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Abstract

Recently, Brand et al. [STOC 2018] gave a randomized O(4kmε−2)-time exponential-
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up to a multiplicative error of 1±ε, based on exterior algebra. Prior to our work, this has been
the state-of-the-art. In this article, we revisit the algorithm by Alon and Gutner [IWPEC
2009, TALG 2010], and obtain the following results.

• We present a deterministic 4k+O(
√
k(log2 k+log2 ε−1))m log n-time polynomial-space algo-

rithm. This matches the running time of the best known deterministic polynomial-
space algorithm for deciding whether a given graph G has a path on k vertices.

• Additionally, we present a randomized 4k+O(log k(log k+log ε−1))m log n-time polynomial-
space algorithm. Our algorithm is simple—we only make elementary use of the prob-
abilistic method.

Here, n andm are the number of vertices and the number of edges, respectively. Additionally,
our approach extends to approximate counting of other patterns of small size (such as q-
dimensional p-matchings).
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1 Introduction

The objective of the #k-Path problem is to compute the number of k-paths—that is, (simple)
paths on k vertices—in a given graph G. Unfortunately, this problem is #W[1]-hard [21], which
means that it is unlikely to be solvable in time f(k)nO(1) for any computable function f of k.
Nevertheless, this problem is long known to admit an FPT-approximation scheme (FPT-AS),
that is, an f(k, ε−1)nO(1)-time algorithm that approximately computes the number of k-paths
in a given graph G up to a multiplicative error of 1 ± ε. More than 15 years ago, Arvind and
Raman [7] utilized the classic method of color coding [6] to design a randomized exponential-
space FPT-AS for #k-Path with running time kO(k)nO(1) whenever ε−1 ≤ kO(k). A few years
afterwards, the development and use of applications in computational biology to detect and
analyze network motifs have already become common practice [36, 39, 38, 20, 26]. Roughly
speaking, a network motif is a small pattern whose number of occurrences in a given network
is substantially larger than its number of occurrences in a random network. Due to their tight
relation to network motifs, #k-Path and other cases of the #Subgraph Isomorphism problem
became highly relevant to the study of gene transcription networks, protein-protein interaction
(PPI) networks, neural networks and social networks [33]. In light of these developments, Alon
et al. [2] revisited the method of color coding to attain a running time whose dependency on k
is single-exponential rather than slightly super-exponential. Specifically, they designed a simple
randomized O((2e)kmε−2)-time exponential-space FPT-AS for #k-Path, which they employed
to analyze PPI networks of unicellular organisms. In particular, their algorithm has running
time 2O(k)m whenever ε−1 ≤ 2O(k). Here, n and m are the number of vertices and the number
of edges, respectively.

The first deterministic FPT-AS for #k-Path was found in 2007 by Alon and Gutner [4];
this algorithm has an exponential space complexity and running time 2O(k log log k)m log n when-
ever ε−1 = 2o(log k). Shortly afterwards, Alon and Gutner [3] improved upon their previous
work, and designed a deterministic exponential-space FPT-AS for #k-Path with running time
(2e)k+O(log3 k)m log n whenever ε−1 = kO(1). For close to a decade, this algorithm has remained
the state-of-the-art. In contrast, during this decade, the k-Path problem (the decision version
of #k-Path) has seen several improvements that were considered to be breakthroughs at their
time [16, 28, 9, 11, 23]. In 2016, Koutis and Williams [29] conjectured that #k-Path admits
an FPT-AS with running time 2knO(1). Recently, at the cost of reintroducing randomization,
Brand et al. [14] provided a speed-up towards the resolution of this conjecture. Specifically, they
gave an algebraic randomized O(4kmε−2)-time exponential-space algorithm. In the context of
Parameterized Complexity in general, and the k-Path problem in particular, the power of ran-
domization is an issue of wide interest [1]. Specifically for the k-Path problem, an algebraic
randomized 2knO(1)-time algorithm has been found already a decade ago [41], and since then,
the existence of a deterministic algorithm that exhibits the same time complexity has been
repeatedly posed as a major open problem in the field. Both Koutis and Williams conjectured
this question to have an affirmative answer in several venues [41, 30, 29]. Clearly, this question
is simpler than the one of the design of a deterministic FPT-AS for #k-Path with running time
2knO(1).

In this article, we modify the foundation of the work of Alon and Gutner [4, 3], and with a
novel twist, obtain the following results (see Theorem 6.1 and Corollary 4.1).

• First, we present a randomized 4k+O(log k(log k+log ε−1))m log n-time polynomial-space algo-
rithm. For this purpose, we only make elementary use of the probabilistic method.

• Additionally, we present a deterministic 4k+O(
√
k(log2 k+log2 ε−1))m log n-time polynomial-

space algorithm. In particular, without compromising time complexity, we attain both the
properties of having a polynomial space complexity and being deterministic simultaneously.
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In fact, even though we deal with #k-Path, the running time of our algorithm matches
the best known running time of a deterministic polynomial-space algorithm for k-Path
(the decision version of #k-Path) [16].

Thus, the algorithm by Brand et al. [14] runs in time 4k+o(k)m whenever ε−1 = 2o(k), while our

deterministic and randomized algorithms run in time 4k+o(k)m log n whenever ε−1 = 2o(k
1
4 ) and

ε−1 = 2
o( k

log k
)
, respectively.

The design of polynomial-space parameterized algorithms is an active research area in Pa-
rameterized Complexity. Even (sometimes) at a notable compromise of time complexity, the
property of having polynomial space complexity is sought (see, e.g., [22, 32, 31, 8, 25]). Indeed,
algorithms with high space complexity are in practice more constrained because the amount
of memory is not easily scaled beyond hardware constraints whereas time complexity can be
alleviated by allowing for more time for the algorithm to finish. Furthermore, algorithms with
low space complexity are typically easier to parallelize and more cache-friendly.

Additionally, we remark that our approach is embeddable in the classic framework of
divide-and-color, hence it immediately extends to approximate counting of graphs of bounded
treewidth; in comparison, Brand et al. [14] note that their approach is limited to graphs of
bounded pathwidth. Similarly, we can approximately count various other objects such as q-
dimensional p-matchings, q-set p-packings, graph motifs, and more:

Theorem 1.1. The following problems admit deterministic 4k+O(
√
k(log2 k+log2 1

ε
))nO(1)-time (resp.

randomized 4k+O(log2 k)(1
ε )
O(log k)nO(1)-time) FPT-ASs with polynomial space complexity: (i)

#Subgraph Isomorphism for k-vertex subgraphs of treewidth O(1); (ii) #q-Dimensional p-
Matching with k = (q− 1)p; (iii) #q-Set p-Packing with k = qp; (iv) #Graph Motif and
#Module Motif with k = 2p where p is the motif size; (v) #p-Internal Out-Branching
with k = 2p; (vi) #Partial Cover for k-element solutions.1

Towards the design of our algorithms, our first conceptual contribution is the introduction
of the notion of an approximate parsimonious splitter. While a randomized construction of
such an object is simple, we do not know how (or whether it is even possible) to compute it
deterministically within the size and time bounds that we require. We believe that this gap in
knowledge of derandomization is the main reason why, for close to a decade, no progress has
been made upon the result by Alon and Gutner [4, 3]. Here, our second conceptual contribution
comes into play. We show that for recursive procedures, a weaker object that can only split
so-called nice sets suffices, since the recursion itself can keep track on the “niceness” of sets. We
believe that both the concept of approximate parsimonious splitters as well as our approach of
how to weaken a randomized object (to efficiently compute it deterministically) at the cost of
simple bookkeeping might find further applications in the future.

Related Work. The algorithms by Alon et al. [2] and Alon and Gutner [4, 3], just like our
algorithms, extend to approximate counting of graphs of bounded treewidth. (This remark is
also made by Alon and Gutner [4, 3].) In what follows, we briefly review works related to exact
counting and decision from the viewpoint of Parameterized Complexity. Since these topics are
not the focus of our work, the survey is illustrative rather than comprehensive.

The problem of counting the number of subgraphs of a graph G that are isomorphic to a
graph H—that is, #Subgraph Isomorphism with Pattern H—admits a dichotomy: If the
vertex cover number of H is bounded, then it is FPT [42], and otherwise it is #W[1]-hard [18].
The #W[1]-hardness of #k-Path, originally shown by Flum and Grohe [21], follows from this

1For problems (i) and (iv), the basis 4 is replaced by the basis 4.001 (or, more precisely, 4 + δ for any fixed
constant δ > 0).
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Table 1: State-of-the-art of #k-Path and k-Path.

Ref. Time Counting Deterministic Poly. Space Extension

[16] 4k+o(k)nO(1) No Yes Yes Treewidth O(1)

[40] 2.554knO(1) No Yes No Treewidth O(1)

[41] 2knO(1) No No Yes Treewidth O(1)

[11] 1.657knO(1) No No Yes No Extension

[3] (2e)k+o(k)nO(1) Yes Yes No Treewidth O(1)

[14] 4knO(1) Yes No No Pathwidth O(1)

This Paper 4k+o(k)nO(1) Yes Yes Yes Treewidth O(1)

dichotomy. By using the “meet in the middle” approach, the #k-Path problem and, more
generally, #Subgraph Isomorphism with Pattern H where H has bounded pathwidth and

k vertices, was shown to admit an n
k
2

+O(1)-time algorithm [10]. Later, Björklund et al. [13]
showed that k

2 is not a barrier (which was considered to be the case at that time) by designing

an n0.455k+O(1)-time algorithm. Recently, a breakthrough that resulted in substantially faster
running times took place: Curticapean et al. [17] showed that #Subgraph Isomorphism with
Pattern H is solvable in time `O(`)n0.174` where ` is the number of edges in H; in particular,
this algorithm solves #k-Path in time kO(k)n0.174k.

The k-Path problem (on both directed and undirected graphs) is among the most exten-
sively studied parameterized problems [19, 24]. After a long sequence of works in the past
three decades, the current best known parameterized algorithms for k-Path have running times
1.657knO(1) (randomized, polynomial space, undirected only) [11, 9] (extended in [12]), 2knO(1)

(randomized, polynomial space) [41], 2.597knO(1) (deterministic, exponential space) [43, 23, 37],
and 4k+o(k)nO(1) (deterministic, polynomial space) [16]. The 1.657knO(1)-time algorithm of
Björklund et al. [11, 9] crucially relies on the symmetric structure of undirected k-paths. How-
ever, all other algorithms above directly extend to the detection of subgraphs of bounded
treewidth. In particular, if the running time of the algorithm is cknO(1), then the running
time of the extension is cknt+O(1) where t is the treewidth of the sought graph. To ensure that
the constant c remains essentially the same2 when dealing with the two deterministic algorithms
(of [43, 23, 37] and [16]), the “division into small trees” trick by Fomin et al. [23] can be used;
for the randomized algorithm (of [41]), no trick is required. For the sake of clarity, we explain
how this is done in our case in Appendix A.

2 Preliminaries

For the sake of readability, we ignore ceiling and floor signs. Given a graph G, we let V (G) and
E(G) denote the vertex set and edge set of G, respectively. For a positive integer k, a k-path
in G is a (simple) path on k vertices in G; in case G is directed, the path is directed as well.
We let n = |V (G)| and m = |E(G)|. For a subset U ⊆ V (G), G[U ] denotes the subgraph of
G induced by U , G − U = G[V (G) \ U ], and NG(U) denoted the open neighborhood of U in
G. We extend these notations to also consider sets U that contain entities that do not belong
to V (G)—for such sets U , G[U ] denotes the subgraph of G induced by U ∩ V (G), and still

G − U = G[V (G) \ U ]. Given u, v ∈ V (G) and k ∈ N, let PG,ku,v denote the set of k-paths in G
with endpoints u and v.

2More precisely, the constant c becomes a new constant c′ that can be made arbitrarily close to c (at the cost
of a higher degree of the polynomial factor).
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Treewidth is a measure of how “treelike” is a graph, which is formally defined as follows.
Here, if the given graph is directed, we refer to its underlying undirected graph.

Definition 2.1 (Treewidth). A tree decomposition of a graph G is a pair (T, β) of a tree T
and a function β : V (T )→ 2V (G), such that

1. for any edge {x, y} ∈ E(G) there exists a node v ∈ V (T ) such that x, y ∈ β(v), and

2. for any vertex x ∈ V (G), the subgraph of T induced by the set Tx = {v ∈ V (T ) : x ∈ β(v)}
is a non-empty tree.

The width of (T, β) is maxv∈V (T ){|β(v)|} − 1. The treewidth of G is the minimum width over
all tree decompositions of G.

Given a tree decomposition (T, β) of a graph G, for every v ∈ V (T ), the set β(v) is called
the bag of v. A path decomposition of a graph G is a tree decomposition (T, β) of G where
T is restricted to be a path. Accordingly, the pathwidth of G is the minimum width over all
path decompositions of G. We define the treewidth of a directed graph as the treewidth of its
underlying undirected graph.

For a function f : A → B and subsets A′ ⊆ A and B′ ⊆ B, define f(A′) = {f(a) : a ∈ A′}
and f−1(B′) = {a ∈ A : f(a) ∈ B′}. For two functions f : A → B and g : B → C, the
notation g ◦ f : A→ C refers to function composition. For two tuples X = (x1, x2, . . . , xp) and
Y = (y1, y2, . . . , yq), denote their concatenation by X + Y = (x1, x2, . . . , xp, y1, y2, . . . , yq). By
standard Chernoff bounds, we have the following bounds.

Proposition 2.1 ([34]). Let X1, . . . , Xn be independent random variables, each assigned a value
in {0, 1}. Let X =

∑n
i=1Xi, and let µ = E[X] denote the expected value of X. Then, for any

0 ≤ δ ≤ 1, it holds that (i) Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ
2 , and (ii) Pr(X ≥ (1 + δ)µ) ≤ e−

δ2µ
3 .

Universal Families. For any k ∈ N, a k-set is a set of size k. Given a universe U , denote(
U
k

)
= {S ⊆ U : |S| = k}. Given a family F over U and two subsets A,B ⊆ U , denote

F [A,B] = {F ∈ F : A ⊆ F,B ∩ F = ∅}. Next, we present the definition of a universal family.

Definition 2.2 (Universal Family [35, 23]). Let n, p, q ∈ N. A family F of sets over a universe
U of size n is an (n, p, q)-universal family if for each pair of disjoint sets A ∈

(
U
p

)
and B ∈

(
U
q

)
,

there is a set F ∈ F that contains A and is disjoint from B, that is, F [A,B] 6= ∅.

In the classic setting by Naor et al. [35], p = q. However, as shown by Fomin et al. [23],
cases where p 6= q are also of interest. Specifically, the following well-known proposition asserts
that small representative families can be computed efficiently.

Proposition 2.2 ([35, 23]). Let n, p, q ∈ N, and k = p + q. Let U be a universe of size n.
Then, an (n, p, q)-universal family F of sets over U of size O(

(
k
p

)
log n) can be computed with

success probability 1− 1/n in time O(
(
k
p

)
n log n). Additionally, an (n, p, q)-universal family F

of sets over U of size
(
k
p

)
2o(k) log n can be computed (deterministically) in time

(
k
p

)
2o(k)n log n.

Both computations can enumerate the sets in F with polynomial delay.

Observe that the constructions above are essentially optimal since any (n, p, q)-universal
family must be of size at least

(
k
p

)
. We later define a notion of “approximate parsimonious

universal families” that extends Definition 2.2 to be approximately parsimonious (so that, for
all A and B, |F [A,B]| will be roughly the same), and present a computation for approximate
parsimonious universal families.
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3 Approx. Parsimonious Universal Family: Randomized Con-
struction

For any pair of disjoint sets A ∈
(
U
p

)
and B ∈

(
U
q

)
, Definition 2.2 guarantees that F [A,B] 6= ∅.

However, the number of sets in F [A,B] can be arbitrary. In our applications, the number of
sets in F [A,B] will be tightly linked to the number of solutions whose “first half” is in A and
whose “second half” is in B; thus, to avoid over-counting some solutions, we need all families
F [·, ·] to be roughly of the same size. For this purpose, let us first extend Definition 2.2 to be
approximately parsimonious.

Definition 3.1 (δ-Parsimonious Universal Family). Let n, p, q ∈ N and 0 < δ < 1. Denote
k = p + q. A family F of sets over a universe U of size (at most) n is a δ-parsimonious
(n, p, q)-universal family if there exists T = T (n, p, q, δ) > 0 such that for each pair of disjoint
sets A ∈

(
U
p

)
and B ∈

(
U
q

)
, it holds that (1− δ) · T ≤ |F [A,B]| ≤ (1 + δ) · T .

We call the value T above a correction factor, and suppose it to be given along with the
family F . Our randomized computation of a δ-parsimonious (n, p, q)-universal family is based
on the probabilistic method, inspired by [35, 23]. Specifically, we prove the following.

Theorem 3.1. Let n, p, q ∈ N and 0 < δ < 1, and denote k = p+q. Let U be a universe of size n.

A δ-parsimonious (n, p, q)-universal family F of sets over U of size t = O
(
kk

ppqq
· k log n · 1

δ2

)
,3

can be computed with success probability at least 1− 1/n100k in time O(t · n). In particular, the
sets in F can be enumerated with delay O(n).

We note that the choice of 100 is arbitrary; it can be replaced by the choice of any fixed
constant c. Crucially, we gain the extra property of being δ-parsimonious while essentially
having the same time complexity and upper bound on the size of the output as in the non-
parsimonious construction. We note that our computation is the first proof that approximate
parsimonious of small size universal families exist.

Towards the proof of Theorem 3.1, we state a simple observation by [23]. For the sake of
completeness, we also present the proof.

Observation 3.1. Let n, p, q ∈ N, and denote k = p + q. Let U be a universe of size n. In
addition, let A ∈

(
U
p

)
and B ∈

(
U
q

)
be two disjoint subsets of U of sizes p and q, respectively.

Then, for a set F ⊆ U constructed by inserting (independently at random) each element u ∈ U
into F with probability p/k, the probability that A ⊆ F and F ∩B = ∅ is

ppqq

kk
.

