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We consider four well-studied NP-complete packing/covering problems on graphs: Feedback Vertex Set in
Tournaments (FVST), Cluster Vertex Deletion (CVD), Triangle Packing in Tournaments (TPT) and
Induced P3-Packing. For these four problems kernels with O(k2) vertices have been known for a long time.
In fact, such kernels can be obtained by interpreting these problems as finding either a packing of k pairwise
disjoint sets of size 3 (3-Set Packing) or a hitting set of size at most k for a family of sets of size at most 3
(3-Hitting Set). In this paper, we give the first kernels for FVST, CVD, TPT and Induced P3-Packing with a
subquadratic number of vertices. Specifically, we obtain the following results.
• FVST admits a kernel with O(k

3
2 ) vertices.

• CVD admits a kernel with O(k
5
3 ) vertices.

• TPT admits a kernel with O(k
3
2 ) vertices.

• Induced P3-Packing admits a kernel with O(k
5
3 ) vertices.

Our results resolve an open problem from WorKer 2010 on the existence of kernels with O(k2−ϵ ) vertices
for FVST and CVD. All of our results are based on novel uses of old and new “expansion lemmas”, and a weak
form of crown decomposition where (i) almost all of the head is used by the solution (as opposed to all), (ii)
almost none of the crown is used by the solution (as opposed to none), and (iii) if H is removed from G, then
there is almost no interaction between the head and the rest (as opposed to no interaction at all).

ACM Reference Format:
Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and Meirav Zehavi.
2010. Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems. ACM Trans. Web 9, 4,
Article 39 (March 2010), 42 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Kernelization, a subfield of Parameterized Complexity, provides a mathematical framework to
analyze the performance of polynomial time preprocessing. It makes it possible to quantify the
degree to which polynomial time algorithms succeed at reducing input instances of an NP-hard
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problem. More formally, every instance of a parameterized problemΠ is associated with an integer k ,
which is called the parameter, and Π is said to admit a kernel if there is a polynomial-time algorithm,
called a kernelization algorithm, that reduces the input instance of Π down to an equivalent instance
of Π whose size is bounded by a function f (k) of k . (Here, two instances are equivalent if both
of them are either Yes-instances or No-instances.) Such an algorithm is called an f (k)-kernel for
Π. If f (k) is a polynomial function of k , we say that the kernel is a polynomial kernel. Over the
last decade, kernelization has become an active field of study, especially with the development of
complexity-theoretic lower bound tools for kernelization. These tools can be used to show that a
polynomial kernel [? ? ? ? ], or a kernel of a specific size [? ? ? ] for concrete problems would imply
an unlikely complexity-theoretic collapse. We refer to the surveys [? ? ? ? ], as well as the books [?
? ? ? ], for a detailed treatment of the area of kernelization.
One of the most well known examples of a polynomial kernel is a kernel with O(kd ) sets and

elements for d-Hitting Set using the Erdös-Rado Sunflower lemma.1 In this problem, the input
consists of a universeU , a family F containing sets of size at most d overU , and in integer k . The
objective is to determine whether there exists a set S ⊆ U of size at most k that intersects every set
in F . Abu-Khzam [? ] gave an improved kernel for d-Hitting Set, still with O(kd ) sets, but with
O(kd−1) elements.
The importance of the d-Hitting Set problem stems from the number of other problems that

can be re-cast in terms of it. For example, in the Feedback Vertex Set in Tournaments (FVST)
problem, the input is a tournament T together with an integer k . The task is to determine whether
there exists a subset S of vertices of size at most k such that the sub-tournamentT −S obtained from
T by removing S is acyclic. It turns out that FVST is a 3-Hitting Set problem, where the vertices
ofT are the universe, and the family F is the family containing the vertex set of every directed cycle
on three vertices (triangle) of T . Indeed, it can easily be shown that for every vertex set S , T − S is
acyclic if and only if S is a hitting set for F . Another example is the Cluster Vertex Deletion
(CVD) problem. Here, the input is a graphG and an integer k , and the task is to determine whether
there exists a subset S of at most k vertices such that every connected component ofG−S is a clique
(such graphs are called cluster graphs). Also this problem can be formulated as a 3-Hitting Set
problem where the family F contains the vertex sets of all induced P3’s of G. An induced P3 is a
path on three vertices where the first and last vertex are non-adjacent in G. The kernel with O(k2)
elements for d-Hitting Set [? ] can be adapted to obtain kernels with O(k2) vertices for Feedback
Vertex Set in Tournaments [? ] and for Cluster Vertex Deletion [? ].

The formulation of problems in terms of 3-Hitting Set is useful not only in the context of
kernelization, but within several paradigms for dealing with NP-hardness. Indeed, the 2.076knO(1)
time parameterized algorithm of Wahlström [? ], the O(1.519n+o(n)) time exact exponential time
algorithm of Fomin et al. [? ], and the folklore factor 3-approximation algorithm for 3-Hitting Set,
all immediately translate to algorithms with the same performance for FVST and CVD.

Still, as one translates graph problems into 3-Hitting Set, some structure is lost. This structure
can often be exploited to obtain algorithms with better performance than the corresponding 3-
Hitting Set algorithm. In particular, for FVST, Cai et al. [? ] gave a factor 2.5 approximation
algorithm. This has recently been improved to 7/3 by Mnich et al. [? ]. For CVD, You et al. [? ]
gave a factor 2.5 approximation algorithm, which later was improved to 7/3 by Fiorini et al. [?
]. In the realm of parameterized algorithms, the graph problems also seem more tractable than
the general 3-Hitting Set. For FVST, Dom et al. [? ] designed a 2knO(1) time algorithm, which

1The origins of this result are unclear. The first kernel with O(kd ) sets appeared in the work by Fellows et al. [? ], but they
do not make use of the Sunflower Lemma. To the best of our knowledge, the first exposition of the kernel based on the
Sunflower Lemma appears in the book of Flum and Grohe [? ].
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was recently improved by Kumar and Lokshtanov [? ] to a 1.619knO(1) time algorithm. For CVD,
Hüffner et al. [? ] gave a 2knO(1) time algorithm, which in turn was improved by Boral et al. [? ] to
a 1.911knO(1) time algorithm. Finally, by the result of Fomin et al. [? ] that translates parameterized
algorithms for subset problems into exact exponential time algorithms in a black box fashion,
the improvements in parameterized algorithms percolate to the realm of exact exponential time
algorithms. In particular, FVST and CVD have algorithms with running times O(1.382n) and
O(1.476n), respectively, outperforming the O(1.519n) time algorithm [? ] for 3-Hitting Set.
Remarkably, from the perspective of kernelization, FVST and CVD have so far seemed to be as

difficult as 3-Hitting Set in the sense that no kernel with O(k2−ϵ ) vertices, for some fixed ϵ > 0,
has been found for either of these two problems. Whether FVST and CVD admit such kernels was
first posed as an open problem in WorKer 2010 [? , page 4], and variants of this question have been
re-stated several times after that [? ? ? ].

In this paper, we give the first kernels for FVST and CVD with a subquadratic number of vertices.
Specifically, we obtain the following results.
• FVST admits a kernel with O(k 3

2 ) vertices.
• CVD admits a kernel with O(k 5

3 ) vertices.
The Sunflower Lemma based kernel for d-Hitting Set and the improvement of Abu-Khzam [?
] can also be applied to the d-Set Packing problem [? ]. Here, the input consists of a universe
U and a family F of sets of size d over U , together with an integer k . The task is to determine
whether there exists a subfamily F ′ of k pairwise disjoint sets. The d-Set Packing problem is
dual to d-Hitting Set in several ways, among others in the sense that the dual of the linear
programming relaxation of thed-Hitting Set problem is exactly the linear programming relaxation
of d-Set Packing, and vice versa.

In the same way that d-Hitting Set is an archetypal “covering” problem that generalizes many
such problems, d-Set Packing generalizes many “packing” problems. For example, it generalizes
the Triangle Packing in Tournaments (TPT) and Induced P3-Packing problems. In Triangle
Packing in Tournaments, the input is a tournamentT and an integer k , and the task is to determine
whether T contains k pairwise vertex-disjoint triangles. In Induced P3-Packing, the input is a
graphG and an integer k , and the task is to determine whetherG contains k pairwise vertex-disjoint
induced P3’s. These problems are the duals of FVST and CVD, respectively.

Just like the insights that led to a kernel for d-Hitting Set also led to a kernel for d-Set Packing,
our insights from the improved kernelization algorithms for FVST and CVD yield improved ker-
nelization algorithms for Triangle Packing in Tournaments (TPT) and Induced P3-Packing.
Specifically, we obtain the following results.
• TPT admits a kernel with O(k 3

2 ) vertices.
• Induced P3-Packing admits a kernel with O(k 5

3 ) vertices.
We remark that, while the underlying philosophy of the kernels for Triangle Packing in Tourna-
ments (TPT) and Induced P3-Packing is borrowed from the kernels for FVST and CVD, obtaining
the kernels for TPT and Induced P3-Packing requires significant additional insights. However, for
the sake of exposition, we next only focus (in the introduction) on our methods in the context of
FVST and CVD.

Overview and Our Methods. Our kernelization algorithms for both FVST and CVD begin by
employing trivial factor 3 polynomial time approximation algorithms.2 We use these algorithms
to obtain approximate solutions of size at most 3k , or conclude that no solution of size at most k
2We could have also used approximation algorithms with better approximation ratios, but this modification would not
result in better kernels.
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exists. So, let us now assume that we have solutions S of size at most 3k . In what follows, for both
FVST and CVD, we aim to understand which “subpart” of the problem is similar to the Vertex
Cover problem.

Let us first focus on our approach to specifically solve FVST. To this end, let (T ,k) be an instance
of FVST. Given the approximate solution S , our analysis starts by introducing the notion of a strong
arc. Formally, an arc xy ∈ E(T ) is strong if (i) at least one vertex among x and y belongs to S , and
(ii) there are at least k + 2 vertices z ∈ V (T ) such that xyz is a triangle. Let F be the set of all the
strong arcs of T . Observe that any solution of size at most k + 1 must be a vertex cover of F . Before
we analyze F , we need to examine S as described below.

Now, we try to “fit” every vertex s ∈ S into the unique topological ordering, ≺, of X = T − S .
Towards this, for s ∈ S and x ∈ V (X ), define f −s (x) =

��{y ∈ V (X ) : y ⪯ x , sy ∈ E(T )}
��, and

f +s (x) =
��{y ∈ V (X ) : y ≻ x , ys ∈ E(T )}

��. Intuitively, the functions f −s (x) and f +s (x) measure how
many arcs would have been in the “wrong direction" (with respect to the ordering ≺) if we inserted
s into the position immediately after x in X . Using a simple “sliding argument”, we show that
for each s ∈ S , there exists xs ∈ V (X ) such that 0 ≤ f −s (xs ) − f +s (xs ) ≤ 1. Then, for each s ∈ S ,
the smallest vertex (with respect to ≺) satisfying the property that 0 ≤ f −s (xs ) − f +s (xs ) ≤ 1 is
denoted by φ(s). Observe that if for some s ∈ S and x ∈ X we have that f −s (x), f +s (x) ≥ k + 2, then
s participates in k + 1 triangles whose pairwise intersection is exactly s . This implies that s must be
part of every solution of size at most k . Thus, f −s (φ(s)), f +s (φ(s)) ≤ k + 1.

Next, we separately investigate the structure of triangles that contain a strong arc, and triangles
that do not contain any strong arc. Formally, we call a triangle local if it does not contain any strong
arc. In particular, we show that the vertices of any local triangle cannot lie “too far apart” in the
ordering ≺ (of course, for a vertex s ∈ S , we use φ(s) to measure the distance with respect to ≺).
Having this claim at hand, FVST can be thought of as the problem of simultaneously hitting local
triangles and strong arcs.

To take care of the two sets of objects to be hit simultaneously, we define a variant of Expansion
Lemma [? ? ], which we call Double Expansion Lemma. To (roughly) describe it here, let ℓ > 0
and G be a bipartite graph with vertex sets A, S , and Ŝ ⊆ S and Â ⊆ A. We say that Ŝ has an
ℓ-expansion into Â inG if |NG (Y ) ∩ Â| ≥ ℓ |Y | for every Y ⊆ Ŝ . In addition, we would like to ensure
that NG (Â) ⊆ Ŝ . In Double Expansion Lemma, we consider a scheme where we have one “global"
bipartite graph, as well as d vertex-disjoint “local" bipartite graphs, and we would like to find a
vertex set that exhibits the expansion and neighborhood containment properties in all of the graphs
simultaneously (see Section 3 for details).
To design the subquadratic kernel for FVST, we apply Double Expansion Lemma where one

“part” is S , and the other “part" is derived by first defining a set of “carefully selected subintervals”
of X , say Y1, . . . ,Yp , trimming their ends to obtain yet another set of subintervals, Y ′1 , . . . ,Y ′p , and
then further partitioning each trimmed subinterval Y ′i into a more refined set of subintervals, say
Yi,1, . . . ,Yi,q . To be somewhat more precise, let us note that we have a global graph,G , with vertex
bipartition ({Yi, j : i ∈ {1, . . . ,p}, j ∈ {1, . . . ,q}}, S),3 as well as local bipartite graphs, Hi , with
vertex bipartition ({Yi, j : j ∈ {1, . . . ,q}}, Si ), where Si are those vertices in S that were determined
to “fit” Yi . The graphs Hi take care of local triangles, and the global graph G takes care of vertex
cover constraints (that is, the edges in F ). We apply the Double Expansion Lemma appropriately,
and show that if |V (X )| ≥ ζk3/2, for some constant ζ , then we can find an irrelevant vertex in X
(that is, a vertex whose removal preserves the answer). This together with the fact that |S | ≤ 3k
implies that we have a kernel of size O(k3/2).

3More precisely, here we mean that each subinterval Yi, j is represented by a unique single vertex in G .
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Now, let us describe our approach to solve CVD. To this end, recall that we have an approximate
solution S of size at most 3k . Our kernelization algorithm begins with a simple application of
the classical Expansion Lemma to bound the number of cliques in G \ S . Having bounded the
number of cliques, we repeatedly apply a marking procedure called Mark, whose sequential set of
applications is of the flavor of an Expansion Lemma, and can be thought of as a weak form of a
crown decomposition, as we explain after its description. Roughly speaking, one run of Mark is
executed as follows. Initially, all the vertices in S are “alive”. For k + 1 stages, Mark examines every
vertex s ∈ S that is still alive, and attempts to associate an edge of a clique of G \ S to it. Here, the
association can be done only if s is adjacent to exactly one vertex of the edge, and no vertex of that
edge belongs to an already associated edge. If the attempt is successful, the vertex remains alive
also for the next stage. If there exists a vertex that is alive after stage k + 1, then this vertex is part
of k + 1 induced P3’s that intersect only at it, and hence we can apply a reduction rule. Supposing
that this “lucky” situation does not occur, we say that the procedure was successful if roughly k2/3
vertices were still alive at stage (roughly) k2/3. If the run was indeed successful in this sense, we
mark all of the vertices alive at stage k2/3, and rerun the procedure on the graph G from which all
marked vertices, which belong to S , are removed (only for the sake of applying Mark again).

Let Û denote the set of all the vertices in S that were marked across all successful runs. Further-
more, denote L = S \ Û . Now, let us explain how the sets S , V (G) \ S and L can be thought of as a
weak form of a crown decomposition.4 Here, the Head is Û , and we indeed prove that any solution
should contain almost all of the vertices of Û (as opposed to all vertices as in a standard crown
decomposition). Second, the Crown is V (G) \ S , and as a consequence of the fact that most of Û
is present in every solution and as V (G) \ S is significantly larger than k (else we already have a
kernel), we can (roughly) say thatmost of the vertices inV (G) \S are not present in any solution (as
opposed to none). Third, the Rest (or Royal Body) is L, and we prove (in the sense explained below)
that the “interaction” between the Head and the Rest is structured (as opposed to non-existent as
in a standard crown decomposition). Let us now elaborate on the meaning of our last claim. Here,
we compute a “small” subsetM ⊆ V (G) \ S (specifically, this is the set of vertices associated to the
vertices of L in the last unsuccessful run of Mark) such that every clique inG \ S becomes a module
with respect to L once we remove the vertices inM from it.

Having the decomposition described above, the situation is more complicated that it usually
is when we have a standard crown decomposition. To analyze this situation, we first classify the
cliques in G \ S using three definitions. First, we classify these cliques as small, large or huge, and
“throw away” the small cliques. Next, we also classify these cliques as either heavy or light, which
corresponds to whether the fraction of vertices of the cliques that belong to M is large or small,
respectively; in this step, we also throw away the heavy cliques, which can be done safely asM is
shown to be small. Then, we also classify the cliques as either visible or hidden, corresponding to
whether many or few vertices from L are adjacent to many vertices in these cliques, respectively.
We show that not too many cliques can be visible, else a reduction rule can be applied, which allows
us to throw away also large (but not huge) visible cliques. Next, we focus on good cliques, which
are either large or huge, light, and either hidden or huge.

Our analysis proceeds by defining, for every vertex s ∈ S , a small and a large side with respect to
every clique. Roughly speaking, a side is the set of either all neighbors or all non-neighbors of s in
that clique. Then, in the context of these sides, we prove (using an exchange argument) that good
cliques exhibit a vertex cover-like behavior. That is, for any vertex s ∈ S and good clique, every
solution either picks s or the entire small side of that clique with respect to s . This claim gives rise

4A crown decomposition is among the most classical and well-known tools in parameterized complexity. Readers unfamiliar
with this notion (which we use only in the introduction) are referred to books such as [? ].
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to the definition of a bipartite graph where one side is S and the other side is the set of vertices of
the good cliques. Here, there is an edge between s ∈ S and a vertex v in a good cliqueC if v belongs
to the small side of C with respect to s . Using the Expansion Lemma, if we find a large enough
expansion in this graph, we prove that it is safe to select the vertices in S corresponding to that
expansion. Let us remark that this proof is non-trivial as the edges of the bipartite graph are not
necessarily edges in the input graph G. Finally, if no large expansion can be found, it means that
the bipartite graph contains many isolated vertices, which belong to the good cliques. However,
because these vertices are isolated, we can observe that they form sets that are modules with respect
to the entire graph G (rather than only with respect to L), which allows us to employ a reduction
rule that decreases their number.

