
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Independence and E�icient Domination on P6-free Graphs
∗

DANIEL LOKSHTANOV, University of Bergen

MARCIN PILIPCZUK, University of Warsaw

ERIK JAN VAN LEEUWEN, Utrecht University

In the Maximum Weight Independent Set problem, the input is a graph G , every vertex has a non-negative integer weight, and the task is
to �nd a set S of pairwise non-adjacent vertices, maximizing the total weight of the vertices in S . We give an nO (log2 n) time algorithm for this
problem on graphs excluding the path P6 on 6 vertices as an induced subgraph. Currently, there is no constant k known for which Maximum
Weight Independent Set on Pk -free graphs becomes NP-hard, and our result implies that if such a k exists, then k > 6 unless all problems in
NP can be decided in quasi-polynomial time.

Using the combinatorial tools that we develop for the above algorithm, we also give a polynomial-time algorithm for Maximum Weight
Efficient Dominating Set on P6-free graphs. In this problem, the input is a graph G , every vertex has an integer weight, and the objective is to
�nd a set S of maximum weight such that every vertex in G has exactly one vertex in S in its closed neighborhood, or to determine that no such
set exists. Prior to our work, the class of P6-free graphs was the only class of graphs de�ned by a single forbidden induced subgraph on which the
computational complexity of Maximum Weight Efficient Dominating Set was unknown.

CCS Concepts: •Mathematics of computing → Graph theory; Graph algorithms; Combinatorics; •�eory of computation → Graph
algorithms analysis; Branch-and-bound; Complexity classes; Problems, reductions and completeness;

Additional Key Words and Phrases: independence, e�cient domination, P6-free graphs, (quasi)polynomial-time algorithms

ACM Reference format:
Daniel Lokshtanov, Marcin Pilipczuk, and Erik Jan van Leeuwen. 2016. Independence and E�cient Domination on P6-free Graphs. ACM Trans.

Algor. 1, 1, Article 1 (January 2016), 25 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

An independent set in a graph is a set of pairwise non-adjacent vertices. In the Independent Set problem the input is a graph G on
n vertices and an integer t , and the task is to determine whether G contains an independent set of size at least t . Independent Set
is a fundamental and extremely well-studied graph problem. It was one of the very �rst problems to be shown NP-complete [27, 38],
and a signi�cant amount of research [2, 22, 24, 33, 41, 42, 46, 55]1 has gone into identifying classes of graphs on which the problem
becomes polynomial-time solvable.

A complete classi�cation of the complexity status of Independent Set on all classes of graphs seems out of reach. However,
obtaining such a classi�cation for all classes of graphs de�ned by excluding a single connected graph H as an induced subgraph
(we call such graphs H -free) looks like an a�ainable, yet very challenging, goal. In particular, Alekseev [1] showed in 1982 that
Independent Set remains NP-complete on H -free graphs whenever H is connected, but neither a path nor a subdivision of the
claw.

�e complexity of Independent Set on classes of Pk -free graphs (we denote by Pk the path on k vertices) has been subject to
intense scrutiny, but yielding rather modest progress. For P4-free graphs a polynomial-time algorithm was given by Corneil et
∗An extended abstract of this paper appeared as: D. Lokshtanov, M. Pilipczuk, and E.J. van Leeuwen. Independence and E�cient Domination on P6-free Graphs. In
R. Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016,
SIAM, pages 1784–1803, 2016.
1�is list is far from exhaustive, see the Information System on Graph Classes and their Inclusions (ISGCI) [25].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
© 2016 ACM. Manuscript submi�ed to ACM

Manuscript submi�ed to ACM 1

al. [24] in 1981, and it took more than 30 years until a polynomial-time algorithm for the problem on P5-free graphs was discovered by
Lokshtanov et al. [41] in 2014. Meanwhile, a substantial amount of work was devoted to Independent Set on subclasses of P5-free
graphs [6, 7, 16, 31, 47, 59], and some progress has been reported on subclasses of P6-free graphs [4, 11, 12, 14, 30, 39, 40, 43, 45, 48, 50–
53] and even on subclasses of P7-free graphs [17, 30, 43, 44, 49]. Recently, Bacsó et al. [3] and Brause [21] independently proved
subexponential-time exact algorithms for Independent Set on Pk -free graphs for any �xed k , generalizing an earlier such result
for P5-free graphs [54].

In this paper we push the boundary of knowledge on the complexity of Independent Set on Pk -free graphs a step forward by
giving a nO (log2 n)-time algorithm for Independent Set on P6-free graphs. Our algorithm also works for the weighted version of
the problem. In the Maximum Weight Independent Set problem the input is a graph G where every vertex has a non-negative
integer weight, and the task is to compute an independent set in G that maximizes the sum of the weights of the vertices in it.

Theorem 1.1. �ere is an nO (log2 n)
-time, polynomial-space algorithm forMaximum Weight Independent Set on n-vertex P6-free

graphs.

�e algorithm of �eorem 1.1 does not completely resolve the complexity status of Independent Set on P6-free graphs,
as it runs in quasipolynomial-time rather than polynomial time. However, �eorem 1.1 does imply that Maximum Weight
Independent Set on P6-free graphs is not NP-hard, unless all problems in NP can be solved in quasipolynomial-time.

�is result hints at the existence of a polynomial-time algorithm for the problem also on P6-free graphs. Very recently, Grzesik
et al. [34] actually proved that Maximum Weight Independent Set can be solved in polynomial time on P6-free graphs.

On the way to developing our algorithm for Independent Set, we prove several new combinatorial properties of P6- and P7-free
graphs. We leverage these new combinatorial insights to develop a polynomial-time algorithm for the Efficient Dominating Set
problem on P6-free graphs. We say that a vertex dominates itself and all of its neighbors. An e�cient dominating set in a graph G

is a vertex set S such that every vertex v in the graph is dominated by exactly one vertex in S . Not all graphs have an e�cient
dominating set, and in the Efficient Dominating Set problem the input is a graph G and the task is to determine whether G has
an e�cient dominating set. We remark that the problem also goes by the name Perfect Code [5]. Observe that we do not ask
for the smallest or largest e�cient dominating set, only whether there exists one. �is is because whenever a graph G has an
e�cient dominating set, all such sets have the same cardinality [36]. In the weighted variant, called Maximum Weight Efficient
Dominating Set, every vertex has an integer weight and the task is to �nd a maximum weight e�cient dominating set, if one
exists. Since the weights may be negative, there is no real di�erence between maximizing and minimizing the weight of the
solution. Our second main theorem is the following.

Theorem 1.2. �ere is a polynomial-time algorithm for Maximum Weight Efficient Dominating Set on P6-free graphs.

Prior to our work, the P6 was the only graph H , connected or not, for which the complexity of Efficient Dominating Set
on H -free graphs was unknown [10]. �us our work completes the complexity classi�cation of Efficient Dominating Set
(and Maximum Weight Efficient Dominating Set) on classes of graphs de�ned by a single forbidden induced subgraph and
resolves the main open problem of [9, 10, 13, 15]. We remark that an alternative polynomial-time algorithm for Maximum Weight
Efficient Dominating Set on P6-free graphs has been independently obtained by Brandstädt and Mosca [18–20] using di�erent
methods.2

Methodology. �e polynomial-time algorithm for Maximum Weight Independent Set on P5-free graphs of Lokshtanov et
al. [41] demonstrated that investigating potential maximal cliques and minimal separators (see Section 2 for de�nitions) yields
valuable insights on the structure of P5-free graphs. Our algorithm for P6-free graphs is also based on studying potential maximal
cliques and minimal separators. However, this is where the similarity between the two algorithms ends, as essentially all of the
arguments used in the algorithm for P5-free graphs quickly break down for P6-free graphs.

At heart our algorithm is very simple: the algorithm picks a node v and proceeds recursively in two branches. In the �rst v
is included in the independent set, and the algorithm needs to solve G − N (v) recursively. In the second v is excluded from the

2Although [18] appeared on arXiv a few weeks a�er this paper, the authors of [18–20] contacted us and shared with us a preliminary version of [18–20] immediately
a�er we posted our work.

2

independent set, and the algorithm is called recursively on G − v . If in any recursive call the graph becomes disconnected the
algorithm solves the connected components independently. �e crux of the analysis is to show that one can always cleverly chose
the vertex v , such that a�er only a few branches either the size of the graph decreases by at least 0.1n, or the graph breaks into
connected components of size at most 0.9n.

Roughly speaking, the vertex v to branch on is chosen as follows. �e algorithm identi�es a nuke in G: a relatively small vertex
set S such that every connected component ofG − S has size at most 0.9n (for a formal de�nition of a nuke, see De�nition 4.1). �e
algorithm then picks a vertex v with a large neighborhood in S to branch on. In order to guarantee the existence of a nuke S and a
vertex v with a large neighborhood in S we prove the following theorem about minimal separators in P7-free graphs.

Theorem 1.3. �ere exists a positive constant 0 < α ≤ 1 such that for every P7-free graph G, for every minimal separator S in G,

and for every probability measure µ on S , there exists a vertex v ∈ V (G) satisfying µ (N (v) ∩ S) ≥ α .

�e reason that �eorem 1.3 is not already su�cient to yield a quasipolynomial-time algorithm for Independent Set on P7-free
graphs is that, despite the similarity between the de�nitions of nukes and minimal separators, not all nukes are minimal separators.
For P6-free graphs we are able to prove an analogue of �eorem 1.3 for nukes rather than minimal separators, and this is su�cient
to give a nO (log2 n)-time algorithm for Maximum Weight Independent Set. As a �rst step to li� �eorem 1.3 to work for nukes
we generalize it to potential maximal cliques in P7-free graphs.

Theorem 1.4. �ere exists a positive constant 0 < β ≤ 1 such that for every connected P7-free graphG on at least two vertices, for

every potential maximal clique Ω inG , and every probability measure µ on Ω, there exists a vertexv ∈ V (G) satisfying µ (N (v)∩Ω) ≥ β .

�eorem 1.4 turns out to be very useful not only in our quasipolynomial-time algorithm for Maximum Weight Independent
Set, but for the polynomial-time algorithm for Maximum Weight Efficient Dominating Set as well. Indeed, an almost
immediate consequence of �eorem 1.4 is that for any P7-free graph G, any e�cient dominating set X in G and any potential
maximal clique Ω in G, |X ∩ Ω | ≤ 1/β (see Lemma 6.2 for a simple proof).

�e observation above strongly suggests that one can solve Maximum Weight Efficient Dominating Set on P7-free graphs
in polynomial time by doing dynamic programming over the tree decomposition of an arbitrarily chosen minimal triangulation
of G. For P7-free graphs this approach fails, as is expected from the NP-completeness of Efficient Dominating Set on P7-free
graphs [15, 58]. On the other hand, for P6-free graphs, we are able to carry this approach through.

We mention here that this approach follows a completely disjoint direction from the one followed in recent papers [9, 13]
that gave polynomial-time algorithms for subclasses of P6-free graphs. In particular, those papers show that one can reduce to
Maximum Weight Independent Set on the square of the graph by proving special properties of the square when the graph is
from such a subclass and has an e�cient dominating set.

Furthermore, the drawback of our approach is that it inherently leads to a huge degree of the polynomial in the running time
bound in �eorem 1.2. A careful inspection of our proofs shows that we prove �eorem 1.4 with β = 1/576. As the dynamic
programming algorithm enumerates all subsets of a potential maximal clique up to size 1/β , this enumeration adds a factor of n576

to the running time bound. Since the running time bound of Brandstädt and Mosca [18–20] is much be�er, we refrain from a
precise estimation of the running time bound of the algorithm of �eorem 1.2.

Outline of the paper. In § 2 we set up the de�nitions and necessary notations. In § 3 we prove �eorems 1.3 and 1.4, while
§ 4 contains the generalization of �eorem 1.3 to nukes. We then proceed to the main algorithmic results, § 5 contains the
quasipolynomial-time algorithm for Maximum Weight Independent Set, while § 6 contains the polynomial-time algorithm
for Maximum Weight Efficient Dominating Set, both on P6-free graphs. In § 7 we conclude with some open problems and
counterexamples to the most natural generalizations of the structural results underlying our algorithms.

2 PRELIMINARIES

For all graph terminology not de�ned here, we refer to the monograph by Diestel [26]. For a graph G and sets A,B ⊆ V (G), we
denote NB (A) := N (A) ∩ B.

Let G be a graph; throughout, we assume that all graphs are �nite, simple, and undirected. Given distinct, non-adjacent
s,t ∈ V (G), a set S ⊆ V (G) is an s-t separator if s and t are in distinct components of G \ S . We say that S ⊆ V (G) is a minimal s-t

3

separator if no S ′ (S is also an s-t separator. �en S ⊆ V (G) is a (minimal) separator of G if S is a (minimal) s-t separator for
some s,t ∈ V (G). Given a separator S ⊆ V (G), a component C of G \ S is said to be full if every vertex of S has a neighbor in C . It
can be shown that S is a minimal separator if and only if G \ S has at least two full components (cf. Golumbic [32, Ch. 4 Ex. 10]).