Proof. For every element u ∈ A, the probability that u is inserted into F is p/k. Moreover, for
every element u ∈ B, the probability that u is not inserted into F is 1 − (p/k) = q/k. Since
|A| = p and |B| = q, the probability that A ⊆ F and F ∩ B = ∅ is (p/k)p(q/k)q. Because

(p/k)p(q/k)q =
ppqq

kk
, the observation follows.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Denote T = 3(100k + k + 1) lnn · 1

δ2
. For t =

kk

ppqq
· T , we construct a

family F = {F1, F2, . . . , Ft} as follows. For i = 1, 2, . . . , t, we construct the set Fi by inserting
each element u ∈ U into F with probability p/k. Distinct elements are inserted (or not) into
Fi independently, and the construction of the different sets in F is also independent. This

3Note that as p+ q = k, the value kk

ppqq
is upper bounded by 2k rather than being of the magnitude of kk.
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completes the construction. Clearly, the sets in F can be enumerated with delay O(n), and the
total time spent is O(t · n).

In what follows, we show that with success probability at least 1 − 1/n100k, F is a δ-
parsimonious (n, p, q)-universal family. To this end, choose (arbitrarily) two disjoint sets A ∈

(
U
p

)
and B ∈

(
U
q

)
. By Observation 3.1, for any i ∈ {1, 2, . . . , t}, the probability that A ⊆ Fi and

Fi ∩B = ∅ is ppqq/kk. Since the construction of the different sets in F is also independent, the
linearity of expectation implies that the expected number of sets in F that contain A and are

disjoint from B is t · p
pqq

kk
= T , that is, E[|F [A,B]|] = T . By Proposition 2.1, we have that

Pr(|F [A,B]| ≤ (1− δ)T ) ≤ e−
δ2T
2 ≤ n−(100k+k+1)

Pr(|F [A,B]| ≥ (1 + δ)T ) ≤ e−
δ2T
3 = n−(100k+k+1).

Thus, the probability that either |F [A,B]| ≤ (1−δ)T or |F [A,B]| ≥ (1+δ)T is upper bounded
by 2n−(100k+k+1) ≤ n−(100k+k). For the last inequality, we implicitly assumed that 2/n ≤ 1,
since otherwise the proof is trivial.

Recall that the choice of A and B above was arbitrary. This means that by union bound,
the probability that there exist disjoint sets A ∈

(
U
p

)
and B ∈

(
U
q

)
such that either |F [A,B]| ≤

(1− δ)T or |F [A,B]| ≥ (1 + δ)T is upper bounded by(
n

p

)
·
(
n

q

)
· n−(100k+k) < nk · n−(100k+k) = 1/n100k.

Thus, the success probability is at least 1− 1/n100k as required. This completes the proof.

4 Randomized Algorithms for #k-Path

For the sake of simplicity, we suppose that k is a power of 2. Otherwise, it is required to use
ceiling and floor notations in appropriate places, which obfuscate the proofs.

4.1 Warm Up Application: Simple Randomized FPT-AS for #k-Path

Before we delve into more technical and less intuitive definitions related to our deterministic
construction, we find it important to understand the relation between Definition 3.1 and #k-
Path. For this purpose, we present a simple randomized polynomial-space FPT-AS for #k-
Path. The dependency of the time complexity on n is made almost linear in Section 4.2).
While the improved algorithm is still short and simple, it is somewhat less intuitive and hence
presented separately later. For the sake of illustration, suppose that G is undirected.

Algorithm. Let ξ = ln(1 + ε)/(k − 1). Our algorithm, denoted by A, is recursive. Each
call to A is of the form A(G′, k′) where G′ is an induced subgraph of G and k′ ∈ {1, . . . , k}. For
all u, v ∈ V (G′), the call A(G′, k′) should output an integer au,v that approximates the number
of k′-paths with endpoints u and v in G′. The initial call to the algorithm is with G′ = G and
k′ = k, and the final output is (

∑
u,v∈V (G) au,v)/2.

We turn to describe a call A(G′, k′). In the basis, where k′ = 1, we return av,v = 1 for all
v ∈ V (G′), and au,v = 0 for all u, v ∈ V (G′) (with u 6= v).

Now, suppose that k′ ≥ 2. By Theorem 3.1, for a ξ-parsimonious (n, k′/2, k′/2)-universal
family F of sets over V (G), we can enumerate the sets F ∈ F with delay O(n). For each
set F ∈ F , we proceed as follows. We first perform two recursive calls: (i) we call A with
(G′[F ], k′/2); (ii) we call A with (G′ − F, k′/2). For any u, v ∈ F ∩ V (G′), let bFu,v denote
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the number returned by the first call. Similarly, for any u, v ∈ V (G′) \ F , let cFu,v denote
the number returned by the second call. Then, for all u ∈ F and v ∈ V (G′) \ F , define

aFu,v =
∑

{p,q}∈E(G′)
s.t. p∈F,q/∈F

bFu,p · cFq,v.

Let T be the correction factor of F . After all sets F ∈ F were enumerated, for all u, v ∈
V (G′), we output au,v calculated as follows: au,v =

1

T
·

∑
F∈F

s.t. u∈F,v/∈F

aFu,v. Note that we do not store

all the values aFu,v simultaneously, but we merely store one such value at a time and delete it

immediately after aFu,v/T is added. This completes the description of A. The pseudocode of the
algorithm is given in Algorithm 1.

Algorithm 1 Simple randomized FPT-AS for #k-Path.

1: let ξ = ln(1 + ε)/(k − 1);
2: call SimpleRand(G, k): let au,v be the output for u, v ∈ V (G);
3: return

∑
u,v∈V (G) au,v/2;

4: function SimpleRand(G′, k′)
5: if k′ = 1 then
6: return av,v = 1 for v ∈ V (G′), and av,u = 0 for u, v ∈ V (G′) where u 6= v;
7: end if
8: initialize au,v = 0 for u, v ∈ V (G′);
9: let I be an iterator of an ξ-parsimonious (n, k′/2, k′/2)-universal family F over V (G)

with correction factor T , given by Theorem 3.1;
10: for all F ∈ F (iterate with I) do
11: call SimpleRand(G′[F ], k′/2): let bFu,v be the output for u, v ∈ F ∩ V (G′);

12: call SimpleRand(G′ − F, k′/2): let cFu,v be the output for u, v ∈ V (G′) \ F ;

13: let aFu,v =
∑

{p,q}∈E(G′):
p∈F,q/∈F

bFu,p · cFq,v for u ∈ F and v ∈ V (G′) \ F ;

14: update au,v = au,v + aFu,v/T for u ∈ F and v ∈ V (G′) \ F ;
15: end for
16: return au,v for u, v ∈ V (G′);
17: end function

Analysis. The main part of the analysis is done in the proof of the following lemma.

Lemma 4.1. For some fixed constant η > 0, any call A(G′, k′) has polynomial space complex-

ity and running time ηlog k′4k
′
k′log k′(log n)log k′mn2( 1

ξ2
)log k′. Additionally, if all constructions

of approximate universal families were successful, then for all u, v ∈ V (G′), the number au,v

returned by A(G′, k′) satisfies (1− ξ)k′−1xG
′,k′

u,v ≤ au,v ≤ (1 + ξ)k
′−1xG

′,k′
u,v where xG

′,k′
u,v = |PG

′,k′
u,v |.

Proof. Let λ be a fixed constant that bounds from above those hidden by the O-notations in
Theorem 3.1. Let η be a fixed constant such that SimpleRand(G′′, k′′) for any G′′ and k′′ it
may be called with, with the exception of the recursive calls that it makes, can be executed in
time τ · |F | ·mn2.4 We remark that the dependency on n and m is such due to Statement (i.e.,
Line) 13 in the pseudocode. We choose η = 10 max{λ, τ}.5

4This bound does not depend on G′′ and k′′, which is why we use n (being |V (G)|) and m (being |E(G)|)
rather than |V (G′)| and |E(G′)|.

5We choose 10 just because it is a large enough constant so that the last inequality that concerns time
complexity holds.
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Let k′ = k/2d. The proof is by backwards induction of d. In the basis (k′ = 1), the claim is
trivial. Now, let d ≤ log2 k − 1, and suppose that the claim holds for d + 1. Clearly, A(G′, k′)
has a polynomial space complexity. By Theorem 3.1 and the choice of λ, we have that

|F | ≤ λ · k′k
′

(k′/2)k
′/2(k′/2)k

′/2
· k′ log n · 1

ξ2
= λ · 2k′ · k′ log n · 1

ξ2
.

Moreover, by the inductive hypothesis, for a fixed constant τ > 0, the running time of A(G′, k′)

is upper bounded by |F | ·
(

2 · ηlog k′
2 4

k′
2 (
k′

2
)log k′

2 (log n)log k′
2 mn2(

1

ξ2
)log k′

2 + τmn2

)
. Note that

τ is independent of η. Because η = 10 max{λ, τ}, this means that the running time of A(G′, k′)
is upper bounded by

|F | ·
(

2 · ηlog k′
2 4

k′
2 (
k′

2
)log k′

2 (log n)log k′
2 mn2(

1

ξ2
)log k′

2 + τmn2

)
≤ η

10
2k
′
k′ log n

1

ξ2
·
(

2 · ηlog k′−12k
′
k′

log k′−1
(log n)log k′−1mn2(

1

ξ2
)log k′−1 +

η

10
mn2

)
≤ ηlog k′4k

′
k′

log k′
(log n)log k′mn2(

1

ξ2
)log k′ .

This completes the proof of the first item of the claim.
Towards the proof of the second item of the claim, suppose that all constructions of ap-

proximate universal families were successful, and consider some u, v ∈ V (G′). By the inductive
hypothesis, we have that

au,v =
1

T
·

∑
F∈F

s.t. u∈F,v/∈F

aFu,v =
1

T
·

∑
F∈F

s.t. u∈F,v/∈F

 ∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

bFu,p · cFq,v


≤ 1

T
·

∑
F∈F

s.t. u∈F,v/∈F

 ∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

(1 + ξ)
k′
2
−1x

G′[F ], k
′
2

u,p · (1 + ξ)
k′
2
−1x

G′−F, k
′
2

q,v


=

1

T
· (1 + ξ)k

′−2 ·
∑
F∈F

s.t. u∈F,v/∈F

 ∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

x
G′[F ], k

′
2

u,p · xG
′−F, k

′
2

q,v


For any subset F ⊆ V (G′), let PG

′,k′
u,v [F ] denote the set of paths P ∈ PG

′,k′
u,v such that F ∈

F [A,B] where A (resp. B) is the set of k′/2 vertices on P closest to u (resp. v) including

u (resp. v). Thus, the last expression above is equal to (1 + ξ)k
′−2 ·

∑
F∈F |P

G′,k′
u,v [F ]|

T
, which

implies that

au,v ≤ (1 + ξ)k
′−2 ·

∑
F∈F |P

G′,k′
u,v [F ]|

T
.

Since F is an ξ-parsimonious (n, k′/2, k′/2)-universal family, for any path P ∈ PG
′,k′

u,v it holds

that the number of sets F ∈ F such that P ∈ PG
′,k′

u,v [F ] is upper bounded by (1 + ξ)T . Thus,

au,v ≤ (1 + ξ)k
′−2 · (1 + ξ)T |PG

′,k′
u,v |

T
= (1 + ξ)k

′−1xG
′,k′

u,v .

Symmetrically, we derive that (1− ξ)k′−1xG
′,k′

u,v ≤ au,v. This completes the proof.

We now conclude the following theorem.

8



Theorem 4.1. There is a randomized (4k+o(k)mn2 +mn2+o(1))(1
ε )
O(log k)-time polynomial-space

algorithm that, given a graph G, a positive integer k and an accuracy value 0 < ε < 1, outputs
a number y that (with high probability, say, at least 9/10) satisfies (1 − ε)x ≤ y ≤ (1 + ε)x
where x is the number of k-paths in G. In particular, if 1

ε = 2o(k/ log k), then the running time

is 4k+o(k)mn2 +mn2+o(1).

Proof. By Lemma 4.1 with G′ = G and k′ = k, we know that the total running time of A(G, k)

is bounded by 4k+O(log2 k)(log n)log kmn2(1
ξ )log k and uses polynomial space. Additionally, if all

constructions of approximate universal families were successful, then for all u, v ∈ V (G), the

number au,v computed by A(G, k) satisfies (1− ξ)k−1xG,ku,v ≤ au,v ≤ (1 + ξ)k−1xG,ku,v .

If log n ≤ 2
√
k, then (log n)log k ≤ 2o(k). Otherwise, when log n > 2

√
k, it holds that

k < log2 log n. It follows that 4k+O(log2 k)(log n)log k ≤ 4log2 logn+O(log log logn)(log n)2 log log logn ≤

n
O( log2 logn

logn
) ≤ no(1). In addition, by Taylor series ln(1 + x) =

∑∞
n=1(−1)n+1 xn

n , it follows

that ε/2 ≤ ε − ε2/2 ≤ ln(1 + ε) ≤ ε, which means that (1
ξ )log k = 2O(log2 k)(1

ε )
O(log k). Thus,

4k+O(log2 k)(log n)log kmn2(1
ξ )log k = (4k+o(k)mn2 +mn2+o(1))(1

ε )
O(log k).

We now claim that with high probability, all constructions of approximate universal families
were successful. By Theorem 3.1, the probability that a single construction is successful is
at least 1 − 1/n100k. Thus, the probability that all constructions are successful is at least
(1− 1/n100k)µ where µ is the number of constructions. Clearly, the number of constructions is
upper bounded by the running time of A. In turn, we can assume w.l.o.g. that the upper bound
proven on this running time is, in itself, upper bounded by nk, since otherwise the problem
can be solved exactly by brute force within it. Thus, µ ≤ nk. From this, we know that the
probability that all constructions are successful is at least (1 − 1/n100k)n

k
. As n grows larger,

this value approaches 1. In particular, the success probability can be assumed to be at least
9/10 (otherwise n is a fixed constant), which proves our claim.

Thus, we know that for all u, v ∈ V (G), it holds that (1−ξ)k−1xG,ku,v ≤ au,v ≤ (1+ξ)k−1xG,ku,v .

Substituting ξ by ln(1+ε)
k−1 , we have that for all u, v ∈ V (G), it holds that (1 − ln(1 + ε))xG,ku,v ≤

(1− ln(1+ε)
k−1 )k−1xG,ku,v ≤ au,v ≤ (1+ ln(1+ε)

k−1 )k−1xG,ku,v ≤ eln(1+ε)xG,ku,v . Since (1−ε) ≤ (1−ln(1+ε)) and

eln(1+ε) = (1+ ε), we have that for all u, v ∈ V (G), it holds that (1− ε)xG,ku,v ≤ au,v ≤ (1+ ε)xG,ku,v .
Thus,

y =

 ∑
u,v∈V (G)

au,v

/2 ≤
 ∑
u,v∈V (G)

(1 + ε)xG,ku,v

 /2 = (1 + ε)

 ∑
u,v∈V (G)

xG,ku,v

 /2 = (1 + ε)x.

Symmetrically, we obtain that (1− ε)x ≤ y. This completes the proof.

4.2 Improved Randomized FPT-AS for #k-Path

As our improved randomized FPT-AS is less intuitive, we first discuss the intuition behind it.
Here, in addition to G′ and k′, every call to the recursive algorithm A is given an assignment
β : V (G) \ V (G′)→ N0 of a non-negative integer to each vertex outside G′. Roughly speaking,
for each vertex v ∈ V (G) \ V (G′), the value β(v) is an approximation of the number of k̂-paths
that end at v and are completely contained in G−U for a certain integer k̂ ∈ {1, 2, . . . , k − k′}
and a subset U ⊆ V (G) that contains V (G′).6 In particular, given that now the goal of each
call is to output such an assignment for G − (U \ V (G′)) (a precise definition of the goal of a
call is given in the formal description of the algorithm), we do not need to consider every pair of

6To be more precise, when we reach a recursive call, some part of the graph G and of k has already been
processed, some part is to be processed in the current call, and some part is to be processed in future calls to be
made by ancestor calls of the current one; then, U and k̂ are the vertex set and part of k already processed.
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vertices u, v ∈ V (G′) and compute a value au,v; instead, we only compute one value per vertex.
Additionally, recall that in the previous algorithm in order to compute au,v, we considered every
edge {p, q} ∈ E(G′) while computing aFu,v and hence divided our task into the computation of
k′/2-paths between u and p in one recursive call and k′/2-paths between q and u in the other.
Here, we do not store the two endpoints of paths, but their “middle”. More precisely, the flow
of information differs: to compute the assignment we need to output in the current call, we
perform one recursive call to which the assignment β is given as input; this call will return an
assignment that “handles” the first k̂ + k′/2 vertices on the paths being counted, and be sent
as input to the second recursive call to handle the next k′/2 vertices.

Algorithm. Let ξ = ln(1 + ε)/(k − 1). We add a new vertex s to G and connect it to all
vertices in G. Thus, rather than counting the number of k-paths in the former graph G, we can
count the number of (k + 1)-paths with s as an endpoint in the new graph G. In what follows,
we focus on this goal.

Our algorithm, denoted by A, is recursive. Each call to A is of the form A(G′, k′, β) where G′

is an induced subgraph of G, k′ ∈ {1, . . . , k}, and β : V (G) \ V (G′)→ N0. The call A(G′, k′, β)
should output an assignment α : V (G′) → N0 with the following property: For each vertex
v ∈ V (G′), it holds that α(v) approximates the following number:∑

{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

β(p) · xG′,k′q,v ,

where xG
′,k′

q,v = |PG
′,k′

q,v |.
The initial call to the algorithm is with G′ = G − {s}, k′ = k, and β(s) = 1. The final

output is
∑

v∈V (G)\{s} α(v).

We turn to describe a call A(G′, k′, β). In the basis, where k′ = 1, we return an assignment
α : V (G′)→ N0 defined as follows: For each vertex v ∈ V (G′), define

α(v) =
∑

u/∈V (G′)
s.t. {u,v}∈E(G)

β(u).

Intuitively, the meaning of this sum is to extend each path “considered by β” by one vertex,
so the number of paths that end at v is the sum, over every neighbor u of v, of number of
paths “considered by β” that end at u (and so it only makes sense to consider the case where
u /∈ V (G′)).

Now, suppose that k′ ≥ 2. By Theorem 3.1, for a ξ-parsimonious (n, k′/2, k′/2)-universal
family F of sets over V (G), we can enumerate the sets F ∈ F with delay O(n). For each set
F ∈ F , we proceed as follows. We first recursively call A with (G′[F ], k′/2, βF ) where βF is the
extension of β that assigns 0 to every vertex in V (G′) \ F . Let γF be the output of this call,
and extend it to assign 0 to every vertex in V (G) \ V (G′). Then, we recursively call A with
(G′ − F, k′/2, γF ). Let αF be the output of this recursive call.

