗ of R2 with |Π∗| ≤ 5n+ 1 such that σS(Π∗) = σS(f∗) = opt.631

By the property of Π, we further have σS(Π) ≤ σS(Π∗) = opt. Hence, σS(f) = opt.632

Note that a set Π of interior-disjoint rectangles naturally induces a planar graph in which633

the vertices are the rectangles in Π and two vertices are connected by an edge if the two634

corresponding rectangles are neighboring to each other, i.e., their boundaries intersect at a635

segment (rather than a single point). The basic idea of our algorithm is to use the planar636

separator theorem, which states that one can partition the vertex set of a planar graph with637

m vertices into three parts V1, V2, Σ such that (i) there is no edge between V1 and V2, (ii)638

|Σ| ≤ 4
√
m, and (iii) |V1| ≤ 2

3m and |V2| ≤ 2
3m; the set Σ is called a balanced separator.639

Algorithm 5 OptPartition(S,K,m)

1: if m ≤ 10 then
2: solve the problem by brute-force
3: else
4: RK ← {R ∈ Rreg : R ⊆ K}, Πopt ← ∅, opt←∞
5: for all Σ ⊆ RK with |Σ| ≤ 4

√
m do

6: if the rectangles in Σ are interior-disjoint then
7: U ← Components(K\(

⋃
R∈Σ R))

8: ΠU ← OptPartition(S,Closure(U), 2
3m) for all U ∈ U

9: Π ← Σ ∪ (
⋃
U∈U ΠU )

10: if σS(Π) < opt then Πopt ← Π and opt← σS(Π)
11: return Πopt

Let K ⊆ R2 be a regular region. Suppose we want to compute a regular OP Π of K such640

that σS(Π) ≤ σS(Π ′) for all regular OP Π ′ of K satisfying |Π ′| ≤ m. Note that we do not641

require |Π| ≤ m. If m = O(1), we solve the problem in nO(m) = nO(1) time by brute-force:642

enumerating every set Π of at most m regular rectangles, checking if Π is a partition of K,643

and computing σS(Π). Otherwise, we solve the problem as follows. Let Π∗ be an (unknown)644

optimal regular OP of K with up to m rectangles, that is, |Π∗| ≤ m and σS(Π∗) ≤ σS(Π ′)645

for all regular OP Π ′ of K satisfying |Π ′| ≤ m. We guess a balanced separator Σ of the646

planar graph GΠ∗ induced by Π∗, which corresponds to at most 4
√
m (interior-disjoint)647

regular rectangles in K (for convenience, we use the same notation Σ to denote the set of648

these rectangles). This separator separates the other vertices of GΠ∗ into two subsets V1649

and V2 of size at most 2
3m such that there is no edge between V1 and V2. Suppose our guess650

for Σ is correct, and consider the set U of connected components of K\(
⋃
R∈Σ R). Each651
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component U ∈ U contains some rectangles in Π∗\Σ, whose corresponding vertices in GΠ∗652

induce a connected subgraph of GΠ∗ . Therefore, these rectangles either all belong to V1 or653

all belong to V2. Because |V1| ≤ 2
3m and |V2| ≤ 2

3m, the number of the rectangles in Π∗654

contained in U is at most 2
3m. We recursively compute a regular OP ΠU for (the closure655

of) U such that σS(ΠU ) ≤ σS(Π ′) for all regular OP Π ′ of (the closure of) U satisfying656

|Π ′| ≤ 2
3m. Then we set Π = Σ ∪ (

⋃
U∈U ΠU ), which is clearly a regular OP of K. We claim657

that, if our guess for Σ is correct, then σS(Π) ≤ σS(Π∗), and hence Π satisfies the desired658

property. Let Π∗U ⊆ Π∗ be the subset of rectangles contained in U , for U ∈ U . We know that659

|Π∗U | ≤ 2
3m. Therefore, by the property of ΠU , we have σS(ΠU ) ≤ σS(Π∗U ). It follows that660

σS(Π) = σS(Σ) +
∑
U∈U

σS(ΠU ) ≤ σS(Σ) +
∑
U∈U

σS(Π∗U ) = σS(Π∗).661

The entire algorithm is shown in Algorithm 5, where OptPartition(S,K,m) computes662

a regular OP Π of the regular region K such that σS(Π) ≤ σS(Π ′) for all regular OP Π ′ of663

