
Point Separation and Obstacle Removal by Finding
and Hitting Odd Cycles
Neeraj Kumar !

Department of Computer Science, University of California, Santa Barbara, USA

Daniel Lokshtanov !

Department of Computer Science, University of California, Santa Barbara, USA

Saket Saurabh !

IMSc, Chennai, India and University of Bergen, Norway

Subhash Suri !

Department of Computer Science, University of California, Santa Barbara, USA

Jie Xue !

New York University Shanghai, China

Abstract
Suppose we are given a pair of points s, t and a set S of n geometric objects in the plane, called

obstacles. We show that in polynomial time one can construct an auxiliary (multi-)graph G with
vertex set S and every edge labeled from {0, 1}, such that a set Sd ⊆ S of obstacles separates
s from t if and only if G[Sd] contains a cycle whose sum of labels is odd. Using this structural
characterization of separating sets of obstacles we obtain the following algorithmic results.

In the Obstacle-removal problem the task is to find a curve in the plane connecting s to t
intersecting at most q obstacles. We give a 2.3146qnO(1) algorithm for Obstacle-removal, signifi-
cantly improving upon the previously best known qO(q3)nO(1) algorithm of Eiben and Lokshtanov
(SoCG’20). We also obtain an alternative proof of a constant factor approximation algorithm for
Obstacle-removal, substantially simplifying the arguments of Kumar et al. (SODA’21).

In the Generalized Points-separation problem input consists of the set S of obstacles, a point
set A of k points and p pairs (s1, t1), . . . (sp, tp) of points from A. The task is to find a minimum
subset Sr ⊆ S such that for every i, every curve from si to ti intersects at least one obstacle in
Sr. We obtain 2O(p)nO(k)-time algorithm for Generalized Points-separation. This resolves an
open problem of Cabello and Giannopoulos (SoCG’13), who asked about the existence of such an
algorithm for the special case where (s1, t1), . . . (sp, tp) contains all the pairs of points in A. Finally,
we improve the running time of our algorithm to f(p, k) · nO(

√
k) when the obstacles are unit disks,

where f(p, k) = 2O(p)kO(k), and show that, assuming the Exponential Time Hypothesis (ETH), the
running time dependence on k of our algorithms is essentially optimal.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases points-separation, min color path, constraint removal, barrier resillience

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Suppose we are given a set S of geometric objects in the plane, and we want to modify S in
order to achieve certain guarantees on coverage of paths between a given set A of points. Such
problems have received significant interest in sensor networks [3,5,7,20], robotics [11,14] and
computational geometry [4, 10, 13]. There have been two closely related lines of work on this
topic: (i) remove a smallest number of obstacles from S to satisfy reachability requirements for
points in A, and (ii) retain a smallest number of obstacles to satisfy separation requirements
for points in A.

© Neeraj Kumar, Daniel Lokshtanov, Saket Saurabh, Subhash Suri, and Jie Xue;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neeraj@cs.ucsb.edu
mailto:daniello@ucsb.edu
mailto:saket@imsc.res.in
mailto:suri@cs.ucsb.edu
mailto:jiexue@nyu.edu
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Algorithms for Point Separation and Obstacle Removal

In the most basic version of these problems the set A consists of just two points s and
t. Specifically, in Obstacle-removal the task is to find a smallest possible set Sd ⊆ S
such that there is a curve from s to t in the plane avoiding all obstacles in S \ Sd. In
2-Points-separation the task is to find a smallest set Sr ⊆ S such that every curve from
s to t in the plane intersects at least one obstacle in Sr. It is quite natural to require the
obstacles in the set S to be connected. Indeed, removing the connectivity requirements
results in problems that are computationally intractable [10,12,25].

When the obstacles are required to be connected Obstacle-removal remains NP-
hard, but becomes more tractable from the perspective of approximation algorithms and
parameterized algorithms. For approximation algorithms, Bereg and Kirkpatrick [5] designed
a constant factor approximation for unit disk obstacles. Chan and Kirkpatrick [7,8] improved
the approximation factor for unit disk obstacles. Korman et al. [18] obtained a (1 + ε)-
approximation algorithm for the case when obstacles are fat, similarly sized, and no point in
the plane is contained in more than a constant number of obstacles. Whether a constant factor
approximation exists for general obstacles was posed repeatedly as an open problem [4,7, 8]
before it was resolved in the affirmative by a subset of the authors of this article [25].

For parameterized algorithms, Korman et al. [18] designed an algorithm for Obstacle-
removal with running time f(q)nO(1) for determining whether there exists a solution Sd of
size at most q, when obstacles are fat, similarly sized, and no point in the plane is contained
in more than a constant number of obstacles. Eiben and Kanj [10,12] generalized the result of
Korman et al. [18], and posed as an open problem the existence of a f(q)nO(1) time algorithm
for Obstacle-removal with general connected obtacles. Eiben and Lokshtanov [13] resolved
this problem in the affirmative, providing an algorithm with running time qO(q3)nO(1).

Like Obstacle-removal, the 2-Points-separation problem becomes more tractable
when the obstacles are connected. Cabello and Giannopoulos [6] showed that 2-Points-
separation with connected obstacles is polynomial time solvable. They show that the more
general Points-separation problem where we are given a point set A and asked to find
a minimum size set Sr ⊆ S that separates every pair of points in A, is NP-complete, even
when all obstacles are unit disks. They leave as an open problem to determine the existence
of f(k)nO(1) and f(k)ng(k) time algorithms for Points-separation, where k = |A|.

Our Results and Techniques

Our main result is a structural characterization of separating sets of obstacles in terms of
odd cycles in an auxiliary graph.

I Theorem 1. There exists a polynomial time algorithm that takes as input a set S of
obstacles in the plane, two points s and t, and outputs a (multi-)graph G with vertex set S
and every edge labeled from {0, 1}, such that a set Sd ⊆ S of obstacles separates s from t if
and only if G[Sd] contains a cycle whose sum of labels is odd.

The proof of Theorem 1 is an application of the well known fact that a closed curve
separates s from t if and only if it crosses a curve from s to t an odd number of times.
Theorem 1 allows us to re-prove, improve, and generalize a number of results for Obstacle-
removal, 2-Points-separation and Points-separation in a remarkably simple way.
More concretely, we obtain the following results.

There exists a polynomial time algorithm for 2-Points-separation.

Here is the proof: construct the graph G from Theorem 1 and find the shortest odd
cycle, which is easy to do in polynomial time. This re-proves the main result of Cabello

N. Kumar et al. 23:3

and Giannopoulos [6]. Next we turn to Obstacle-removal, and obtain an improved
parameterized algorithm and simplified approximation algorithms.

There exists an algorithm for Obstacle-removal that determines whether there exists
a solution size set S of size at most q in time 2.3146qnO(1).

Here is a proof sketch: construct the graph G from Theorem 1 and determine whether
there exists a subset Sd of S of size at most q such that G− Sd does not have any odd label
cycle. This can be done in time 2.3146qnO(1) using the algorithm of Lokshtanov et al. [22]
for Odd Cycle Transversal.1 This parameterized algorithm improves over the previously
best known parameterized algorithm for Obstacle-removal of Eiben and Lokshtanov [13]
with running time qO(q3)nO(1).

If we run an approximation algorithm for Odd Cycle Transversal on G instead of a
parameterized algorithm, we immediately obtain an approximation algorithm for Obstacle-
removal with the same ratio. Thus, the O(

√
logn)-approximation algorithm for Odd

Cycle Transversal [2, 19] implies a O(
√

logn)-approximation algorithm for Obstacle-
removal as well. Going a little deeper we observe that the structure of G implies that the
standard Linear Programming relaxation of Odd Cycle Transversal on G only has a
constant integrality gap. This yields a constant factor approximation for Obstacle-removal,
substantially simplifying the approximation algorithm of Kumar et al [25].

There exists a a constant factor approximation for Obstacle-removal.

Finally we turn our attention back to a generalization of Points-separation, called
Generalized Points-separation. Here, instead of separating all k points in A from each
other, we are only required to separate p specific pairs (s1, t1), . . . , (sp, tp) of points in A

(which are specified in the input). We apply Theorem 1 several times, each time with the
same obstacle set S, but with a different pair (si, ti). Let Gi be the graph resulting from
the construction with the pair (si, ti). Finding a minimum size set Sr of obstacles that
separates si from ti for every i now amounts to finding a minimum size set Sr such that
Gi[Sr] contains an odd label cycle for every i. The graph in the construction of Theorem 1
does not depend on the points (si, ti) - only the labels of the edges do. Thus G1, . . . , Gp are
copies of the same graph G, but with p different edge labelings. Our task now is to find a
subgraph of G on the minimum number of vertices, such that the subgraph contains an odd
labeled cycle with respect to each one of the p labels. We show that such a subgraph has at
most O(p) vertices of degree at least 3 and use this to obtain a 2O(p2)nO(p) time algorithm
for Generalized Points-separation. This implies a 2O(k4)nO(k2) time algorithm for
Points-separation, resolving the open problem of Cabello and Giannopoulos [6]. With
additional technical effort we are able to bring down the running time of our algorithm for
Generalized Points-separation to 2O(p)nO(k). This turns out to be close to the best
one can do. On the other hand, for pseudo-disk obstacles we can get a faster algorithm.

There exists a 2O(p)nO(k) time algorithm for Generalized Points-separation, and a
nO(
√
k) time algorithm for Generalized Points-separation with pseudo-disk obstacles.

A f(k)no(k/ log k) time algorithm for Points-separation, or a f(k)no(
√
k) time algorithm

for Points-separation with pseudo-disk obstacles would violate the ETH [16].

1 The only reason this is a proof sketch rather than a proof is that the algorithm of Lokshtanov et al. [22]
works for unlabeled graphs, while G has edges with labels 0 or 1. This difference can be worked out
using a well-known and simple trick of subdividing every edge with label 0 (see Section 4).

CVIT 2016

23:4 Algorithms for Point Separation and Obstacle Removal

2 Preliminaries

We begin by reviewing some relevant background and definitions.

Graphs and Arrangements All graphs used in this paper are undirected. It will also be
more convenient to sometimes consider multi-graphs, in which self-loops and parallel edges
are allowed. The degree of a vertex is the number of adjacent edges.

The arrangement Arr(S) of a set of obstacles S is a subdivision of the plane induced by
the boundaries of the obstacles in S. The faces of Arr(S) are connected regions and edges
are parts of obstacle boundaries. The arrangement graph GArr = (V,E) is the dual graph
of the arrangement whose vertices are faces of Arr(S) and edges connect neighboring faces.
The complexity of the arrangement is the size of its arrangement graph which we denote
by |Arr(S)|. We assume that the size of the arrangement is polynomial in the number of
obstacles, that is |Arr(S)| = |GArr| = nO(1). This is indeed true for most reasonable obstacle
models such as polygons or low-degree splines.

Obstacle-removal and Points-separation on Colored Graphs Traditionally, Obstacle-
removal problems have been defined in terms of graph problems on the arrangement graph
GArr. In particular, we can define a coloring function col : V → 2S which assigns every vertex
of GArr to the set of obstacles containing it. That is, obstacles correspond to colors in the
colored graph (GArr, col). It is easy to see that a curve connecting s and t in the plane that
intersects q obstacles corresponds to a path π in the graph that uses |

⋃
v∈π col(v)| = q colors

in (GArr, col) and vice versa.
We can also define 2-Points-separation as the problem of computing a min-color

separator of the graph (GArr, col). Let V (Sr) ⊆ V be the set of vertices of GArr that contain at
least one color from Sr. A set of colors Sr ⊆ S is a color separator if s and t are disconnected
in GArr − V (Sr). That is, every s–t path must intersect at least one color in Sr. Therefore, a
color separator of minimum cardinality is a solution of 2-Points-separation, that is the
minimum set of obstacles separating s from t.

The previous work [25] used structural properties of the colored graph (GArr, col) to
obtain a polytime algorithm for 2-Points-separation and a constant approximation for
Obstacle-removal. One key difference in our approach is that instead of working on
the colored graph (GArr, col), we found it more convenient to work with a so-called labeled
intersection graph (GS , lab) of obstacles which we will formally construct in the next section.
Roughly speaking, given a set of obstacles S and a reference curve π in the plane connecting
s and t, we build a multi-graph where vertices are obstacles in S and edges connect a pair of
intersecting obstacles. Every edge e ∈ E is assigned a parity label lab(e) ∈ {0, 1} based on
the reference curve π. We say that a walk is labeled odd (or even) if the sum of labels of its
edges is odd (or even) respectively.

Once this graph is constructed, we can forget about obstacles and formulate our problems
using just the parity labels lab(e) on the edges of GS . Since the parity function is much
simpler to work with compared to the color function, this allows us to significantly simplify
the results from [25] and obtain new results. In the next section, we describe the construction
of graph GS and prove a key structural result that allow us to cast 2-Points-separation
as finding shortest odd labeled cycle in GS and Obstacle-removal as the smallest Odd
Cycle Transversal of GS . Recall that in Odd Cycle Transversal problem, we want
to find a set of vertices that “hits” (has non-empty intersection) with every odd-cycle of the
graph. We will also need the following important property of plane curves.

N. Kumar et al. 23:5

Plane curves and Crossings A plane curve (or simply curve) is specified by a continuous
function π : [0, 1] → R2, where the points π(0) and π(1) are called the endpoints (for
convenience, we also use the notation π to denote the image of the path function π). A
curve is simple if it is injective, and is closed if its two endpoints are the same. We say a
curve π separates a pair (a, b) of two points in R2 if a and b belong to different connected
components of R2\π.

A crossing of π with π′ is an element of the set {t ∈ [0, 1] | π(t) ∈ π′}. We will often be
concerned with the number of times π crosses π′. This is defined as |{t ∈ [0, 1] | π(t) ∈ π′}|.
Whenever we count the number of times a curve π crosses another curve π′ we shall assume
that (and ensure that) |{t ∈ [0, 1] | π(t) ∈ π′}| is finite and that π and π′ are transverse.
That is for every t ∈ [0, 1] such that π(t) ∈ π′ there exists an ε > 0 such that the intersection
of π ∪ π′ with an ε radius ball around π(t) is homotopic with two orthogonal lines. We will
make frequent use of the following basic topological fact.

I Fact 2. Let π be a curve with endpoints a, b ∈ R2. We have that
A simple closed curve γ separates (a, b) iff π crosses γ an odd number of times.
If π crosses a closed curve γ an odd number of times, then γ separates (a, b).

Partitions. A partition of a set X is a collection Φ of nonempty disjoint subsets (called
parts) of X whose union is X. For two partitions Φ and Φ′ of X, we say Φ is finer than
Φ′, denoted by Φ � Φ′ or Φ′ � Φ, if for any Y ∈ Φ there exists Y ′ ∈ Φ′ such that Y ⊆ Y ′.
There is a one-to-one correspondence between partitions of X and equivalence relations on
X. For any equivalence relation on a X, the set of its equivalence classes is a partition of
X. Conversely, any partition of X induces a equivalence relation ∼ on X where x ∼ y if x
and y belong to the same part of the partition. For two partitions Φ and Φ′ of X, we define
Φ � Φ′ as another partition of I as follows. Let ∼Φ and ∼Φ′ be the equivalence relations
on X induced by Φ and Φ′, respectively. Define ∼ as the equivalence relation on X where
x ∼ y if x ∼Φ y and x ∼Φ′ y. Then Φ � Φ′ is defined as the partition corresponding to
the equivalence relation ∼. Clearly, � is a commutative and associative binary operation.
Thus, for a collection Par of partitions on X, we can define

⊙
Φ∈Par Φ as the partition on

X obtained by “adding” the elements in Par using the operation �; note that
⊙

Φ∈Par Φ is
well-defined even if Par is infinite.

I Fact 3. Let X be a set of size k and Φ1, . . . , Φr be partitions of X. Then there exists
T ⊆ [r] with |T | < k such that

⊙r
t=1 Φt =

⊙
t∈T Φt.