Let T be the correction factor of F . After all sets F ∈ F were enumerated, the output
α : V (G′)→ N0 is computed as follows. For all v ∈ V (G′), we calculate

α(v) =

 ∑
F∈F

s.t. v/∈F

αF (v)

 /T .

Note that we do not store all the assignments αF simultaneously, but we merely store one such
assignment at a time and delete it immediately after αF (v)/T , for every v ∈ V (G′), is added.
This completes the description of A. The pseudocode is given in Algorithm 2.
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Algorithm 2 Improved randomized FPT-AS for #k-Path.

1: let ξ = ln(1 + ε)/(k − 1);
2: add a new vertex s to G, and connect s to all vertices in G;
3: let β : {s} → N0 assign 1 to s;
4: call ImprovedRand(G− {s}, k + 1, β): let α be the output;
5: return

∑
v∈V (G)\{s} α(v);

6: function ImprovedRand(G′, k′, β)
7: if k′ = 1 then
8: return α : V (G′)→ N0 where for v ∈ V (G′), α(v) =

∑
u/∈V (G′):
{u,v}∈E(G)

β(u);

9: end if
10: initialize α : V (G′)→ N0 to assign 0 to each v ∈ V (G′);
11: let I be an iterator of an ξ-parsimonious (n, k′/2, k′/2)-universal family F over V (G)

with correction factor T , given by Theorem 3.1;
12: for all F ∈ F (iterate with I) do
13: let βF be the extension of β that assigns 0 to each v ∈ V (G′) \ F ;
14: call ImprovedRand(G′[F ], k′/2, βF ): let γF be the output;
15: extend γF to assign 0 to each v ∈ V (G) \ V (G′);
16: call ImprovedRand(G′ − F, k′/2, γF ): let αF be the output;
17: update α(v) = α(v) + αF (v)/T for v ∈ V (G′) \ F ;
18: end for
19: return α;
20: end function

Correctness. The proof of correctness of our algorithm roughly follows the same lines as
the proof of correctness of Theorem 4.1. The main part of the analysis is done in the proof of
the following lemma.

Lemma 4.2. For some fixed constant η > 0, any call A(G′, k′, β) satisfies the conditions below.

• A(G′, k′, β) takes time ηlog k′4k
′
k′log k′(log n)log k′m( 1

ξ2
)log k′ and polynomial space.

• If all constructions of approximate universal families were successful, then for all v ∈
V (G′), the number α(v) assigned to v by the assignment α returned by A(G′, k′, β) satisfies
the following inequalities:

(1−ξ)k′−1·

 ∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

β(p) · xG′,k′q,v

 ≤ α(v) ≤ (1+ξ)k
′−1·

 ∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

β(p) · xG′,k′q,v

,
where xG

′,k′
q,v = |PG

′,k′
q,v |.

Proof. Let λ be a fixed constant that bounds from above those hidden by the O-notations in
Theorem 3.1. Let η be a fixed constant such that ImprovedRand(G′′, k′′) for any G′′ and k′′

it may be called with, with the exception of the recursive calls that it makes and the basis (that
takes time O(m)), can be executed in time τ · |F | · n.

Let k′ = k/2d. The proof is by backwards induction of d. In the basis, where k′ = 1, the
claim trivially holds.

Now, let d ≤ log2 k− 1, and suppose that the claim holds for d+ 1. Clearly, A(G′, k′, β) has
a polynomial space complexity. By Theorem 3.1,we have that

|F | ≤ λ · 2k′ · k′ log n · 1

ξ2
.
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By the inductive hypothesis, the running time of A(G′, k′, β) is upper bounded by

|F | ·

2 · ηlog k′
2 4

k′
2

(
k′

2

)log k′
2

(log n)log k′
2 m

(
1

ξ2

)log k′
2

+ τn

.
As in the proof of Theorem 4.2, because η = 10 max{λ, τ}, we obtain that the running time of
A(G′, k′, β) is upper bounded by

ηlog k′4k
′
k′

log k′
(log n)log k′m

(
1

ξ2

)log k′

.

Towards the proof of the second item of the claim, suppose that all constructions of ap-
proximate universal families were successful, and consider some v ∈ V (G′). By the inductive
hypothesis, we have that

α(v) =
1

T
·
∑
F∈F

s.t. v/∈F

αF (v)

≤ 1

T
·
∑
F∈F

s.t. v/∈F

(1 + ξ)
k′
2
−1 ·

∑
{a,b}∈E(G)

s.t. a/∈V (G′−F ),b∈V (G′−F )

γF (a) · xG
′−F, k

′
2

b,v


≤ (1 + ξ)

k′
2
−1 · 1

T
·
∑
F∈F

s.t. v/∈F

 ∑
{a,b}∈E(G)

s.t. a/∈V (G′−F ),b∈V (G′−F )

(1 + ξ)
k′
2
−1

∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈F

β(p) · xG
′[F ], k

′
2

q,a

 · xG′−F, k′2b,v


≤ (1 + ξ)k

′−2 · 1

T
·
∑
F∈F

s.t. v/∈F

 ∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈F

∑
{a,b}∈E(G)

s.t. a/∈V (G′−F ),b∈V (G′−F )

β(p) · xG
′[F ], k

′
2

q,a · xG
′−F, k

′
2

b,v

.
In addition, for any subset F ⊆ V (G′), let PG

′,k′
q,v [F ] denote the set of paths P ∈ PG

′,k′
q,v such that

F ∈ F [A,B] where A (resp. B) is the set of k′/2 vertices on P closest to q (resp. v) including q
(resp. v). Thus, with the last expression above being equal to the one below (that bounds α(v)
from above), we have that

α(v) ≤ (1 + ξ)k
′−2 · 1

T
·
∑
F∈F

s.t. v/∈F

 ∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈F

β(p) · |PG′,k′q,v [F ]|


= (1 + ξ)k

′−2 · 1

T
·

∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

β(p) ·
∑
F∈F

s.t. v/∈F,q∈F

|PG′,k′q,v [F ]|

.
Since F is a ξ-parsimonious (n, k′/2, k′/2)-universal family, for any vertex q ∈ V (G′) and path

P ∈ PG
′,k′

q,v , the number of sets F ∈ F such that P ∈ PG
′,k′

q,v [F ] is upper bounded by (1 + ξ)T .
Thus, we have that

α(v) ≤ (1 + ξ)k
′−2 · 1

T
·

∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

β(p) · (1 + ξ)T |PG′,k′q,v |

= (1 + ξ)k
′−1 ·

 ∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

β(p) · xG′,k′q,v

.
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Symmetrically, we derive that (1− ξ)k′−1 ·

 ∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

β(p) · xG′,k′q,v

 ≤ α(v). This com-

pletes the proof.

We now conclude the proof of Theorem 4.2.

Theorem 4.2. There is a randomized (4k+o(k)m+mno(1))(1
ε )
O(log k)-time polynomial-space al-

gorithm that, given a graph G, a positive integer k and an accuracy value 0<ε< 1, outputs a
number y that (with high probability) satisfies (1− ε)x ≤ y/2 ≤ (1 + ε)x where x is the number
of k-paths in G. In particular, if 1

ε = 2o(k/ log k), then the running time is 4k+o(k)mno(1).

Proof. For the sake of simplicity, we let G denote the graph obtained after the addition of s
(rather than the input graph G). Then, it is sufficient to show the inequalities (1 − ε)x ≤ y ≤
(1+ε)x where x is the number of (k+1)-paths in G with s as an endpoint. (To see this, observe
that the number of (k + 1)-path in G with s as an endpoint is exactly twice the number of
k-paths in the original graph.)

Let βinit be the assignment βinit : {s} → N0 that satisfies βinit(s) = 1. Observe that for

all v ∈ V (G) \ {s}, it holds that
∑

{p,q}∈E(G)
s.t. p/∈V (G−{s}),q∈V (G−{s})

βinit(p) · xG−{s},kq,v is simply equal to

xG,k+1
s,v . Thus, by Lemma 4.2 with G′ = G, k′ = k and β = βinit, we know that

• A(G, k, βinit) runs in time 4k+O(log2 k)(log n)log km(1
ξ )log k and uses polynomial space.

• If all constructions of approximate universal families were successful, then for all v ∈
V (G) \ {s}, the number α(v) assigned to v by the assignment α returned by A(G, k, βinit)

satisfies (1− ξ)k−1xG,k+1
s,v ≤ α(v) ≤ (1 + ξ)k−1xG,k+1

s,v .

As in the proof of Theorem 4.1, 4k+O(log2 k)(log n)log km(1
ξ )log k = (4k+o(k)m+mno(1))(1

ε )
O(log k).

Moreover, as in the proof of Theorem 4.1, with high probability (say, higher than 9/10), all
constructions of approximate universal families were successful. Thus, we know that for all
v ∈ V (G) \ {s}, it holds that (1 − ξ)k−1xG,k+1

s,v ≤ α(v) ≤ (1 + ξ)k−1xG,k+1
s,v . As in the proof of

Theorem 4.1, for all v ∈ V (G) \ {s}, it follows that (1− ε)xG,k+1
s,v ≤ α(v) ≤ (1 + ε)xG,k+1

s,v .
We thus obtain that

y =
∑

v∈V (G)\{s}

α(v) ≤
∑

v∈V (G)\{s}

(1 + ε)xG,k+1
s,v = (1 + ε)

∑
v∈V (G)\{s}

xG,k+1
s,v = (1 + ε)x.

Symmetrically, we obtain that (1− ε)x ≤ y. This completes the proof.

The time complexity bound above can be easily reduced to 4k+O(log2 k)m log n(1
ε )
O(log k).

Indeed, it is only required to utilize Proposition 5.2 to reduce the universe size from n to k2

before calling the algorithm in Theorem 4.2; then, the term that gives rise to no(1) above is
subsumed by 4O(log2 k). Since this is precisely what our deterministic algorithm does to obtain
such dependency, we do not repeat these details. Here, we directly restate Corollary 4.1.

Corollary 4.1. There is a randomized 4k+O(log2 k)m log n(1
ε )
O(log k)-time polynomial-space al-

gorithm that, given a graph G, a positive integer k and an accuracy value 0< ε< 1,‘outputs a
number y that (with high probability) satisfies (1− ε)x ≤ y/2 ≤ (1 + ε)x where x is the number
of k-paths in G. In particular, if 1

ε = 2o(k/ log k), then the running time is 4k+o(k)m log n.
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5 Approx. Parsimonious Universal Family: Deterministic Con-
struction

5.1 Definitions and Statements

We do not know how to deterministically construct small δ-parsimonious universal families.
Indeed, the best construction that we are aware of is the one based on bipartite Paley graphs
(see Theorem 11.9 in the book by Jukna [27] and the historical notes behind the result). This
construction leads to families of size 4k+o(k) for p = q = k

2 , whereas we would like size 2k+o(k).
Instead, we provide an efficient deterministic computation of a small δ-parsimonious universal
family that is suitable for handling so-called “nice pairs”. The crucial point is that with respect
to our applications, this relaxed construction suffices. In this section, we present the definition
of this relaxation, its construction as well a main property that this definition satisfies (Lemma
5.2). To allow the reader to see the “big picture”, we defer the proofs of the two lemmas and
the theorem stated in this subsection to the next subsections.

To simplify the following definitions, we introduce the following notation. To see the intuition
behind this notation in the context of applications, throughout this section h can be thought
of as a function that reduces the size of the universe from n to z, by coloring each of the n
elements of the universe in one of z colors. These z colors are then partitioned into t parts, and
we indicate the parts of the partition as f−1(i), i ∈ {1, 2, . . . , t}. We will pick f to partition the
reduced universe evenly into parts of size k/t. For bookkeeping purposes, we write down the
sizes of intersections of “partial solutions” with each part in a vector p = (p(1), . . . ,p(t)), with
0 ≤ p(i) ≤ k/t.

Definition 5.1. Let n, p, q, t, z ∈ N, and k = p + q. Let U be a universe of size n. A
t-dimensional vector p = (p(1),p(2), . . . ,p(t)) such that p(i) ∈ {0, 1, . . . , k/t} for each i ∈
{1, 2, . . . , t} and

∑t
i=1 pi = p is called (p, q, t)-compatible. When p is clear from context, for

each i ∈ {1, 2, . . . , t}, denote pi = p(i) and qi = (k/t)− pi.
A triple (h, f,p) is called (n, p, q, t, z)-compatible if h : U → {1, 2, . . . , z}, f : {1, 2, . . . , z} →

{1, 2, . . . , t}, and p is (p, q, t)-compatible. (The universe U will be clear from context.)

We begin by defining what is a nice pair. Intuitively, it is a pair of disjoint sets (A,B) whose
union is reduced “properly” by h so it does not map two elements in the union to the same
element in the reduced universe, and which “comply” with p, where A is thought of as the set
of elements we “currently use” to construct partial solutions, and B is thought as the set of
elements we will “use next” to extend them.

Definition 5.2 (Nice Pair). Let n, p, q, t, z ∈ N. Let U be a universe of size n. Let (h, f,p) be
(n, p, q, t, z)-compatible. A pair (A,B) is nice (with respect to (h, f,p)) if A ∈

(
U
p

)
and B ∈

(
U
q

)
are disjoint sets, and the following conditions hold.

1. The function h is injective when restricted to A ∪B.

2. For each i ∈ {1, 2, . . . , t}, it holds that |{u ∈ A : f(h(u)) = i}| = pi and |{u ∈ B :
f(h(u)) = i}| = (k/t)− pi.

Towards the definition of a δ-parsimonious universal family for nice pairs, we first present
a weaker definition of this notion where we have a triple (h, f,p) at hand. Essentially, this
definition can be thought of as a restriction of the definition of a parsimonious universal family
that works only for nice pairs.

Definition 5.3 (Specific δ-Parsimonious Universal Family for Nice Pairs). Let n, p, q, t, z ∈ N.
Let U be a universe of size n. Let (h, f,p) be (n, p, q, t, z)-compatible. Let 0 < δ < 1. A family
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F of sets over {1, . . . , z} is a δ-parsimonious (h, f,p)-universal family (for nice pairs) if there
exists T = T (h, f,p, δ) > 0 such that for every nice pair (A,B), it holds that (1 − δ) · T ≤
|F [h(A), h(B)]| ≤ (1 + δ) · T .

Before we show how to extend Definition 5.3 to the notion useful for applications, we argue
that small δ-parsimonious (h, f,p)-universal families can be computed “efficiently”.

Lemma 5.1. Let p, q, t, z ∈ N, and denote k = p+ q and s = k/t. Let (h, f,p) be (n, p, q, t, z)-
compatible. Let 0 < δ < 1. A δ-parsimonious (h, f,p)-universal family F of sets over {1, . . . , z}
of size ` = O

((
k
p

)
· (k · log z · O(1)

δ )2t
)

can be computed in time ` · zs+1sO(1)t. In particular, the

sets in F can be enumerated with delay zs+1sO(1)t.

Towards the definition of our general construction, we need to present the definitions of a
balanced splitter and a balanced hash family. Constructions of such a splitter and a family were
given by Alon and Gutner [4, 3].

Definition 5.4 (Definition 2.2 [4]). Suppose that 1 ≤ ` ≤ k ≤ n and 0 < ε < 1, and let S be a

family of functions from {1, . . . , n} to {1, . . . , `}. For a set S ∈
({1,...,n}

k

)
, let splitS (S) denote

the number of functions f ∈ S that split S into equal size parts, that is, |f−1(i) ∩ S| = k/`.
Then, S is an ε-balanced (n, k, `)-splitter if there exists T = T (n, k, `, ε) > 0 such that for

every set S ∈
({1,...,n}

k

)
, we have (1− ε)T ≤ splitS (S) ≤ (1− ε)T .

Definition 5.5 (Definition 2.1 [4]). Suppose that 1 ≤ k ≤ ` ≤ n and 0 < ε < 1. A family H
of functions from {1, . . . , n} to {1, . . . , `} is an (ε, k)-balanced family of hash functions if there

exists T = T (n, k, `, ε) > 0 such that for every set S ∈
({1,...,n}

k

)
, the number of functions in H

that are injective when restricted to S is between (1− ε)T and (1 + ε)T .

We are now ready to define our general derandomization tool. Here, instead of considering
a single triple (h, f,p) as in Definition 5.3, we have two families to generate all such triples that
are relevant to us, and store a parsimonious universal family with respect to each of them.

Definition 5.6 ((General) δ-Parsimonious Universal Family for Nice Pairs). Let n, p, q ∈ N
and 0 < δ < 1, and denote k = p + q, z = 2k2

ε , t =
√
k, s = k/t =

√
k, and ε = δ/3. Let

U be a universe of size n. A δ-parsimonious (n, p, q)-universal tuple (for nice pairs) is a tuple
(H ,S , {F h,f,p}|h∈H ,f∈S ,p), where the enumeration is over every (p, q, t)-compatible p, that
satisfies the following conditions.

• H is an (ε, k)-balanced family of hash functions from {1, . . . , n} to {1, . . . , z} (with cor-
rection factor TH ).

• S is an ε-balanced (z, k, t)-splitter (with correction factor TS ).

• For every hash function h ∈H , splitter f ∈ S and (p, q, t)-compatible function p, it holds
that F h,f,p is a δ-parsimonious (h, f,p)-universal family (with correction factor Tp).

We define the collection of quadruples of (H ,S , {F h,f,p}|h∈H ,f∈S ,p) as the collection of
every quadruple (h, f,p, F ) such that h ∈ H , f ∈ S and F ∈ F h,f,p. By enumerating the
quadruples of (H ,S , {F h,f,p}|h∈H ,f∈S ,p), we refer to the enumeration of every quadruple in
this collection. We remark that below, for the sake of brevity, when we write k, z, t, s, ε, TH , TS

and Tp, we refer to the notations given in Definition 5.6. Let us now state our construction.

Theorem 5.1. Let n, p, q ∈ N and 0 < δ < 1. Denote k = p + q. Let U be a universe of size
n. A δ-parsimonious (n, p, q)-universal tuple (H ,S , {F h,f,p}|h∈H ,f∈S ,p) whose collection of

quadruples is of size ` can be computed in time kO(1)n logn
δO(1) +`·∆. In particular, after preprocessing
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time kO(1)n logn
δO(1) , the quadruples of (H ,S , {F h,f,p}|h∈H ,f∈S ,p) can be enumerated with delay

∆. Here,

` =

(
k

p

)
· 2O(

√
k(log2 k+log2 1

δ
)) · log n, and

∆ = 2O(
√
k(log k+log 1

δ
)).

