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1 INTRODUCTION

The Hadwiger number h(G ) of a graph G is the largest number h for which the complete graph
Kh is a minor of G. Equivalently, h(G ) is the maximum size of the largest complete graph that can
be obtained from G by contracting edges. It is named after Hugo Hadwiger, who conjectured in
1943 that the Hadwiger number ofG is always at least as large as its chromatic number. According
to Bollobás, Catlin, and Erdős, this conjecture remains “one of the deepest unsolved problems in
graph theory” [5].

The Hadwiger number of an n-vertex graph G can be easily computed in time nO (n) by brute-
forcing through all possible partitions of the vertex set of G into connected sets, contracting each
set into one vertex and checking whether the resulting graph is a complete graph. The question

whether the Hadwiger number of a graph can be computed in single-exponential 2O (n) time was
previously asked in [2, 7, 16]. Our main result provides a negative answer to this open question.

Theorem 1.1. Unless the Exponential Time Hypothesis (ETH) is false, there does not exist an algo-

rithm computing the Hadwiger number of an n-vertex graph in time no (n) .

The interest in the complexity of the Hadwiger number is naturally explained by the recent
developments in the area of exact exponential algorithms, that is, algorithms solving intractable
problems significantly faster than the trivial exhaustive search, though still in exponential time
[9]. Within the last decade, significant progress on upper and lower bounds of exponential algo-
rithms has been achieved. Drastic improvements over brute-force algorithms were obtained for a
number of fundamental problems like Graph Coloring [4] and Hamiltonicity [3]. On the other
hand, by making use of the ETH, lower bounds could be obtained for 2-CSP [18] or for Subgraph
Isomorphism and Graph Homomorphism [7].

Graph Minor (deciding whether a graph G contains a graph H as a minor) is a fundamental
problem in graph theory and graph algorithms. Graph Minor could be seen as special case of a
general graph embedding problem where one wants to embed a graph H into graph G. In what
follows, we will use n to denote the number of vertices inG and h to denote the number of vertices
in H . By the theorem of Robertson and Seymour [17], there exists a computable function f and
an algorithm that, for given graphs G and H , checks in time f (h) · n3 whether H is a minor of
G. Thus, the problem is fixed-parameter tractable (FPT) being parameterized by H . On the other

hand, Cygan et al. [7] proved that unless the ETH fails, this problem cannot be solved in time no (n)

even in the case when |V (G ) | = |V (H ) |. Other interesting embedding problems that are strongly
related to Graph Minor include the following problems.

—Subgraph Isomorphism: Given two graphsG andH , decide whetherG contains a subgraph

isomorphic to H . This problem cannot be solved in time no (n) when |V (G ) | = |V (H ) |, un-
less the ETH fails [7]. In the special case called Cliqe, when H is a clique, a brute-force
algorithm checking for every vertex subset of G whether it is a clique of size h solves the

problem in time nO (h) . The same algorithm also runs in single-exponential time O (2nn2). It
is also known that Cliqe is W[1]-hard parameterized by h and cannot be solved in time

f (h) · no (h) for any function f unless the ETH fails [6, 8].
—Graph Homomorphism: Given two graphs G and H , decide whether there exists a

homomorphism from H to G. (A homomorphism H → G from an undirected graph H to an
undirected graph G is a mapping from the vertex set of H to that of G such that the image

of every edge of H is an edge of G.) This problem is trivially solvable in time nO (h) , and

an algorithm of running time no (h) for this problem would yield the failure of the ETH [7].
However, for the special case of G being a clique, Graph Homomorphism is equivalent
to n-Coloring (deciding whether the chromatic number of H is at most n), and thus is

solvable in single-exponential time 2h · hO (1) [4, 15]. When the graph H is a complete
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graph, the problem is equivalent to finding a clique of size h in G, and then is solvable in

time 2n · nO (1) .
—Topological Graph Minor: Given two graphs G and H , decide whether G contains H

as a topological minor. (We say that a graph H is a subdivision of a graph G if G can be
obtained from H by contracting only edges incident with at least one vertex of degree two.
A graph H is called a topological minor of a graph G if a subdivision of H is isomorphic to
a subgraph of G.) This problem is, perhaps, the closest “relative” of Graph Minor. Grohe
et al. [12] gave an algorithm of running time f (h) · n3 for this problem for some computable
function f . Similar to Graph Minor and Subgraph Isomorphism, this problem cannot be

solved in timeno (n) when |V (G ) | = |V (H ) |, unless the ETH fails [7]. However, for the special
case of the problem with H being a complete graph, Lingas and Wahlen [16] gave a single-

exponential algorithm solving the problem in time 2O (n) .

Thus, all the above graph embedding “relatives” of Graph Minor are solvable in single-
exponential time when graph H is a clique. However, from the perspective of exact exponential
algorithms, Theorem 1.1 implies that finding the largest clique minor is the most difficult problem
out of them all. This is why we find the lower bound provided by Theorem 1.1 surprising. More-
over, from the perspective of parameterized complexity, finding a clique minor of size h, which is
FPT, is actually easier than finding a clique (as a subgraph) of size h, which is W[1]-hard, as well
as from finding an h-coloring of a graph, which is para-NP-hard.

Theorem 1.1 also answers another question of Cygan et al. [7], who asked whether deciding if
a graph H can be obtained from a graph G only by edge contractions, could be resolved in single-
exponential time. By Theorem 1.1, the existence of such an algorithm is highly unlikely even when
the graphH is a complete graph. Moreover, the technique developed to prove Theorem 1.1, appears

to be extremely useful to rule out the existence of no (n)-time algorithms for various contraction
problems. We formalize our results with the following F -Contraction problem. Let F be a graph
class. Given a graph G and t ∈ N , the task is to decide whether there exists a subset F ⊆ E (G ) of
size at most t such that G/F ∈ F (where G/F is the graph obtained from G by contracting the
edges in F ). We prove that in each of the cases of F -Contraction where F is the family of
chordal graphs, interval graphs, proper interval graphs, threshold graphs, trivially perfect graphs,
split graphs, complete split graphs, and perfect graphs, unless the ETH fails, F -Contraction is

not solvable in time no (n) .

Technical Details. A summary of the reductions presented in this article is given in Figure 1. To
prove our lower bounds, we first revisit the proof of Cygan et al. [7] for the ETH-hardness of a
problem called List Subgraph Isomorphism. Informally, in this problem we are given two graphs
G and H on the same number of vertices, as well as a list of vertices in H for each vertex in G,
and we need to find a copy of G in H so that each vertex u in G is mapped to a vertex v in H
that belongs to its list (i.e., v belongs to the list of u). We prove that the instances produced by the
reduction (after some modification) of [7] have a very useful property that we crucially exploit
later. Specifically, we construct a proper coloring ofG as well as a proper coloring of H , and show
that every vertex v in H that belongs to the list of some vertex u is, in fact, of the same color as u.

Having proved the above, we turn to prove the ETH-hardness of a special case of Cliqe Con-
traction where the input graph is highly structured. To this end, we introduce an intermediate
problem called Cross Matching. Informally, in this problem we are given a graph L with a parti-
tion (A,B) of its vertex set, and need to find a perfect matching between A and B whose contrac-
tion gives a clique. To see the connection between this problem and List Subgraph Isomorphism,
think of the subgraph of L induced by one side of the partition—say, A—as a representation of the
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Fig. 1. A summary of the problems considered in this article, and the reductions between them.

complement of G, and the subgraph of L induced by the other side of the partition as a represen-
tation of H . Then, the edges that go across A and B in a perfect matching can be thought of as a
mapping of the vertices of G to the vertices of H . The crossing edges of L are easily defined such
that necessarily a vertex of G can only be matched to a vertex in its list. In particular, we would
like to enforce that every “non-edge” of the complement ofG (which corresponds to an edge ofG)
would have to be mapped to an edge of H in order to obtain a clique. However, the troublesome
part is that non-edges of the complement of G may also be “filled” (to eventually get a clique)
using crossing edges rather than only edges of H . To argue that this critical issue does not arise,
we crucially rely on the proper colorings of G and H .

Now, for the connection between Cross Matching and Cliqe Contraction, note that a so-
lution to an instance of Cross Matching is clearly a solution to the instance of Cliqe Contrac-
tion defined by the same graph, but the other direction is not true. By adding certain vertices
and edges to the graph of an instance of Cross Matching, we enforce all solutions to be perfect
matchings between A and B. In particular, we construct the instances of Cliqe Contraction in
a highly structured manner that allows us to derive not only the ETH-hardness of Cliqe Con-
traction itself, but to build upon them and further derive the ETH-hardness for a wide variety of
other contraction problems. In particular, we show that the addition of “noise” (i.e., extra vertices
and edges) to any structured instance of Cliqe Contraction has very limited effect. Roughly
speaking, we show that the edges in the “noise” and the edges going across the “noise” and core of
the graph (i.e., the original vertices corresponding to the structured instance of Cliqe Contrac-
tion) are not “helpful” when trying to create a clique on the core (i.e., it is not helpful to try to use
these edges in order to fill non-edges between vertices in the core). Depending on the contraction
problem at hand, the noise is slightly different, but the proof technique stays the same—first show-
ing that the core must yield a clique, and then using the argument above (in fact, in all cases but
that of perfect graphs, we are able to invoke the argument as a black box) to show that the noise
is, in a sense, irrelevant.