Proof. Let T ⊆ [r] be a minimal subset satisfying
⊙r

t=1 Φt =
⊙

t∈T Φt. We show |T | < k

by contradiction. Assume T = {t1, . . . , tm} where m ≥ k. Define Ψs =
⊙s

i=1 Φti for s ∈ [m].
Then we have Ψ1 � · · · � Ψm, which implies 1 ≤ |Ψ1| ≥ · · · ≥ |Ψm| ≤ k. It is impossible that
1 ≤ |Ψ1| < · · · < |Ψm| ≤ k, because m ≥ k. Therefore, Ψs = Ψs+1 for some s ∈ [m − 1]. It
follows that

⊙
t∈T

Φt = Ψs+1 �

(
m⊙

i=s+2
Φti

)
= Ψs �

(
m⊙

i=s+2
Φti

)
=

⊙
t∈T\{ts+1}

Φt,

which contradicts the minimality of T . J

I Fact 4. Let Φ be a partition of X and suppose |Φ| = z. For an integer 0 ≤ d < z, the
number of partitions Φ′ satisfying |Φ′| = z − d and Φ′ � Φ is bounded by zO(d). Furthermore,
these partitions can be computed in zO(d) time given Φ.

CVIT 2016

23:6 Algorithms for Point Separation and Obstacle Removal

Proof. Consider the following procedure for generating a “coarser” partition from Φ. We
begin from the partition Φ. At each step, we pick two elements Y, Y ′ in the current partition
and then replace them with their union Y ∪ Y ′ to obtain a new partition. After d steps, we
obtain a partition Φ′ satisfying |Φ′| = z − d and Φ′ � Φ. Note that every partition Φ′ where
|Φ′| = z− d and Φ′ � Φ can be constructed in this way. Furthermore, the number of different
choices at the i-th step is

(
z+1−i

2
)

= O(z2). Therefore, the number of possible outcomes of
the procedure, i.e., the number of partitions Φ′ satisfying |Φ′| = z−d and Φ′ � Φ, is bounded
by zO(d). These partitions can be directly computed in zO(d) time via the procedure. J

Pseudo-disks. A set S of geometric objects in R2 is a set of pseudo-disks, if each object
S ∈ S is topologically homeomorphic to a disk (and hence its boundary is a simple cycle in
the plane) and the boundaries of any two objects S, S′ ∈ S intersect at most twice. Let U be
the union of a set S of pseudo-disks. The boundary of U consists of arcs (each of which is a
portion of the boundary of an object in S) and break points (each of which is an intersection
point of the boundaries of two objects in S). We say two objects S, S′ ∈ S contribute to U if
an intersection point of the boundaries of S and S′ is a break point on the boundary of U .
We shall use the following well-known property of pseudo-disks [17].

I Fact 5. Let S be a set of pseudo-disks, and U be the union of the objects in S. Then the
graph G = (S, E) where E = {(S, S′) : S, S′ ∈ S contribute to U} is planar.

We remark that the above fact immediately implies another well-known property of pseudo-
disks: the complexity of the union of a set of n pseudo-disks is O(n) [17]. But this property
will not be used in this paper.

3 Labeled Intersection Graph of Obstacles

We begin by describing the construction of the labeled intersection graph GS = (S, X) of
the obstacles S. For the ease of exposition, we will use S to refer to the obstacle S ∈ S as
well as the vertex for S in GS interchangeably.

Constructing the graph GS For every obstacle S ∈ S we first select an arbitrary point
ref(S) ∈ S and designate it to be the reference point of the obstacle. Next, we select the
reference curve π to be a simple curve in the plane connecting s and t such that including it
to the arrangement Arr(S) does not significantly increase its complexity. That is, we want to
ensure that |Arr(S ∪ π)| = O(|Arr(S)|). Additionally, the reference curve π is chosen such
that there exists an ε > 0 and π is disjoint from an ε ball around every intersection point of
two obstacles in Arr(S) and from an ε ball around every reference point ref(S) for S ∈ S.

As long as the intersection of every pair of obstacles is finite and their arrangement has
bounded size, a suitable choice for π always exists (and can be efficiently computed). For
example one can choose π to be the plane curve corresponding to an s–t path in GArr.

We will now add edges to GS as follows. (See also Figure 1(c) for an example.)

For every obstacle S ∈ S that contains s or t, add a self-loop e = (S, S) with lab(e) = 1.
For every pair of obstacles S, S′ ∈ S that intersect, we add edges to G as follows.

Add an edge e0 = (S, S′) with lab(e0) = 0 if there exists a curve connecting ref(S) and
ref(S′) contained in the region S ∪ S′ that crosses π an even number of times.
Add an edge e1 = (S, S′) with lab(e1) = 1 if there exists a curve connecting ref(S) and
ref(S′) contained in the region S ∪ S′ that crosses π an odd number of times.

N. Kumar et al. 23:7

Checking whether there exists a curve contained in the region S∪S′ with endpoints ref(S)
and ref(S′) that crosses π an odd (resp. even) number of times can be done in time linear
in the size of arrangement Arr′ = Arr(S ∪ S′ ∪ π). Specifically, we build the arrangement
graph GArr′ and only retain edges (fi, fj) such that the faces fi, fj ∈ S ∪ S′. If the common
boundary of faces fi, fj is a portion of π, we assign a label 1 to the edge (fi, fj), otherwise
we assign it a label 0. An odd (resp. even) labeled walk in GArr′ connecting the faces
containing ref(S) and ref(S′) gives us the desired plane curve πij . Since edges of GArr′ connect
adjacent faces of Arr′, we can ensure that the intersections between curve πij and the edges
of arrangement (including parts of reference curve π) are all transverse.

We are now ready to prove the following important structural property of the graph GS .

I Lemma 6. A set of obstacles S ′ ⊆ S in the graph GS separates the points s and t if and
only if the induced graph H = GS [S ′] contains an odd labeled cycle.

Proof. (⇒) For the forward direction, suppose we are given a set of obstacles S ′ that separate
s from t. If s or t are contained in some obstacle, then we must have an odd self-loop in GS
and we will be done. Otherwise, assume that s, t lie in the exterior of all obstacles, so we
have s, t 6∈ R(S ′) where R(S ′) =

⋃
S∈S′ S is the region bounded by obstacles in S ′. Observe

that s, t must lie in different connected regions Rs, Rt of R2 \ R(S ′) or else the set S ′ would
not separate them. At least one of Rs or Rt must be bounded, wlog assume it is Rs. Let γ′
be the simple closed curve that is the common boundary of R(S ′) and Rs. We have that
γ′ encloses s but not t and therefore separates s from t. Using first statement of Fact 2,
we obtain that γ′ crosses the reference curve π an odd number of times. Observe that the
curve γ′ consists of multiple sections α′1 → α′2 · · · → α′r where each curve α′i is part of the
boundary of some obstacle Si. For each of these curves α′i, we add a detour to and back
from the reference point ref(Si) of the obstacle it belongs. Specifically, let qi be an arbitrary
point on the curve α′i and let α′i`, α′ir be the portion of α′i before and after qi respectively.
We add the detour curve δi = qi → ref(Si) → qi ensuring that it always stays within the
obstacle Si which is possible because the obstacles are connected. (Same as before the curve
δi can be chosen to be transverse with π by considering the corresponding walk in graph of
Arr(Si ∪ π).) Let αi = α′i` → δi → α′ir be the curve obtained by adding detour δi to α′i. Let
γ = α1 → α2 · · · → αr be the closed curve obtained by adding these detours to γ′. Note that
γ is not necessarily simple as the detour curves may intersect each other. Every detour δi
consists of identical copies of two curves, so it crosses the reference curve π an even number
of times. Since γ′ crosses π an odd number of times, the curve γ also crosses π an odd
number of times. (See also Figure 1.) Observe that γ and γ′ are transverse with π because
intersections of π and obstacle boundaries are transverse and the detour curves δi are chosen
to be transverse with π.

q1

ref(S1)
S1

S2

S3

S4 δ1

γ′ γ

S3

S1

S2 S4

1

0 0

0

(a) (b) (c)

s
t

Figure 1 (a) The curve γ′ shown shaded in blue is the common boundary of R(S ′) and region
Rs (b) Adding detours δi to obtain curve γ (c) Labeled Intersection graph GS ob obstacles

CVIT 2016

23:8 Algorithms for Point Separation and Obstacle Removal

We will now translate the curve γ to a walk in the labeled intersection graph GS .
Specifically, consider the section of γ between two consecutive detours: γi,i+1 = ref(Si)→
qi → qi+1 → ref(Si+1). Therefore the obstacles Si, Si+1 must intersect and we have a curve
γi,i+1 connecting their reference points contained in the region Si ∪ Si+1 that also intersects
the reference curve π an odd (resp. even) number of times. By construction, GS must
contain an edge ei,i+1 with label 1 (resp. 0). By replacing all these sections of γ with the
corresponding edges of GS , we obtain an odd-labeled closed walk W in GS . Of all the
odd-labeled closed sub-walks of W , we select one that is inclusion minimal. This gives a
simple odd-labeled cycle in GS [S ′].

(⇐) The reverse direction is relatively simpler. Given an odd-labeled cycle in GS [S ′],
we obtain a closed curve γ in the plane contained in region R(S ′) as follows. For every
edge ei = (S, S′) of the cycle with label lab(ei), we consider the curve γi that connects the
reference points ref(S) and ref(S′) contained in S ∪ S′ and crosses the reference curve π
consistent with lab(ei). Moreover γi needs to be transverse with π. Such a curve exists by
construction of GS . Combining these curves γi in order gives us a closed curve γ in the
plane that crosses π an odd number of times. Although this curve may be self intersecting,
from second statement of Fact 2, we have that γ separates s and t. J

The construction of the graph GS , together with Lemma 6 prove Theorem 1.

2-Points-separation as Shortest Odd Cycle in GS From Lemma 6, it follows that a
minimum set of obstacles that separates s from t corresponds to an odd-labeled cycle in GS
with fewest vertices. This readily gives a polytime algorithm for 2-Points-separation. In
particular, for a fixed starting vertex, we can compute the shortest odd cycle in GS in O(|S|2)
time by the following well-known technique. Consider an unlabeled auxiliary graph G′ with
vertex set is S × {0, 1}. For every edge e = (S, S′) of GS , we add edges {(S, 0), (S′, 0)} and
{(S, 1), (S′, 1)} if lab(e) = 0. Otherwise, we add the edges {(S, 0), (S′, 1)} and {(S, 1), (S′, 0)}.
The shortest odd cycle containing a fixed vertex S is the shortest path in G′ between vertices
(S, 0) and (S, 1). Repeating over all starting vertices gives the shortest odd cycle in GS . This
can be easily extended for the node-weighted case which gives us the following useful lemma
that also yields a polynomial time algorithm for 2-Points-separation, reproving a result
of Cabello and Giannopoulos [6].

I Lemma 7. There exists a polynomial time algorithm for computing a minimum weight
labeled odd cycle in the graph GS .

Next we prove one more structural property of labeled intersection graph GS that will be
useful later. We define a (labeled) spanning tree T of a connected labeled multi-graph GS to
be a subgraph of GS that is a tree and connects all vertices in S. An edge e = (u, v) ∈ GS is
a tree edge if (u, v) ∈ T , otherwise it is called a non-tree edge.

I Lemma 8. Let GS be a connected labeled intersection graph and T be a spanning tree
of GS . If GS contains an odd labeled cycle, then it also contains an odd labeled cycle with
exactly one non-tree edge.

Proof. Let C be an odd cycle in GS that contains fewest non-tree edges. If C consists of
exactly one non-tree edge, we are done. Otherwise, C contains more than one non-tree edge.
Let e = (u, v) ∈ C be a non-tree edge and C ′ ⊂ C be the remainder of C without the edge e.
Since C is odd labeled, we must have lab(C ′) 6= lab(e).

Let πuv be the unique path connecting u, v in T . This gives us a path πuv with label
lab(πuv). Recall that lab(C ′) 6= lab(e). We have two cases. (i) If lab(πuv) 6= lab(e), then

N. Kumar et al. 23:9

we obtain an odd labeled cycle πuv ⊕ e that has one non-tree edge, namely e, and we are
done. (ii) Otherwise, lab(πuv) = lab(e) 6= lab(C ′). This gives us an odd labeled closed
walk W ∗ = πuv ⊕ C ′ which contains one less non-tree edge than C. Let C∗ ⊆ W ∗ be an
odd-labeled inclusion minimal closed sub-walk of W ∗ (one such C∗ always exists). Therefore,
C∗ is an odd-labeled cycle in GS that has fewer non-tree edges than C. But C was chosen
to be an odd labeled cycle with fewest non-tree edges, a contradiction. J

The above lemma also gives a simple O(S2) algorithm to detect whether there exists an odd
label cycle in GS . Specifically, consider an arbitrary spanning tree of T of GS and for each
edge not in T , compare its label with the label of the path connecting its endpoints in T .

I Lemma 9. Given a labeled graph GS , there exists an O(S2) time algorithm to detect
whether GS contains an odd labeled cycle.

4 Application to Obstacle-removal

We will show how to cast Obstacle-removal as a Labeled Odd Cycle Transversal
problem on the graph GS . Recall that in Obstacle-removal problem, we want to remove
a set Sd ⊆ S of obstacles from the input so that s and t are connected in S \Sd. Equivalently,
we want to select a subset Sd of obstacles such that the complement set S \ Sd does not
separate s and t. From Lemma 6, it follows that the obstacles S \ Sd do not separate s and t
if and only if GS [S \ Sd] does not contain an odd labeled cycle. This gives us the following
important lemma.

I Lemma 10. A set of obstacles Sd ⊆ S is a solution to Obstacle-removal if and only if
the set of vertices Sd is a solution to Odd Cycle Transversal of GS .

This allows us to apply the set of existing results for Odd Cycle Transversal to obstacle
removal problems. In particular, this readily gives an improved algorithm for Obstacle-
removal when parameterized by the solution size (number of removed obstacles). Let
G+
S denote the graph GS where every edge e with lab(e) = 0 is subdivided. Clearly an

odd-labeled cycle in GS has odd length in G+
S and vice versa. Applying the FPT algorithm

for Odd Cycle Transversal from [22] on the graph G+
S gives us the following result.

I Theorem 11. There exists a 2.3146knO(1) algorithm for Obstacle-removal parameterized
by k, the number of removed obstacles.

This also immediately gives us an O(
√

logn) approximation for Obstacle-removal
by using the best known O(

√
logn)-approximation [1] for on the graph G+

S . Observe that
instances of obstacle removal are special cases of odd cycle transversal, specifically where
the graph GS is an intersection graph of obstacles. By applying known results on small
diameter decomposition of region intersection graphs, Kumar et al. [25] obtained a constant
factor approximation for Obstacle-removal. In the next section we present an alternative
constant factor approximation algorithm. Although our algorithm follows a similar high level
approach of using small diameter decomposition of GS , we give an alternative proof of the
approximation bound which significantly simplifies the arguments of [25].

Constant Approximation for Obstacle-removal
Our algorithm is based on formulating and rounding a standard LP for labeled odd cycle
transversal on labeled intersection graph GS . Let 0 ≤ xi ≤ 1 be an indicator variable that

CVIT 2016

23:10 Algorithms for Point Separation and Obstacle Removal

denotes whether obstacle Si is included to the solution or not. The LP formulation which
will be referred as Hit-odd-cycles-LP can be written as follows:

min
∑
Si∈S

xi

subject to: ∑
Sj∈C

xj ≥ 1 for all odd-labeled cycles C ∈ GS

Although this LP has exponentially many constraints, it can be solved in polynomial
time using ellipsoid method with the polynomial time algorithm for minimum weight odd
cycle in GS (Lemma 7) as separation oracle. The next step is to round the fractional
solution x̂ = x1, x2, . . . , xn obtained from solving the Hit-odd-cycles-LP. We will need
some background on small diameter decomposition of graphs.

Small Diameter Decomposition Given a graph G = (V,E) and a distance function
d : V → R+ associated with each vertex, we can define the distance of each edge as
d(e) = d(v) + d(w) for every edge e = (v, w) ∈ E. We can then extend the distance function
to any pair of vertices d(u, v) as the shortest path distance between u and v in the edge-
weighted graph with distance values of edges as edge weights. We use the following result of
Lee [21] for the special case of region intersection graph over planar graphs.

I Lemma 12. Let G = (V,E) be a node-weighted intersection graph of connected regions
in the plane, then there exists a set X ⊆ V of |X| = O(1/∆) ·

∑
d(v) vertices such that the

diameter of G−X is at most ∆ in the metric d. Moreover, such a set X can be computed in
polynomial time.

For the sake of convenience, we assume that GS does not contain an obstacle Si with a
self-loop, because if so, we must always include Si to the solution. Let G∗S be the underlying
unlabeled graph obtained by removing labels and multi-edges from GS . Since G∗S is simply
the intersection graph of connected regions in the plane, it is easy to show that G∗S is a
region intersection graph over a planar graph (See also Lemma 4.1 [25] for more details.)