In order to state the property of a δ-parsimonious (n, p, q)-universal tuple that makes it
useful for applications, we need one last definition.

Definition 5.7. Let n, p, q ∈ N and 0 < δ < 1. Let U be a universe of size n. Furthermore, let
(H ,S , {F h,f,p}|h∈H ,f∈S ,p) be a δ-parsimonious (n, p, q)-universal tuple. Finally, let A ∈

(
U
p

)
and B ∈

(
U
q

)
be disjoint sets. We say that the pair (A,B) fits a quadruple (h, f,p, F ) of

(H ,S , {F h,f,p}|h∈H ,f∈S ,p) if (A,B) is nice with respect to (h, f,p), and F ∈ F [h(A), h(B)].

Finally, we state the promised property.

Lemma 5.2. Let n, p, q ∈ N and 0 < δ < 1. Let U be a universe of size n. Furthermore,
let (H ,S , {F h,f,p}|h∈H ,f∈S ,p) be a δ-parsimonious (n, p, q)-universal tuple. Then, there exist
T = T (n, p, q, δ) > 0 and for every p that is (p, q, t)-compatible, Tp = Tp(n, p, q, δ) > 0, such
that for any A ∈

(
U
p

)
and B ∈

(
U
q

)
that are disjoint, the following conditions hold.

1. The number of triples (h, f,p) with respect to which (A,B) is nice, where h ∈H , f ∈ S
and p is (p, q, t)-compatible, is between (1− δ)T and (1 + δ)T .

2. For any triple (h, f,p) with respect to which (A,B) is nice, where h ∈H , f ∈ S and p is
(p, q, t)-compatible, the number of quadruples (h, f,p, F ) of (H ,S , {F h,f,p}|h∈H ,f∈S ,p)
that fit (A,B) is between (1− δ)Tp and (1 + δ)Tp.

5.2 Proof of Lemma 5.1

Since we will reduce n to O(k2/ε) later on, our computation is allowed to be inefficient for
large n, and we will now present such a procedure. To this end, we use an adaptation of the
proof of Theorem 4.1 in [4] (based on the method of conditional probabilities). For the sake of
completeness, we give the full details of this proof below.

Lemma 5.3. Let n, p, q ∈ N and 0 < δ < 1, and denote k = p+ q. Let U be a universe of size

n. A δ-parsimonious (n, p, q)-universal family F of sets over U of size ` = O(
kk

ppqq
·k log n · 1

δ2
)

can be computed in time ` · nk+1kO(1). In particular, the sets in F can be enumerated with
nk+1kO(1) delay.

Proof. Denote t = ppqq

kk
, M = 2(k lnn+1)

tδ2
and λ = δ/2. Consider a choice of M independent

random sets F1, F2, . . . , FM ⊆ U : Every set Fi is obtained by inserting each element u ∈ U into
F with probability p/k. This choice will be derandomized in the course of the algorithm. For
every pair (A,B) of disjoint sets A ∈

(
U
p

)
and B ∈

(
U
q

)
, define X(A,B) =

∑M
i=1X(A,B),i, where

X(A,B),i is the indicator random variable that is equal to 1 if and only if the i-th set Fi contains
A and is disjoint from B. Consider the following potential function:

Φ =
∑
A∈(Up)

∑
B∈(U\Aq )

(
eλ(X(A,B)−tM) + eλ(tM−X(A,B))

)
.
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By Observation 3.1, its expectation can be calculated as follows:

E[Φ] =

(
n

p

)(
n− p
q

)
(e−λtM

M∏
i=1

E[eλX(A,B),i ] + eλtM
M∏
i=1

E[e−λX(A,B),i ])

=

(
n

p

)(
n− p
q

)
(e−λtM [teλ + (1− t)]M + eλtM [te−λ + (1− t)]M ).

We now give an upper bound for E[Φ]. Since 1 + u ≤ eu for all u, and e−u ≤ 1− u+ u2/2

for all u ≥ 0, we get that te−λ + (1 − t) ≤ ete
−λ−1 ≤ et(−λ+λ2/2). Define ε = eλ − 1, that is

λ = ln(1 + ε). Thus teλ + (1− t) = 1 + εt ≤ eεt. This implies that

E[Φ] ≤ nk(( eε

1 + ε
)tM + eλ

2tM/2).

Since eu ≤ 1 + u+ u2 for all 0 ≤ u ≤ 1, we have that eε

1+ε = ee
λ−1−λ ≤ eλ2 . We conclude that

E[Φ] ≤ 2nkeλ
2tM ≤ e2(k lnn+1).

We now describe a deterministic algorithm for finding M sets so that E[Φ] will still obey
the last upper bound. This is performed using the method of conditional probabilities (c.f., e.g.,
[5]). The algorithm will have M phases, where each phase will consist of n steps. In step i of
phase j, the algorithm will determine whether the i-th element in U is inserted into Fi. Out of
the two possible options (inserting the element or not inserting the element), we greedily choose
the value that will decrease E[Φ] as much as possible. We note that at any specific step of the
algorithm, the exact value of the conditional expectation of the potential function can be easily
computed in time nkkO(1).

After all the M functions have been determined, every pair (A,B) of disjoint sets A ∈
(
U
p

)
and B ∈

(
U
q

)
satisfies the following:

eλ(X(A,B)−tM) + eλ(tM−X(A,B)) ≤ e2(k lnn+1).

This implies that
−2(k lnn+ 1) ≤ λ(X(A,B) − tM) ≤ 2(k lnn+ 1).

Recall that λ = δ/2, and therefore

(1− 4(k lnn+ 1)

δtM
)tM ≤ X(A,B) ≤ (1 +

4(k lnn+ 1)

δtM
)tM.

Plugging in the value of M and t, we get the desired result

(1− δ)tM ≤ X(A,B) ≤ (1 + δ)tM.

This completes the proof.

Having Lemma 5.3 at hand, we turn to present the efficient computation required to prove
Lemma 5.1.

Lemma 5.1. Let p, q, t, z ∈ N, and denote k = p+ q and s = k/t. Let (h, f,p) be (n, p, q, t, z)-
compatible. Let 0 < δ < 1. A δ-parsimonious (h, f,p)-universal family F of sets over {1, . . . , z}
of size ` = O

((
k
p

)
· (k · log z · O(1)

δ )2t
)

can be computed in time ` · zs+1sO(1)t. In particular, the

sets in F can be enumerated with delay zs+1sO(1)t.
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Proof. Denote Z = {1, 2, . . . , z}. Define the partition (Z1, Z2, . . . , Zt) of Z as follows: for each
i ∈ {1, 2, . . . , t}, Zi = {u ∈ Z : f(u) = i}. By Lemma 5.3, for any choice of p̂ ∈ {1, 2, . . . , s}
and q̂ = s− p̂, we compute a ln(1+δ)

t -parsimonious (z, p̂, q̂)-universal family Fp̂,q̂ of sets over Z

of size `p̂,q̂ = O(
ss

p̂p̂q̂q̂
· s log z · 1

( ln(1+δ)
t )2

) with correction factor Tp̂,q̂. In particular, we need not

compute Fp̂,q̂ at once, but we can enumerate its sets with delay zs+1sO(1).
Let us now construct the family F . For every choice of F1 ∈ Fp1,q1 , F2 ∈ Fp2,q2 , . . . , Ft ∈

Fpt,qt , we insert the set (F1 ∩ Z1) ∪ (F2 ∩ Z2) ∪ · · · ∪ (Ft ∩ Zt) into F . Observe that the sets
in F can be enumerated with delay zs+1sO(1)t. Since s · t = k, the size of F , denoted by `, is
upper bounded as follows.

` =
∏t
i=1 `pi,qi

= O

((
t∏
i=1

ss

pipiqiqi

)
·

(
s · log z · O(1)

( ln(1+δ)
t )2

)t)

= O

((
t∏
i=1

(
s

pi

))
·
(
s · log z · t

2 · O(1)

ln2(1 + δ)

)t)

= O

((
k

p

)
·
(
k · log z · O(1)

ln(1 + δ)

)2t
)

= O

((
k

p

)
·
(
k · log z · O(1)

δ

)2t
)
.

The last bound follows from Taylor series ln(1 + x) =
∑∞

n=1(−1)n+1 xn

n , which implies that
ln(1 + δ) ≥ δ − (δ2/2) ≥ δ/2.

Define T =
∏t
i=1 Tpi,qi . To conclude the proof, it remains to prove that F is a δ-parsimonious

(h, f,p)-universal family. To this end, we let (A,B) be an arbitrary nice pair, and show that
(1−δ) ·T ≤ |F [h(A), h(B)]| ≤ (1+δ) ·T . By the construction of F and because (Z1, Z2, . . . , Zt)
is a partition of Z, it holds that |F [h(A), h(B)]| =

∏t
i=1 |Fpi,qi [h(A)∩Zi, h(B)∩Zi]|. Moreover,

since h is injective when restricted A ∪ B as well as |{u ∈ A : f(h(u)) = i}| = pi and |{u ∈
B : f(h(u)) = i}| = (k/t) − pi for every i ∈ {1, 2, . . . , t} (because (A,B) is a nice pair),

the construction of Fpi,qi implies that (1 − ln(1+δ)
t ) · Tpi,qi ≤ |Fpi,qi [h(A) ∩ Zi, h(B) ∩ Zi]| ≤

(1 + ln(1+δ)
t ) · Tpi,qi . We thus derive that

|F [h(A), h(B)]| ≤
t∏
i=1

(1 +
ln(1 + δ)

t
) · Tpi,qi

=

(
1 +

ln(1 + δ)

t

)t
·
t∏
i=1

Tpi,qi

≤ eln(1+δ) ·
t∏
i=1

Tpi,qi

= (1 + δ) · T.

In addition, it holds that
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|F [h(A), h(B)]| ≥
t∏
i=1

(1− ln(1 + δ)

t
) · Tpi,qi

=

(
1− ln(1 + δ)

t

)t
·
t∏
i=1

Tpi,qi

≥ (1− ln(1 + δ)) ·
t∏
i=1

Tpi,qi

≥ (1− δ) · T.

The last inequality follows from Taylor series ln(1 + x) =
∑∞

n=1(−1)n+1 xn

n , which implies that
ln(1 + δ) ≤ δ and therefore 1− ln(1 + δ) ≥ 1− δ. This completes the proof.

5.3 Proof of Theorem 5.1

In order to prove Theorem 5.1, we make use of the following propositions.

Proposition 5.1 (Theorem 4 [3]). For any 0 < ε < 1, an ε-balanced (z, k, t)-splitter S of size(
zkt

ε

)O(log z)

can be constructed in time

(
zkt

ε

)O(log z)

. Moreover, the functions in S can be

enumerated with polynomial delay.

Proposition 5.2 (Theorem 4.2 [4]). For any 0 < ε < 1, an (ε, k)-balanced family of hash

functions from {1, . . . , n} to {1, . . . , `}, where ` = 2k2

ε , of size kO(1) logn
εO(1) can be constructed in

time kO(1)n logn
εO(1) .

We are now ready to prove Theorem 5.1.

Theorem 5.1. Let n, p, q ∈ N and 0 < δ < 1. Denote k = p + q. Let U be a universe of size
n. A δ-parsimonious (n, p, q)-universal tuple (H ,S , {F h,f,p}|h∈H ,f∈S ,p) whose collection of

quadruples is of size ` can be computed in time kO(1)n logn
δO(1) +`·∆. In particular, after preprocessing

time kO(1)n logn
δO(1) , the quadruples of (H ,S , {F h,f,p}|h∈H ,f∈S ,p) can be enumerated with delay

∆. Here,

` =

(
k

p

)
· 2O(

√
k(log2 k+log2 1

δ
)) · log n, and

∆ = 2O(
√
k(log k+log 1

δ
)).

Proof. We construct H and S by making use of Propositions 5.1 and 5.2, respectively. For ev-
ery h ∈H , f ∈ S and p, we construct F h,f,p by making use of Lemma 5.1. By Proposition5.1,

we compute H in time kO(1)n logn
δO(1) . We need not construct S and {F h,f,p}|h∈H ,f∈S ,p explicitly,

but we can enumerate the quadruples of (H ,S , {F h,f,p}|h∈H ,f∈S ,p) with delay ∆, where ∆
is upper bounded as follows.

• By Proposition 5.2, the functions in S can be enumerated with delay polynomial in k
and 1

δ .

• All (p, q, t)-compatible vectors p can be enumerated with delay polynomial in k.

• By Lemma 5.1, for every h ∈ H , f ∈ S and p, the sets in F can be enumerated with

delay zs+1sO(1)t =

(
6k2

δ

)√k+1

(
√
k)O(1) = 2O(

√
k(log k+log 1

δ
).

19



Thus, ∆ = 2O(
√
k(log k+log 1

δ
)).

The assertion that (H ,S , {F h,f,p}|h∈H ,f∈S ,p) is indeed a δ-parsimonious (n, p, q)-universal
tuple follows directly from Propositions 5.1 and 5.2 and Lemma 5.1. Moreover, by these propo-
sitions and lemma, it holds that:

• |H | = kO(1) log n

εO(1)
=
kO(1) log n

δO(1)
;

• |S | =
(
zkt

ε

)O(log z)

=

(
6k2

δ k
√
k

δ/3

)O(log 6k2

δ
)

=

(
k
√
k

δ

)O(log k
δ

)

= 2O(
√
k(log2 k+log2 1

δ
));

• the number of (p, q, t)-compatible vectors p is equal to(
p+ t− 1

t− 1

)
≤
(
k +
√
k√

k

)
≤ (k +

√
k)
√
k = 2O(

√
k log k);

• for every h ∈H , f ∈ S and p, it holds that

|F h,f,p| = O

((
k

p

)
·
(
k · log z · O(1)

δ

)2t
)

= O

((
k

p

)
·
(
k · log

(
6k2

δ

)
· O(1)

δ

)2
√
k
)

=

(
k

p

)
· 2O(

√
k(log k+log 1

δ
)).

Thus, the number of quadruples of (H ,S , {F h,f,p}|h∈S ,f∈S ,p), denoted by `, is upper bounded
as follows.

` =
kO(1) log n

δO(1)
· 2O(

√
k(log2 k+log2 1

δ
)) ·
(
k

p

)
· 2O(

√
k(log k+log 1

δ
))

=

(
k

p

)
· 2O(

√
k(log2 k+log2 1

δ
)) · log n.

This completes the proof.

5.4 Proof of Lemma 5.2

Finally, we prove Lemma 5.2.

Lemma 5.2. Let n, p, q ∈ N and 0 < δ < 1. Let U be a universe of size n. Furthermore,
let (H ,S , {F h,f,p}|h∈H ,f∈S ,p) be a δ-parsimonious (n, p, q)-universal tuple. Then, there exist
T = T (n, p, q, δ) > 0 and for every p that is (p, q, t)-compatible, Tp = Tp(n, p, q, δ) > 0, such
that for any A ∈

(
U
p

)
and B ∈

(
U
q

)
that are disjoint, the following conditions hold.

1. The number of triples (h, f,p) with respect to which (A,B) is nice, where h ∈H , f ∈ S
and p is (p, q, t)-compatible, is between (1− δ)T and (1 + δ)T .

2. For any triple (h, f,p) with respect to which (A,B) is nice, where h ∈H , f ∈ S and p is
(p, q, t)-compatible, the number of quadruples (h, f,p, F ) of (H ,S , {F h,f,p}|h∈H ,f∈S ,p)
that fit (A,B) is between (1− δ)Tp and (1 + δ)Tp.

Proof. Define T = TH · TS , and for every p that is (p, q, t)-compatible, let the definition of Tp
be given by Definition 5.6. Let us consider some A ∈

(
U
p

)
and B ∈

(
U
q

)
that are disjoint. Then,

we know that

• the number of hash functions h ∈H that are injective when restricted to A∪B is between
(1− ε)TH and (1 + ε)TH ,
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• for every hash function h ∈ H that is injective when restricted to A ∪ B, the number of
splitting functions f ∈ S such that for every i ∈ {1, 2, . . . , t}, |{u ∈ h(A ∪ B) : f(u) =
i}| = s, is between (1− ε)TS and (1 + ε)TS , and

• for every pair (h, f) of a hash function h ∈ H that is injective when restricted to A ∪ B
and a splitting function f ∈ S such that for every i ∈ {1, 2, . . . , t}, |{u ∈ h(A ∪ B) :
f(u) = i}| = s, the number of vectors p such that for every i ∈ {1, 2, . . . , t}, |{u ∈ h(A) :
f(u) = i}| = p(i), is exactly 1.

Thus, the number of triples (h, f,p) with respect to which (A,B) is nice, where h ∈H , f ∈ S
and p is (p, q, t)-compatible, is between (1− ε)TH · (1− ε)TS and (1 + ε)TH · (1 + ε)TS . Recall
that ε = δ/3, and note that δ2 < δ. Therefore, (1− ε)2 = 1− (2ε− ε2) = 1− (2

3δ−
1
9δ

2) ≥ 1− δ,
and (1 + ε)2 = 1 + (2ε+ ε2) = 1 + (2

3δ+ 1
9δ

2) ≤ 1 + δ. However, this implies that Condition 1 is
satisfied.

Now, we know that for every hash function h ∈ H , splitter f ∈ S and (p, q, t)-compatible
function p, it holds that F h,f,p is a δ-parsimonious (h, f,p)-universal family with correction fac-
tor Tp. This means that the number of quadruples (h, f,p, F ) of (H ,S , {F h,f,p}|h∈H ,f∈S ,p)
that fit (A,B) is between (1− δ)Tp and (1 + δ)Tp. Thus, Condition 2 is satisfied as well. Since
the choice of A and B was arbitrary, the proof is complete.

6 Deterministic FPT-AS for #k-Path

Our deterministic FPT-AS builds upon the scheme of our second randomized FPT-AS, but it is
more technical. We first discuss the main idea that underlies the design of this algorithm. Like
our previous algorithm, this algorithm (denoted by A) is recursive. However, in addition to G′,
k′ and β, every call to A is also given two tuples R and W. The number of elements in R and
W equals the depth d of the current recursive call in the recursion tree.

