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Abstract. Inspired by Gehrlein stability in multiwinner election, in this
paper, we define several notions of stability that are applicable in multi-
winner elections with multimodal preferences, a model recently proposed
by Jain and Talmon [ECAI, 2020]. In this paper we take a two-pronged
approach to this study: we introduce several natural notions of stabil-
ity that are applicable to multiwinner multimodal elections (MME) and
show an array of hardness and algorithmic results.
In a multimodal election, we have a set of candidates, C, and a multi-set
of ` different preference profiles, where each profile contains a multi-set
of strictly ordered lists over C. The goal is to find a committee of a given
size, say k, that satisfies certain notions of stability. In this context, we
define the following notions of stability: global-strongly (weakly) sta-
ble, individual-strongly (weakly) stable, and pairwise-strongly (weakly)
stable. In general, finding any of these committees is an intractable
problem, and hence motivates us to study them for restricted domains,
namely single-peaked and single-crossing, and when the number of voters
is odd. Besides showing that several of these variants remain computa-
tionally intractable, we present several efficient algorithms for certain
parameters and restricted domains.

Keywords: Multiwinner Election · Multi-modal· Stability · Parameter-
ized Complexity.

1 Introduction

In social choice theory, multiwinner election is an important problem as many
real-life problems such as the selection of the members of a Parliament, research
papers for a conference, restaurant menu, a team of players for a team sports
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competition, a catalogue of movies for an airline, locations for police or fire
stations in a city, etc., can be viewed as a “multiwinner election” problem. Math-
ematically modelled as a problem where the input consists of a set of alternatives
(called candidates), a set of voters such that every voter submits a ranking (a
total order) over the candidates, called the preference list of the voter6, and a
positive integer k. The goal is to choose a k-sized subset of candidates (called a
committee) that satisfy certain acceptability conditions.

This model has an obvious limitation in that in real-life scenarios, rarely does
one factor decide the desirability of a subset of candidates. In fact, in complex
decision making scenarios, e.g., selecting research papers for a conference, a team
of astronauts for a space mission, hors-d’oeuvres for a banquet, a team of players
for a basketball competition, a catalogue of movies for an airline, etc., multiple
competing factors (call them attributes) come into play. Certain candidates may
rank highly with respect to some attributes and lowly with respect to others.
In choosing a solution, the goal is to balance all these factors and choose a
committee that scores well on as many factors as possible. In our modelling of
the committee selection problem, the multiple attributes under consideration
can be modelled by submitting ` different preference profiles, where each profile
is a set of strict rankings of the candidates based on a specific attribute. Such
a model has been studied in [9,26,34] and the importance of such a model is
also highlighted in [4]. How we aggregate all these information to produce a high
quality solution with desirable properties is the context of this work. We use the
term Multimodal Committee Selection (as opposed to unimodal setting
where ` = 1), introduced by Jain and Talmon [26], to refer to the problem under
consideration.

Of the many notions of a good solution, the one that comes readily to mind is
the one closely associated to “popularity”, i.e., a solution that is preferred by at
least half of the voters, known as the Condorcet winner. Fishburn [21] general-
ized Condorcet’s idea for a single winner election (when k = 1) to a multiwinner
election (when k > 1). Darmann [12] defined two notions of a Condorcet commit-
tee: weak and strong, where the ranking over the committees is based on some
scoring rules. Gehrlein [24] proposed a new notion of a Condorcet committee
that compares the popularity of each committee member to every non-member.

In this paper, we extend the notion of Gehrlein-stability in the unimodal
setting [24] to the multimodal setting. Gehrlein-stability has been studied quite
extensively for the committee selection problem in recent years [2,25,10,31,28].
It has been argued by Aziz et al. [2] that Gehrlein-stable committees are nat-
ural choice for shortlisting of candidates in situations that mirror multiwinner
elections to avoid controversy surrounding inclusion of some candidate and ex-
clusion of others as noted previously by [33,17]. Hence, there are good reasons
to believe that a Gehrlein-stable committee for multimodal preferences will ably
model scenarios described above. There are two notions of Gehrlein-stable com-
mittee in the unimodal setting, namely, Strongly Gehrlein-stable committee, and
Weakly Gehrlein-stable committee, depending on margin of victory between two

6 There are several other ways to submit a ballot.
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candidates. A committee is strongly (weakly) Gehrlein-stable, if each commit-
tee member, v, is preferred by more than (at least) half of the voters over any
non-committee member, u, in the pairwise election between u and v. The prob-
lem of finding strongly (weakly) Gehrlein stable committee is called Strongly
(Weakly) Gehrlein Stable Committee Selection or S(W)GSCS in short.
In the multimodal setting, we extend these definitions in a way that will capture
our goal that the winning committee is “great across several attributes”. Natu-
rally, there may be several ways of achieving this. Chen et al. [9] undertakes one
such study in the context of the stable matching problem, where instead of a
committee, the goal is to pick a matching that satisfied some notion of stability
in multiple preference profiles. In this paper, we use similar ideas to motivate
notions of desirable solutions for the Multimodal Committee Selection
problem that we believe are compelling, namely: global stability, individual sta-
bility, and pairwise stability, where each notion may be further refined in terms
of strong or weak stability.
Our Model. Formally stated, for a positive integer `, a multimodal election E
with ` attributes (called layers) is defined by a set C of candidates, and a multi-
set of ` preference profiles (Li)i∈[`], where each Li is a multi-set of strict rankings
of the candidate set, representing the voters (model is oblivious to voter set).
The input instance of the Multimodal Committee Selection problem is a
multimodal election E = (C, (Li)i∈[`]), and two integers α, k ≥ 1 where α ∈ [`].7
The goal is to find a k-sized committee that satisfies certain stability criteria,
defined below, in α layers. We say that
– a committee S is globally-strongly (weakly) stable if there exist α layers in

which S is strongly (weakly) Gehrlein-stable.
– a committee S is individually-strongly (weakly) stable if for each (committee

member) c ∈ S, there exist α layers in which c is preferred by more than
(at least) half of the voters over every (non-committee member) d ∈ C \ S
in the pairwise election between c and d. We say that these layers provide
stability to the candidate c, and c is individually-strongly (weakly) stable in
these layers.

– a committee S is pairwise-strongly (weakly) stable if for each pair of candi-
dates {c, d} ⊆ C, where c ∈ S and d ∈ C \S, there exist α layers in which c is
preferred by more than (at least) half of the voters in the pairwise election
between c and d. We say that these layers provide stability to the pair {c, d},
and the pair {c, d} is pairwise-strongly (weakly) stable in these layers.
In our model, we do not assume that α is a function of `. However, when there

exists a relationship, we are able to exploit it (e.g., Theorem 15). In fact, it is
very well possible that ` is large and α = 1, for example, suppose the committee
to be selected is a panel of experts to adjudicate fellowships. Each member of
the panel is an expert in one field and while the panel size is k, there are some
` different subjects under consideration. In situations like these α = 1.

We call a stable committee as a solution of the multimodal committee selec-
tion problem.