2 PRELIMINARIES

For a vector R with L entries and i ∈ {1, . . . ,L}, let R[i] be the value of the i-th entry of R. Unless
specified otherwise, bases of logarithms are assumed to be 2.
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Given a graph G, let V (G ) and E (G ) denote its vertex set and edge set, respectively. Given a
subset U ⊆ V (G ), let G[U ] denote the subgraph of G induced by U , that is, V (G[U ]) = U and
E (G[U ]) = {{u,v} ∈ E (G ) : u,v ∈ U }. Given a subset F ⊆ E (G ), let V (F ) denote the set of vertices
that are incident in G to at least one edge in F , and let G[F ] = G[V (F )]. We say that G contains
a graph H as an induced subgraph if there exists U ⊆ V (G ) such that G[U ] and H are identical
up to relabeling vertices (more precisely, isomorphic). The set of neighbors of a vertex u ∈ V (G )
is denoted by NG (u), that is, NG (u) = {v ∈ V (G ) : {u,v} ∈ E (G )}. When G is clear from context,
we drop it from subscripts of notations. A matching M in G is a subset of E (G ) such that no two
edges in M share an endpoint. In case every vertex inV (G ) is an endpoint of an edge in M , that is,
|M | = |V (G ) |/2, it is said that M is perfect. A function c : V (G ) → N is a proper coloring of G if for

every edge {u,v} ∈ E (G ), c (u) � c (v ). The complement ofG, denoted byG, is the graph with vertex
setV (G ) and edge set {{u,v} � E (G ) : u,v ∈ V (G ),u � v}. The squareG2 ofG is the graph on vertex
set V (G ) and edge set {{u,v} : {u,v} ∈ E (G ) or there exists w ∈ V (G ) with {u,w }, {v,w } ∈ E (G )}.

Given an edge e = {u,v} ∈ E (G ), the contraction of e in G is the operation that replaces u and v
by a new vertex that is adjacent to all vertices previously adjacent to u or v (or both), where the
resulting graph is denoted by G/e . In other words, V (G/e ) = (V (G ) \ {u,v}) ∪ {x } for some new
vertex x , and E (G/e ) = {{s, t } ∈ E (G ) : s, t � {u,v}} ∪ {{s,x } : s ∈ N (u) ∪ N (v )}. More generally,
given a subset F ⊆ E (G ), the contraction of F in G is the operation that replaces each connected
component C of G[F ] by a new vertex xC that is adjacent to all vertices previously adjacent to at
least one vertex inC , where the resulting graph is denoted byG/F . A graph H is said to be a minor

of a graph G if H can be obtained from G by a series of vertex deletions, edge deletions, and edge
contractions. For any h ∈ N , the clique on h vertices is denoted by Kh , and the cycle on h vertices
is denoted by Ch . The Hadwiger number of a graph G is the largest h ∈ N such that Kh is a minor
of G.

To obtain (essentially) tight conditional lower bounds for the running times of algorithms, we
rely on the ETH [13, 14]. To formalize its statement, we remind one that given a formula φ in
conjuctive normal form (CNF) with n variables and m clauses, the task of CNF-SAT is to decide
whether there is a truth assignment to the variables that satisfies φ. In the p-CNF-SAT problem,
each clause is restricted to have at most p literals. Then, the ETH asserts that 3-CNF-SAT cannot

be solved in time 2o (n) .

3 LOWER BOUND: PROP-COLORED LIST SUBGRAPH ISOMORPHISM

In this section, we build upon the work of Cygan et al. [7] and show a lower bound for a problem
called Properly Colored List Subgraph Isomorphism (Prop-Col LSI). Intuitively, Prop-Col LSI is
a variant of Spanning Subgraph Isomorphism where given two graphsG and H , we ask whether
G is isomorphic to some spanning subgraph of H . The input to the variant consists also of proper
colorings of G and H and an additional labeling of vertices in G by subsets of vertices in H of
the same color, so that each vertex in G can be mapped only to vertices in H contained in its list.
Formally, it is defined as follows.

Properly Colored List Subgraph Isomorphism (Prop-Col LSI)
Input: Graphs G and H with proper colorings cG : V (G ) → {1, . . . ,k } and cH : V (H ) →
{1, . . . ,k } for some k ∈ N , respectively, and a function � : V (G ) → 2V (H ) such that for every
u ∈ V (G ) and v ∈ �(u), cG (u) = cH (v ).
Question: Does there exist a bijective function φ : V (G ) → V (H ) such that (i) for every {u,v} ∈
E (G ), {φ (u),φ (v )} ∈ E (H ), and (ii) for every u ∈ V (G ), φ (u) ∈ �(u)?

Notice that as the function φ above is bijective rather than only injective, we seek a spanning
subgraph. Our objective is to prove the following statement.
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10:6 F. V. Fomin et al.

Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col LSI in

time no (n) where n = |V (G ) |.

In [7], the authors considered the two problems defined below. Intuitively, the second problem
is defined as Prop-Col LSI when no proper colorings of H andG are given (and hence the labeling
of vertices in G is not restricted accordingly). Moreover, the first problem is defined as the second
problem when we seek a homomorphism rather than an isomorphism (i.e., the sought function φ
may not be injective) and also |V (G ) | may not be equal to |V (H ) | (thus φ may neither be onto).

List Subgraph Homomorphism ( LSH )

Input: Graphs G and H , and a function � : V (G ) → 2V (H ) .
Question: Does there exist a function φ : V (G ) → V (H ) such that (i) for every {u,v} ∈ E (G ),
{φ (u),φ (v )} ∈ E (H ), and (ii) for every u ∈ V (G ), φ (u) ∈ �(u)?

List Subgraph Isomorphism ( LSI )

Input: Graphs G and H where |V (G ) | = |V (H ) |, and a function � : V (G ) → 2V (H ) .
Question: Does there exist a bijective function φ : V (G ) → V (H ) such that (i) for every {u,v} ∈
E (G ), {φ (u),φ (v )} ∈ E (H ), and (ii) for every u ∈ V (G ), φ (u) ∈ �(u)?

We remark that LSH may be termed List Graph Homomorphism since no subgraph is sought—
homomorphism, unlike isomorphism, does not require one to “use” all edges, or even all vertices, of
the target graphH ; however, we preferred LSH to emphasize this and, in particular, to be consistent
with [7].

The proof of hardness of LSI consists of two parts:

—Showing the ETH-hardness of LSH.
—Giving a fine-grained reduction from LSH to LSI.

We cannot use the hardness of LSI as a black box because Prop-Col LSI is a special case of LSI.
Nevertheless, we will prove that the instances generated by the reduction (with a minor crucial
modification) of Cygan et al. [7] have the additional properties required to make them instances
of our special case.

Lower Bound: Properly Colored Subgraph Homomorphism. Adapting the scheme of Cygan
et al. [7] to our purpose, we will first show that finding a homomorphism remains hard if it has to
preserve a given proper coloring.

Properly Colored List Subgraph Homomorphism ( Prop-Col LSH )
Input: Graphs G and H with proper colorings cG : V (G ) → {1, . . . ,k } and cH : V (H ) →
{1, . . . ,k } for some k ∈ N , respectively, and a function � : V (G ) → 2V (H ) such that for every
u ∈ V (G ) and v ∈ �(u), cG (u) = cH (v ).
Question: Does there exist a function φ : V (G ) → V (H ) such that (i) for every {u,v} ∈ E (G ),
{φ (u),φ (v )} ∈ E (H ), and (ii) for every u ∈ V (G ), φ (u) ∈ �(u)?

In [7], the authors gave a reduction from the 3-Coloring problem on n-vertex graphs of degree

4 (which is known not to be solvable in time 2o (n) unless the ETH fails), which generates equivalent
instances (G ′,H ′, �) of LSH where both |V (G ′) | and |V (H ′) | are bounded by O ( n

log n
). This proves

that LSH is not solvable in timeno (n) wheren = max{|V (G ) |, |V (H ) |} unless the ETH fails. For their

reduction, Cygan et al. [7] considered the notion of a grouping (also known as quotient graph) ˜G of
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Fig. 2. The reduction in Definition 3.3. The vertices of G are depicted by black shapes, where each distinct

shape represents a different color (say, square is 1, rectangle is 2, and oval is 3), and the vertices of ˜G are

depicted by circles enclosing the vertex sets identifies with them, where the color of a vertex is the color of its

circle (say, black is 1, green is 2, yellow is 3, red is 4, blue is 5, and gray is 6). Edges (of both graphs) are depicted

by black lines. (The graph ˜H is not shown). Then, the function ϕB is defined as follows: ϕB (1) = z, ϕB (2) =
ϕB (5) = w, ϕB (3) = x , ϕB (4) = 0, and ϕB (6) = y. Moreover, the function ϕB′ is defined as follows: ϕB′ (1) =
ϕB′ (2) = ϕB′ (4) = u, ϕB′ (3) = v, and ϕB′ (5) = ϕB′ (6) = 0. With respect to B and B′, the labeling � is defined

as follows: �(B) = {(R, 4) : R[1] � 0,R[2] = R[5] � 0,R[3] � 0,R[4] = 0,R[6] � 0} and �(B′) = {(R, 5) : R[1] =

R[2] = R[4] � 0,R[3] � 0,R[5] = R[6] = 0}.

a graph G is a graph with vertex set V (˜G ) = {B1,B2, . . . ,Bt } where (B1,B2, . . . ,Bt ) is a partition
of V (G ) for some t ∈ N and for any distinct i, j ∈ {1, . . . , t }, the vertices Bi and Bj are adjacent in
˜G if and only if there exist u ∈ Bi and v ∈ Bj that are adjacent in G. Specifically, they computed
a grouping with a coloring having specific properties as stated in the following lemma (see also
Figure 2).

Lemma 3.2 (Lemma 3.2 in [7]). For any constant d ≥ 1, there exist positive integers λ = λ(d ), n0 =

n0 (d ) and a polynomial time algorithm that for a given graph G on n ≥ n0 vertices of maximum

degree d and a positive integer r ≤
√

n
2λ

, finds a grouping ˜G ofG and a coloring c̃ : V (˜G ) → [λr ] with

the following properties:

(1) |V (˜G ) | ≤ |V (G ) |/r ;

(2) the coloring c̃ is a proper coloring of ˜G2;

(3) each vertex of ˜G is an independent set in G;

(4) for any edge {Bi ,Bj } ∈ E (˜G ), there exists exactly one pair (u,v ) ∈ Bi × Bj such that {u,v} ∈
E (G ).

ACM Transactions on Computation Theory, Vol. 13, No. 2, Article 10. Publication date: March 2021.
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Now, we describe the reduction of [7]. Here, without loss of generality, it is assumed that G
has no isolated vertices, else they can be removed. An explanation of the intuition behind this
somewhat technical definition is given below it.

Definition 3.3. For any instance G of 3-Coloring where G has degree d and a positive integer

r = o(
√
|V (G ) |), the instance reduce(G ) = (˜G, ˜H , �) of LSH is defined as follows.