Finally, we say a few words about our kernels for packing problems, that is, for TPT and Induced
P3-Packing. In both of these kernels, we start by finding a greedy packing, S of either triangles
or induced paths on 3 vertices, depending on the problem we are dealing with. If the greedy
collection is large, then we already have the answer. Else, the vertices present in any set in S, say
S , form a hitting set. That is, G − S is a cluster graph and T − S is a transitive tournament. We
exploit this structure in a manner similar to the way we exploited it to design subquadratic kernels
for the hitting problems. Specifically, we make reduction rules that are, in some sense, “dual” to
those given for FVST and CVD, and use the appropriate variants of Expansion Lemma to find an
irrelevant vertex to delete. However, as we currently deal with packing problems, there are also
major deviations required to design the new kernels. For example, for Induced P3-Packing, the
last stage of the kernelization algorithm, which lies at the heart of its correctness, is completely
different from the last stage of the kernelization algorithm for CVD. Here, the difference stems from
the following crucial observation: in Induced P3-Packing, we need to present structural claims that
hold for at least one solution, rather than for all solutions as in CVD, but these structural claims
have to be stronger than the ones presented for CVD as the solution itself has a more complicated
structure (being a set of paths rather than a set of vertices). This crucial observation also holds for
TPT, posing difficulties of the same nature.

Additional Related Works. It is known that unless NP ⊆ co-NP
poly , for any d ≥ 2 and for any ϵ > 0,

d-Hitting Set and d-Set Packing do not admit a kernel with O(kd−ϵ ) sets [? ? ]. In [? ], Dell and
Marx studied several matching and packing problems, and provided non-trivial lower bounds as
well as non-trivial upper bounds for packing some specific graphs such as matchings, P4’s (here, the
packing need not be induced) andK1,d ’s (stars with d leaves). Moser et al. [? ] studied the problem of
packing a fixed connected graph H on ℓ vertices in an input graph G (that is, determining whether
there exist k vertex disjoint copies of H in G) and designed a kernel with O(kℓ−1) vertices. In this
context, it is also worth to point out the dichotomy result of Jansen and Marx [? ] regarding packing
a fixed graph H . Finally, very recently Bessy et al. [? ] studied FVST where the input tournament is
restricted to be a sparse tournament, that is, a tournament where the feedback arc set is a matching.
For this special case, they presented a linear-vertex kernel, and remarked that their methods do not
extend to handle general tournaments.
Reading Guide. On the one hand, our kernels for FVST and CVD are independent of each other.
On the other hand, the kernels for TPT and Induced P3-Packing borrow some of their ideas from
the corresponding hitting set kernels, and therefore we recommend to read them after reading our
kernels for FVST and CVD. Section 3 gives the old and new Expansion Lemmas used in this paper.
In Section 4, we give our O(k5/3)-vertex kernel for CVD, followed by a kernel of O(k3/2) vertices
for FVST in Section 5. In Sections 6 and 7, we give our kernels for Induced P3-Packing and TPT
with O(k5/3) and O(k3/2) vertices, respectively. We conclude the paper with some remarks and
open problems in Section 8. To get a detailed idea of our techniques, a reader can first read the
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statements of Expansion Lemmas in Section 3, and then proceed to read our kernels for CVD and
FVST. The proofs of the new Expansion Lemmas and the kernels for the packing problems can be
read afterwards.

2 PRELIMINARIES
Graph Theory. Given a graph G (or digraph D), we let V (G) (V (D)) and E(G) (E(D)) denote its
vertex-set and edge-set (arc-set), respectively. We use {u,v} to denote an edge in an undirected
graph and uv to denote an arc in a digraph. The open neighborhood, or simply the neighborhood,
of a vertex v ∈ V (G) is defined as NG (v) = {w | {v,w} ∈ E(G)}. The closed neighborhood of v is
defined as NG [v] = NG (v) ∪ {v}. The degree of v is defined as dG (v) = |NG (v)|. We can extend the
definition of neighborhood of a vertex to a set of vertices as follows. Given a subset U ⊆ V (G),
NG (U ) =

⋃
u ∈U NG (u) and NG [U ] =

⋃
u ∈U NG [u]. The induced subgraph G[U ] is the graph with

vertex-set U and edge-set {{u,u ′} | u,u ′ ∈ U , and {u,u ′} ∈ E(G)}. Moreover, we define G \U as
the induced subgraphG[V (G) \U ]. We omit subscripts when the graphG is clear from context. We
use Pℓ to denote a path in a graph on ℓ vertices. A path P = uvw in a graph G is called an induced
path if there is no edge between u and v in E(G). An induced P3-packing is a set of vertex disjoint
induced P3’s. A subset X of V (G) is called a module if every vertex in X has same set of neighbors
in V (G) \ X . For a collection of graph H , by V (H ) we denote

⋃
H ∈H V (H ).

A tournament is a directed graph T such that for every pair of vertices u,v ∈ V (T ), exactly one
of uv or vu is a directed arc of T . For any three vertices x ,y, z ∈ V (T ), we say that xyz is a triangle
if arcs xy, yz and zx form a directed cycle. A tournament in which there is no directed cycle is
called a transitive tournament.
Reduction Rules. Kernelization algorithms often rely on the design of reduction rules. The rules
are numbered, and each rule consists of a condition and an action. We always apply the first rule
whose condition is true. Given a problem instance (I ,k), the rule computes (in polynomial time) an
instance (I ′,k ′) of the same problem where k ′ ≤ k . Typically, |I ′ | < |I |, where if this is not the case,
it should be argued why the rule can be applied only polynomially many times. We say that the
rule safe if the instances (I ,k) and (I ′,k ′) are equivalent.

3 TOOL: EXPANSION LEMMAS
In this section we give the classical Expansion Lemma as well as some two new Expansion Lemmas
that we make use of in our kernels. We start with some preliminaries. Let ℓ be a positive integer.
An ℓ-star is a graph on ℓ + 1 vertices where one vertex, called the center, has degree ℓ, and all
other vertices are adjacent to the center and have degree one. A bipartite graph is a graph whose
vertex-set can be partitioned into two independent sets. Such a partition of the vertex-set is called
a bipartition of the graph. Let G be a bipartite graph with bipartition (A, S) and let X ⊆ S,Y ⊆ A. A
subset of edgesM ⊆ E(G) is called ℓ-expansion of X into Y if

[(i)]every vertex ofX is incident to exactly ℓ edges ofM , andM saturates exactly ℓ |X | vertices
in Y .

Note that an ℓ-expansion saturates all vertices ofX , and for eachu ∈ X the set of edges inM incident
on u form an ℓ-star. The following lemma allows us to compute an ℓ-expansion in a bipartite graph.
It captures a certain property of neighborhood sets which is very useful for designing kernelization
algorithms.

Lemma 3.1 ([? ? ], Expansion Lemma). Let G be a bipartite graph with bipartition (A, S) such that
there are no isolated vertices in A. Let ℓ be a positive integer such that |A| ≥ ℓ |S |. Then, there are
non-empty subsets X ⊆ S and Y ⊆ A such that
• there is a ℓ-expansion from X into Y ,
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• and there is no vertex in Y that has a neighbor in S \ X , i.e. NG (Y ) = X .
Further, the sets X and Y can be computed in polynomial time.

An alternate but equivalent view on expansion properties is as follows. Let ℓ > 0 and G be a
bipartite graph with vertex sets A, S , and Ŝ ⊆ S and Â ⊆ A. We say that Ŝ has an ℓ-expansion into Â
inG if |NG (Y ) ∩ Â| ≥ ℓ |Y | for every Y ⊆ Ŝ . In the next two lemmas, and in Sections 5 and 7 we will
use this definition of expansion, while in the rest of the paper, we will use the classical definition of
expansion.

Lemma 3.2 (New Expansion Lemma). Let ℓ be a positive integer and G be a bipartite graph with
bipartition (A, S). Then, there exist Ŝ ⊆ S and Â ⊆ A such that Ŝ has an ℓ-expansion into Â in G,
NG (Â) ⊆ Ŝ and |A \ Â| ≤ ℓ |S \ Ŝ |. Moreover, the sets Ŝ and Â can be computed in polynomial time.

Lemma 3.2 is slightly different from Lemma 3.1, as it does not require |A| ≥ ℓ |S | and that there
is no isolated vertex in A, and thus Â and Ŝ may be empty. However, we still have the bound on
the number of removed vertices. That is, |A \ Â| ≤ ℓ |S \ Ŝ |, and hence, if |A| ≥ ℓ |S |, then Â is
nonempty. The difference between Lemmas 3.1 and Lemma 3.2 indeed comes from their viewpoints:
in Lemmas 3.1, we obtain Y by only keeping “desired" vertices in A, while in Lemmas 3.1 we obtain
Â by only removing “undesired" vertices from A. Thus, in Lemma 3.1, we always have |Y | = ℓ |X |,
while in Lemma 3.2, it is possible that |Â| > ℓ |Ŝ |.

Proof. We say that F ⊆ E(G) is a (≤ ℓ)-matching if every vertex s ∈ S is incident with at
most ℓ edges in F and every vertex x ∈ A is incident with at most one edge in F . Furthermore,
F is maximum if the cardinality of F is maximum among all (≤ ℓ)-matching of G. One can think
(≤ ℓ)-matching as a generalization of the usual matching notion in bipartite graphs. It is not hard
to see that a maximum (≤ ℓ)-matching of G can be found in polynomial time. Indeed, let consider
a flow network N obtained from G by adding a source s adjacent to all vertices of S , where each
edge has capacity ℓ, and a target t adjacent to all vertices of A, where each edge has capacity 1. All
edges of G are oriented from S to A and have capacity 1. Finding a maximum (≤ ℓ)-matching of G
is equivalent to finding a maximum integral flow of network N , which can be done in polynomial
time [? ].

Consider a maximum (≤ ℓ)-matching F ofG , and let S1 ⊆ S be the set of all vertices incident with
fewer than ℓ edges in F . Let S2 be the set of all vertices s ∈ S \ S1 such that there is an alternating
path e1e2 . . . e2k from s to some vertex s ′ ∈ S1 such that e2i−1 ∈ F and e2i < F for every i ≤ k . Set
Ŝ = S \ (S1 ∪ S2) and Â = A \ N (S1 ∪ S2). Clearly Ŝ and Â can be found in polynomial time.

To prove that Ŝ and Â are desired sets, we will use the augmenting path argument. We claim
that for every x ∈ N (S1 ∪ S2), there is s ∈ S1 ∪ S2 such that sx ∈ F . Suppose that the claim was
false, and note that there must be s ∈ S1 ∪ S2 such that sx ∈ E(G) since x ∈ N (S1 ∪ S2). Observe
that if xs ′ ∈ F with some s ′ ∈ S \ (S1 ∪ S2), then there is an alternating path from s ′ via x and s to
some vertex in S1, and so s ′ ∈ S2, a contradiction. We conclude that x is not incident to any edge
of F . There are two cases. If s ∈ S1, then F ∪ {xs} is a (≤ ℓ)-matching with more edges than F ,
a contradiction. Otherwise, s ∈ S2, then there is an alternating path from s to some vertex in S1,
which together with xs forms an augmenting path, a contradiction again. We thus conclude that
for every x ∈ N (S1 ∪ S2), there is s ∈ S1 ∪ S2 such that xs ∈ F . Note that every vertex in S1 ∪ S2
is incident with at most ℓ edges in F . Hence, |N (S1 ∪ S2)| ≤ ℓ |S1 ∪ S2 |, and so |A \ Â| ≤ ℓ |S \ Ŝ |.
Furthermore, since N (S \ Ŝ) ∩ Â = N (S1 ∪ S2) ∩ Â = ∅, there is no edge between Â and S \ Ŝ , and so
N (Â) ⊆ Ŝ .
It remains to show the ℓ-expansion property, i.e |NG (Y ) ∩ Â| ≥ ℓ |Y | for every Y ⊆ Ŝ . We first

observe that it is impossible that sx ∈ F with s ∈ Ŝ and x < Â; otherwise, there would be an
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ALGORITHM 3.1: Algorithm to compute Â, Ŝ, Âi , R̂i for every i in Lemma 3.3.
Input: G,Hi for every i .
Step 0: Initialize Â← A, Ŝ ← S, Âi ← Ai , R̂i ← Ri for every i .
Stage 1: It consists of the following two steps.

Step 1: Apply Lemma 3.2 on G[Â ∪ Ŝ] and get S⋆ ⊆ Ŝ and A⋆ ⊆ Â satisfying the Expansion Lemma. Set
Ŝ ← S⋆, Â← A⋆ and Âi ← A⋆ ∩ Âi for every i (we do not update R̂i ).

Step 2: For every i , apply Lemma 3.2 on Hi [Âi ∪ R̂i ] and get R⋆i ⊆ R̂i and A⋆
i ⊆ Âi satisfying Lemma 3.2.

Set R̂i ← R⋆i , Âi ← A⋆
i for every i , and Â←

⋃
i A

⋆
i (we do not update Ŝ).

If at least one of Â, Ŝ, Âi , R̂i changes, repeat Stage 1. Otherwise, stop the algorithm.
Output: Â, Ŝ, Âi , R̂i for every i .

alternating path from s to some vertex in S1, a contradiction. Besides, every vertex in Ŝ is incident
with exactly ℓ edges of F , and every vertex in Â is incident with at most one edge of F , and so
|NF (Y )| = ℓ |Y | for everyY ⊆ Ŝ . Hence, |NG (Y )∩Â| ≥ |NF (Y )∩Â| = |NF (Y )| = ℓ |Y |. This completes
the proof. □

As we discussed before, the viewpoint in the New Expansion Lemma is removing only undesired
vertices, which enables us to generalize the Expansion Lemma to the Double expansion Lemma,
where we can simultaneously achieve expansions in many graphs. In the following lemma, we
consider a scheme where we have a “global" bipartite graph and d vertex-disjoint “local" bipartite
graphs and we would like to achieve the expansion in each of them simultaneously.

Lemma 3.3 (Double Expansion Lemma). Let ℓ be a positive integer, andG,H1, . . . ,Hd be bipartite
graphs with bipartition (A, S), (A1,R1), . . . , (Ad ,Rd ), respectively, such that Ai ∩Aj = ∅,Ri ∩ R j = ∅

for every i , j, and
⋃d

i=1Ai = A. We can in polynomial time find Â ⊆ A, Ŝ ⊆ S, Âi ⊆ Ai , R̂i ⊆ Ri for
every i , satisfying the following

• Â =
⋃d

i=1 Âi .
• |A \ Â| ≤ ℓ(|S | + |

⋃d
i=1 Ri |).

• Ŝ has an ℓ-expansion into Â in G, and for every i , R̂i has an ℓ-expansion into Âi in Hi .
• NG (Â) ⊆ Ŝ , and for all 1 ≤ i ≤ d , NHi (Âi ) ⊆ R̂i .

The graphs G and H1, . . . ,Hd must share the same partition A and
⋃
Ai , while S and

⋃
Ri may

share some vertices or not. However, if a vertex s belongs to both S and some Ri , we treat s of S and
s of Ri as two different vertices. Later on, the reader will see that we apply the Double Expansion
Lemma in Section 5 where each Ri is a subset of S .
Roughly speaking, the lemma asserts that we can find a set Â such that Â is the “image” of

an expansion in the global graph, and the set of vertices Âi in every local graph is the image of
another expansion in that local graph. Since, Â =

⋃d
i=1 Âi , we achieve simultaneous expansion.

Since |A \ Â| < 2ℓ |S |, we again have the property that if |A| ≥ 2ℓ |S |, then Â is non-empty.
To prove Lemma 3.3, we repeatedly apply Lemma 3.2, alternately to the global graph and then to

local graphs, and refine Â and
⋃d

i=1 Âi until they are equal.

Proof. We first give the formal description of our algorithm in Algorithm 3.1 and an illustration
in Figure 1.

Observe that each call of Stage 1 runs in polynomial time. Towards this, note that the size of at
least one of Â, Ŝ, Âi , R̂i reduces after each call of Stage 1 (except the last call), and since each step
itself can be carried out in polynomial time, the algorithm itself runs in polynomial time. We will
show that the output satisfies all the properties stated in the lemma.
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Before

GStage 1,
Step 1:

Â

Ŝ

...

...

G

After

Â

Ŝ

...

...

Stage 1,
Step 2:

Hi Hi+1

ÂiÂi−1 Âi+1

R̂iR̂i−1 R̂i+1

Hi Hi+1

ÂiÂi−1 Âi+1

R̂iR̂i−1 R̂i+1

GStage 2,
Step 1:

Â

Ŝ

G

Â

Ŝ

Fig. 1. Illustration of the Double Expansion Algorithm – original vertices are red; a vertex turns blue if it is
removed by a call of Step 1, and turns green if it is removed by a call of Step 2.