K satisfying |Π ′| ≤ m. The correctness of the algorithm follows directly from the discussion664

above. To solve our problem, we simply call OptPartition(S,R2, 5n+ 1).665

Time complexity. One easily verifies that in all recursive calls of OptPartition(S,K,m),666

the region K is always a regular region (recall that a regular region is a subset of R2 that667

is the union of some regular rectangles) and hence the complexity of K is bounded by a668

polynomial in n. Therefore, the size of the set U computed in Line 7 of Algorithm 5 is also669

bounded by nO(1) in all recursive calls. Furthermore, since |Rreg| = O(n4), the number of all670

subsets Σ ⊆ RK with |Σ| ≤ 4
√
m considered in Line 5 is nO(

√
m). It then follows that in a671

call OptPartition(S,K,m), the total number of recursive calls made in Line 8 is bounded672

by nO(
√
m) and all steps except the recursive calls can be done in nO(1) time. So if we use673

T (m) to denote the time cost for the call OptPartition(S,K,m), we have the recurrence674

T (m) ≤ nO(
√
m) · (T ( 2

3m) + nO(1)). Solving this recurrence gives us T (m) = nO(
√
m), which675

implies that the initial call OptPartition(S,R2, 5n+ 1) takes nO(
√
n) time.676

I Theorem 2. There exists an exact algorithm for bivariate piecewise polynomial regression677

which runs in nO(
√
n) time.678

D NP-hardness for bivariate data679

In this section, we show that the piecewise-polynomial regression problem in Rd for d ≥ 2 is680

NP-hard. This result is widely believed in the folklore, but we could not find a published681

record in the literature. So we give a proof for completeness.682

Our reduction is from the planar rectilinear 3-SAT problem. A planar rectilinear repre-683

sentation of a 3-CNF boolean formula φ represents φ using horizontal and vertical segments684

in the plane in the following way. Each variable of φ is represented as a horizontal segment on685

the x-axis while each clause is represented a horizontal segment above the x-axis. Whenever686

a clause includes a variable, there is a vertical segment connecting two horizontal segments687

corresponding to the clause and the variable respectively. The vertical connections can be688

negative or positive according to whether the literal is negated or not. All segments are689

disjoint except that each vertical segment intersects with the two horizontal segments it690

connects. See Figure 5 for an illustration of planar rectilinear representation. In the planar691

rectilinear 3-SAT problem, the input of a 3-CNF boolean formula φ with its planar rectilinear692

representation, and the goal is to test if φ is satisfiable.693
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v1 v2 v3

(¬v1 ∨ v2 ∨ v3)

(v1 ∨ ¬v2) (v2 ∨ v3)

− + +

+ + +−

φ = (¬v1 ∨ v2 ∨ v3) ∧ (v1 ∨ ¬v2) ∧ (v2 ∨ v3)

Figure 5 The planar rectilinear representation
of φ = (¬v1 ∨ v2 ∨ v3) ∧ (v1 ∨ ¬v2) ∧ (v2 ∨ v3).

In order to describe our reduction, we introduce an intermediate problem called piecewise694

polynomial perfect fitting (PPPF), which is a variant of the piecewise-polynomial regression695

problem. Let g ≥ 0 be a fixed integer and R be the family of orthogonal boxes in Rd. In the696

PPPF problem, we are given a set S = {(xi, yi) ∈ Rd ×R}ni=1 of data points, and our goal is697

to find a function f ∈ Γ gR with minimum number of pieces (i.e., minimum |f |) such that f698

perfectly fits S, i.e., yi = f(xi) for all i ∈ [n].699

I Lemma 17. The PPPF problem in Rd with maximum degree g can be reduced in polynomial700

time to the piecewise polynomial regression problem in Rd with maximum degree g.701

Proof. Given a dataset S = {(xi, yi) ∈ Rd×R}ni=1, we reduce the PPPF problem on S (with702

maximum degree g) to an instance 〈S, λ〉 of piecewise polynomial regression (with maximum703

degree g). The only thing we have to determine is the parameter λ. Intuitively, we need to let704