7 For any x ∈ N, [x] denotes the set {1, 2, . . . , x}.
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Problem Names
We denote the problems of computing a globally-strongly (weakly) stable so-
lution by G-SS (G-WS); an individually-strongly (weakly) stable solution by
I-SS (I-WS); and a pairwise-strongly (weakly) stable solution by P-SS (P-WS).
Additionally, for any X ∈ {G, I, P}, we will use X-YS to refer to both X-SS
and X-WS.

For X ∈ {G, I, P} and Y ∈ {S,W}, the formal definition of the problem is
presented below.
X-YS
Input: A multimodal election E = (C, (Li)i∈[`]), and two integers α, k ≥ 1,
where α ∈ [`].
Question: Does there exist a committee of size k that is a solution for X-YS?

Remark 1. All of the definitions coincide with that of Srongly (Weakly) Gehrlein-
stability when ` = α = 1.

Remark 2. The notion of strong and weak stability are equivalent for the odd
number of voters.

Remark 3. A committee that is globally stable is also individually and pairwise
stable; a committee which is individually stable is also pairwise stable.

Example 1. We explain our model using the following example containing 3 vot-
ers {v1, v2, v3}, 4 layers {L1,L2,L3,L4}, and 4 candidates {a, b, c, d}.

v1 v2 v3
L1 : b � a � d � c; a � b � d � c; d � b � a � c
L2 : b � a � d � c; a � d � c � b; b � c � a � d
L3 : c � b � d � a; c � a � d � b; d � c � a � b
L4 : c � b � a � d; d � c � b � a; c � a � b � d

Let α = 2, k = 2. Let S = {a, b}. In L1, v1 and v2 prefers a and b over c and
d. Thus, S is strongly Gehrlein-stable in L1. In L2, v1 and v2 prefer a over c
and d, and v1 and v3 prefer b over c and d. Thus, there exist 2 layers in which
S is strongly Gehrlein-stable. Hence, S is globally-strongly stable. Next, let us
consider a committee S = {b, c}. Note that S is not strongly Gehrlein-stable
in any layer, thus, it is not a globally-strongly stable committee. However, b is
more preferred than non-committee members a and d in layers L1 and L2, c is
more preferred than a and d in the layers L3 and L4. Thus, b is individually-
strongly stable in the layers L1 and L2, and c is individually-strongly stable in
the layers L3 and L4. Hence, S = {b, c} is individually-strongly stable. Let us
consider a committee S = {b, d}. Note that S is neither globally-strongly stable
nor individually-strongly stable as d is not more preferred than both a and c
in any layer. However, d is more preferred than a in layers L3 and L4, and d is
more preferred than c in layers L1 and L2. Furthermore, b prefers a and c both
in L1 and L2. Hence, S = {b, d} is pairwise-strongly stable.
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Differences between the notions. Note that for an instance of a Multi-
modal Committee Selection, it may be the case that it has no globally
stable solution but has an individually stable solution. Moreover, it may also be
the case that an instance may not have a globally stable or an individually stable
solution but has a pairwise stable solution. We explain it using an example in
the appendix and in Example 1.
Graph-theoretic Formulation. Similar to Gehrlein-stable model, all the mod-
els of stability that we study for multimodal election can be transformed to
graph-theoretic problems on directed graphs. Using each of ` preference profiles,
we create ` directed graphs with C as the vertex set, where in the ith layer,
denoted by the directed graph Gi = (C,Ai), there is an arc from vertex a to b
in Ai if and only if in Li the candidate8 a is preferred by more than half of the
voters over b in the pairwise election between a and b. These directed graphs are
known as majority graphs in the literature [2].

Let S ⊆ C. In the language of the majority graph, S is strongly Gehrlein-
stable in the ith layer if for every pair of vertices u, v such that u ∈ S and
v ∈ C \S, v is an out-neighbor of u in Gi, which demonstrates that u is preferred
over v by more than half of the voters. The set S is weakly Gehrlein-stable in
the ith layer if for every pair of vertices u, v such that u ∈ S and v ∈ C \ S, v
is not an in-neighbor of u in Gi (i.e., either (u, v) is an arc or there is no arc
between u and v), which demonstrates that u is preferred over v by at least half
of the voters. We say that for the committee S, the vertex u ∈ S is individually-
strongly stable in the ith layer if every v ∈ C\S is an out-neighbor of u in Gi, and
is individually-weakly stable if every in-neighbor of u in Gi is in S. Analogously,
for the set S, a pair of vertices u ∈ S and v ∈ C \S is pairwise-strongly stable in
the ith layer if v is an out-neighbor of u in Gi, and is pairwise-weakly stable if v
is not an in-neighbor of u in Gi. Note that when the numbers of voters is odd, all
the graphs are tournaments (a directed graph in which there is an arc between
every pair of vertices) and strongly and weakly stable definitions coincides to be
the same. We will use graph-theoretic formulation for deriving our results.
Our contributions. Due to Remark 1, and NP-hardness and W[1]-hardness
of WGSCS9 with respect to k [2,25], G-WS, I-WS, and P-WS are NP-hard
and W[1]-hard with respect to k. We list our contributions here. The notation
O?(f(k)) suppresses factors polynomial in input size.
– G-SS can be solved in polynomial time and G-WS in O?(1.2207n) time for

constant α, where n is the number of vertices in each layer. Furthermore,
when all the layers are tournament graphs, G-WS can be solved in polyno-
mial time due to Remark 2. Both the results are due to the reduction to
unimodal case.

– I-WS is NP-hard and W[1]-hard with respect to k even when all the graphs
are tournaments and α = 1. This result is in contrast to unimodal case. Fur-
thermore, it remains intractable even for transitive tournaments (an acyclic

8 In the graph-theoretic formulation, we will refer to the candidates as vertices.
9 GSCS is used in [25] as they only considered weak stability notion
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<latexit sha1_base64="ee2L6C/fQN9KPZkhx7uZsd+W2Fw=">AAACc3icbZFLbxMxEMe9y6uEVwCJSw9YTZDSQ6NdVATHSkgIThTRtEXZEM06k9SK117ZsxWR5S/Ax+PGt+DCHSfdQ2k7kqWf/jPjeZW1ko6y7HeS3rp95+69rfudBw8fPX7Sffrs2JnGChwJo4w9LcGhkhpHJEnhaW0RqlLhSbl8v/afnKN10ugjWtU4qWCh5VwKoChNuz8Lwh/kP+19+8qdUecQE7nUvF9UQGcClP8cvvvCEdgwGOiISqBUvFBmwQu74WW4SdyNsahU2O2HixrcXP72Q5h6X9iKH8VRdAj9MO32smG2MX4d8hZ6rLXDafdXMTOiqVCTUODcOM9qmniwJIXC0CkahzWIJSxwHFFDhW7iNzsL/FVUZnxubHya+Ea9nOGhcm5VlTFy3bK76luLN/nGDc3fTbzUdUOoxUWheaM4Gb4+AJ9Ji4LUKgIIK2OvXJyBBUHxTJ24hPzqyNfh+PUw3x+++bLfO+i369hi22yHDVjO3rID9pEdshET7E/yInmZ8ORvup3upG1smrQ5z9l/lu79A35cvnY=</latexit>