The first property, Â =
⋃d

i=1 Âi is vacous, since it is always maintained as an invariant during
the algorithm. To prove the second property, observe that each time we call Step 1, we remove
some vertices from Ŝ and Â. The number of vertices removed from Â at Step 1 is at most ℓ times the
number of vertices removed from Ŝ at the same step (guaranteed by Lemma 3.2). Besides, initially
|Ŝ | = |S |, so there are at most |S | vertices removed from Ŝ in all calls to Step 1. This implies that
there are at most ℓ |S | vertices removed from Â in all calls to Step 1. Similarly, each time we call
Step 2, we remove some vertices from

⋃
i R̂i and

⋃
i Âi . The number of vertices removed from⋃

i Âi at Step 2 is at most ℓ times the number of vertices removed from
⋃

i R̂i at the same step.
Besides, initially

�� ⋃
i R̂i

�� ≤ |S |, so there are at most |S | vertices removed from
⋃

i R̂i in all calls to
Step 2. This implies that there are at most ℓ |S | vertices removed from

⋃
i Âi in all calls to Step 2,

which is also exactly the number of vertices removed from Â in all calls to Step 2. In conclusion,
there are at most 2ℓ |S | vertices removed from Â during the algorithm, and so |A \ Â| < 2ℓ |S |.
To keep arguments short we will call ℓ-expansion property from Ŝ to Â (res. R̂i to Âi ) by (P1),

and the property that NG (Â) ⊆ Ŝ (res. NHi (Âi ) ⊆ R̂i ) by (P2). To prove that Ŝ and Â satisfies (P1)
and (P2), we first observe that Ŝ and Â satisfies (P1) after every Step 1 of the algorithm, and so
Ŝ and Â satisfies (P1) after Step 2 if no vertex of Â is removed in that step. This means that the
output Ŝ and Â satisfies (P1) since Ŝ and Â are unchanged in the last stage. It remains to show that
output Ŝ and Â satisfies (P2). To do so, we prove by induction that NG (Â) ⊆ Ŝ at the end of every
stage. Clearly it is true at the beginning of the algorithm. Suppose that it is true at after Stage j (i.e.
the jth call of Stage 1), then there is no edge between Â and S \ Ŝ in G. At Step 1 of Stage j + 1,
we apply Lemma 3.2 on G[Â ∪ Ŝ] and get S⋆ and A⋆ such that NG[Â∪Ŝ ](A

⋆) ⊆ S⋆, then there is no
edge between A⋆ and Ŝ \ S⋆ in G. Thus there is no edge between A⋆ and (S \ Ŝ) ∪ (Ŝ \ S⋆) in G,
i.e., NG (A

⋆) ⊆ S⋆. We then set Â← A⋆, Ŝ ← S⋆, and so NG (Â) ⊆ Ŝ holds at the end of Step 1 of
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Stage j + 1. At Step 2 of Stage j + 1, some vertices are removed from Â while Ŝ is unchanged, and
hence NG (Â) ⊆ Ŝ holds at the end of Stage j + 1. This means that output Ŝ and Â satisfies (P2).
Fix an integer i ≤ d . To prove that R̂i and Âi satisfies (P1) and (P2), we first observe that R̂i

and Âi satisfies (P1) after every execution of Step 2 of the algorithm, and so the output R̂i and
Âi satisfies (P1). It remains to show that output R̂i and Âi satisfies (P2). To do so, we prove by
induction that NHi (Âi ) ⊆ R̂i at the end of every stage. Clearly it is true at the beginning of the
algorithm. Suppose that it is true after Stage j, then there is no edge between Âi and Ri \ R̂i in
Hi . At Step 1 of Stage j + 1, some vertices are removed from Âi while R̂i is unchanged, then
obviously NHi (Âi ) ⊆ R̂i holds at the end of Step 1 of Stage j + 1. At Step 2 of Stage j + 1, we apply
Lemma 3.2 on H [Âi ∪ R̂i ] and get R⋆

i and A⋆
i such that NHi [Âi∪R̂i ]

(A⋆
i ) ⊆ R⋆

i , then there is no edge
between A⋆

i and R̂i \ R⋆
i in Hi . Thus there is no edge between A⋆

i and (Ri \ R̂i ) ∪ (R̂i \ R⋆
i ) in Hi ,

i.e., NHi (A
⋆
i ) ⊆ R⋆

i . We then set Âi ← A⋆
i , R̂i ← R⋆

i , and so NHi (Âi ) ⊆ R̂i holds at the end of Stage
j + 1. This means that output Ŝ and Â satisfies (P2). This concludes the proof of the lemma. □

We would like to remark that the Double Expansion Lemma can be generalized to the Triple
Expansion Lemma (or η-levels Expansion Lemma), where the system contains a global bipartite
graph Gi , local bipartite graphs Hi , and super-local bipartite graphs Hi, j . The proofs of these
generalized version are similar to that of the Double Expansion Lemma. The idea of the Double
Expansion Lemma (or its generlizations) is that one tries to capture different properties using
different bipartite graphs at the same time.

4 KERNEL FOR CLUSTER VERTEX DELETION
In this section, we prove the following theorem.

Theorem 1. CVD admits a kernel with O(k1
2
3 ) vertices.

Let (G,k) be an instance of CVD. Recall that CVD admits a polynomial-time 3-approximation
algorithm. We call this algorithm with G as input, and thus we obtain a 3-approximate solution
S . If |S | > 3k , then we conclude that (G,k) is a No-instance. Thus, we next assume that |S | ≤ 3k .
Notice that G \ S is a collection of cliques, which we denote by C .
In what follows, we denote α =2, β =1, γ =10, δ =3, λ =1 and η =1, so that (1 − 1

δ )γ ≥ 2η
(used in the proof of Lemma 4.11), ( 12 −

1
δ )γ > (

1
(α−1)β + λ) (used in the proof of Lemma 4.13), and

γ ≥ δ
δ−1 (

1
(α−1)β + λ) (used in the proof of 4.14).

4.1 Bounding the Number of Cliques
First, we have the following simple rule, whose safeness is obvious.

Reduction Rule 4.1. If there existsC ∈ C such that no vertex inC has a neighbor in S , then remove
C from G. The new instance is (G \C,k).

Now, we define the bipartite graph B by setting one side of the bipartition to be S and the other
side to be C ,5 such that there exists an edge between s ∈ S and C ∈ C if and only if s is adjacent
to at least one vertex in C . Note that by Reduction Rule 4.1, no clique in C is an isolated vertex
in B. We thus proceed by presenting the following rule, where we rely on the Expansion Lemma
(Lemma 3.1). It should be clear that the conditions required to apply the algorithm provided by this
lemma are satisfied.
5Here, we slightly abuse notation. Specifically, we mean that each clique in C is represented by a unique vertex in V (B),
and we refer to both the clique and the corresponding vertex identically.
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Reduction Rule 4.2. If |C | ≥ 2|S |, then call the algorithm provided by Lemma 3.1 to compute sets
X ⊆ S and Y ⊆ C such that X has a 2-expansion into Y in B and NB (Y ) ⊆ X . The new instance is
(G \ X ,k − |X |).

We now argue that this rule is safe.

Lemma 4.1. Reduction Rule 4.2 is safe.

Proof. In one direction, it is clear that if S⋆ is a solution to (G\X ,k−|X |), then S⋆∪X is a solution
to (G,k). For the other direction, let S⋆ be a solution to (G,k). We denote S ′ = (S⋆ \ V (Y )) ∪ X .
Notice that for all s ∈ X , there exists an induced P3 in G of the form u − s − v where u is any
vertex in one clique associated to s by the 2-expansion that is adjacent to s and v is any vertex in
the other clique associated to s by the 2-expansion that is adjacent to v . The existence of such u
and v is implied by the definition of the edges of B. Thus, as S⋆ is a solution to (G,k), we have
that |X \ S⋆ | ≤ |S⋆ ∩V (Y )|, and hence |S ′ | ≤ |S⋆ | ≤ k . Note that G \ S ′ is a collection of isolated
cliques together with a subgraph of G \ S⋆. Thus, as G \ S⋆ does not contain any induced P3, we
derive that G \ S ′ also does not contain any induced P3. We conclude that S ′ is a solution to (G,k),
and as X ⊆ S ′, we have that S ′ \ X is a solution to (G \ X ,k − |X |). Thus, (G \ X ,k − |X |) is a
Yes-instance. □

Due to Reduction Rule 4.2, from now on |C | ≤ 6k .

4.2 The Specification of the Marking Procedure
We proceed by presenting a procedure called Mark. Clearly, every vertex in S that has both a
neighbor and a non-neighbor in a clique in C is a vertex due to which that clique in C is not a
module. The procedure Mark accordingly associates vertices s ∈ S with sets mark(s) of edges that
belong to cliques in C . In particular, we would ensure that for all s ∈ S , there would not exist two
distinct edges e, e ′ ∈ mark(s) that have a common endpoint, as well as that for all distinct s, s ′ ∈ S ,
there would not exist two distinct edges e ∈ mark(s), e ′ ∈ mark(s ′) that have a common endpoint.

Specification. The procedureMark first initializesM ⇐ ∅,T ⇐ S , and for all s ∈ S ,mark(s) ⇐ ∅.
At each stage i , i = 1, 2, . . . ,k + 1, Mark executes the following process. For each s ∈ T , if there
exist C ∈ C and {u,v} ∈ E(C) such that {s,u} ∈ E(G) but {s,v} < E(G) and {u,v} ∩M = ∅, then
insert u,v intoM and {u,v} into mark(s), and otherwise remove s from T . The order in which the
process examines the vertices in T is immaterial given that it examines each vertex in T exactly
once. Moreover, if i = ⌈βk2/3⌉, then the process setsU to be equal toT . IfT is updated in subsequent
stages,U is not updated as well.

We say that Mark succeeded if |U | ≥ ⌈αk2/3⌉, and otherwise we say that Mark failed. Moreover,
if there exists s ∈ S such that |mark(s)| ≥ k + 1, then we say that Mark was lucky. Let us begin the
analysis of Mark with the following simple lemma.

Lemma 4.2. For any solution S⋆ to (G,k) and vertex s ∈ S \ S⋆, it holds that S⋆ ∩ {u,v} , ∅ for all
{u,v} ∈ mark(s).

Proof. Let S⋆ be a solution to (G,k). Consider some vertex s ∈ S and edge {u,v} ∈ mark(s).
Note that {s,u,v} is the vertex set of an induced P3 in G. Therefore, S⋆ ∩ {s,u,v} , ∅. We thus
have that if s < S⋆, then S⋆ ∩ {u,v} , ∅. □

In light of Lemma 4.2, we employ the following rule.

Reduction Rule 4.3. If there exists s ∈ S such that |mark(s)| ≥ k + 1 (i.e., Mark was lucky), then
remove s from G and decrement k by 1. The new instance is (G \ s,k − 1).
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Lemma 4.3. Reduction Rule 4.3 is safe.

Proof. In one direction, it is clear that if S⋆ is a solution to (G \ s,k − 1), then S⋆ ∪ {s} is a
solution to (G,k). For the other direction, let S⋆ be a solution to (G,k). Observe that for all s ′ ∈ S
and {u,v}, {u ′,v ′} ∈ mark(s ′), it holds that {u,v} ∩ {u ′,v ′} = ∅. Thus, by Lemma 4.2 and since
|mark(s)| ≥ k + 1, if s < S⋆ then |S⋆ | ≥ k + 1, which is not possible as |S⋆ | ≤ k . We derive that
s ∈ S⋆, and therefore S⋆ \ {s} is a solution to (G \ s,k − 1). □

The main purpose of Mark is to derive information on (G,k) also when it is not coincidentally
lucky. More precisely, we have the following simple but useful lemma.

Lemma 4.4. For any solution S⋆ to (G,k), |U \ S⋆ | ≤ 1
β k

1/3.

Proof. Let S⋆ be a solution to (G,k). Again, observe that for all s ∈ S and {u,v}, {u ′,v ′} ∈
mark(s), it holds that {u,v}∩{u ′,v ′} = ∅. In addition, observe that for all s, s ′ ∈ S , {u,v} ∈ mark(s)
and {u ′,v ′} ∈ mark(s ′), it holds that {u,v} ∩ {u ′,v ′} = ∅. Thus, by Lemma 4.2,

|S⋆ | ≥
∑

s ∈U \S⋆

|mark(s)| ≥ ⌈βk2/3⌉ |U \ S⋆ |.

Since |S⋆ | ≤ k , we conclude that |U \ S⋆ | ≤ 1
β k

1/3. □

We also need to derive an upper bound on the number of marked vertices, namely |M |.

Lemma 4.5. If Mark was neither lucky nor successful, then |M | ≤ 6(α + β)k1 2
3 .

Proof. SinceMarkwas unlucky, |mark(s)| ≤ k for all s ∈ S . Thus, |M | ≤ 2|U |k+2|S\U |(⌈βk2/3⌉−
1). SinceMark failed, we further have that |M | ≤ 2(⌈αk2/3⌉−1)k+6k(⌈βk2/3⌉−1) ≤ 6(α+β)k1 2

3 . □

4.3 Multiple Calls to the Marking Procedure
Let us now explain how we employ Mark. We initialize Û = ∅ and Ĝ = G. Then, we call Mark
with (Ĝ,k) as input. If Mark was lucky, then we execute Reduction Rule 4.3 and restart the entire
process (including the initialization phase). Else, if Mark succeeded, then for the set U computed
by the current call, we update Û ⇐ Û ∪U and Ĝ ⇐ Ĝ \U , and then we proceed to execute another
call. Otherwise,Mark was unlucky and also failed, and we letM denote the same setM ⊆ V (G) \ S
as computed by the current call toMark, after which we terminate the process. Note that after each
call to Mark, either Reduction Rule 4.3 is executed or the size of Û increases, and therefore it is
clear that the process eventually terminates. We denote L = S \ Û .
By relying on Lemma 4.4, we have the following lemma.

Lemma 4.6. Let i be the number of calls to Mark that succeeded but were unlucky. For any solution
S⋆ to (G,k), |Û \ S⋆ | ≤ i · 1β k

1/3 and |S⋆ ∩ Û | ≥ i · (α ⌈k2/3⌉ − 1
β k

1/3).

Proof. First, note that |S⋆∩Û | ≥ i ·α ⌈k2/3⌉− |Û \S⋆ | as the setsU computed at distinct iterations
are pairwise disjoint and the size of each one of them is at least α ⌈k2/3⌉. Thus, it is sufficient to
prove that |Û \ S⋆ | ≤ i · 1β k

1/3. However, this inequality follows from Lemma 4.4. □

As a consequence of the two bounds in Lemma 4.6, we have the following corollary.

Corollary 4.1. For any solution S⋆ to (G,k), |Û \ S⋆ | ≤ 1
(α−1)β k

2/3.
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Proof. First, note that k ≥ |S⋆ ∩ Û |. Thus, by the second bound in Lemma 4.6, k ≥ i · (α ⌈k2/3⌉ −

1
β k

1/3) ≥ i · (αk2/3 − 1
β k

1/3), which implies that i ≤ k

αk2/3 − 1
β k

1/3 =
k2/3

αk1/3 − 1
β

≤
1

α − 1k
1/3. By

the first bound in Lemma 4.6, we thus derive that indeed |Û \ S⋆ | ≤ 1
(α−1)β k

2/3. □

The usefulness of Corollary 4.1 stems from the observation that it implies that we have found a
(possibly large) set Û ⊆ S such that not only any S⋆ to (G,k) contains almost all the vertices in
Û , but also that the removal of Û from G significantly simplifies G as described by the following
lemma.

Lemma 4.7. For every clique C ∈ C , C[V (C) \M] is a module in G \ Û .

Proof. Let C be a clique in C . By the specification of Mark, for every vertex s ∈ L, it holds that
there do not exist u,v ∈ V (C) \ M such that u ∈ NG (s) and v < NG (s) (since {u,v} < mark(s)).
Furthermore, every vertex in C is adjacent to both u and v , and every vertex in a clique in C \ {C}
is adjacent to neither u nor v . Thus, C[V (C) \M] is indeed a module in G \ Û . □

4.4 Sieving Bad Cliques
We sieve cliques based on three classifications. First, we say that a clique C ∈ C is big if |V (C)| >
γk2/3, and otherwise it is small. Furthermore, we say that a clique C ∈ C is huge if |V (C)| > 3k .
Recall that by Reduction Rule 4.2, |C | ≤ 6k . Thus, we directly have the following observation.

Observation 4.1. The total number of vertices in small cliques in C is upper bounded by 6γk1 2
3 .

Second, we say that a clique C ∈ C is heavy if |V (C) ∩M | ≥ 1
δ |V (C)|, and otherwise it is light. It

is clear that the total number of vertices in heavy cliques in C is upper bounded by δ |M |. Thus, by
Lemma 4.5, we have the following observation.

Observation 4.2. The total number of vertices in heavy cliques in C is upper bounded by 6δ (α +
β)k1

2
3 .

Third, for a cliqueC ∈ C and a vertex s ∈ S , we say thatC is visible to s if |NG (s)∩V (C)| ≥ 2ηk2/3,
and otherwise we say that C is hidden from s . For a clique C ∈ C , we let vis(C) denote that set of
vertices in S to whichC is visible. Moreover, we say that a cliqueC ∈ C is visible if |vis(C)| ≥ λk2/3,
and otherwise we say that it is hidden. To bound the number of visible cliques, we need the following
rule.

Reduction Rule 4.4. If there exists a vertex s ∈ S with at least 1
2ηk

1/3 + 2 cliques in C visible to s ,
then remove s from G and decrement k by 1. The new instance is (G \ s,k − 1).

Lemma 4.8. Reduction Rule 4.4 is safe.

Proof. In one direction, it is clear that if S⋆ is a solution to (G \ s,k − 1), then S⋆ ∪ {s} is a
solution to (G,k). For the other direction, let S⋆ be a solution to (G,k). Let A denote the set of
cliques in C that are visible to s . Since |S⋆ | ≤ k , |A| ≥ 1

2ηk
1/3 + 2 and by the definition of visibility,

we have that there necessarily exist two distinct cliquesA,A′ ∈ A such that each clique amongA,A′
has a vertex that is a neighbor of s and does not belong to S⋆. Since these two vertices together
with s form an induced P3 in G, we derive that necessarily s ∈ S⋆. Therefore, S⋆ \ {s} is a solution
to (G \ s,k − 1). □
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After we exhaustively apply Reduction Rule 4.4, for every vertex s ∈ S there exist at most
1
2ηk

1/3 + 1 ≤ 1
ηk

1/3 cliques in C visible to s . Since |S | ≤ 3k , we derive that there are at most
|S | 1ηk

1/3

λk2/3
=

3
λη

k2/3 visible cliques. Thus, we have the following observation.

Observation 4.3. The total number of vertices in non-huge visible cliques in C is upper bounded
by 9

ληk
1 2
3 .

Altogether, we say that a clique C ∈ C is good if it is (i) big, (ii) light and (iii) hidden or huge
(or both), and otherwise we say that it is bad. We denote the set of all good cliques in C by D. By
Observations 4.1, 4.2 and 4.3, we derive the following lemma.