A set M ⊆ V (G) is a module of G if every vertex v ∈ V (G) \ M is either fully adjacent or fully anti-adjacent to M ; that is,
either vu ∈ E (G) for each u ∈ M or vu < E (G) for each u ∈ M . A module M of G is trivial if M = V (G), M = ∅, or |M | = 1.
A graph is prime if it only has trivial modules. A modular partitionM of G is a set of disjoint modules of G with union V (G).
�e quotient graph G/M induced byM has a vertex for each module ofM and has an edge between two vertices if and only
if the corresponding modules are fully adjacent to each other. Observe that, by de�nition, a non-edge between two vertices in
the quotient graph implies that the corresponding modules are fully anti-adjacent to each other. A module M of G is proper if
M , V (G). A module M of G is strong if for every other module M ′ of G, either M ⊆ M ′, M ′ ⊆ M , or M ∩M ′ = ∅.

Theorem 2.1 ([35, Theorem 2]). Let G be a connected graph on at least two vertices and letM denote the set of maximal proper

strong modules of G. �enM is a modular partition of G, and the quotient graph G/M is either a clique or a prime graph.

A graph G is chordal if every induced cycle of G has length three. A clique tree for a graph G is a pair (T ,Φ) where T is a
tree and Φ is a bijection between V (T) and the set of maximal cliques of G, and for every v ∈ V (G), the vertices t ∈ V (T) for
which v ∈ Φ(t) induce a subtree of T . Equivalently, for every pair t ,t ′ ∈ V (T) and every t ′′ ∈ V (T) on the path between t and t ′,
Φ(t) ∩ Φ(t ′) ⊆ Φ(t ′′). It is known that a graph is chordal if and only if it admits a clique tree [23, 29, 56, 57]. Moreover, since the
number of maximal cliques of a chordal graph G is at most |V (G) | [28], a clique tree of a chordal graph can be constructed in
polynomial time.

A tree decomposition of a graphG is a pair (T ,Π) whereT is a tree and Π : V (T) → 2V (G) such that the following three properties
hold: V (G) =

⋃
t ∈V (T) Π(t); for each uv ∈ E (G) there is a t ∈ V (T) such that u,v ∈ Π(t); for each v ∈ V (G), the vertices t ∈ V (T)

for which v ∈ Π(t) induce a subtree of T .
A triangulation of a graphG is a set F ⊆ ((V (G)×V (G)) \ {vv | v ∈ V (G)}) \E (G) such that the graphG + F := (V (G),E (G)∪ F)

is chordal. We say that F is a minimal triangulation of G if no F ′ (F is a triangulation of G.
A potential maximal clique of G is a set Ω ⊆ V (G) such that Ω induces a maximal clique in some minimal triangulation of G.

We need the following properties of potential maximal cliques due to Bouchi�é and Todinca [8].

Theorem 2.2 ([8, Lemma 3.14]). Let G be a graph. If Ω ⊆ V (G) is a potential maximal clique of G, then for every connected

component C of G \ Ω, the set NG (C) ⊆ Ω is a minimal separator of G.

Theorem 2.3 ([8, Theorem 3.15]). LetG be a graph. A set Ω ⊆ V (G) is a potential maximal clique ofG if and only if the following

two conditions hold:

(1) for every connected component C of G \ Ω, we have NG (C) (Ω;

(2) for every two distinct vertices x ,y ∈ Ω, either xy ∈ E (G) or there exists a component C of G \ Ω such that x ,y ∈ NG (C) (in

this case we say that the non-edge xy is covered by the component C).

�roughout the paper, we use the following notation for probability measures. LetU be a universe and X ⊆ U . If we de�ne µ as
a probability measure on X , then we implicitly assume that µ (v) = 0 for all v ∈ U \ X . �is implies that for any Y ⊆ U , it holds
that µ (Y) = µ (Y ∩ X). Moreover, if µ is a probability measure on X and Z ⊆ X with µ (Z) > 0, then the restriction of µ to Z is the
probability measure µ ′ on Z such that µ ′(v) = µ (v)/µ (Z) for all v ∈ Z .

Finally, throughout the paper, we o�en identify graphs and connected components with their vertex sets.

3 HITTING SEPARATORS AND POTENTIAL MAXIMAL CLIQUES

3.1 Proof of Theorem 1.3

For the sake of convenience, we �rst restate �eorem 1.3.

Theorem 1.3. �ere exists a positive constant 0 < α ≤ 1 such that for every P7-free graph G, for every minimal separator S in G,

and for every probability measure µ on S , there exists a vertex v ∈ V (G) satisfying µ (N (v) ∩ S) ≥ α .

4

S

x

y

A

S

x

y

A

Fig. 1. Two possibilities for (x, y) being lucky.

We now prove the theorem. Let G be a graph, let S be a minimal separator of G, let µ be any probability measure on S , and let
0 < α ≤ 1 be some constant chosen later. For the sake of contradiction, assume that for every v ∈ V (G) we have µ (N (v)) < α .
�is implies that µ (x) < α for every x ∈ S , because by the minimality of S , x has a neighbour v in some (full) component of G \ S ,
and thus µ (x) ≤ µ (N (v)) < α .

Let A and B be two full components of G \ S . We say that x ∈ S is lucky (with respect to A) if there exists an induced P4 in G

with one endpoint in x and the remaining three vertices in A. We say that an ordered pair (x ,y) ∈ S × S is lucky (with respect to A)
if x is lucky or there exists an induced P4 in G with endpoints x and y and its middle two vertices in A. We emphasize here that
this de�nition is not symmetric with respect to x and y. �e following lemma is the crucial step in the argumentation.

Lemma 3.2. Let G be a graph, and let S , µ, α , A, and B as above; in particular, µ (N (v)) < α for every v ∈ V (G). If we choose two

vertices x ,y ∈ S independently at random according to distribution µ, then the probability that (x ,y) is not lucky with respect to A (or

B) is less than 6α .

Proof. If |A| = 1, then the single vertex a of A is adjacent to all vertices of S , as A is a full component of G \ S . Hence,
µ (N (a)) = 1 > α , a contradiction. �erefore, |A| > 1.

Consider the graph G[A], and letM be the family of maximal proper strong modules of G[A]. Note thatM is a modular
partition and that the quotient graph of this partition is a clique or a prime graph (�eorem 2.1), since G[A] is connected and
|A| > 1. Now pick two arbitrary vertices p,q ∈ A in two distinct modules ofM that are adjacent in the quotient graph. We can
indeed pick such p,q, because the quotient graph is connected, as G[A] is connected. Moreover, |M| > 1, because for all modules
M ∈ M it holds that M , V (G) by the fact that M is proper; note thatM , ∅, because |A| > 1 and thus the set of singleton
modules (one for each vertex) is a family of proper strong modules.

Consider some (x ,y) ∈ S × S that are chosen independently at random according to distribution µ. In the following, we
continuously use that µ (N (v)) < α for every v ∈ V (G) and µ (u) < α for every u ∈ S . With probability less than 2α we have
x ∈ N (p) ∪ N (q), and with probability less than 2α we have x = y or xy ∈ E (G). Furthermore, with probability less than α we
have N (y) ∩A ⊆ N (x) ∩A, since for a �xed choice of y and v ∈ N (y) ∩A, the probability that x ∈ N (v) is at most α . Now assume
that none of the aforementioned events happen, and pick arbitrary r ∈ (N (y) \ N (x)) ∩A.

Let F be the family of connected components of G[A \ N (x)]. Consider anyC ∈ F and any vertex v ∈ N (x) ∩A. If v is neither
fully adjacent nor fully anti-adjacent to C , then since C is connected, there exist two neighbouring vertices u,w ∈ C such that
u ∈ N (v) and w < N (v). Since u,w < N (x) by the de�nition of C and F , the vertices x ,v,u,w form a P4 in G with one endpoint
in x ; then x is lucky, and by extension (x ,y) is lucky. Hence, we may assume that for every C ∈ F and every v ∈ N (x) ∩A, the
vertex v is either fully adjacent or fully anti-adjacent to C . In particular, every C ∈ F is a module of G[A].

5

S

x

y

A

N
(x
)
∩
A

C
p

S

x

y1

y2A B

Fig. 2. The le� panel shows part of the reasoning of Lemma 3.2 with the choice ofC being the connected component ofG[A \N (x)] that contains
p . The right panel shows an archetypical P7 constructed in the proof of Theorem 1.3.

Consider the component C ∈ F that contains the vertex p; note that C exists, because x < N (p) by assumption (see Fig. 2).
Since C is a module of G[A] andM is the family of maximal proper strong modules of G[A], either there exists a module M ∈ M
that contains C , or C is a union of several modules ofM and the quotient graph G[A]/M is a clique.

If C ⊆ M for some M ∈ M, then consider the module M ′ ∈ M that contains q. By the choice of M and M ′, M ′ is fully adjacent
to M , and in particular, M ′ is fully adjacent to C . Since C ∈ F and C ⊆ M , we have that M ′ cannot contain any vertices of any
other component in F . Hence, M ′ ⊆ N (x). However, q < N (x), a contradiction.

�erefore, C is a union of several modules of M and the quotient graph G[A]/M is a clique. �en C is fully adjacent to
A \C , and in particular to every C ′ ∈ F \ {C}, which implies that F = {C}. �erefore, there exists a vertex v ∈ N (x) ∩A with
A \ N (x) ⊆ N (v), because G[A] is connected and C = A \ N (x) is a module. Observe that y ∈ N (v) with probability less than α ,
since µ (N (v)) < α . If this does not happen (i.e., y < N (v)), then x ,v,r ,y form a P4, as r ∈ (N (y) \N (x)) ∩A. Hence, (x ,y) is lucky.

By the union bound, the total probability that any of the aforementioned events happen is less than 6α . �e lemma follows. �

We are now ready to conclude the proof of �eorem 1.3. Pick three vertices x ,y1,y2 ∈ S independently at random, each with
distribution µ. �e goal will be to �nd a P4 in A from x (possibly to y1) and a P4 in B from x (possibly to y2) that jointly form a
P7 in G. Consider the following set of “bad” events. In the below, we repeatedly rely on Lemma 3.2 and the assumptions that
µ (N (v)) < α for every v ∈ V (G) and µ (u) < α for every u ∈ S .

• (x ,y1) is not lucky with respect to A; this happens with probability less than 6α . Otherwise, let P1 be the witnessing P4.
• (x ,y2) is not lucky with respect to B; this happens with probability less than 6α . Otherwise, let P2 be the witnessing P4.
• Some vertices from the set {x ,y1,y2} are equal or adjacent; this happens with probability less than 6α .
• One of the (two or three) vertices from V (P1) ∩ A is adjacent to y2; since the choice of x and y1 is independent of the

choice of y2, and the path P1 is a function of the pair (x ,y1) only, this happens with probability less than 3α (y2 needs to
land outside the neighbourhoods of V (P1) ∩A).

• One of the (two or three) vertices from V (P2) ∩ B is adjacent to y1; since the choice of x and y2 is independent of the
choice of y1, and the path P2 is a function of the pair (x ,y2) only, this happens with probability less than 3α (y1 needs to
land outside the neighbourhoods of V (P2) ∩ B).

By the union bound, the probability that none of the aforementioned “bad” events happen is greater than 1 − 24α . Hence, for sure
when α = 1

24 , there is a choice of x ,y1,y2 ∈ S for which the paths P1 and P2 exist and jointly form a P7 in G . Hence, if G is P7-free,
then there is a vertex v ∈ V (G) satisfying µ (N (v)) ≥ α for some constant α > 0 (in fact even α ≥ 1

24).
6

Ω

C1 C3

C2

N
(C

1
) N

(C
3)

N(C2)

Fig. 3. Illustration of the proof of Lemma 3.3 for H = P4.

3.2 Proof of Theorem 1.4

�e main tool in the proof is the following general lemma.

Lemma 3.3. Let H be a graph on nH vertices andmH edges, letG be a graph, let Ω be a potential maximal clique inG , and let µ be

a probability measure on Ω. �en there exists either:

(1) a vertex v ∈ V (G) with µ (v) > 1
2n2

H
or with µ (N (v)) > 1

2n2
H
;

(2) a minimal separator S ⊆ V (G) of G with µ (S) > 1
2nHmH

; or

(3) an induced subgraph ofG isomorphic to a graph obtained from H by replacing every edge by a path of length at least two (i.e.,

subdividing at least once).

Proof. Let H ,G , Ω, and µ be as in the statement, and assume for the sake of contradiction that neither of the �rst two outcomes
happen. Consider the following random experiment: independently, for every p ∈ V (H), choose a vertex xp ∈ Ω according to the
distribution µ.