Th. 10

<latexit sha1_base64="FkcR4I6chlqNlSjm5+j1pRS4euQ="></latexit>

I-YS solvable in O?((k2`)k) on FTourn

Th. 11

I-YS solvable in O?((k + 1)`) on FTransTourn

<latexit sha1_base64="Eb4b+RBLDi95PlPk97l01bSKIeE="></latexit>

Th. 12

<latexit sha1_base64="755UOFOLmynpzLOIuuEbqMkGe8g="></latexit>

P-YS is NP-hard & W[1]-hard wrt. k

on FTourn even if ↵ = 1, ` = 2

Th. 14

<latexit sha1_base64="LnCtTzJTw5LO/d1eOP+6A3+L+QM="></latexit>

P-YS is poly-time on Ftourn if `  2↵

Th. 16

<latexit sha1_base64="wQkUaZnp5c5fOBeCtZqss3Xxam0="></latexit>

P-YS solvable in O?(1.2207n)

Th. 15

Fig. 1. Our Contributions. The green arrows to the dashed boxes represent reduc-
tions that led to an algorithm, and the red arrows from the dashed boxes represent
reductions that led to a hardness result.

tournament), but in this reduction α is not constant. When all the graphs
are transitive tournaments and α = 1, it is solvable in polynomial time.

– When all the graphs are tournaments, we give following algorithms for I-WS:
• solvable in O?((ndlog kedlog ke)`) time. Thus, for ` ≤ log n, the problem

is unlikely to be NP-hard unless NP ⊆ QP10.
• solvable in O?((k`)k) time.

– When all the graphs are transitive tournaments, I-WS can be solved in
O?((k + 1)`) time.

– P-WS is NP-hard and W[1]-hard with respect to k even when all the graphs
are tournaments, ` = 2, and α = 1. However, it can be solved in polynomial
time when all the graphs are tournaments and ` < 2α.

– P-YS can be solved in O?(1.2207n) time.
Figure 1 explain the interplay of results and their relations with each other.

We skip the motivation for the considered parameters here as it is same as in [26].

10 Here QP denotes the complexity class quasi-polynomial
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Next, we highlight the significance of our study on tournaments and transitive
tournaments.
Restrictions on layers. Aziz et al. [2] show that in the unimodal case a
Gehrlein-stable committee can be found in polynomial time when the num-
ber of voters is odd, which corresponds to the case when majority graph is a
tournament. Moreover, they also show that additionally if the preference lists
satisfy single-peaked or single-crossing properties, then the corresponding ma-
jority graph is a transitive tournament (the graph can be a tournament or tran-
sitive tournament even in some other scenarios). Such domain restrictions are
also studied by [26]. This motivates us to study the Multimodal Committee
Selection problem when each layer is a tournament or a transitive tournament.
Related works. Jain and Talmon [26] studied committee selection under some
mulimodal voting rules. They discussed the significance of this problem, proposed
generalisation of known committee scoring rules [20] to the multimodal setting,
and studied computational and parameterized complexity of the multimodal
variants of k-Borda and Chamberlin-Courant (CC). Chen et al. [9] gave similar
definitions for stability for matching with multimodal preferences. Steindl and
Zehavi [34] studied pareto optimal allocations of indivisible goods with multi-
modal preferences. Boehmer and Niedermeier [4] also highlighted the importance
of multimodal preferences. There has been many works on multiwinner elections
where the preference profile is attribute based [1,6,8,32,14,29,27] .

For the committee selection problem, extensive research has been conducted
to study voting rules and their stability in the context of selecting a commit-
tee [10,17,28,33,19]. We refer to some surveys for application of parameterized
complexity in social choice theory [5,18,15].

2 Preliminaries

Standard definitions and notations of graph theory in [13] apply. Let G = (V,A)
be a directed graph. For a vertex v ∈ V (G), N−(v) = {u : (u, v) ∈ A(G)} denote
the in-neighborhood of the vertex v. For a subset X ⊆ V (G), N−(X) is the set
of all in-neighbors of the vertices in X. FTourn and FTransTourn denote the sets
of graphs that contain tournaments and transitive tournaments, respectively.
Unless explicitly specified, for two vertices u and v, both (u, v) and (v, u) are
not arcs together in a directed graph. We use n to denote the number of vertices
in a graph. Topological ordering of a directed graph G is a linear ordering of
V (G) where u precedes v for each arc (u, v). From the stability definitions, we
have the following.

Proposition 1. For any X ∈ {G, I, P}, an X-strongly stable and X-weakly
stable solution are the same on FTourn.

The following will be used for some of our algorithms.

Proposition 2. [25, Theorem 3] WGSCS can be solved in time O?(1.2207n)
where n is the number vertices in the majority graph.
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We wish to point out that all our hardness reductions produce an instance
where each layer is a directed graph (with arcs in only one direction). Thus, due
to the following theorem, we can construct an election as well.

Proposition 3. [30] Given a directed graph, there exists a corresponding elec-
tion with size polynomial in the size of the given graph.

Parameterized Complexity. Here, each problem instance is associated with an
integer, k called parameter. A problem is said to be fixed-parameter tractable
(FPT) with parameter k if it can be solved in f(k)nO(1) time for some computable
function f , where n is the input size. W-hardness captures the parameterized
intractability with respect to a parameter. We refer the reader to [11,16,22] for
further details.

When referring to a solution that is strongly(weakly) Gehrlein-stable, we may
just say strongly(weakly) stable.

3 Global Stability

Here, we present results pertaining to G-YS, Y ∈ {S,W}.
Global-Strong Stability. Note that since each layer has a unique strongly
stable committee [3, Theorem 1]11, we can “guess” a layer in which the solution
is stable and then compute the strongly stable committee in that layer. Next,
we verify if there are α − 1 other layers in which that committee is also stable.
Thus, we have the following:

Theorem 1. (♠)12 G-SS is solvable in polynomial time.

Remark 4. Note that the strongly stable committee is unique in a unimodal
election [3, Theorem 1], however the same is not true for a multimodal election
as seen by the following example: Consider two majority graphs G1 and G2

on the vertex set {u, v, w}. Let arc sets be E(G1) = {(u, v), (v, w), (u,w)} and
E(G2) = {(v, u), (v, w), (w, u)}. For k = 2 and α = 1, S1 = {u, v} and S2 =
{v, w}, both are globally-strongly stable.

Remark 5. Unlike strong stability, weak stable committee need not be unique,
even for a unimodal election.

Global-Weak Stability. Next, we study parameterized complexity and a
tractable case of G-WS. The hardness results, NP-hardness and W[1]-hardness
with respect to k, which follows from intractability of WGSCS [2,25], moti-
vates us to study parameterization with respect to n. In the following discus-
sions, we will adopt the following terminology about G-WS: For an instance
((Gi)i∈[`], α, k) and a subset of vertices S, we say that the ith layer provides

11 In [2], the term “strict” is used instead of “strong” (Def. 1 and first para in Sec 5 of
[2])

12 The proofs marked by ♠ can be found in supplementary.
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stability to S if for any u ∈ S and any v ∈ V (G) \S there is no arc (v, u) in the
graph Gi.