Lemma 4.9. The total number of vertices in bad cliques in C is upper bounded by 9(γ + δ (α + β) +
1
λη )k

1 2
3 .

4.5 Properties of Clique Sides
For all C ∈ C and s ∈ S , denote NC (s) = NG (s) ∩V (C) and NC (s) = V (C) \ NC (s). Notice that for
all C ∈ C , s ∈ S , u ∈ NC (s) and v ∈ NC (s), it holds that s − u − v is an induced P3 in G. Thus, we
have the following observation.

Observation 4.4. Let S⋆ be a solution to (G,k). Then, for all C ∈ C and s ∈ S , at least one of the
following three condition holds: (i) s ∈ S⋆; (ii) NC (s) ⊆ S⋆; (iii) NC (s) ⊆ S⋆.

For all C ∈ C and s ∈ S , let MC (s) denote the set of minimum size among NC (s) and NC (s) (if
they have equal sizes, the choice is arbitrary). We first need to apply the following simple rule.

Reduction Rule 4.5. If there exist C ∈ C and s ∈ S such that |MC (s)| > k , then remove s from G
and decrement k by 1. The new instance is (G \ s,k − 1).

Lemma 4.10. Reduction Rule 4.5 is safe.

Proof. In one direction, it is clear that if S⋆ is a solution to (G \s,k−1), then S⋆∪{s} is a solution
to (G,k). For the other direction, let S⋆ be a solution to (G,k). Since |S⋆ | ≤ k and |MC (s)| > k ,
we have that both NC (s) \ S

⋆ , ∅ and NC (s) \ S
⋆ , ∅. Thus, by Observation 4.4, we have that

necessarily s ∈ S⋆. Therefore, S⋆ \ {s} is a solution to (G \ s,k − 1). □

Specifically, since for every s ∈ S and huge clique C ∈ C , |MC (s)| ≤ k , we have the following
corollary, which exhibits a “vertex cover-like” interaction between S and huge cliques.

Observation 4.5. Let S⋆ be a solution to (G,k). Then, for every s ∈ S and huge clique C ∈ C , at
least one of the following two conditions holds: (i) s ∈ S⋆; (ii)MC (s) ⊆ S⋆.

Next, we prove that a similar result holds also for non-huge cliques given that they are good. To
this end, we first prove the following simple lemma.

Lemma 4.11. For all s ∈ L andC ∈ D such that NG (s) ∩ (V (C) \M) , ∅, it holds thatC is visible to
s .

Proof. Let s ∈ L andC ∈ D such that NG (s)∩ (V (C) \M) , ∅. Then, by Lemma 4.7, we have that
V (C)\M ⊆ NG (s). Thus, to prove thatC is visible to s , it is sufficient to show that |V (C)\M | ≥ 2ηk2/3.
Since C ∈ D, we have that C is light, and therefore |V (C) \M | > (1 − 1

δ )|V (C)|. Moreover, since
C is big, |V (C)| > γk2/3, and hence |V (C) \M | > (1 − 1

δ )γk
2/3. Since (1 − 1

δ )γ ≥ 2η, the proof is
completed. □
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Lemma 4.12. Let S⋆ be a solution to (G,k) of minimum size. Then, for every non-huge cliqueC ∈ D,
it holds that |V (C) ∩ S⋆ | ≤ |V (C) ∩M | + ( 1

(α−1)β + λ)k
2/3.

Proof. Let C ∈ D be a non-huge clique. Suppose, by way of contradiction, that |V (C) ∩ S⋆ | >
|V (C) ∩M | + ( 1

(α−1)β + λ)k
2/3. Define S ′ = (S⋆ \V (C)) ∪ Û ∪ (V (M) ∩V (C)) ∪ vis(C). By Corollary

4.1 and since C is a non-huge clique in D, |Û \ S⋆ | ≤ 1
(α−1)β k

2/3 and |vis(C)| ≤ λk2/3. Thus,
|S ′ | < |S⋆ | ≤ k . Next we show that (V (C)) \ S ′ is an isolated clique. Towards this we will show
that it has no neighbor in the approximate solution S . The only possible neighbors of (V (C)) \ S ′
in S are in L. However, if there exists a vertex s ∈ L such that NG (s) ∩ (V (C) \M) , ∅, then by
Lemma 4.11, it holds that C is visible to s . This implies that a vertex s ∈ L is either in vis(C) or
N (s) ∩ V (C) ⊆ M ∩ V (C). Since, S ′ contains M ∩ V (C)) ∪ vis(C) we have that (V (C)) \ S ′ is an
isolated clique. Thus, by Lemma 4.11, the graphG \S ′ consists of an isolated clique on the vertex set
(V (C)) \ S ′ and a subgraph ofG \ S⋆. Therefore, asG \ S⋆ does not contain any induced P3, so does
G \ S ′. This implies that S ′ is a solution to (G,k), but since |S ′ | < |S⋆ |, we obtain a contradiction to
the choice of S⋆. □

Lemma 4.13. Let S⋆ be a solution to (G,k) of minimum size. Then, for every s ∈ S and non-huge
clique C ∈ D, at least one of the following two conditions holds: (i) s ∈ S⋆; (ii)MC (s) ⊆ S⋆.

Proof. Let s be a vertex in S , and letC ∈ D be a non-huge clique. Suppose, byway of contradiction,
that neither s ∈ S⋆ norMC (s) ⊆ S⋆. By Observation 4.4, we necessarily have thatV (C)\MC (s) ⊆ S⋆.
Thus, |V (C) ∩ S⋆ | ≥ |V (C) \MC (s)| ≥

1
2 |V (C)|. Therefore, to obtain a contradiction to Lemma 4.12,

it is sufficient to show that 1
2 |V (C)| > |V (C) ∩M | + (

1
(α−1)β + λ)k

2/3. Since C is light, we have that
|V (C)∩M | < 1

δ |V (C)|, and therefore it remains to show that ( 12 −
1
δ )|V (C)| > (

1
(α−1)β +λ)k

2/3. Since
C is big, |V (C)| > γk2/3. Thus, we only need to show that ( 12 −

1
δ )γ > (

1
(α−1)β + λ), which follows

from the definition of α , β,γ ,δ and λ. □

4.6 Expansion with Respect to Clique Sides
We construct the bipartite graph B′ by setting one side of the bipartition to be S and the other side
Q ′ to be the set of vertices in good cliques (i.e., Q ′ =

⋃
C ∈D V (C)), such that there exists an edge

between s ∈ S and v ∈ Q ′ if and only if v ∈ MD (s) where D is the clique in D containing v . Let I
denote the set of isolated vertices in B′ that belong to Q ′, and denote Q = Q ′ \ I . Moreover, define
B = B′ \ I . Clearly, no clique in Q is an isolated vertex in B. We thus proceed by presenting the
following rule, where we rely on the Expansion Lemma (Lemma 3.1). It should be clear that the
conditions required to apply the algorithm provided by this lemma are satisfied.
Reduction Rule 4.6. If |Q | ≥ ( 1

(α−1)β k
2/3 + 1)|S |, then call the algorithm provided by Lemma

3.1 to compute sets X ⊆ S and Y ⊆ Q such that X has a ( 1
(α−1)β k

2/3 + 1)-expansion into Y in B and
NB (Y ) ⊆ X . The new instance is (G \ X ,k − |X |).

We now argue that this rule is safe.
Lemma 4.14. Reduction Rule 4.6 is safe.

Proof. In one direction, it is clear that if S⋆ is a solution to (G \ X ,k − |X |), then S⋆ ∪ X is a
solution to (G,k). For the other direction, let S⋆ be a solution to (G,k) of minimum size. Define
S ′ = (S⋆ \ Y ) ∪ X ∪ Û . First, due to Corollary 4.1, note that |Û \U⋆ | ≤ 1

(α−1)β k
2/3. Moreover, by

Observation 4.5 and Lemma 4.13, for every vertex s ∈ S \ S⋆, it holds that NB (s) ⊆ S⋆. Thus, since
X has a ( 1

(α−1)β k
2/3 + 1)-expansion into Y in B, we have that |Y \ S⋆ | ≤ ( 1

(α−1)β k
2/3 + 1)|X \ S⋆ |.

This implies that |S ′ | ≤ |S⋆ | ≤ k .
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Notice that ifG \ S ′ does not contain any induced P3, then since X ⊆ S⋆ and we have shown that
|S ′ | ≤ k , this would imply that S ′ is a solution to (G \X ,k − |X |). Suppose, by way of contradiction,
thatG \ S ′ contains some induced P3, which we denote byW . Note thatV (W ) ∩ (X ∪ Û ) = ∅. Since
G \ S⋆ does not contain any induced P3 and since S is an approximate solution, we also derive that
V (W ) ∩ Y , ∅ and V (W ) ∩ S , ∅. Accordingly, the following case analysis is exhaustive.

• Case 1:W = s −u −v where s ∈ S \ (X ∪ Û ), u,v ∈ V (C) for someC ∈ D and {u,v} ∩Y , ∅.
In this case, let y ∈ {u,v} denote some vertex in {u,v} ∩ Y and let x denote the other vertex
in {u,v} (which might also be in Y ). Since NB (Y ) ⊆ X and s < X , we have that y < NB (s).
Since u ∈ NC (s) and v ∈ NC (s), we have that |MC (s) ∩ {u,v}| = 1. Since y < NB (s), we
have that y < MC (s) and x ∈ MC (s). In particular, as NB (Y ) ⊆ X and s < X , we have that
x ∈ NB (s) \ Y (in fact, NB (s) ∩ Y = ∅). By Observation 4.5 and Lemma 4.13, we derive that
S⋆ ∩ {s,x} , ∅. However, as x < Y , this implies that S ′ ∩ {s,x} , ∅, which is a contradiction.
• Case 2:W = s−v−s ′where s, s ′ ∈ S\(X∪Û ), andv ∈ V (C)∩Y for someC ∈ D. SinceNB (Y ) ⊆
X and s, s ′ < X , we have that v < MC (s) ∪MC (s

′), which means that NC (s) = V (C) \MC (s)
and NC (s

′) = V (C)\MC (s
′). Therefore, |NC (s)∩V (C)|, |NC (s

′)∩V (C)| ≥ 1
2 |V (C)|. Thus, since

|M ∩V (C)| < 1
δ |V (C)| <

1
2 |V (C)| (because C ∈ D), we have that there exist w ∈ NC (s) \M

and w ′ ∈ NC (s
′) \ M . By Lemma 4.7 and since s, s ′ < Û , we derive that C is huge or both

V (C) \M ⊆ NC (s) and V (C) \M ⊆ NC (s
′).

Let us first consider the subcase where C is huge. Due to Reduction Rule 4.5, we have that
|NC (s)|, |NC (s

′)| ≤ k . Since |V (C)| > 3k , we derive that |NC (s) ∩ NC (s
′)| ≥ k + 1. Note that

any vertexw ∈ NC (s)∩NC (s
′), along with s and s ′, forms the induced P3 inG that is s−w −s ′.

Note that s, s ′ < S⋆, as otherwise {s, s ′} ∩ S ′ , ∅, which contradicts the choice ofW . Thus, as
S⋆ is a solution to (G,k), it must hold that NC (s)∩NC (s

′) ⊆ S⋆, but as |NC (s)∩NC (s
′)| ≥ k+1,

this is a contradiction.
Let us now consider the subcase where C is not huge, and in particular V (C) \M ⊆ NC (s)
and V (C) \ M ⊆ NC (s

′). Then, any vertex w ∈ V (C) \ M , along with s and s ′, forms the
induced P3 in G that is s −w − s ′. Again, note that s, s ′ < S⋆. Thus, since S⋆ is a solution to
(G,k), we have that V (C) \M ⊆ S⋆. Now, recall that by Lemma 4.12 and since C ∈ D is not
huge, |V (C) ∩ S⋆ | ≤ |V (C) ∩M | + ( 1

(α−1)β + λ)k
2/3. Hence, |V (C) \M | ≤ ( 1

(α−1)β + λ)k
2/3. As

|V (C) ∩M | < 1
δ |V (C)| (because C ∈ D), we have that (1 −

1
δ )|V (C)| < (

1
(α−1)β + λ)k

2/3, and
hence |V (C)| < δ

δ−1 (
1

(α−1)β + λ)k
2/3, which is a contradiction, since C ∈ D implies that C is

in particular big and γ ≥ δ
δ−1 (

1
(α−1)β + λ).

• Case 3:W = v−s−s ′ where s, s ′ ∈ S \(X ∪Û ), andv ∈ V (C)∩Y for someC ∈ D. The analysis
of this case is similar to the one of the previous case, and is only given for completeness.
Since NB (Y ) ⊆ X and s, s ′ < X , we have that v < MC (s) ∪MC (s

′), which means that NC (s) =
V (C)\MC (s) andNC (s

′) = V (C)\MC (s
′). Therefore, |NC (s)∩V (C)|, |NC (s

′)∩V (C)| ≥ 1
2 |V (C)|.

Thus, since |M ∩ V (C)| < 1
δ |V (C)| <

1
2 |V (C)| (because C ∈ D), we have that there exist

w ∈ NC (s) \M and w ′ ∈ NC (s
′) \M . By Lemma 4.7 and since s, s ′ < Û , we derive that C is

huge or both V (C) \M ⊆ NC (s) and V (C) \M ⊆ NC (s
′).

Let us first consider the subcase where C is huge. Due to Reduction Rule 4.5, we have that
|NC (s)|, |NC (s

′)| ≤ k . Since |V (C)| > 3k , we derive that |NC (s) ∩ NC (s
′)| ≥ k + 1. Note

that any vertex w ∈ NC (s) ∩ NC (s
′), along with s and s ′, forms the induced P3 in G that is

w − s − s ′. Note that s, s ′ < S⋆, as otherwise {s, s ′} ∩ S ′ , ∅, which contradicts the choice
ofW . Thus, as S⋆ is a solution to (G,k), it must hold that NC (s) ∩ NC (s

′) ⊆ S⋆, but as
|NC (s) ∩ NC (s

′)| ≥ k + 1, this is a contradiction.
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Let us now consider the subcase where C is not huge, and in particular V (C) \M ⊆ NC (s)

and V (C) \ M ⊆ NC (s
′). Then, any vertex w ∈ V (C) \ M , along with s and s ′, forms the

induced P3 in G that isw − s − s ′. Again, note that s, s ′ < S⋆. Thus, since S⋆ is a solution to
(G,k), we have that V (C) \M ⊆ S⋆. Now, recall that by Lemma 4.12 and since C ∈ D is not
huge, |V (C) ∩ S⋆ | ≤ |V (C) ∩M | + ( 1

(α−1)β + λ)k
2/3. Hence, |V (C) \M | ≤ ( 1

(α−1)β + λ)k
2/3. As

|V (C) ∩M | < 1
δ |V (C)| (because C ∈ D), we have that (1 −

1
δ )|V (C)| < (

1
(α−1)β + λ)k

2/3, and
hence |V (C)| < δ

δ−1 (
1

(α−1)β + λ)k
2/3, which is a contradiction, since C ∈ D implies that C is

in particular big and γ ≥ δ
δ−1 (

1
(α−1)β + λ).

• Case 4: W = u − s − v where s ∈ S \ (X ∪ Û ), u ∈ V (C) ∩ Y for some C ∈ D, and
v ∈ V (C ′) for some C ′ ∈ C \ {C}. Since NB (Y ) ⊆ X and s < X , we have that u < MC (s),
which means that NC (s) = V (C) \MC (s). Therefore, |NC (s) ∩V (C)| ≥

1
2 |V (C)|. Thus, since

|M ∩V (C)| < 1
δ |V (C)| <

1
2 |V (C)| (because C ∈ D), we have that there existsw ∈ NC (s) \M .

By Lemma 4.7 and since s < Û , we derive thatC is huge orV (C) \M ⊆ NC (s). Symmetrically,
we derive that if v ∈ Y , then C ′ is huge or V (C ′) \M ⊆ NC ′(s).
Note that for all w ∈ NC (s) and w ′ ∈ NC ′(s), it holds that w − s −w ′ is an induced P3 in G.
As s < S⋆ (as otherwise s ∈ S ′), we have that NC (s) ⊆ S⋆ or NC ′(s) ⊆ S⋆. Observe that if
v < Y , then since v < S ′, we have that v < S⋆ and therefore it clearly holds that NC ′(s) ⊈ S⋆.
If v ∈ Y (which means that C ′ ∈ D), then the proof that NC ′(s) ⊈ S⋆ is symmetric to the
proof that NC (s) ⊈ S⋆. Therefore, in what follows, we only show that NC (s) ⊈ S⋆.
Let us first consider the subcase where C is huge. Due to Reduction Rule 4.5, we have that
|NC (s)| ≤ k . Since |V (C)| > 3k , we derive that |NC (s)| ≥ 2k + 1. Since |S⋆ | ≤ k , it is then
clear that NC (s) ⊈ S⋆. Now, let us now consider the subcase where C is not huge, and
in particular V (C) \ M ⊆ NC (s). Recall that by Lemma 4.12 and since C ∈ D is not huge,
|V (C)∩S⋆ | ≤ |V (C)∩M |+( 1

(α−1)β +λ)k
2/3. Suppose, by way of contradiction, thatNC (s) ⊆ S⋆.

Then, |V (C) \M | ≤ ( 1
(α−1)β + λ)k

2/3, which leads to a contradiction as in the previous two
cases.

Since each case led to a contradiction, the proof is complete. □

4.7 Reduction of Almost Modules
At this point, it remains to bound the size of I . We first show that the sets of vertices in I , defined
according to the cliques in C , are modules also with respect to Û . More precisely, we prove the
following lemma.

Lemma 4.15. For every clique C ∈ D, C[I ∩V (C)] is a module in G.