For two distinct vertices p,q ∈ V (H), we have xp = xq with probability at most 1
2n2

H
, and xpxq ∈ E (G) (i.e., xq ∈ N (xp)) with

probability at most 1
2n2

H
. Consequently, all vertices X := {xp : p ∈ V (H)} are pairwise distinct and nonadjacent with probability at

least
1 −

(
nH
2

)
· 2 · 1

2n2
H
>

1
2 .

Assume that the aforementioned event happens. For every two distinct and nonadjacent vertices x ,y ∈ Ω, �x a component
C (x ,y) ofG \Ω that covers the non-edge xy (i.e., x ,y ∈ N (C)). For every edge pq ∈ E (H), consider the componentCpq := C (xp ,xq).
As the choices of xr for distinct vertices r ∈ V (H) are independent, the probability that xr ∈ N (Cpq) for a �xed r ∈ V (H) \ {p,q}

is at most 1
2nHmH

, since N (Cpq) is a minimal separator of G by �eorem 2.2 and thus µ (N (Cpq)) ≤
1

2nHmH
by assumption.

Consequently, the probability that X is an independent set of size nH and for every pq ∈ E (H) we have N (Cpq) ∩ X = {xp ,xq } is
strictly greater than

1
2 − nHmH ·

1
2nHmH

= 0.

If this event happens, then for every pq ∈ E (H) choose a shortest path between xp and xq with internal vertices in Cpq . �e
union of all aforementioned paths forms an induced subgraph of G isomorphic to a graph obtained from H by replacing each edge
with a path of length at least two, obtaining the last outcome. �

For the sake of convenience, we restate �eorem 1.4, and then prove it using Lemma 3.3.

Theorem 1.4. �ere exists a positive constant 0 < β ≤ 1 such that for every connected P7-free graphG on at least two vertices, for

every potential maximal clique Ω inG , and every probability measure µ on Ω, there exists a vertexv ∈ V (G) satisfying µ (N (v)∩Ω) ≥ β .

7

Proof. Let G be a connected P7-free graph on at least two vertices, let Ω be a potential maximal clique of G, let µ be any
probability measure on Ω, and let 0 < β ≤ 1 be some constant chosen later. Let α denote the constant of �eorem 1.3. For sure, if
β = min{ α24 ,

1
32 }, then the following happens. Apply Lemma 3.3 with H = P4 and consider its outcomes:

(1) If µ (N (v)) > 1
32 ≥ β , then we are done. Otherwise, if µ (v) > 1

32 ≥ β , then by connectivity of G there is a vertex u ∈ N (v)

with µ (N (u)) ≥ β .
(2) Note that µ (S) > 1

24 . Apply �eorem 1.3 to S and the restriction µ ′ of µ to S ; recall that µ (S) > 0.1, so this restriction is
well de�ned. It follows that there is a v ∈ V (G) with µ ′(N (v)) ≥ α and thus µ (N (v)) > α

24 ≥ β .
(3) By the choice of H , this implies the existence of an induced P7 in G, a contradiction.

�erefore, there is a vertex v ∈ V (G) satisfying µ (N (v)) ≥ β for some contant β > 0 (in fact even β ≥ 1
576). �

4 NUKING A GRAPH

In this section we study the following notion.

De�nition 4.1 (nuke, shelter). For a constant 0 < η ≤ 0.1 and a threshold τ ≥ 0, a set of vertices X is a (η,τ)-nuke in a graph G if
the following holds:

(i) (1 − 2η) |V (G) | ≤ τ ≤ (1 − η) |V (G) |

(ii) |X | ≤ η |V (G) |;
(iii) for every connected component C of G − X we have |C | + |X | ≤ τ .

Given a (η,τ)-nuke X in G, any connected component of G − X is called a shelter.3 If the parameters η and τ are clear from the
context, we will simply call the set X a nuke in G.

Intuitively, a nuke is a small set of vertices in G whose removal breaks G into connected components of multiplicatively smaller
size. Our algorithm keeps track of a nuke X in the given input P6-free graph G and tries to branch on vertices of G so that X
will be removed from G as quickly as possible. �is motivation introduces two delicate issues that result in a slightly technical
de�nition of a nuke. First, during branching we need to keep the threshold τ constant, while the size of G drops a bit — if we
de�ne the nuke so that, say, |C | + |X | ≤ (1 − η) |V (G) |, a set X may stop to be a nuke due to a removal of a vertex from G and
consequent decrease of the bound (1 − η) |V (G) |. Second, we would like to argue about inclusion-wise minimal nukes, which makes
the measure |C | + |X | (as opposed to simply |C |) more natural, as we can then assume that every element of an inclusion-wise
minimal nuke is adjacent to at least two shelters.

�e rest of this section is devoted to a proof of the following structural statement.

Theorem 4.2. �ere exists a constant 0 < γ ≤ 1 such that for every constant 0 < η ≤ 0.1, for every connected P6-free graphG on at

least two vertices, for every threshold (1 − 2η) |V (G) | ≤ τ ≤ (1 − η) |V (G) |, for every inclusion-wise minimal (η,τ)-nuke X in G, and

for every probability measure µ on X , there exists a vertex v ∈ V (G) with µ (N (v)) ≥ γ .

Let η, τ ,G , X , and µ be as in the statement of �eorem 4.2. We set γ = 0.1β ≤ 0.1, where the constant β comes from �eorem 1.4.
We will prove �eorem 4.2 by contradiction: assume that for every v ∈ V (G) we have µ (N (v)) < γ . We will unravel subsequent
observations about the structure of G, leading to a �nal contradiction.

We start with the following observation.

Claim 4.3. �ere exists a minimal triangulation Ĝ of G, such that X is a (η,τ)-nuke of Ĝ as well and, moreover, the shelters of

Ĝ − X are exactly the same as of G − X .

Proof. Consider the following completion G0 of G: we �rst turn X into a clique and then, for every shelterC of G −X we turn
C into a clique and make it completely adjacent to X . Clearly,G0 is a chordal graph, and the set of connected components ofG0 −X

and G − X are the same. Consequently, any minimal triangulation Ĝ of G that is a subgraph of G0 has the required properties. y

We �x a minimal triangulation Ĝ of G satisfying the statement of Claim 4.3. Observe the following.
3�e main motivation for introducing the notion of a shelter is to explicitly distinguish connected components of G − X from connected components of G − Ω for
some potential maximal clique Ω; we will call the former shelters, while the la�er will be simply connected components.

8

Claim 4.4. If two vertices v,u ∈ V (G) \ X appear in the same maximal clique of Ĝ, then they are contained in the same shelter of

G − X .

Proof. Recall that X is a nuke of Ĝ as well, with Ĝ − X having the same set of shelters as G − X . Furthermore, uv ∈ E (Ĝ). y

Claim 4.5. For any maximal clique Ω in Ĝ we have µ (Ω) ≤ 0.1.

Proof. Suppose for the sake of contradiction that µ (Ω) > 0.1 for some maximal clique Ω in Ĝ. Since Ĝ is already triangulated,
Ω is a potential maximal clique in Ĝ too. Moreover, by the conditions on G , Ĝ is P7-free (even P6-free) and has at least two vertices.
Now apply �eorem 1.4 to Ĝ , Ω, and µ restricted to Ω; recall that µ (Ω) > 0.1 by assumption, so this restriction is well de�ned. Let
v be the resulting vertex. �en µ (N (v)) ≥ 0.1β = γ , a contradiction (recall that we assumed that µ (N (v)) < γ at the beginning of
the proof of �eorem 4.2). y

Claim 4.6. �ere exists a maximal clique Ω in Ĝ such that for every connected component C of G − Ω we have µ (C) ≤ 0.5.

Proof. Construct the clique tree (T ,Φ) of Ĝ . Now, starting from an arbitrary vertex v of T , iteratively advance to the neighbor
of v in a subtree T ′ of T −v for which µ (Φ(T ′) \ Φ(v)) > 0.5, until no longer possible. If we can show this process is �nite, then
Φ(v) is a maximal clique in Ĝ with the desired property.

To show that this process is �nite, note that in each iteration, there is at most one subtree into which we can advance by
the properties of a clique tree. Now suppose that the process advances from a vertex v to its neighbor u and then back to v .
Let Tv denote the subtree of T − uv containing v and Tu the subtree of T − uv containing u. First, note that µ (Φ(Tu) \ Φ(v)) >
0.5 by assumption. However, µ (Φ(Tv) \ Φ(u)) > 0.5 by assumption as well. By the properties of a clique tree, the la�er
implies that µ (Φ(Tv) \ Φ(v)) + µ (Φ(v) \ Φ(u)) = µ (Φ(Tv) \ Φ(u)) > 0.5 and thus µ (Φ(Tv) \ Φ(v)) + µ (Φ(v)) > 0.5. However,
µ (Φ(Tv) \ Φ(v)) + µ (Φ(Tu) \ Φ(v)) + µ (Φ(v)) ≤ 1, because Φ(Tv) ∩ Φ(Tu) ⊆ Φ(v) by the properties of a clique tree. Combined,
this means that µ (Φ(Tu) \ Φ(v)) < 0.5, a contradiction. Hence, the process is �nite by the �niteness of T . y

Fix one maximal clique Ω as promised by Claim 4.6. We say that a component C of G − Ω is nuked if C ∩ X , ∅.

Claim 4.7. �ere are at least two nuked components.

Proof. By the choice of Ω, every nuked component contains at most half of the measure of X . Furthermore, by Claim 4.5,
µ (Ω) ≤ 0.1. �us, there are at least two nuked components. y

By Claim 4.4, all vertices of Ω \ X are contained in one shelter of G − X . Let D be this shelter; we set D = ∅ if Ω ⊆ X .

Claim 4.8. |D | ≥ (0.5 − 3η) |V (G) | ≥ 0.2|V (G) |.

Proof. By Claim 4.7, there exists a nuked component C with |C | ≤ |V (G) |/2. Consider the set X ′ = X \C . By the minimality
of X , X ′ is not a (η,τ)-nuke in G. However, as |X ′ | < |X | ≤ η |V (G) |, both condition (i) and (ii) of De�nition 4.1 hold. Hence, the
only reason for X ′ to not be a nuke is that condition (iii) does not hold, and thus there exists a shelter C ′ of G − X ′ that is too
large, that is, |C ′ | + |X ′ | > τ . By the construction of X ′, the shelters of G − X ′ and G − X are the same, except for C ∪ D, which is
a shelter of G − X ′, but may contain multiple shelters of G − X . �erefore C ′ = C ∪ D. Hence, using condition (i) of De�nition 4.1,

(1 − 2η) |V (G) | ≤ τ < |C ′ | + |X ′ | ≤ |C | + |D | + |X ′ | ≤ |V (G) |/2 + |D | + |X | ≤ (0.5 + η) |V (G) | + |D |.

y

Note that Claim 4.8 in particular implies that D , ∅, that is, Ω is not completely contained in X .

Claim 4.9. X = N (D).

Proof. Clearly, N (D) ⊆ X . By the minimality of X , it su�ces to show that N (D) is a nuke in G . Condition (i) of De�nition 4.1
holds trivially, and condition (ii) holds by the fact that |N (D) | ≤ |X |. Hence, it remains to verify that condition (iii) holds. Consider

9

Ω

X ∩ Ω

N
(C

)

C

X
∩
C

v

D′

Fig. 4. Illustration of the proof of Claim 4.12. In this and all subsequent figures in this section the nuke is depicted gray. Furthermore, in this and
the next two figures the component D is marked with gray dots.

a shelter D ′ ofG −N (D). If D ′ = D, then |D ′ |+ |N (D) | ≤ |D |+ |X | ≤ τ by the assumption thatX is a nuke. Otherwise, by Claim 4.8
and the assumption η ≤ 0.1 we have

|D ′ | + |N (D) | ≤ |V (G) \ D | ≤ (0.5 + 3η) |V (G) | ≤ (1 − 2η) |V (G) | ≤ τ .

Hence, N (D) is a nuke, which by the minimality of X implies that X = N (D). y

Claim 4.10. For every nuked component C of G − Ω it holds that N (C) \ X , ∅, that is, there exists a non-nuked vertex in the

neighbourhood of C .

Proof. A direct corollary from the facts that X = N (D), D is connected, and contains vertices of Ω. y

Claim 4.11. For every x ∈ X there exists a shelter D ′ of G − X that is di�erent from D and contains a vertex adjacent to x .

Proof. If that is not the case, then X \ {x } is a nuke as well. Indeed, conditions (i) and (ii) of De�nition 4.1 hold trivially.
For condition (iii), note that each shelter of X is still a shelter of X \ {x }, except the shelter D, which becomes a shelter D ∪ {x }.
However, |D ∪ {x }| + |X \ {x }| = |D | + |X | ≤ τ . Hence, X \ {x } is a nuke, contradicting the minimality of X . y

Our goal is now to exhibit a restricted structure of the nuked components of G − Ω, using the fact that G is P6-free. Intuitively,
every nuked component gives rise to a potential P3 or even P4 sticking into such a component; by combining two such paths we
should obtain a forbidden P6. �e next four observations assert the existence of such sticking out P3s and P4s.