The following algorithm works on the same idea as Theorem 1, the difference
being that in light of Remark 5, it may not be sufficient to guess one layer and
proceed as in Theorem 1. Here, we would need to know the solution in the layer
it is stable and then verify if there are other layers which provide stability to
the committee is also stable. An exhaustive search of such a committee would
look through

(
n
k

)
possibilities. Instead, if we guess the α layers, then we would

have to find a solution that is weakly stable in those layers only, captured by
a graph which is the union of the arc set in each of those layers. This gives an
improvement in time if α is a constant.

Theorem 2. (♠) G-WS can be solved in O?(1.2207n) time, for α = O(1).

Proposition 1 and Theorem 1 imply the following result.

Corollary 1. G-YS is solvable in polynomial time on FTourn.

4 Individual Stability

In this section, we will discuss results pertaining to I-YS, where Y ∈ {S,W}.

4.1 Intractable Cases

We begin with an intractability result for tournaments. This is a sharp contrast
to the unimodal case which is polynomial time solvable for FTourn.

Theorem 3. I-YS is NP-hard and W[1]-hard with respect to k on FTourn even
when α = 1.

Proof. We give a parameter-preserving reduction from the WGSCS problem,
which is known to be W[1]-hard with respect to k [25], to I-WS. Moreover, this
being a polynomial time reduction will also prove that I-WS is NP-hard. Let
I = (G, k′) be an instance of WGSCS, where G is not a tournament; otherwise
the instance is polynomial-time solvable. Let Z denote the set of vertices in G
whose total degree (sum of in-degree and out-degree) is less than n− 1.
Construction.We will construct an instance of I-WS with |Z| layers and α = 1.
For each vertex u ∈ Z, we create a graph Gu as follows. Initialize Gu = G, i.e.,
every arc in G also exists in each layer of (Gu)u∈Z . Consider a vertex v which
is neither an in-neighbor nor an out-neighbor of u. Then, we add an arc from u
to v in Gu. We make Gu a tournament by adding the remaining missing arcs in
an arbitrary direction. Clearly, this construction takes polynomial time.

Due to Proposition 3, Gu is a majority graph for an appropriately defined
election. Note that the vertex set of Gu is same for each u ∈ Z. Hence, J =
((Gu)u∈Z , α = 1, k = k′) is an instance of I-WS, where each directed graph Gu
is a tournament. The next observations follow directly from the construction.
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Observation 4 Any vertex u ∈ Z has the same set of in-neighbors in G and
Gu.

Observation 5 Let G′ ∈ {Gu : u ∈ Z}. Then, any vertex v ∈ V (G) \ Z has the
same in-neighbors in G and G′.

The following shows the correctness of the reduction.

Lemma 1. (♠) S is a solution for WGSCS in I iff S is a solution for I-WS
in J .

Since the constructed graph is a tournament, we can conclude the intractability
of I-YS. ut

In contrast with the above intractability result, we note that when the layers
are transitive tournaments and α = 1, we have a tractable case for I-YS.

Theorem 6. I-YS is solvable in polynomial time on FTransTourn if α = 1; and a
solution always exists.

Proof. Let I = ((Gi)i∈[`], α, k) be an instance of I-YS. Since each layer is a
transitive tournament, we may assume that the vertices in the ith layer, for
i ∈ [`], are ordered in terms of the topological ordering in Gi. Thus, We can find
a solution by picking the first k vertices from G1.

Unsurprisingly perhaps, for any arbitrary α > 1 the problem is again in-
tractable.

Theorem 7. I-YS is NP-hard and W[1]-hard with respect to k on FTransTourn.

Proof. We prove this hardness result by showing a polynomial time reduction
from Clique on regular graphs, in which given a regular undirected graph G
and an integer k, the goal is to decide if there is a subset S ⊆ V (G) of size k
such that for every pair of vertices u, v ∈ S, uv is an edge in G. The Clique
problem for regular graphs is NP-hard and W[1]-hard with respect to k [23,7].
Due to Proposition 1, we use I-SS in the rest of the proof.

We explain the construction along with the intuition behind the gadget. The
precise construction of the transitive tournaments is in the black box below.

Construction: Let (G, k̃) be an instance of Clique, where degree of every
vertex in G is d. For the ease of explanation, we assume that d is even. Let n
and m denote the number of vertices and edges in G, respectively. We construct
an instance of I-SS as follows: For every edge e = uv in G, we have two directed
graphs, sayMeu andMev . For every edge e ∈ E(G) and every vertex u ∈ V (G),
we add vertices u and e in every directed graph. We call these vertices as the
real vertices of the directed graphs. For every directed graph M (constructed
so far), we also add a set of dummy vertices, denoted by DM = {d1M, . . . , djM},
where the value of j will be specified later (at the end of the construction). We
call these vertices as dummy vertices of the directed graphs.
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The purpose of adding the dummy vertices is that a real vertex e correspond-
ing to the edge e ∈ E(G) should get the stability only from the corresponding
directed graphs, and the real vertex u corresponding to the vertex u ∈ V (G)
should get stability only from the directed graphs Meu , where e is an edge
incident to u.

Since every transitive tournament has a unique topological ordering,
we explain this ordering of vertices in every directed graph. Then, the
arc set is self-explanatory. For the directed graph Meu , the ordering is
(u, e,DMeu

, 〈remaining vertices〉). The notation 〈·〉 denote that the vertices in
this set can be ordered in any arbitrary order. Intuitively, the goal is that if the
vertex e is in the committee, then to provide it stability in the required num-
ber of layers (the number of layers will be defined later), u and v must also be
in the solution (i.e., a vertex corresponding to an edge of G pulls vertices that
correspond to its endpoints in G in the committee).

Next, we want to prevent more than k̃ vertices in the committee correspond-
ing to vertices in V (G), so that these vertices corresponds to clique vertices.
Towards this, for every vertex u ∈ V (G), we add a set of k̃2 − 1 vertices, de-
noted by Tu = (t1u, . . . , t

k̃2−1
u ), in every directed graph. We call these vertices

as indicator vertices. Let
←−
Tu denote the set of vertices in the reverse order of

Tu, i.e.,
←−
Tu = (tk̃

2−1
u , . . . , t1u). Let E(u) denote the set of edges incident to u.

Let E1(u) and E2(u) be two disjoint sbsets of E(u), each of size |E(u)|/2. In the
ordering of the vertices of the directed graph Meu , where e ∈ E1(u), we add
Tu in front of the ordering constructed above, i.e., the new ordering of Meu is
(Tu, u, e,DMeu

, 〈remaining vertices〉). For e ∈ E2(u), the ordering of the vertices
ofMeu is (u,

←−
Tu, e,DMeu

, 〈remaining vertices〉), i.e., ←−Tu is after u.

Additionally, for every edge e ∈ E(G), we add d/2 − 1 many dummy layers,
Mei , i ∈ [d/2−1], in which e is the first vertex in the ordering. Next, to ensure that
no other real vertex get stability from these dummy layers, for every Mei , i ∈
[d/2− 1], we add a new set of j dummy vertices, denoted by DMei

. The ordering
of the vertices in these directed graphs is (e, 〈DMei

〉, 〈remaining vertices〉). Note
that for every i ∈ [d/2− 1],Mei provide stability to vertex e as it does not have
any in-neighbors in these directed graphs. Note that the number of layers in the
constructed instance is m(d/2 + 1).