λ be sufficiently small so that when evaluating the price of a function in Γ dg , the least square705

error is always more important than the number of pieces. For an axis-parallel box B in Rd,706

we use errB to denote the minimum
∑

xi∈B(yi − f(xi))2 for a d-variable polynomial function707

f with degree at most g. Let B be the set of combinatorially different boxes in Rd, where two708

boxes B and B′ are combinatorially different if {x1, . . . ,xn} ∩B 6= {x1, . . . ,xn} ∩B′. Then709

we set λ to be a positive number smaller than errB/n for all B ∈ B such that errB > 0. Since710

|B| = O(n2d), we can compute λ in polynomial time. We claim that the optimum of the PPPF711

instance 〈S〉 is k iff the optimum of the piecewise polynomial regression instance 〈S, λ〉 is λk.712

Suppose the optimum of the PPPF instance 〈S〉 is k. Then there exists a function f ∈ Γ gR713

with |f | = k which perfectly fits S. Because of the existence of f , the optimum of the piecewise714

polynomial regression instance 〈S, λ〉 is at most λk. Furthermore, for any k′ < k disjoint715

boxes B1, . . . , Bk′ such that {x1, . . . ,xn} ⊆
⋃k′
j=1 Bj , we have

∑k′

j=1 errBj > 0; indeed, if716 ∑k′

j=1 errBj = 0, then there exists a function in Γ gR with less than k pieces which perfectly fits717

S. It follows that for any k′ < k disjoint boxes B1, . . . , Bk′ such that {x1, . . . ,xn} ⊆
⋃k′
j=1 Bj ,718

we have
∑k′

j=1 errBj
> λn ≥ λk. Therefore, σS(f) ≥ λk for any f ∈ Γ gR with |f | < k. On719

the other hand, σS(f) ≥ λk for any f ∈ Γ gR with |f | > k. So the optimum of the piecewise720

polynomial regression instance 〈S, λ〉 is λk. This completes the “only if” part of the claim.721

To see the “if” part, assume the optimum of the PPPF instance 〈S〉 is k′ 6= k. Then the722

optimum of the piecewise polynomial regression instance 〈S, λ〉 is λk′ 6= λk. This reduces723

the PPPF problem to piecewise polynomial regression. J724
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Next, we show how to reduce planar rectilinear 3-SAT to the PPPF problem in R2. For725

simplicity, we present the details of the reduction for the PPPF problem with maximum726

degree g = 0, and it can be easily generalized to a general g. When g = 0, the functions in727

Γ gR are piecewise constant functions.728

Consider a given 3-CNF boolean formula φ and its planar rectilinear representation.729

Suppose φ has n variables and m clauses. We shall construct a set S = {((xi, x′i), yi) ∈730

R2 ×R}Ni=1 and determine a number k such that there exists a function f ∈ Γ 2
0 with |f | ≤ k731

such that yi = f(xi, x′i) for all i ∈ [n] iff φ is satisfiable. Our set S consists of two types of732

points: normal points and obstacle points. We denote by S1 the set of normal points and by733

S2 the set of obstacle points. The y-coordinates of all points in S1 are equal to 0, while all734

points in S2 have nonzero distinct y-coordinates. Therefore, if a function f ∈ Γ 2
0 perfectly735

fits S, then each piece of f either covers only points in S1 or covers a single point in S2. It736

follows that the optimum (i.e., the minimum number of pieces of a function f ∈ Γ 2
0 that737

perfectly fits S) is exactly equal to k1 + |S2|, where k1 is the minimum number of disjoint738

rectangles that cover all points in S1 but do not contain (the xx′-projection images of) any739

points in S2.740

We first determine the x-coordinates and x′-coordinates of the normal points, i.e., the741

points in S1. Let v1, . . . , vn be the n variables of φ, c1, . . . , cm be the clauses of φ, mi be742

the number of clauses of φ that contains the variable vi for i ∈ [n]. Define L+ = {(i, j) :743

the clause cj contains the literal vi}, L− = {(i, j) : the clause cj contains the literal ¬vi},744

and L = L+ ∪ L−. Without loss of generality, we can assume that mi ≥ 2 for all i ∈ [n]745

(indeed, if a variable is only contained in one clause of φ, then we can choose the value of746

that variable to satisfy that clause and remove the clause and the variable from φ without747

changing the satisfiability of φ). Also, we may assume that each clause cj has two or748

three literals (indeed, if a clause only has one literal, then we must choose the value of749

the variable corresponding to the literal to make this clause true and hence we can remove750

the clause and the variable from φ without changing the satisfiability of φ). Suppose the751

planar rectilinear representation of φ is given in the xx′-plane. In the representation, each752

variable vi corresponds to a horizontal segment seg(vi) on the x-axis, which each clause cj753

corresponds to a horizontal segment seg(cj) above the x-axis. We denote by seg(vi, cj) the754

vertical segment that connects the horizontal segments seg(vi) and seg(vj), for (i, j) ∈ L.755