—The graph ˜G. Let ˜G and c̃ : V (˜G ) → {1, 2, . . . ,L} be the grouping and coloring given by

Lemma 3.2 where L = λ(d )r . Additionally, for each B ∈ V (˜G ), define ϕB : {1, 2, . . . ,L} →
B ∪ {0} as follows: for any i ∈ {1, 2, . . . ,L}, if there exists (u,v,B′) such that u ∈ B and v ∈
B′, {u,v} ∈ E (G ) and c̃ (B′) = i , then ϕB (i ) = u, and otherwise ϕB (i ) = 0.

—The graph ˜H . Let V (˜H ) = {(R, l ) : R ∈ {0, 1, 2, 3}L, l ∈ L} and E (˜H ) = {{(R, l ), (R′, l ′)} :
R[l ′] � R′[l]}.

—The labeling �. For any B ∈ V (˜G ), let �(B) contain all vertices (R, l ) ∈ V (˜H ) such that
c̃ (B) = l , and there exists f : B → {1, 2, 3} such that for all i ∈ {1, 2, . . . ,L}, either ϕB (i ) =
R[i] = 0 or both ϕB (i ) � 0 and f (ϕB (i )) = R[i].

We remark that the uniqueness of u (if it exists), and thus the validity of ϕB , follows from Prop-
erties 2 and 4 in Lemma 3.2.

Intuitively, for every vertex B ∈ V (˜G ), the function ϕB can be interpreted as follows. It is the
assignment, for every possible color i ∈ {1, . . . ,L}, of the unique vertex u within the vertex set
identified with B itself that is adjacent to some vertex in the vertex subset identified with some

vertex B′ ∈ V (˜G ) colored i , if such a vertex u exists (else the assignment is of 0). In a sense, B thus
stores the information on the identity of each vertex within it that is adjacent (inG) to some vertex
outside of it, where each such internal vertex is uniquely accessed by specifying the color of the

vertex in ˜G whose identified vertex set contains the neighbor. With respect to the graph ˜H and

labeling �, we interpret each vertex (R, l ) ∈ V (˜H ) as a “placeholder” (i.e., potential assignment of

the sought function φ) for any vertex B ∈ V (˜G ) that “complies with the pattern encoded by the
pair (R, l )” as follows. First and straightforwardly, B must be colored l . Here, we remind one that

the colors of vertices in ˜G belong to {1, . . . ,L}, while vertices inG are colored 1, 2, or 3 only. Then,
the second requirement is that we can recolor (by f ) the vertices in B so that the color of each
vertex in B that is adjacent (in G) to some vertex outside B is as encoded by the vector R—that is,
for each color i ∈ {1, . . . ,L}, if the vertex ϕB (i ) is defined (i.e., ϕB (i ) � 0), then its color (which is
1,2, or 3) must be equal to the i-th entry of R. (Further intuition is given in Figure 2.)

Now, we state the correctness of the reduction.

Lemma 3.4 (Lemma 3.3 in [7]). For any instanceG of 3-Coloring whereG is an n-vertex graph of

degree d , and a positive integer r = o(
√
|V (G ) |), the instance reduce(G ) = (˜G, ˜H , �) is computable in

time polynomial in the sizes of G, ˜G, and ˜H , and has the following properties.

—G is a Yes-instance of 3-Coloring if and only if (˜G, ˜H , �) is a Yes-instance of LSH.

— |V (˜G ) | ≤ n/r , and |V (˜H ) | ≤ γ (d )r where γ is some computable function of d .

We next prove that we can add colorings to the instance reduce(G ) = (˜G, ˜H , �) of LSH in order
to cast it as an instance of Prop-Col LSH while making a minor mandatory modification to the

graph ˜H .

Lemma 3.5. Given an instance reduce(G ) = (˜G, ˜H , �) of LSH, an equivalent instance (˜G, ˜H ′,

c
˜G , c ˜H ′, �) of Prop-Col LSH, where ˜H ′ is a subgraph of ˜H , is computable in polynomial time.
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Proof. Define c
˜G = c̃ where c̃ is the coloring of ˜G in Definition 3.3. Additionally, let ˜H ′ be

the subgraph of ˜H induced by the vertex set {(R, l ) ∈ V (˜H ) : there exists B ∈ V (˜G ) such that

(R, l ) ∈ �(B)}. Then, define c
˜H ′ : V (˜H ′) → {1, 2, . . . ,L} as follows: for any (R, l ) ∈ V (˜H ′), define

c
˜H ′ ((R, l )) = l . Notice that, by the definition ofV (˜H ′), every set assigned by � is a subset ofV (˜H ′).

First, we assert that (˜G, ˜H ′, c
˜G , c ˜H ′, �) is an instance of Prop-Col LSH. To this end, we need to

verify that the three following properties hold.

(1) c
˜G is a proper coloring of ˜G.

(2) c
˜H ′ is a proper coloring of ˜H ′.

(3) For every B ∈ V (˜G ) and (R, l ) ∈ �(B), it holds that c
˜G (B) = c

˜H ′ ((R, l )).

By the definition of c
˜G , it is a proper coloring of ˜G2, which is a supergraph of ˜G. Thus, c

˜G is a

proper coloring of ˜G.

Now, we argue that c
˜H ′ is a proper coloring of ˜H ′. To this end, consider some edge

{(R, l ), (R′, l ′)} ∈ E (˜H ′). We need to show that c
˜H ′ ((R, l )) � c ˜H ′ ((R

′, l ′)). By the definition of c
˜H ′ ,

we have that c
˜H ′ ((R, l )) = l and c

˜H ′ ((R
′, l ′)) = l ′, and therefore it suffices to show that l � l ′. By the

definition of E (˜H ) (which is a superset of E (˜H ′)), we have that R[l ′] � R′[l]. Thus, necessarily at
least one among R[l ′] and R′[l] is not 0, and so we suppose w.l.o.g. that R[l ′] is not 0. Furthermore,

since (R, l ) ∈ V (˜H ′), we have that there exists B ∈ E (˜G ) such that (R, l ) ∈ �(B). Thus,

—c̃ (B) = l .
—There exists f : B → {1, 2, 3} such that for all i ∈ {1, 2, . . . ,L}, either ϕB (i ) = R[i] = 0 or

both ϕB (i ) � 0 and f (ϕB (i )) = R[i].

From the second property, and because R[l ′] � 0, we necessarily have that both ϕB (l ′) � 0 and
f (ϕB (l ′)) = R[l ′]. In particular, by the definition of ϕB , having ϕB (l ′) � 0 means that there exists

(u,v,B′) such thatu ∈ B,v ∈ B′, {u,v} ∈ E (G ), and c̃ (B′) = l ′. By the definition of ˜G as a grouping

of G, having u ∈ B, v ∈ B′, and {u,v} ∈ E (G ) implies that {B,B′} ∈ E (˜G ). Because c̃ is a proper

coloring of ˜G, this means that c̃ (B) � c̃ (B′). Since c̃ (B) = l and c̃ (B′) = l ′, we derive that l � l ′.
Hence, c

˜H ′ is indeed a proper coloring of ˜H ′.

To conclude that (˜G, ˜H ′, c
˜G , c ˜H ′, �) is indeed an instance of Prop-Col LSH, it remains to assert

that for every B ∈ V (˜G ) and (R, l ) ∈ �(B), it holds that c
˜G (B) = c

˜H ′ ((R, l )). To this end, consider

some B ∈ V (˜G ) and (R, l ) ∈ �(B). By the definition of � (recall Definition 3.3), (R, l ) ∈ �(B) implies
that c̃ (B) = l . As c

˜G = c̃ , we have that c
˜G (B) = l . Moreover, the definition of c

˜H ′ directly implies
that c

˜H ′ ((R, l )) = l . Thus, c
˜G (B) = c

˜H ′ ((R, l )).

Finally, we argue that (˜G, ˜H , �) is a Yes-instance of LSH if and only if (˜G, ˜H ′, c
˜G , c ˜H ′, �) is a Yes-

instance of Prop-Col LSH. In one direction, because ˜H ′ is a subgraph of ˜H , it is immediate that if

(˜G, ˜H ′, c
˜G , c ˜H ′, �) is a Yes-instance of Prop-Col LSH, then so is (˜G, ˜H , �). For the other direction,

suppose that (˜G, ˜H , �) is a Yes-instance of LSH. Thus, there exists a function φ : V (˜G ) → V (˜H )

such that (i) for every {B,B′} ∈ E (˜G ), {φ (B),φ (B′)} ∈ E (˜H ), and (ii) for every B ∈ V (˜G ), φ (B) ∈
�(B). In particular, directly by the definition ofV (˜H ′), the second condition implies that for every

B ∈ V (˜G ), it holds that φ (B) ∈ V (˜H ′). Thus, because ˜H ′ is an induced subgraph of ˜H , it holds that

for every {B,B′} ∈ E (˜G ), {φ (B),φ (B′)} ∈ E (˜H ′). Therefore, φ witnesses that (˜G, ˜H ′, c
˜G , c ˜H ′, �) is a

Yes-instance of Prop-Col LSH. �

We are now ready to assert the hardness of Prop-Col LSH. The proof is based on Lemmas 3.2, 3.4,
and 3.5.
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Lemma 3.6. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col LSH in

time no (n) where n = max( |V (G ) |, |V (H ) |).

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by LSHAlg,

that solves Prop-Col LSH in time no (n) where n = max( |V (G ) |, |V (H ) |) for input graphs G and
H . We will show that this implies the existence of an algorithm, denoted by ColAlg, that solves

3-Coloring on graphs of maximum degree 4 in time 2o (n) where n is the number of vertices of the
input graph, which contradicts the ETH and hence completes the proof.

The execution of ColAlg is as follows. Given an instanceG of 3-Coloring on graphs of maximum

degree 4, ColAlg constructs the instance reduce(G ) = (˜G, ˜H , �) of LSH in Definition 3.3 with r =
	logγ (4) (n/ logn)
 where n = |V (G ) |. Here, γ is the function stated in Lemma 3.4. By Lemma 3.4,

reduce(G ) = (˜G, ˜H , �) is computable in time polynomial in the sizes of G, ˜G, and ˜H , and has the
following properties:

—G is a Yes-instance of 3-Coloring if and only if (˜G, ˜H , �) is a Yes-instance of LSH.