Claim 4.12. For every nuked component C ofG − Ω, and every v ∈ N (C) \X , there exists a P3 inG with one endpoint in v and the

remaining two vertices in C .

Proof. See Fig. 4 for an illustration of the proof. Let x ∈ C ∩ X , and let D ′ be a shelter of G − X di�erent from D and adjacent
to x , whose existence is asserted by Claim 4.11. Since N (C) \ X ⊆ D, we have D ′ ⊆ C . Consequently, D ′ ∩ N (v) = ∅, in particular
C is not contained in N (v). �e existence of the asserted P3 follows from the connectivity of C . y

Claim 4.13. For every nuked component C of G − Ω with µ (C) ≥ 0.1 and for every v ∈ N (C) there exists a P3 in G with one

endpoint in v and the remaining two vertices in C .

Proof. If such a P3 does not exist, by the connectivity of C we have C ⊆ N (v). However, then µ (N (v)) ≥ µ (C) ≥ 0.1. y

Claim 4.14. For every nuked component C of G − Ω, if there exists a vertex x ∈ (C ∩ X) \ N (Ω \ X), then there exists a nonempty

set Z ⊆ N (C) \ X such that for every v ∈ Z there exists a P4 in G with one endpoint in v and the remaining three vertices in

C \ N (N (C) \ (X ∪ Z)).

Proof. See Fig. 5 for an illustration of the proof. De�ne Z to be the set of vertices in N (C) \ X that are reachable from x via a
path with all internal vertices in C ∩ D. �e fact that Z is nonempty follows from the facts that D is connected, ∅ , N (C) \X ⊆ D,
and x ∈ X = N (D). Note that Z ⊆ Ω, because Z ⊆ N (C) and C is a (nuked) component of G − Ω.

10

Ω

X ∩ Ω

Z

C

X ∩ C

v

x

D′

Fig. 5. Illustration of the proof of Claim 4.14.

Ω

X ∩ Ω

N
(C

)

C

X
∩
C

v

u

x

D′

Fig. 6. Illustration of the proof of Claim 4.15.

Consider any v ∈ Z . Let P be a shortest path from v to x with all internal vertices in C ∩ D. By the de�nition of Z , such a
path exists. Since P is a shortest path, it is an induced one. Furthermore, since Z ⊆ Ω while x < N (Ω \ X), the path P contains at
least three vertices. Prolong P with a neighbour of x in D ′, a shelter di�erent than D adjacent to x (whose existence is asserted
by Claim 4.11), obtaining a path on at least four vertices with one endpoint in v and remaining vertices in C .

To �nish the proof, it su�ces to argue that no vertex of P except for v may have a neighbour in N (C) \ (X ∪ Z). �is statement
is true for the part of P contained inC ∩D, by the de�nition of Z . By assumptions, x has no neighbour in Ω \X . Finally, no vertex
in D ′ is adjacent to any vertex of N (C) \ (X ∪ Z) ⊆ D. y

Claim 4.15. For every nuked component C of G − Ω, for every two vertices u,v ∈ N (C) \ X , if there exists a vertex x ∈

C ∩ X ∩ (N (v) \ N (u)), then there exists a P3 in G with one endpoint in v and the remaining two vertices in C \ N (u).

Proof. See Fig. 6 for an illustration of the proof. Let D ′ be a shelter of G − X , di�erent from D and adjacent to x , whose
existence is asserted by Claim 4.11. For the required P3, take the vertices v , x , and any vertex of N (x) ∩ D ′. y

We now study the possible relations between the neighbourhoods of nuked components. �e following observation serves as a
starting point.

Claim 4.16. For every two nuked components C1,C2 of G \ Ω it holds that N (C1) \ X ⊆ N (C2) \ X or N (C2) \ X ⊆ N (C1) \ X .

Proof. See Fig. 7 for an illustration of the proof. By contradiction, assume that there exists vi ∈ N (Ci) \ (X ∪ N (C3−i)) for
i = 1,2. For i = 1,2, let P i be a P3 with endpoint in vi and other vertices in Ci , whose existence is asserted by Claim 4.12. If
v1v2 ∈ E (G), then concatenated paths P1 and P2 form a P6, a contradiction. Otherwise, by �eorem 2.3 there exists a component
C of G \ Ω with v1,v2 ∈ N (C). Clearly, C , Ci for i = 1,2. Hence, by concatenating P1, a shortest path from v1 to v2 through C ,
and P2, we obtain an induced path on at least 7 vertices, a contradiction. y

Claim 4.16 allows us to order the nuked components of G − Ω as C1,C2, . . . ,Cr , so that

N (C1) \ X ⊇ N (C2) \ X ⊇ . . . ⊇ N (Cr) \ X .

11

Ω

X ∩ Ω

N(C1) N(C2)

C1 C2

X
∩
C

1

X
∩
C

2

v1 v2

Fig. 7. Illustration of the proof of Claim 4.16. The do�ed connection between v1 and v2 may be realized through a third component.

Ω

X ∩ Ω

N(Ci) ∪N(Cj)

Ci Cj

X
∩
C

1

X
∩
C

2

v u

Fig. 8. Illustration of the proof of Claim 4.17. The existence of the do�ed connection between v and u is implied by the linkedness of Ci and Cj .

By Claim 4.7, r ≥ 2.
We say that two nuked componentsCi andCj , 1 ≤ i, j ≤ r , i , j are linked if for every choice ofu ∈ N (Ci) \X andv ∈ N (Cj) \X

there exists an induced path in G with endpoints u and v and all internal vertices inV (G) \N [Ci ∪Cj]. We remark that if u = v or
uv ∈ E (G), then the last assertion is true, as we can take an one- or two-vertex path, respectively.

In the next few observations we investigate the properties of linked components.

Claim 4.17. If Ci and Cj are linked, then for every two vertices u,v ∈ Ω \ X , one of the following holds:

(1) N (u) ∩ X ∩Ci = N (v) ∩ X ∩Ci ,

(2) N (u) ∩ X ∩Cj = N (v) ∩ X ∩Cj ,

(3) N (u) ∩ X ∩ (Ci ∪Cj) (N (v) ∩ X ∩ (Ci ∪Cj), or

(4) N (v) ∩ X ∩ (Ci ∪Cj) (N (u) ∩ X ∩ (Ci ∪Cj).

Proof. See Fig. 8 for an illustration of the proof. Assume the contrary. By symmetry, we can consider only the case where
(N (v)∩Ci ∩X)\N (u) , ∅ and (N (u)∩Cj ∩X)\N (v) , ∅. Clearly,v ∈ N (Ci)\X ,u ∈ N (Cj)\X , andu , v . By applying Claim 4.15
twice, we obtain a P3 Pv with endpoint in v and the remaining two vertices in Ci \ N (u), and a P3 Pu with endpoint in u and the
remaining two vertices in Cj \ N (v). �ese two paths, together with the induced path between u and v promised by the fact that
Ci and Cj are linked, yield an induced path on at least six vertices, a contradiction. y

With every nuked component Ci we associate the family Fi := {N (v) ∩Ci ∩ X : v ∈ Ω \ X }.

Claim 4.18. If Ci and Cj are linked, then Fi or Fj has a unique maximal element with respect to inclusion.

Proof. Assume otherwise. Letu,v ∈ Ω\X be such thatAu := N (u)∩Ci ∩X andAv := N (v)∩Ci ∩X are two di�erent maximal
elements of Fi , and p,q ∈ Ω \X be such that Bp := N (p) ∩Cj ∩X and Bq := N (q) ∩Cj ∩X are two di�erent maximal elements of
Fj . By Claim 4.17 we have N (u) ∩Cj ∩X = N (v) ∩Cj ∩X ; let us denote this set by B. Similarly, N (p) ∩Cj ∩X = N (q) ∩Cj ∩X ,

12

and we denote this set A. If B and Bp are incomparable with respect to inclusion, then Claim 4.17 asserts that A = Au (for pair
u and p) and A = Av (for pair v and p), a contradiction. By maximality of Bp , we have B ⊆ Bp . Similarly we infer that B ⊆ Bq .
Hence, B ⊆ Bp ∩ Bq ; by the incomparability of Bp and Bq , we infer that B (Bp . However, Claim 4.17 asserts then that Au ⊆ A

(for the pair p,u) and Av ⊆ A (for the pair p,v). �is is a contradiction with the maximality and incomparability of Au and Av . y

Claim 4.19. Let I ⊆ {1,2, . . . ,r } be a set of indices such that for any i, j ∈ I , i , j, Ci and Cj are linked. �en there exists a vertex

v ∈ Ω \ X and an index i0 such that

X ∩ N (Ω \ X) ∩ *.
,

⋃
i ∈I \{i0 }

Ci
+/
-
⊆ N (v).

Proof. If |I | ≤ 1, the claim is straightforward, so assume otherwise. By Claim 4.18, there exists at most one index i0 such that
Fi0 does not admit a unique maximal element. (If no such index exists, we set i0 ∈ I arbitrarily).

For u ∈ Ω \X , we de�ne Iu ⊆ I \ {i0} to be the set of indices i ∈ I \ {i0} for which N (u) ∩Ci ∩X is the unique maximal element
of Fi ; note that this unique maximal element exists because i ∈ I \ {i0}. Let v be a vertex such that |Iv | is maximized.

We prove that Iv = I \ {i0}. Assume the contrary: there exists j ∈ I \ {i0} such that N (v) ∩Cj ∩ X is not the maximal element
of Fj . Let w ∈ Ω \ X be such that N (w) ∩ Cj ∩ X is the maximal element of Fj . We have N (v) ∩ Cj ∩ X (N (w) ∩ Cj ∩ X .
By Claim 4.17, for every i ∈ Iv we have N (v) ∩Ci ∩X ⊆ N (w) ∩Ci ∩X . However, N (v) ∩Ci ∩X is the unique maximal element
of Fi . Consequently, Iv ⊆ Iw . However, j ∈ Iw \ Iv , which contradicts the choice of v .

Using that Iv = I \ {i0}, N (v) ∩ Ci ∩ X is the maximal element of Fi for each i ∈ I \ {i0}, meaning that N (u) ∩ Ci ∩ X ⊆

N (v) ∩Ci ∩ X ⊆ N (v) for each u ∈ Ω \ X and each i ∈ I \ {i0}. Hence, X ∩ N (Ω \ X) ∩
⋃
i ∈I \{i0 }Ci ⊆ N (v), as claimed. y

Consider now the following corollary of Claim 4.14.

Claim 4.20. For every 2 ≤ i ≤ r we have X ∩Ci ⊆ N (Ω \ X). Furthermore, if X ∩C1 * N (Ω \ X), then the set Z whose existence

is asserted in Claim 4.14 for the component C1 is completely contained in N (C1) \ (X ∪ N (C2)).

Proof. See Fig. 9 for an illustration of the proof. Let 1 ≤ i ≤ r and suppose that X ∩Ci * N (Ω \ X) (for i ≥ 2, this is for the
sake of contradiction; for i = 1, this is the assumption in the claim statement). Let Zi ⊆ N (Ci) \X denote the nonempty set whose
existence is asserted by Claim 4.14. If i = 1, then also assume for the sake of contradiction that Z1 * N (C1) \ (X ∪ N (C2)). Let
j ∈ {1,2} \ {i} (Cj exists, because r ≥ 2 by Claim 4.7).

We �rst observe that Zi ∩ (N (Cj) \ X) , ∅. If i > j, then this follows from the fact that Zi ⊆ N (Ci) \ X by de�nition
(see Claim 4.14) and that N (Ci) \ X ⊆ N (Cj) \ X by the ordering on the nuked components. If i < j, then i = 1, j = 2, and Z1
contains a vertex u < N (C1) \ (X ∪ N (C2)) by assumption, and thus u ∈ N (C2) \ X , because Z1 ⊆ N (C1) \ X . �is proves the
observation.

Now let v ∈ Zi ∩ (N (Cj) \ X) (v exists by the above observation). By Claim 4.14 and the fact that v ∈ Zi , there exists a P4 in G

with one endpoint in v and the remaining three vertices inCi . By Claim 4.12 and the fact that v ∈ N (Cj) \X , there exists a P3 in G

with one endpoint in v and the remaining two vertices inCj . �e concatenation of these two paths is a P6 inG , a contradiction. y

Observe now the following.

Claim 4.21. For every 2 ≤ i, j ≤ r , i , j, the components Ci and Cj are linked.

Proof. Two vertices u ∈ N (Ci) \ X and v ∈ N (Cj) \ X can be linked either via a direct edge if it exists in G, or via a shortest
path with internal vertices in C1. y

Combining now Claim 4.20 with Claim 4.19 applied to I = {2,3, . . . ,r } we obtain that

Claim 4.22. �ere exists an index i0 ∈ {2, . . . ,r } such that µ (C1 ∪Ci0) ≥ 0.8. In particular, µ (C1),µ (Ci0) ≥ 0.3.