Proof. LetC be a clique in D. Consider two vertices u,v ∈ I ∩V (C). Clearly, every vertex inC is
adjacent to both u andv , and every vertex in a clique inC \ {C} is adjacent to neither u norv . Thus,
C[I ∩V (C)] is indeed a module inG \ S . Now, consider some vertex s ∈ S . Then, as u,v ∈ I ∩V (C),
we have that u,v ∈ V (C) \MC (s), because otherwise u or v would have been adjacent to s in the
bipartite graph B of Section 4.6. Thus, we have that either both u,v ∈ NC (s) or both u,v ∈ NC (s).
As the choices of u,v and s were arbitrary, we conclude that C[I ∩ V (C)] is indeed a module in
G. □

We now present a rule that concerns the set I .

Reduction Rule 4.7. If there exists a visible cliqueC ∈ D such that |I ∩V (C)| > k + 1 or a hidden
clique C ∈ D such that |I ∩ V (C)| > |M ∩ V (C)| + 1

(α−1)β k
2/3 + λk2/3, then remove an arbitrarily

chosen vertex v ∈ V (C) ∩ I from G. The new instance is (G \v,k).
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Lemma 4.16. Reduction Rule 4.7 is safe.

Proof. In one direction, it is clear that if (G,k) has a solution, so does (G \ v,k). Now, let S⋆
be a solution to (G \v,k). If S⋆ is also a solution to (G,k), then the proof is complete. Therefore,
we next assume that S⋆ is not a solution to (G,k). Then, there exists an induced P3, denoted by
W , in G \ S⋆. Since S⋆ is a solution to (G \ v,k), v ∈ V (W ). Furthermore, since v ∈ V (C) ∩ I and
I ∩V (C) is a clique that is a module (by Lemma 4.15), for any vertex u ∈ I ∩V (C), the vertex set
(V (W ) \ {v}) ∪ {u} induces a P3 inG \v . As (V (W ) \ {v}) ∩S⋆ = ∅ and S⋆ is a solution to (G \v,k),
we deduce that (I ∩V (C)) \ {v} ⊆ S⋆.

In case |I ∩ V (C)| > k + 1, the conclusion that (I ∩ V (C)) \ {v} ⊆ S⋆ implies that |S⋆ | > k ,
which is a contradiction. Now, suppose that C is a hidden clique in D such that |I ∩ V (C)| >

|M ∩V (C)| + 1
(α−1)β k

2/3 + λk2/3. Let us denote S ′ = (S⋆ \ (I ∩V (C))) ∪ (M ∩V (C)) ∪ Û ∪ vis(C).
By Corollary 4.1 and since C is a hidden clique in D, we have that |S ′ | ≤ |S⋆ | − |I ∩V (C)| + |M ∩
V (C)| + 1

(α−1)β k
2/3 + λk2/3 ≤ |S⋆ | ≤ k . Moreover, by Lemma 4.11, the graph G \ S ′ consists of an

isolated clique on the vertex setV (C) \ S ′ (for a detail argument see the proof of Lemma 4.12) and a
subgraph of (G \v) \ S⋆. Therefore, as (G \v) \ S⋆ does not contain any induced P3, so doesG \ S ′.
This implies that S ′ is a solution to (G,k), and therefore (G,k) is a Yes-instance. □

Finally, after the exhaustive application of Reduction Rule 4.7, we can bound the size of I .

Lemma 4.17. After the exhaustive application of Reduction Rule 4.7, |I | ≤ 6( 1
λη + α + β +

1
(α−1)β +

λ)k1
2
3 .

Proof. First, note that after the exhaustive application of Reduction Rule 4.7, every visible
clique C ∈ D satisfies |V (C) ∩ I | ≤ k + 1 and every hidden clique C ∈ D satisfies |V (C) ∩ I | ≤
|M ∩V (C)| + 1

(α−1)β k
2/3 + λk2/3. Recalling that the number of visible cliques is upper bounded by

3
ληk

2/3, we have that the total number of vertices in I that belong to visible cliques in D is upper
bounded by 3

ληk
2/3 · (k + 1). Now, recalling that |C | ≤ 6k , we also have that the total number of

vertices in I that belong to hidden cliques inD is upper bounded by |M |+6( 1
(α−1)β +λ)k

1 2
3 . By Lemma

4.5, |M | ≤ 6(α + β)k1 2
3 . Thus, 3

ληk
2/3(k + 1)+ |M |+ 6( 1

(α−1)β +λ)k
1 2
3 ≤ 6( 1

λη +α + β +
1

(α−1)β +λ)k
1 2
3 ,

which completes the proof. □

4.8 Proof of Theorem 1
We are finally ready to present the proof of Theorem 1.

Proof of Theorem 1. Let (G,k) be an instance of CVD. Our kernelization algorithm simply
applies (exhaustively) Reduction Rules 4.1 to 4.7. The output is the instance obtained once none of
these rules is applicable. Let us observe that each rule among Reduction Rules 4.1 to 4.16 can be
applied in polynomial time, it strictly decreases the size of G and it does not increase k . Thus, our
kernelization algorithm runs in polynomial time.
For the sake of clarity, let us now abuse notation and denote the outputted instance by (G,k).

Let us observe that V (G) consists of the following vertices.
• Vertices in S , whose number is at most 3k .
• Vertices in bad cliques, whose number is at most 9(γ + δ (α + β) + 1

λη )k
1 2
3 = O(k1

2
3 ) (by

Lemma 4.9).
• Vertices in good cliques that are not isolated in B′, whose number is at most ( 1

(α−1)β k
2/3 +

1)|S | = O(k1 2
3 ) (due to Reduction Rule 4.6).
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• Vertices in the set I , whose number is at most 6( 1
λη + α + β + 1

(α−1)β + λ)k
1 2
3 = O(k1

2
3 ) (by

Lemma 4.17).
Thus, the total number of vertices is indeed O(k1 2

3 ). This completes the proof. □

5 FEEDBACK VERTEX SET IN TOURNAMENTS
In this section, we prove the following theorem.

Theorem 2. FVST admits a kernel with O(k3/2) vertices.

To prove Theorem 2, we will also use the following folklore result.

Proposition 5.1. Let T be a tournament. Then, the following conditions hold.
(1) T has a directed cycle if and only if T has a directed triangle.
(2) If T is acyclic then it has a unique topological ordering. That is, there exists a unique ordering ≺

of the vertices of T such that for every directed arc uv , we have u ≺ v (that is, u appears before
v in the ordering ≺).

Let (T ,k) be an instance of FVST. By Proposition 5.1, to find a set S such that T \ S is a directed
acyclic graph, it is sufficient to find a set that intersects all the triangles of T . This immediately
yields a simple polynomial-time 3-approximation algorithm for FVST. Indeed, start by greedily
finding a maximal collection, say S, of vertex-disjoint triangles in T and output V (S). We call this
algorithm with T as input, and obtain a 3-approximate solution S . If |S | > 3k , then we conclude
that (T ,k) is a No-instance. Hence, we assume that |S | ≤ 3k . We call the vertex set S such that
G \ S does not have any directed cycle as feedback vertex set. Let X = T \ S . Note that since S is a
feedback vertex set, X is a transitive tournament. Let (T ,h) be an instance of FVST. We say that
a feedback vertex set of of size at most h of T is a solution to the instance (T ,h). For the sake of
clarity of the analysis, we omit floor/ceiling signs and remainders whenever they are not crucial.

We have the following simple rule, whose safeness can be easily observed.

Reduction Rule 5.1. If there exists s ∈ S such that there are k + 1 triangles intersecting pairwise
(only) at s , then remove s from T . The new instance is (T \ {s},k − 1).

We apply Reduction Rule 5.1 exhaustively. Note that each application can be performed in
polynomial time, as for any vertex s ∈ S , we can check whether that exist k+1 triangles intersecting
pairwise (only) at s as follows: we construct a bipartite graph where one side of the bipartition is
the set A of in-neighbors of s , the other side of the bipartition is the set B of out-neighbors of s ,
and there exists an edge between a ∈ A and b ∈ B if and only if a is an out-neighbor of b; then,
there exist k + 1 triangles intersecting pairwise (only) at s if and only if the size of a maximum
matching in this bipartite graph is at least k + 1 (which can be checked in polynomial time). Thus,
from now onwards, we assume that Reduction Rule 5.1 is no longer applicable. Throughout this
section, we work with the unique ordering ≺ of the vertices of X . For example, whenever we will
use a phrase such as the vertices are consecutive in X , we mean that the vertices occur consecutively
with respect to the ordering ≺. Similarly, we define the notion of the smallest and the largest vertex
in X according to the ordering ≺.

5.1 Exploring the Vertex Cover Structure
Let us now define a notion of vertex cover for a set of arcs of T . Formally, for a subset of arcs
A ⊆ E(T ), a subset O ⊆ V (T ) is called a vertex cover for A if for every arc uv ∈ A, either u ∈ O or
v ∈ O (or both). An arc xy of T is called strong if (i) at least one vertex among x and y belongs to S ,
and (ii) there are at least k + 2 vertices z ∈ V (T ) such that xyz is a triangle. Let F be the set of all
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the strong arcs of T , which can be easily found in polynomial time. We start our analysis with the
following simple observation regarding the set F .

Observation 5.1. If O is a solution to (T ,k + 1), then O is a vertex cover of F .

The proof is simple: ifO does not hit xy ∈ F , thenO contains all z ∈ V (T ) such that xyz is a triangle,
i.e. |O | ≥ k + 2, which is a contradiction.

Recall that throughout our kernelization algorithm, we work with the unique topological ordering
≺ of X . Accordingly, we have that if xx ′ is an arc in E(X ), then x ≺ x ′. Furthermore, we need the
following notion of distance.

Definition 5.1. Let x ,x ′ ∈ X be two vertices such that x ≺ x ′, and let d − 1 be the number of
vertices y such that x ≺ y ≺ x ′. Then, the distance between x and x ′ is d . Accordingly, x ′ − x := d
and x − x ′ := −d .

In addition, we need the following definition which concerns the relations between the vertices
in S and the vertices in X .

Definition 5.2. For s ∈ S and x ∈ V (X ), define f −s (x) =
��{y ∈ V (X ) : y ⪯ x , sy ∈ E(T )}

��, and
f +s (x) =

��{y ∈ V (X ) : y ≻ x , ys ∈ E(T )}
��.

Intuitively, the functions f −s (x) and f +s (x) measure how many arcs would have been in the
“wrong direction" (with respect to the ordering ≺) if we inserted s into the position immediately
after x in X . First, for every s ∈ S we would like to find xs ∈ X such that f −s (xs ) and f +s (xs ) are
almost equal.

Lemma 5.1. For each s ∈ S , there exists xs ∈ V (X ) such that 0 ≤ f −s (xs ) − f +s (xs ) ≤ 1.

Proof. Let xm be the smallest vertex in V (X ), and xM be the largest vertex in V (X ). Fix some
s ∈ S . In what follows, we omit the subscript s . We have the following two inequalities:
• f −(xM ) − f +(xM ) ≥ 0 (since f +(xM ) = 0), and
• f −(xm) − f +(xm) ≤ 1 (since f −(xm) ≤ 1).

Let x ,x ′ ∈ V (X ) where x ′ = x + 1. Then, f −(x ′) − f +(x ′) = f −(x) − f +(x) + 1. That is, the
function f −(x) − f +(x) increases by 1 whenever x increases by 1. Indeed, observe that if sx ′ ∈ E(T ),
then f −(x ′) = f −(x) + 1 and f +(x ′) = f +(x). Otherwise, x ′s ∈ E(T ), and so f −(x ′) = f −(x) and
f +(x ′) = f +(x) − 1. Thus, the two inequalities above, and the fact that the function f −(x) − f +(x)
increases by 1 whenever x increases by 1, together imply that there exists xs ∈ V (X ) such that
0 ≤ f −(xs ) − f +(xs ) ≤ 1. □

For the sake of clarity, we extract the implication of Lemma 5.1 to the following notation.

Definition 5.3. For any s ∈ S , define φ(s) as the smallest vertex xs ∈ V (X ) satisfying the
inequalities in Lemma 5.1.

We now show that given Reduction Rule 5.1, neither f −s (φ(s)) nor f +s (φ(s)) can be too “large”.
Indeed, if there existed s ∈ S such that f −s (φ(s)) ≥ k + 2, then f +s (φ(s)) ≥ k + 1, and we could
have formed k + 1 triangles, each consisting of s , a vertex from {x ∈ V (X ) : x ⪯ φ(s), sx ∈ E(T )},
and a vertex from {y ∈ V (X ) : y ≻ φ(s), ys ∈ E(T )}. In this case, Reduction Rule 5.1 is applicable.
However, as we assumed that Reduction Rule 5.1 is no longer applicable, we have that for all s ∈ S ,
f −s (φ(s)), f

+
s (φ(s)) ≤ k + 1. By using this assumption, we have useful certificates for strong arcs as

follows.

Lemma 5.2. Let x ∈ X , and s, s ′ ∈ S . The following statements are true.
(1) If sx ∈ E(T ) and φ(s) − x ≥ 2k + 3, then sx is strong.
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(2) If xs ∈ E(T ) and x − φ(s) ≥ 2k + 3, then xs is strong.
(3) If s ′s ∈ E(T ) and φ(s ′) − φ(s) ≥ 3k + 5, then s ′s is strong.

Proof. We first prove 1 . As φ(s) − x ≥ 2k + 3, there are at least 2k + 2 vertices between x

and φ(s). Since f −s (φ(s)) ≤ k + 1, we have
��{y : x ≺ y ⪯ φ(s), sy ∈ E(T )}

�� ≤ k + 1. Hence, the set
R = {y : x ≺ y ≺ φ(s),ys ∈ E(T )} has at least k + 2 vertices. Note that sxy is a triangle for each
y ∈ R since sx ∈ E(T ). This shows that sx is strong. The proof of 2 is similar.

To prove 3 , we note that f +s (φ(s)) ≤ k + 1 and f −s ′ (φ(s
′)) ≤ k + 1. That is,

��{x : φ(s) ≺ x ≺

φ(s ′), s ′x ∈ E(T )}
�� ≤ k + 1, and

��{x : φ(s) ≺ x ≺ φ(s ′), xs ∈ E(T )}
�� ≤ k + 1. Since there are at least

3k+4 vertices betweenφ(s) andφ(s ′), this implies that
��{x : φ(s) ≺ x ≺ φ(s ′), sx ,xs ′ ∈ E(T )}

�� ≥ k+2,
i.e. s ′s is strong. □

To proceed, we also need to introduce two terms concerning triangles.

Definition 5.4. Let x1x2x3 be a triangle of T , and A = {x1,x2,x3}. The span of x1x2x3 is the
maximum distance between any two vertices in (A \ S) ∪ φ(A ∩ S). Moreover, the triangle is called
local if none of its arcs belongs to F .

In the following lemma, we will show that a local triangle is indeed local in the sense that it
must have a “short” span.

Lemma 5.3. Let x1x2x3 be a local triangle with at least one vertex from X . Then, its span is at most
6k + 8.

Proof. For 1 ≤ i ≤ 3, define

φ ′(xi ) =

{
xi , if xi ∈ V (X ), and
φ(xi ) otherwise.

If the claim is false, then

max{|φ ′(x1) − φ ′(x2)|, |φ ′(x2) − φ ′(x3)|, |φ ′(x3) − φ ′(x1)|} ≥ 6k + 9.

By symmetry, we may assume that |φ ′(x1) − φ ′(x2)| ≥ 6k + 9. We first claim that (⋆) there is an
index i ∈ [3] such that φ ′(xi ) − φ ′(xi+1) ≥ 3k + 5 (where the calculation i + 1 is modulo 3). Indeed,
if φ ′(x1) −φ ′(x2) ≥ 6k + 9, then (⋆) is true. Therefore, next suppose that φ ′(x2) −φ ′(x1) ≥ 6k + 9. If
φ ′(x3) ≻ φ ′(x2), then φ ′(x3)−φ ′(x1) > 6k+9, and then (⋆) is true. Moreover, if φ ′(x3) ≺ φ ′(x1), then
φ ′(x2) −φ

′(x3) > 6k + 9, and then (⋆) is true. Hence, we next suppose that φ ′(x1) ≺ φ ′(x3) ≺ φ ′(x2).
Then, asφ ′(x3)−φ ′(x1) > 6k+9, we have that eitherφ ′(x3)−φ ′(x1) ≥ 3k+5 orφ ′(x2)−φ ′(x3) ≥ 3k+5,
so (⋆) is true. This proves (⋆).
Let i ∈ [3] be an index satisfying (⋆), that is, φ ′(xi ) − φ ′(xi+1) ≥ 3k + 5. If xi ,xi+1 ∈ V (X ), then

since xixi+1 ∈ E(T ), we have that xi ≺ xi+1, which contradicts that φ ′(xi ) − φ ′(xi+1) ≥ 3k + 5 is
positive. Thus, at least one vertex among xi and xi+1 is in S . However, then Lemma 5.2 implies that
xixi+1 is a strong arc, which contradicts the fact that x1x2x3 is a local triangle. □

5.2 Applying the Double Expansion Lemma
In what follows, we denote α = 3, β = 20, γ = 7, µ = 3, δ = 2, and ℓ = 3 so that β − 13 ≥ µδ (used
in Observation 5.3), γ µ > 6ℓ (used in Observation 5.5), 1

ℓ +
1
δ < 1 and ℓ − 1 ≥ δ (used in the proof

of Lemma 5.4).
In order to proceed with our analysis, we need to classify “intervals” of vertices from X as either

good or bad, depending on how many vertices from S are mapped into these intervals. Formally,
we have the following definition.
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Definition 5.5. A set Y ⊆ V (X ) is an interval if it contains all the vertices in X that lie between
the largest and smallest elements in Y (with respect to the ordering ≺ induced by X ).6 We refer to |Y |
as the length of Y . Moreover, Y is good if the size of SY = {s ∈ S | φ(s) ∈ Y } is at most α

√
k , and

otherwise it is bad.