First, we replace each variable segment seg(vi) with an indented rectangle Di with mi756

peaks. See the top two figures in Figure 6 for an illustration of the indented rectangles and757

peaks. On each vertex of Di and the midpoint of each edge of Di, we put a normal point.758

Therefore, we have in total 8mi + 8 normal points on Di. See the bottom-left figure in759

Figure 6 for an illustration. For technical reasons, we rotate the indented rectangle Di a little760

bit so that the normal points on Di have distinct x- and x′-coordinates (see the bottom-right761

figure in Figure 6). We also use the notation Di to denote the set of the 8mi + 8 normal762

points on the indented rectangle Di for convenience. After we replace the variable segments763

with the indented rectangles, we let the vertical segments seg(vi, cj) for (i, j) ∈ L connect to764

the peaks of the indented rectangles (each Di has mi peaks which one-to-one correspond to765

the mi vertical segments incident to seg(vi)). We denote by pi,j the normal point on the766

peak of Di that connects to seg(vi, cj), and denote by p−i,j and p
+
i,j the left and right adjacent767

points of pi,j in Di.768

Now we consider the clause segments seg(cj) and the vertical segments seg(vi, cj). For769

a clause cj with three literals, its left, middle, right variables refer to the variables corre-770

sponding to the left, middle, right vertical segments connecting to the clause segment seg(cj),771

respectively. If a clause has only two literals, then it only has left and right variables. For772
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Peaks

Figure 6 Indented rectangles with three (top-left) and four (top-right) peaks. We put on each
vertex and the midpoint of each edge a normal point (bottom-left). We rotate the indented rectangle
a little bit such that the normal points have distinct coordinates (bottom-right).

each vertical segment seg(vi, cj), we add two normal points ai,j and bi,j as follows. The773

point ai,j is very close to the midpoint of seg(vi, cj): if (i, j) ∈ L+, then ai,j is slightly774

to the right of the midpoint; if (i, j) ∈ L−, then ai,j is slightly to the left of the mid-775

point. The point bi,j is very close to the connecting point ei,j of seg(vi, cj) and seg(cj):776

if (i, j) ∈ L+, then bi,j is slightly to the southwest (or bottom-left) of ei,j ; if (i, j) ∈ L−,777

then bi,j is slightly to the southeast (or bottom-right) of ei,j . In addition, we slightly move778

the points bi,j vertically such that the following condition holds: for a clause cj , we have779

x′(bmid,j) < min{x′(bleft,j), x′(bright,j)} and x′(bleft,j) 6= x′(bright,j), where x′(·) denotes the780

x′-coordinate and vleft, vmid, vright are the left, middle, right variables of cj , respectively; if781

cj only has two literals, then we only require x′(bleft,j) 6= x′(bright,j). In other words, for782

each clause, we require that the b-points of its variables have distinct x′-coordinates and783

the b-point of its middle variable is always the lowest. Finally, for each clause cj , we put a784

normal point sj on the segment seg(cj), whose x-coordinate is equal to the x-coordinate of785

bmid,j , where vmid is the mid variable of cj ; if cj only has two literals, then we put sj on the786

midpoint of seg(cj). See Figure 7 for an illustration of the locations of the points ai,j , bi,j , cj .787

Setting S1 = (
⋃n
i=1 Di)∪ (

⋃
(i,j)∈L{ai,j , bi,j})∪ (

⋃m
j=1{sj}), we finish the construction of the788

normal points.789

Next, we describe the obstacle points, i.e., the points in S2. As observed before, the790

minimum number of pieces of a function f ∈ Γ 2
0 that perfectly fits S is equal to k1 + |S2|,791

where k1 is the minimum number of disjoint rectangles that cover all points in S1 but do792

not contain (the xx′-projection images of) any points in S2. Without any obstacle points,793

k1 = 1 because we can cover all points in S1 using a single rectangle. So we want to use794

the obstacle points to “force” a rectangle to only cover some certain subset of S1 (in order795

to avoid the obstacle points). To this end, we first specify which subsets of S1 we allow a796
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seg(cj)
sj

aleft,j amid,j aright,j

bleft,j bmid,j
bright,j

Figure 7 An illustration of the points ai,j , bi,j and cj . The clause cj has a negated literal for its
left variable and positive literals for its middle and right variables.