Proof. By Claim 4.19, applied to I = {2,3, . . . ,r }, we have an index i0 and a vertexv adjacent to all vertices ofX ∩Cj ∩N (Ω \X)

for j < {1,i0}. However, by Claim 4.20, these are actually all vertices of X ∩Cj . Since µ (N (v)) < γ ≤ 0.1 and µ (Ω) ≤ 0.1, the �rst
claim follows. �e second claim follows from the choice of Ω: µ (C) ≤ 0.5 for every connected component C of G − Ω. y

13

Ω

N
(C

i
)

N(Cj)

Cj
X ∩ Cj

Ci

X ∩ Ci

v

Fig. 9. Illustration of the proof of Claim 4.20. The set X ∩ Ω is omi�ed in order to keep the picture clear.

Ω

X ∩ Ω

N
(C

1
)

N
(C

i
0)

C1 Ci0v u

Fig. 10. Illustration of the proof of Claim 4.23. The do�ed connection between v and u may be realized through a third component.

Fix the index i0 from Claim 4.22.

Claim 4.23. N (C1) ∪ N (Ci0) , Ω.

Proof. See Fig. 10 for an illustration of the proof. By contradiction, assume that N (C1) ∪ N (Ci0) = Ω. By �eorem 2.3, neither
N (C1) nor N (Ci0) equals the whole Ω, thus there exists v ∈ N (C1) \ N (Ci0) and u ∈ N (Ci0) \ N (C1). By Claim 4.13, there exist a
P3 Pv with endpoint in v and remaining two vertices in C1, and a P3 Pu with endpoint in u and remaining two vertices in Ci0 . If
uv ∈ E (G), then these two paths together give a P6 in G, a contradiction. Otherwise, by �eorem 2.3, there exists a component
C of G − Ω such that u,v ∈ N (C). Clearly, C < {C1,Ci0 }. However, then a concatenation of Pv , a shortest path from v to u with
internal vertices in C , and Pu , yields an induced path in G on at least 7 vertices, a contradiction. y

Claim 4.24. C1 and Ci0 are linked.

Proof. Consider any v ∈ N (C1) \ X and u ∈ N (Ci0) \ X ; we are going to exhibit an induced path from v to u with internal
vertices inV (G) \N [C1∪Ci0]. Ifv = u orvu ∈ E (G), then we are done with the one- or two-vertex path. If there exists a connected
component C of G − Ω di�erent than C1 or Ci0 such that u,v ∈ N (C), then we can choose a shortest path from v to u with all
internal vertices in C .

Otherwise, let w be an arbitrary vertex of Ω \ N (C1 ∪ Ci0), whose existence follows from Claim 4.23, and we route a path
through the vertex w . Let Pv = vw if vw ∈ E (G), and otherwise let Pv be a shortest path from v to w with internal vertices in a
connected componentC covering the nonedge vw ; note thatC < {C1,Ci0 } as w < N (C1 ∪Ci0). Similarly de�ne the path Pu from u

14

Ω

X
∩

ΩZ

N(Ci0)

Ci0

C1

X ∩ C1

v

u

Fig. 11. Illustration of the proof of Claim 4.25. The vertex u is not adjacent to any of the three vertices in C1 since u < Z (Claim 4.20). The
existence of a connection between u and v is guaranteed by the linkedness of C1 and Ci0 .

to w . Since no component di�erent thanC1 orCi0 has both u and v in their neighbourhood, the concatenation of Pv and Pu forms
the desired path. y

In the next two claims we exhibit the �nal contradiction.

Claim 4.25. C1 ∩ X ⊆ N (Ω \ X).

Proof. See Fig. 11 for an illustration of the proof. Assume the contrary. By Claim 4.20, the set Z whose existence is asserted
by Claim 4.14 for the componentC1 is completely contained in N (C1) \ (X ∪N (C2)) ⊆ N (C1) \ (X ∪N (Ci0)). Consider any v ∈ Z
and u ∈ N (Ci0) \ X ⊆ N (C1) \ (X ∪ Z). By Claim 4.14, there exists a P4 Pv with endpoint in v and internal vertices in C1 \ N (u).
Furthermore, by Claim 4.13, there exists a P3 Pu with endpoint u and internal vertices in Ci0 . Recall that v < N (Ci0), thus Pu

does not contain any neighbour of v , except for possibly u. Hence, the paths Pv and Pu , together with the path between v and u

whose existence is asserted by the fact thatC1 andCi0 are linked following Claim 4.24, form an induced path in G on at least seven
vertices, a contradiction. y

Claim 4.26. �ere exists a vertex v such that C1 ∩ X ⊆ N (v) or Ci0 ∩ X ⊆ N (v).

Proof. By Claim 4.19 applied to I = {1,i0}, we obtain a vertexv such thatC1∩X∩N (Ω\X) ⊆ N (v) orCi0∩X∩N (Ω\X) ⊆ N (v).
However, Ci0 ∩ X ⊆ N (Ω \ X) due to Claim 4.20 and C1 ∩ X ⊆ N (Ω \ X) due to Claim 4.25. y

We now complete the proof of �eorem 4.2. Recall that by Claim 4.22, we have µ (C1),µ (Ci0) ≥ 0.3. Moreover, by Claim 4.26,
there exists a vertex v such that C1 ∩ X ⊆ N (v) or Ci0 ∩ X ⊆ N (v). Since µ is a probability measure over X , this implies that
µ (N (v)) ≥ 0.3. �is contradicts our assumption that µ (N (u)) < γ ≤ 0.1 for every u ∈ V (G), and thus �nishes the proof.

5 THE ALGORITHM FORMAXIMUMWEIGHT INDEPENDENT SET

We now make use of �eorems 1.4 and 4.2 to design an algorithm that solves Maximum Weight Independent Set in n-vertex
P6-free graphs in nO (log2 n) time.

5.1 Description of the algorithm

�e algorithm consists of two recursive procedures, FindIS and FindISNuke, which both aim to �nd an independent set of
maximum weight in a given connected vertex-weighted P6-free graph G . �e procedure FindIS is the ‘base’ procedure, which we
call on the graph G. Both procedures make recursive calls to themselves and to each other. We describe each procedure, and then
analyze their running time.

15

5.1.1 Procedure FindIS. �e input for the procedure FindIS is just a connected P6-free graph G. As a base case, if the input
graph consists of one vertex, FindIS returns the weight of this vertex. Otherwise, it checks if there exists a vertex of degree at
least 0.05β |V (G) |, where the constant β comes from �eorem 1.4.

If such a vertex v exists, then the procedure branches on the vertex v . In one branch, we seek a solution not containing v , and
we call FindIS independently on every connected component of G −v . In the second branch, we seek a solution containing v , and
we call FindIS independently on every connected component of G − N (v).

Otherwise, that is if all vertices are of degree less than 0.05β |V (G) |, the algorithm takes an arbitrary minimal triangulation Ĝ of
G (see e.g. [37] for algorithms that �nd such a triangulation), constructs its clique tree, and �nds a maximal clique Ω in Ĝ such that
every connected component of G − Ω has at most |V (G) |/2 vertices (such a maximal clique can be found in polynomial time by
the arguments in Claim 4.6). We observe the following:

Claim 5.1. |Ω | < 0.05|V (G) |

Proof. If |Ω | ≥ 0.05|V (G) |, then �eorem 1.4 applied to Ω with the uniform measure, implies that there exists a vertex v with
|N (v) | ≥ |N (v) ∩ Ω | ≥ 0.05β |V (G) |, a contradiction. y

By the choice of Ω, if we set τ = 0.8|V (G) |, then Ω is a (0.1,τ)-nuke in G (with a lot of slack in the inequalities in condition (ii)
and (iii) of De�nition 4.1). �e algorithm passes the graph G, the threshold τ , and the nuke Ω to the procedure FindISNuke.

5.1.2 Procedure FindISNuke. �e input for the procedure FindISNuke is a connected P6-free graph G , a threshold τ , and a set
X ⊆ V (G) with the promise that for every connected component C of G − X it holds that |C | + |X | ≤ τ .

�e algorithm �rst checks if G contains at least two vertices and X is a non-empty (0.1,τ)-nuke of G (note that X is such a nuke
when FindISNuke is invoked by FindIS). If this is not the case, then the algorithm invokes FindIS on the graph G, forge�ing
about τ and X . Otherwise, it �nds any inclusion-wise minimal (0.1,τ)-nuke Y ⊆ X , and �nds a vertex v with |N (v) ∩ Y | ≥ γ |Y |;
the existence of such vertex is guaranteed by applying �eorem 4.2 to Y with the uniform measure. �e algorithm branches on
vertex v as usual. �at is, in one branch, we seek a solution not containing v , and we call FindISNuke independently on every
connected component of G −v . In the second branch, we seek a solution containing v , and we call FindISNuke independently on
every connected component of G − N (v). In every subcall, we pass the same threshold τ , and the set Y restricted to the vertex set
of the connected component in question. Clearly, since we delete only vertices from G or reduce X to a minimal sub-nuke, in the
subcalls we maintain the promise that for every connected component C of G − X it holds that |C | + |X | ≤ τ .

5.2 Analysis

As the algorithm performs exhaustive branching, it clearly returns an optimum solution. Also, the polynomial space bound is
immediate. It remains to argue about the running time.

Consider the recursion treeT0 of the algorithm, and focus on one call c to FindIS(G) that resulted in a subcall FindISNuke(G,τ ,X);
here τ = 0.8|V (G) | and X is a potential maximal clique in G of size at most 0.05|V (G) | (by Claim 5.1). Every call to FindISNuke

results either in branching and multiple calls to the same procedure (call it a branching call), or in a single call to FindIS (call it a
fallback call). Let T be a maximal subtree at T0, rooted at the chosen call c to FindIS, that contains (apart from the root) only calls
to FindISNuke. �at is, we put into T all recursive calls that originated from c, and stop whenever we encounter a fallback call; in
particular, all leaves of T are fallback calls.

Claim 5.2. T has |V (G) |O (log |V (G) |)
leaves.

Proof. In every branch of FindISNuke, we either A) delete one vertex from G, or B) delete a constant fraction of the minimal
sub-nuke Y of X (recall that the vertex v we branch on was chosen so that |N (v) ∩ Y | ≥ γ |Y |). Color the edges of T either by ‘A’
or ‘B’ depending on the type of branch. Note that the path P` from a leaf ` of T to the root of T can contain at most log |V (G) |

edges of T colored ‘B’, because FindISNuke stops when the nuke is empty and each ‘B’ branch reduces the size of the nuke by
a constant fraction. Moreover, each path P` has length at most |V (G) |, because each branch reduces the number of vertices of
G by at least 1, and has a unique coloring, because the edges to the children of a vertex of T are colored distinctly. Hence, T

16

has |V (G) |O (log |V (G) |) leaves. �e fact that the algorithm independently considers every connected component only helps in the
analysis. y

Let FindISNuke(G ′,τ ′,X ′) be a leaf of T . We claim the following.

Claim 5.3. |V (G ′) | < 8
9 |V (G) |.

Proof. Since we are considering a fallback call, either |V (G ′) | = 1, |X ′ | = 0, or X ′ is not a (0.1,τ ′)-nuke of G ′. In the �rst
case, since |V (G) | > 1, the claim is obvious. In the second case, by the fact that the input graph of any call to FindISNuke is
connected and the promise maintained in the course of algorithm that for every connected component C of G ′ − X ′ it holds that
|C | + |X ′ | ≤ τ , the claim also holds.

In the third case, consider the reasons why X ′ may not be a (0.1,τ ′)-nuke ofG ′. Clearly, τ ′ = τ = 0.8|V (G) | and, by the promise
maintained in the course of algorithm that for every connected component C of G ′ − X ′ it holds that |C | + |X ′ | ≤ τ . Furthermore,
(1 − 2 · 0.1) |V (G ′) | ≤ (1 − 2 · 0.1) |V (G) | = τ . Hence, either (1 − 0.1) |V (G ′) | < τ = 0.8|V (G) | or |X ′ | > 0.1|V (G ′) |. In the �rst case
|V (G ′) | < 8

9 |V (G) |, while in the second case |V (G ′) | ≤ |V (G) |/2, because |X | ≤ 0.05|V (G) | and X ′ ⊆ X . y

By Claim 5.3, if we contract every such subtree T to a single super-node of the recursion tree T0, then at each such super-node
we branch into |V (G) |O (log |V (G) |) subcases, and in each subcase decrease the number of vertices by a multiplicative factor.

Now focus on a call c to FindIS that branches on a vertex v ∈ V (G) of degree at least 0.05β |V (G) |. Observe that at most one
recursive subcall of c is invoked on a graph with at least (1 − 0.05β) |V (G) | vertices: the one for the largest connected component
of G −v . Mark the edges of the recursion tree that correspond to such subcalls. �e marked edges form vertex-disjoint top-bo�om
paths in the recursion tree. If we contract them (along with the aforementioned subtrees T), we obtain a recursion tree where
every node has |V (G) |O (log |V (G) |) subcases and where in each subcase the number of vertices decreases by a constant factor.
Consequently, the size of the recursion tree is |V (G) |O (log2 |V (G) |) . �is �nishes the analysis of the algorithm, and concludes the
proof of �eorem 1.1.