Finally, we set k = k̃3 +
(
k̃
2

)
, α = d/2 + 1, and the value of j as k so that no

dummy vertex can be part of the solution.

Precisely, the construction is as follows.
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Construction of an instance in the proof of Theorem 7
– For every u ∈ V (G) and e ∈ E(G), we add vertices u and e to directed

graphs.
– For every e(= uv) ∈ E(G), we add d/2 + 1 directed graphs,
Meu ,Mev ,Me1 ,Me2 , . . . ,Med/2−1 .

– For every directed graph M, we add a set of k̃3 +
(
k̃
2

)
dummy vertices

DM = d1M, . . . , d
k̃3+(k̃2)
M .

– For every vertex u ∈ V (G), we add a set of indicator vertices Tu =

{t1u, . . . , tk̃
2

u }.
– To define the edge set of a directed graph, we define its topological ordering.

Let E(u) denote the set of edges incident to u, and E1(u) and E2(u) be
two disjoint subsets of E(u) such that size of both the sets is |E(u)|/2.
• For every e ∈ E1(u), the ordering of vertices in Me is
(Tu, u, e, 〈DMe〉, 〈remaining vertices〉)
• For every e ∈ E2(u), the ordering of vertices in Me is
(u,
←−
Tu, e, 〈DMe〉, 〈remaining vertices〉)

– For every i ∈ [d/2 − 1], the ordering of vertices in Mei is
(e, 〈DMei

〉, 〈remaining vertices〉).
– k = k̃3 +

(
k̃
2

)
and α = d/2 + 1.

Let Z = {eu, ev : e(= uv) ∈ E(G)} ∪ {ei : e ∈ E(G), i ∈ [d/2 − 1]}. Since the
set of vertices is same in all the directed graphs, we denote it by VM.

Next, we prove the correctness in the following lemma.

Lemma 2. I is a yes-instance of Clique iff J is a yes-instance of I-SS.

Proof. In the forward direction, let S be a solution to (G, k̃). Let S′ = {{u, Tu} ⊆
VM : u ∈ S}∪{e ∈ VM : e ∈ E(G[S])}, i.e., S′ contains real and indicator vertices
corresponding to the vertices and edges in G[S]. We claim that S′ is a solution
for ((M`)`∈Z , α, k). Since for every u ∈ V (G), |Tu| = k̃2 − 1, and S is a k̃-sized
clique, we have that |S′| = k̃ + k̃(k̃2 − 1) +

(
k̃
2

)
= k. Next, we argue that S′ is

individually stable for α = d/2 + 1. Note that there are d/2 directed graphs in
which the vertex u corresponding to the vertex u ∈ V (G) does not have any
in-neighbor, and there are d/2 directed graphs in which the in-neigbor of u is Tu.
Since if u ∈ S′, Tu ⊆ S′, we have that there are at least d/2 + 1 directed graphs
that provides individual stability to the vertex u ∈ S′. Similarly, there are at
least d/2+1 directed graphs that provides individual stability to every vertex in
Tu, where Tu ⊆ S′. Next, we argue about the vertex e ∈ S′ corresponding to the
edge e(= uv) ∈ E(G). Note that there are d/2− 1 directed graphs (in particular,
Mei , where i ∈ [d/2−1]) in which e does not have any in-neighbor. Furthermore,
in the directed graph Meu , the set of in-neighbors of e is Tu ∪ {u} which is a
subset of S′ as u ∈ S. Similarly, all the in-neighbors of e in Mev belong to S′.
Thus, S′ is individually stable for α = d/2 + 1.

In the backward direction, let S be an individually stable committee for
((M`)`∈Z , α, k). We observe some properties of the set S.
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Claim 1 (♠) S does not contain any dummy vertex.

Claim 2 (♠) If u ∈ S, then Tu ⊆ S.

Claim 3 (♠) If |Tu ∩ S| 6= ∅, then u ∈ S.

Claim 4 (♠) If the vertex e corresponding to the edge e(= uv) ∈ E(G) is in S,
then the vertices {u, v} ⊆ S.

Let V ? = {v ∈ V (G) : v ∈ S} and E? = {e ∈ E(G) : e ∈ S}.

Claim 5 (♠) |V ?| = k̃ and |E?| =
(
k̃
2

)
.

Next, we argue that the vertices are consistent with the edges, i.e., if uv ∈ E?,
then {u, v} ⊆ V ?. This follows from Claim 4. Moreover, since |V ?| = k̃ and
|E?| =

(
k̃
2

)
, it follows that the graph G? = (V ?, E?) is a complete graph on the

vertex set V ?, and thus V ? is a clique of size k̃ in G.

This completes the proof of the theorem. ut

4.2 Tractable cases

The intractability results of Theorems 3 and 7 notwithstanding, motivate us to
look for parameters beyond α and k. Specifically, we look for combined param-
eters and in doing so we show that for Y ∈ {S,W}, I-YS is FPT parameterized
by k + `. We note that the parameterized complexity with parameter ` eludes
us. However, Theorem 8 implies that when ` ≤ log n, we have an algorithm with
running time 2poly(logn). Thus, we cannot hope for an NP-hardness result when
` ≤ log n, unless NP ⊆ QP. Therefore, the complexity when ` > log n remains
unknown.

At the heart of the parameterized algorithm, Theorem 8, is the notion of an
out-dominating set, defined as follows. For any graph G = (V,A), a set S ⊆ V (G)
is called an out-dominating set if every vertex v ∈ V \S has an out-neighbor in
the set S.

Before we present the algorithm we can explain the intuition as follows. Any
solution S for I-YS can be viewed as S = S1∪ . . .∪S`, where each Si denotes the
set of vertices (possibly empty) that receive individual stability from the layer
i. (Clearly, every vertex in S must be in at least α different Sis.) Moreover, we
know that in the graph Gi the in-neighbors of any vertex in Si are also present
in Si. Thus, Si can be viewed as the union of a set Xi and the set of its in-
neighbors in Gi, i.e., Si = Xi ∪N−Gi

(Xi). The set Xi here is the out-dominating
set of the subgraph induced by Si in Gi, denoted by Ti. While we do not know
the set Si, we know that its size is at most k. Hence, the subgraph Ti = Gi[Si]
has at most k vertices and has an out-dominating set of size at most dlog ke, due
to Lemma 3. This allows us to enumerate all possible subsets of size dlog ke and
from that find its in-neighborhood. This process allows us to find Xi, N−(Xi),
and thus Si for each i ∈ [`], and from there the set S.
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Lemma 3. A tournament G = (V,A) has an out-dominating set of size at most
dlog |V |e. Additionally, if G is a transitive tournament, then G has a unique
out-dominating set of size one.

Proof. From the definition of an out-dominating set we know that V = X ]
N−(X), that is X and the set of its in-neighbors partition the vertex set of G.

Next, we show a counting argument using the Handshaking Lemma, which
says that for a directed graph,

∑
v∈V δ

−(v) =
∑
v∈V δ

+(v). We first show that
every tournament (and thus G) has a vertex of in-degree at least (n − 1)/2.
Suppose not, then

∑
v∈V δ

−(v) < n(n − 1)/2 and
∑
v∈V δ

+(v) > n(n − 1)/2
as the total degree is n(n − 1)/2. Since

∑
v∈V δ

−(v) =
∑
v∈V δ

+(v), we have
reached a contradiction.