Roughly speaking, every element in R is a quadruple (hi, fi,pi, σi) where (i) the triple
(hi, fi,pi) corresponds to the interpretation preceding Definition 5.1, and (ii) σi ∈ {left, right}
indicates whether we should count paths that consist of pi(j) (in case σi = left) or si − pi(j)
(in case σi = right) vertices of the j-th part of the reduced universe split by fi. Thus, we
“keep track” of all triples considered along the current recursion branch. The reason why we
have to store this information is to ensure that, in the current recursive call, we only count
paths P whose vertex set has the following property: when we will return to the i-th recursive
call, the partition (A,B) of V (P ) where A consists of the first k̂ vertices of P (for a certain
k̂ ∈ {1, 2, . . . , k} that depends on the location of this i-th call in the recursion tree) is nice
with respect to (hi, fi,pi), see Definition 5.2. This simple (though perhaps slightly tedious)
bookkeeping sidesteps the fact that Lemma 5.2 only suits nice pairs.

The tuple W is meant to keep track of how many vertices the paths that we currently count
have used “so far” from the j-th part of the universe split by fi for every choice of i and j. For
this purpose,W is defined to have the form (w1,w2, . . . ,wd) such that for each i ∈ {1, 2, . . . , d},
the following condition holds: For each j ∈ {1, 2, . . . , ti}, if σi = left then wi(j) ≤ pi(j), and
otherwise wi(j) ≤ si − pi(j). Here, si =

√
(k/2i) is the number of vertices the paths that we

currently count should use (in total) from each part split by fi.
Accordingly, the value returned by a call A(G′, k′, β,R,W) is an assignment α : V (G′)→ N0

with the following property: For each vertex v ∈ V (G′), it holds that α(v) approximates∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

β(p) · |PG′,k′,R,Wq,v |. Roughly speaking, PG
′,k′,R,W

q,v is the collection of all k′-paths

in G′ with endpoints q and v that “comply” (in a sense that will be made formal later) with
the constraints imposed by R and W.
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6.1 Algorithm Specification

Let ξ = ln(1+ε)
2(k−1) . As in Section 4.2, we add a new vertex s to G and connect it to all vertices in

G. Thus, rather than counting the number of k-paths in the former graph G, we can count the
number of (k + 1)-paths with s as an endpoint in the new graph G. In what follows, we focus
on this goal.

Our algorithm, denoted by A, is recursive. We first specify the arguments with which A is
called. Then, we specify the value returned by a recursive call. Afterwards, we note how A is
initially called, and then we turn to describe the computation executed by a recursive call.

Arguments. Each call to A is of the form A(G′, k′, β,R,W) where G′ is an induced
subgraph of G, k′ = k/2d for some d ∈ {0, 1, . . . , log2 k}, β : V (G) \ V (G′) → N0, and R =
((h1, f1,p1, σ1), (h2, f2,p2, σ2), . . . , (hd, fd,pd, σd)). (The argument W is defined later.) For
each i ∈ {1, 2, . . . , d}, it holds that

• ki := k
2i

, zi := 2ki
2

ξ , ti :=
√
ki and si := ki/ti.

• hi is a function from {1, 2, . . . , zi−1} to {1, 2, . . . , zi} if i ≥ 2, and from V (G) to {1, 2, . . . , z1}
otherwise,

• fi is a function from {1, 2 . . . , zi} to {1, 2, . . . , ti},

• pi is a function from {1, 2, . . . , ti} to {1, 2, . . . , si} such that
∑ti

j=1 pi(j) = ki/2, and

• σi ∈ {left, right}.

Additionally, define z0 = n. Roughly speaking, the tuple R stores the sequence of parsimonious
universal tuples that were considered along the branch of the recursion tree that leads from the
initial call to A to the current call to A. We need to keep track of this information in order to
ensure that the paths we count in the current call behave “nicely” with respect to this entire
sequence of parsimonious universal tuples—indeed each of these parsimonious universal tuples
has the behavior we want only with respect to nice pairs (see Definition 5.2 and Lemma 5.2).

Let us now explain what is the argument W. To this end, we need the following definition.

Definition 6.1. For the arguments G′, k′ and R of a call to A, the collection of relevant tuples
WG′,k′,R is the collection of all tuples W = (w1,w2, . . . ,wd) such that for each i ∈ {1, 2, . . . , d},
the following condition holds:

• For each j ∈ {1, 2, . . . , ti}, if σi = left then wi(j) ≤ pi(j), and otherwise wi(j) ≤
si − pi(j).

In case d = 0 (that is, the initial call), WG,k,() = {()}.

Having this definition at hand, we note that the argument W in a call A(G′, k′, β,R,W)
is a tuple from WG′,k′,R. Intuitively, the reason why we need such a tuple W can be roughly
explained as follows. Each parsimonious universal tuple (hi, fi,pi, σi) in R can be thought of
as a “demand” to make sure that each of the paths counted when we go back to the i-th call
on the current branch tree (mentioned earlier) uses exactly pi(j) (or si − pi(j)) vertices from a
particular set for each j ∈ {1, . . . , ti}. However, in the current call, we do not need to exhaust
all of this budget of pi(j) vertices—it should only be exhausted later, when we eventually return
to the i-th call; instead, we need to keep track of every possibility of how this budget should be
exhausted. The argument W is meant to serve this purpose.
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Output Value. Before we can state the value returned by a call, we need another defini-
tion. Here, we make the definition of which paths “comply” with all of the demands imposed
by R and W precise. Since our parsimonious universal tuples only work properly for nice sets,
it will be crucial that we only count paths that fit this definition.

Definition 6.2. For a call A(G′, k′, β,R,W) with W = (w1,w2, . . . ,wd) ∈ WG′,k′,R, and

vertices u, v ∈ V (G′), the collection of relevant paths PG
′,k′,R,W

u,v is the collection of all k′-paths
P in G′ with endpoints u and v such that the following conditions holds:

• For each i ∈ {1, 2, . . . , d}, denote h?i := (hi ◦ · · · ◦ (h3 ◦ (h2 ◦ h1))). Then, the function h?d
is injective when restricted to V (P ).

• For each i ∈ {1, 2, . . . , d}, denote f?i := fi ◦ h?i . Then, for all i ∈ {1, 2, . . . , d} and
j ∈ {1, 2, . . . , ti}, it holds that |{v ∈ V (P ) : f?i (v) = j}| = wi(j).

Note that for W = (), PG
′,k′,R,W

u,v is the collection of all k′-paths P in G′ with endpoints u and
v. (The two conditions are vacuously satisfied.)

The value returned by each call A(G′, k′, β,R,W) is an assignment α : V (G′)→ N0 with the
following property: For each vertex v ∈ V (G′), it holds that α(v) approximates the following
number: ∑

{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

β(p) · |PG′,k′,R,Wq,v |.

Initial Call. The initial call is A(G − {s}, k, βinit, (), ()) (that is, R and W are 0-length
tuples), where βinit(s) = 1. The final output, returned by the initial call, is

∑
v∈V (G)\{s} α(v).

Computation: Basis. Now, we turn to describe a call A(G′, k′, β,R,W). In the basis,
where k′ = 1, we compute the integer α(v) for all v ∈ V (G′) as follows.

• If for all i ∈ {1, 2, . . . , d} and j ∈ {1, 2, . . . , ti}, |{v} ∩ {r ∈ V (G′) : f?i (r) = j}| = wi(j),
7

then
α(v) =

∑
u/∈V (G′)

s.t. {u,v}∈E(G)

β(u).

• Otherwise, α(v) = 0.

Computation: Step. Next, suppose that k′ = k/2d ≥ 2. DenoteR = ((h1, f1,p1, σ1), (h2,
f2,p2, σ2), . . . , (hd, fd,pd, σd)) andW = (w1,w2, . . . ,wd). By Theorem 5.1, for an ξ-parsimonious
(zd, k

′/2, k′/2)-universal tuple (H ,S , {F h,f,p}|h∈H ,f∈S ,p) with universe U = {1, 2, . . . , zd}
(for d = 0, we mean U = V (G)), after spending preprocessing time k′O(1)zd log zd

ξO(1) , we enumerate

the ` quadruples Q = (h, f,p, F ) ∈ (H ,S , {F h,f,p}|h∈H ,f∈S ,p) with delay ∆, where

` = 2
k′+O(

√
k′(log2 k′+log2 1

ξ
))

log zd, and

∆ = 2
O(
√
k′(log2 k′+log2 1

ξ
))
.

For each quadruple Q = (h, f,p, F ), we proceed as follows.

7That is, for each i ∈ {1, 2, . . . , d} there is a single j ∈ {1, 2, . . . , ti} such that wi(j) = 1 (for any other
j′ ∈ {1, 2, . . . , ti}, wi(j

′) = 0), and for this j it holds that f?i (v) = j.
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• Denote F ? = (h ◦ h?d)−1(F ) ∩ V (G′), that is, F ? is the set of vertices in V (G′) that h ◦ h?d
maps to integers in F .

• Denote Rleft = R+ ((h, f,p, left)).

• Denote Rright = R+ ((h, f,p, right)).

• For allWleft = (wleft
1 ,wleft

2 , . . . ,wleft
d+1 ) ∈WG′[F ?],k′/2,Rleft

andWright = (w
right
1 ,w

right
2 ,

. . . ,w
right
d+1 ) ∈WG′−F ?,k′/2,Rright

, we say that (Wleft,Wright) fitsW if two conditions hold:

1. for all i ∈ {1, . . . , d} and j ∈ {1, . . . , ti}, it holds that wi(j) = wleft
i (j) + w

right
i (j);

2. for all j ∈ {1, . . . , td+1}, it holds that p(j) = wleft
d+1 (j) and sd+1 − p(j) = w

right
d+1 (j).

Note that if W = (), then the first condition is vacuously satisfied.

Having established the notations above, for every Wleft ∈WG′[F ?],k′/2,Rleft
, we perform two

recursive calls as follows:

1. First, we call A with (G′[F ?], k′/2, βQ,Wleft ,Rleft,Wleft) where βQ,Wleft is the extension
of β that assigns 0 to every vertex in V (G′) \ F ?. Let αQ,Wleft be the output of this call,
and extend it to assign 0 to every vertex in V (G) \ V (G′).

2. Second, we call A with (G′−F ?, k′/2, αQ,Wleft ,Rright,Wright) whereWright is the unique
tuple in WG′−F ?,k′/2,Rright

such that (Wleft,Wright) fits W. Let αQ,Wright be the output
of this recursive call.

After all quadruples Q were enumerated, the output α : V (G′)→ N0 is computed as follows.
First, for all v ∈ V (G′) and a quadruple Q = (h, f,p, F ), we define

αQ(v) =
∑

(Wleft,Wright) fits W

αQ,Wright(v).

We stress that we do not store all the assignments αQ,Wleft , αQ,Wright and αQ simultaneously,
but we only need to store one such assignment at a time in order to compute the assignment
mentioned below “on the go”.

Let T > 0 and for every p, Tp > 0, be the correction factors of (H ,S , {F h,f,p}|h∈H ,f∈S ,p)
(see Lemma 5.2). For all v ∈ V (G′), we calculate

α(v) =
∑

Q=(h,f,p,F )∈(H ,S ,{Fh,f,p}|h∈H ,f∈S ,p)

αQ(v)

T · Tp
.

This completes the description of A. (The pseudocode of A is given in Algorithm 3.)

6.2 Analysis

The main part of the analysis is done in the proof of the following lemma.

Lemma 6.1. There exists a fixed constant η > 0 such that for any call A(G′, k′, β,R,W) where
k′ = k/2d, the following conditions hold.

• A(G′, k′, β,R,W) runs in time

4
k′+η

√
k′(log2 k′+log2 1

ξ
) · 8log k′·

√
k log k ·M,

where M = m if k′ < k and M = m log n otherwise (i.e., k′ = k). Moreover, A(G′, k′, β,R,
W) has a polynomial space complexity.
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Algorithm 3 Deterministic FPT-AS for #k-Path.

1: let ξ = ln(1+ε)
2(k−1) ;

2: add a new vertex s to G, and connect s to all vertices in G;
3: let β : {s} → N0 assign 1 to s;
4: call Det(G− {s}, k + 1, β, (), ()): let α be the output;
5: return

∑
v∈V (G)\{s} α(v);

6: function Det(G′, k′, β,R,W)
7: if k′ = 1 then
8: return α : V (G′) → N0 where for v ∈ V (G′): if for all i ∈ {1, . . . , d} and j ∈
{1, . . . , ti}, |{v}∩{r ∈ V (G′) : f?i (r) = j}| = wi(j), then α(v) =

∑
u/∈V (G′):
{u,v}∈E(G)

β(u); otherwise,

α(v) = 0; . See notation in Arguments and Definition 6.2
9: end if

10: initialize α : V (G′)→ N0 to assign 0 to each v ∈ V (G′);
11: let I be an iterator of a ξ-parsimonious (zd, k

′/2, k′/2)-universal tuple
(H ,S , {F h,f,p}|h∈H ,f∈S ,p) over U = {1, 2, . . . , zd} with correction factor T and for
p, Tp > 0, given by Theorem 5.1;

12: for all Q = (h, f,p, F ) ∈ (H ,S , {F h,f,p}|h∈H ,f∈S ,p) (iterate with I) do
13: let F ? = (h ◦ h?d)−1(F ) ∩ V (G′), Rleft = R + ((h, f,p, left)), and Rright = R +

((h, f,p, right)); . See Definition 6.2
14: initialize αQ : V (G′)→ N0 to assign 0 to each v ∈ V (G′);
15: for all Wleft ∈WG′[F ?],k′/2,Rleft

do . See Definition 6.1
16: let βQ,Wleft be the extension of β that assigns 0 to each v ∈ V (G′) \ F ?;
17: call Det(G′[F ?], k′/2, βQ,Wleft ,Rleft,Wleft): let αQ,Wleft be the output;
18: extend αQ,Wleft to assign 0 to each v ∈ V (G) \ V (G′);
19: let Wright is the unique tuple in WG′−F ?,k′/2,Rright

such that (Wleft,Wright) fits
W; . See Conditions 1 and 2 in Computation: Step

20: call Det(G′ − F ?, k′/2, αQ,Wleft ,Rright,Wright): let αQ,Wright be the output;
21: update αQ(v) = αQ(v) + αQ,Wright(v) for v ∈ V (G′) \ F ?;
22: end for
23: update α(v) = α(v) + αQ(v)/(T · Tp) for v ∈ V (G′);
24: end for
25: return α;
26: end function
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• For all v ∈ V (G′), the number α(v) assigned to v by the assignment α returned by
A(G′, k′, β,R,W) satisfies the following inequalities:

α(v) ≥ (1− ξ)2(k′−1)
∑

{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)
β(p) · |PG

′,k′,R,W
q,v |.

α(v) ≤ (1 + ξ)2(k′−1)
∑

{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)
β(p) · |PG

′,k′,R,W
q,v |.

Proof. The proof is by induction of d. In the basis, where k′ = 1, the claim easily holds. Now,
let d ≤ log2 k − 1, and suppose that the claim holds for d+ 1.

Time and Space Complexities. It is clear that A(G′, k′, β,R,W) has a polynomial
space complexity. Note that zd = n if d = 0, and zd = O(k′) otherwise. Denote N = n if d = 0,

and N = 2 (so logN = 1) otherwise. Then, after preprocessing time bounded by k′O(1)N logN
ξO(1) ,

for some fixed constant λ > 0, the ` quadruples Q = (h, f,p, F ) ∈ (H ,S , {F h,f,p}|h∈H ,f∈S ,p)
are enumerated with delay ∆, where

` = 2
k′+λ

√
k′(log2 k′+log2 1

ξ
)
logN, and

∆ = 2
λ
√
k′(log k′+log 1

ξ
)
.

The number of pairs (Wleft,Wright) that fit W, which equals |WG′[F ?],k′/2,Rleft
|, is upper

bounded by

r :=
d∏
i=1

(si + 1)ti =
d∏
i=1

(

√
k

2i
+ 1)

√
k

2i ≤
log k∏
i=1

(
√
k)

√
k

2i < 2
√
k log k·

∑log k
i=1 ( 1√

2
)i
< 8

√
k log k.

Thus, by the inductive hypothesis, for fixed constant ζ > 0 (that does not depend on the
inductive hypothesis), the running time of A(G′, k′, β, R,W) is upper bounded by

` ·
(
ζ · r · 4

k′
2

+η
√
k′
2

(log2 k′
2

+log2 1
ξ

)
8log k′

2
·
√
k log km

)
≤ 2

k′+λ
√
k′(log2 k′+log2 1

ξ
)
logN · ζ · 8

√
k log k · 4

k′
2

+η
√
k′
2

(log2 k′+log2 1
ξ

)
8(log k′−1)

√
k log km

= ζ4
k′+λ

√
k′(log2 k′+log2 1

ξ
)+ η√

2

√
k′(log2 k′

2
+log2 1

ξ
) · 8log k′·

√
k log k ·M.

Thus, by choosing η to be a large enough constant that depends only on ζ and λ (say, η =
10 max{ζ, λ}), the expression above is upper bounded by

4
k′+η

√
k′(log2 k′+log2 1

ξ
) · 8log k′·

√
k log k ·M.

Accuracy. Towards the proof of the second item of the claim, consider some vertex v ∈
V (G′). By definition, we have that

α(v) =
∑

Q=(h,f,p,F )∈(H ,S ,{Fh,f,p}|h∈H ,f∈S ,p)

∑
(Wleft,Wright) fits W

αQ,Wright(v)

T · Tp
.

By the inductive hypothesis, for each term αQ,Wright(v) in the sum above, we have that

αQ,Wright(v) ≤ (1 + ξ)k
′−2

∑
{a,b}∈E(G)

s.t. a∈F?,b∈V (G′)\F?

αQ,Wleft(a) · |PG
′−F ?,k′/2,Rright,Wright

b,v |.
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By applying the inductive hypothesis again, we have that

αQ,Wright(v) ≤
(1 + ξ)2(k′−2)

∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈F?

∑
{a,b}∈E(G)

s.t. a∈F?,b∈V (G′)\F?

β(p) · |PG′[F ?],k′/2,Rleft,Wleft
q,a | · |PG

′−F ?,k′/2,Rright,Wright

b,v |.

For each quadruple Q = (h, f,p, F ) ∈ (H ,S , {F h,f,p})|h∈H ,f∈S ,p, we let PG
′,k′,R,W

q,v,Q denote

the collection of paths P ∈ PG
′,k′,R,W

q,v that satisfy the following conditions:

1. h?d+1 := h ◦ h?d is injective when restricted to V (P );

2. for all j ∈ {1, 2, . . . , td+1}, it holds that |V (P ) ∩ {v ∈ V (G′) : (f ◦ h?d+1)(v) = j}| = p(j);

3. the first k′/2 (closest to q) vertices of P belong F ?, and the last (closest to v) vertices of
P belong F ?.