6 THE ALGORITHM FORMAXIMUMWEIGHT EFFICIENT DOMINATING SET

In this section we prove �eorem 1.2. �e overall approach is as follows: we take any minimal triangulation of the input graph G,
and perform the standard dynamic programming algorithm on the clique tree of this triangulation (which is a tree decomposition
of G). In this standard dynamic programming algorithm, every state at bag B keeps information about which vertices of B are
contained in the constructed e�cient dominating set, and which vertices of B have already been dominated by the forgo�en parts
of the graph.

�e main insight is that we can use �eorem 1.4, together with technical insight from the proof of �eorem 1.1, to show that in
P6-free graphs there are only polynomially many reasonable states for the aforementioned dynamic programming algorithm. �is
then yields the claimed polynomial-time algorithm.

6.1 Bounding the Number of States

Before we state this main result formally, we need the following de�nition. Let Ω be a potential maximal clique in G, and let C
be the set of connected components of G − Ω. A state is a function f : Ω → C ∪ {Ω,⊥}. A state f is consistent with an e�cient
dominating set X if X ∩ Ω = f −1 (⊥) and furthermore, for every v ∈ Ω \ X , the unique vertex of N (v) ∩ X belongs to the vertex
set of f (v).

Theorem 6.1. Given a P6-free graph G and a potential maximal clique Ω in G , one can in polynomial time compute a family S of

states of polynomial size, such that for every e�cient dominating set X in G, there exists a state f ∈ S consistent with X .

�is subsection is devoted to the proof of �eorem 6.1. We describe the algorithm as a branching algorithm that outputs a state
at every leaf of the branching tree, and every leaf-to-root path of the branching tree contains O (logn) nodes of constant degree
and O (1) nodes of degree polynomial in n. Furthermore, it will be straightforward to perform the computation required at every
node of the branching tree in polynomial time. �ese properties give the promised polynomial bounds on the size of the output
and the total running time.

17

Every node of the branching tree is labeled with two vertex sets X0 and Y , and the goal of the subtree rooted at the node labeled
(X0,Y) is to output a family of states such that for every e�cient dominating set X with X0 ⊆ X and (X \ X0) ⊆ Y (henceforth
called an e�cient dominating set consistent with (X0,Y)) there exists an output consistent state. In every branching step, in every
subcase, the algorithm puts some vertices into X0 and/or removes some vertices from Y . Since every two elements of an e�cient
dominating set are within distance at least three, we implicitly assume that if the algorithm puts a vertex v into X0, it at the same
time removes from Y all vertices within distance at most two from v . Furthermore, we immediately terminate a branch if two
vertices of X0 are within distance less than three, or if there exists v ∈ V (G) with N [v] ∩ (X0 ∪ Y) = ∅.

�e algorithm terminates branching at nodes labeled (X0,Y) where for every v ∈ Ω either N [v] contains a vertex of X0, or
N [v]∩Y is contained in a single component of C. For such a label (X0,Y), we de�ne a state f as follows: f (v) = ⊥ for v ∈ X0 ∩Ω,
f (v) = Ω for v ∈ N (X0) ∩ Ω, and otherwise f (v) is the unique component of C that contains vertices of N [v] ∩ (X0 ∪ Y). It is
straightforward to verify that if X is consistent with (X0,Y), then f is well-de�ned and f is also consistent with X . Consequently,
the algorithm outputs the function f in this leaf node of the branching tree.

At the root of the branching tree we have X0 = ∅ and Y = V (G).

6.1.1 Guessing Vertices from the Solution Inside the Potential Maximal Clique. We start with the following observation.

Lemma 6.2. For every P7-free graph G, every potential maximal clique Ω in G, and every e�cient dominating set X in G, we have

|Ω ∩ X | ≤ 1/β , where the constant β comes from �eorem 1.4.

Proof. Without loss of generality, we can assume that G is connected (we can consider every component independently) and
contains at least two vertices (for one-vertex graphs the statement is trivial).

Let ` = |Ω ∩ X |. Consider a measure µ on Ω such that µ (v) = 1/` if v ∈ Ω ∩ X and µ (v) = 0 otherwise. By �eorem 1.4,
there exists a vertex u with µ (N (u)) ≥ β . However, by the de�nition of an e�cient dominating set, we have |N (u) ∩ X | ≤ 1.
Consequently, µ (N (u)) ≤ 1/`, hence ` ≤ 1/β . �

By Lemma 6.2, our algorithm can, as a �rst step, guess all vertices from the solution that lie in Ω. More formally, the
algorithm branches into a subcase for every subset XΩ ⊆ Ω of size at most 1/β ; we label the subcase corresponding to XΩ by
(XΩ ,V (G) \ (N 2[XΩ] ∪ Ω)). We emphasize here that we not only removed from Y all vertices within distance at most two from
XΩ , but also all vertices from Ω. �us, from this point, we have that Y ∩ Ω = ∅.

6.1.2 Reduction Rule. Fix a node of the branching tree labeled (X0,Y) with Y ∩Ω = ∅. We say that a componentC ∈ C is active
if C ∩ Y , ∅. Let A = Ω \ N [X0] be the set of vertices that are not yet dominated by the vertices from X0. Let B ⊆ A be the set of
these vertices v such that the vertices of N (v) ∩ Y appear in at least two connected components of C. Note that the algorithm
terminates branching and outputs a state if B = ∅; the main goal in the branching step is to shrink the set B as much as possible.

We start by introducing a reduction rule, aimed at shrinking the set Y without performing any branching. For a vertex
u ∈ V (G) \ Ω, let C (u) be the component of C that contains u. Assume that for some vertex v ∈ B there exists u ∈ N (v) ∩ Y such
that N [u]∩Y ⊆ N (v). Let X be an e�cient dominating set consistent with (X0,Y). Since Y ∩N [X0] = ∅, the vertex u is dominated
by some vertex w ∈ N [u] ∩ (X \ X0) ⊆ N [u] ∩ Y . By our assumption, w also dominates v . Consequently, in every e�cient
dominating set consistent with (X0,Y), the vertex v is dominated by an element of C (u), and we can introduce the following
reduction rule.

Reduction Rule. If there exist vertices v ∈ B and u ∈ N (v) ∩ Y such that N [u] ∩ Y ⊆ N (v), then remove from Y all vertices of
N (v) \C (u).

Note that the Reduction Rule removes neitherv , noru, nor the vertex dominating them in any e�cient dominating set consistent
with (X0,Y). Furthermore, an application of the Reduction Rule on a vertex v ∈ B e�ectively removes v from the set B, as it leaves
in Y only the neighbors of v that are in the componentC (u). Also observe that the Reduction Rule triggers on any vertex of B that
is fully adjacent to an active component (recall that Ω ∩ Y = ∅).

In what follows we assume that at every node of the recursion tree, the Reduction Rule is applied exhaustively. Observe that if
this rule is not applicable, then for every v ∈ B and u ∈ N (v) ∩Y , there exists a vertex w ∈ (Y ∩ N (u)) \ N (v); note that w ∈ C (u)

18

Ω

N
(C

1
) N

(C
2)

C1 C2v1 v2

Fig. 12. Illustration of the proof of Lemma 6.3. The do�ed connection between v1 and v2 may be realized through a third component.

and {v,u,w } induce a P3 in G . �e main intuition of the remaining proof is that the graph needs to be highly structured in order to
not to allow two such P3’s to “glue” together into a P6 in G.

6.1.3 Structure of B-Neighbourhoods. As a �rst application of this principle, observe the following.

Lemma 6.3. If C1,C2
are two di�erent components of C, then N (C1) \ N (C2) is fully adjacent to C1

, or N (C2) \ N (C1) is fully

adjacent to C2
.

Proof. See Fig. 12 for an illustration of the proof. Assume the contrary. Let vi ∈ N (Ci) \ N (C3−i) be a vertex that is not fully
adjacent to Ci for i = 1,2. Since vi is not fully adjacent to Ci , but vi ∈ N (Ci) and Ci is connected, there exists an induced P3 with
one endpoint vi and other vertices in Ci ; denote this P3 as P i . Furthermore, by �eorem 2.3, either v1v2 ∈ E (G) or there exists a
component C ∈ C such that v1,v2 ∈ N (C). Clearly, C < {C1,C2}. Consequently, by concatenating P1, P2, and the edge v1v2 or a
shortest path between v1 and v2 with internal vertices in C , we obtain an induced path on at least 6 vertices, a contradiction. �

Since our Reduction Rule removes from B vertices that are fully adjacent to some active component, we infer from Lemma 6.3
that we can enumerate active components as C1,C2, . . . ,Cr such that NB (Ci) ⊇ NB (Cj) for every i ≤ j. Furthermore, since every
element in B has neighbours in Y in at least two components by de�nition, we have that NB (C1) = NB (C2) = B. Summing up,

B = NB (C1) = NB (C2) ⊇ NB (C3) ⊇ . . . ⊇ NB (Cr). (6.1)

6.1.4 Obtaining Linkedness. In order to “glue” two P3’s, we use the following notion. We say that two active components C1

and C2 are linked if for every two vertices v1 ∈ B ∩ N (C1), v2 ∈ B ∩ N (C2) there exists an induced path in G with endpoints v1

and v2 and all internal vertices in V (G) \ (N [C1] ∪ N [C2]). We explicitly allow 1-vertex and 2-vertex paths here (if v1 = v2 or
v1v2 ∈ E (G)).

We start by observing the following:

Lemma 6.4. Every pair of active components is linked, except for possibly the pair {C1,C2}.

Proof. By (6.1), for every other pair {Ci ,Cj }, we can use either C1 or C2 to route the desired path. �

Our goal now is to ensure that also {C1,C2} are linked. �e following lemma uses essentially the same arguments as Claim 4.24
of Section 4.

Lemma 6.5. If two active components C1
and C2

satisfy N (C1) ∪ N (C2) , Ω, then they are linked.

Proof. Let w ∈ Ω \ (N (C1) ∪ N (C2)) and consider two vertices v1 ∈ B ∩ N (C1), v2 ∈ B ∩ N (C2). If v1 = v2 or v1v2 ∈ E (G),
then we are trivially done. Furthermore, if there exists a componentC ∈ C \ {C1,C2} with v1,v2 ∈ N (C), then we are done as well
by taking a shortest path from v1 to v2 with all internal vertices in C .

In the remaining case, we start with connecting for i = 1,2 the vertex vi withw by an induced path P i as follows: if viw ∈ E (G),
then we take P i to be this edge only, while otherwise we take a component Di ∈ C with vi ,w ∈ N (Di) (whose existence is

19

promised by �eorem 2.3) and take as P i a shortest path from vi to w with internal vertices in Di . Note that Di < {C1,C2},
since w ∈ N (Di). Furthermore, v3−i < Di , as no component other than C1 and C2 can neighbour both v1 and v2. Consequently,
D1 , D2, and the concatenation of P1 and P2 gives the desired path from v1 to v2. �

By Lemma 6.5, the pair {C1,C2} is linked unless N (C1) ∪ N (C2) = Ω. However, if this is the case, then by �eorem 2.3 we have
that both N (C1) \ N (C2) and N (C2) \ N (C1) are nonempty. By Lemma 6.3, there exists i ∈ {1,2} and a vertex vi ∈ Ω that is fully
adjacent to Ci . Consequently, every e�cient dominating set consistent with (X0,Y) contains exactly one vertex of Ci : it needs to
contain at least one to dominate Y ∩Ci , but at most one since every vertex of Ci dominates vi .

We branch into |Y ∩ Ci | directions, guessing the vertex from Y ∩ Ci that belongs to the solution, and pu�ing it into X0.
Furthermore, in every branch we remove from Y all vertices of Y ∩Ci . In every subcase, Ci is no longer an active component, but
witnesses that every two other components that remain active are linked: since B ⊆ N (Ci), we can always route a path between
the desired endpoints through Ci .

By the above analysis and branching step, we can assume henceforth that any pair of active components is linked.

6.1.5 Branching on Bad Vertices. Partition Y into Y1 = {y ∈ Y : |NB (y) | ≥ |B |/16} and Y2 = Y \ Y1. Let Y ∗1 be the set of vertices
y ∈ Y1 for which the addition of y to the solution (i.e., to X0) and the subsequent exhaustive application of the Reduction Rule
reduces B to an empty set. Let Y ◦1 = Y1 \ Y ∗1 .

If we would know that some vertex of Y ∗1 belongs to the solution, then we could just guess it and the Reduction Rule would
reduce the set B completely (we analyze this more precisely in the next subsection). In this subsection we focus on the analysis of
the set of “bad” vertices Y ◦1 , showing that any such vertex also gives ground to a good branching — but in a completely di�erent
fashion.