rectangle to cover. Recall that pi,j is the normal point on the peak of Di that connects to797

seg(vi, cj), and p−i,j and p
+
i,j are the left and right adjacent points of pi,j in Di. We define a798

collection of legal subsets of S1 as follows.799

(1) For i ∈ [n], each pair of adjacent normal points in Di form a legal subset.800

(2) For (i, j) ∈ L, {sj , bi,j}, {ai,j , bi,j}, {pi,j , ai,j} are legal subsets.801

(3) For (i, j) ∈ L+, {pi,j , p+
i,j , ai,j} and {p

+
i,j , ai,j} are a legal subset.802

(4) For (i, j) ∈ L−, {pi,j , p−i,j , ai,j} and {p
−
i,j , ai,j} are a legal subset.803

(5) Each single point in S1 forms a legal subset.804

I Lemma 18. The boolean formula φ is satisfiable iff S1 can be partitioned into at most805

5|L|+ 4n legal subsets.806

Proof. To show the “if” part, assume S1 can be partitioned into at most 5|L| + 4n legal807

subsets. Let P be such a partition, i.e., P is a collection of at most 5|L| + 4n disjoint808

legal subsets that cover all points in S1. We want to construct a satisfying assignment809

A : {v1, . . . , vn} → {true, false} of φ. Define V as the set consisting of all vertex points of810

D1, . . . , Dn and all bi,j for (i, j) ∈ L. Similarly, define E as the set consisting of all edge811

points of D1, . . . , Dn and all bi,j for (i, j) ∈ L. We have |V | = |E| = 5|L|+ 4n. Observe that812

any legal subset can cover at most one point in V (resp., E). This implies |P| ≥ 5|L|+ 4n813

and hence |P| = 5|L|+ 4n Since |P| = |V | (resp., |P| = |E|) and P covers all points in V814

(resp., E), every legal subset in P covers exactly one point in V (resp., E). We shall use815

this property to obtain the assignment A and prove it is a satisfying assignment. Consider816

a vertex point α of some Di. Since α ∈ V \E, the legal subset in P that contains α must817

contain another point in E\V , which can only be one of the two edge points adjacent to α818

in Di. In other words, in the partition P, every vertex point is coupled with an adjacent819

edge point (i.e., they belong to the same legal subset in P). Furthermore, observe that if a820

vertex point of Di is coupled with its clockwise (resp., counterclockwise) adjacent edge point,821

then every vertex point of Di must be coupled with its clockwise (resp., counterclockwise)822

adjacent edge point. We now define our assignment A as follows. For all i ∈ [n] such that823

every vertex point of Di is coupled with its clockwise (resp., counterclockwise) adjacent edge824

point, we set A(vi) = true (resp., A(vi) = false). We show A is a satisfying assignment by825

contradiction. Assume that A is not satisfying. Without loss of generality, we may assume826
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that c1 is an unsatisfied clause. Since s1 /∈ V , the legal subset in P that contains s1 should827

contain another point in V , which must be bi,1 for some i ∈ [n] satisfying (i, 1) ∈ L. We828

consider the case where (i, 1) ∈ L+, and the other case (i, 1) ∈ L− can be handled in the829

same way. Because c1 is unsatisfied and (i, 1) ∈ L+, we have A(vi) = false. Therefore, each830

vertex point of Di is coupled with its counterclockwise adjacent edge point; in particular, pi,1831

is coupled with p−i,1. This implies {pi,1, p+
i,1, ai,1} /∈ P. Also, we have {p+

i,1, ai,1} /∈ P (resp.,832

{pi,1, ai,1} /∈ P), because every legal subset in P must contain one point in V (resp., E).833

Finally, we have {ai,1, bi,1} /∈ P, since {s1, bi,1} ∈ P and the legal subsets in P are disjoint.834