— |V (˜G ) | ≤ n/r = O (n/ logn) and |V (˜H ) | ≤ γ (4)r = O (n/ logn).

Then, ColAlg calls the polynomial-time algorithm in Lemma 3.5 with (˜G, ˜H , �) to construct an

equivalent instance (˜G, ˜H ′, c
˜G , c ˜H ′, �) of Prop-Col LSH, where ˜H ′ is a subgraph of ˜H . Lastly, ColAlg

calls LSHAlg with (˜G, ˜H ′, c
˜G , c ˜H ′, �) as input, and returns its answer.

Since the instance G of 3-Coloring was argued above to be equivalent to the instance

(˜G, ˜H ′, c
˜G , c ˜H ′, �) of Prop-Col LSH, the correctness of ColAlg directly follows. For the running

time, denote M = max( |V (˜G ) |, |V (˜H ) |), and notice that M ≤ O (n/ logn). Thus, because LSHAlg

runs in time Mo (M ) ≤ (n/ logn)o (n/ log n) ≤ 2o (n) , it follows that ColAlg runs in time 2o (n) . This
completes the proof. �

From Graph Homomorphism to Subgraph Isomorphism. In this part, we observe that the reduction
of [7] from LSH to LSI can be essentially used as is to serve as a reduction from Prop-Col LSH
to Prop-Col LSI. For the sake of completeness, we give the full details. We begin by adapting the
Turing reduction of [7] from LSH to LSI.

Lemma 3.7. There is an 2O (n)-time algorithm that, given an instance (G,H , cG , cH , �) of Prop-

Col LSH, returns 2O (n) instances of Prop-Col LSI having input graphs on at most n vertices for

n := max( |V (G ) |, |V (H ) |), such that (G,H , cG , cH , �) is a Yes-instance of Prop-Col LSH if and only

if at least one of the returned instances is a Yes-instance of Prop-Col LSI.

Proof. Given an instance (G,H , cG , cH , �) of Prop-Col LSH, the algorithm works as fol-

lows. Without loss of generality, suppose that V (H ) = {1, 2, . . . , |V (H ) |}. Let P = {P ∈ N |V (H ) |
0 :∑ |V (H ) |

i=1 P[i] = |V (G ) |}. That is, P contains every vector with |V (H ) | entries that are non-
negative integers whose sum is |V (G ) |. Then, for each P ∈ P, the algorithm returns one instance
(G,HP , cG , cHP

, �P ) of Prop-Col LSI that is constructed as follows.

—The graph HP is constructed from H by replacing each vertexv ∈ V (H ) with P[v] copies of
it, denotedv1,v2 . . .vP [v]. (Note that P[v] can be equal to 0.) Then, we connect two vertices
vi to uj in HP if and only if v is connected to u in H . That is, V (HP ) = {vi : v ∈ V (H ), i ∈
{1, 2, . . . , P[v]}} and E (HP ) = {{ui ,vj } : {u,v} ∈ E (H ),ui ,uj ∈ V (HP )}.

—For every vertex ui ∈ V (HP ), let cHP
(ui ) = cH (u).

—For every vertex u ∈ V (G ), let �P (u) = {vi ∈ V (HP ) : v ∈ �(u)}.

This completes the description of the algorithm.
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First, we consider some P ∈ P and assert that (G,HP , cG , cHP
, �P ) is indeed an instance of Prop-

Col LSI. By the construction of V (HP ) and since
∑ |V (H ) |

i=1 P[i] = |V (G ) |, we have that |V (G ) | =
|V (HP ) |. Clearly, as (G,H , cG , cH , �) is an instance of Prop-Col LSH, we have that cG is a proper
coloring ofG. Now, consider an edge {ui ,vj } ∈ E (HP ). Then, {u,v} ∈ E (H ), and since cH is a proper
coloring of H (as (G,H , cG , cH , �) is an instance of Prop-Col LSH), this means that cH (u) � cH (v ).
By definition, cHP

(ui ) = cH (u) and cHP
(vi ) = cH (v ), and therefore cHP

(ui ) � cHP
(vj ). Thus, cHP

is
a proper coloring of HP . Lastly, consider some vertices u ∈ V (G ) and vi ∈ �P (u). By the definition
of �P , we have thatv ∈ �(P ). Therefore, as (G,H , cG , cH , �) is an instance of Prop-Col LSH, cG (u) =
cH (v ). Thus, because cHP

(vi ) = cH (v ), we have that cG (u) = cHP
(vi ).

Now, we consider the number of instances returned by the algorithm along with its running

time. Towards this, first note that |P | = ( |V (G ) | + |V (H ) | − 1
|V (H ) | − 1 ) ≤ 4n . As the number of returned in-

stances equals |P |, it is upper bounded by 2O (n) as required. Because each instance is computed

in polynomial time, we also get that the running time of the algorithm is bounded by 2O (n) .
Finally, we consider the correctness of the algorithm. In one direction, suppose that at least

one of the returned instances is a Yes-instance of Prop-Col LSI. Then, there exists P ∈ P such
that (G,HP , cG , cHP

, �P ) is a Yes-instance of Prop-Col LSI. Thus, there exists a bijective function
φP : V (G ) → V (HP ) such that (i) for every {u,v} ∈ E (G ), {φP (u),φP (v )} ∈ E (HP ), and (ii) for every
u ∈ V (G ),φP (u) ∈ �P (u). We define a functionφ : V (G ) → V (H ) as follows: for everyu ∈ V (G ), let
φ (u) = v wherev ∈ V (H ) is the vertex for which there exists i ∈ {1, 2, . . . , P[v]} such that φP (u) =
vi . We now verify that φ is a solution to the instance (G,H , cG , cH , �) of Prop-Col LSH. Firstly, by
item (i) above, for every {u,v} ∈ E (G ), we have that {xi ,yi } ∈ E (HP ) where xi = φP (u) and yi =

φP (v ); by the definition of HP , this means that {x ,y} ∈ E (H ), and as x = φ (u) and y = φ (v ) (by the
definition of φ), we get that {φ (u),φ (v )} ∈ E (H ). Secondly, by item (ii) above, for every u ∈ V (G ),
vi ∈ �P (u) wherevi = φP (u); by the definition of �P , we have thatv ∈ �P (u), and by the definition
of φ, we have that v = φ (u), therefore φ (u) ∈ �(u). Thus, we conclude that (G,H , cG , cH , �) is a
Yes-instance of Prop-Col LSH.

In the other direction, suppose that (G,H , cG , cH , �) is a Yes-instance of Prop-Col LSH. Then,
there exists a function φ : V (G ) → V (H ) such that (i) for every {u,v} ∈ E (G ), {φ (u),φ (v )} ∈ E (H ),
and (ii) for every u ∈ V (G ), φ (u) ∈ �(u). Let P be the vector with |V (H ) | entries where for each

i ∈ {1, 2, . . . , |V (H ) |}, P[i] = |φ−1 (i ) |. Then,
∑ |V (H ) |

i=1 P[i] =
∑ |V (H ) |

i=1 |φ−1 (i ) | = |V (G ) |, and therefore
P ∈ P. Choose some arbitrary order < on V (G ). Now, we define a function φP : V (G ) → V (HP )
as follows: for every u ∈ V (G ), let φP (u) = vi where v = φ (u) and i = |{w ∈ V (G ) : w ≤ u,v =
φ (w )}|. It should be clear that φP is a bijection. Moreover, analogously to the previous direc-
tion, we assert that (i) for every {u,v} ∈ E (G ), {φP (u),φP (v )} ∈ E (HP ), and (ii) for everyu ∈ V (G ),
φP (u) ∈ �P (u). Thus, (G,HP , cG , cHP

, �P ) is a Yes-instance of Prop-Col LSI, which means that at
least one of the returned instances is a Yes-instance of Prop-Col LSI. �

We are ready to complete the proof of Lemma 3.1.

Proof of Lemma 3.1. Targeting a contradiction, suppose that there exists an algorithm, denoted

by LSIAlg, that solves Prop-Col LSI in time no (n) where n = max( |V (G ) |, |V (H ) |) for input graphs
G and H . We will show that this implies the existence of an algorithm, denoted by LSHAlg, that

solves Prop-Col LSH in timeno (n) wheren = max( |V (G ) |, |V (H ) |) for input graphsG andH , which
contradicts Lemma 3.6 and hence completes the proof.

The execution of LSHAlg is as follows. Given an instance (G,H , cH , cG , �) of Prop-Col LSH,

LSHAlg calls the algorithm in Lemma 3.7 so that in time 2O (n) it obtains 2O (n) instances of
Prop-Col LSI having input graphs on at most n vertices for n := max( |V (G ) |, |V (H ) |), such that
(G,H , cG , cH , �) is a Yes-instance of Prop-Col LSH if and only if at least one of the returned
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Fig. 3. The construction of an instance of Cross Matching in the proof of Lemma 4.1.

instances is a Yes-instance of Prop-Col LSI. Then, it calls LSIAlg on each of the returned instances,
and returns Yes if and only if at least one of these calls returns Yes. It should be clear that LSHAlg

runs in time no (n) and that it is correct. �

4 LOWER BOUND FOR THE CROSS MATCHING PROBLEM

In this section, toward the proof of a lower bound for Cliqe Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Cliqe
Contraction, and which is defined as follows.

Cross Matching
Input: A graph G with a partition (A,B) of V (G ) where |A| = |B |.
Question: Does there exist a perfect matchingM inG such that every edge inM has one endpoint
in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross Matching

in time no (n) where n = |A|.