(Algorithm: Hit-Odd-Cycles) With small diameter decomposition for G∗S in place, the
rounding algorithm is really simple.

Assign distance values to remaining vertices of G∗S = (S \ S0, E) as d(Si) = xi, where xi
is the fractional solution obtained from solving Hit-Odd-Cycle-LP.
Apply Lemma 12 on graph G∗S with diameter ∆ = 1/2. Return the set of vertices X
obtained from applying the lemma as solution.

It remains to show that the set X ⊆ S returned above indeed hits all the odd labeled
cycles in GS . Define a ball B(c,R) = {v ∈ V : d(c, v) < R − d(v)/2} with center c, radius
R and distance metric d defined before. Intuitively, B(c,R) consists of the vertices that lie
strictly inside the radius R ball drawn with c as center.

I Lemma 13. The set X returned by algorithm Hit-Odd-Cycles hits all odd labeled cycles
in GS .

Proof. The proof is by contradiction. Let C be an odd labeled cycle such that C ∩X = ∅.
Then C must be contained in a single connected κ component of GS − X. Let v1 be an
arbitrary vertex of C and consider a ball B = B(v1, 1/2) of radius 1/2 centered at v1. We

N. Kumar et al. 23:11

have κ ⊆ B due to the choice of diameter ∆. Consider the shortest path tree T of ball B
rooted at v1 using the distance function d(e) in the unlabeled graph G∗S . For every edge
(u, v) ∈ T assign the label lab(e) of e = (u, v) ∈ GS . If multiple labeled edges exist between
u and v, choose one arbitrarily.

Now consider the induced subgraph G′S = GS [B] which is a connected labeled intersection
graph of obstacles in the ball B. Moreover, T is a spanning tree of G′S , and G′S contains an
odd-labeled cycle because κ ⊆ G′S . Applying Lemma 8 gives us an odd-labeled cycle C ∈ G′S
that contains exactly one edge e 6∈ T . The cost of this cycle is cost(C) < 1/2 + 1/2 = 1. This
contradicts the constraint of Hit-Odd-Cycle-LP corresponding to C. J

We conclude with the main result for this section.

I Theorem 14. There exists a polynomial time constant factor approximation algorithm for
Obstacle-removal.

5 A Simple Algorithm for Generalized Points-separation

So far, we have focused on separating a pair of points s, t in the plane. In this section,
we consider the more general problem where we are given a set S of n obstacles, a set of
points A and a set and P = {(s1, t1), . . . , (sp, tp)} of p pairs of points in A which we want
to separate. First we show how to extend the labeled intersecting graph GS to p source-
destination pairs and that the optimal solution subgraph GS [SOPT] exhibits a ‘nice’ structure.
Then we exploit this structure to obtain an 2O(p2)nO(p) exact algorithm for Generalized
Points-separation. Since p = O(k2), this algorithm runs in polynomial time for any fixed
k, resolving an open question of [6]. Using a more sophisticated approach, we later show
how to improve the running time to 2O(p)nO(k).

Recall the construction of the labeled intersection graph GS for a single point pair (s, t)
from Section 3. The label lab(e) ∈ {0, 1} of each edge e ∈ GS denotes the parity of edge e
with respect to reference curve π connecting s and t. As we generalize the graph GS = (S, E)
to p point pairs, we extend the label function lab : E → {0, 1}p as a p-bit binary string that
denotes the parity with respect to reference curve πi connecting si and ti for all i ∈ [p]. We
will use labi(e) to denote the i-th bit of lab(e).

Generalized Label Intersection Graph:
For each (si, ti) ∈ P and each S ∈ S that contains at least one of si or ti, we add a self
loop e on S with labi(e) = 1 and labj(e) = 0 for all j 6= i.
For every pair of intersecting obstacles S, S′ and a p-bit string ` ∈ {0, 1}p:

Let Π = {πi | si, ti 6∈ S ∪ S′} be the set of reference curves that do not have endpoints
in S ∪ S′.
We add an edge e = (S, S′) with lab(e) = ` if there exists a plane curve connecting
ref(S) and ref(S′) contained in S ∪ S′ that crosses all reference curves πi ∈ Π with
parity consistent with label `. That is, the curve crosses πi and odd (resp. even)
number of times if i-th bit of ` is 1 (resp. zero).

Similar to the one pair case, we can build an unlabeled graph G′ with vertex set S×{0, 1}p
and edges between them based on the arrangement Arr(S ∪ S′ ∪

⋃
πi). Using this graph, we

can obtain the following lemma. The proof is the same as that of Lemma 25, with p bit
labels instead of k bit labels.

I Lemma 15. The generalized labeled graph GS with p-bit labels can be constructed in
2O(p)nO(1) time.

CVIT 2016

23:12 Algorithms for Point Separation and Obstacle Removal

Suppose we define GS(i) to be the image of GS induced by the labeling labi : E → {0, 1}.
Specifically, we obtain GS(i) from GS by replacing label of each edge by the i-th bit labi(e),
followed by removing parallel edges that have the same label. Observe that GS(i) is precisely
the graph obtained by applying algorithm from Section 3 with reference curve πi.

We say that a subgraph G′S ⊆ GS is well-behaved if G′S(i) contains an odd labeled cycle
for all i ∈ [p]. We have the following lemma that can be obtained by applying Lemma 6 for
every pair (si, ti) ∈ P .

I Lemma 16. A set of obstacles S ′ ⊆ S separate all point pairs in P iff GS [S ′] is well-behaved.

We will prove the following important property of well-behaved subgraphs of GS .

I Lemma 17. Let G ⊆ GS be an inclusion minimal well-behaved subgraph of GS . Then
there exists a set Vc ⊆ V (G) of connector vertices such that G consists of the vertex set Vc
and a set of K chains (path of degree 2 vertices) with endpoints in Vc. Moreover, |Vc| ≤ 4p
and |K| ≤ 5p.

Proof. Since G is inclusion minimal well-behaved subgraph, it does not contain a proper
subgraph that is also well-behaved. Therefore, G does not contain a vertex of degree at most
1 because such vertices and edges adjacent to them cannot be part of any cycle. Suppose G
has r connected components C1, . . . , Cr. We fix a spanning tree Tj of Cj for each j ∈ [r]. We
construct the set Vc by including every vertex of degree three or more to Vc. The components
Cj that do not contain a vertex of degree three must be a simple cycle because G does not
have degree-1 vertices. For every such Cj , we include vertices adjacent to the only non-tree
edge of Cj . It is easy to verify that G consists of K chains connecting vertices in Vc.

Let E0 be the set of non-tree edges, that are edges not in Tj for some j ∈ [r]. We claim
that |E0| ≤ p. Since G is well-behaved, G(i) consists an odd-labeled cycle for all i ∈ [p].
Using Lemma 8, and the spanning tree Tj of the component containing that odd labeled cycle,
we can transform into an odd-labeled cycle that uses at most one non-tree edge. Repeating
this for all pairs, we can use at most p edges from E0. If |E0| > p, then we would have a
proper subgraph of G with at most p edges that is also well-behaved, which is not possible
because G was chosen to be inclusion minimal. Therefore |E0| ≤ p.

The graph G only contains vertices of degree 2 or higher, hence each leaf node of the
trees T1, . . . , Tr must be adjacent to some edge in E0. Therefore, the number of leaf nodes is
at most 2p, and so the number of nodes of degree three or above in T1, . . . , Tr is also at most
2p. Observe that the vertices in Vc are either adjacent to some edge in E0 or have degree
three or more in some tree Tj . The number of both these type of vertices is at most 2p,
which gives us |Vc| ≤ 4p. Finally, we bound |K|, the number of chains. Note that each edge
of G belongs to exactly one chain in K. Therefore, the number of chains containing at least
one edge in E0 is at most p, because |E0| ≤ p. All the other chains that do not have any
edge in E0, are contained in the trees T1, . . . , Tr. It follows that these chains do not form
any cycle, and thus their number is less than |Vc|. This gives us |K| ≤ 5p. J

It is easy to see that if S ′ ⊆ S is an optimal set of obstacles separating all pairs in P ,
then there exists an inclusion minimal well-behaved subgraph G of GS [S ′] that satisfies the
property of Lemma 17. Observe that the K chains of graph G are vertex disjoint, so for
every chain Kt connecting vertices Si, Sj ∈ Vc that has lab(Kt) = `, an optimal solution will
always choose the walk in GS that has label ` and has fewest vertices. To that end, we will
need the following simple lemma which is a generalization of algorithm to compute shortest
odd cycle in GS with 1-bit labels.

N. Kumar et al. 23:13

I Lemma 18. Given a labeled graph GS = (S, E) with labeling lab : E → {0, 1}p, the shortest
walk between any pair of vertices Si, Sj with a fixed label ` ∈ {0, 1}p can be computed in
2O(p)nO(1) time.

Algorithm: Separate-Point-Pairs
1. For every pair of vertices Si, Sj ∈ S and every label ` ∈ {0, 1}p, precompute the shortest

walk connecting Si, Sj with label ` in GS using Lemma 18.
2. For all possible sets Vc ⊆ S and ways of connecting Vc by K chains:

For all (2p)5p = 2O(p2) possible labeling of K chains:
a. Let G ⊆ GS be the labeled graph consisting of vertices Vc and chains Kt ∈ K

replaced by shortest walk between endpoints of Kt with label lab(Kt), already
computed in Step 1.

b. Check if the graph G is well-behaved. If so, add its vertices as one candidate
solution.

3. Return the candidate vertex set with smallest size as solution.

Precomputing labeled shortest walks in Step 1 takes at most 2O(p)nO(p) time. The total
number of candidate graphs G is nO(p) · pO(p) · 2O(p2), and checking if it is well behaved can
be done in nO(1) time. We have the following result.

I Theorem 19. Generalized Points-separation for connected obstacles in the plane
can be solved in 2O(p2)nO(p) time, where n is the number of obstacle and p is the number of
point-pairs to be separated.

I Corollary 20. Point-Separation for connected obstacles in the plane can be solved in
2O(k4)nO(k2) time, where n is the number of obstacles and k is the number of points. This is
polynomial in n for every fixed k.

6 A Faster Algorithm for Generalized Points-separation

Recall that the labeled graph GS constructed in the previous section consisted of labels that
are p-bit binary strings. As a result, the running time has a dependence of nO(p) which in
worst case could be nO(k2), for example, in the case of Points-separation when P consists
of all point pairs. In this section, we describe an alternative approach that builds a labeled
intersection graph whose labels are k-bit strings. Using this graph and the notion of parity
partitions, we obtain an 2O(p)nO(k) algorithm for Generalized Points-separation which
gets rid of the nO(k2) dependence for Points-separation. The construction of graph GS
is almost the same as before, except that now we choose the reference curves πi differently.
In particular, let A = {a1, a2, . . . , ak} be the set of points and P be a set of pairs (ai, aj) of
points we want to separate. We pick an arbitrary point o in the plane, and for each i ∈ [k],
we fix a plane curve with endpoints ai and o as the reference curve πi. For an edge e, the
parity of crossing with respect to πi defines the i-th bit of lab(e). The graph GS constructed
in this fashion has k-bit labels and will be referred as k-labeled graph.

I Definition 21 (labeled graphs). For an integer k ≥ 1, a k-labeled graph is a multi-graph
G = (V,E) and where each edge e ∈ E has a label lab(e) ∈ {0, 1}k which is a k-bit binary
string; we use labi(e) to denote the i-th bit of lab(e) for i ∈ [k].

A P -separator refers to a subset S ′ ⊆ S that separates all point-pairs (ai, aj) for (i, j) ∈ P .
Our goal is to find a P -separator with the minimum size. To this end, we first introduce the
notion of labeled graphs and some related concepts.

CVIT 2016

23:14 Algorithms for Point Separation and Obstacle Removal

Let G be a k-labeled graph. For a cycle (or a path) γ in G with edge sequence (e1, . . . , er),
we define parity(γ) =

⊕r
t=1 lab(et) and denote by parityi(γ) the i-th bit of parity(γ) for i ∈ [k].

Here the notation “⊕” denotes the bitwise XOR operation for binary strings. Also, we
define Φ(γ) as the partition of [k] consisting of two parts I0 = {i : parityi(γ) = 0} and
I1 = {i : parityi(γ) = 1}. Next, we define an important notion called parity partition.

I Definition 22 (parity partition). Let G be a k-labeled graph. The parity partition induced
by G, denoted by ΦG, is the partition of [k] defined as ΦG =

⊙
γ∈ΓG Φ(γ). In other words,

i, j ∈ [k] belong to the same part of ΦG iff parityi(γ) = parityj(γ) for every cycle γ in G.

The following two lemmas state some basic properties of the parity partition.

I Lemma 23. Let G be a k-labeled graph, and C1, . . . , Cr be the connected components of G
each of which is also regarded as a k-labeled graph. Then ΦG =

⊙r
t=1 ΦCt .

Proof. Note that a cycle in G must be contained in some connected component Ct for t ∈ [r],
i.e., ΓG =

⋃r
t=1 ΓCt . Thus, ΦG =

⊙
γ∈ΓG Φ(γ) =

⊙r
t=1(

⊙
γ∈ΓCt

Φ(γ)) =
⊙r

t=1 ΦCt . J

I Lemma 24. Let G be a connected k-labeled graph, and T be a spanning tree of G. Let E0
be the edges of G that are not in T . Then ΦG =

⊙
e∈E0

Φ(γe), where γe is the cycle in G

consists of the edge e and the (unique) simple path between the two endpoints of e in T .

Proof. The proof is similar to and more general form of Lemma 8. It is clear that
ΦG �

⊙
e∈E0

Φ(γe) because γe ∈ ΓG for all e ∈ E0. To show ΦG �
⊙

e∈E0
Φ(γe), we

use contradiction. Assume ΦG �
⊙

e∈E0
Φ(γe). Then there exist i, j ∈ [k] which belong to

different parts in ΦG but belong to the same part in
⊙

e∈E0
Φ(γe), i.e., parityi(γe) = parityj(γe)

for all e ∈ E0. Since i and j belong to different parts in ΦG, we have parityi(γ) 6= parityj(γ)
for some γ ∈ ΓG. Let γ∗ ∈ ΓG be the cycle satisfying parityi(γ∗) 6= parityj(γ∗) that contains
the smallest number of edges in E0. Note that γ∗ contains at least one edge in E0, for
otherwise γ∗ is a cycle in the tree T and hence parityi(γ∗) = parityj(γ∗) = 0 (simply because
a cycle in a tree goes through each edge even number of times). Let e = (u, v) be an edge
of γ∗ that is in E0. We create a new cycle γ′ from γ∗ by replacing the edge e in γ∗ with
the (unique) simple path πuv between u and v in T . Recall that parityi(γe) = parityj(γe).
Since parityi(γe) = labi(e) � parityi(πuv) and parityj(γe) = labi(e) � parityj(πuv), we have
labi(e)� parityi(πuv) = labj(e)� parityj(πuv). Because parityi(γ∗) 6= parityj(γ∗), we further
have

parityi(γ′) = parityi(γ∗)� (labi(e)� parityi(πuv))
= parityi(γ∗)� (labj(e)� parityj(πuv))
6= parityj(γ∗)� (labj(e)� parityj(πuv)) = parityj(γ′).

However, this is impossible because γ′ has fewer edges in E0 than γ∗ and γ∗ is the cycle sat-
isfying parityi(γ∗) 6= parityj(γ∗) that contains the smallest number of edges in E0. Therefore,
ΦG �

⊙
e∈E0

Φ(γe) and hence ΦG =
⊙

e∈E0
Φ(γe). J

Now we are ready to describe our algorithm. The first step of our algorithm is to build a
k-labeled graph GS for the obstacle set S. The vertices of GS are the obstacles in S, and
the labeled edges of GS “encode” enough information for determining whether a subset of S
is a P -separator. Once we obtain GS , we can totally forget the input obstacles and points,
and the rest of our algorithm will work on GS only.