Now all legal subsets that contain the point ai,1 are not in P, contradicting the fact that P835

covers all points in S1. As a result, A is a satisfying assignment.836

To show the “only if” part, assume φ is satisfiable and let A : {v1, . . . , vn} → {true, false}837

be a satisfying assignment of φ. We shall partition S1 into 5|L| + 4n legal subsets. For838

each variable vi such that A(vi) = true, we construct 4mi + 4 (disjoint) legal subsets as839

follows. We first group each vertex point in Di with its clockwise adjacent point in Di840

(which is an edge point). In this way, we obtain 4mi + 4 legal subsets of size 2 which cover841

all normal points in Di, where each peak pi,j is contained in the legal subset {pi,j , p+
i,j}.842

We then replace {pi,j , p+
i,j} with the legal subset {pi,j , p+

i,j , ai,j} for all j ∈ [m] such that843

(i, j) ∈ L+. After this, we obtain 4mi+4 legal subsets which are disjoint and cover all normal844

points in Di and all ai,j for j ∈ [m] satisfying (i, j) ∈ L+. For each variable vi such that845

A(vi) = false, we construct 4mi + 4 (disjoint) legal subsets similarly. We first group each846

vertex point in Di with its counterclockwise adjacent point in Di, which gives us 4mi + 4847

legal subsets covering all normal points in Di where each peak pi,j is contained in the legal848

subset {pi,j , p−i,j}. Then we replace {pi,j , p−i,j} with the legal subset {pi,j , p−i,j , ai,j} for all849

j ∈ [m] such that (i, j) ∈ L−. After considering all variables v1, . . . , vn, we obtain in total850 ∑n
i=1(4mi + 4) = 4|L|+ 4n (disjoint) legal subsets. For convenience, we denote by P1 the851

collection of these legal subsets. Then P1 cover all normal points in D1, . . . , Dn and all ai,j852

for (i, j) ∈ L+ such that A(vi) = true and for (i, j) ∈ L− such that A(vi) = false. Next,853

we construct another collection P2 of |L| (disjoint) legal subsets that cover all points in854

S1 that are not covered by P1. First, for each clause cj , pick an index ij ∈ [n] such that855

(ij , j) ∈ L and the literal of vij in cj makes cj true under the assignment A (such an index856

ij always exists since A is a satisfying assignment). Observe that the points ai1,1, . . . , aim,m857

are all covered by P1. We include in P2 the legal subsets {s1, bi1,1}, . . . , {sm, bim,m}. Also,858

for each (i, j) ∈ L\{(i1, 1), . . . , (im,m)}, we include in P2 the legal subset {bi,j} if ai,j is859

covered by P1 or the legal subset {ai,j , bi,j} if ai,j is not covered by P1. In this way, we860

obtain the collection P2 of |L| legal subsets. Let P = P1 ∪ P2. It is easy to verify that (1)861

|P| = 5|L|+ 4n, (2) the legal subsets in P are disjoint, and (3) the legal subsets in P cover862

all points in S1. This completes the “only if” part. J863

With the above lemma in hand, the last step of our reduction is to use obstacle points to864

block all “illegal” subsets such that the pieces of a function f ∈ Γ 2
0 that perfectly fits S can865

only cover legal subsets (or a single obstacle point). Let U be the union of the minimum866

enclosing rectangles of the legal subsets. The locations of the normal points we pick guarantee867

the following property of legal subsets.868

I Fact 19. The minimum enclosing rectangle of a legal subset P only contains the normal869

points in P . Furthermore, the minimum enclosing rectangle of any illegal subset of S1 is not870

contained in U .871

Proof. The first statement directly follows from how we locate the normal points. A872

remarkable case here is the legal subsets {sj , bi,j} for (i, j) ∈ L. Recall that in our construction,873
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x′(bmid,j) < min{x′(bleft,j), x′(bright,j)} and x′(bleft,j) 6= x′(bright,j), where x′(·) denotes the874

x′-coordinate and vleft, vmid, vright are the left, middle, right variables of cj , respectively.875

This property guarantees the minimum enclosing rectangles of {sj , bleft,j}, {sj , bmid,j}, and876