Let y ∈ Y ◦1 be chosen arbitrarily. De�ne Y ◦ and B◦ as follows: if we add y to X0 and exhaustively apply the Reduction Rule,
then let Y ◦ be the set to which Y is shrunk and B◦ , ∅ the set to which B is shrunk. It is important to note that we do not actually
add y to X0; we only aimed to de�ne Y ◦ and B◦. We claim the following:

Lemma 6.6. For every z ∈ N [y] ∩ Y , it holds that NB (y) ⊆ N (z) or B◦ ⊆ N (z).

Proof. See the le� panel of Fig. 13 for an illustration of the proof. Fix a vertex z as in the statement, and assume the contrary:
there exist p ∈ NB (y) \ N (z) and q ∈ B◦ \ N (z). Note that z , y, as p ∈ NB (y) and p < N (z). Since q ∈ B◦, there exists at
least two components of C that contain vertices of N (q) ∩ Y ◦. Let Cq be one of these components that is di�erent from C (y),
and let s ∈ N (q) ∩ Cq ∩ Y ◦. Since the Reduction Rule does not trigger on q and s a�er y has been put into X0, there exists
t ∈ (N (s) ∩ Y ◦) \ N (q); clearly, t lies also in Cq .

Observe that q,s,t induce a P3, and that s and t are not adjacent to p ∈ NB (y) as s,t ∈ Y ◦. Furthermore, p,y,z induce a P3, while
y and z are not adjacent to q. SinceCq andC (y) are linked, we can connect p and q by an induced path avoiding N [Cq] ∪ N [C (y)],
giving together with the aforementioned P3’s an induced path on at least six vertices, a contradiction. �

Lemma 6.6 allows us to branch into two directions, deciding whether the element of the sought e�cient dominating set that
dominates the vertex y also dominates the set NB (y) or the set B◦. �at is, in the �rst subcase, we delete from Y all vertices of
N (NB (y)) \C (y), while in the second subcase, we delete from Y all vertices of N (B◦) \C (y). We claim that in both subcases, a�er
exhaustively applying the Reduction Rule, the size of B decreased at least by a multiplicative factor of 1 − 1/16.

Clearly this is the case in the �rst subcase, as then NB (y) is removed from B and |NB (y) | ≥ |B |/16 since y ∈ Y1. We claim the
following:

Lemma 6.7. In the second subcase, the Reduction Rule also removes the entire set NB (y) from B.

Proof. See the right panel of Fig. 13 for an illustration of the proof. Assume that this is not the case. Let B′,Y ′ be the reduced
sets in the second subcase, and let p ∈ NB (y) ∩ B′. Since p ∈ B′, there exist at least two components of C that contain vertices of
N (p) ∩ Y ′; let Cp be such component di�erent from C (y), and let a ∈ Cp ∩ N (p) ∩ Y ′. Since the Reduction Rule does not trigger
on p and a, given sets B′ and Y ′, there exists b ∈ (N (a) ∩ Y ′) \ N (p); clearly also b ∈ Cp .

20

B

NB(y)

B◦

Cq

C(y)

s t

q

p

y

z

B

NB(y)

B◦

Cq

Cp

s t

a b

q

p

Fig. 13. Illustration of the proof of Lemma 6.6 (le�) and of Lemma 6.7 (right).

Consider now any q ∈ B◦. Since a,b ∈ Y ′ \C (y), we have that a and b are not adjacent to q. Furthermore, since q ∈ B◦, there
exist at least two components of C that contain vertices of N (q) ∩ Y ◦; let Cq be such a component di�erent than Cp , and let
s ∈ Cq ∩N (q) ∩Y ◦. Since the Reduction Rule does not trigger on q and s given sets B◦ and Y ◦, there exists t ∈ (N (s) ∩Y ◦) \N (q);
clearly also t ∈ Cq . Furthermore, p is adjacent to neither s nor t , as s,t ∈ Y ◦ and p ∈ NB (y).

Consequently, the vertices p,a,b,q,s,t , together with a path between p and q promised by the fact that Cp and Cq are linked,
induce a path on at least six vertices, a contradiction. �

We infer that in both subcases at least a constant fraction of the set B has been reduced. Consequently, in the branching tree,
every leaf-to-root path contains only O (logn) nodes with a branching described in this subsection.

6.1.6 Final Branch. We are le� with cases (X0,Y) when Y ◦1 = ∅. Consider the following natural branch: we guess whether
there exists an element of the solution in Y ∗1 or not. �at is, in one branch we remove Y ∗1 = Y1 from Y . In the second branch, we
immediately branch again into |Y ∗1 | directions, picking a vertex y ∈ Y ∗1 and pu�ing it into X0. By the de�nition of Y ∗1 , in the la�er
subcases B is reduced to an empty set, and branching terminates. Our main claim is that in the �rst branch, the size of B shrinks
by at least a half.

Lemma 6.8. In the �rst branch, if B′ and Y ′ are the sets B and Y a�er exhaustive application of the Reduction Rule, then |B′ | ≤ |B |/2.

Proof. Assume the contrary. Since Y ′ ⊆ Y2, we have that for every y ∈ Y ′ it holds that

|NB′ (y) | ≤ |NB (y) | < |B |/16 < |B′ |/8.

For every p ∈ B′, pick two componentsC1
p andC2

p that contain a vertex of N (p) ∩Y ′. Furthermore, for every i = 1,2, pick a vertex
vip ∈ N (p) ∩Y ′∩Cip and a vertexwi

p ∈ (N (vip) ∩Y
′) \N (p); the existence of the la�er is guaranteed by the fact that the Reduction

Rule does not trigger on p and vip , given the sets B′ and Y ′. Clearly, p,vip ,wi
p induce a P3 in G.

Consider the following random experiment: choose two vertices p,q ∈ B′ uniformly independently at random. Since the choice
of p and q is independent, while all vertices vip ,wi

p ,v
i
q ,w

i
q belong to Y ′, the probability that q is adjacent to vip is less than 1/8.

Consequently, with positive probability q is fully anti-adjacent to {v1
p ,w

1
p ,v

2
p ,w

2
p }, while p is fully anti-adjacent to {v1

q ,w
1
q ,v

2
q ,w

2
q }.

21

Let p,q be a pair for which the aforementioned event happens. By potentially swapping the top indices, we may assumeC1
p , C

1
q .

However, then p,v1
p ,w

1
p ,q,v

1
q ,w

1
q , together with an induced path between p and q whose existence is promised by the fact that C1

p

and C1
q are linked, gives an induced path in G on at least six vertices, a contradiction. �

By Lemma 6.8, on every leaf-to-root path a branching node described in this subsection may appear only O (log |V (G) |) times.
�is �nishes the description of the algorithm, and concludes the proof of �eorem 6.1.

6.2 The Actual Algorithm

As described in the beginning of the section, the actual algorithm for Maximum Weight Efficient Dominating Set is a standard
dynamic programming algorithm, using �eorem 6.1 as the source of its state space. For the sake of the analysis, we �x X0 to be a
maximum weight e�cient dominating set in G (if such a set exists).

We �rst pick any minimal triangulation Ĝ of G (see [37] for algorithms �nding such a triangulation), and compute its clique
tree, which is at the same time a tree decomposition of G . In other words, we compute a tree decomposition (T ,Π) of G , where for
every node t ∈ V (T) the bag Π(t) is a potential maximal clique of G.

We root T at an arbitrary vertex r , and for a node t we denote by Γ(t) the union of all bags Π(s), where s ranges over all
descendants of t in the treeT . Note that the properties of a tree decomposition ensure that every connected component ofG −Π(t)
is either completely contained in or completely disjoint from Γ(t).

For every t ∈ V (T), we invoke �eorem 6.1 on Ω = Π(t), obtaining a family St .
For a node t , a set Y ⊆ Γ(t) is called a partial solution if N [u] ∩ N [v] = ∅ for every distinct u,v ∈ X and N [X] contains

Γ(t) \ Π(t). Clearly, if X is an e�cient dominating set in G, then X ∩ Γ(t) is a partial solution. A partial solution Y is consistent
with a state f ∈ St if Y ∩ Π(t) = f −1 (⊥), every vertex v ∈ Π(t) ∩ N (Y) is dominated by an element of Y in f (v), and for every
vertex v ∈ Π(t) \ N [Y] the component f (v) is disjoint from Γ(t).

Our goal is to compute, in bo�om-up fashion, for every node t ∈ V (T) and every state f ∈ St a partial solution Y (t , f)

consistent with f (or Y (t , f) = ⊥, meaning that no such set has been found), with the following property: if X0 exists and f is
consistent with X0 ∩ Γ(t), then Y (t , f) exists and has weight at least the weight of X0 ∩ Γ(t). Note that �eorem 6.1 ensures that
if X0 exists then for every node t there exists a state f t0 consistent with X0, and thus also consistent with the partial solution
X0 ∩ Γ(t). Consequently, if X0 exists, then Y (r , f r0) is a maximum weight e�cient dominating set in G.

It remains to describe the computation for �xed values of t and f and to prove the aforementioned property. For every child t ′

of t , and every f ′ ∈ St ′ , we say that the set Y ′ := Y (t ′, f ′) is partially consistent with f if Y ′ ∩ Π(t) ∩ Π(t ′) = f −1 (⊥) ∩ Π(t ′),
every vertex v ∈ Π(t) ∩ N (Y ′) is dominated by an element of Y ′ in f (v), and for every vertex v ∈ Π(t) \ N [Y ′] the component
f (v) is disjoint from Γ(t ′) or equals Ω. For every child t ′ of t , we compute a maximum weight set Yt ′ among all sets Y (t ′, f ′) for
f ′ ∈ St ′ that are partially consistent with f ; we terminate the computation and set Y (t , f) = ⊥ if for some child t ′ the set Yt ′ does
not exist (i.e., we picked the maximum over an empty set). A direct check shows that if all sets Yt ′ have been computed, then the
union of all sets Yt ′ is a partial solution consistent with f , and we pick it as Y (t , f).

Consider now the state f t0 , and assume that for every child t ′ of t , the set Y (t ′, f t ′0) exists and has weight at least the weight of
X0 ∩ Γ(t ′). Observe that Y (t ′, f t ′0) is also partially consistent with f t0 . A direct check from the de�nition of consistency shows
that for any Y (t ′, f ′) partially consistent with f t0 , the set X ′0 := (X0 \ Γ(t ′)) ∪Y (t ′, f ′) is also an e�cient dominating set. Since Yt ′
is chosen to be a set Y (t ′, f ′) of maximum weight that is partially consistent with f t0 , and Y (t ′, f t

′

0) is one of the candidates, X ′0 is
a maximum-weight e�cient dominating set. By repeating this replacement argument for every child t ′ of t , we infer that the
computed value Y (t , f t0) has weight at least the weight of X0 ∩ Γ(t).

Since the computations are polynomial in the size of G and the sizes of the families St , using �eorem 6.1 we conclude the
proof of �eorem 1.2.

7 CONCLUSIONS

We have developed a quasi-polynomial-time algorithm for Maximum Weight Independent Set and a polynomial-time algorithm
for MaximumWeight Efficient Dominating Set in P6-free graphs. Our algorithms rely on a detailed analysis of the interactions

22

A

c1

C1

a1

c2

C2

a2

c3

C3

a3

ck

Ck

ak

. . .

A B

.

.

.

.

.

.

.

.

.

S1

S2

S3

Sk

Fig. 14. Counterexamples to generalizations of Theorem 4.2 to P7-free graphs (le� panel, the nuke vertices are white) and of Theorem 1.3 to
P8-free graphs (right panel). Every rectangle denotes a clique on k vertices.

between minimal separators, potential maximal cliques, and vertex neighborhoods in P6-free graphs. In light of these developments,
a few open questions seem natural for the Maximum Weight Independent Set problem.

First, can Maximum Weight Independent Set on P6-free graphs be solved in polynomial time? Very recently, Grzesik et
al. [34] answered this question a�rmatively.

Second, can our quasipolynomial-time algorithm be generalized to P7-free graphs? We remark that polynomial-time algorithms
are known for Independent Set on various subclasses of P7-free graphs [17, 30, 43, 44, 49]. Moreover, �eorems 1.3 and 1.4 work
for P7-free graphs. However, �eorem 4.2 does not, as can be seen on the following example. Consider the graph G consisting of
k + 1 pairwise disjoint cliques on k vertices each, denoted A,C1,C2, . . . ,Ck , with a vertex ci distinguished in every clique Ci and
made adjacent to a private vertex ai ∈ A (see the le� panel of Fig. 14). G contains many P6’s with middle two vertices in A, but no
P7. �e set X = {c1,c2, . . . ,ck } is a nuke in G, but no vertex of G is adjacent to more than one vertex of X . Furthermore, if one
adds a new vertex y to G that is adjacent to X , then X ∪ {y} becomes a potential maximal clique. Recall that the algorithm for
Maximum Weight Independent Set works by picking a central PMC as a pivot nuke, and branching on vertices adjacent to
a constant fraction of the pivot nuke. Hence, with a similar approach on P7-free graphs the algorithm may end up with such a
seemingly useless nuke as X in G.