To proceed, observe that for each quadruple Q = (h, f,p, F ) ∈ (H ,S , {F h,f,p})|h∈H ,f∈S ,p, it
holds that∑
(Wleft,Wright) fits W

∑
{a,b}∈E(G)

s.t. a∈F?,b∈V (G′)\F?

|PG′[F ?],k′/2,Rleft,Wleft
q,a | · |PG

′−F ?,k′/2,Rright,Wright

b,v | = |PG
′,k′,R,W

q,v,Q |.

Thus, we have that

α(v) ≤ (1 + ξ)2(k′−2)
∑

{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

β(p)
∑

Q=(h,f,p,F )∈(H ,S ,{Fh,f,p}|h∈H ,f∈S ,p)

|PG
′,k′,R,W

q,v,Q |
T · Tp

.
By Lemma 5.2, for each path P ∈ PG

′,k′,R,W
q,v , it holds that

• the number of distinct triples (h, f,p) (from which the quadruples consist) with respect
to which P satisfies Properties 1 and 2 above is upper bounded by (1 + xi) · T , and

• for each triple (h, f,p) with respect to which P satisfies Properties 1 and 2 above, the
number of sets F ∈ F h,f,p with respect to which P satisfies Property 3 above is upper
bounded by (1 + ξ) · Tp.

Thus, we have that

∑
Q=(h,f,p,F )∈(H ,S ,{Fh,f,p}|h∈H ,f∈S ,p)

[P ∈ PG
′,k′,R,W

q,v,Q ]

T · Tp
≤ (1 + ξ)2,

where [P ∈ PG
′,k′,R,W

q,v,Q ] is 1 if P ∈ PG
′,k′,R,W

q,v,Q , and 0 otherwise. Since the choice of P was
arbitrary, we get that

α(v) ≤ (1 + ξ)2(k′−2)
∑

{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

β(p)(1 + ξ)2|PG′,k′,R,Wq,v |

= (1 + ξ)2(k′−1)
∑

{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

β(p) · |PG′,k′,R,Wq,v |.

Symmetrically, we derive that

α(v) ≥ (1− ξ)2(k′−1)
∑

{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

β(p) · |PG′,k′,R,Wq,v |.

This completes the proof.
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Finally, we conclude the proof of Theorem 6.1.

Theorem 6.1. There is a deterministic 4k+O(
√
k(log2 k+log2 1

ε
))m log n-time polynomial-space al-

gorithm that, given a graph G, a positive integer k and an accuracy value 0 < ε < 1, outputs a
number y that satisfies (1 − ε)x ≤ y/2 ≤ (1 + ε)x where x is the number of k-paths in G. In

particular, if 1
ε = 2o(k

1
4 ), then the running time is 4k+o(k)m log n.

Proof. As in the proof of Theorem 4.2, for the sake of simplicity, we let G denote the graph
obtained after the addition of s (rather than the input graph G). Then, it is sufficient to show
the inequalities (1− ε)x ≤ y ≤ (1 + ε)x where x is the number of (k + 1)-paths in G with s as
an endpoint.

Moreover, observe that for all v ∈ V (G) \ {s}, it holds that∑
{p,q}∈E(G)

s.t. p/∈V (G−{s}),q∈V (G−{s})

βinit(p) · |PG,k,(),()q,v |

is equal to |PG,k+1
s,v | denoted by xG,k+1

s,v . Thus, by Lemma 6.1 with G′ = G, k′ = k and β = βinit,
we know that

• A(G, k, βinit, (), ()) runs in time

4
k+O(

√
k(log2 k+log2 1

ξ
))
m log n.

Moreover, A(G, k, βinit, (), ()) has a polynomial space complexity.

• For all v ∈ V (G), the number α(v) assigned to v by the assignment α returned by
A(G, k, βinit, (), ()) satisfies the following inequalities:

(1− ε′)2(k−1)xG,k+1
s,v ≤ α(v) ≤ (1 + ε′)2(k−1)xG,k+1

s,v .

First, by substituting ε′ and since ε
2 ≤ ln(1 + ε) ≤ ε, we have that A(G, k, βinit, (), ()) runs

in time

4
k+O(

√
k(log2 k+log2 2(k−1)

ln(1+ε)
))
m log n ≤ 4k+O(

√
k(log2 k+log2 1

ε
))m log n.

Thus, we obtain the claimed running time.
For the accuracy, substituting ε′ by ε, we have that for all v ∈ V (G), it holds that

(1−ε)xG,k+1
s,v ≤ (1− ln(1 + ε)

2(k − 1)
)2(k−1)xG,k+1

s,v ≤ α(v) ≤ (1+
ln(1 + ε)

2(k − 1)
)2(k−1)xG,k+1

s,v ≤ (1+ε)xG,k+1
s,v .

Having these inequalities at hand, as in the proof of Theorem 4.2, we obtain that

y =
∑

v∈V (G)\{s}

α(v) ≤
∑

v∈V (G)\{s}

(1 + ε)xG,k+1
s,v = (1 + ε)

∑
v∈V (G)\{s}

xG,k+1
s,v = (1 + ε)x.

Symmetrically, we obtain that (1− ε)x ≤ y. This completes the proof.

7 Extensions and Other Applications

Finally, we briefly discuss extensions and other applications of our work. For the sake of illus-
tration, we also present the proof of one of the claimed applications in detail (in Section 7.1).
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Extensions. The framework of divide-and-color [16] is well known to solve (the decision
version of) Subgraph Isomorphism where the pattern graph is a graph of bounded (by a fixed
constant) pathwidth. In particular, our algorithms immediately extend to provide the following
theorem.

Theorem 7.1. Let ε > 0. There is a deterministic 4k+O(
√
k(log2 k+log2 1

ε
))nt+O(1)-time (resp. ran-

domized 4k+O(log2 k)(1
ε )
O(log k)nt+O(1)-time) nt+O(1)-space algorithm that, given a graph G and a

graph H of pathwidth t on k vertices, outputs a number y that satisfies (1− ε)x ≤ y ≤ (1 + ε)x
where x is the number of subgraphs of G isomorphic to H.

When we deal with k-vertex paths (resp. k-vertex graphs of pathwidth t), we know that
there exists a vertex (resp. t + 1 vertices) whose removal results in two paths (resp. graphs of
pathwidth t) on at most k/2 (resp. k/2 + t+ 1) vertices. However, when we deal with trees (or,
more generally, graphs of treewidth t), k/2 is replaced by 2k/3. In turn, this means that at a
recursive step, k is ensured to decrease by k/3 but not by k/2, hence the recursive formula to
upper bound the running time of an algorithm yields a worse result. However, the “division
into small trees” trick introduced by Fomin et al. [23] to solve the k-Tree problem (that is, the
extension of k-Path where the pattern graph is a tree) easily resolves this issue and thereby
extends divide-and-color to solve Subgraph Isomorphism where the pattern graph is a graph
of bounded (by a fixed constant) treewidth with a negligible loss in time complexity. Roughly
speaking, the idea behind this trick is as follows. Having a tree (or forest) T at hand, we do not
remove only a single vertex, but c = O(1) vertices that result in the partition of T into O(1)
small trees. Then, we can group these small trees together into two sets that correspond to two
forests on “almost” k/2 vertices. The largest c is, the closer to k/2 these sizes are, yet additional
bookkeeping (to remember which c vertices were selected) is required. For the sake of clarity,
we briefly sketch the details of how this trick can be used to extend our improved randomized
algorithm for #k-Path from Section 4.2 to solve #k-Tree (or, more generally, patterns of
bounded treewidth) in Appendix A. By applying this trick to our deterministic algorithm for
#k-Path from Section 6 in the same manner, we obtain the following theorem.

Theorem 7.2. Let ε > 0. There is a deterministic 4.001k+O(
√
k(log2 1

ε
))nt+O(1)-time (resp. ran-

domized 4.001k(1
ε )
O(log k)nt+O(1)-time)nt+O(1)-space algorithm that, given a graph G and a graph

H of treewidth t on k vertices, outputs a number y that satisfies (1− ε)x ≤ y ≤ (1 + ε)x where
x is the number of subgraphs of G isomorphic to H.

The technical details of the extensions are those of completely standard bookkeeping on
graphs of bounded treewidth (see, e.g., the Chapters on treewidth in [19], which teach dynamic
programming over tree decompositions). Indeed, Alon and Gutner [4, 3] have skipped them
altogether. Still, we provide some more details in Appendix A.

Other Applications. As mentioned earlier, the approach employed in Section 4.2 and
Section 6 readily works for (essentially) all problems amenable to the framework of divide-and-
color [15]. Thus, we obtain Theorem 1.1 (restated below) where the list of problems stated in
it is illustrative rather than comprehensive.

Theorem 1.1. The following problems admit deterministic 4k+O(
√
k(log2 k+log2 1

ε
))nO(1)-time (resp.

randomized 4k+O(log2 k)(1
ε )
O(log k)nO(1)-time) FPT-ASs with polynomial space complexity: (i)

#Subgraph Isomorphism for k-vertex subgraphs of treewidth O(1); (ii) #q-Dimensional p-
Matching with k = (q− 1)p; (iii) #q-Set p-Packing with k = qp; (iv) #Graph Motif and
#Module Motif with k = 2p where p is the motif size; (v) #p-Internal Out-Branching
with k = 2p; (vi) #Partial Cover for k-element solutions.8

8For problems (i) and (iv), the basis 4 is replaced by the basis 4.001 (or, more precisely, 4 + δ for any fixed
constant δ > 0).
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7.1 Algorithms for #q-Dimensional p-Matching

In this section, we exemplify the additional applications of our approach by developing FPT-ASs
for a problem on set families rather than graphs, called #q-Dimensional p-Matching, whose
decision version has been extensively studied in Parameterized Complexity (see [19]). Here, the
input consists of positive integers p and q, a partition (U1, U2, . . . , Uq) of a universe U , a family
S of sets over U where |{S ∩ Ui}| = 1 for every S ∈ S and i ∈ {1, 2, . . . , q}, and an accuracy
parameter ε > 0. In this context, a p-packing in S is a subfamily of S that consists of p pairwise
disjoint sets. Our goal is to approximately count the number of p-packings in S, that is, if x
is the (unknown) number of p-packings in S, then the goal is to return a number y such that
(1− ε)x ≤ y ≤ (1 + ε)x.

In what follows, we choose an arbitrary order on U1, hence comparison between elements
in U1 will be well defined. Additionally, we suppose w.l.o.g. that the smallest element in U1,
denoted by s, does not belong to any set in S. (If this is not the case, we can add such an
element as a dummy element and hence ensure this property). Let n = |U | and m = |S|.

7.1.1 Randomized FPT-AS for #q-Dimensional p-Matching

Algorithm. Let k = (q − 1)p and ξ = ln(1 + ε)/(k − 1). Our algorithm, denoted by A,
is recursive. Every call to A has the form A(U ′,S ′, p′, β) where U ′ ⊆ U and U1 ⊆ U ′, S ′ is a
subfamily of S over U ′, p′ ∈ {1, . . . , p} and β : U1 → N0.9

The output of a call A(U ′,S ′, p′, β) should be an assignment α : U1 → N0 with the property
that for each element v ∈ U1, it holds that α(v) approximates the following number:∑

u∈U1
s.t. u<v

β(u) · xu,v,

where xu,v is the number of p′-packings H in S ′ where the largest element in (
⋃
H) ∩ U1 is v

and the smallest element in (
⋃
H) ∩ U1 is larger than u.

The initial call to the algorithm is with U ′ = U , S ′ = S, p′ = p, and β that assigns 1 to s
and 0 to all other elements in U1. The final output is

∑
v∈U1\{s} α(v).

We turn to describe a callA(U ′,S ′, p′, β). In the basis, where p′ = 1, we return an assignment
α : U1 → N0 defined as follows: For each element v ∈ U1, define

α(v) =
∑
u∈U1

s.t. u<v

β(u) · xv.

Here, xv is simply the number of sets in S ′ whose intersection with U1 is {v}.
Now, suppose that p′ ≥ 2. Denote k′ = (q − 1)p′. By Theorem 3.1, for a ξ-parsimonious

(n, k′/2, k′/2)-universal family F of sets over U , we can enumerate the sets F ∈ F with
delay O(n). For each set F ∈ F , we proceed as follows. We first recursively call A with
((U ′ ∩ F ) ∪ U1,S ′[F ], p′/2, β) where S ′[F ] = {S ∈ S ′ : S \ U1 ⊆ F}. Let γF be the output of
this call. Then, we recursively call A with ((U ′ \F )∪U1,S ′[U ′ \F ], p′/2, γF ) where S ′[U ′ \F ] =
{S ∈ S ′ : (S \ U1) ∩ F = ∅}. Let αF be the output of this recursive call.

Let T be the correction factor of F . After all sets F ∈ F were enumerated, the output
α : U1 → N0 is computed as follows. For all v ∈ U1, we calculate

α(v) =

(∑
F∈F

αF (v)

)
/T .

9Roughly speaking, for each element v ∈ U1, the value β(v) would be an approximation of the number of

p̂-packings H in Ŝ where the largest element in (
⋃
H) ∩ U1 is v, for a certain integer p̂ ∈ {1, 2, . . . , p− p′} and a

subfamily Ŝ ⊆ S that satisfies (
⋃
Ŝ) ∩ (

⋃
S ′) ⊆ U1.
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Note that we do not store all the assignments αF simultaneously, but we merely store one such
assignment at a time and delete it immediately after αF (v)/T , for every v ∈ U1, is added. This
completes the description of A.

Analysis. The main part of the analysis is done in the proof of the following lemma.

Lemma 7.1. For some fixed constant η > 0, any call A(U ′,S ′, p′, β) satisfies the conditions
below . Here, k′ = (q − 1)p′.

• A(U ′,S ′, p′, β) takes time ηlog k′4k
′
k′log k′(log n)log k′(n+qm)( 1

ξ2
)log k′ and polynomial space.

• If all constructions of approximate universal families were successful, then for all v ∈ U1,
the number α(v) assigned to v by the assignment α returned by A(U ′,S ′, p′, β) satisfies
the following inequalities:

(1− ξ)k′−1 ·

 ∑
u∈U1

s.t. u<v

β(u) · xu,v

 ≤ α(v) ≤ (1 + ξ)k
′−1 ·

 ∑
u∈U1

s.t. u<v

β(u) · xu,v

,
where xu,v is the number of p′-packings H in S ′ such that the largest element in (

⋃
H)∩U1

is v and the smallest element in (
⋃
H) ∩ U1 is larger than u.

Proof. Let p′ = p/2d. The proof is by backwards induction of d. In the basis, where p′ = 1, the
part of the claim that concerns the space complexity and the second condition trivially holds.
For the running time bound, notice that the computation can be performed in time O(n+m).
Indeed, to this end, we first compute xv for all v ∈ U1 in time O(n+m). Then, we iterate over
U1 from its smallest element to its largest element: when we consider an element v after we have
just considered an element v′, we can compute α(v) easily by observing that the computation
stated in the specification of the algorithm is equivalent to α(v) = xv · (β(v′) + α(v′)/xv′) in
time O(1).

Now, let d ≤ log2 p− 1, and suppose that the claim holds for d+ 1. Clearly, A(U ′,S ′, p′, β)
has a polynomial space complexity. By Theorem 3.1, for some fixed constant λ > 0, we have that

|F | ≤ λ · 2k′ · k′ log n · 1

ξ2
.

By the inductive hypothesis, for a fixed constant τ > 0, the running time of A(U ′,S ′, p′, β) is
upper bounded by

|F | ·

2 · ηlog k′
2 4

k′
2

(
k′

2

)log k′
2

(log n)log k′
2 (n+ qm)

(
1

ξ2

)log k′
2

+ τ(n+ qm)

.
In particular, the term τ(n+ qm) above subsumes the computation of a single family S ′[F ] and
a single family S ′[U ′ \F ]. Similarly to the proof of Theorem 4.2, by choosing η = 10 max{λ, τ},
we obtain that the running time of A(U ′,S ′, p′, β) is upper bounded by

ηlog k′4k
′
k′

log k′
(log n)log k′(n+ qm)

(
1

ξ2

)log k′

.

Towards the proof of the second item of the claim, suppose that all constructions of ap-
proximate universal families were successful, and consider some v ∈ U ′. For a subfamily Ŝ ⊆ S
and a, b ∈ U1, let xŜa,b denote the number of p′/2-packings H in Ŝ where the largest element
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in (
⋃
H) ∩ U1 is v and the smallest element in (

⋃
H) ∩ U1 is larger than u. By the inductive

hypothesis, we have that

α(v) =
1

T
·
∑
F∈F

αF (v)

≤ 1

T
·
∑
F∈F

(1 + ξ)
k′
2
−1 ·

∑
b∈U1

s.t. b<v

γF (b) · xS
′[U ′\F ]

b,v


≤ (1 + ξ)

k′
2
−1 · 1

T
·
∑
F∈F

 ∑
b∈U1

s.t. b<v

(1 + ξ)
k′
2
−1
∑
a∈U1

s.t. a<b

β(a) · xS
′[F ]

a,b

 · xS′[U ′\F ]
b,v


≤ (1 + ξ)k

′−2 · 1

T
·
∑
F∈F

 ∑
a,b∈U1

s.t. a<b<v

β(a) · xS
′[F ]

a,b · xS
′[U ′\F ]

b,v

.
For any element a ∈ U1, let Pa,v denote the set of p′-packings H in S ′ such that the largest
element in (

⋃
H)∩U1 is v and the smallest element in (

⋃
H)∩U1 is larger than u. In addition,

for any subset F ⊆ U ′, let Pa,v[F ] denote the set of packings H ∈ Pa,v such that the p′/2 sets
in H whose elements in U1 are smallest have the property that their intersection with U ′ \ U1

belongs to F , and the other p′/2 sets in H (whose elements in U1 are largest) have the property
that their intersection with U ′ \ U1 has no element that belongs to F . Thus, we have that

α(v) ≤ (1 + ξ)k
′−2 · 1

T
·
∑
F∈F

 ∑
a∈U1

s.t. a<v

β(a) · |Pa,v[F ]|


= (1 + ξ)k

′−2 · 1

T
·
∑
a∈U1

s.t. a<v

(
β(a) ·

∑
F∈F

|Pa,v[F ]|

)
.