Note that for two interval Y ,Y ′ ⊆ V (X ), if Y ∩ Y ′ = ∅, then SY ∩ SY ′ = ∅ as well.
We partition V (X ) into disjoint intervals, each of length βk . That is, we follow the vertices of

V (X ) from left to right in the ordering ≺, and partition them into disjoint intervals Y⋆
1 , . . . ,Y

⋆
p such

that each Y⋆
j , 1 ≤ j ≤ p, is of length βk . Note that among Y⋆

1 , . . . ,Y
⋆
p , at most 3k

α
√
k
= 3
√
k

α intervals

are bad; otherwise, |S | > ( 3
√
k

α + 1) · α
√
k > 3k , which contradicts our assumption that |S | ≤ 3k .

Thus, we have the following upper bound on the number of bad intervals among Y⋆
1 , . . . ,Y

⋆
p .

Observation 5.2. There are at most 3
√
k

α bad intervals among Y⋆
1 , . . . ,Y

⋆
p .

Thus, if p ≥
( 3
α + β

)√
k , there are at least p − 3

√
k

α ≥ β
√
k good intervals. Consider the first γ

√
k

good intervals among Y⋆
1 , . . . ,Y

⋆
p , and rename them as Y1, . . . ,Yγ√k according to the order of the

appearance (by ≺ of their vertices). The fact that the relative order of the intervals is preserved
will be used later. For all i ∈ [γ

√
k], denote Si = SYi (recall that SYi = {s ∈ S | φ(s) ∈ Yi }), and let Y ′i

be the sub-interval of Yi excluding the 6k + 9 largest and the 6k + 9 smallest vertices of Yi . The
purpose of this exclusion is to ensure that the vertex set of any local triangle hit by Y ′i (that is, the
triangle contains at least one vertex of Y ′i ) is completely contained in Yi ∪ Si (see Lemma 5.6).

Observation 5.3. For all i ∈ [γ
√
k], the length of Y ′i is at least βk − 2(6k + 9) > (β − 13)k ≥ µδk .

We now ready apply the Double Expansion Lemma. One naive idea is to construct a bipartite
graph G with vertex set (

⋃
Y ′i , S) and every Hi with vertex set (Y ′i , Si ). However, this attempt does

not work out mainly because we have too little information about the edge set of Hi to exploit.
To overcome this, we chop down every Y ′i into sub-intervals Yi, j ’s, and we merge each Yi, j into a
single “representative" vertex ai, j , and we put an edge between ai, j and s in Hi if the arcs between
s and Yi, j have different orientations. Precisely, the construction of G and Hi is as follows.

We first partition each Y ′i into µ
√
k sub-intervals, Yi,1, . . . ,Yi,µ√k , each of length δ

√
k such

that x ≺ x ′ for every x ∈ Yi, j ,x
′ ∈ Yi, j′ with j < j ′. We now construct the bipartite graphs

G,H1, . . . ,Hγ
√
k . To this end, for all i, 1 ≤ i ≤ γ

√
k , defineAi = {ai,1, . . . ,ai,µ

√
k }, andA =

⋃γ
√
k

i=1 Ai .
Then, |A| = γ

√
k · µ
√
k = γ µk . It is useful to think of ai, j as the representative of the sub-interval

Yi, j for every i, j. Let us now define the bipartite graphs (see Figure 2 for an illustration).
(1) G: The (undirected) bipartite graph with vertex set (A, S) and edge set E(G) = {ai, js : ∃x ∈

Y ′i such that {xs, sx} ∩ F , ∅}. This is to take care of strong arcs.
(2) Hi : The (undirected) bipartite graph with vertex set (Ai , Si ) and edge set E(Hi ) = {ai, js :

∃x ,x ′ such that sx ,xs ′ ∈ E(T )}. In other words, ai, js < E(Hi ) if and only if either sx ∈ E(T )
for every x ∈ Yi, j or xs ∈ E(T ) for every x ∈ Yi, j . This is to take care of local triangles.

Before applying the Double Expansion Lemma, we mention here an observation for later use,
which is the main purpose of our “merging” vertices into representative.

Observation 5.4. If sai, j , sai, j′ ∈ E(Hi ) for some j < j ′, then there is a triangle sxx ′ with
x ∈ Yi, j ,x

′ ∈ Yi, j′ .

6That is, the elements of Y are consecutive with respect to ≺.
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F

Yi,1 Yi,2 Yi,3

Y ′i−1 Y ′i+1

S

G

ai,1 ai,2 ai,3

Ai−1 Ai+1

S

Yi,1 Yi,2 Yi,3

Y ′i−1 Y ′i+1

Si

Si+1Si−1

Hi

ai,1 ai,2 ai,3

Ai−1 Ai+1

Si

Si+1Si−1

Fig. 2. Construction ofG from F (upper figure) and construction of Hi from T [Si ∪ Y
′
i ] (lower figure). Not all

arcs of T [Si ∪ Y ′i ] are shown; for arcs not shown in T [Si ∪ Y ′i ], their corresponding (possibly) edges in Hi are
dotted.

The proof is trivial: by definition of E(Hi ), there is x ∈ Yi, j such that sx ∈ E(T ), and there is
x ′ ∈ Yi, j′ such that x ′s ∈ E(T ). Since i < j ′, x ≺ x ′, and so xx ′ ∈ E(T ). Thus, sxx ′ is a triangle.
By applying the Double Expansion Lemma 3.3, in polynomial time, we find Â ⊆ A, Ŝ ⊆ S, as well
as Âi ⊆ Ai and Ŝi ⊆ Si for all 1 ≤ i ≤ γ

√
k , such that

• Â =
⋃γ
√
k

i=1 Âi ;
• |A \ Â| ≤ 2ℓ |S |;
• Ŝ has an ℓ-expansion into Â in G, and NG (Â) ⊆ NG (Ŝ);
• Ŝi has an ℓ-expansion into Âi in Hi , and NHi (Âi ) ⊆ NHi (Ŝi ).

Let Ŷ =
⋃

ai, j ∈Â
Yi, j and Ŷi =

⋃
ai, j ∈Âi

Yi, j . Since Â =
⋃γ
√
k

i=1 Âi , we have Ŷ =
⋃γ
√
k

i=1 Ŷi .

Observation 5.5. Ŷ is nonempty.

Proof. Recall that |S | ≤ 3k and |A| = γ µk . Since |A \ Â| ≤ 2ℓ |S |, we have |Â| ≥ |A| − 2ℓ |S | ≥
γ µk − 2ℓ · 3k > 0. Since Â , ∅, there exists ai, j ∈ Â, and so Ŷ ⊇ Yi j , ∅. □

5.3 Using Expansion to Detect an Irrelevant Vertex
Let O be a solution to (T ,k + 1), and define

O ′ =
(
O \ Ŷ

)
∪
©«Ŝ ∪

γ
√
k⋃

i=1
S ′i
ª®¬ , where

S ′i =

{
Ŝi if |O ∩ Ŷi | < δ

√
k, and

Si otherwise.

In the rest of this subsection, we show that if O ∩ Ŷ , ∅, then |O ′ | < |O | and O ′ is a solution to
(T ,k + 1).

Lemma 5.4. If O ∩ Ŷ , ∅, then |O ′ | < |O |.
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Proof. Observe that, to obtain O ′ from O , we remove O ∩ Ŷ , and add Ŝ \O and
⋃γ
√
k

i=1
(
S ′i \O

)
.

We will prove that
|O ∩ Ŷ |

ℓ
≥ |Ŝ \O |, and (1)

|O ∩ Ŷ |

δ
≥

��� γ√k⋃
i=1

(
S ′i \O

) ���. (2)

Combining (1) and (2) with 1
ℓ +

1
δ < 1 and the hypothesis of the lemma that |O ∩ Ŷ | > 0, we have

|O ∩ Ŷ | > |Ŝ \O | +
��� γ√k⋃
i=1

(
Ŝi \O

) ���,
which implies that |O ′ | < |O |, proving the lemma.

To prove (1), recall that Ŝ has an ℓ-expansion into Â in G, so
��NG (Ŝ \O) ∩ Â

�� ≥ ℓ��Ŝ \O ��. Thus, it
suffices to show that |O∩Ŷ

�� ≥ ��NG (Ŝ\O)∩Â
��. Suppose for a contradiction that ��O∩Ŷ �� < ��NG (Ŝ\O)∩Â

��.
Then ∑

ai, j ∈NG (Ŝ\O )∩Â

��O ∩ Yi, j �� ≤ ∑
ai, j ∈Â

��O ∩ Yi, j �� = ��O ∩ Ŷ �� < ��NG (Ŝ \O) ∩ Â
��. (3)

If |O ∩ Yi, j | ≥ 1 for every ai, j ∈ NG (Ŝ \O) ∩ Â, then
∑

ai, j ∈NG (Ŝ\O )∩Â

��O ∩ Yi, j �� ≥ ��NG (Ŝ \O) ∩ Â
��,

contradicting (3). Thus we conclude that there exists ai, j ∈ NG (Ŝ \O) ∩ Â such that O ∩ Yi, j = ∅.
Let s ∈ Ŝ \O such that sai, j ∈ E(G) (such a vertex s exists, since ai, j ∈ NG (Ŝ \O)). By the definition
of E(G), there exists x ∈ Yi, j such that sx ∈ F . Note that x < O , since O ∩ Yi, j = ∅, and s < O , since
s ∈ Ŝ \O . As O is a solution to (T ,k + 1), and because of Observation 5.1, O must be a vertex cover
of F . But x , s < O , which is a contradiction. From this we conclude that (1) holds.

To prove (2), note that

|O ∩ Ŷ | =

γ
√
k∑

i=1

��O ∩ Ŷi �� and γ
√
k∑

i=1

��S ′i \O �� = ��� γ√k⋃
i=1

(
S ′i \O

) ���.
Thus, it suffices to show that

��O ∩ Ŷi �� ≥ δ
��S ′i \O �� for every i . If S ′i = Si , then |O ∩ Ŷi | ≥ δ

√
k by the

definition of S ′. Since Yi is a good interval, |Si | ≤
√
k . Hence, |O ∩ Ŷi | ≥ δ

√
k ≥ δ |Si | ≥ δ |S ′i \O |.

Now suppose S ′i = Ŝi . Since Ŝi has an ℓ-expansion into Âi inHi , we have
��NHi (Ŝi \O)∩Âi

�� ≥ ℓ��Ŝi \O ��.
Call ai, j ∈ NHi (Ŝi \O) ∩ Âi pure, if Yi, j ∩O = ∅. Observe that if s ∈ Ŝi \O is adjacent to two pure
vertices in Hi , say ai, j and ai, j′ with j < j ′, then by the definition of E(Hi ), then by Observation 5.4
there is a triangle sxx ′ with x ∈ Yi, j and x ′ ∈ Yi, j′ , and so sxx ′ is not hit by O by definition of
purity, which contradicts the assumption thatO is a feedback vertex set forT . Thus, each s ∈ Ŝi \O
is adjacent to at most one pure vertex, i.e. there are at most

��Ŝi \O �� pure vertices. Thus, the number
of non-pure vertices is at least (recall that ℓ − 1 ≥ δ )��NHi (Ŝi \O) ∩ Â

�� − ��Ŝi \O �� ≥ (ℓ − 1)|Ŝi \O �� ≥ δ |Ŝi \O
��.

For each non-pure ai, j ∈ NHi (Ŝi \O) ∩ Âi , we have |Yi, j ∩O | ≥ 1, by the definition of purity.
Recall that |O ∩ Ŷi | =

∑
ai, j ∈Âi

|O ∩ Yi, j |. Thus, |O ∩ Ŷi | is at least the number of non-pure vertices,
i.e. |O ∩ Ŷi | ≥ δ |Ŝi \O

��. As S ′i = Ŝi , we have |O ∩ Ŷi | ≥ δ |S ′i \O
��, and this proves (2). □

It remains to show that O ′ is a solution to (T ,k + 1). To do so, we will prove that O ′ is a vertex
cover of F and O ′ hits all local triangles.
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Lemma 5.5. O ′ is a vertex cover of F .

Proof. By Observation 5.1, O is a vertex cover of F , so every ss ′ ∈ F with s, s ′ ∈ S is hit by O ,
and hence ss ′ is hit byO ′, sinceO ∩ S ⊆ O ′ ∩ S . Thus, we only need to show that every xs ∈ F with
x ∈ V (X ) and s ∈ S is hit by O ′. Suppose for contradiction that xs ∈ F is not hit by O ′. Then either
x ∈ O \O ′ or s ∈ O \O ′. Note that since O ∩ S ⊆ O ′ ∩ S , s < O \O ′. So x ∈ O \O ′, which implies
that x ∈ O ∩ Ŷ . Let x ∈ Yi, j . Then ai, j ∈ Â, and since xs ∈ F , ai, js ∈ E(G). Recall (from the list
properties obtained after applying the Double Expansion Lemma) that NG (Â) ⊆ Ŝ , which implies
that s ∈ Ŝ . However, Ŝ ⊆ O ′ by the definition of O ′. This implies that s ∈ O ′, a contradiction to the
assumption that xs is not hit by O ′. This concludes the proof of the claim. □

Recall that a triangle is local if it has no strong arcs.

Lemma 5.6. If xyz is a local triangle with x ∈ O ∩ Ŷi , then O ′ hits xyz.

Proof. Suppose, for a contradiction, that O ′ does not hit xyz. By Lemma 5.3, xyz has span at
most 6k + 8. Note that x ∈ Ŷi ⊆ Y ′i , while Y ′i is obtained from Yi by excluding 6k + 9k smallest
and 6k + 9k largest vertices, so ({x ,y, z} ∩ X ) ∪ φ({x ,y, z} ∩ S) is a subset of Yi . In other words,
x ,y, z ∈ Si ∪Yi . At least one of y, z belongs to S (otherwise, xyz is transitive), so at least one of y, z
belongs to Si . We consider two cases.
Case 1: y ∈ Si . If |O ∩ Ŷi | ≥ δ

√
k , then Si = S ′i ⊆ O ′, and so y ∈ O ′, a contradiction. We conclude

that |O ∩ Ŷi | < δ
√
k . If y ∈ Ŝi , then y ∈ O ′, a contradiction again. Hence y ∈ Si \ Ŝi . Let x ∈ Yi, j ,

then ai, j ∈ Âi . Recall that NHi (Âi ) ⊆ Ŝi , and so yai, j < E(Hi ). Thus, by definition of E(Hi ), we have
x ′y ∈ E(T ) for every x ′ ∈ Yi, j , since xy ∈ E(T ).

If z < O, then there is x ′ ∈ Yi, j such that x ′z ∈ E(T ). (4)

To prove (4), assume that z < O and zx ′ ∈ E(T ) for every x ′ ∈ Yi, j . This implies that x ′yz is a triangle
for every x ′ ∈ Yi, j . Since O ′ does not hit xyz, we have y < O ′, and so y < O (since O ∩ S ⊆ O ′ ∩ S).
However, O is a solution to (T ,k + 1), while y, z < O , so x ′ ∈ O for every x ′ ∈ Yi, j , i.e., Yi, j ⊆ O .
Since Yi, j ⊆ Ŷi , we have |O ∩ Ŷi | ≥ |Yi, j | = δ

√
k , a contradiction to the observation |O ∩ Ŷi | < δ

√
k

(made at the beginning of Case 1), which proves (4).
Note that z ∈ Si ∪ Yi . We now consider all possibilities of z.
• If z ∈ Ŝi , then clearly z ∈ O ′ since Ŝi ⊆ O ′, a contradiction.
• If z ∈ Si \ Ŝi , then recall that NHi (Âi ) ⊆ Ŝi , and so ai, jz < E(Hi ). Hence by definition of
E(Hi ), we have zx ′ ∈ E(T ) for every x ′ ∈ Yi, j (since zx ∈ E(T )). If z ∈ O , then z ∈ O ′ (since
O ∩ S ⊆ O ′ ∩ S), a contradiction. Then z < O , which contradicts (4). We conclude that z < Si ,
i.e. z ∈ Yi .
• If z ∈ Yi and z < O , since yz ∈ E(T ) while x ′y ∈ E(T ) for every x ′ ∈ Yi, j , we have z < Yi, j .
Since zx ∈ E(T ), we have z ≺ x , and so z ≺ x ′ for every x ′ ∈ Yi, j . In other words, zx ′ ∈ E(T )
for every x ′ ∈ Yi, j , a contradiction to (4).
• Otherwise, z ∈ Yi and z ∈ O . Then z ∈ Ŷ since z < O ′. Let z ∈ Yi, j′ , then ai, j′ ∈ Â. Observe
that j , j ′ since x ′y ∈ E(T ) for every x ′ ∈ Yi, j while zy < E(T ). Since y ∈ S \ Ŝ , and recall that
NHi (Âi ) ⊆ Ŝi , we have yai j′ < E(Hi ), and so yz ′ ∈ E(T ) for every z ′ ∈ Yi, j′ (since yz ∈ E(T )).
If there are x ′ ∈ Yi, j , z ′ ∈ Yi, j′ such that x ′, z ′ < O , then x ′yz ′ is not hit by O , a contradiction.
Then either Yi, j ⊆ O or Yi, j′ ⊆ O , so

|O ∩ Ŷi | ≥ |O ∩ (Yi, j ∪ Yi, j′)| ≥ min(|Yi, j |, |Yi, j′ |) = δ
√
k,

a contradiction to the observation |O ∩ Ŷi | < δ
√
k at the beginning of of Case 1.
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We conclude that in all cases, O ′ always hits xyz.
Case 2: z ∈ Si . The argument is similar as for Case 1. □

Using Lemmas 5.3 to 5.6, we derive the following result.

Lemma 5.7. O ′ is a solution to (T ,k + 1).

Proof. Suppose that O ′ is not a solution to (T ,k + 1). Then there is a triangle xyz which is not
hit by O ′. Note that O is a solution to (T ,k + 1), and O \O ′ ⊆ O ∩ Ŷ , so at least one vertex of xyz
belongs to ∩ hy, say x . Let x ∈ Ŷi , i.e., x ∈ O ∩ Ŷi . If one of the arcs of xyz belongs to F , then O ′

hits xyz, by Lemma 5.5, which is a contradiction. So, xyz is local, and O ′ hits xyz, by Lemma 5.6,
which again contradicts our assumption. □

From Lemmas 5.4 to 5.7, we now conclude that if O is a solution to (T ,k + 1), and O ∩ Ŷ , ∅,
then there is another solutionO ′ to (T ,k + 1) with |O ′ | ≤ |O | − 1. Therefore, we have the following
reduction rule to remove an irrelevant vertex.