Proof. Towards a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no (n) where n is the number of vertices in the set A in
the input. We will show that this implies the existence of an algorithm, denoted by LSIAlg, that

solves Prop-Col LSI in time no (n) where n is the number of vertices in the input graph G, thereby
contradicting Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H , cG , cH , �) of Prop-Col
LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Figure 3):

—V (L) = V (G ) ∪V (H ).
—E (L) = E (G ) ∪ E (H ) ∪ {{u,v} : u ∈ V (G ),v ∈ L(u)}.
—A = V (G ) and B = V (H ).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G ) |, and notice that |A| = |B | = n. Thus, because MatchingAlg runs in time

|A|o ( |A |) = no (n) , so does LSIAlg.
For the correctness of the algorithm, first suppose that (G,H , cG , cH , �) is a Yes-instance of Prop-

Col LSI. This means that there exists a bijective function φ : V (G ) → V (H ) such that (i) for every
{u,v} ∈ E (G ), {φ (u),φ (v )} ∈ E (H ), and (ii) for every u ∈ V (G ), φ (u) ∈ L(u). Having φ at hand,
we will show that (L,A,B) is a Yes-instance, which will imply that the call to MatchingAlg with
(L,A,B) as input returns Yes, and hence LSIAlg returns Yes.
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Based on φ, we define a subset M ⊆ E (L) as follows: M = {{u,φ (u)} : u ∈ A}. Notice that the
containment of M in E (L) follows from the definition of E (L) and Condition (ii) above. Moreover,
by the definition of A, B and because φ is bijective, it further follows that M is a perfect matching
in L such that every edge in M has one endpoint in A and the other in B. Thus, to conclude that
(L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To this end, we consider two
arbitrary vertices x andy of L/M , and prove that they are adjacent in L/M . Necessarily, x is a vertex
that replaced two vertices u ∈ A and u ′ ∈ B such that {u,u ′} ∈ M , and y is a vertex that replaced
two verticesv ∈ A \ {u} andv ′ ∈ B \ {u ′} such that {v,v ′} ∈ M . By the definition of contraction, to
show that x andy are adjacent in L/M , it suffices to show thatu andv are adjacent in L oru ′ andv ′

are adjacent in L (or both). To this end, suppose thatu andv are not adjacent in L, else we are done.

By the definition of E (L), this means that {u,v} � E (G ) and hence {u,v} ∈ E (G ). By Condition (i)

above, we derive that {φ (u),φ (v )} ∈ E (H ). By the definition of M , we know that u ′ = φ (u) and
v ′ = φ (v ), therefore {u ′,v ′} ∈ E (H ). In turn, by the definition of E (L), we get that {u ′,v ′} ∈ E (L).
Thus, the proof of the forward direction is complete.

Now, suppose that LSIAlg returns Yes, which means that the call to MatchingAlg with (L,A,B)
returns Yes. Thus, (L,A,B) is a Yes-instance, which means that there exists a perfect matching M
in G such that every edge in M has one endpoint in A and the other in B, and G/M is a clique.
We define a function φ : A→ B as follows. For every u ∈ V (G ), let φ (u) = v where v is the unique
vertex in B such that {u,v} ∈ M ; the existence and uniqueness of v follows from the supposition
that M is a perfect matching such that every edge in M has one endpoint in A and the other in B.
Furthermore, by the definition of A,B and the edges in E (L) with one endpoint in A and the other
in B, it directly follows that φ is a bijective mapping between V (G ) and V (H ) such that for every
u ∈ V (G ), it holds that φ (u) ∈ L(u). Thus, it remains to argue that for every edge {u,v} ∈ E (G ), it
holds that {φ (u),φ (v )} ∈ E (H ). To this end, consider some arbitrary edge {u,v} ∈ E (G ), and denote
u ′ = φ (u) and v ′ = φ (v ). Because L/M is a clique and M is a matching that, by the definition of
φ, necessarily contains both {u,u ′} and {v,v ′}, we derive that at least one of the following four
conditions must be satisfied: (i) {u,v} ∈ E (L); (ii) {u ′,v ′} ∈ E (L); (iii) {u,v ′} ∈ E (L); (iv) {v,u ′} ∈
E (L). Because {u,v} ∈ E (G ), we have that {u,v} � E (G ) and therefore {u,v} � E (L). Thus, we are
left with Conditions (ii), (iii), and (iv). Now, we will crucially rely on the proper colorings ofG and
H to rule out the satisfaction of Conditions (iii) and (iv). �

Claim 1. For any two edges {x ,x ′}, {y,y ′} ∈ E (L) such that {x ,y} ∈ E (G ) and x ′,y ′ ∈ V (H ), it

holds that neither {x ,y ′} nor {y,x ′} belongs to E (L).

Proof of Claim 1. Because cG is a proper coloring of G and {x ,y} ∈ E (G ), it holds that
cG (x ) � xG (y). Because {x ,x ′}, {y,y ′} ∈ E (L), x ,y ∈ V (G ), and x ′,y ′ ∈ V (H ), and by the definition
of E (L), it holds that x ′ ∈ L(x ) and y ′ ∈ L(y), and therefore cG (x ) = cH (x ′) and cG (y) = cH (y ′).
Thus, cG (x ) � cH (y ′) and cG (y) � cH (x ′), implying that y ′ � L(x ) and x ′ � L(y). In turn, by the
definition of E (L), this means that neither {x ,y ′} nor {y,x ′} belongs to E (L). This completes the
proof of the claim. �

We now return to the proof of the lemma. By Claim 1, we are only left with Condition (ii), that
is, {u ′,v ′} ∈ E (L). However, by the definition of E (L), this means that {u ′,v ′} ∈ E (H ). As argued
earlier, this completes the proof of the reverse direction.

5 LOWER BOUNDS: CLIQUE CONTRACTION AND HADWIGER NUMBER

In this section, we prove a lower bound for Cliqe Contraction and consequently for Hadwiger
Number, defined as follows.
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Fig. 4. An instance of Noisy Structured Clique Contraction where dashed lines represent non-edges.

Cliqe Contraction
Input: A graph G and t ∈ N .
Question: Is there a subset F ⊆ E (G ) of size at most t such that G/F is a clique?

Hadwiger Number
Input: A graph G and h ∈ N .
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Hadwiger
Number (called Theorem 1.1 in the Introduction) will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique Con-

traction in time no (n) where n = |V (G ) |.

To make our approach adaptable to extract analogous statements for other contraction problems,
we will first define a new problem called Noisy Structured Cliqe Contraction (which will
arise in Section 6) along with a special case of it that is also a special case of Cliqe Contraction.
Then, we will prove a crucial property of instances of Noisy Structured Cliqe Contraction,
and afterwards we will use this property to prove Theorem 5.1 and its corollary. The definition of
the new problem is as follows (see Figure 4).

Noisy Structured Cliqe Contraction
Input: A graph G on at least 6n vertices for some n ∈ N , and a partition (A,B,C,D,N ) of V (G )
such that |A| = |B | = n, |C | = |D | = 2n, no vertex in A is adjacent to any vertex in D, and no
vertex in B is adjacent to any vertex in C .
Question: Does there exist a subset F ⊆ E (G ) of size at mostn such thatG[A ∪ B ∪C ∪ D ∪ X ]/F
is a clique,a whereX = {u ∈ N : there exists a vertexv ∈ A ∪ B ∪C ∪ D such thatu andv belong
to the same connected component of G[F ]}?

a Note that F might contain edges outside G[A ∪ B ∪C ∪ D ∪ X ]. Then, we slightly abuse notation so that G[A ∪ B ∪C ∪ D ∪ X ]/F
refers to G[A ∪ B ∪C ∪ D ∪ X ]/(F ∩ E (G[A ∪ B ∪C ∪ D ∪ X ])).

Intuitively, the vertex set X consists of the noise (represented by N ) that “interacts” with non-
noise (represented by V (G ) \ N ) through contracted edges (in F ), that is, the vertices in N that lie
together with at least one vertex in V (G ) \ N in a component that will be contracted and thereby
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replaced by a single vertex. We refer to the special case of Noisy Structured Cliqe Contrac-
tion where N = ∅ as Structured Cliqe Contraction. Note that Structured Cliqe Con-
traction is also a special case of Cliqe Contraction.

Solutions to instances of Noisy Structured Cliqe Contraction exhibit the following prop-
erty, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.2. Let F be a solution to an instance (G,A,B,C,D,N ,n) of Noisy Structured Clique

Contraction. Then, F is a matching of size n in G such that each edge in F has one endpoint in A
and the other in B. In particular, X = ∅.

Proof. We first argue that every vertex in A ∪ B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u ∈ A ∪ B that is not incident to any edge in F .
Because |A ∪ B ∪C ∪ D | = 6n, |F | ≤ n andG[A ∪ B ∪C ∪ D ∪ X ]/F is a clique (where the last two
properties follow from the supposition that F is a solution), it holds thatG[A ∪ B ∪C ∪ D ∪ X ]/F is
a clique on at least 5n + |X | vertices. Hence, the degree of every vertex inG[A ∪ B ∪C ∪ D ∪ X ]/F ,
and in particular of u, should be 5n − 1 + |X | in G[A ∪ B ∪C ∪ D ∪ X ]/F . However, because no
vertex in A is adjacent to any vertex in D and no vertex in B is adjacent to any vertex in C , the
degree of any vertex in A ∪ B, and in particular of u, is at most |A ∪ B | − 1 + |C ∪ D |/2 + |X | =
4n − 1 + |X | in G[A ∪ B ∪C ∪ D ∪ X ]. Because u is not incident to any edge in F , its degree in
G[A ∪ B ∪C ∪ D ∪ X ]/F is at most its degree in G[A ∪ B ∪C ∪ D ∪ X ]. This is a contradiction,
thus we get that indeed every vertex in A ∪ B is incident to at least one edge in F . From this,
because |F | ≤ n and |A ∪ B | = 2n, we derive that F is a perfect matching in G[A ∪ B].

It remains to argue that every edge in F has one endpoint in A and the other in B. Targeting a
contradiction, suppose that this is false. Because F is a perfect matching in G[A ∪ B], this means
that there exist two vertices a,a′ ∈ A such that {a,a′} ∈ F . By the definition of Noisy Structured
Cliqe Contraction, neither a nor a′ is adjacent to any vertex in D. Moreover, note that D ⊆
V (G[A ∪ B ∪C ∪ D ∪ X ]/F ). In particular, the vertex of G[A ∪ B ∪C ∪ D ∪ X ]/F yielded by the
contraction of {a,a′} is not adjacent to any vertex of D inG[A ∪ B ∪C ∪ D ∪ X ]/F . However, this
is a contradiction because G[A ∪ B ∪C ∪ D ∪ X ]/F is a clique. �

We now prove a lower bound for Structured Cliqe Contraction. Because it is a special
case of Cliqe Contraction, this will directly yield the correctness of Theorem 5.1.