{sj , bright,j} only contains the normal points in {sj , bleft,j}, {sj , bmid,j}, and {sj , bright,j},877

respectively.878

To see the second statement, it suffices to check for all minimal illegal subsets of S1. Note879

that in our construction, every minimal illegal subset consists of two points in S1. Thus, the880

statement follows from a simple but tedious case-by-case check for every pair of points in S1881

that do not form a legal subset. A remarkable case here is the illegal subsets formed by two882

normal points in Di for some i ∈ [n]. Recall that when we replace each variable segment883

seg(vi) with the indented rectangle Di, we rotate Di a little bit such that the normal points884

in Di have distinct x- and x′-coordinates. The purpose of this rotation is just to guarantee885

that the minimum enclosing rectangle of any two non-adjacent normal points in Di is not886

contained in U . (Without the rotation, the minimum enclosing rectangle of any two edge887

points in Di with distance 2 is a segment and is contained in U . However, with the rotation,888

this is no longer the case.) We omit the tedious details here. J889

Note that although the number of subsets of S1 is exponential, the number of different890

minimum enclosing rectangles of these subsets is bounded by |S1|4 and these rectangles can891

be computed efficiently. For every minimum enclosing rectangle R that is not contained892

in U , we include in S2 an obstacle point whose xx′-projection image is in R\U . Then any893

rectangle in the xx′-plane that does not contain (the xx′-projection images of) any points894

in S2 can only cover a legal subset of S1. Therefore, by Lemma 18, k1 ≤ 5|L|+ 4n iff φ is895

satisfiable. Finally, let S = S1 ∪ S2. We know that the optimum of the PPPF instance 〈S〉,896

which is equal to k1 + |S2|, is at most 5|L|+ 4n+ |S2| iff φ is satisfiable. This completes our897

reduction from planar rectilinear 3-SAT to the PPPF problem with g = 0.898

Extending the above reduction for a general constant g turns out to be easy. The normal899

points in S1 are constructed in the same way. Let S2 be the set of obstacles constructed900

above. We replace each obstacle point a ∈ S2 with a set Oa of g(|S1| + |S2|) + |S2| new901

obstacle points whose xx′-projection images are very close to a. We choose the y-coordinates902

of the new obstacle points such that (i) the points in each Oa can be perfectly fit using a903

bivariate polynomial fa ∈ R[x, x′]g and (ii) any g + 2 (normal and new obstacle) points that904

are not contained in Oa for any a ∈ S2 cannot be perfectly fit using any bivariate polynomial905

in R[x, x′]g. Let S′2 be the set of new obstacles. We claim that the optimum of the PPPF906

instance 〈S = S1∪S′2〉 is at most 5|L|+4n+ |S2| iff φ is satisfiable. If φ is satisfiable, then we907

can cover the normal points using k1 = 5|L|+ 4n disjoint pieces which avoid all (old) obstacle908

points and hence avoid all (new) obstacle points because of the locations of the new obstacles909

we choose. Then we cover the xx′-projection images of each set Oa using a single piece; this910

is possible because the points in each Oa can be perfectly fit using a bivariate polynomial911

fa ∈ R[x, x′]g. In this way, we constructed a function f ∈ Γ 2
g with |f | = 5|L|+ 4n+ |S2| that912

perfectly fits S. Now suppose φ is unsatisfiable, and let f ∈ Γ 2
g be a function that perfectly913

fits S. We show that |f | > 5|L|+ 4n+ |S2|. We call the pieces of f containing at least one914

normal point normal pieces. The normal points contained in each normal piece of f must915

form a legal subset, for otherwise the piece will contain (the xx′-projection image) of an916

old obstacle point a ∈ S2 and hence contain all points in Oa, which is impossible because917

Oa ∪ {b} cannot be perfectly fit using any bivariate polynomial in R[x, x′]g for any normal918

point b ∈ S1. Then there are at least 5|L|+ 4n+ 1 normal pieces, because φ is unsatisfiable.919

Furthermore, each legal piece can cover at most g points in S′2 because any subset of S920

consists of one normal point and g + 1 obstacle points cannot be perfectly fit using any921
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bivariate polynomial in R[x, x′]g. Now every set Oa has at least (g + 1)|S2| points that are922

uncovered by the normal pieces. One easily verifies that these uncovered points require |S2|923

additional pieces to cover all of them, because any g+ 2 of them that are not contained in Oa924

for any a ∈ S2 cannot be perfectly fit using any bivariate polynomial in R[x, x′]g. Therefore,925

|f | > 5|L|+ 4n+ |S2|.926

I Theorem 5. Bivariate piecewise regression is NP-hard for all fixed degree polynomials,927

including piecewise constant or piecewise linear functions.928
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