Using the vertex with in-degree at least d(n− 1)/2e we will recursively create
an out-dominating set of size at most dlog ne. Let v be a vertex such that its
in-degree is at least d(n− 1)/2e in G. Then, set X = {v} and V =V \N−[v]. This
results in a tournament with a smaller vertex set. We recurse until the graph
is empty. Since each time we take away a set of size at least n/2, this process
can only go on for at most dlog ne steps. Consequently, at the end we have a set
X that has size at most dlog ne. The construction ensures that X is indeed an
out-dominating set. ut

Theorem 8. I-YS is solvable in time O?((ndlog kedlog ke)`) on FTourn.

Proof. Let I = ((Gi)i∈[`], α, k) be an instance of I-YS. For each i ∈ [`], our
algorithm guesses a vertex subset of size at most dlog ke in Gi and finds its
in-neighborhood set in Gi. The union of these two sets is denoted by Yi. If
N−i (Yi) \ Yi 6= ∅, then we set Yi = ∅. Else, the algorithm checks if ∪i∈[`]Yi is a
solution for I. If the algorithm fails to find a subset of vertices that is a solution
for I, then it returns “no”.
Correctness. Any solution returned by the algorithm will quite obviously be a
solution for I. Thus, we only need to prove the other direction. Suppose that I
is a yes-instance and S is a solution. We may view S as a union of ` (possibly
empty) sets Si where Si contains the vertices of Gi that are stable in the layer
i, i.e., all those vertices whose in-neighbors in Gi are also in Si. For each i ∈ [`],
we consider the induced subgraph Ti = Gi[Si], which is the tournament induced
by the vertices in Si. For each i ∈ [`], let Xi denote an out-dominating set of the
graph Ti. Due to Lemma 3, |Xi| ≤ dlog ke since |Si| ≤ k; and Si = Xi∪N−i (Xi),
where N−i (Xi) denotes the set of in-neighbors of Xi in Gi.

Our algorithm basically tries to generate the set Xi by trying all possible
subsets of size at most dlog ke, and from that construct the set Si. Thus, for
some choice of Yi we will have Yi = Si for each i ∈ [`] and then the algorithm will
return the solution S. Suppose that ∪i∈[`]Yi is a set returned by the algorithm,
then by the last check we know that it is also a solution for the instance I of
I-YS.
Time complexity. This results in an algorithm that has to verify at most(∑

0≤i≤dlog ke
(
n
i

))`
different subsets of vertices since in any layer there are
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0≤i≤dlog ke

(
n
i

)
different subsets of size at most dlog ke. The last verification

step can be carried out in O(k`) steps by checking for each vertex in ∪iYi if
there are α layers in which it is stable. ut

Next, we discuss an FPT algorithm for the parameter k + `. We begin with
the following result that may be of independent interest.

Lemma 4. (♠) In any tournament there are at most 2k + 1 vertices with in-
degree at most k.

The next result is inspired by the above lemma as there are only O(k`)
vertices that can be part of solution, O(k) from each layer.

Theorem 9. (♠) I-YS is solvable in time O?((k`)k) on FTourn.

Remark 6. Comparing Theorem 8 vs Theorem 9. Note that neither algorithm
subsumes the other. Each works better than the other in certain situations as
described below
– For a constant value of k, Theorem 9 gives a polynomial time algorithm while

Theorem 8 gives an nO(`) time algorithm, (i.e., it does not run in polynomial
time if ` is not a constant.)

– For a constant value of `, Theorem 9 gives an FPT-algorithm with respect to
k (i.e., it runs in polynomial time if k is also a constant), while Theorem 8
gives a quasi-polynomial time algorithm.

Notwithstanding the hardness of Theorem 7 on transitive tournaments, we
note that the problem does admit polynomial time algorithm if the total number
of layers is a constant, which is an improvement over the running times given by
Theorems 8 and 9.

Theorem 10. (♠)I-YS is solvable in O?((k + 1)`) time on FTransTourn.

Due to Theorem 10, we have the following.

Corollary 11 (♠) I-YS is solvable in polynomial time on FTransTourn if ` =
O(logk n).

Theorem 12. (♠) I-YS is solvable in polynomial time on FTransTourn if ` = α.

5 Pairwise Stability

In this section, we will discuss results pertaining to P-YS, where Y ∈ {S,W}.
Note that for ` = 1, P-YS can be solved in polynomial time on FTourn, however,
for ` = 2, we have the following intractability result.

Theorem 13. P-YS is NP-hard and W[1]-hard with respect to k on FTourn even
when α = 1 and ` = 2.
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Proof. We give a reduction from an instance of WGSCS. Since WGSCS is
W[1]-hard with respect to parameter k [25], this will prove that P-YS is also
W[1]-hard with respect to k. Let (G, k′) be an instance of WGSCS. We will
create an instance of P-YS with two layers G1 and G2. Initialize G1 = G2 = G.
Next, for every pair of vertices {u, v} that do not have an arc between them
in G, we add the arc (u, v) in G1, and add the arc (v, u) in G2. We define
J = (G1, G2, α = 1, k = k′) to be an instance of P-YS. Note that G1 and G2

both are tournaments.
Since we can construct G1 and G2 in polynomial time, the following result

proves the theorem.

Lemma 5. (♠) S is solution for I iff S is a solution for J .

This completes the proof. ut

The next result pertains to the parameterized complexity of P-YS with re-
spect to n. We prove it by showing reductions to WGSCS.

Theorem 14. (♠) P-YS is solvable in time in O?(1.2207n).

By focusing our attention towards structural parameters pertaining to the
layers in the instance of P-YS, we obtain the following result.

Theorem 15. (♠) P-YS is solvable in polynomial time on FTourn if ` < 2α.

We conclude our discussions with the following result about weak stability
that follows due to the relationship between I-WS and P-WS, and Theorem 6.

Corollary 16 P-WS is solvable in polynomial time on FTransTourn if α = 1.

6 Conclusion

We extend the study of stable committee to the multimodal elections. In fact,
in [26], the authors considered the same set of voters and candidates across
the layers. We generalise this to the scenario, where voters need not be the
same across the layers, and justified this model in Introduction. We defined
three notions of stability and studied their computational and parameterized
complexity.

The following questions elude us so far for transitive tournaments: (i) the
computational complexity of I-YS for constant α > 1, (ii) the parameterized
complexity of I-YS with parameter `, (iii) the computational complexity of P-YS.

Jain and Talmon [26] initiated the study of scoring rules for multimodal
multiwinner election. We believe that it would be interesting to extend the notion
of stability given by Darmann [12] to multimodal preferences. In general, it would
be interesting to extend the extensive study of multiwinner election for unimodal
case to multimodal preferences.
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A Appendix

Proof (Theorem 1). Let I = ((Gi)i∈[`], α, k) be an instance of G-SS. Let S
denote a solution. We first guess a layer i ∈ [`] in which S is strongly stable.
Next, we find a strongly stable committee in ith layer using the known polynomial
time algorithm for finding strongly Gehrlein-stable committee [3, Theorem 1].
If there exist α many layers in I in which S is strongly stable, then we return
“yes”, otherwise we return “no”. Next, we prove the correctness of the algorithm.