Lemma 5.3. Unless the ETH is false, there does not exist an algorithm that solves Structured

Clique Contraction in time no (n) where n = |V (G ) |.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by

CliConAlg, that solves Structured Cliqe Contraction in time no (n) where n is the number
of vertices in the input graph. We will show that this implies the existence of an algorithm, de-

noted by MatchingAlg, that solves Cross Matching in time no (n) where n is the size of the set A
in the input, thereby contradicting Lemma 4.1 and hence completing the proof.

We define the execution of MatchingAlg as follows. Given an instance (G,A,B) of Cross Match-
ing, MatchingAlg constructs an instance (H ,A,B,C,D,n) of Structured Cliqe Contraction
as follows (see Figure 5):

—Let n = |A|, and K be a clique on 4n new vertices. Let (C,D) be a partition ofV (K ) such that
|C | = |D |.

—V (H ) = V (G ) ∪V (K ).
—E (H ) = E (G ) ∪ E (K ) ∪ {{a, c} : a ∈ A, c ∈ C} ∪ {{b,d } : b ∈ B,d ∈ D}.

Then, MatchingAlg calls CliConAlg with (H ,A,B,C,D,n) as input, and returns the answer.

ACM Transactions on Computation Theory, Vol. 13, No. 2, Article 10. Publication date: March 2021.



10:16 F. V. Fomin et al.

Fig. 5. The construction of an instance of Structured Clique Contraction in the proof of Lemma 5.3 where

dashed lines represent non-edges.

First, note that by construction, |V (H ) | = 6n. Thus, because CliConAlg runs in time

|V (H ) |o ( |V (H ) |) ≤ no (n) , it follows that MatchingAlg runs in time no (n) .
For the correctness of the algorithm, first suppose that (G,A,B) is a Yes-instance of Cross

Matching. This means that there exists a perfect matching M inG such that every edge in M has
one endpoint inA and the other in B, andG/M is a clique. By the definition of E (H ),M ⊆ E (H ). We
will show that H/M is a clique. As |M | = n, this will mean that (H ,A,B,C,D,n) is a Yes-instance
of Structured Cliqe Contraction, which will mean, in turn, that the call to CliConAlg with
(H ,A,B,C,D,n) as input returns Yes, and hence MatchingAlg returns Yes.

Note thatV (H/M ) = V (K ) ∪V (G/M ). To show that H/M is a clique, we consider two arbitrary
verticesu,v ∈ V (H/M ), and show that they are adjacent in H/M . Ifu,v ∈ V (K ), then because K is
a clique, it is clear that {u,v} ∈ E (H/M ). Moreover, if u,v ∈ G/M , then becauseG/M is a clique, it
is clear that {u,v} ∈ E (H/M ). Thus, one of the vertices u and v belongs to V (G/M ) and the other
belongs to V (K ). We suppose w.l.o.g. that u � V (K ). Because M is a perfect matching in G such
that every edge in M has one endpoint in A and the other in B, it follows that u resulted from
the contraction of the edge between some a ∈ A and some b ∈ B. If v ∈ C , then {a,v} ∈ E (H ), and
otherwise v ∈ D and so {b,v} ∈ E (H ). Thus, by the definition of contraction, we conclude that
{u,v} ∈ E (H/M ). This completes the proof of the forward direction.

Now, suppose that MatchingAlg returns Yes, which means that the call to CliConAlg with
(H ,A,B,C,D,n) returns Yes. Thus, (H ,A,B,C,D,n) is a Yes-instance, which means that there ex-
ists a subset F ⊆ E (H ) of size at most n such that H/F is a clique. We will show that F is a perfect
matching in G such that every edge in F has one endpoint in A and the other in B. Because H/F
is a clique, this will imply that G/F is a clique and thus that (G,A,B) is a Yes-instance of Cross
Matching. To achieve this, notice that by Lemma 5.2, F is a matching of size n in H such that each
edge in F has one endpoint in A and the other in B. Because G = H [A ∪ B], we have that F is a
perfect matching in G. Thus, the proof of the reverse direction is complete. �

Corollary 5.4. Unless the ETH is false, there does not exist an algorithm that solves Hadwiger

Number in time no (n) where n = |V (G ) |.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Hadwig-

erAlg, that solves Hadwiger Number in time no (n) where n is the number of vertices in the input
graph. We will show that this implies the existence of an algorithm, denoted by CliConAlg, that

solves Cliqe Contraction in time no (n) where n is the number of vertices in the input graph,
thereby contradicting Theorem 5.1 and hence completing the proof.

We define the execution of CliConAlg as follows. Given an instance (G, t ) of Cliqe Contrac-
tion, ifG is not connected, then CliConAlg returns No, and otherwise it returns Yes if and only if
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Fig. 6. A two-cliques graph (see Definition 6.2).

HadwigerAlg returns Yes when called with (G, |V (G ) | − t ) as input. Because the call to Hadwiger-

Alg with input (G, |V (G ) | − t ) runs in time no (n) where n = |V (G ) |, we have that CliConAlg runs

in time no (n) as well.
For the correctness of the algorithm, first observe that ifG is not connected, then no sequence of

edge contractions can yield a clique, and hence it is correct to return No. Thus, now assume thatG
is connected. First, suppose that (G, t ) is a Yes-instance of Cliqe Contraction. This means that
there exists a sequence of at most t edge contractions that transformsG into a clique. In particular,
this clique must have at least |V (G ) | − t vertices, and therefore the Hadwiger number of G is at
least as large as |V (G ) | − t . By the correctness of HadwigerAlg, its call with (G, |V (G ) | − t ) returns
Yes, and therefore CliConAlg returns Yes.

Now, suppose that CliConAlg returns Yes, which means that the call to HadwigerAlg with
(G, |V (G ) | − t ) returns Yes. By the correctness of HadwigerAlg, the clique Kh for h = |V (G ) | − t
is a minor of G. This means that there is a sequence of vertex deletions, edge deletions, and edge
contractions that transforms G into Kh . In particular, this sequence can contain at most t vertex
deletions and edge contractions in total. Furthermore, by replacing each vertex deletion for a ver-
tex v by an edge contraction for some edge e incident to v (which exists because G is connected)
and dropping all edge deletions, we obtain another sequence that transforms G into Kh . Because
this sequence contains only edge contractions, and at most t of them, we conclude that (G, t ) is a
Yes-instance of Cliqe Contraction. �

6 LOWER BOUNDS FOR CONTRACTION TO GRAPH CLASSES PROBLEMS

In this section, we prove lower bounds for several cases of the F -Contraction problem, defined
as follows. Here, F is a (possibly infinite) family of graphs.

F -Contraction
Input: A graph G and t ∈ N .
Question: Does there exist a subset F ⊆ E (G ) of size at most t such that G/F ∈ F ?

Notice that Cliqe Contraction is the case of F -Contraction where F is the family of
cliques. In this section, we consider the cases of F -Contraction where F is the family of chordal
graphs, interval graphs, proper interval graphs, threshold graphs, trivially perfect graphs, split
graphs, complete split graphs, and perfect graphs, also called Chordal Contraction, Interval
Contraction, Proper Interval Contraction, Threshold Contraction, Trivially Perfect
Contraction, Split Contraction, Complete Split Contraction, and Perfect Contraction,
respectively. Before we define these classes formally, it will be more enlightening to first define
only the class of chordal graphs as well as somewhat artificial classes of graphs that will help us
prove lower bounds for many of the classes above in a unified manner.

Definition 6.1 (Chordal Graphs). A graph is chordal if it does not contain C� for all � ≥ 4 as an
induced subgraph.

Our first class of graphs is defined as follows (see Figure 6).
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Definition 6.2 (Two-Cliques Graphs). A two-cliques graph is a graphG such that there existA,B ⊆
V (G ) such that A ∪ B = V (G ),G[A] andG[B] are cliques, and there do not exist vertices a ∈ A \ B
and b ∈ B \A such that {a,b} ∈ E (G ). The two-cliques class is the class of all two-cliques graphs.

It should be clear that the two-cliques class is a subclass of the class of chordal graphs. Keeping
this in mind, we further define a family of classes of graphs that includes the two-cliques class.

Definition 6.3 (Non-Trivial Chordal Class). We say that a class of graphs F is non-trivial chordal

if it is a subclass of the class of chordal graphs, and a superclass of the two-cliques class.

Clearly, the class of cliques is not a non-trivial chordal class, and the class of chordal graphs
is a non-trivial chordal class. The rest of this section is divided as follows. First, in Section 6.1,
we prove a lower bound for any non-trivial chordal class. Then, in Section 6.2, we prove a lower
bound for some graph classes that are not non-trivial chordal.

6.1 Non-Trivial Chordal Graph Classes

The main objective of this subsection is to prove the following theorem. Afterwards, we will derive
lower bounds for several known graph classes as corollaries.

Theorem 6.4. Let F be any non-trivial chordal graph class. Unless the ETH is false, there does not

exist an algorithm that solves F -Contraction in time no (n) where n = |V (G ) |.

For the proof of this theorem, the following well-known property of chordal graphs will come
in handy. This property is a direct consequence of the alternative characterization of the class of
chordal graphs as the class of graphs that admit clique-tree decompositions (see [11]).

Proposition 6.5. Let G be a chordal graph, and let u and v be two non-adjacent vertices in G.

Then, G[N (u) ∩ N (v )] is a clique.

We are now ready to prove Theorem 6.4.

Proof of Theorem 6.4. Targeting a contradiction, suppose that there exists an algorithm, de-

noted by NonTrivChordAlg, that solves F -Contraction in time no (n) where n is the number of
vertices in the input graph. We will show that this implies the existence of an algorithm, denoted

by CliConAlg, that solves Structured Cliqe Contraction in time no (n) where n is the number
of vertices in the input graph, thereby contradicting Lemma 5.3 and hence completing the proof.