We build GS as follows. For each S ∈ S, we pick a reference point ref(S) inside the
obstacle S. Let Arr(S) denote the arrangement induced by the boundaries of the obstacles in

N. Kumar et al. 23:15

S, and |Arr(S)| be the complexity of Arr(S). By assumption, |Arr(S)| = nO(1). We pick an
arbitrary point o in the plane, and for each i ∈ [k], we fix a plane curve πi with endpoints ai
and o. We choose the curves π1, . . . , πk carefully such that including them does not increase
the complexity of the arrangement Arr(S) significantly. Specifically, we require the complexity
of the arrangement induced by the boundaries of the obstacles in S and these curves to be
bounded by kO(1) · |Arr(S)|, which is clearly possible. As mentioned before, the vertices of
GS are the obstacles in S. The edge set EGS of GS is defined as follows. For each i ∈ [k]
and each S ∈ S such that ai ∈ S, we include in EGS a self-loop e on S with labi(e) = 1 and
labi′(e) = 0 for all i′ ∈ [k]\{i}. For each pair (S, S′) of obstacles in S and each l ∈ {0, 1}k,
we include in EGS an edge e = (S, S′) with lab(e) = l if there exists a plane curve inside
S ∪ S′ with endpoints ref(S) and ref(S′) which crosses πi an odd (resp., even) number of
times for all i ∈ [k] such that ai /∈ S ∪ S′ and the i-th bit of l is equal to 1 (resp., 0). The
next lemma shows GS can be constructed in 2O(k)nO(1) time, as |Arr(S)| = nO(1).

I Lemma 25. The k-labeled graph GS can be constructed in 2O(k)nO(1) · |Arr(S)| time.

Proof. The self-loops of GS can be constructed in O(kn) time by checking for i ∈ [k] and
S ∈ S whether ai ∈ S. For each pair (S, S′) of obstacles in S, we show how to compute
the edges in GS between S and S′ in 2O(k) · |Arr(S)| time. Let K = {i ∈ [k] : ai /∈ S ∪ S′};
without loss of generality, assume K = {a1, . . . , aj}. Denote by Arr(S, S′) the arrangement
induced by the boundary of S ∪S′ and the curves π1, . . . , πj , and define F as the set of faces
of Arr(S, S′) that are contained in S ∪ S′. See Figure 2 for an illustration of the arrangement
Arr(S, S′). We say two faces F, F ′ ∈ F are adjacent if they share a common edge σ(F, F ′)
of Arr(S, S′). For two adjacent faces F, F ′ ∈ F , we define θ(F, F ′) ∈ {0, 1}j by setting the
i-th bit of θ(F, F ′) to be 1 for all i ∈ [j] such that σ(F, F ′) is a portion of πi and setting
the other bits to be 0. We construct a (unlabeled and undirected) graph G with vertex
set F × {0, 1}j as follows. For any two vertices (F, l) and (F ′, l′) such that F and F ′ are
adjacent and l ⊕ l′ = θ(F, F ′), we connect them by an edge in G.

S ∪ S ′

a1
a2

a3

o

F1
F2

F4
F3

F5

ref(S)

ref(S ′)

π1
π2

π3

Figure 2 An illustration of the arrangement Arr(S, S′). The grey area is S ∪ S′. The set F
consists of five faces F1, . . . , F5.

Let F ∈ F and F ′ ∈ F be the faces containing the reference points ref(S) and ref(S′),
respectively, and denote by 0 ∈ {0, 1}j the element with all bits 0. We claim that there is an
edge (S, S′) in GS with label l iff the vertices (F,0) and (F ′, l) are in the same connected
component of G. To prove the claim, we first make a simple observation about the graph
G we constructed. Let (F1, l1) . . . , (Fm, lm) be a path in G. From the construction of G, it
is easy to see (by a simple induction on m) that any plane curve from a point in F1 to a

CVIT 2016

23:16 Algorithms for Point Separation and Obstacle Removal

point in Fm that visits the faces F1, . . . , Fm in order crosses πi an odd (resp., even) number
of times for all i ∈ [j] such that the i-th bit of l1 ⊕ lm is equal to 1 (resp., 0). Therefore, if
there is a path in G from (F,0) to (F ′, l), then there exists a plane curve from ref(S) to
ref(S′) that crosses πi an odd (resp., even) number of times for all i ∈ [j] such that the
i-th bit of l is equal to 1 (resp., 0), which implies that there is an edge (S, S′) in GS with
label l. This proves the “if” part of the claim. To see the “only if” part, assume there is an
edge (S, S′) in GS with label l. Then there exists a plane curve π from ref(S) to ref(S′) that
crosses πi an odd (resp., even) number of times for all i ∈ [j] such that the i-th bit of l is
equal to 1 (resp., 0). Let F1, . . . , Fm be the sequence of faces visited by π in order, where
F1 = F and Fm = F ′. Then there is a path (F1, l1), . . . , (Fm, lm) in G where l1 = 0 and
lt = lt−1 � θ(Ft−1, Ft) for t ∈ [m]\{1}. By our above observation, we have l1 � lm = l, which
implies lm = l. It follows that (F,0) and (F ′, l) are in the same connected component of G.

By the above discussion, to compute the edges in GS between S and S′, it suffices to
compute the connected component C of G that contains the vertex (F,0): we have an edge
(S, S′) in GS with label l ∈ {0, 1}k iff (F ′, l′) ∈ C where l′ ∈ {0, 1}j consists of the first
j-bits of l. The number of vertices and edges of G is 2O(k) · |Arr(S)|, by our assumption
that the complexity of the arrangement induced by the boundaries of the obstacles in S
and the curves π1, . . . , πk is bounded by kO(1) · |Arr(S)|. Therefore, C can be computed in
2O(k) · |Arr(S)| time. As a result, GS can be constructed in 2O(k)nO(1) · |Arr(S)| time. J

We say a k-labeled graph G is P -good if for all (i, j) ∈ P , i and j belong to different
parts in ΦG. Note that if a subgraph of G is P -good, then so is G. The following key lemma
establishes a characterization of P -separators using P -goodness. Note that the notion of
P -goodness is almost the same as that of well-behaved subgraphs from Lemma 16, except
that it is defined using parity partitions.

I Lemma 26. A subset S ′ ⊆ S is a P -separator iff the induced subgraph GS [S ′] is P -good.

Proof. We first introduce some notations. For (i, j) ∈ P , denote by πi,j the plane curve
with endpoints ai and aj obtained by concatenating the curves πi and πj . For each edge
e = (S, S′) of GS with S 6= S′, we fix a representative curve rep(e) of e, which is a plane
curve contained in S ∪ S′ with endpoints ref(S) and ref(S′) that crosses πi an odd (resp.,
even) number of times for all i ∈ [k] such that labi(e) = 1 (resp., labi(e) = 0); such a curve
exists by our construction of GS .

To prove the “if” part, assume GS [S ′] is P -good. Let (i, j) ∈ P be a pair and we
want to show that (ai, aj) is separated by S ′. If ai ∈

⋃
S∈S′ S or aj ∈

⋃
S∈S′ S, we are

done. So assume ai /∈
⋃
S∈S′ S and aj /∈

⋃
S∈S′ S. Since GS [S ′] is P -good, there exists a

cycle γ in GS [S ′] such that parityi(γ) 6= parityj(γ). Without loss of generality, we assume
parityi(γ) = 0 and parityj(γ) = 1. Also, we can assume that γ does not contain any self-loop
edges; indeed, removing any self-loop edges from γ does not change parityi(γ) and parityj(γ)
because ai /∈

⋃
S∈S′ S and aj /∈

⋃
S∈S′ S (hence the i-th and j-th bits of the label of any

self-loop on a vertex S ∈ S ′ are equal to 0). Suppose the vertex sequence of γ is (S0, . . . , Sr)
where S0 = Sr and the edge sequence of γ is (e1, . . . , er) where et = (St−1, St) for t ∈ [r].
We concatenate the representative curves rep(e1), . . . , rep(er) to obtain a closed curve γ̂ in
the plane. Because parityi(γ) = 0 and parityj(γ) = 1, πi crosses γ̂ an even number of times
and πj crosses γ̂ an odd number of times. It follows that πi,j crosses γ̂ an odd number of
times. By the second statement of Fact 2, γ̂ separates (ai, aj). Since rep(et) ⊆ St−1 ∪ St, we
have γ̂ ⊆

⋃r
t=1 St ⊆

⋃
S∈S′ S. Therefore, S ′ separates (ai, aj).

To prove the “only if” part, assume S ′ ⊆ S is a P -separator, i.e., S ′ separates all point-
pairs (ai, aj) for (i, j) ∈ P . We want to show that i and j belong to different parts in ΦGS [S′]

N. Kumar et al. 23:17

ai

aj

S1

S2

S3

S4

σ1

σ2

σ3

σ4

x2

x3

x4

x1
τ1

τ2

τ3

τ4

Figure 3 An illustration of the arcs σ1, . . . , σr, the points x1, . . . , xr, and the curves τ1, . . . , τr

(the points inside the obstacles are the reference points).

for all (i, j) ∈ P , or equivalently, for each (i, j) ∈ P there exists a cycle γ in GS [S ′] such that
parityi(γ) 6= parityj(γ). Let U =

⋃
S∈S′ S. We distinguish two cases: {ai, aj} ∩ U 6= ∅ and

{ai, aj}∩U = ∅. In the case {ai, aj}∩U 6= ∅, we may assume ai ∈ U without loss of generality.
Then ai ∈ S for some S ∈ S ′. Therefore, by our construction of the graph GS , there is a
self-loop edge e = (S, S) with labi(e) = 1 and labi′(e) = 0 for all i′ ∈ [k]\{i}. The cycle γ
consists of this single edge is a cycle in GS [S ′] satisfying parityi(γ) = 1 6= 0 = parityj(γ).
Now it suffices to consider the case {ai, aj} ∩ U = ∅. The boundary ∂U of U consists of
arcs (each of which is a portion of the boundary of an obstacle in S ′) and break points
(each of which is an intersection point of the boundaries of two obstacles in S ′). We can
view ∂U as a planar graph G embedded in the plane, where the break points are vertices
and the arcs are edges. Each face of (the embedding of) G is a connected component of
R2\∂U , which is either contained in U (called in-faces) or outside U (called out-faces). Let
Fi and Fj be the faces containing ai and aj , respectively. Since {ai, aj} ∩ U = ∅, Fi and
Fj are both out-faces. Furthermore, we have Fi 6= Fj , for otherwise ai, aj ∈ Fi and there
exists a plane curve inside the out-face Fi connecting ai and aj , which contradicts the fact
that S ′ separates (ai, aj). Thus, there exists a simple cycle γ̂ in G (which corresponds to
a simple closed curve in the plane) such that one of Fi and Fj is inside γ̂ and the other
one is outside γ̂ (it is well-known that in a planar graph embedded in the plane, for any
two distinct faces there exists a simple cycle in the graph such that one face is inside the
cycle and the other is outside). Because ai ∈ Fi and aj ∈ Fj , we know that γ̂ separates
(ai, aj) and hence πi,j crosses γ̂ an odd number of times by the first statement of Fact 2. Let
σ1, . . . , σr be the arcs of γ̂ given in the order along γ̂, and suppose they are contributed by
the obstacles S1, . . . , Sr ∈ S ′, respectively (note that here S1, . . . , Sr need not be distinct).
For convenience, we write σ0 = σr and S0 = Sr. Let xt be the connection point of the arcs
σt−1 and σt for t ∈ [r], then xt ∈ St−1 ∩ St. For each t ∈ [r], we fix a plane curve τt inside
the obstacle St with endpoints ref(St) and xt (such a curve exists because St is connected).
Again, we write τ0 = τr. See Figure 3 for an illustration of the arcs σ1, . . . , σr, the points
x1, . . . , xr, and the curves τ1, . . . , τr. Now let τ ′t be the plane curve with endpoints ref(St−1)
and ref(St) obtained by concatenating τt−1, σt−1, and τt, and let lt ∈ {0, 1}k be the label
whose i′-th bit is 0 (resp., 1) if πi′ crosses τ ′t an even (resp., odd) number of times, for t ∈ [r].
Note that τ ′t ⊆ St−1 ∪ St. Therefore, by our construction of GS , there should be an edge
et = (St−1, St) with lab(e) = lt, for each t ∈ [r]. Consider the cycle γ in GS [S ′] with vertex
sequence (S0, . . . , Sr) and edge sequence (e1, . . . , et). We claim that parityi(γ) 6= parityj(γ).

CVIT 2016

23:18 Algorithms for Point Separation and Obstacle Removal

Let γ′ be the closed plane curve obtained by concatenating the curves τ ′1, . . . , τ ′r. Observe
that γ′ consists of γ̂ and two copies of τ1, . . . , τr. It follows that for any plane curve π, the
parity of the number of times that π crosses γ′ is equal to the parity of the number of times
that π crosses γ̂. In particular, πi,j crosses γ′ an odd number of times. Without loss of
generality, we may assume that πi crosses γ′ an odd number of times and πj crosses γ′
an even number of times. Since γ′ is the concatenation of τ ′1, . . . , τ ′r and the parity of the
number of times that πi (resp., πj) crosses τ ′t is indicated by the i-th (resp., j-th) bit of
lt, the i-th (resp., j-th) bit of

⊙r
t=1 lt is 1 (resp., 0). Because parity(γ) =

⊙r
t=1 lt, we have

parityi(γ) 6= parityj(γ). J

I Definition 27. Let G = (VG, EG) and H = (VH , EH) be two k-labeled graphs. A parity-
preserving mapping (PPM) from H to G is a pair f = (fV , fE) consisting of two
functions fV : VH → VG and fE : EH → ΠG such that for each edge e = (u, v) ∈ EH , fE(e)
is a path between f(u) and f(v) in G satisfying parity(fE(e)) = lab(e). The cost of the PPM
f is defined as cost(f) = |VH | − |EH |+

∑
e∈EH |fE(e)|. The image of f , denoted by Im(f),

is the subgraph of G consisting of the vertices fV (v) for v ∈ VH and the vertices on the paths
fE(e) for e ∈ EH , and the edges on the paths fE(e) for e ∈ EH .

I Fact 28. For any PPM f , the number of vertices of Im(f) is at most cost(f).

Proof. Let f = (fV , fE) be a PPM from H = (VH , EH) to G. The number of vertices fV (v)
for v ∈ VH is at most |VH |. The number of internal vertices on each path fE(e) for e ∈ EH
is at most |fE(e)| − 1. Note that a vertex of Im(f) is either fV (v) for some v ∈ VH or an
internal vertex on the path fE(e) for some e ∈ EH . Thus, the total number of vertices of
Im(f) is at most |VH |+

∑
e∈EH (|fE(e)| − 1) = |VH | − |EH |+

∑
e∈EH |fE(e)| = cost(f). J

I Lemma 29. Let H be a P -good k-labeled graph and f be a PPM from H to GS . Then
Im(f) is also P -good. In particular, cost(f) ≥ opt.

Proof. To see Im(f) is P -good, what we want is that i and j belong to different parts of
ΦIm(f) for all (i, j) ∈ P . Consider a pair (i, j) ∈ P . Since H is P -good, there exists a
cycle γ in H such that parityi(γ) 6= parityj(γ). Let γ′ be the image of γ under f , which
is a cycle in Im(f) obtained by replacing each vertex v of γ with fV (v) and each edge e
of γ with the path fE(e). Because f is a PPM, we have parity(γ′) = parity(γ). Therefore,
parityi(γ′) 6= parityj(γ′). It follows that i and j belong to different parts of ΦIm(f), and hence
Im(f) is P -good. To see cost(f) ≥ opt, let S ′ ⊆ S be the vertex set Im(f). Then Im(f) is a
subgraph of GS [S ′], which implies GS [S ′] is also P -good. By Lemma 26, S ′ is a P -separator,
i.e., |S ′| ≥ opt. Furthermore, by Fact 28, we have cost(f) ≥ |S ′| ≥ opt. J

I Lemma 30. There exists a P -good k-labeled graph H∗ with at most 4k vertices and 5k
edges and a PPM f∗ from H∗ to GS such that cost(f∗) = opt.

Proof. Let Sopt ⊆ S be a P -separator of the minimum size. By Lemma 26, the induced
subgraph GS [Sopt] is P -good. Let G be a minimal P -good subgraph of GS [Sopt], that is, no
proper subgraph of G is P -good. Note that G does not have degree-0 and degree 1 vertices,
simply because deleting a degree-0 or degree-1 vertex (and its adjacent edge) from G does not
change ΦG. Suppose G has r connected components C1, . . . , Cr. We fix a spanning tree Tt of
Ct for each t ∈ [r]. Let E0 be the set of non-tree edges of G, i.e., the edges not in T1, . . . , Tr.
We mark all vertices of G with degree at least 3. Furthermore, for each component Ct that
has no vertex with degree at least 3 (which should be a simple cycle because G does not
have degree-1 vertices), we mark a vertex of Ct that is adjacent to the (only) non-tree edge

N. Kumar et al. 23:19

of Ct. We notice that all unmarked vertices of G are of degree 2 and each component Ct of
G has at least one marked vertex. Therefore, G consists of the marked vertices and a set K
of chains (i.e., paths consisting of degree-2 vertices) connecting marked vertices. See (the
left and middle figures of) Figure 4 for an illustration of the marked vertices and chains.