Suppose that S is a solution for G-SS in I. Let j ∈ [`] be a layer in which
S is strongly stable. Note that in our algorithm, when we guess the value j, the
algorithm will find the set S because a strongly stable solution is unique [3].
Clearly, by the definition of S, there exist α layers in which S is strongly stable,
and so our algorithm will return “yes”.

The other direction is trivial since we return “yes” only if there exist α layers
in which S is strongly stable. ut
Proof (Theorem 2). Suppose that S is a solution to the problem. We start by
guessing the α layers that give stability to S. Let Z = {G1, . . . , Gα} denote the
majority graphs in these α layers. This step takes

(
`
α

)
amount of time. Next,

we create another graph G′ = (C,A′), with the same set of vertices as any
Gi, but the arc set A′ is the union of the arcs in the graphs in Gi ∈ Z. We
find a weakly stable committee S of size k in G′ or return no solution exists
in time O?(1.2207n)[25]. Since α is constant, the above algorithm takes time
O?(1.2207n). Next, we argue the correctness.
Correctness. We will argue that the above algorithm correctly finds a solution
if one exists. We show that a committee S is a solution for G-WS iff S is a weakly
stable committee in G′. We begin by showing that S (the output of the above
algorithm) is a solution for G-WS. Let G be an arbitrarily chosen graph from
the set Z. We claim that S is a weakly stable committee in the majority graph
G, and thus S is weakly stable in every graph Gi ∈ Z. Since S is weakly stable
in G′, there is no arc (v, u) in A′ where u ∈ S and v ∈ C\S. We have A(G) ⊆ A′,
so A does not contain an arc (v, u) such that u ∈ S and v ∈ C\ S. Thus, S is
weakly stable in Gi, i ∈ [α]; and consequently, S is a solution for G-WS.

For the other direction, let S be a solution of G-WS. Then, there exist α
layers (i.e majority graphs) (Gi)i∈[`] such that S is weakly stable in Gi for each
i ∈ [α]. Since S is weakly stable in Gi, for each i ∈ [α], there is no arc (v, u) in
A(Gi) such that u ∈ S and v ∈ C \ S. Given the definition, A′ = ∪i∈[α]A(Gi),
there are no arcs (v, u) in A′ such that u ∈ S and v ∈ C \S. Hence, S is a weakly
stable committee in G′ as well. ut
Proof (Lemma 1). Suppose that S is a solution for the instance I. Let v be a
vertex in the solution S. Since S is a solution in G, no vertex outside S is an
in-neighbor of v in G. If v ∈ Z, then using Observation 4, all in-neighbors of v
in Gv are in S. If v ∈ V (G) \ Z, then using Observation 5, we know that no
vertex outside S is an in-neighbor of v in G′, for any graph G′ ∈ {Gu : u ∈ Z}.
Therefore, in both cases there is at least one layer in which no vertex outside
the set S is an in-neighbor of v. Hence, S is also a solution for J .
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For the other direction, suppose that S is a solution for the instance J . Note
that S ⊆ V (G) and thus, if it is also a solution of I, then we are done. Suppose
that S is not a solution for I. It must be the case that for some vertex v ∈ S,
there exists an in-neighbor w ∈ V (G) \S. But from Observations 4 and 5, we
know that in every graph Gu in J , the in-neigbors of v in G are also its in-
neighbors in Gu. Hence, in every majority graph Gu, vertex w which is outside
S is an in-neighbor of v. This is a contradiction to S being a solution for J . ut

Proof (Claim 1). Due to the construction, for every dummy vertex in VM, all
but one directed graph has more than k in-neighbors, it follows that no dummy
vertex is in S. ut

Proof (Claim 2). Let E(u) be the set of edges incident to the corresponding
vertex u ∈ V (G). Note that in all the directed graphs except M`, where ` ∈
{eu : e ∈ E(u)}, u has more than k in-neighbors, so these layers cannot provide
stability to u. Recall that u does not have any in-neighbor in d/2 many directed
graphs amongM`, and in d/2 many directed graphs the in-neighbor of u is only
Tu whose size is k̃2 − 1 < k. Since α = d/2 + 1, we can infer that Tu ⊆ S. ut

Proof (Claim 3). Let t ∈ Tu ∩ S. Note that in all but d directed graphs, t has
more than k in-neighbors, so t does not receive stability from these layers. Out
of these d directed graphs, in d/2 directed graph, the set of in-neighbors of t is a
subset of Tu. However, in the remaining d/2 directed graphs, u is an in-neighbor
of t. Since α = d/2 + 1, we can infer that u ∈ S. ut

Proof (Claim 4). Recall that in all but d/2 + 1 directed graphs (in particular,
Me1 , . . . ,Med/2−1 ,Meu ,Mev ), the vertex e has more than k in-neighbors. There-
fore, if e ∈ S, then {u, v} ⊆ S. ut

Proof (Claim 5). Towards the contradiction, suppose that |V ?| = k? < k̃, Due
to Claims 2 and 3, S contains at most k?(k̃2 − 1) indicator vertices. Since k =

k̃3 +
(
k̃
2

)
, there must be more than

(
k̃
2

)
vertices in S corresponding to edges

in G. Due to Claim 4, if e ∈ S, where e is a vertex corresponding to the edge
e(= uv) ∈ E(G), then {u, v} ⊆ S. Since |V ?| = k?, there are at most

(
k?

2

)
vertices

in S corresponding to edges in G. Thus, |S| = k?k̃2 +
(
k?

2

)
< k, a contradiction.

If |V ?| > k̃. Then, due to Claim 2, |S| ≥ (k̃ + 1)k̃2 > k′, a contradiction.
Hence, |V ?| = k̃. Furthermore, due to Claims 2 and 3, the number of indicator

vertices is k̃(k̃2 − 1). Due to Claim 1, the other vertices in S are corresponding
to edges in G. Thus, |E?| =

(
k̃
2

)
. ut

Proof (Lemma 4). Let G = (V,A) be a tournament and Vk = {v ∈ V | δ−G(v) ≤
k}. Then,∑v∈Vk

δ−G[Vk]
(v) =

(|Vk|
2

)
since G[Vk] is a tournament. Moreover, since

G[Vk] is a subgraph of G we have that
∑
v∈Vk

δ−G[Vk]
(v) ≤∑v∈Vk

δ−G(v) ≤ k|Vk|.
The second inequality follows from the definition of Vk. Hence, we have the
required bound from

(|Vk|
2

)
≤ k|Vk|.
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Proof (Theorem 9). Due to Lemma 4, every layer has at most 2k + 1 vertices
to which it can provide stability. Since there are ` layers, there are at most
`(2k + 1) vertices which can get stability from any layer. Let X be the set of
these vertices. We try all possible subsets of X of size k and output the one
which is individually-stable in at least α layers. If there is no such set, we return
“no". The correctness follows from the fact that any individually-stable solution
is a subset of X as all the vertices in C \X has more than k in-neighbors in every
layer. ut

Proof (Theorem 10). For any layer, if it provides stability to any vertex, then the
vertex must be among the first k vertices appearing in the unique topological
ordering. So, we guess the last vertex in the topological ordering which gets
stability from this layer. Thus, for each layer we have a choice of k + 1 vertices
( +1 due to the possibility that no vertex gets stability from the current layer).
Thus, there are (k + 1)` possible choices for a solution and each can be verified
in polynomial time. ut

Proof (Theorem 12). The proof follows from the observation that the given in-
stance is a yes-instance iff the first k vertices in each layer are the same. So, we
can take these first k vertices in the solution. ut

Proof (Lemma 5). Let S be a weakly stable committee for the instance I. To-
wards this, let u and v be two vertices such that u ∈ S and v ∈ V (G) \S. Since
α = 1, we need to show that there exists one layer in which (v, u) is not an arc.
Since S is stable in G, (v, u) is not an arc in G. Therefore, from the construction,
in G1 and G2 both, we have the arc (u, v). Hence, S is a solution for the instance
J .