We define the execution of CliConAlg as follows. Given an instance (G,A,B,C,D,n) of Struc-
tured Cliqe Contraction, CliConAlg constructs an instance (H ,n) of F -Contraction as
follows (see Figure 7):

—Let n = |A|. Moreover, let K and K ′ be two cliques, each on 2n new vertices.
—V (H ) = V (G ) ∪V (K ) ∪V (K ′).
—E (H ) = E (G ) ∪ E (K ) ∪ E (K ′) ∪ {{u,v} : u ∈ V (G ),v ∈ V (K ) ∪V (K ′)}.

Then, CliConAlg calls NonTrivChordAlg with (H ,n) as input, and returns the answer of this
call.

First, note that by construction, |V (H ) | = 10n. Thus, because NonTrivChordAlg runs in time

|V (H ) |o ( |V (H ) |) ≤ no (n) , it follows that CliConAlg runs in time no (n) .
For the correctness of the algorithm, first suppose that (G,A,B,C,D,n) is a Yes-instance of

Structured Cliqe Contraction. This means that there exists a subset F ⊆ E (G ) of size at most
n such that G/F is a clique. By the definition of H , we directly derive that H/F is a two-cliques
graph, and therefore it belongs to F . Thus, (H ,n) is a Yes-instance of F -Contraction, which
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Fig. 7. The construction of an instance of F -Contraction in the proof of Theorem 6.4 where dashed lines

represent non-edges.

means that the call to NonTrivChordAlg with (H ,n) as input returns Yes, and hence CliConAlg

returns Yes.
Now, suppose that CliConAlg returns Yes, which means that the call to NonTrivChordAlg with

(H ,n) returns Yes. Thus, (H ,n) is a Yes-instance of F -Contraction, which means that there
exists a subset F ⊆ E (H ) of size at most n such that H/F ∈ F . In particular, H/F is a chordal
graph. Based on Proposition 6.5, we will first show thatH [A ∪ B ∪C ∪ D ∪ X ]/F is a clique, where
X = {u ∈ V (K ) ∪V (K ′) : there exists a vertex v ∈ A ∪ B ∪C ∪ D such that u and v belong to the
same connected component of H [F ]}.

Targeting a contradiction, suppose that H [A ∪ B ∪C ∪ D ∪ X ]/F is not a clique, and therefore
there exist two non-adjacent vertices u and v in this graph. By the definition of X , H [A ∪ B ∪C ∪
D ∪ X ]/F is equal to the subgraph of H/F induced by the set of vertices derived from connected
components that contain at least one vertex from A ∪ B ∪C ∪ D. In particular, u and v are also
non-adjacent vertices in H/F . By Proposition 6.5, this implies that (H/F )[NH /F (u) ∩ NH /F (v )] is
a clique. Let C1 (C2, respectively) be the set of connected components of H [F ] that contain at least
one vertex from V (K1) (V (K2), respectively). Because |F | ≤ n and |V (K1) | = |V (K2) | = 2n, there
exists at least one component C1 ∈ C1 (C2 ∈ C2, respectively) that does not contain any vertex
from A ∪ B ∪C ∪ D. Let c1 and c2 be the vertices of H/F yielded by the replacement of C1 and
C2, respectively. As all vertices in V (K1) ∪V (K2) are adjacent to all vertices in A ∪ B ∪C ∪ D, we
have that c1, c2 ∈ NH /F (u) ∩ NH /F (v ). However, there do not exist a vertex in V (K1) and a vertex
in V (K2) that are adjacent in H , and for every vertex in V (K1) ∪V (K2), its neighborhood outside
this set is contained in A ∪ B ∪C ∪ D. Thus, c1 and c2 must be non-adjacent in H/F . However,
this is a contradiction to the argument that (H/F )[NH /F (u) ∩ NH /F (v )] is a clique. From this, we
derive that H [A ∪ B ∪C ∪ D ∪ X ]/F is indeed a clique.

Now, notice that (H ,A,B,C,D,N ,n) where N = V (K1) ∪V (K2) is an instance of Noisy Struc-
tured Cliqe Contraction. Furthermore, since |F | ≤ n and we have already shown that H [A ∪
B ∪C ∪ D ∪ X ]/F is a clique, we have that F is a solution to this instance. Therefore, by Lemma 5.2,
F is a matching of size n in H such that each edge in F has one endpoint in A and the other in
B. In particular, F ⊆ E (G ) and hence X = ∅. Because G = H [A ∪ B ∪C ∪ D], we thus derive that
G/F is a clique. Thus, we conclude that (G,A,B,C,D,n) is a Yes-instance of Structured Cliqe
Contraction. This completes the proof of the reverse direction. �

Now, we give definitions for several classes of graphs for which lower bounds will follow from
Theorem 6.5. First, a graph is an interval graph if there exists a set of intervals on the real line such
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that the vertices of the graph are in bijection with these intervals, and there exists edge between
two vertices if and only if their intervals intersect. A graph is a proper interval graph if, in the
former definition, we also add the constraint that all intervals must have the same length. A graph
is a threshold graph if it can be constructed from a one-vertex graph by repeated applications of
the following two operations: addition of a single isolated vertex to the graph; addition of a single
vertex that is connected to all other vertices. A graph is trivially perfect if in each of its induced
subgraphs, the maximum size of an independent set equals the number of maximal cliques.

It is well-known that every graph that is a (proper) interval graph, or a threshold graph, or a
trivially perfect graph, is also a chordal graph (see [11]). Moreover, it is immediate to verify that
the two-cliques class is a subclass of the classes of (proper) interval graphs, threshold graphs, and
trivially perfect graphs. Thus, these classes are non-trivial chordal graphs classes, and therefore
Theorem 6.4 directly implies lower bounds for them as stated below.

Corollary 6.6. Unless the ETH is false, none of the following problems admits an algorithm that

solves it in time no (n) where n = |V (G ) |: Chordal Contraction, Interval Contraction, Proper

Interval Contraction, Threshold Contraction, and Trivially Perfect Contraction.

6.2 Other Graph Classes

In Section 5, we have already proved a lower bound for a class of graphs that is not non-trivial
chordal, namely, the class of cliques. In this section, we show that our approach can yield lower
bounds for other classes of graphs that are not non-trivially chordal. For illustrative purposes, we
consider the classes of Split Graphs, Complete Split Graphs, and Perfect Graphs.

A graph G is a split graph if there exists a partition (I ,K ) of V (G ) such that G[I ] is edgeless
and G[K] is a clique. In case {{i,k } : i ∈ I ,k ∈ K } ⊆ E (G ), we further say that G is a complete split

graph. Notice that the two-cliques class is not a subclass of the class of split graphs, and hence the
class of (complete) split graphs is not non-trivially chordal.

For the class of (complete) split graphs, we prove the following statement.

Theorem 6.7. Unless the ETH is false, there does not exist an algorithm that solves Split Contrac-

tion (or Complete Split Contraction) in time no (n) where n = |V (G ) |.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by SplitAlg,

that solves Split Contraction (or Complete Split Contraction) in time no (n) where n is the
number of vertices in the input graph. We will show that this implies the existence of an algorithm,

denoted by CliConAlg, that solves Structured Cliqe Contraction in time no (n) where n is the
number of vertices in the input graph, thereby contradicting Lemma 5.3 and hence completing the
proof.

We define the execution of CliConAlg as follows. Given an instance (G,A,B,C,D,n) of Struc-
tured Cliqe Contraction, CliConAlg constructs an instance (H ,n) of Split Contraction (or
Complete Split Contraction) as follows (see Figure 8):

—V (H ) = V (G ) ∪ S where S is a set of n + 2 new vertices.
—E (H ) = E (G ) ∪ {{u,v} : u ∈ V (G ),v ∈ S }.

Then, CliConAlg calls SplitAlg with (H ,n) as input, and returns the answer of this call.
First, note that by construction, |V (H ) | = 7n + 2. Thus, because SplitAlg runs in time

|V (H ) |o ( |V (H ) |) ≤ no (n) , it follows that CliConAlg runs in time no (n) .
For the correctness of the algorithm, first suppose that (G,A,B,C,D,n) is a Yes-instance of

Structured Cliqe Contraction. This means that there exists a subset F ⊆ E (G ) of size at
most n such that G/F is a clique. By the definition of H , we derive that H/F is a complete split
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Fig. 8. The construction of an instance of Split Contraction in the proof of Theorem 6.7 where dashed lines

represent non-edges.

graph: (S,V (G/F )) is a partition of V (H/F ) where S induces an independent set, V (G/F ) induces
a clique, and every vertex in S is adjacent to every vertex inV (G/F ). Thus, (H ,n) is a Yes-instance
of Complete Split Contraction (as well as of Split Contraction), which means that the call
to SplitAlg with (H ,n) returns Yes, and hence CliConAlg returns Yes.

Now, suppose that CliConAlg returns Yes, which means that the call to SplitAlg with (H ,n)
returns Yes. Thus, (H ,n) is a Yes-instance of Split Contraction (even if SplitAlg solves Complete
Split Contraction), which means that there exists a subset F ⊆ E (H ) of size at most n such that
H/F is a split graph. Let (I ,K ) be a partition ofV (H/F ) into an independent set and a set of vertices
that induce a clique. Because |S | = n + 2 and H [S] is an independent set, there exist at least two
vertices s1, s2 ∈ S that are not incident to any edge in F . As these vertices are not adjacent to
one another in H , and because they are adjacent to all vertices in V (G ) (and hence to all vertices
in V (H/F ) \ S), it follows that s1, s2 ∈ I and V (H/F ) \ S ⊆ K . In particular, (H/F )[V (H/F ) \ S] is
a clique. Let X = {u ∈ S : there exists a vertex v ∈ V (G ) such that u and v belong to the same
connected component of G[F ]}. Then, we have that H [V (G ) ∪ X ]/F is a clique.

Now, notice that (H ,A,B,C,D, S,n) is an instance of Noisy Structured Cliqe Contraction.
Furthermore, since |F | ≤ n and we have already shown that H [A ∪ B ∪C ∪ D ∪ X ]/F is a clique,
we have that F is a solution to this instance. Therefore, by Lemma 5.2, F is a matching of size n inH
such that each edge in F has one endpoint inA and the other in B. In particular, F ⊆ E (G ) and hence
X = ∅. BecauseG = H [A ∪ B ∪C ∪ D], we thus derive thatG/F is a clique. Thus, we conclude that
(G,A,B,C,D,n) is a Yes-instance of Structured Cliqe Contraction. This completes the proof
of the reverse direction. �

A graphG is a perfect graph if the chromatic number of every induced subgraph ofG equals the
size of the largest clique of that subgraph. Here, the chromatic number of a graph is the minimum
number of colors required to color its vertices so that every pair of adjacent vertices are assigned
different colors. For the class of perfect graphs, we prove the following statement.