We claim that |E0| < k, the number of marked vertices in G is bounded by 4k, and
|K| ≤ 5k. For each e = (u, v) ∈ E0, let γe be the (simple) cycle consists of e and the (unique)
simple path between u and v in Tt, where t ∈ [r] is the index such that Ct contains u and
v. By Lemma 23 and 24, we have ΦG =

⊙r
t=1 ΦCt =

⊙
e∈E0

Φ(γe). By Fact 3, there exists
E′0 ⊆ E0 with |E′0| < k such that

⊙
e∈E′0

Φ(γe) =
⊙

e∈E0
Φ(γe). Let G′ be the subgraph of

G obtained by removing all edges in E0\E′0. Using Lemma 23 and 24 again, we deduce that

ΦG′ =
⊙
e∈E′0

Φ(γe) =
⊙
e∈E0

Φ(γe) = ΦG. (1)

Therefore, G′ is also P -good. It follows that G′ = G, since no proper subgraph of G is
P -good. This further implies E′0 = E0 and |E0| < k. Next, we consider the number of
vertices in G with degree at least 3. Since G does not have degree-1 vertices, any leaf of the
trees T1, . . . , Tr must be adjacent to some edge in E0. Since |E0| < k, the number of leaves
of T1, . . . , Tr is at most 2k, and hence there are at most 2k nodes in T1, . . . , Tr whose degree
is at least 3. Now observe that a marked vertex v of G is either adjacent to some edge in E0
or of degree at least 3 in the tree Tt, where Ct is the component containing v. Therefore,
there can be at most 4k marked vertices in G. Finally, we bound |K|, the number of chains.
Note that each edge of G belongs to exactly one chain in K. Therefore, the number of chains
containing at least one edge in E0 is at most k, because |E0| < k. All the other chains, i.e.,
the chains that do not have any edge in E0, are contained in the trees T1, . . . , Tr. It follows
that these chains do not form any cycle, and thus their number is less than the number of
marked vertices in G (which is at most 4k). Thus, G has at most 5k chains, i.e., |K| ≤ 5k.

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

H∗

G

Figure 4 An illustration of the marked vertices in G and the resulting graph H∗ by path-
contraction. The left figure shows the graph G consisting of two connected components where the
black edges are tree edges and the grey edges are non-tree edges in E0. The middle figure shows the
marked vertices in G (and the chains in K connecting the marked vertices). The right figure shows
the graph H∗ obtained by path-contraction.

The desired k-labeled graph H∗ is defined via a path-contraction procedure on G as
follows. The vertices of H∗ are one-to-one corresponding to the marked vertices of G. The
edges of H∗ are one-to-one corresponding to the chains in K: for each chain connecting

CVIT 2016

23:20 Algorithms for Point Separation and Obstacle Removal

two marked vertices u and v, we have an edge in H∗ connecting the two vertices of H
corresponding to u and v. The label of each edge e of H∗ is defined as lab(e) = parity(πe),
where πe is the chain in C corresponding to e. See Figure 4 for an illustration of how to obtain
H∗ via path-contraction. Since there are at most 4k marked vertices in G and |K| ≤ 5k,
H∗ has at most 4k vertices and 5k edges. Next, we define the PPM f∗ = (f∗V , f∗E) from
H∗ to GS . The function f∗V simply maps each vertex of H∗ to its corresponding marked
vertex in G (which is a vertex of GS), and the function f∗E simply maps each edge of H∗ to
its corresponding chain in K (which is a path in GS). The fact that f∗ is a PPM directly
follows from the construction of H∗. Furthermore, we observe that cost(f∗) is equal to the
number of vertices in G, because the chains in K are “interior-disjoint” in the sense that
two chains can only intersect at their endpoints. Therefore, cost(f∗) = |Sopt| = opt. Finally,
we show that H∗ is P -good. It suffices to show ΦH∗ = ΦG. Consider two elements i, j ∈ [k]
belong to the same part of ΦG. We have parityi(γ) = parityj(γ) for any cycle γ in G. It
follows that parityi(γ∗) = parityj(γ∗) for any cycle γ∗ in H∗, because the image of γ∗ under
f∗ is a cycle γ in G satisfying parity(γ) = parity(γ∗). Thus, i and j belong to the same part
of ΦH∗ . Next consider two elements i, j ∈ [k] belong to different parts of ΦG. By Equation 1,
there exists some edge e ∈ E0 such that i and j belong to different parts of Φ(γe), i.e.,
parityi(γe) 6= parityj(γe). Since γe is a simple cycle in G, it corresponds to a simple cycle in
H∗, i.e., there is a simple cycle γ∗ in H∗ whose image under f∗ is γe. Because f∗ is a PPM,
we have parity(γ∗) = parity(γe). It then follows that parityi(γ∗) 6= parityj(γ∗) and hence i, j
belong to different parts of ΦH∗ . Therefore, ΦH∗ = ΦG and H∗ is P -good. J

The above lemma already gives us an algorithm that runs in 2O(k2)nO(k) time. First, we
guess the k-labeled graph H∗ in Lemma 30. Since H∗ has at most 4k vertices and 5k edges,
the number of possible graph structures of H∗ is kO(k) and the number of possible labeling
of the edges of H∗ is bounded by (2k)5k. Therefore, there can be 2O(k2) possibilities for H∗.
We enumerate all possible H∗, and for every H∗ that is P -good, we compute a PPM from
H∗ to GS with the minimum cost; later we will show how to do this in nO(k) time. Among
all these PPMs, we take the one with the minimum cost, say f∗. By Lemma 29 and 30, we
know that Im(f∗) is P -good and cost(f∗) = opt. To find an optimal solution, let S ′ ⊆ S be
the set of vertices of Im(f∗). Since Im(f∗) is a subgraph of GS [S ′] and Im(f∗) is P -good,
we know that GS [S ′] is also P -good and hence S ′ is a P -separator. Furthermore, Fact 28
implies that |S ′| ≤ cost(f∗) = opt. Therefore, S ′ is an optimal solution for the problem
instance. The entire algorithm takes 2O(k2)nO(k) time.

Now we discuss the missing piece of the above algorithm, how to compute a PPM from H∗

to GS with the minimum cost in nO(k) time, given a k-labeled graph H∗ = (VH∗ , EH∗) with at
most 4k vertices and 5k edges. For all u, v ∈ S and l ∈ {0, 1}k, let πu,v,l be the shortest path
(i.e., the path with fewest edges) between u and v whose parity is l. All these paths can be
computed in 2O(k)n3 time using Floyd’s algorithm. Suppose f∗ = (f∗V , f∗E) is the PPM from
H∗ to GS we want to compute. Recall that cost(f∗) = |VH∗ | − |EH∗ |+

∑
e∗∈EH∗ |f

∗
E(e∗)|.

The terms |VH∗ | and |EH∗ | only depend on H∗ itself. Therefore, we want to choose f∗ that
minimizes

∑
e∗∈EH∗ |f

∗
E(e∗)|. We simply enumerate all possibilities of f∗V . Since H∗ has at

most 4k vertices, there are at most n4k possible f∗V to be considered. Once f∗V is determined,
the endpoints of the paths f∗E(e∗) are also determined. This allows us to minimize |f∗E(e∗)|
for each e∗ ∈ EH∗ independently. Let e∗ = (u∗, v∗) ∈ EH∗ . Since f∗ is a PPM, f∗E(e∗) must
be a path connecting u = f∗V (u) and v = f∗V (v) whose parity is l = lab(e∗). By the definition
of πu,v,l, it follows that |f∗E(e∗)| ≥ |πu,v,l| and thus setting f∗E(e∗) = πu,v,l will minimize
|f∗E(e∗)|. After trying all possible f∗V , we can finally find the optimal PPM f∗ in nO(k) time.

N. Kumar et al. 23:21

6.1 Improving the running time to 2O(p)nO(k)

To further improve the running time of the above algorithm to 2O(p)nO(k) requires nontrivial
efforts. Without loss of generality, in this section, we assume k ≤ n. Indeed, if k > n, the
problem can be solved in 2O(k) time by enumerating every subset S ′ ⊆ S and checking if
S ′ is a P -separator (which can be done in polynomial time by first computing ΦS′ using
Lemma 23 and 24 and then applying the criterion of Lemma 26).

As stated before, there are 2O(k2) possibilities for H∗. Thus, in order to improve the factor
2O(k2) to 2O(p), we have to avoid enumerating all possible H∗. Instead, we only enumerate
the graph structure of H∗ (but not the labels of its edges). There are kO(k) possible graph
structures to be considered, because H∗ has at most 4k vertices and 5k edges. For each
possible graph structure, we want to label the edges to make H∗ P -good and then find
a PPM from H∗ (with that labeling) to GS such that the cost of the PPM is minimized.
Formally, consider a graph structure H∗ = (VH∗ , EH∗) of H∗. A labeling-PPM pair for H∗
refers to a pair (lab, f∗) where lab : EH∗ → {0, 1}k is a labeling for H∗ and f∗ = (f∗V , f∗E) is
a PPM from H∗ to GS (with respect to the labeling lab). Our task is to find a labeling-PPM
pair (lab, f∗) for H∗ with the minimum cost(f∗) such that H∗ is P -good with respect to the
labeling lab.

Let C1, . . . , Cr be the connected components of H∗, and T1, . . . , Tr be spanning trees
of C1, . . . , Cr, respectively. Let E0 ⊆ EH∗ be the set of edges that are not in T1, . . . , Tr.
For each e ∈ E0, denote by γe the cycle in H∗ consisting of the edge e and the (unique)
simple path between the two endpoints of e in Tt, where t ∈ [r] is the index such that Ct
contains e. By Lemma 23 and 24, we have ΦH∗ =

⊙r
t=1 ΦCt =

⊙
e∈E0

Φ(γe). Therefore,
a labeling makes H∗ P -good iff for every (i, j) ∈ P there exists an edge e ∈ E0 such that
parityi(γe) 6= parityj(γe) with respect to that labeling. We say a labeling lab : EH∗ → {0, 1}k
respects a function ξ : P → E0 if for all (i, j) ∈ P , we have parityi(γe) 6= parityj(γe) where
e = ξ(i, j) and parity is calculated with respect to the labeling lab. Then we immediately
have the following fact.

I Fact 31. A labeling makes H∗ P -good iff it respects some function ξ : P → E0.

Our first observation is that for any function ξ : P → E0, one can efficiently find the
“optimal” labeling-PPM pair (lab, f∗) for H∗ satisfying the condition that lab respects ξ.

I Lemma 32. Given ξ : P → E0, one can compute in 2O(p)nO(k) time a labeling-PPM pair
(lab, f∗) for H∗ which minimizes cost(f∗) subject to the condition that lab respects ξ.

Proof. Suppose f∗ = (f∗V , f∗E) is the PPM we want to compute. We enumerate all possibilities
of f∗V : VH∗ → S. Since |VH∗ | ≤ 4k, there are nO(k) different f∗V to be considered. Fixing
a function f∗V , we want to determine the labeling lab and the function f∗E such that (i)
lab respects ξ, (ii) f∗ is a PPM with respect to the labeling lab, and (iii) cost(f∗) is
minimized. For an edge e∗ = (u∗, v∗) ∈ EH∗ and a label l ∈ {0, 1}k, we denote by
len(e∗, l) = |πu,v,l|, where u = f∗V (u∗), v = f∗V (v∗). As argued before, for a fixed labeling
lab, an optimal function f∗E is the one that maps each edge e∗ = (u∗, v∗) ∈ EH∗ to the path
πu,v,l, where u = f∗V (u∗), v = f∗V (v∗), l = lab(e∗); with this choice of f∗E , we have cost(f∗) =
|VH∗ | − |EH∗ | +

∑
e∗∈EH∗ len(e∗, lab(e)). Therefore, our actual task is to find a labeling

lab that respects ξ and minimizes
∑
e∗∈EH∗ len(e∗, lab(e∗)). Suppose EH∗ = {e1, . . . , em}

where m = O(k). Let δ : [m] × E0 → {0, 1} be an indicator defined as δ(t, e) = 1 if et is
an edge of the cycle γe and δ(t, e) = 0 otherwise. For a labeling lab : EH∗ → {0, 1}k, we
have parity(γe) =

∑m
t=1 δ(t, e) · lab(et) for any e ∈ E0. Therefore, a labeling lab respects ξ

iff
∑m
t=1 δ(t, ξ(i, j)) · labi(et) 6=

∑m
t=1 δ(t, ξ(i, j)) · labj(et) for all (i, j) ∈ P , or equivalently,

CVIT 2016

23:22 Algorithms for Point Separation and Obstacle Removal

∑m
t=1 δ(t, ξ(i, j)) · (labi(et)⊕ labj(et)) = 1 for all (i, j) ∈ P . So our task is to find a labeling

lab which minimizes
∑m
t=1 len(et, lab(et)) subject to

∑m
t=1 δ(t, ξ(i, j)) · (labi(et)⊕ labj(et)) = 1

for all (i, j) ∈ P .
Now consider the following problem: for a pair (t′, φ) where t′ ∈ [m] is an index and

φ : P → {0, 1} is a function, compute a “partial” labeling lab : {e1, . . . , et′} → {0, 1}k such
that

∑t′

t=1 len(et, lab(et)) is minimized subject to the condition
∑t′

t=1 δ(t, ξ(i, j)) · (labi(et)⊕
labj(et)) = φ(i, j) for all (i, j) ∈ P . We want to solve the problem for all pairs (t′, φ). This
can be achieved using dynamic programming as follows. For a label l ∈ {0, 1}k, we denote by
φl : P → {0, 1} the function which maps (i, j) ∈ P to 0 (resp., 1) if the i-th bit and the j-th
bit of l is the same (resp., different). We consider the index t′ from 1 to m. Suppose now
the problems for all pairs with index t′ − 1 have been solved. To solve for a pair (t′, φ), we
enumerate the labeling lab(et′) for et′ . Fixing lab(et′) = l, the remaining problem becomes to
determine lab : {e1, . . . , et′−1} → {0, 1}k that minimizes

∑t′−1
t=1 len(et, lab(et)) subject to the

condition
∑t′−1
t=1 δ(t, ξ(i, j)) · (labi(et)⊕ labj(et)) = φ(i, j)� φl(i, j) for all (i, j) ∈ P , which

is exactly the problem for the pair (t′ − 1, φ� φl). Thus, provided that we already know the
solution for the problem for all pairs with index t′ − 1, we can solve the problem for (t′, φ) in
2p · pO(1) time. Since there are 2pm pairs (t′, φ) to be considered and m = O(k), the problem
for all pairs can be solved in 2O(p) time.

Now we see that for a fixed f∗V , one can compute in 2O(p) time the optimal lab and f∗E .
Since there are nO(k) possible f∗V to be considered, the entire algorithm takes 2O(p)nO(k)

time, which completes the proof. J

The above lemma directly gives us a kO(p)nO(k)-time algorithm to compute the desired
labeling-PPM pair. By Fact 31, it suffices to compute a labeling-PPM pair (lab, f∗) for H∗
with the minimum cost(f∗) such that lab respects some function ξ : P → E0. Note that the
number of different functions ξ : P → E0 is at most (5k)p because |P | = p and |E0| ≤ 5k. We
simply enumerate all these functions, and for each function ξ : P → E0, we use Lemma 32 to
compute in 2O(p)nO(k) time a labeling-PPM pair (lab, f∗) for H∗ with the minimum cost(f∗)
such that lab respects ξ. Among all the labeling-PPM pairs are computed, we then pick the
pair (lab, f∗) with the minimum cost(f∗).

To compute the desired labeling-PPM pair more efficiently, we observe that in fact, we
do not need to try all functions ξ : P → E0. If a family Ξ of functions ξ : P → E0 satisfies
that any labeling making H∗ P -good respects some ξ ∈ Ξ, then trying the functions in Ξ is
already sufficient. We show the existence of such a family Ξ of size kO(k).

I Lemma 33. There exists a family Ξ of kO(k) functions ξ : P → E0 such that any labeling
making H∗ P -good respects some ξ ∈ Ξ. Furthermore, Ξ can be computed in kO(k) time.