Reduction Rule 5.2. Let x be an arbitrary vertex in Ŷ . Remove x from T . The new instance is
(T − {x},k).

Lemma 5.8. Reduction rule 5.2 is safe.

Proof. In one direction, it is clear that if S⋆ is a solution to (T ,k), then S⋆ is a solution to
(T \ {x},k). For the other direction, let S⋆ be a solution to (T \ {x},k). Then O = S⋆ ∪ {x} is a
solution to (T ,k + 1). Since x ∈ O ∩ Ŷ , we haveO ∩ Ŷ , ∅, and so there is a solutionO ′ to (T ,k + 1)
with |O ′ | ≤ |O | − 1 = (|S⋆ | + 1) − 1 ≤ k . Thus, O ′ is a solution to (T ,k). □

5.4 Proof of Theorem 2
We are finally ready to present the proof of Theorem 2.

Proof of Theorem 2. Let (T ,k) be an instance of FVST. Our kernelization algorithm simply
applies (exhaustively) Reduction Rules 5.1 and 5.2. The output is the instance obtained once none of
these rules is applicable. Let us observe that each of Reduction Rules 5.1 and 5.2 can be applied in
polynomial time, it strictly decreases the size ofG and it does not increase k . Thus, our kernelization
algorithm runs in polynomial time.
For the sake of clarity, let us now abuse notation and denote the outputted instance by (T ,k).

Let us observe that V (T ) consists of the following vertices.
• Vertices in S , whose number is at most 3k .
• Vertices of X , whose number is at most pβ

√
k = O(k3/2) since p ≤

( 3
α + β

)√
k .

Thus, the total number of vertices is indeed O(k3/2). This complete the proof. □

6 KERNEL FOR INDUCED P3-PACKING
In this section, we prove the following theorem.

Theorem 3. Induced P3-Packing admits a kernel with O(k1
2
3 ) vertices.

Our kernel for Induced P3-Packing is based on the kernel for CVD. In fact, several of the steps
of both the kernelization algorithms are almost the same, but the subtle differences between them
are crucial. Specifically, while in CVD we analyze properties that must be satisfied by all solutions,
in Induced P3-Packing we analyze properties such that there exists a solution that satisfies them
(if there exists a solution at all). As we progress with the description of our kernelization algorithm
for Induced P3-Packing, the deviations from the kernelization algorithm for CVD become more
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palpable; in particular, the later proofs of both algorithms are completely different (for example,
here we we do not even construct the bipartite graph B′ as we did in Section 4.6).

Let (G,k) be an instance of Induced P3-Packing.We start by greedily finding amaximal collection,
say S , of vertex-disjoint induced P3’s in G . Clearly, this greedy procedure can be run in polynomial
time. If |S | ≥ k , then we conclude that (G,k) is a Yes-instance. Thus, we next suppose that |S | < k .
Let S be the set of vertices that belong to the induced P3’s in S . Since |S | < k , we have that |S | ≤ 3k .
Notice that G \ S is a collection of cliques, which we denote by C .
In what follows, we denote α = 2, β = 1, γ = 43, µ = 26, δ = 3, λ = 1 and η = 1, so that
(1 − 1

δ )γ ≥ 6η (used in the proof of 6.11), δ−1δ µ − 14
(α−1)β > 3 (used in the proof of Lemma 6.13),

δ−1
δ γ ≥ 20

(α−1)β + λ (used in the proof of Lemma 6.13), µ2 ≥ 3 (used in the proof of Lemma 6.14), and
6

(α−1)β + λ +
1
δ γ ≤

γ
2 (used in the proof of Lemma 6.14).

6.1 Bounding the Number of Cliques
First, as in the case of CVD, we have the following simple rule, whose safeness is obvious.

Reduction Rule 6.1. If there existsC ∈ C such that no vertex inC has a neighbor in S , then remove
C from G. The new instance is (G \C,k).

Now, also as in the case of CVD, we define the bipartite graph B by setting one side of the
bipartition to be S and the other side to be C , such that there exists an edge between s ∈ S and
C ∈ C if and only if s is adjacent to at least one vertex in C . Note that by Reduction Rule 6.1, no
clique in C is an isolated vertex in B. We thus proceed by presenting the following rule (which is
slightly different than Reduction Rule 4.2), where we rely on the Expansion Lemma (Lemma 3.1). It
should be clear that the conditions required to apply the algorithm provided by this lemma are
satisfied.

Reduction Rule 6.2. If |C | ≥ 2|S |, then call the algorithm provided by Lemma 3.1 to compute sets
X ⊆ S and Y ⊆ C such that X has a 2-expansion into Y in B and NB (Y ) ⊆ X . The new instance is
(G \ (X ∪V (Y )),k − |X |). Here, V (Y ) =

⋃
C ∈Y V (C).

We now argue that this rule is safe.

Lemma 6.1. Reduction Rule 6.2 is safe.

Proof. For every vertex s ∈ X , let Cs and C ′s be the two clique assigned to s by the 2-expansion.
Notice that for all s ∈ X , there exists an induced P3 in G of the form us − s −vs , where us is any
neighbor of s in Cs (as s and Cs are neighbors in B, at least one such vertex exists), and vs is any
neighbor of s in C ′s (again, at least one such vertex exists). Let this special collection of induced
P3’s be denoted by X⋆, that is X⋆ = {us − s −vs : s ∈ X }. In one direction, it is clear that if S⋆ is a
solution to (G \ (X ∪V (Y ),k − |X |), then S⋆ ∪ X⋆ is a solution to (G,k). For the other direction,
let S⋆ be a solution to (G,k). LetW denote the set of every induced P3 in S⋆ that contains at least
one vertex from X . We denote S ′ = (S⋆ \W ) ∪ X⋆. Observe that since NB (Y ) ⊆ X , we have that
no induced P3 in S⋆ \W contains any vertex from V (Y ) ∪ X . Thus, it holds that S ′ is a collection
of induced P3’s in G. Since |W | ≤ |X |, we have that |S ′ | ≥ k . We conclude that S ′ is a solution
to (G,k), and as X⋆ ⊆ S ′, we have that S ′ \ X⋆ is a solution to (G \ (X ∪ V (Y ),k − |X |). Thus,
(G \ (X ∪V (Y ),k − |X |) is a Yes-instance. □

Due to Reduction Rule 6.2, from now on |C | ≤ 6k .
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6.2 The Specification of the Marking Procedure
We proceed by presenting a procedure calledMark. The specification of this procedure is similar to
one presented in Section 4.2. In particular, let us emphasize one subtle difference: now we mark an
additional set N , which will be a crucial component of latter rules and arguments.

Specification. The procedureMark first initializesM ⇐ ∅,T ⇐ S , and for all s ∈ S ,mark(s) ⇐ ∅.
At each stage i , i = 1, 2, . . . , 3k + 1,Mark executes the following process. For each s ∈ T , if there
exist C ∈ C and {u,v} ∈ E(C) such that {s,u} ∈ E(G) but {s,v} < E(G) and {u,v} ∩M = ∅, then
insert u,v intoM and {u,v} into mark(s), and otherwise remove s from T . The order in which the
process examines the vertices in T is immaterial given that it examines each vertex in T exactly
once. Moreover, if i = ⌈βk2/3⌉, then the process sets U to T if |T | ≤ ⌈αk2/3⌉ and to an arbitrarily
chosen subset ofT of size ⌈αk2/3⌉ otherwise, and it also sets N to be equal to

⋃
s ∈U mark(s). IfT or

M are updated in subsequent stages,U and N are not updated as well.
We say that Mark succeeded if |U | = ⌈αk2/3⌉, and otherwise we say that Mark failed. Moreover,

if there exists s ∈ S such that |mark(s)| ≥ 3k + 1, then we say thatMark was lucky. Let us begin
the analysis of Mark with the following simple rule.

Reduction Rule 6.3. If there exists s ∈ S such that |mark(s)| ≥ 3k + 1 (i.e.,Mark was lucky), then
remove s from G and decrement k by 1. The new instance is (G \ s,k − 1).

Lemma 6.2. Reduction Rule 6.3 is safe.

Proof. If there exists s ∈ S such that |mark(s)| ≥ 3k + 1, then there exist 3k + 1 induced P3’s
in the graph of the form s − ui −wi , i ∈ {1, . . . , 3k + 1}, that intersect only at s . That is, we have
a “flower” whose core is s and whose petals are {ui ,wi }. In one direction, let S⋆ be a solution to
(G \s,k −1). Note that |V (S⋆)| ≤ 3(k −1). Thus, the number of induced paths of the form s −ui −wi
that intersect V (S⋆) is also upper bounded by 3(k − 1). This implies that there exists an induced
path s −uj −w j that does not contain any vertex fromV (S⋆). Then, S⋆ ∪ {s −uj −w j } is a solution
to (G,k). For the other direction, let S⋆ be a solution to (G,k). Observe that there is at most one
induced P3 in S⋆ that contains the vertex s . Let S ′ be the set of induced P3’s obtained by deleting
the induced P3 in S⋆ that contains s (if it exists). Then, S ′ is a solution to (G \ s,k − 1). □

As in the case of CVD, the main purpose of Mark is to derive information on (G,k) when it is
not coincidentally lucky. However, the information we require here is different than the one we
require in the case of CVD. Not only do we analyze one solution rather than all solutions, we also
need to state explicit relations betweenU and the set of vertices marked byU (that is, the set N ).

Lemma 6.3. For any induced P3-packing S′ of size at most k there exists an induced P3-packing S⋆

of size at least |S′ | such that the following conditions hold.
• Let P ′ be the set of induced P3’s in S′ that do not contain any vertex fromU . Then, P ′ ⊆ S⋆.
• There exists a set A ⊆ U of size at most 3

β k
1/3 such that for all s ∈ U \ A, there exist P ∈ S⋆

and u,v ∈ N such that P = s − u −v .

Proof. Let S′ be an induced P3-packing of G of size at most k . Observe that for all s ∈ S and
{u,v}, {u ′,v ′} ∈ mark(s), it holds that {u,v}∩{u ′,v ′} = ∅. In addition, observe that for all s, s ′ ∈ S ,
{u,v} ∈ mark(s) and {u ′,v ′} ∈ mark(s ′), it holds that {u,v} ∩ {u ′,v ′} = ∅. As |V (S′)| ≤ 3k and
for all s ∈ U , |mark(s)| ≥ ⌈βk2/3⌉, we derive that there exist at most 3k/⌈βk2/3⌉ ≤ 3

β k
1/3 vertices

s ∈ U such that for all {u,v} ∈ mark(s), V (S′) ∩ {u,v} , ∅. Let A denote the set of these vertices
in U . Moreover, let P⋆ be the set of induced P3’s in S′ that do not contain any vertex from U \A.
Notice that P ′ ⊆ P⋆. Moreover, notice that |S′ \ P⋆ | ≤ |U \ A|. Now, define P̂ as the P3-packing
obtained by selecting, for every vertex s ∈ U \A, an induced P3 that consists of s and an arbitrarily
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chosen edge {u,v} ∈ mark(s) such that V (S′) ∩ {u,v} , ∅ (there exists at least one such edge).
Then, S⋆ = P⋆ ∪ P̂ is an induced P3-packing. As |S′ \ P⋆ | ≤ |U \A|, we derive that |S⋆ | ≥ |S′ |.
Moreover, it is clear from its construction that S⋆ satisfied the two properties in the statement of
the lemma. This completes the proof. □

We also need to derive an upper bound on the number of marked vertices, namely |M |.

Lemma 6.4. If Mark was neither lucky nor successful, then |M | ≤ 6(α + β)k1 2
3 .

Proof. Since Mark was unlucky, |mark(s)| ≤ 3k for all s ∈ S . Thus, |M | ≤ 2|U |3k + 2|S \
U |(⌈βk2/3⌉ − 1). SinceMark failed, we further have that |M | ≤ 6(⌈αk2/3⌉ − 1)k + 6k(⌈βk2/3⌉ − 1) ≤
6(α + β)k1 2

3 . □

6.3 Multiple Calls to the Marking Procedure
We employ Mark exactly as in the case of CVD, with the exception that now we also compute
a set M̂ . For the sake of readability, let us repeat this short description (with the computation of
M̂). We initialize Û = ∅, M̂ = ∅ and Ĝ = G. Then, we callMark with (Ĝ,k) as input. If Mark was
lucky, then we execute Reduction Rule 6.3 and restart the entire process (including the initialization
phase). Else, if Mark succeeded, then for the setsU and N computed by the current call, we update
Û ⇐ Û ∪U , M̂ ⇐ M̂ ∪N and Ĝ ⇐ Ĝ \U , and then we proceed to execute another call. Otherwise,
Mark was unlucky and also failed, and we letM denote the same setM ⊆ V (G) \ S as computed by
the current call to Mark, after which we terminate the process. (It may hold thatM ∩ M̂ , ∅.) Note
that after each call toMark, either Reduction Rule 6.3 is executed or the size of Û increases, and
therefore it is clear that the process eventually terminates. We denote L = S \ Û .

By relying on Lemma 6.3, we have the following lemma.

Lemma 6.5. Let i be the number of calls to Mark that succeeded but were unlucky. If (G,k) is a
Yes-instance, then there exists a solution S⋆ to (G,k) and a set A ⊆ Û of size at most i · 3β k

1/3 such

that for all s ∈ Û \A, there exists P ∈ S⋆ and u,v ∈ M̂ such that P = s − u −v .

Proof. Suppose that (G,k) is a Yes-instance, and let S ′ be a solution to (G,k) that minimizes the
number of vertices s ∈ Û for which there do not exist P ∈ S′ andu,v ∈ M̂ such that P = s−u−v . Let
A denote the set of these vertices in Û . Suppose, by way of contradiction, that |A| > i · 3β k

1/3. Then,
by the pigeonhole principle, there exists an iteration j ∈ {1, 2 . . . , i} such that |A ∩Uj | >

3
β k

1/3,
whereUj denotes the setU computed in iteration j. By Lemma 6.3, there exists a solution S⋆ to
(G,k) such that the following conditions hold.
• Let P ′ be the set of induced P3’s in S′ that do not contain any vertex fromUj . Then, P ′ ⊆ S⋆.
• There exists a set A⋆ ⊆ Uj of size at most 3

β k
1/3 such that for all s ∈ Uj \ A

⋆, there exist
P ∈ S⋆ and u,v ∈ M̂ such that P = s − u −v . In fact, u,v ∈ N , the set computed in round j.

By the first condition, we deduce that for every P ∈ S′ such that P = s − u −v for some s ∈ Û \Uj

and u,v ∈ M̂ , it also holds that P ∈ S⋆. Furthermore, from the second condition we derive that
S⋆ has fewer vertices s ∈ Uj than S′ for which there do not exist P ∈ S′ and u,v ∈ M̂ such that
P = s −u −v . However, we thus conclude that S⋆ has fewer vertices s ∈ Û than S′ for which there
do not exist P ∈ S′ and u,v ∈ M̂ such that P = s − u −v . Since this contradicts the choice of S′,
we have that |A| < i · 3β k

1/3. This completes the proof. □

Before we proceed to proceed to present a consequence of Lemma 6.5, we need to present a new
rule that is also necessary to upper bound |M̂ |.
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Reduction Rule 6.4. Let i be the number of calls to Mark that succeeded but were unlucky. If
i ≥ 1

α−1k
1/3, then return a trivial Yes-instance.

Lemma 6.6. Reduction Rule 6.4 is safe.

Proof. Let us consider the following simple procedure. Initialize S0 = ∅. Now, for j = 1, 2, . . . , i ,
perform the following computation: Let S j be the induced P3-packing whose existence is guaranteed
by Lemma 6.3 when applied with S′ = S j−1. (We implicitly assume that induced P3’s that are not of
the form s − u −v , for s ∈ Û and u,v ∈ M̂ , are discarded.) By the two properties of S⋆ as specified
by Lemma 6.3, we have that for all j ∈ {1, 2, . . . , i}, |S j | ≥ |S j−1 | + |Uj | −

3
β k

1/3, where Uj is the
set U computed in iteration j. Since for all j ∈ {1, 2, . . . , i}, |Uj | = ⌈αk

2/3⌉, we overall have that
|Si | ≥ i · (αk2/3 − 3

β k
1/3). Observe that k

αk2/3− 3
β k

1/3 =
k2/3

αk1/3− 3
β
≤ 1

α−1k
1/3. Thus, if i ≥ 1

α−1k
1/3, then

|Si | ≥ k , in which case Si is a solution to (G,k). This implies that Reduction Rule 6.4 is indeed
safe. □

For the sake of clarity, let us formally define the solutions that we would like to analyze.
Definition 6.1. We say that a pair (S⋆,A) is a nice solution to (G,k) if S⋆ is a solution to (G,k)

and A ⊆ Û is a set of size at most 3
(α−1)β k

2/3 such that for all s ∈ Û \ A, there exist P ∈ S⋆ and

u,v ∈ M̂ such that P = s − u −v .

Now, as a consequence of Lemma 6.5 and Reduction Rule 6.4, we have the following corollary.
Corollary 6.1. If (G,k) is a Yes-instance, then there exists a nice solution to (G,k).

Proof. Suppose that (G,k) is a Yes-instance. Let i be the number of calls toMark that succeeded
but were unlucky. By Lemma 6.5, there exists a solution S⋆ to (G,k) and a set A ⊆ Û of size at
most i · 3β k

1/3 such that for all s ∈ Û \A, there exist P ∈ S⋆ and u,v ∈ M̂ such that P = s − u −v .
By Reduction Rule 6.4, we have that i < 1

α−1k
1/3. Therefore, we have that |A| ≤ 1

α−1k
1/3 · 3β k

1/3 =
3

(α−1)β k
2/3. We have thus obtained a nice solution (S⋆,A) to (G,k). □

The usefulness of Corollary 6.1 stems from the observation that it implies that we have found
a (possibly large) set Û ⊆ S such that not only there exists a solution that packs almost all the
vertices in Û in induced P3’s with vertices in M̂ , but also that the removal of Û fromG significantly
simplifiesG as described by the following lemma. As the proof (and statement) of this lemma is
identical to the proof of Lemma 4.7, it is omitted.