Theorem 6.8. Unless the ETH is false, there does not exist an algorithm that solves Perfect Con-

traction in time no (n) where n = |V (G ) |.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Perfec-

tAlg, that solves PerfectContraction in time no (n) where n is the number of vertices in the input
graph. We will show that this implies the existence of an algorithm, denoted by CliConAlg, that

solves Structured Cliqe Contraction in time no (n) where n is the number of vertices in the
input graph, thereby contradicting Lemma 5.3 and hence completing the proof.
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Fig. 9. The construction of an instance of Perfect Contraction in the proof of Theorem 6.8 where dashed

lines represent non-edges.

We define the execution of CliConAlg as follows. Given an instance (G,A,B,C,D,n) of Struc-
tured Cliqe Contraction, CliConAlg constructs an instance (H ,n) of Perfect Contraction
as follows (see Figure 9):

—LetK = {u ′ : u ∈ V (G )}where each elementu ′ is a new vertex referred to as the tagged copy

of u. Additionally, let I be a set of n + 1 new vertices.
—V (H ) = V (G ) ∪ K ∪ I .
—E (H ) = E (G ) ∪ {{u,u ′} : u ∈ V (G )} ∪ {{u ′,v ′} : u ′,v ′ ∈ K } ∪ {{u, i} : u ∈ V (G ), i ∈ I }.

Then, CliConAlg calls PerfectAlg with (H ,n) as input, and returns the answer of this call.
First, note that by construction, |V (H ) | ≤ 13n + 1. Thus, because PerfectAlg runs in time

|V (H ) |o ( |V (H ) |) ≤ no (n) , it follows that CliConAlg runs in time no (n) .
In what follows, given a subset U ⊆ V (G ), we denote U ′ = {u ′ ∈ K : u ∈ U }. For the correct-

ness of the algorithm, first suppose that (G,A,B,C,D,n) is a Yes-instance of Structured Cliqe
Contraction. This means that there exists a subset F ⊆ E (G ) of size at most n such that G/F
is a clique. Now, we will show that H/F is a perfect graph. To this end, consider some induced
subgraph S of H/F .

In case the maximum size of a clique in S is 2, then S can contain at most two vertices from K ,
and either (i) at most one vertex from outside K ∪ I , or (ii) two vertices from outside K ∪ I and no
vertex from I (because H [V (G )]/F is a clique and all of its vertices are adjacent to all vertices in
I ). In case (ii), S contains at most four vertices, and it is straightforward to verify that any graph
on at most four vertices is perfect. In case (i), we color the vertex in V (S ) \ (K ∪ I ) (if it exists)
in one color, and all vertices in V (S ) ∩ I in the second color; among the (at most) two vertices in
V (S ) ∩ K , at most one is adjacent to the vertex in V (S ) \ (K ∪ I ), and that one is colored by the
same color as the vertices in V (S ) ∩ I (while the other vertex is colored by the other color).

Thus, in what follows, suppose that the maximum size of a clique in S is at least 3. Observe that
every clique of maximum size in S is of one of two types: it consists either (i) of no vertex fromK (in
which case it can contain at most one vertex from I ), or (ii) only of vertices from K . First, suppose

that there exists a clique ̂C of maximum size in S that consists of no vertex from K . In this case,

|V (S ) ∩ K | ≤ |V (̂C ) |. Then, color each vertex in ̂C by a distinct color. Clearly, because |V (S ) ∩ K | ≤
|V (̂C ) |, all vertices inV (S ) ∩ K can be colored using the same set of colors so that a vertex and its
tagged copy are assigned distinct colors. Further, all the vertices left uncolored in V (S ) belong to

I , and if there exists at least one such vertex left uncolored, then |V (̂C ) ∩ I | = 1, and all vertices
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in I can receive the same color as the vertex from V (̂C ) ∩ I . Second, suppose that all cliques of
maximum size in S consist only of vertices in K—then, S has exactly one clique of maximum size,

which is S[V (S ) ∩ K], and which we denote by ̂C . In this case, |V (S ) \ (K ∪ I ) | ≤ |V (̂C ) | − 1. Then,

color each vertex in ̂C by a distinct color. Clearly, because |V (S ) \ (K ∪ I ) | ≤ |V (̂C ) | − 1, all vertices
inV (S ) \ (K ∪ I ) can be colored using the same set of colors minus one color, so that a vertex and
its tagged copy are assigned distinct colors. So, all vertices in I can be colored using the same color

that is some color used by a vertex in ̂C but by no vertex inV (S ) \ (K ∪ I ). In either case, we obtain
that the chromatic number of S equals its maximum clique size. Thus, (H ,n) is a Yes-instance of
Perfect Contraction, which means that the call to PerfectAlg with (H ,n) returns Yes, and hence
CliConAlg returns Yes.

Now, suppose that CliConAlg returns Yes, which means that the call to PerfectAlg with (H ,n)
returns Yes. Thus, (H ,n) is a Yes-instance of Perfect Contraction, which means that there
exists a subset F ⊆ E (H ) of size at most n such that H/F is a perfect graph. We first argue that
there does not exist a vertex a ∈ A ∪ B such that neither a nor a′ is incident to at least one edge
in F . Targeting a contradiction, suppose that there exists a ∈ A ∪ B such that neither a not a′ is
incident to at least one edge in F . Assume that a ∈ A as the other case is symmetric. Because |F | ≤ n
and |D | = 2n, there either exists a vertex d ∈ D such that neither d nor d ′ is incident to at least
one edge in F , or F is a perfect matching in either G[D] or G[D ′], where in the latter case we
let d denote some arbitrarily chosen vertex from D. Additionally, since I is an independent set of
size n + 1, there exists a vertex i ∈ I that is not incident to any edge in F . Now, consider the cycle
i − a − a′ − d ′ − d − i (on five vertices) in H . This cycle is an induced cycle in H , because no vertex
in A is adjacent to any vertex in D, and by the construction of H , i is not adjacent to a′ and d ′, a
is not adjacent to d ′, and a′ is not adjacent to d . Furthermore, as i, a, and a′ are not incident to
any edge in F , and if any of d and d ′ is incident to an edge in F , then F is a perfect matching in

eitherG[D] orG[D ′], we obtain that i − a − a′ − ̂d − ̂d ′ − i is an induced cycle (on five vertices) in

H/F , where ̂d and ̂d ′ are the vertices yielded by the replacement of the connected components of

H [F ] that contain d and d ′, respectively, if such components exist (otherwise, ̂d = d and ̂d ′ = d ′).
However, an induced cycle on five vertices has chromatic number 3 and maximum clique size 2,
thus we derive a contradiction to the supposition that H/F is perfect.

So far, we derived that there does not exist a vertex a ∈ A ∪ B such that neither a nor a′ is
incident to at least one edge in F . As |F | ≤ n and |A| = |A′ | = |B | = |B′ | = n, this means that every
edge in F has both endpoints in A ∪A′ ∪ B ∪ B′ and that for each u ∈ A ∪ B, exactly one vertex
among u and u ′ is incident to an edge in F . Now, we will show that each vertex a ∈ A ∪ B is
incident to at least one edge in F . Targeting a contradiction, suppose that there exists a vertex
a ∈ A ∪ B that is not incident to any edge in F . Assume that a ∈ A, as the other case is symmetric.

Denote i, d, d ′, ̂d , and ̂d ′ as before, and again consider the induced cycle i − a − a′ − d ′ − d − i in
H . Unlike before, now a′ belongs to some connected component of H [F ], yet we know that this
connected component consists only of a′ and some vertex in B′. Let â′ be the vertex yielded by
the replacement of this component. As no vertex in B′ is adjacent to any vertex in I ∪ D, we again

have that i − a − â′ − ̂d ′ − ̂d − i is an induced cycle in H/F , which gives rise to a contradiction.
Thus, as |F | ≤ n and |A| = |B | = n, we know that F is a perfect matching in G[A ∪ B].

Next, we will show that G/F is a clique. This will imply that (G,A,B,C,D,n) is a Yes-instance
of Structured Cliqe Contraction and thereby complete the proof. Targeting a contradiction,
suppose that G/F is not a clique, and therefore there exist two non-adjacent vertices u and v in
G/F . As F is a matching in G[A ∪ B], we can let x and y be two vertices in A ∪ B that belonged to
the connected components ofH [F ] that yieldedu andv , respectively. Notice that the only vertex in
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A ∪ B adjacent to x ′ is x , and the analogous claim holds fory ′ andy. As F is a matching inG[A ∪ B]
that does not match x and y (since otherwise u and v would not be distinct vertices), we have that
neither u is adjacent to y ′ in H/F nor v is adjacent to x ′ in H/F . From this, by the construction
of H and since F is a matching in G[A ∪ B], we immediately derive that i − u − x ′ − y ′ −v − i is
an induced cycle in H/F where i is some arbitrarily chosen vertex from I . However, as before, the
existence of such a cycle contradicts the supposition that H/F is a perfect graph. Thus, the proof
of the reverse direction is complete. �

7 CONCLUSION

In this article, we proved that the Hadwiger Number problem cannot be solved in time no (n)

under the ETH. In particular, this stands in contrast to the related Subgraph Isomorphism, Graph

Homomorphism, and Topological Graph Minor problems, which can be solved in time 2O (n)

when one of the input graphs is a clique. Our technique could also be applied to rule out (under

the ETH) the existence of no (n)-time algorithms for a large number of F -Contraction problems.
We believe that our technique can be applied to additional contraction problems as well. However,
some non-trivial contraction problems, such as Path Contraction [1], can be solved in time

2O (n) . So, for future research, we suggest to attain better understanding in terms of as general as
possible dichotomy theorems that identify which contraction problems can, and which cannot, be

solved in time 2O (n) .
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