Proof. As the first step of our proof, we establish a bound on the number of sequences of
“finer and finer” partitions of [k]. Let m ≥ 1 be an integer. An m-sequence (Φ1, . . . , Φm) of
partitions of [k] is finer and finer if Φ1 � · · · � Φm. We show that the total number of finer
and finer m-sequences is bounded by (m + k)O(k). To this end, we first observe that the
number of non-decreasing sequences (z1, . . . , zm) of integers in [k] is

(
m+k−1
k−1

)
= (m+ k)O(k).

Therefore, it suffices to show that for any non-decreasing sequence (z1, . . . , zm) of integers
in [k], the number of finer and finer m-sequences (Φ1, . . . , Φm) satisfying |Φi| = zi for all
i ∈ [m] is bounded by (m+ k)O(k). Fix a non-decreasing sequence (z1, . . . , zm) of integers
in [k]. For convenience, define Φm+1 = {{1}, . . . , {k}} as finest partition of [k] and let
zm+1 = |Φm+1| = k. Then we must have Φm � Φm+1. By applying Fact 4, for a fixed
Φi+1 with |Φi+1| = zi+1, the number of partitions Φi � Φi+1 with |Φi| = zi is zO(di+1)

i+1

N. Kumar et al. 23:23

where di+1 = zi+1 − zi. Therefore, by a simple induction argument we see that for an
index t ∈ [m], the number of the possibilities of the subsequence (Φt, . . . , Φm) is bounded
by
∏m
i=t z

O(di+1)
i+1 = kO(k−zt). In particular, the number of finer and finer m-sequences

(Φ1, . . . , Φm) satisfying |Φi| = zi for all i ∈ [m] is bounded by kO(k). Furthermore, we observe
that these sequences can be computed in O(m) + kO(k) time by repeatedly using Fact 4.
Indeed, by Fact 4, for a fixed subsequence (Φt+1, . . . , Φm), one can compute in kO(dt+1)

time all Φt such that |Φt| = zt and Φt � Φt+1 time, where dt+1 = zt+1 − zt. Therefore,
knowing all kO(k−zt+1) possible subsequences (Φt+1, . . . , Φm), one can compute all possible
subsequences (Φt, . . . , Φm) in kO(k−zt) time. In particular, all finer and finer m-sequences
(Φ1, . . . , Φm) satisfying |Φi| = zi for all i ∈ [m] can be computed in O(m) + kO(k) time. The
(m+ k)O(k) non-decreasing sequences (z1, . . . , zm) of integers in [k] can be easily enumerated
in (m+ k)O(k) time, which implies that all finer and finer m-sequences of partitions of [k]
can be computed in (m+ k)O(k) time.

With the above result, we are now ready to prove the lemma. Suppose E0 = {e1, . . . , em}
where m = O(k). We construct a family Ξ of functions ξ : P → E0 as follows. For every finer
and finerm-sequence (Φ1, . . . , Φm) of partitions of [k] satisfying that i and j belong to different
parts in Φm for all (i, j) ∈ P , we include in Ξ a corresponding function ξ : P → E0 defined
by setting ξ(i, j) = et where t ∈ [m] is the smallest index such that i and j belong to different
parts in Φt. By the above result, we have |Ξ| = kO(k) and Ξ can be computed in kO(k) time.
It suffices to prove that Ξ satisfies the desired property. Let lab : EH∗ → {0, 1}k be a labeling
that makes H∗ P -good. Recall that we have ΦH∗ =

⊙m
t=1 Φ(γet). Now we define a finer and

finer m-sequence (Φ1, . . . , Φm) of partitions of [k] by setting Φt =
⊙t

s=1 Φ(γes) for all t ∈ [m].
Then we have Φm = ΦH∗ . Since H∗ is P -good, we know that i and j belong to different
parts in Φm for all (i, j) ∈ P . Let ξ ∈ Ξ be the function corresponding to the sequence
(Φ1, . . . , Φm). We shall show that lab respects ξ. Consider a pair (i, j) ∈ P and suppose
ξ(i, j) = et for some t ∈ [m]. We want to verify that parityi(γet) 6= parityj(γet). If t = 1, then
i and j belong to different parts in Φ1 = Φ(γe1) = Φ(γet), i.e., parityi(γet) 6= parityj(γet). If
t > 1, then i and j belong to different parts in Φt but belong to the same parts in Φt−1,
which implies that i and j belong to different parts in Φ(γet), i.e., parityi(γet) 6= parityj(γet).
This completes the proof. J

With the above lemma in hand, we simply construct the family Ξ in kO(k) time, and
only try the functions in Ξ. This improves the running time to 2O(p)kO(k)nO(k), which is
2O(p)nO(k) because k ≤ n by our assumption.

I Theorem 34. Generalized Point-Separation for connected obstacles in the plane can
be solved in 2O(p)nO(k) time, where n is the number of obstacles, k is the number of points,
and p is the number of point-pairs to be separated.

I Corollary 35. Point-Separation for connected obstacles in the plane can be solved in
2O(k2)nO(k) time, where n is the number of obstacles and k is the number of points.

7 An Improved Algorithm for Pseudo-disk Obstacles

In this section, we study Generalized Points-separation for pseudo-disk obstacles and
obtain an improved algorithm. To this end, the key observation is the following analog of
Lemma 26 for pseudo-disk obstacles.

I Lemma 36. Suppose S consists of pseudo-disk obstacles. Then a subset S ′ ⊆ S is a
P -separator iff there is a subgraph of the induced subgraph GS [S ′] that is planar and P -good.

CVIT 2016

23:24 Algorithms for Point Separation and Obstacle Removal

Proof. The “if” part follows immediately from Lemma 26. So it suffices to show the “only
if” part. Let S ′ ⊆ S be a P -separator and U =

⋃
S∈S′ S. Recall that two obstacles

S, S′ ∈ S ′ contribute to U if an intersection point of the boundaries of S and S′ is a break
point on the boundary of U (see Section 2). By Fact 5, the graph G′ = (S ′, E) where
E = {(S, S′) : S, S′ ∈ S ′ contribute to U} is planar. We define a subgraph G of the induced
subgraph GS [S ′] as follows. The vertex set of G is S ′. For each edge e = (S, S′) of GS [S ′], if
S, S′ contribute to U or S = S′, then we include e in G, otherwise we discard it. We observe
that G′ is planar. Indeed, G can be obtained from G′ by adding parallel edges and self-loops.
Since G′ is planar and adding parallel edges and self-loops does not change planarity, G is
also planar. It now suffices to prove that G is P -good. Consider a pair (i, j) ∈ P and we
want to show the existence of a cycle γ in G such that parityi(γ) 6= parityj(γ). In the proof
of Lemma 26, we constructed a cycle γ in GS [S ′] satisfying parityi(γ) 6= parityj(γ). In that
construction, the cycle γ also satisfies the following property: for each pair (S, S′) of two
consecutive vertices in γ, there are two adjacent arcs of the boundary of U contributed by S
and S′ respectively, which implies that S, S′ contribute to U . Therefore, γ is also a cycle in
G. It follows that G is P -good, completing the proof. J

With the above lemma in hand, we are now ready to prove an analog of Lemma 30 for
pseudo-disk obstacles. The only difference is that here we can require H∗ to be planar.

I Lemma 37. Suppose S is a set of pseudo-disk obstacles. Then there exists a P -good
k-labeled planar graph H∗ with at most 4k vertices and 5k edges and a PPM f∗ from H∗ to
GS such that cost(f∗) = opt.

Proof. Recall that in the proof of Lemma 30, we first took a minimal P -good subgraph
G of the induced subgraph GS [S ′], and then obtained H∗ by applying a path-contraction
procedure on G. The choice of G is arbitrary as long as it is a minimal P -good subgraph
of GS [S ′]. Furthermore, if G is planar, then the resulting H∗ is also planar because the
path-contraction procedure preserves planarity. Therefore, it suffices to show that GS [S ′] has
a minimal P -good subgraph that is planar. By Lemma 36, there exists a P -good subgraph
of GS [S ′] that is planar. Since subgraphs of a planar graph are also planar, there exists a
minimal P -good subgraph of GS [S ′] that is planar, which completes the proof. J

Now we explain how the planarity of H∗ in Lemma 37 helps us solve the problem
more efficiently. Recall how our algorithm in Section 6.1 works. We first enumerate the
graph structure H∗ = (VH∗ , EH∗) of H∗. For a fixed graph structure, let C1, . . . , Cr be the
connected components of H∗, and T1, . . . , Tr be spanning trees of C1, . . . , Cr, respectively.
Let E0 ⊆ EH∗ be the set of edges that are not in T1, . . . , Tr. We then create the family Ξ of
functions ξ : P → E0 in Lemma 33. For each ξ ∈ Ξ, we use the algorithm of Lemma 32 to
efficiently compute the “optimal” labeling-PPM pair (lab, f∗) for H∗ satisfying the condition
that lab respects ξ. Here we apply the same framework, but replace Lemma 32 with an
improved algorithm which works for the case that H∗ is planar. The key ingredient of this
improved algorithm is the planar separator theorem, which allows us to solve the problem of
Lemma 32 more efficiently using divide-and-conquer when H∗ is planar.

I Lemma 38. Suppose H∗ is planar. Given ξ : P → E0, one can compute in 2O(p)nO(
√
k)

time a labeling-PPM pair (lab, f∗) for H∗ which minimizes cost(f∗) subject to the condition
that lab respects ξ.

Proof. As in the proof of Lemma 32, suppose EH∗ = {e1, . . . , em} where m = O(k). Let
δ : [m] × E0 → {0, 1} be an indicator defined as δ(t, e) = 1 if et is an edge of the cycle

N. Kumar et al. 23:25

γe and δ(t, e) = 0 otherwise. Consider a triple (H,V ′, f ′V), where H = (VH , EH) is a
subgraph of H∗, V ′ ⊆ VH is a subset of the vertex set of H, and f ′V : V ′ → S is a mapping.
For such a triple, we define a corresponding problem: for every function φ : P → {0, 1},
computing a labeling-PPM pair (lab, f) for H (i.e., lab : EH → {0, 1}k is a labeling for the
edges of H and f is a PPM from H to GS with respect to the labeling lab) that minimizes
cost(f) subject to (i) f is compatible with f ′V , i.e., f maps every v ∈ V ′ to f ′V (v) and (ii)∑
et∈EH δ(t, ξ(i, j)) · (labi(et)⊕ labj(et)) = φ(i, j).
We show how to solve the problem instance (H,V ′, f ′V) efficiently using divide-and-

conquer. Let c be a sufficiently large constant. If |VH | ≤ c, we simply solve the instance
using brute-force in O(1) time. Assume |VH | > c. Since H∗ is planar, H is also planar. Thus,
by the planar separator theorem, we can find in |VH |O(1) time a partition of VH into three
sets V1, V2, X such that (i) there is no edge in EH between V1 and V2, (ii) |X| ≤ 3

√
|VH |,

and (iii) |V1| ≤ 2
3 |VH | and |V2| ≤ 2

3 |VH |. We define two subgraphs H1 and H2 of H as
follows. The graph H1 = (VH1 , EH1) is the induced subgraph H[V1 ∪ X], and the graph
H2 = (VH2 , EH2) is defined as VH2 = V2 ∪X and EH2 = EH\EH1 . Observe that H1 and H2
cover all the vertices and edges of H. In addition, H1 and H2 share the common vertices in
X and do not share any common edges. Let V ′1 = (X ∪ V ′) ∩ VH1 and V ′2 = (X ∪ V ′) ∩ VH2 .
We enumerate all functions g : X → S that compatible with f ′V , i.e., g(v) = f ′V (v) for all
v ∈ X ∩ V ′. The number of such functions is nO(

√
|VH |) because |X| = O(

√
|VH |). For a

fixed function g : X → S, let g′ : X ∪ V ′ → S be the function obtained by gluing g and
f ′V , i.e., g′(v) = g(v) on X and g′(v) = f ′V (v) on V ′. We then recursively solve the two
problem instances Probg,1 = (H1, V

′
1 , g
′
1) and Probg,2 = (H2, V

′
2 , g
′
2) where g′1 (resp., g′2) is

the function obtained by restricting g′ to V ′1 (resp., V ′2). After all functions g : X → S are
considered, we collect all the solutions for the problem instances Probg,1 and Probg,2.

We are going to use these solutions to obtain the solution for the problem instance
(H,V ′, f ′V). Recall that for every function φ : P → {0, 1}, we want to compute a labeling-
PPM pair (lab, f) for H that minimizes cost(f) subject to (i) f is compatible with f ′V and
(ii)

∑
et∈EH δ(t, ξ(i, j)) · (labi(et)⊕ labj(et)) = φ(i, j). We first guess how the desired PPM

f maps the vertices in X, which can be described as a function g : X → S. There are
in total nO(

√
|VH |) guesses we need to make. Now suppose our guess for g is correct. As

before, we define g′ : X ∪ V ′ → S as the function obtained by gluing g and f ′V . Note that
f is compatible with g′. Let (lab1, f1) and (lab2, f2) denote labeling-PPM pairs for H1 and
H2, respectively, obtained by restricting (lab, f) to H1 and H2. Define φ1 : P → {0, 1}
as φ1(i, j) =

∑
et∈EH1

δ(t, ξ(i, j)) · (labi(et) ⊕ labj(et)) and φ2 : P → {0, 1} as φ2(i, j) =∑
et∈EH2

δ(t, ξ(i, j)) · (labi(et) ⊕ labj(et)). We observe that f1 and f2 must be compatible
with g′1 and g′2, respectively, where g′1 (resp., g′2) is the function obtained by restricting
g′ to V ′1 (resp., V ′2), because f is compatible with g′. Also, we have φ = φ1 ⊕ φ2 and
cost(f) = cost(f1) + cost(f2)− |X|, because VH1 ∩ VH2 = X and {EH1 , EH2} is a partition
of EH . On the other hand, as long as f1 and f2 are compatible with g′1 and g′2 respectively
and φ = φ1 ⊕ φ2, we can always glue the two labeling-PPM pairs (lab1, f1) and (lab2, f2) to
obtain a labeling-PPM pair (lab, f) for H satisfying cost(f) = cost(f1) + cost(f2)− |X| such
that (i) f is compatible with g′ and (ii)

∑
et∈EH δ(t, ξ(i, j)) · (labi(et)⊕ labj(et)) = φ(i, j).

Therefore, we can solve the problem as follows. We simply guess the functions φ1 and
φ2 satisfying φ1 ⊕ φ2 = φ. There are in total 2p guesses we need to make. Suppose
our guess is correct. We retrieve the solution (lab1, f1) of the problem instance Probg,1
for the function φ1 and the solution (lab2, f2) of the problem instance Probg,2 for the
function φ2, which have already been computed. We know that (lab1, f1) (resp., (lab2, f2))
minimizes cost(f1) (resp., cost(f2)) subject to (i) f1 is compatible with g′1 (resp., f2 is

CVIT 2016

23:26 Algorithms for Point Separation and Obstacle Removal

compatible with g′2) and (ii)
∑
et∈EH1

δ(t, ξ(i, j)) · (labi(et) ⊕ labj(et)) = φ1(i, j) (resp.,∑
et∈EH2

δ(t, ξ(i, j)) · (labi(et)⊕ labj(et)) = φ2(i, j)). By gluing (lab1, f1) and (lab2, f2), we
obtain a labeling-PPM pair (lab, f) for H, which is what we want because of the optimality
of (lab1, f1) and (lab2, f2) and the fact that our guesses for g and φ1, φ2 are all correct.

Finally, we analyze the running time of the above algorithm. Let T (h) denote the time cost
for solving a problem instance (H,V ′, f ′V) with |VH | = h. We have T (h) = O(1) for h ≤ c,
because we use brute-force for the case h ≤ c. Suppose h > c. In this case, we have recursive
calls on the subgraphs H1 and H2 of H. Note that H1 = |V1| + |X| ≤ 2

3h + 3
√
h ≤ 3

4h,
because h > c and c is sufficiently large. Similarly, we have H2 ≤ 3

4h. The number of
recursive calls is nO(

√
h). Besides the recursive calls, all work can be done in 2O(p)nO(

√
k)

time. Therefore, we have the recurrence T (h) = nO(
√
h) · T (3

4h) + 2O(p)nO(
√
h), which solves

to T (h) = 2O(p)nO(
√
h). To solve the problem of the lemma, the initial call is for the problem

instance (H∗, , null), which takes 2O(p)nO(
√
k) time since |VH∗ | = O(k). J

Replacing Lemma 32 with Lemma 38, we can apply the algorithm in Section 6.1 to solve
the generalized point-separation problem in 2O(p)kO(k)nO(

√
k) time.