Considering P8-free graphs and beyond, we note that polynomial-time algorithms are know for Independent Set on various
subclasses [30, 43]. Recently, Bacsó et al. [3] and Brause [21] independently proved subexponential-time exact algorithms for
Independent Set on Pk -free graphs for any �xed k . However, our approach breaks down even further: not only does �eorem 4.2
not seem to generalize, as explained previously, but also �eorems 1.3 and 1.4 do not seem to generalize to less restrictive graph
classes. We can see this as follows. Consider a graph G consisting of k + 2 cliques on k vertices each, denoted A,B,S1,S2, . . . ,Sk ,
with every Si adjacent to a private vertex ai ∈ A and bi ∈ B. �e set S := ⋃k

i=1 Si is a minimal separator in G of size k2 with A and
B as full components, yet no vertex of G contains more than k vertices of S in its neighborhood. Furthermore, although G contains
many P7’s with endpoints and middle vertex in S , it does not contain a P8 nor an E-graph (a P5 with an additional degree-1 vertex
a�ached to the middle vertex of the path).

Finally, we remark that although the polynomial-time algorithm for Maximum Weight Efficient Dominating Set on P6-free
graphs seems to close a research direction (as the problem is NP-hard on P7-free chordal graphs), it would be interesting to see
if one can obtain the same end result using the approach of [9, 13], that is, by either obtaining a polynomial-time algorithm
for Maximum Weight Independent Set in hole-free graphs or showing that the square of a P6-free graph having an e�cient
dominating set is perfect.

ACKNOWLEDGMENTS

�e second author acknowledges discussions with Krzysztof Choromański, Dvir Falik, Anita Liebenau, and Viresh Patel on the
usage of minimal separators and potential maximal cliques in study of the Erdős-Hajnal conjecture; in particular, the current

23

proofs of �eorems 1.3 and 1.4, (that replaced our previous proofs more heavy on case analysis) were partially inspired by some
quantitative proof a�empts in the study of subcases of the Erdős-Hajnal conjecture.

�e �rst author was supported by the BeHard grant under the recruitment programme of the Bergen Research Foundation.
�e second author has received funding from the European Research Council under the European Union’s Seventh Framework

Programme (FP/2007-2013) / ERC Grant Agreement n. 267959 (when M.P. was at the University of Bergen), from the Centre for
Discrete Mathematics and its Applications (DIMAP) at the University of Warwick, and from the Warwick-QMUL Alliance in
Advances in Discrete Mathematics and its Applications (when M.P. was at the University of Warwick).

�e third author was at Max-Planck Institut für Informatik, Saarland Informatics Campus, when most of the work on this paper
was done.

REFERENCES

[1] V. Alekseev. �e e�ect of local constraints on the complexity of determination of the graph independence number. Combinatorial-algebraic methods in applied

mathematics, pages 3–13, 1982. (in Russian).
[2] V. E. Alekseev. Polynomial algorithm for �nding the largest independent sets in graphs without forks. Discrete Applied Mathematics, 135(1–3):3–16, 2004.
[3] G. Bacsó, D. Marx, and Z. Tuza. H-free graphs, independent sets, and subexponential-time algorithms. In J. Guo and D. Hermelin, editors, 11th International

Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pages 3:1–3:12. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

[4] M. Basavaraju, L. S. Chandran, and T. Karthick. Maximum weight independent sets in hole- and dart-free graphs. Discrete AppliedMathematics, 160(16-17):2364–2369,
2012.

[5] N. Biggs. Perfect codes in graphs. Journal of Combinatorial �eory, Series B, 15(3):289–296, 1973.
[6] H. L. Bodlaender, A. Brandstädt, D. Kratsch, M. Rao, and J. Spinrad. On algorithms for (P5, gem)-free graphs. �eoretical Computer Science, 349(1):2–21, 2005.
[7] R. Boliac and V. V. Lozin. An augmenting graph approach to the stable set problem in P5-free graphs. Discrete Applied Mathematics, 131(3):567–575, 2003.
[8] V. Bouchi�é and I. Todinca. Treewidth and minimum �ll-in: Grouping the minimal separators. SIAM J. Comput., 31(1):212–232, 2001.
[9] A. Brandstädt, E. M. Eschen, E. Friese, and T. Karthick. E�cient domination for classes of P6-free graphs. Discrete Applied Mathematics, 223:15–27, 2017.

[10] A. Brandstädt and V. Giakoumakis. Weighted e�cient domination for (P5 + kP2)-free graphs in polynomial time. CoRR, abs/1407.4593, 2014.
[11] A. Brandstädt and V. Giakoumakis. Addendum to: Maximum weight independent sets in hole- and co-chair-free graphs. Inf. Process. Le�., 115(2):345–350, 2015.
[12] A. Brandstädt and C. T. Hoàng. On clique separators, nearly chordal graphs, and the maximum weight stable set problem. �eor. Comput. Sci., 389(1-2):295–306,

2007.
[13] A. Brandstädt and T. Karthick. Weighted e�cient domination in two subclasses of P6-free graphs. Discrete Applied Mathematics, 201:38–46, 2016.
[14] A. Brandstädt, T. Klembt, and S. Mahfud. P6- and triangle-free graphs revisited: structure and bounded clique-width. Discrete Mathematics & �eoretical Computer

Science, 8(1):173–188, 2006.
[15] A. Brandstädt, M. Milanic, and R. Nevries. New polynomial cases of the weighted e�cient domination problem. In Mathematical Foundations of Computer Science

2013 - 38th International Symposium, MFCS 2013, Klosterneuburg, Austria, August 26-30, 2013. Proceedings, pages 195–206, 2013.
[16] A. Brandstädt and R. Mosca. On the structure and stability number of P5- and co-chair-free graphs. Discrete Applied Mathematics, 132(1–3):47–65, 2003. Stability

in Graphs and Related Topics.
[17] A. Brandstädt and R. Mosca. Maximum weight independent sets for (P7 , triangle)-free graphs in polynomial time. CoRR, abs/1511.08066, 2015.
[18] A. Brandstädt and R. Mosca. Weighted e�cient domination for P6-free graphs in polynomial time. CoRR, abs/1508.07733, 2015.
[19] A. Brandstädt and R. Mosca. Weighted e�cient domination for P5-free and P6-free graphs. SIAM J. Discrete Math., 30(4):2288–2303, 2016.
[20] A. Brandstädt and R. Mosca. Weighted e�cient domination for P6-free and for P5-free graphs. In P. Heggernes, editor, Graph-�eoretic Concepts in Computer

Science - 42nd International Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected Papers, volume 9941 of Lecture Notes in Computer Science, pages
38–49, 2016.

[21] C. Brause. A subexponential-time algorithm for the maximum independent set problem in Pt -free graphs. Discrete Applied Mathematics, 231:113–118, 2017.
[22] H. Broersma, T. Kloks, D. Kratsch, and H. Müller. Independent sets in asteroidal triple-free graphs. SIAM J. Discrete Math., 12(2):276–287, 1999.
[23] P. Buneman. A characterisation of rigid circuit graphs. Discrete Mathematics, 9(3):205–212, 1974.
[24] D. Corneil, H. Lerchs, and L. S. Burlingham. Complement reducible graphs. Discrete Applied Mathematics, 3(3):163–174, 1981.
[25] H. de Ridder et al. Information system on graph classes and their inclusions (ISGCI), h�p://www.graphclasses.org.
[26] R. Diestel. Graph �eory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.
[27] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the �eory of NP-Completeness. Series of Books in the Mathematical Sciences. W. H.

Freeman and Co., 1979.
[28] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comput.,

1(2):180–187, 1972.
[29] F. Gavril. �e intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial �eory, Series B, 16(1):47–56, 1974.
[30] M. U. Gerber, A. Hertz, and V. V. Lozin. Stable sets in two subclasses of banner-free graphs. Discrete Applied Mathematics, 132(1-3):121–136, 2003.
[31] M. U. Gerber and V. V. Lozin. On the stable set problem in special P5-free graphs. Discrete Applied Mathematics, 125(2–3):215–224, 2003.
[32] M. C. Golumbic. Algorithmic Graph �eory and Perfect Graphs. Academic Press, 1980.
[33] M. Grötschel, L. Lovász, and A. Schrijver. �e ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1:169–197, 1981.
[34] A. Grzesik, T. Klimosova, M. Pilipczuk, and M. Pilipczuk. Polynomial-time algorithm for maximum weight independent set on P6-free graphs. CoRR, abs/1707.05491,

2017.
[35] M. Habib and C. Paul. A survey of the algorithmic aspects of modular decomposition. Computer Science Review, 4:41–59, 2010.
[36] T. W. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of domination in graphs. CRC Press, 1998.

24

[37] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics, 306(3):297–317, 2006.
[38] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85–103, 1972.
[39] T. Karthick. Weighted independent sets in a subclass of P6-free graphs. Discrete Mathematics, 339(4):1412–1418, 2016.
[40] T. Karthick and F. Ma�ray. Weighted independent sets in classes of P6-free graphs. Discrete Applied Mathematics, 209:217–226, 2016.
[41] D. Lokshtanov, M. Vatshelle, and Y. Villanger. Independent set in P5-free graphs in polynomial time. In Proceedings of the Twenty-Fi�h Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 570–581, 2014.
[42] V. V. Lozin and M. Milanic. A polynomial algorithm to �nd an independent set of maximum weight in a fork-free graph. J. Discrete Algorithms, 6(4):595–604, 2008.
[43] V. V. Lozin and D. Rautenbach. Some results on graphs without long induced paths. Inf. Process. Le�., 88(4):167–171, 2003.
[44] F. Ma�ray and L. Pastor. Maximum weight stable set in (P7 , bull)-free graphs. CoRR, abs/1611.09663, 2016.
[45] F. Ma�ray and L. Pastor. �e maximum weight stable set problem in (P6 , bull)-free graphs. In P. Heggernes, editor, Graph-�eoretic Concepts in Computer Science -

42nd International Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected Papers, volume 9941 of Lecture Notes in Computer Science, pages 85–96,
2016.

[46] G. J. Minty. On maximal independent sets of vertices in claw-free graphs. Journal of Combinatorial �eory, Series B, 28(3):284–304, 1980.
[47] R. Mosca. Polynomial algorithms for the maximum stable set problem on particular classes of P5-free graphs. Information Processing Le�ers, 61:137–143, 1997.
[48] R. Mosca. Stable sets in certain P6-free graphs. Discrete Applied Mathematics, 92(2-3):177–191, 1999.
[49] R. Mosca. Stable sets of maximum weight in (P7 , banner)-free graphs. Discrete Mathematics, 308(1):20–33, 2008.
[50] R. Mosca. Independent sets in (P6 , diamond)-free graphs. Discrete Mathematics & �eoretical Computer Science, 11(1):125–140, 2009.
[51] R. Mosca. Some results on stable sets for k -colorable P6-free graphs and generalizations. Discrete Mathematics & �eoretical Computer Science, 14(2):37–56, 2012.
[52] R. Mosca. Stable sets for (P6, K2,3)-free graphs. Discussiones Mathematicae Graph �eory, 32(3):387–401, 2012.
[53] R. Mosca. Maximum weight independent sets in (P6, co-banner)-free graphs. Inf. Process. Le�., 113(3):89–93, 2013.
[54] B. Randerath and I. Schiermeyer. On maximum independent sets in P5-free graphs. Discrete Applied Mathematics, 158(9):1041–1044, 2010.
[55] N. Sbihi. Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans etoile. Discrete Mathematics, 29(1):53–76, 1980.
[56] Y. Shibata. On the tree representation of chordal graphs. Journal of Graph �eory, 12(3):421–428, 1988.
[57] J. R. Walter. Representations of rigid cycle graphs. PhD thesis, Wayne State University, 1972.
[58] C. Yen and R. C. T. Lee. �e weighted perfect domination problem and its variants. Discrete Applied Mathematics, 66(2):147–160, 1996.
[59] I. Zverovich and O. Zverovich. Stability number in subclasses of P5-free graphs. Appl. Math. J. Chinese Univ. Ser. B, 19(2):125–132, 2004.

25

	Abstract
	1 Introduction
	2 Preliminaries
	3 Hitting Separators and Potential Maximal Cliques
	3.1 Proof of Theorem 1.3
	3.2 Proof of Theorem 1.4

	4 Nuking a Graph
	5 The Algorithm for Maximum Weight Independent Set
	5.1 Description of the algorithm
	5.2 Analysis

	6 The Algorithm for Maximum Weight Efficient Dominating Set
	6.1 Bounding the Number of States
	6.2 The Actual Algorithm

	7 Conclusions
	Acknowledgments
	References