Since F is a ξ-parsimonious (n, k′/2, k′/2)-universal family, for any element a ∈ U1 and packing
H ∈ Pa,v, the number of sets F ∈ F such that H ∈ Pa,v[F ] is upper bounded by (1 + ξ)T .
Thus, we have that

α(v) ≤ (1 + ξ)k
′−2 · 1

T
·
∑
a∈U1

s.t. a<v

β(a) · (1 + ξ)T |Pa,v|

= (1 + ξ)k
′−1 ·

 ∑
a∈U1

s.t. a<v

β(a) · xa,v

.

Symmetrically, we derive that (1− ξ)k′−1 ·

 ∑
a∈U1

s.t. a<v

β(a) · xa,v

 ≤ α(v). This completes the

proof.

Now, we conclude the proof of correctness of our algorithm.

Theorem 7.3. There is a randomized (4k+o(k)(n+m)+(n+m)no(1))(1
ε )
O(log k)-time polynomial-

space algorithm that, given positive integers p and q where k = (q−1)p, a partition (U1, U2, . . . , Uq)
of a universe U , a family S of sets over U where |{S ∩ Ui}| = 1 for every S ∈ S and
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i ∈ {1, 2, . . . , q}, and an accuracy value 0 < ε < 1, outputs a number y that (with high prob-
ability) satisfies (1− ε)x ≤ y ≤ (1+ ε)x where x is the number of p-packings in S. In particular,
if 1

ε = 2o(k/ log k), then the running time is 4k+o(k)(n+m)no(1).

Proof. Let βinit be the assignment βinit : {s} → N0 that assigns 1 to s and 0 to all other elements
in U1. Observe that for all v ∈ U1 \ {s}, it holds that

∑
u∈U1

s.t. u<v
βinit(u) · xu,v is equal to xs,v.

Here, for any two elements a, b ∈ U1, xa,b is the number of p-packings H in S such that the
largest element in (

⋃
H) ∩ U1 is a and the smallest element in (

⋃
H) ∩ U1 is larger than b. In

particular, by the choice of s, xs,v is the number of p-packings H in S such that the largest
element in (

⋃
H)∩U1 is v. Thus, by Lemma 7.1 with U ′ = U , S ′ = S, p′ = p and β = βinit, we

know that

• A(U,S, p, βinit) takes time 4k+O(log2 k)(log n)log k(n+m)(1
ξ )log k and polynomial space.

• If all constructions of approximate universal families were successful, then for all v ∈ U1,
the number α(v) assigned to v by the assignment α returned by A(U,S, p, βinit) satisfies
(1− ξ)k−1xs,v ≤ α(v) ≤ (1 + ξ)k−1xs,v.

As in the proof of Theorem 4.1, 4k+O(log2 k)(log n)log k(n + m)(1
ξ )log k = (4k+o(k)(n + m) +

(n + m)no(1))(1
ε )
O(log k). Moreover, as in the proof of Theorem 4.1, with high probability (say,

higher than 9/10), all constructions of approximate universal families were successful. Thus, we
know that for all v ∈ U1, it holds that (1− ξ)k−1xs,v ≤ α(v) ≤ (1 + ξ)k−1xs,v. By substituting
ξ as in the proof of Theorem 4.1, for all v ∈ U1, it follows that (1− ε)xs,v ≤ α(v) ≤ (1 + ε)xs,v.

We thus obtain that

y =
∑
v∈U1

α(v) ≤
∑
v∈U1

(1 + ε)xs,v = (1 + ε)
∑
v∈U1

xs,v = (1 + ε)x.

Symmetrically, we obtain that (1− ε)x ≤ y. This completes the proof.

The time complexity bound above can be easily reduced to 4k+O(log2 k)(n+m) log n(1
ε )
O(log k).

Indeed, it is only required to utilize Proposition 5.2 to reduce the universe size from n to k2

before calling the algorithm in Theorem 7.3; then, the term that gives rise to no(1) above is
subsumed by 4O(log2 k). Since this is precisely what our deterministic algorithm does to obtain
such dependency, we do not repeat these details and directly state the result.

Corollary 7.1. There is a randomized 4k+O(log2 k)(n+m) log n(1
ε )
O(log k)-time polynomial-space

algorithm that, given positive integers p and q where k = (q−1)p, a partition (U1, U2, . . . , Uq) of a
universe U , a family S of sets over U where |{S ∩Ui}| = 1 for every S ∈ S and i ∈ {1, 2, . . . , q}
and an accuracy value 0 < ε < 1, outputs a number y that (with high probability) satisfies
(1−ε)x ≤ y ≤ (1+ε)x where x is the number of p-packings in S. In particular, if 1

ε = 2o(k/ log k),

then the running time is 4k+o(k)(n+m) log n.

7.1.2 Deterministic FPT-AS for #q-Dimensional p-Matching

Algorithm Specification. Let k = (q − 1)p and ξ = ln(1+ε)
2(k−1) . Our algorithm, denoted by

A, is recursive. We first specify the arguments with which A is called. Then, we specify the
goal of a recursive call. Afterwards, we note how A is initially called, and then we describe the
computation that is executes.

Arguments. Each call to A is of the form A(U ′,S ′, p′, β,R,W) where U ′ ⊆ U and U1 ⊆
U ′, S ′ is a subfamily of S over U ′, p′ = p/2d for some d ∈ {0, 1, . . . , log2 k}, β : U1 → N0, and
R = ((h1, f1,p1, σ1), (h2, f2,p2, σ2), . . . , (hd, fd,pd, σd)). (The argument W is defined later.)
For each i ∈ {1, 2, . . . , d}, it holds that
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• ki := k
2i

, zi := 2ki
2

ξ , ti :=
√
ki and si := ki/ti.

• hi is a function from {1, 2, . . . , zi−1} to {1, 2, . . . , zi} if i ≥ 2, and from U \ U1 to
{1, 2, . . . , z1} otherwise,

• fi is a function from {1, 2 . . . , zi} to {1, 2, . . . , ti},

• pi is a function from {1, 2, . . . , ti} to {1, 2, . . . , si} such that
∑ti

j=1 pi(j) = ki/2, and

• σi ∈ {left, right}.

Additionally, define z0 = n.
Towards the description of W, we introduce the following definition.

Definition 7.1. For the arguments U ′,S ′, p′ and R of a call to A, the collection of relevant
tuples WU ′,S′,p′,R is the collection of all tuples W = (w1,w2, . . . ,wd) such that for each i ∈
{1, 2, . . . , d}, the following condition holds:

• For each j ∈ {1, 2, . . . , ti}, if σi = left then wi(j) ≤ pi(j), and otherwise wi(j) ≤
si − pi(j).

In case d = 0 (that is, the initial call), WU,S,p,() = {()}.

Having this definition at hand, we note that the argument W in a call A(U ′,S ′, p′, β,R,W)
is a tuple from WU ′,S′,p′,R.

Output Value. Before we state the value returned by a call, we define which packings
“comply” with the demands imposed by R and W precise. Since our parsimonious universal
tuples only work properly for nice sets, it will be crucial that we only count paths that fit this
definition.

Definition 7.2. For a call A(U ′,S ′, p′, β,R,W) with W = (w1,w2, . . . ,wd) ∈WU ′,S′,p′,R, and

elements u, v ∈ U1, the collection of relevant packings PU
′,S′,p′,R,W

u,v is the collection of all p′-
packings H in S ′ where the largest element in (

⋃
H) ∩ U1 is v and the smallest element in

(
⋃
H) ∩ U1 is larger than u, such that the following conditions holds:

• For each i ∈ {1, 2, . . . , d}, denote h?i := (hi ◦ · · · ◦ (h3 ◦ (h2 ◦ h1))). Then, the function h?d
is injective when restricted to (

⋃
H) \ U1.

• For each i ∈ {1, 2, . . . , d}, denote f?i := fi ◦ h?i . Then, for all i ∈ {1, 2, . . . , d} and
j ∈ {1, 2, . . . , ti}, it holds that |{v ∈ (

⋃
H) \ U1 : f?i (v) = j}| = wi(j).

Note that for W = (), PU
′,S′,p′,R,W

u,v is the collection of all p′-packings H in S ′ where the largest
element in (

⋃
H) ∩ U1 is v and the smallest element in (

⋃
H) ∩ U1 is larger than u.

The value returned by each call A(U ′,S ′, p′, β,R,W) is an assignment α : U1 → N0 with
the following property: For each vertex v ∈ U1, it holds that α(v) approximates the following
number: ∑

u∈U1
s.t. u<v

β(u) · |PU ′,S′,p′,R,Wu,v |.

Initial Call. The initial call isA(U,S, p, βinit, (), ()) (that is, R andW are 0-length tuples),
where βinit assigns 1 to s and 0 to every other vertex in U1. The final output, returned by the
initial call, is

∑
v∈U1

α(v).
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Computation: Basis. Now, we turn to describe a call A(U ′,S ′, p′, β,R,W). In the
basis, where p′ = 1, for every element v ∈ U1, we compute the integer α(v) as follows. First,

we compute PU
′,S′,R,W

v , defined to be the collection of sets S ∈ S ′ that satisfy the following
conditions: (i) S ∩ U1 = {v}; (ii) h?d is injective when restricted to S \ U1; (iii) for all i ∈
{1, 2, . . . , d} and j ∈ {1, 2, . . . , ti}, it holds that |{v ∈ S \ U1 : f?i (v) = j}| = wi(j). Then, we

set α(v) = |PU
′,S′,R,W

v |.

Computation: Step. Next, suppose that p′ = p/2d ≥ 2. DenoteR = ((h1, f1,p1, σ1), (h2,
f2,p2, σ2), . . . , (hd, fd,pd, σd)) and W = (w1,w2, . . . ,wd). Let k′ = (q − 1)p′. By Theorem 5.1,
for an ξ-parsimonious (zd, k

′/2, k′/2)-universal tuple (H ,S , {F h,f,p}|h∈H ,f∈S ,p) with universe

{1, 2, . . . , zd},10 after spending preprocessing time k′O(1)zd log zd
ξO(1) , we enumerate the ` quadruples

Q = (h, f,p, F ) ∈ (H ,S , {F h,f,p}|h∈H ,f∈S ,p) with delay ∆, where

` = 2
k′+O(

√
k′(log2 k′+log2 1

ξ
))

log zd, and

∆ = 2
O(
√
k′(log2 k′+log2 1

ξ
))
.

For each quadruple Q = (h, f,p, F ), we proceed as follows.

• Denote F ? = (h ◦ h?d)−1(F ) ∩ (U ′ \ U1), that is, F ? is the set of elements in U ′ \ U1 that
h ◦ h?d maps to integers in F .

• Denote Rleft = R+ ((h, f,p, left)), and Rright = R+ ((h, f,p, right)).

• Denote S ′[F ?] = {S ∈ S ′ : S \ U1 ⊆ F ?}, and S ′[U ′ \ F ?] = {S ∈ S ′ : (S \ U1) ∩ F ? = ∅}.

• For all Wleft = (wleft
1 ,wleft

2 , . . . ,wleft
d+1 ) ∈ WF ?∪U1,S′[F ?],p′/2,Rleft

and Wright = (w
right
1 ,

w
right
2 , . . . ,w

right
d+1 ) ∈WU ′\F ?,S′[U ′\F ?],p′/2,Rright

, we say that (Wleft,Wright) fits W if two
conditions hold:

1. for all i ∈ {1, . . . , d} and j ∈ {1, . . . , ti}, it holds that wi(j) = wleft
i (j) + w

right
i (j);

2. for all j ∈ {1, . . . , td+1}, it holds that p(j) = wleft
d+1 (j) and sd+1 − p(j) = w

right
d+1 (j).

Note that if W = (), then the first condition is vacuously satisfied.

Having established the notations above, for everyWleft ∈WF ?∪U1,S′[F ?],p′/2,Rleft
, we perform

two recursive calls as follows:

1. First, we call A with (F ? ∪ U1,S ′[F ?], p′/2, β,Rleft,Wleft). Let αQ,Wleft be the output
of this call.

2. Second, we call A with (U ′ \ F ?,S ′[U ′ \ F ?], p′/2, αQ,Wleft ,Rright,Wright) where Wright

is the unique tuple in WU ′\F ?,S′[U ′\F ?],p′/2,Rright
such that (Wleft,Wright) fits W. Let

αQ,Wright be the output of this recursive call.

After all quadruples Q were enumerated, the output α : U1 → N0 is computed as follows.
First, for all v ∈ U1 and a quadruple Q = (h, f,p, F ), we define

αQ(v) =
∑

(Wleft,Wright) fits W

αQ,Wright(v).

Note that we do not store all the assignments αQ,Wleft , αQ,Wright and αQ simultaneously, but we
only need to store one such assignment at a time in order to compute the assignment mentioned
below “on the go”.

10For d = 0, we refer to the universe U \ U1.
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Let T > 0 and for every p, Tp > 0, be the correction factors of (H ,S , {F h,f,p}|h∈H ,f∈S ,p)
(see Lemma 5.2). For all v ∈ U1, we calculate

α(v) =
∑

Q=(h,f,p,F )∈(H ,S ,{Fh,f,p}|h∈H ,f∈S ,p)

αQ(v)

T · Tp
.

This completes the description of A.

Analysis. The main part of the analysis is done in the proof of the following lemma.

Lemma 7.2. There exists a fixed constant η > 0 such that for any call A(U ′,S ′, p′, β,R,W)
where (q − 1)p′ = k′ = k/2d, the following conditions hold.

• A(U ′,S ′, p′, β,R,W) runs in time

4
k′+η

√
k′(log2 k′+log2 1

ξ
) · 8log k′·

√
k log k ·M,

where M = (n+ qm) if k′ < k and M = (n+ qm) log n otherwise (i.e., k′ = k). Moreover,
A(U ′,S ′, p′, β,R,W) has a polynomial space complexity.

• For all v ∈ U1, the number α(v) assigned to v by the assignment α returned by A(U ′,S ′, p′, β,R,W)
satisfies the following inequalities:

α(v) ≥ (1− ξ)2(k′−1)
∑

u∈U1
s.t. u<v

β(u) · |PU
′,S′,p′,R,W

u,v |.

α(v) ≤ (1 + ξ)2(k′−1)
∑

u∈U1
s.t. u<v

β(u) · |PU
′,S′,p′,R,W

u,v |.

Proof. The proof is by induction of d. In the basis, where p′ = 1, the claim easily holds. Now,
let d ≤ log2 p− 1, and suppose that the claim holds for d+ 1.

Time and Space Complexities. It is clear that A(U ′,S ′, p′, β,R,W) has a polynomial space
complexity. Note that zd = O(n) if d = 0, and zd = O(k′) otherwise. Denote N = n if d = 0,

and N = 2 (so logN = 1) otherwise. Then, after preprocessing time bounded by k′O(1)N logN
ξO(1) ,

for some fixed constant λ > 0, the ` quadruples Q = (h, f,p, F ) ∈ (H ,S , {F h,f,p}|h∈H ,f∈S ,p)
are enumerated with delay ∆, where

` = 2
k′+λ

√
k′(log2 k′+log2 1

ξ
)
logN, and

∆ = 2
λ
√
k′(log k′+log 1

ξ
)
.

The number of pairs (Wleft,Wright) that fit W, which equals |WF ?∪U1,S′[F ?],p′/2,Rleft
|, is upper

bounded by

r :=

d∏
i=1

(si + 1)ti =

d∏
i=1

(

√
k

2i
+ 1)

√
k

2i ≤
log k∏
i=1

(
√
k)

√
k

2i < 2
√
k log k·

∑log k
i=1 ( 1√

2
)i
< 8

√
k log k.

Thus, by the inductive hypothesis, for some fixed constant ζ > 0, the running time ofA(U ′,S ′, p′, β,R,W)
is upper bounded by

` ·
(
ζ · r · 4

k′
2

+η
√
k′
2

(log2 k′
2

+log2 1
ξ

)
8log k′

2
·
√
k log k(n+ qm)

)
≤ 2

k′+λ
√
k′(log2 k′+log2 1

ξ
)
logN · ζ · 8

√
k log k · 4

k′
2

+η
√
k′
2

(log2 k′+log2 1
ξ

)
8(log k′−1)

√
k log k(n+ qm)

= ζ4
k′+λ

√
k′(log2 k′+log2 1

ξ
)+ η√

2

√
k′(log2 k′

2
+log2 1

ξ
) · 8log k′·

√
k log k ·M.
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Thus, by choosing η to be a large enough constant that depends only on ζ and λ (say, η =
10 max{ζ, λ}), the expression above is upper bounded by

4
k′+η

√
k′(log2 k′+log2 1

ξ
) · 8log k′·

√
k log k ·M.

Accuracy. Towards the proof of the second item of the claim, consider some vertex v ∈ U1. By
definition, we have that

α(v) =
∑

Q=(h,f,p,F )∈(H ,S ,{Fh,f,p}|h∈H ,f∈S ,p)

∑
(Wleft,Wright) fits W

αQ,Wright(v)

T · Tp
.

By the inductive hypothesis, for each term αQ,Wright(v) in the sum above, we have that

αQ,Wright(v) ≤ (1 + ξ)k
′−2

∑
b∈U1

s.t. b<v

αQ,Wleft(b) · |PU
′\F ?,S′[U ′\F ?],p′/2,Rright,Wright

b,v |.

By applying the inductive hypothesis again, we have that

αQ,Wright(v) ≤
(1 + ξ)2(k′−2)

∑
a,b∈U1

s.t. a<b<v

β(a) · |PF
?∪U1,S′[F ?],p′/2,Rleft,Wleft

a,b | · |PU
′\F ?,S′[U ′\F ?],p′/2,Rright,Wright

b,v |.

For each quadruple Q = (h, f,p, F ) ∈ (H ,S , {F h,f,p})|h∈H ,f∈S ,p, we let PU
′,S′,p′,R,W

a,v,Q denote

the collection of packings H ∈ PU
′,S′,p′,R,W

a,v that satisfy the following conditions:

1. h?d+1 := h ◦ h?d is injective when restricted to (
⋃
H) \ U1;

2. for all j ∈ {1, 2, . . . , td+1}, it holds that |{v ∈ (
⋃
H) \ U1 : (f ◦ h?d+1)(v) = j}| = p(j);

3. the p′/2 sets in H whose elements in U1 are smallest have the property that their inter-
section with U ′ \U1 belongs to F ?, and the other p′/2 sets in H (whose elements in U1 are
largest) have the property that their intersection with U ′ \U1 has no element that belongs
to F ?.