For the other direction, let S be a solution for J . Suppose that for contra-
diction there is an arc (v, u) in G such that u ∈ S and v ∈ V (G)\ S. Since G is
subgraph of both G1 and G2, the arc (v, u) must be in both G1 and G2, implying
that S cannot be a solution for J , a contradiction. ut

Proof (Theorem 14). We first present an algorithm for P-SS followed by an
algorithm for P-WS .
P-SS. Let I = ((Gi)i∈[`], α, k) be an instance of P-SS. We construct a directed
graph G′ = (V,A) as follows. Let V = V (G1). For a pair of vertices {u, v} ⊆ V ,
if there are strictly fewer than α layers in which (v, u) is an arc in I, then we
add the arc (u, v) to G′. (Note that in I if there are strictly fewer than α layers
in which (v, u) is an arc, and also there are strictly fewer than α layers in which
(u, v) is an arc, then both arcs (u, v) and (v, u) are in G′.)

The intuition behind this construction is the following: for a pair of vertices
u and v, if there are fewer than α layers that contain the arc (v, u), then for v
to be part of the solution for I would require that u is also part of the solution.
This is equivalent to finding weakly Gehrlein-stable committee for J = (G′, k)
(The input instance of WGSCS contains a majority graph that contains arc in
only one direction. However, we allow arc in both the directions here. We use the
same term “weakly Gehrlein-stable committee" as here also the goal is to find a
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subset S ⊆ V (G′) whose in-neighborhood is in S) as for this case we add the arc
(u, v) to G′. The following claim establishes the correctness of this approach.

Claim 6 S is a solution for P-SS in I iff S is a solution for WGSCS in J .

Proof. Let S be a solution for the instance I but not for the instance J . Then,
there must exist a pair {u, v} ⊆ V such that v ∈ S and u ∈ V \S and G′ has
the arc (v, u). Hence, in I there must exist strictly fewer than α layers in which
(u, v) is an arc, a contradiction to the definition of S.

Conversely, suppose that S is a solution for J , but not a solution for I. Then
there exists a pair {u, v}, where v ∈ S and u ∈ V \S such that there are strictly
fewer than α layers in I which contain the arc (v, u). But then, G′ must have
the arc (u, v) which contradicts the definition of S. ut

Since a weakly stable committee for the instance (G′, k) can be found in time
O?(1.2207n), Proposition 2, our algorithm for P-SS runs in the stated time. The
correctness of this algorithm follows from Claim 6. Note that the algorithm
mentioned in Proposition 2 takes majority graph as input, however, it works for
any directed graph. Thus, the result holds for P-SS.

Next, we give the algorithm for P-WS. We begin with the following lemma.

Lemma 6. P-WS can be reduced to WGSCS in polynomial time.

Proof. Let I = ((Gi)i∈[`], α, k) denote an instance of P-WS. Let V = V (G1),
and the instance of WGSCS is J = (G, k) where the directed graph G = (V,A)
is defined as follows. The arcs in A are supposed to capture the “pulling action”
of vertices that end up in the solution. For example, an arc (v, u) in A represents
the condition that if u is in the solution, then so is v. This will happen when
there do not exist α layers in which the arc (v, u) does not exist. Formally stated,
arc (v, u) ∈ A if and only if arc (v, u) exists in every α-sized subset of layers of
I. The following claim establishes the correctness of this approach.

Claim 7 S is a solution for P-WS in I iff S is a solution for WGSCS in J .

Proof. Let S denote a weakly stable committee in G. Suppose that S is not a
solution for I. Then, it must be that there exists a pair {u, v}, where u ∈ S and
v ∈ V \S such that the arc (v, u) exists in every α-sized subset of layers of I.
Thus, due to the construction, the arc (v, u) must be in G; a contradicting to
the definition of S.

For the other direction, let S be a solution for P-WS in I. Therefore, for
every pair of vertices {u, v} such that u ∈ S and v ∈ V \S, there exist at least α
layers in which (v, u) is not an arc. Therefore, the arc (v, u) also does not exist
in G. Hence, S is weakly stable in G. ut

This completes the proof. ut

Due to Proposition 2 and Lemma 6, our algorithm for P-WS runs in the
stated time.

Thus, the theorem is proved. ut
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Proof (Theorem 15). Let I = ((Gi)i∈[`], α, k) be an instance of P-YS where each
Gi is a tournament. Note that the above reduction in Theorem 14 to WGSCS
can be applied to I resulting in an instance J = (G′, k), where, we argue that,
G′ has at least one arc between every pair of vertices. Since ` < 2α, it follows
that for any pair {u, v} ⊆ V in I, there cannot simultaneously exist α layers
which contain the arc (u, v) as well as α layers which contain the arc (v, u). In
other words, at most one of the arcs can only be present in at least α layers, and
so we are ensured that G′ will contain (at least) one arc between the vertices u
and v.

Since WGSCS can be solved in polynomial time when the graph is a tour-
nament [2,25] (the same algorithm can be used for semi-complete digraphs13),
the above reduction would yield a polynomial time algorithm for P-YS. The
correctness follows due to Lemma 6.

Thus, the theorem is proved. ut

Relationship between Diverse Committee and Our Model. The problem of finding
a globally-strongly stable committee on transitive tournaments can be reduce to
the Diverse Committee problem in the polynomial time as follows. We con-
sider the topological ordering of graphs in every layer. We divide each ordering
into two candidate groups, consisting of top-k and bottom m− k candidates in
the ordering. For the set of top-k candidates we set the lower and upper bound
both as k, and for the other set of candidates, we set both the bounds as 0. Now,
we find a committee that satisfies at least α non-zero constraints. This is equiv-
alent to G-SS on transitive tournaments as for the solution of G-SS on transitive
tournaments is among top k-candidates in the topological ordering and this set
should be the same for α many layers. However, this reduction cannot be gen-
eralised for arbitrary graphs in polynomial time. Since G-SS can be solved in
polynomial time on tournaments, using known algorithm for Gehrlein-stability
on tournaments, this reduction is not much useful for us, computationally.

13 a class of graph in which there is at least one arc between every pair of vertices u
and v
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