I Theorem 39. Generalized Point-Separation for pseudo-disk obstacles in the plane
can be solved in 2O(p)kO(k)nO(

√
k) time, where n is the number of obstacles, k is the number

of points, and p is the number of point-pairs to be separated.

I Corollary 40. Point-Separation for pseudo-disk obstacles in the plane can be solved in
2O(k2)nO(

√
k) time, where n is the number of obstacles and k is the number of points.

8 ETH-Hardness of Points-Separation

In the previous sections, we gave an f(k) · nO(k)-time algorithm for k-Points-separation
with general (connected) obstacles and an f(k) · nO(

√
k)-time algorithm with pseudo-disk

obstacles. In this section, we show that assuming Exponential Time Hypothesis (ETH), both
of our algorithms are almost tight and significant improvement is unlikely. We begin by
describing our reduction for general obstacles.

8.1 Hardness for General Obstacles
We give a reduction from Partitioned Subgraph Isomorphism (PSI) problem which is
defined as follows. Recall that in the Subgraph Isomorphism problem, we are given two
graphs G and H and we want to find an injective mapping ψ : V (G)→ V (H) such that if
(u, v) ∈ E(G), then (ψ(u), ψ(v)) ∈ E(H). In the Partitioned Subgraph Isomorphism
problem, we want to find a colorful mapping of G into H. Formally, we are given undirected
graphs H and G where G has maximum degree 3, and a coloring function col : V (H) →
V (G) that partitions vertices of H into |V (G)| classes. We say that an injective mapping
ψ : V (G)→ V (H) is a colorful mapping of G into H, if for every v ∈ V (G), col(ψ(v)) = v,
and for every (u, v) ∈ E(G), we have (ψ(u), ψ(v)) ∈ E(H). Then in the Partitioned
Subgraph Isomporphism, we want to find if there exists a colorful mapping of G into H.

We will use the following well-known result of Marx [23] relevant to our reduction.

I Theorem 41. [23, Corollary 6.3] Unless ETH fails, PSI cannot be solved in f(k)no(k/ log k)

time for any function f where k = |E(G)| and n = |V (H)|.

N. Kumar et al. 23:27

Our Construction.

Given an instance of PSI as graphs G,H and coloring col : V (H) → V (G), we want to
construct an instance of Points-separation, namely a set of obstacles S and a set of points
A such that all point pairs in A are separated. For the ease of exposition, we will first discuss
a reduction from PSI to an instance (S, A, P) of Generalized Points-separation where
the set P of request pairs is specified. Later we extend the construction to show that the
same bounds also hold for Points-separation.

The set of obstacles S used in our construction mainly consists of an obstacle Spq for
every edge (up, uq) ∈ E(H). In addition, we also use an additional auxiliary obstacle denoted
by S0. All the obstacles and request pairs will be contained in a rectangle R with bottom-left
corner (0, 0) and top-right corner (z, 3), where z is the total number of request pair groups.
Each group can have at most two request pairs. We split the rectangle R into z blocks,
each of width one. The r-th block Br is bounded by the vertical lines x = r − 1 and x = r,
contains the r-th request pair group. Initially all obstacles are horizontal line segments of
length z occupying the part of x-axis from x = 0 to x = z and coincident to the bottom
side of R. Moreover, let `1, `2 be two horizontal line segments coincident with y = 1 and
y = 2 respectively and starting from x = 0 (left boundary of R) and ending at x = z (right
boundary of R). These line segments will serve as guardrails for obstacle growth. Specifically
obstacles can only grow vertically at x = r (for some integer r) or horizontally along the
lines `1, `2. (See also Figure 5.)

1 2 3 4 5
v xw

`1

a′

S1,2 S2,3

1 2 3 4 5

a
`2

a′

S1,2 S0

a

u2 u3u1

u4 u5

S4,5

(a) (b) (c)

a′′

Figure 5 An example construction. (a) Graphs G and H with the col : V (H)→ V (G) shown by
dotted boxes around nodes. (b) Block with Type-1 request pair for edge (v, w) ∈ E(G). (c) Block
with Type-2 request pair group for vertex v and its adjacent edges (v, w), (v, x) ∈ E(G). Obstacles
S1,2 and S2,3 separate both pairs (a, a′) and (a′, a′′) whereas S1,2 and S4,5 does not.

The r-th request pair group is contained in block Br and may consist of points ar, a′r, a′′r
where ar = (r − 1

2 ,
5
2), a′r = (r − 1

2 ,
3
2) and a′′r = (r − 1

2 ,
1
2). We have two types of groups:

Type-1 request pair group consisting of one request pair (ar, a′r) and Type-2 request pair group
consisting of two request pairs pr = (ar, a′r) and p′r = (a′r, a′′r). Depending on the type of the
group, we will now grow the obstacles in a systematic manner so that they interact in the
neighborhood of request pairs.
1. Type-1 request pair group For every edge ei = (v, w) ∈ E(G), we add a request pair

pr = (ar, a′r) to P . Next we grow the obstacles around pr as follows. (See also Figure 5b.)
Extend the auxiliary obstacle S0 vertically along x = r until y = 2.
For every (up, uq) ∈ E(H) such that (col(up), col(uq)) = ei, extend the obstacle Spq
vertically along x = r − 1 until y = 2 and then rightwards along `2 until it touches S0.

Observe that to separate Type-1 request pair pr, we must select S0 and one obstacle
corresponding to an edge of H.

CVIT 2016

23:28 Algorithms for Point Separation and Obstacle Removal

2. Type-2 request pair group For a vertex v ∈ V (G) and pair of edges ei, ej ∈ E(G) adjacent
to v with i < j, we add two request pairs pr = (ar, a′r) and p′r = (a′r, a′′r) to P . In order
to grow the obstacles, consider the unit length intervals along lines `1, `2 contained in Br.
We subdivide these intervals by adding n markers each separated by a small distance
ε = 1

n+1 . Here n = |V (H)|. We will use these markers to define the precise boundary of
obstacles in block Br. (See also Figure 5c.)

Let ei = (v, w) and Spq = (up, uq) be an obstacle such that (col(up), col(uq)) = ei.
Without loss of generality, assume that col(up) = v and col(up) = w. First we extend
Spq along the left boundary of Br along x = r− 1 until y = 2. Then we connect Spq to
marker p along line `1 and to marker n− p+ 1 along line `2, moving from left to right.
Similarly, let ej = (v, x) and Sgh = (ug, uh) be an obstacle such that (col(ug), col(uh)) =
ej . Without loss of generality, assume that col(ug) = v and col(uh) = x. We extend
Sgh along the right boundary of Br along x = r until y = 2. Then we connect Sgh to
marker g along line `1 and to marker n− g + 1 along line `2, moving from right to left.

Observe that to separate both Type-2 request pairs pr and p′r, we must select two obstacles
corresponding to edges of H.

It is easy to verify that all the obstacles are simple and connected. Observe that
since each vertex has maximum degree 3, the total number of request pairs added is
z ≤ |E(G)| + 2 · 3|V (G)| = O(k) where k = V (G). The total number of obstacles |S| =
|E(H)|+ 1 = O(n2) where n = |V (H)|.

I Observation 42. For the Generalized Points-separation instance (S, A, P) con-
structed above, we have |S| = O(n2), |A| = O(k) and |P | = O(k).

We prove the following lemma which will be useful later.

I Lemma 43. Let pr = (ar, a′r) and p′r = (a′r, a′′r) be a Type-2 request pair group corresponding
to vertex v and its two adjacent edges ei = (v, w) and ej = (v, x) such that i < j. Then two
obstacles Spq defined by the edge (up, uq) and Sgh defined by (ug, uh) separate both pr and p′r
if and only if p = g and col(up) = col(ug) = v, col(uq) = w, col(uh) = x.

Proof. The reverse direction is easy to verify. Specifically, if col(up) = col(ug) = v, col(uq) =
w, col(uh) = x then the obstacles Spq and Sgh are respectively coincident with left and right
boundary of block Br. Moreover, since p = g, both the obstacles overlap precisely at marker
p along `1 and n−p+ 1 along `2, forming a closed curve containing only point a′r = (r−1, 3

2).
Therefore, both the pairs pr and p′r are separated.

For the other direction, from the way obstacles Spq and Sgh interact in block Br: they
may overlap along `1 or `2 or both or none. If the obstacles overlap only along `1, they
cannot separate pair pr. Similarly, if they overlap only along `2, they cannot separate the
pair p′r. Since both pairs are separated, obstacles Spq and Sgh must overlap along both `1,
`2 and form a closed curve containing point a′r. This can only happen if Spq, Sgh overlap in
block Br approaching `1, `2 from opposite sides. Without loss of generality, we can assume
that Spq is coincident with left boundary of Br and Sgh is coincident with the right boundary
of Br. This can happen only if col(up) = col(ug) = v, col(uq) = w, col(uh) = x. It remains
to show that p = g. Observe that since Spq, Sgh overlap on `1, we must have that marker p
is to the right of marker g. That is p ≥ g. Similarly, since Spq, Sgh overlap on `2, we have
n− p+ 1 ≥ n− g + 1 which gives p ≤ g. Combining these, we get p = g. J

We now prove the following lemma that establishes the correctness of our reduction.

N. Kumar et al. 23:29

I Lemma 44. Given an instance of PSI as graphs G,H and coloring, col : V (H)→ V (G),
there exists a colorful mapping ψ : V (G) → V (H) if and only if the point pairs P can be
separated by a set of m = |E(G)|+ 1 obstacles S∗ ⊆ S.

Proof. (⇒) Given a colorful mapping ψ we construct the set of obstacles S∗ as follows. For
every edge e = (v, w) ∈ E(G), include the obstacle (ψ(v), ψ(w)) to S∗ – such an obstacle
always exists because (ψ(v), ψ(w)) ∈ E(H). Next, we add S0 to S∗. It is easy to verify that
S∗ separates the Type-1 request pairs. For a Type-2 request pair group pr, p′r at vertex v
and edges ei = (v, w), ej = (v, x), let up = ψ(v), uq = ψ(w) and uh = ψ(x). Since ψ is a
colorful mapping, we have col(up) = col(ψ(v)) = v. Similarly, col(uq) = w and col(uh) = x.
Therefore, it follows from Lemma 43 that S∗ separates request pairs pr, p′r, for all 1 ≤ r ≤ z.

(⇐) Given a set S∗ of m obstacles that separates all request pairs, we will first construct
an injective function M : E(G) → E(H) that uniquely maps every edge of G to an edge
of H. Consider the set P1 of Type-1 request pairs. Since S∗ separates P1, it must include
S0 and a unique obstacle Spq = (up, uq) for every edge ei = (v, w) ∈ E(G) such that
(col(up), col(uq)) = ei. The uniqueness of Spq follows from the fact that there are |E(G)|
Type-1 request pairs and |S∗| = |E(G)|+ 1 obstacles. We assignM(ei) = (up, uq).

Next, we build a colorful mapping ψ that is consistent with the mappingM of edges.
For this, we use the fact that S∗ also separates Type-2 request pair groups. Consider the
Type-2 request pair group corresponding to vertex v ∈ V (G) and edges ei = (v, w) and
ej = (v, x) with i < j. We apply Lemma 43 over this group with obstacles defined by edges
(up, uq) = M(ei), and (ug, uh) = M(ej). This gives up = ug and col(up) = v. Since this
holds for every pair of edges ei, ej adjacent to vertex v, we can assign ψ(v) = up, which also
satisfies col(ψ(v)) = col(up) = v required for a colorful mapping. Repeating this for every v
gives the complete mapping ψ : V (G) → V (H). It remains to show that if (v, w) ∈ E(G),
then (ψ(v), ψ(w)) ∈ E(H). To see this, observe that for every ei = (v, w) ∈ E(G) the edge
(up, uq) =M(ei) exists in E(H), or else we would not be able to separate the Type-1 request
pair for ei. From the way we assign ψ(v), it follows that ψ(v) = up and ψ(w) = uq. Therefore,
(ψ(up), ψ(uq)) ∈ E(H). J

We will now extend the above construction (S, A, P) to the special case when P consists
of all pairs of points in A. We do this by adding z special obstacles called barriers (one
for each block Br) and one master point a0 = (0, 4) that lies to the outside of rectangle R
enclosing all obstacles. Each barrier Sr around block Br is an inverted U-shaped obstacle
that is coincident with the left, top and bottom boundaries of Br. More precisely, obstacle
Sr consists of three segments: a vertical segment from (r − 1, 0) to (r − 1, 3), a horizontal
segment from (r − 1, 3) to (r, 3) and then a vertical segment from (r, 3) to (r, 0).

Let Sb be the set of all barrier obstacles added above, we prove the following lemma.

I Lemma 45. There exists a solution with |E(G)|+1 obstacles for the Generalized Points-
separation instance (S, A, P) constructed before if and only if there exists a solution with
|E(G)|+ 1 + |Sb| obstacles for the Points-separation instance (S ∪ Sb, A ∪ a0).

Proof. (⇒) Add all the barriers Sb to the solution for Generalized Points-separation.
All points that lie in the same block are already separated. Any pair of points that lie in
different blocks are separated due to the barrier obstacles Sb, which also separate every point
in A from the master point a0.

(⇐) The only way to separate the master point a0 from point ar in block Br is to select
the corresponding barrier Sr. Therefore, every solution must select all obstacles in Sb. Since
the set Sb does not separate any within-block request pair, the remaining set of |E(G)|+ 1
non-barrier obstacles must separate all request pairs in P . J

CVIT 2016

23:30 Algorithms for Point Separation and Obstacle Removal

Using Lemma 45 along with Lemma 44, Observation 42 and applying Theorem 41, we
obtain the following result for Points-separation.

I Theorem 46. Unless ETH fails, a Points-separation instance (S, A) cannot be solved
in f(k)no(k/ log k) time where n = |S| and k = |A|.

8.2 Hardness for Pseudodisk Obstacles
For the case of pseudodisk obstacles, we will give a reduction from Planar Multiway
Cut problem: given an undirected planar graph G with a subset of k vertices specified as
terminals, the task is to find a set of edges having minimum total weight whose deletion
pairwise separates the k terminal vertices from each other. We will use another result by
Marx [24] which showed that unless ETH fails, Planar Multiway Cut cannot be solved
in f(k) · no(

√
k) time. The result also holds when each edge has unit weight, which is the

case we will reduce from.

Our Construction

We first fix an embedding of the planar graph G and consider its dual graph G∗. Then we
create an instance (S, A) of Points-separation as follows. (See also Figure 6.)

v∗1

v∗2 v∗1 v∗2

S1
2 S2

1

Figure 6 An example construction with pseudodisks. (a) The primal graph G and dual graph
G∗ are shown. The obstacles S move along the dual edges and overlap at the square markers. The
terminals of G∗ which form the point set A are shown in bold. (b) An illustration of how the two
obstacles for the dual edge (v∗1 , v∗2) overlap is shown enlarged for clarity.

Adding obstacles. For every edge e∗ij = (v∗i , v∗j) ∈ E(G∗), we add two obstacles Sij , S
j
i

such that Sij encloses the dual vertex v∗i and extends halfway along e∗ij . Similarly, Sji
encloses the dual vertex v∗j and extends halfway along e∗ij until it meets obstacle Sij .
Adding points. For each terminal ti, which is a vertex of the primal graph G, add a point
ai with same coordinates as that of ti in the embedding.

Observe that any pair of obstacles either overlap at their source vertex or at the middle
of an edge, but not at both places. Therefore, no pair of obstacles intersect more than once
and the construction can be realized with only pseudodisk obstacles. The following lemma
establishes the correctness of our reduction.

I Lemma 47. There exists a solution to Planar Multiway Cut with m edges if and only
if the Points-separation instance constructed above has a solution of size 2m.

Proof. For the forward direction, consider any pair of terminals tx, ty – since they are
separated by the cut edges Ec, there must be a cycle in the dual graph separating tx, ty and
only consisting of dual of cut edges E∗c . Repeating this for every pair of terminals gives a
family of separating cycles consisting only of edges E∗c . It is easy to verify that replacing each

N. Kumar et al. 23:31

dual edge e∗ij with its obstacle pair Sij , S
j
i will also separate every point pair corresponding

to the terminals.
For the other direction, given a solution S ′ for Points-separation, we can draw curves

in the plane that separate every point pair and lie in the union of S ′. We can assume that
the solution is exclusion-wise minimal, so every time we arrive inside an obstacle at vertex
v∗i , we must continue along an edge e∗ij where we must transfer to the other sibling obstacle
Sji for e∗ij . Using these dual edges, we can construct a solution to Planar Multiway Cut
of cost |S ′|/2. J

Since Planar Multiway Cut cannot be solved in f(k)no(
√
k) time assuming ETH , we

obtain the following result.