To proceed, observe that for each quadruple Q = (h, f,p, F ) ∈ (H ,S , {F h,f,p})|h∈H ,f∈S ,p, it
holds that ∑

(Wleft,Wright) fits W

∑
b∈U1

s.t. a<b<v

|PF
?∪U1,S′[F ?],p′/2,Rleft,Wleft

a,b | · |PU
′\F ?,S′[U ′\F ?],p′/2,Rright,Wright

b,v |

= |PU
′,S′,p′,R,W

a,v,Q |.

Thus, we have that

α(v) ≤ (1 + ξ)2(k′−2)
∑
a∈U1

s.t. a<v

β(a)
∑

Q=(h,f,p,F )∈(H ,S ,{Fh,f,p}|h∈H ,f∈S ,p)

|PU
′,S′,p′,R,W

a,v,Q |
T · Tp

.
By Lemma 5.2, for each packing H ∈ PU

′,S′,p′,R,W
a,v , it holds that

• the number of distinct triples (h, f,p) (from which the quadruples consist) with respect
to which H satisfies Properties 1 and 2 above is upper bounded by (1 + ξ) · T , and
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• for each triple (h, f,p) with respect to which H satisfies Properties 1 and 2 above, the
number of sets F ∈ F h,f,p with respect to which H satisfies Property 3 above is upper
bounded by (1 + ξ) · Tp.

Thus, we have that

∑
Q=(h,f,p,F )∈(H ,S ,{Fh,f,p}|h∈H ,f∈S ,p)

[H ∈ PU
′,S′,p′,R,W

a,v,Q ]

T · Tp
≤ (1 + ξ)2,

where [H ∈ PU
′,S′,p′,R,W

a,v,Q ] is 1 if H ∈ PU
′,S′,p′,R,W

a,v,Q , and 0 otherwise. Since the choice of H was
arbitrary, we get that

α(v) ≤ (1 + ξ)2(k′−2)
∑
a∈U1

s.t. a<v

β(a)(1 + ξ)2|PU ′,S′,p′,R,Wa,v |

= (1 + ξ)2(k′−1)
∑
a∈U1

s.t. a<v

β(a)|PU ′,S′,p′,R,Wa,v |.

Symmetrically, we derive that

α(v) ≥ (1− ξ)2(k′−1)
∑
a∈U1

s.t. a<v

β(a)|PU ′,S′,p′,R,Wa,v |.

This completes the proof.

Finally, we conclude the proof of correctness of our algorithm.

Theorem 7.4. There is a deterministic 4k+O(
√
k(log2 k+log2 1

ε
))(n + m) log n-time polynomial-

space algorithm that, given positive integers p and q where k = (q−1)p, a partition (U1, U2, . . . , Uq)
of a universe U , a family S of sets over U where |{S ∩ Ui}| = 1 for every S ∈ S and
i ∈ {1, 2, . . . , q}, and an accuracy value 0<ε< 1, outputs a number y that satisfies (1 − ε)x ≤
y ≤ (1 + ε)x where x is the number of p-packings in S. In particular, if 1

ε = 2o(k
1
4 ), then the

running time is 4k+o(k)(n+m) log n.

Proof. Observe that for all v ∈ U1, it holds that
∑

u∈U1
s.t. u<v

βinit(u) · |PU,S,p,(),()u,v | is equal to the

number of p-packings in S such that the largest element they contain from U1 is v; we denote
this number by xv. Thus, by Lemma 6.1 with U ′ = U , S ′ = S, p′ = p and β = βinit, we know
that

• A(U,S, p, βinit, (), ()) runs in time 4
k+O(

√
k(log2 k+log2 1

ξ
))

(n+m) log n. Moreover, A(U,S, p,
βinit, (), ()) has a polynomial space complexity.

• For all v ∈ U1, the number α(v) assigned to v by the assignment α returned byA(U,S, p, βinit, (), ())
satisfies the following inequalities:

(1− ξ)2(k−1)xv ≤ α(v) ≤ (1 + ξ)2(k−1)xv.

First, by substituting ξ and since ε
2 ≤ ln(1 + ε) ≤ ε, we have that A(U,S, p, βinit, (), ()) runs

in time

4
k+O(

√
k(log2 k+log2 2(k−1)

ln(1+ε)
))

(n+m) log n ≤ 4k+O(
√
k(log2 k+log2 1

ε
))(n+m) log n.

Thus, we obtain the claimed running time.
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For the accuracy, substituting ξ by ε, we have that for all v ∈ U1, it holds that

(1− ε)xv ≤ (1− ln(1 + ε)

2(k − 1)
)2(k−1)xv ≤ α(v) ≤ (1 +

ln(1 + ε)

2(k − 1)
)2(k−1)xv ≤ (1 + ε)xv.

Having these inequalities at hand, as in the proof of Theorem 4.2, we obtain that

y =
∑
v∈U1

α(v) ≤
∑
v∈U1

(1 + ε)xv = (1 + ε)
∑
v∈U1

xv = (1 + ε)x.

Symmetrically, we obtain that (1− ε)x ≤ y. This completes the proof.
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A Extension to Trees (and Bounded Treewidth Graphs)

We will make use of the following notation. Given a tree T and a vertex p ∈ V (T ), we let Tp
denote the subtree of T rooted at p, and let Tp be the tree obtained when Tp is removed from T .
Our algorithm for #k-Tree will rely on two parts. The first is an extension of the algorithm
from Section 4.2 to solve #k-Tree in time 6.75k+o(k)nO(1)(1

ε )
O(log k). To this end, we will make

use of the following well-known (folklore) proposition about separators in trees.

Proposition A.1 (Folklore). Let T be a t-vertex tree. Then, there exists a vertex p ∈ V (T )
such that both |V (Tp)| ≤ 2

3 t and |V (Tp)| ≤ 2
3 t. Further, such a vertex p can be computed in

polynomial time.

So, we will consider the following lemma in Appendix A.2. Here, we solve a slightly more
general problem than #k-Tree, where the mapping of some vertices is fixed, as this generaliza-
tion will come in handy for our main algorithm. Clearly, the success probability can be boosted
by repetitions.

Lemma A.1. There is a randomized 6.75k+o(k)nO(1)(1
ε )
O(log k)-time polynomial-space algorithm

that, given a graph G on n vertices, a tree T on k vertices, an injection f : U → V (G) for some
U ⊆ V (T ), and an accuracy value 0 < ε < 1, outputs a number y that (with high probability,
say, at least 9/10) satisfies (1 − ε)x ≤ y ≤ (1 + ε)x where x is the number of isomorphisms
between T and all subtrees of G such that every vertex p ∈ U is mapped to f(p).

We will only call this algorithm with a parameter k′ that is extremely small (yet linear in k),
and so the fact that the constant is 6.75 rather than 4 will essentially have no consequence (as
we eventually strive to derive the base 4.001 rather than exactly 4). This will be done by our
main algorithm, where we apply the “division into small trees” trick, and which is an extension
of the algorithm from Section 4.1. This trick is based on the following result.

Proposition A.2 ([23]). For any c ≥ 1 and t-vertex tree T , there exists a subset W ⊆ V (T ) of
size O(c) such that each tree R in T−W contains at most O(t/c) vertices and |NT (V (R))∩W | ≤
2. Moreover, such a set W can be computed in polynomial time.

For us, c will be some fixed constant. So, we will consider the following theorem in Ap-
pendix A.1.

Theorem A.1. There is a randomized 4.001knO(1)(1
ε )
O(log k)-time polynomial-space algorithm

that, given a graph G on n vertices, a tree T on k vertices and an accuracy value 0 < ε < 1,
outputs a number y that (with high probability, say, at least 9/10) satisfies (1−ε)x ≤ y ≤ (1+ε)x
where x is the number of isomorphisms between T and all subtrees of G.

We will skip formal proofs of correctness (which are essentially the same as the proofs in
Sections 4.1 and 4.2), but we will fully describe the algorithms in the next two subsections. We
remark that if we would like to count the number of subtrees of G that are isomorphic to T ,
then the number output by our algorithms should be divided by the number of automorphisms
of T .

A.1 Proof of Lemma A.1

We root T at some arbitrarily chosen vertex, and in what follows, we treat T accordingly as a
rooted tree. For a vertex p ∈ V (T ), we let parent(p) denote the parent of p in T . For a subtree
T ′ of T , we let root(T ′) denote the root of T ′, which is the (unique) vertex of T ′ that is closest
(in T ) to the root of T . Additionally, we let children(T ′) denote the set of vertices in NT (V (T ′))
that are descendants of root(T ′) in T (these are all vertices in NT (V (T ′)) expect for at most
one, which is the parent of root(T ′) in T , unless root(T ′) = root(T )).
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Algorithm. Let ξ = ln(1 + ε)/(k − 1). Our algorithm, denoted by A, is recursive. Each
call to A is of the form A(G′, T ′, B) where G′ is an induced subgraph of G, T ′ is a subtree of T ,
and B = {βp : p ∈ children(T ′)} where for every p ∈ children(T ′), βp : V (G) \V (G′)→ N0. (The
supports of different functions βp can be assumed to be disjoint.) To see the correspondence to
the algorithm in Section 4.2, let k′ = |V (T ′)|.

The call A(G′, T ′, B) should output an assignment α : V (G′) → N0 with the following
property: For each vertex v ∈ V (G′), it holds that α(v) approximates the following number:

∑
g:children(T ′)→V (G)\V (G′)

 ∏
p∈children(T ′)

βp(g(p))

 · xG′,T ′g,v

 ,

where xG
′,T ′

g,v is the number of isomorphisms h between T ′ and all subtrees of G′ such that:

1. For all p ∈ V (T ′) ∩ domain(f), h(p) = f(p).

2. For all p ∈ children(T ′), h(parent(p)) is a neighbor (in G) of g(p).

We note that if children(T ′) = ∅, then the above expression only corresponds to g with empty

domain, and then we just mean that α(v) approximates xG
′,T ′

g,v (where g is the function with
empty domain), which is the number of isomorphisms h between T ′ and all subtrees of G′ such
that for all p ∈ V (T ′) ∩ domain(f), h(p) = f(p).

The initial call to the algorithm is with G′ = G, T ′ = T , and B = ∅. The final output is∑
v∈V (G) α(v).

We turn to describe a call A(G′, T ′, B). In the basis, where k′ = 1, we return an assignment
α : V (G′) → N0 defined as follows: If root(T ′) /∈ domain(f), then for each vertex v ∈ V (G′),
define

α(v) =
∑

g:children(T ′)→NG(v)\V (G′)

 ∏
p∈children(T ′)

βp(g(p))

 .

This expression is computed in polynomial time using dynamic programming. To this end, we
denote children(T ′) = {q1, q2, . . . , qt} where t = |children(T ′)|, and observe that the aforemen-
tioned expression is equal to:

∑
vt∈NG(v)\V (G′)

βqt(vt) · ∑
vt−1∈NG(v)\V (G′)

βqt−1(vt−1) · · ·

 ∑
q1∈NG(v)\V (G′)

βq1(v1)

 · · ·


So, it can be compute using a table with an entry for every qi, i ∈ {1, 2, . . . , t}.
If root(T ′) ∈ domain(f), then we use the aforementioned expression only when v = f(root(T ′)),

and for every other v ∈ V (G′), we set α(v) = 0.
Now, suppose that k′ ≥ 2. We use the algorithm in Proposition A.1 to obtain a vertex p. By

Theorem 3.1, for a ξ-parsimonious (n, |V (T ′p)|, |V (T ′p)|)-universal family F of sets over V (G),
we can enumerate the sets F ∈ F with delay O(n). For each set F ∈ F , we proceed as follows.

1. We first recursively call A with (G′[F ], T ′p, B
1
F ) where B1

F is obtained from B by taking
only the functions βq where q ∈ children(T ′p), and extending each such function to assign
0 to every vertex in V (G′) \F . Let βp,F be the output of this call, and extend it to assign
0 to every vertex in V (G) \ V (G′).

2. Then, we recursively call A with (G′−F, T ′p, B2
F ) where B2

F is obtained from B by taking

only the functions βq where q ∈ children(T ′p) \ {p}, and extending each such function to
assign 0 to every vertex in F , as well as inserting βp,F . Let αF be the output of this
recursive call.
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Let T be the correction factor of F . After all sets F ∈ F were enumerated, the output
α : V (G′)→ N0 is computed as follows. For all v ∈ V (G′), we calculate

α(v) =

 ∑
F∈F

s.t. v/∈F

αF (v)

 /T .

Note that we do not store all the assignments αF simultaneously, but we merely store one such
assignment at a time and delete it immediately after αF (v)/T , for every v ∈ V (G′), is added.
This completes the description of A.

Analysis. It should be clear that the space complexity is polynomial. Now, let us briefly
explain why we get the base 6.75. Let T(k′) denote the time complexity of the algorithm when
called with T ′ such that |V (T ′)| = k′. Observe that by Proposition A.1 and Theorem 3.1, we
can bound T(k′) as follows:

T(k′) = max
1
3
k′≤t≤ 2

3
k′

(
k′

t

)
· (T(t) + T(k′ − t)) · nO(1)

=

(
k′

2
3k
′

)
· T(

2

3
k′) · nO(1)

= (
3

2
2
3

)k
′ · T(

2

3
k′) · nO(1)

= (
3

2
2
3

)
∑∞
i=0( 2

3
)ik′ · nO(1)

= (
3

2
2
3

)3k′ · nO(1) = (
33

22
)k
′ · nO(1) = 6.75k

′ · nO(1).

A.2 Proof of Theorem A.1

Algorithm. Let ξ = ln(1+ε)/(k−1). In preprocessing, we use the algorithm in Proposition
A.2 to obtain W where the constant c ≥ 1 will be determined later. Let C be the set of connected
components (which are trees) of T −W . For every injective function f : W → V (G), we make a
call to our recursive algorithm, denoted by A. Each call to A is of the form A(G′, C′, f) where
G′ is an induced subgraph of G (that contains the image of f) and C′ ⊆ C. The call A(G′, C′)
should output an integer a that approximates the number of isomorphisms between the forest
TW,C′ = T [W ∪

⋃
C∈C′ V (C)] and all subforests of G′ such that for all p ∈ W , p is mapped to

f(p). The algorithm A is initially called with G′ = G and C′ = C. After all initial recursive
calls to A (corresponding to each choice of f) have been made, the algorithm returns the sum
of the integers a that they return.

Let d be a constant that upper bounds those hidden in the O notations in Proposition A.2
(which is independent of c). We now turn to describe a call A(G′, C′, f). In the basis, where
|
⋃
C∈C′ V (C)| ≤ 3dk/c, we call the algorithm from Lemma A.1 on graph H, tree R and function

fH,R, defined as follows. Let D be the set of connected components (trees) of the forest TW,C′ .
Let H be the graph obtained from G′ be adding a new vertex v and making it adjacent to all
vertices in G′. Let R be the tree obtained from TW,C′ by adding a new vertex p and making
it adjacent to exactly one vertex from each tree in D (which is chosen arbitrarily). Lastly, let
fH,R be the extension of f that assigns v to p.

Now, suppose that |
⋃
C∈C′ V (C)| > 3dk/c. Then, |C′| ≥ 3. Partition C′ into two sets, C1

and C2, such that |
⋃
C∈C1 V (C)| − |

⋃
C∈C2 V (C)| is minimized (this can be done in polyno-

mial time using dynamic programming). Notice that |
⋃
C∈C1 V (C)| − |

⋃
C∈C2 V (C)| ≤ dk/c,
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|
⋃
C∈C1 V (C)| ≥ dk/c and |

⋃
C∈C2 V (C)| ≥ dk/c. By Theorem 3.1, for a ξ-parsimonious

(n, |
⋃
C∈C1 V (C)|, |

⋃
C∈C2 V (C)|)-universal family F of sets over V (G), we can enumerate the

sets F ∈ F with delay O(n). For each set F ∈ F , we proceed as follows. We perform two
recursive calls:

1. We call A with (G′[F ∪ image(f)], C1, f). Let xF denote its output.

2. We call A with (G′ − (F \ image(f)), C2, f). Let yF denote its output.

Let T be the correction factor of F . After all sets F ∈ F were enumerated, we output a

calculated as follows: a =
1

T
·
∑
F∈F

xF · yF . This completes the description of A.

Analysis. It should be clear that the space complexity is polynomial. Now, let us briefly
explain why we get the base 4.001. Let T(k′) denote the time complexity of the algorithm when
called with C′ such that |

⋃
C∈C′ V (C)| = k′. Observe that, by Lemma A.1, when k′ ≤ 3dk/c,

we can bound T(k′) = 6.753dk/c · nO(1). Moreover, by Theorem 3.1 when k′ > 3.dk/c, we can
bound T(k′) as follows:

T(k′) = max
( 1
2
− d
c

)k′≤t≤( 1
2

+ d
c

)k′

(
k′

t

)
· (T(t) + T(k′ − t)) · nO(1)

=

(
k′

(1
2 + d

c )k′

)
· T((

1

2
+
d

c
)k′) · nO(1).

Notice that the larger c is, the smaller 6.753dk/c is, and the closer is

(
k′

(1
2 + d

c )k′

)
· T((

1

2
+
d

c
)k′) · nO(1)

to

(
k′

1
2k
′

)
· T(

1

2
k′) · nO(1). So, by picking a larger c, then time complexity can be bounded by

qk ·nO(1) where q can be made arbitrarily close to 4 (though the polynomial factor nO(1) becomes
larger because O(1) hides c).

Patterns of Bounded Treewidth. We briefly remark that in order to extend our al-
gorithms to patterns of bounded treewidth, firstly, the set of vertices W obtained by applying
Proposition A.2 (as well as the vertices obtained when applying Proposition A.1) are nodes of
the tree T of the tree decomposition (T, β) of the input pattern graph. Further, when we map
them to G (when we choose f), we need to map all the vertices that belong to the sets assigned
to them by β so that existing adjacencies between them are preserved. Several similar modifica-
tions should be made. In particular, when we consider the algorithm in Appendix A.2, instead
of considering vertices v, we need to consider sets of vertices (of size at most the treewidth) that
preserve existing adjacencies, and in the basis, existing adjacencies between all vertices mapped
to the root of T ′ and all vertices mapped to its children should be verified.
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