I Theorem 48. Unless ETH fails, a Points-separation instance (S, A) with pseudodisk
obstacles cannot be solved in f(k)no(

√
k) time where n = |S| and k = |A|.

It is not difficult to see that the above construction can also be realized using only unit disks.
In particular, we can replace each pseudodisks with a chain of unit disks and achieve the
same result.

9 Hardness of Approximation

We will now switch our focus from exact algorithms to approximation algorithms for Points-
separation with obstacles S and input points A. Gibson et al. [15] gave a constant factor
approximation algorithm for Points-separation when obstacles are pseudodisks. However,
not much is known for more general obstacle shapes, other than a factor O(|A|)-approximation
that readily follows from the natural extension of their algorithm for pseudodisks. In this
section, we show that assuming the so-called Dense vs Random conjecture, Points-
separation is significantly harder to approximate for general obstacle shapes. In particular,
we show that assuming Dense vs Random, it is not possible to approximate Points-
separation within a factor |A|1/2−ε or |S|3−2

√
2−ε for any ε > 0.

We begin by first stating Dense vs Random, a well-known complexity-theoretic assump-
tion about the hardness for the densest k-subgraph problems.

I Conjecture 49 (Dense vs Random [9]). For all 0 < α, β < 1 with β < α − ε for
sufficiently small ε > 0, and function k : N → N so that k(n) grows polynomially with n,
(k(n))1+β ≤ n(1+α)/2, there does not exist an algorithm ALG that takes as input an n-vertex
graph G, runs in polynomial time, and outputs either dense or sparse, such that:

For every graph G that contains an induced subgraph on k = k(n) vertices and k1+β

edges, ALG(G) outputs dense with high probability.
If G is drawn from G(n, p) with p = nα−1 then ALG(G) outputs sparse with high probability.

The conjecture was originally stated in [9] but the formalization of the conjecture as
stated above is borrowed from [25]. In order to obtain hardness guarantees for our problem
using Conjecture 49, we will describe a reduction that given a graph G constructs an instance
of Points-separation. Then we show that the images of dense instances under this
reduction will have (with high probability) optimum at most x∗d, whereas the images of
random instances will have optimum at least x∗r , where x∗r is much bigger than x∗d. Let
ρ = x∗r/x

∗
d be the distinguishing ratio of the reduction, then an approximation algorithm for

Points-separation with ratio smaller than ρ can now (with high probability) distinguish
between the images of dense and random instances, thereby refuting Conjecture 49. This
gives us the following lemma.

CVIT 2016

23:32 Algorithms for Point Separation and Obstacle Removal

I Lemma 50. If there exists a reduction with distinguishing ratio ρ, then, assuming Dense
vs Random, there is no polynomial time approximation algorithm for Points-separation
with approximation ratio less than ρ.

Our construction is inspired from a similar construction using Dense vs Random for the
related Min-color Path problem from [25]. Specifically, we borrow the idea of partitioning
the edges of graph G = (V,E) into z groups E1, E2, . . . , Ez, by assigning every edge to one of
the groups with probability 1/z independent of other edges. We have the following lemma.

I Lemma 51 (Lemma 7.3 [25]). For any graph G = (V,E), there exists a partitioning
of edges into z = q

2 lnn groups such that for any set E∗ ⊆ E of q edges, every group
Ei ∈ {E1, E2, . . . , Ez} contains an edge from E∗.

We will also need the following bound on the size of a subgraph of G(n, p).

I Lemma 52 (Lemma 7.2 [25]). Let G be drawn from G(n, p). Then, with high probability,
every subgraph of G with q = nΩ(1) edges contains Ω̃(min{q,

√
(q/p)}) vertices. Here Ω̃

ignores logarithmic factors.

Our Construction

Given a graph G = (V,E) and fixed α, β and function k : N → N satisfying conditions of
Conjecture 49, we will construct an instance of Points-separation as follows.
1. Fix q = k1+β and z = q

2 lnn . Using Lemma 51, partition the set of edges of G into z
groups {E1, E2, . . . , Ez}

2. Similar to the hardness construction in Section 8, all the request pairs and obstacles are
contained in an enclosing rectangle R with bottom left corner (0, 0) and top-right corner
(z, 4).

3. For every vi ∈ V , add an obstacle Si to S. Initially, all obstacles are horizontal line
segments occupy the part of x-axis from x = 0 to x = z.

4. Define two set of horizontal lines `h1 : y = 1 + h
(|E|+1) and `h2 : y = 3 + h

(|E|+1) to be
a horizontal line that will serve as guardrails for obstacle growth corresponding to edge
eh ∈ E. Here 1 ≤ h ≤ |E|. We will refer to the group `h1 , `h2 lines as `1-channel and
`2-channel respectively.

5. For each group Er, define a request pair block Br which is a unit-width sub-rectangle of
R bounded by vertical sides x = r − 1 and x = r. Let midr = (r− 1

2) and add the pair of
points ar = (midr, 5

2) and a′r = (midr, 1
2) to A. These points will be contained in block

Br.
Now for every edge eh = (vi, vj) ∈ Er with i < j, we grow the obstacles along `1, `2-
channels as follows. (See also Figure 7.)

Grow the obstacle Si corresponding to vertex vi vertically along left boundary x = r−1
of Br until y = 4. Similarly grow Sj along right boundary x = r of Br until y = 4.
Moving along the horizontal line `h1 from left to right, extend obstacle Si from x = r−1
to x = midr. Repeat the same for `h2 .
Similarly, moving along the horizontal line `h1 from right to left, extend obstacle Sj
from x = r to x = midr. Repeat the same for `h2 .

I Lemma 53. Let S∗ ⊆ S be a solution to the Points-separation instance (S, A) con-
structed above. Then all point pairs in A are separated if and only if for every request pair
block Br, there exists two obstacles Si, Sj ∈ S∗ such that (vi, vj) is an edge assigned to group
Er.

N. Kumar et al. 23:33

a′

av3

v2

v4

v1
a′

a

(v1, v2)

(v1, v3)

(v1, v4)

(v3, v4)

S1

S3

S2

S4

Figure 7 An group of edges E1 and the resulting Points-separation request pair block B1. The
`1-channel is shown enlarged in the rightmost figure. As an example, observe that point pair (a, a′)
is separated if obstacles S1, S2 are selected (because (v1, v2) ∈ E1) but not separated if obstacles
S2, S3 are selected (because (v2, v3) 6∈ E1).

Proof. For the forward direction, suppose we start moving vertically in block Br along
x = midr starting from a′r towards ar. Before we reach point ar, we must cross the lines `1h
for all h such that eh ∈ Er. Whenever we arrive at `1h which is the guardrail corresponding to
edge eh = (vi, vj), if either Si 6∈ S∗ or Sj 6∈ S∗, then we can cross over `1h without intersecting
an obstacle in S∗ by shifting infinitesimally to the left (or right) from x = midr. Since S∗
separates ar, a′r, there must be some eh = (vi, vj) with i < j, such that both Si, Sj ∈ S∗.

For the other direction, if obstacles Si, Sj ∈ S∗ such that (vi, vj) ∈ Er, then the union of
Si, Sj forms a closed curve enclosing both a and a′ and therefore separates a, a′ from each
other as well as from other points in A. J

Using the discussion preceding Lemma 50, we can obtain a lowerbound for the distin-
guishing ratio ρ of the above reduction as follows.

I Lemma 54. Let (S, A) be the resulting Points-separation instance obtained by applying
the above reduction to a graph G. Then we have distinguishing ratio:
1. ρ ≥ min

{
kβ ,

√
kβ−1 · n1−α

}
in terms of n, k

2. ρ ≥
min
{
q,
√
q·n1−α

}
q1/(β+1) in terms of n, q.

Proof. We have the following two cases for the instance (S, A) depending on graph G.
G contains a subgraph on k vertices and q = kβ+1 edges. Let E∗ be the set of these edges.
Using Lemma 51, it follows that every group Er contains an edge eh ∈ E∗. Using the
obstacles corresponding to vertices in E∗ and applying Lemma 53, we obtain a set of at
most k obstacles that separate the request pair (ar, a′r) in every block Br. Therefore, the
number of obstacles used in this case x∗d ≤ k.
G is drawn from G(n, p) with p = nα−1. From Lemma 53, it follows that to separate
(ar, a′r) in any block Br, any solution must select both obstacles corresponding to at least
one edge in Br. Choosing one edge from each block, we obtain a subgraph of G with
z edges. Applying Lemma 52 on this subgraph and observing that z = Ω̃(q) gives the
number of obstacles used in this case x∗r ≥ Ω̃(min{q,

√
(q/p)}).

Taking the ratio of solution sizes in both cases and substituting the values p = nα−1 and
q = kβ+1 , we obtain:

ρ = x∗r
x∗d
≥

min
{
kβ+1,

√(
kβ+1

nα−1

)}
k

= min
{
kβ ,

√
kβ−1 · n1−α

}

CVIT 2016

23:34 Algorithms for Point Separation and Obstacle Removal

Similarly, in terms of q, n, we obtain the following:

ρ = x∗r
x∗d
≥

min
{
q,

√
q · n1−α

}
k

=
min

{
q,

√
q · n1−α

}
q1/(β+1)

J

We will now fix the choice of parameters α, β, k such that they satisfy the requirements of
Conjecture 49 and obtain a bound on the distinguishing ratio in terms of number of obstacles
|S| = n and number of points |A| = 2z = Θ̃(q). The parameters are carefully chosen so that
the maximize the distinguishing ratio and therefore obtain best possible lowerbound on the
hardness of approximation.

I Lemma 55. Assuming Dense vs Random, a Points-separation instance (S, A) cannot
be approximated to a factor better than |A|1/2−ε in polynomial time, for any ε > 0.

Proof. Let α = 1− ε and β = α− ε and q = n1−α = nε. Since, kβ+1 = q, we have kβ+1 =
nε < n(1+α)/2. Therefore the parameters α, β, k satisfy the conditions of Conjecture 49.
Since q = n1−α, we have min{q,

√
q · n1−α} = q. Substituting this to the equation for ρ in

terms of n, q from Lemma 54, we obtain:

ρ ≥ q

q1/(β+1) = q
β
β+1 = q

(1−2ε)
2−2ε = q

1−ε
2−2ε−

ε
2−2ε = q1/2−ε′

where ε′ = ε
2−2ε . Since |A| = Θ̃(q), applying Lemma 50, we achieve the claimed bound. J

I Lemma 56. Assuming Dense vs Random, a Points-separation instance (S, A) cannot
be approximated to a factor better than |S|3−2

√
2−ε in polynomial time, for any ε > 0.

Proof. For this case, we set both α =
√

2 − 1 and k = n
√

2−1. With β = α − ε, we have
kβ+1 ≤ kα+1 = n2−

√
2 < n(1+α)/2 which satisfies the requirements of Conjecture 49.

Therefore, we have:

kβ = n(
√

2−1)·(
√

2−1−ε) = n3−2
√

2−ε′ for some ε′ > 0
√
kβ−1 · n1−α =

(
n(
√

2−1)(β−1) · n(
√

2−1)
√

2
)1/2

= n
(
√

2−1)(2
√

2−2−ε)
2

= n3−2
√

2−ε′′ for some ε′′ > 0

Substituting this to the equation for ρ in terms of n, k from Lemma 54 and applying Lemma 50,
we achieve the claimed bound. J

We conclude with the main result for this section.

I Theorem 57. Assuming Dense vs Random [9], one cannot approximate Points-
separation within ratio n3−2

√
2−ε or m1/2−ε in polynomial time, for any ε > 0, where n is

the number of obstacles and m is the number of points.

References

1 A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O (
√

logn) approximation
algorithms for Min UnCut, Min 2CNF Deletion, and directed cut problems. In Proc. of 37th
STOC, pages 573–581, 2005.

N. Kumar et al. 23:35

2 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(sqrt(log
n)) approximation algorithms for min uncut, min 2cnf deletion, and directed cut problems. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 573–581, 2005.

3 Paul Balister, Zizhan Zheng, Santosh Kumar, and Prasun Sinha. Trap coverage: Allowing
coverage holes of bounded diameter in wireless sensor networks. In IEEE INFOCOM 2009,
pages 136–144. IEEE, 2009.

4 Sayan Bandyapadhyay, Neeraj Kumar, Subhash Suri, and Kasturi Varadarajan. Improved
approximation bounds for the minimum constraint removal problem. Computational Geometry,
90:101650, 2020.

5 Sergey Bereg and David G. Kirkpatrick. Approximating barrier resilience in wireless sensor
networks. In Proc. of 5th ALGOSENSORS, volume 5804, pages 29–40, 2009.

6 S. Cabello and P. Giannopoulos. The complexity of separating points in the plane. Algorithmica,
74(2):643–663, 2016.

7 David Yu Cheng Chan and David G. Kirkpatrick. Approximating barrier resilience for
arrangements of non-identical disk sensors. In Proc. of 8th ALGOSENSORS, pages 42–53,
2012.

8 David Yu Cheng Chan and David G. Kirkpatrick. Multi-path algorithms for minimum-colour
path problems with applications to approximating barrier resilience. Theor. Comput. Sci.,
553:74–90, 2014.

9 Eden Chlamtác, Michael Dinitz, and Yury Makarychev. Minimizing the union: Tight approx-
imations for small set bipartite vertex expansion. In Proc. of 28th SODA, pages 881–899,
2017.

10 E. Eiben and I. Kanj. How to navigate through obstacles? In Proc. of 45th ICALP, 2018.
11 Eduard Eiben, Jonathan Gemmell, Iyad A. Kanj, and Andrew Youngdahl. Improved results

for minimum constraint removal. In Proc. of 32nd AAAI, pages 6477–6484, 2018.
12 Eduard Eiben and Iyad Kanj. A colored path problem and its applications. ACM Trans.

Algorithms, 16(4):47:1–47:48, 2020.
13 Eduard Eiben and Daniel Lokshtanov. Removing connected obstacles in the plane is FPT. In

Proc. of 36th SoCG, volume 164, pages 39:1–39:14, 2020.
14 Lawrence H. Erickson and Steven M. LaValle. A simple, but NP-Hard, motion planning

problem. In Proc. of 27th AAAI, 2013.
15 Matt Gibson, Gaurav Kanade, and Kasturi Varadarajan. On isolating points using disks. In

Algorithms – ESA 2011, pages 61–69, 2011.
16 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.
17 Klara Kedem, Ron Livne, János Pach, and Micha Sharir. On the union of jordan regions

and collision-free translational motion amidst polygonal obstacles. Discrete & Computational
Geometry, 1(1):59–71, 1986.

18 Matias Korman, Maarten Löffler, Rodrigo I. Silveira, and Darren Strash. On the complexity
of barrier resilience for fat regions and bounded ply. Comput. Geom., 72:34–51, 2018.

19 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. Journal of the ACM (JACM), 67(3):1–50, 2020.

20 Santosh Kumar, Ten-Hwang Lai, and Anish Arora. Barrier coverage with wireless sensors.
Wirel. Networks, 13(6):817–834, 2007.

21 James R. Lee. Separators in region intersection graphs. In Proc. of 8th ITCS, volume 67,
pages 1–8, 2017.

22 Daniel Lokshtanov, NS Narayanaswamy, Venkatesh Raman, MS Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms (TALG), 11(2):1–31, 2014.

23 Dániel Marx. Can you beat treewidth? In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’07), pages 169–179. IEEE, 2007.

CVIT 2016

23:36 Algorithms for Point Separation and Obstacle Removal

24 Dániel Marx. A tight lower bound for planar multiway cut with fixed number of terminals. In
International Colloquium on Automata, Languages, and Programming, pages 677–688. Springer,
2012.

25 Saket Saurabh Neeraj Kumar, Daniel Lokshtanov and Subhash Suri. A constant factor
approximation for navigating through connected obstacles in the plane. In Proc. 32nd SODA,
2021.

	1 Introduction
	2 Preliminaries
	3 Labeled Intersection Graph of Obstacles
	4 Application to Obstacle-removal
	5 A Simple Algorithm for Generalized Points-separation
	6 A Faster Algorithm for Generalized Points-separation
	6.1 Improving the running time to 2O(p) nO(k)

	7 An Improved Algorithm for Pseudo-disk Obstacles
	8 ETH-Hardness of Points-Separation
	8.1 Hardness for General Obstacles
	8.2 Hardness for Pseudodisk Obstacles

	9 Hardness of Approximation