Lemma 6.7. For every clique C ∈ C , C[V (C) \M] is a module in G \ Û .

Before we proceed to sieve bad clique, let us upper bound |M̂ |.

Lemma 6.8. |M̂ | ≤ 2α β
1−α k

1 2
3 .

Proof. Due to each call toMark, at most 2⌈αk2/3⌉ · ⌈βk2/3⌉ new vertices are inserted into M̂ . By
Reduction Rule 6.4, Mark was called less than 1

α−1k
1/3 times. Thus, the total number of vertices

inserted into M̂ is upper bounded by 2( 1
α−1k

1/3 − 1) · ⌈αk2/3⌉ · ⌈βk2/3⌉ ≤ 2α β
1−α k

1 2
3 . □

6.4 Sieving Bad Cliques
We sieve cliques based on three classifications, similarl to the case of CVD. First, we say that a
clique C ∈ C is big if |V (C)| > γk2/3, and otherwise it is small. Furthermore, we say that a clique
C ∈ C is huge if |V (C)| > µk . Recall that by Reduction Rule 6.2, |C | ≤ 6k . Thus, as in the case of
CVD, we directly have the following observation.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:32 F. Fomin et al.

Observation 6.1. The total number of vertices in small cliques in C is upper bounded by 6γk1 2
3 .

Second, we say that a clique C ∈ C is heavy if |V (C) ∩ (M ∪ M̂)| ≥ 1
δ |V (C)|, and otherwise it is

light. In particular, heaviness is now measured with respect toM ∪ M̂ , while in the case of CVD it
was measure only with respect toM . It is clear that the total number of vertices in heavy cliques in
C is upper bounded by δ |M ∪ M̂ |. Thus, by Lemmata 6.4 and 6.8, we have the following observation.

Observation 6.2. The total number of vertices in heavy cliques in C is upper bounded by 6δ (α +
β +

α β
1−α )k

1 2
3 .

Third, as in the case of CVD (except that the constant 2 is replaced by 6), for a cliqueC ∈ C and a
vertex s ∈ S , we say that C is visible to s if |NG (s) ∩V (C)| ≥ 6ηk2/3, and otherwise we say that C is
hidden from s . For a clique C ∈ C , we let vis(C) denote that set of vertices in S to which C is visible.
Moreover, we say that a clique C ∈ C is visible if |vis(C)| ≥ λk2/3, and otherwise we say that it is
hidden. To bound the number of visible cliques, we need the following rule.

Reduction Rule 6.5. If there exists a vertex s ∈ S with at least 1
2ηk

1/3 + 2 cliques in C visible to s ,
then remove s from G and decrement k by 1. The new instance is (G \ s,k − 1).

Lemma 6.9. Reduction Rule 6.5 is safe.

Proof. In one direction, let S⋆ be a solution to (G \ s,k − 1). Let A denote the set of cliques in C
that are visible to s . Since |V (S⋆)| ≤ 3(k − 1), |A| ≥ 1

2ηk
1/3 + 2 and by the definition of visibility, we

have that there necessarily exist two distinct cliques A,A′ ∈ A such that each clique among A,A′
has a vertex that is a neighbor of s and does not belong to V (S⋆). Since these two vertices together
with s form an induced P3 in G, called P , we derive that S⋆ ∪ {P} is a solution to (G,k). For the
other direction, let S⋆ be a solution to (G,k). Observe that there is at most one induced P3 in S⋆

that contains the vertex s . Let S ′ be the set of induced P3’s obtained by deleting the induced P3 in
S⋆ that contains s (if it exists). Then, S ′ is a solution to (G \ s,k − 1). □

After we exhaustively apply Reduction Rule 6.5, as in the case of CVD, for every vertex s ∈ S
there exist at most 1

2ηk
1/3 + 1 ≤ 1

ηk
1/3 cliques in C visible to s . Since |S | ≤ 3k , we derive that there

are at most
|S | 1ηk

1/3

λk2/3
=

3
λη

k2/3 visible cliques. Thus, we have the following observation.

Observation 6.3. The total number of vertices in non-huge visible cliques in C is upper bounded
by 3µ

ληk
1 2
3 .

Altogether, we say that a clique C ∈ C is good if it is (i) big, (ii) light and (iii) hidden or huge
(or both), and otherwise we say that it is bad. We denote the set of all good cliques in C by D. By
Observations 6.1, 6.2 and 6.3, and that µ = 26, we derive the following lemma.

Lemma 6.10. The total number of vertices in bad cliques in C is upper bounded by
3µ(γ + δ (α + β + α β

1−α ) +
1
λη )k

1 2
3 .

6.5 Properties of Clique Sides
For allC ∈ C and s ∈ S , denote NC (s) = NG (s) ∩V (C) and NC (s) = V (C) \NC (s). Notice that for all
C ∈ C , s ∈ S , u ∈ NC (s) andv ∈ NC (s), it holds that s −u −v is an induced P3 inG . Furthermore, for
allC ∈ C and s ∈ S , letMC (s) denote the set of minimum size among NC (s) and NC (s) (if they have
equal sizes, the choice is arbitrary). Let us first verify that Lemma 4.11 also holds in the context of
Induced P3-Packing.
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Lemma 6.11. For all s ∈ L andC ∈ D such that NG (s) ∩ (V (C) \M) , ∅, it holds thatC is visible to
s .

Proof. Let s ∈ L andC ∈ D such that NG (s)∩ (V (C) \M) , ∅. Then, by Lemma 6.7, we have that
V (C)\M ⊆ NG (s). Thus, to prove thatC is visible to s , it is sufficient to show that |V (C)\M | ≥ 6ηk2/3.
Since C ∈ D, we have that C is light, and therefore |V (C) \M | > (1 − 1

δ )|V (C)|. Moreover, since
C is big, |V (C)| > γk2/3, and hence |V (C) \M | > (1 − 1

δ )γk
2/3. Since (1 − 1

δ )γ ≥ 6η, the proof is
completed. □

Now, let us also explicitly state the following simple corollary to Lemma 6.11

Corollary 6.2. For all non-hugeC ∈ D, the number of vertices s ∈ L such thatNG (s)∩(V (C)\M) ,
∅ is upper bounded by λk2/3.

Proof. Let C ∈ D be a non-huge clique. By Lemma 6.11, C is visible to every vertex s ∈ L such
that NG (s) ∩ (V (C) \M) , ∅. Thus, since C is hidden, the statement is true. □

Let us now argue that for any nice solution to (G,k), it holds that for every clique C ∈ D, most
of the clique C is “unused”.

Lemma 6.12. Let (S⋆,A) be a nice solution to (G,k). For all non-hugeC ∈ D, it holds that |(V (C) ∩
V (S⋆)) \ (M ∪ M̂)| ≤ ( 6

(α−1)β + λ)k
2/3.

Proof. Let C ∈ D be a non-huge clique. Since C is a clique where NG (C) ⊆ S , every induced
P3 in S⋆ that contains at least one vertex from V (C) must also contain at least one vertex from S .
Because (S⋆,A) is a nice solution, every induced P3 in S⋆ that contains at least one vertex from
Û \A cannot contain any vertex from V (C) \ M̂ . Furthermore, since |A| ≤ 3

(α−1)β k
2/3, there exist

at most 2|A| ≤ 6
(α−1)β k

2/3 vertices v ∈ V (S⋆) for which there exists an induced P3 in S⋆ that
contains both v and at least one vertex from A. Now, let us denote the set of induced P3’s in S⋆

that contain at least one vertex fromV (C) \M and no vertex from Û by P . Then, we note that every
induced path P ∈ P must contain an edge {s,v} ∈ E(G) for some s ∈ L and v ∈ V (C), and that
|V (P)∩(V (C)\M)| = 1 (by Lemma 6.7). By Corollary 6.2, we derive that |(V (C)∩V (P))\M | ≤ λk2/3.
This completes the proof. □

In order to proceed with our analysis, we need to refine Definition 6.1 with respect to a set of
vertices.

Definition 6.2. LetT ⊆ V (D) \ (M ∪ M̂). We say that a pair (S⋆,A) is aT -nice solution to (G,k)
if (S⋆,A) is a nice solution, and for all P ∈ S⋆ such that V (P) ∩ Û = ∅, it holds that V (P) ∩T = ∅.

We now claim that that for any small enough setT , it is possible to focus on seeking nice solutions
with respect to T . Formally, we prove the following lemma.

Lemma 6.13. LetT ⊆ V (D) \ (M ∪ M̂) be a set of size at most 14
(α−1)β k

2/3. If (G,k) is a Yes-instance,
then there exists a T -nice solution to (G,k).

Proof. Suppose that (G,k) is a Yes-instance. Then, by Corollary 6.1, there exists a nice solution to
(G,k). Let (S⋆,A) be a nice solution to (G,k) that minimizes the number of verticesv ∈ T for which
there exists P ∈ S⋆ such that V (P) ∩ Û = ∅ and v ∈ V (P). We claim that there do not exist v ∈ T
and P ∈ S⋆ such that V (P) ∩ Û = ∅ and v ∈ V (P). Suppose, by way of contradiction, that there
existv ∈ T and P ∈ S⋆ such thatV (P)∩Û = ∅ andv ∈ V (P). LetC denote the clique in D such that
v ∈ V (C). We first observe that due to Lemma 6.7 and becausev < M andV (P)∩Û = ∅, if we replace
v in P by any other vertex in V (C) \M , we obtain yet another induced P3. Thus, by the choice of
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(S⋆,A), we derive thatV (C) \ (T ∪M ∪V (S⋆)) = ∅. In other words,V (C) \ (T ∪M) ⊆ V (S⋆). Hence,
|(V (C) ∩V (S⋆)) \ (M ∪ M̂)| ≥ |V (C) \ (T ∪M ∪ M̂)|. Then, becauseC ∈ D and |T | ≤ 14

(α−1)β k
2/3, we

have that |V (C) \ (T ∪M ∪ M̂)| ≥ |V (C) \ (M ∪ M̂)| − 14
(α−1)β k

2/3 > δ−1
δ |V (C)| −

14
(α−1)β k

2/3. Thus,
δ−1
δ |V (C)| −

14
(α−1)β k

2/3 < |(V (C)∩V (S⋆))\ (M∪M̂)|. Now, let us consider two cases, corresponding
to whether or not C is huge.
• Suppose that C is huge. Then, δ−1δ |V (C)| −

14
(α−1)β k

2/3 ≥ δ−1
δ µk − 14

(α−1)β k
2/3 > 3k (because

δ−1
δ µ − 14

(α−1)β > 3). However, |(V (C) ∩V (S⋆)) \ (M ∪ M̂)| ≤ |V (S⋆)| ≤ 3k . Thus, we have
reached a contradiction.
• Suppose thatC is not huge. Then, by Lemma 6.12, this means that |(V (C)∩V (S⋆))\(M∪M̂)| ≤

( 6
(α−1)β +λ)k

2/3. Since δ−1
δ |V (C)|−

14
(α−1)β k

2/3 < |(V (C)∩V (S⋆))\(M∪M̂)| and |V (C)| ≥ γk2/3,
we have that δ−1

δ k2/3 − 14
(α−1)β k

2/3 < ( 6
(α−1)β + λ)k

2/3. However, since 20
(α−1)β + λ ≤

δ−1
δ γ , we

have reached a contradiction.
As both cases led to a contradiction, the proof is complete. □

6.6 Assigning Sets of Vertices to Vertices in Û

For every vertex s ∈ Û , denote Q ′(s) =
⋃

C ∈D (MC (s) \ (M ∪ M̂)). Moreover, for every vertex s ∈ Û ,
if |Q ′(s)| ≤ ⌊ 6

(α−1)β k
2/3⌋, then denote Q(s) = Q ′(s), and otherwise let Q(s) be an arbitrarily chosen

subset of Q(s) of size exactly ⌊ 7
(α−1)β k

2/3⌋. Furthermore, we denote Q̂ =
⋃

s ∈Û Q(s). Since |S | ≤ 3k ,
the following observation is immediate.

Observation 6.4. |Q̂ | ≤ 21
(α−1)β k

1 2
3 .

Now, we proceed to apply the following rule, whose safeness is based on Lemma 6.13.

Reduction Rule 6.6. If there exists a vertex v ∈ V (D) \ (M ∪ M̂ ∪ Q̂), then remove v from G . The
new instance is (G \v,k).

Lemma 6.14. Reduction Rule 6.5 is safe.

Proof. In one direction, it is clear that if (G \v,k) is a Yes-instance, then (G,k) is a Yes-instance.
For the other direction, let us suppose that (G,k) is a Yes-instance. By Lemma 6.13 and since
v < M ∪ M̂ , there exists a {v}-nice solution (S⋆,A). If (S⋆,A) is a solution to (G \ v,k), then
the proof is complete. Thus, we next suppose that (S⋆,A) is not a solution to (G \v,k). Because
(S⋆,A) is a {v}-nice solution, this means that there exists P⋆ ∈ S⋆ such that v ∈ V (P⋆) and
V (P⋆)∩Û , ∅. Let s⋆ denote some vertex inV (P⋆)∩Û , ∅ (if there exist two vertices inV (P⋆)∩Û ,
we arbitrarily choose one of them). Now, observe that S⋆ \ {P} is a solution to (G \ {v, s⋆},k − 1),
and therefore (G \ {v, s⋆},k − 1) is a Yes-instance. Moreover, note that |Q(s⋆)| ≤ 7

(α−1)β k
2/3 =

7
(α−1)β (k − 1)

2/3 · k2/3

(k−1)2/3 =
7

(α−1)β (k − 1)
2/3 · 1

(1− 1
k )

2/3 ≤
14

(α−1)β (k − 1)
2/3. Then, by Lemma 6.13, there

exists a Q(s⋆)-nice solution (S′,A′) to (G \ {v, s⋆},k − 1).
Since (S′,A′) is aQ(s⋆)-nice solution, we have that for all u ∈ V (S′) ∩Q(s⋆), there exists P ∈ S′

such that V (P) ∩ Û , ∅. However, since (S′,A′) is a nice solution and Q(s⋆) ∩ (M ∪ M̂) = ∅, we
further derive that for all u ∈ V (S′) ∩Q(s⋆), there exists P ∈ S′ such that V (P) ∩A′ , ∅. Because
|A′ | ≤ 3

(α−1)β (k − 1)
2/3, we deduce that |V (S′) ∩Q(s⋆)| ≤ 2|A′ | ≤ 6

(α−1)β (k − 1)
2/3. However, since

Q(s⋆) = ⌊ 7
(α−1)β k

2/3⌋ (because v ∈ Q ′(s⋆) \Q(s⋆)), we have that Q(s⋆) \V (S′) , ∅. Let v⋆ denote
some vertex in Q(s⋆) \V (S′) (by our previous argument, such a vertex exists), and let C⋆ denote
the clique in D that contains v⋆. Then, by the definition of Q(s⋆), we have that v⋆ ∈ MC⋆(s⋆).

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:35

Observe that any vertex in V (C⋆) \MC⋆(s⋆) together with s⋆ and v⋆ forms an induced P3. Hence,
if V (C⋆) \ (MC⋆(s⋆) ∪V (S′)) , ∅, then S′ along with an induced P3 consisting of some vertex in
V (C⋆)\(MC⋆(s⋆)∪V (S′)), s⋆ andv⋆, forms a solution to (G,k), in which case the proof is complete.
However, we claim that necessarilyV (C⋆) \ (MC⋆(s⋆) ∪V (S′)) , ∅. For this purpose, it is sufficient
to prove that |V (S′)| < |V (C⋆) \MC⋆(s⋆)|. Let us first observe that |V (C⋆) \MC⋆(s⋆)| ≥ 1

2 |V (C
⋆)|.

Hence, it is sufficient to prove that |V (C⋆) ∩V (S′)| < 1
2 |V (C

⋆)|. To this end, we consider two cases,
corresponding to whether or not C⋆ is huge.
• Suppose that C⋆ is huge. In this case, 1

2 |V (C
⋆)| ≥

µ
2k . Since |V (C

⋆) ∩ V (S′)| ≤ |V (S′)| =

3(k − 1) and µ
2 ≥ 3, indeed |V (S′)| < 1

2 |V (C
⋆)|.

• Suppose that C⋆ is not huge. In this case, by Lemma 6.12, |(V (C⋆) ∩ V (S′)) \ (M ∪ M̂)| ≤

( 6
(α−1)β +λ)(k − 1)

2/3. Observe that sinceC⋆ ∈ D, we have that |(V (C⋆)∩V (S′)) \ (M ∪ M̂)| =

|V (C⋆) ∩ V (S′)| − |V (C⋆) ∩ V (S′) ∩ (M ∪ M̂)| ≥ |V (C⋆) ∩ V (S′)| − |V (C⋆) ∩ (M ∪ M̂)| >
|V (C⋆) ∩ V (S′)| − 1

δ |V (C
⋆)| > |V (C⋆) ∩ V (S′)| − 1

δ γk
2/3. Thus, we derive that |V (C⋆) ∩

V (S′)|− 1
δ γk

2/3 ≤ ( 6
(α−1)β +λ)(k−1)

2/3, and therefore |V (C⋆)∩V (S′)| < ( 6
(α−1)β +λ+

1
δ γ )k

2/3.
However, 1

2 |V (C
⋆)| >

γ
2k

2/3. Since 6
(α−1)β + λ +

1
δ γ ≤

γ
2 , indeed |V (S

′)| < 1
2 |V (C

⋆)|.
As both cases led to the desired claim, the proof is complete. □

6.7 Proof of Theorem 3
We are finally ready to present the proof of Theorem 3.

Proof of Theorem 3. Let (G,k) be an instance of Induced P3-Packing. Our kernelization algo-
rithm simply applies (exhaustively) Reduction Rules 6.1 to 6.6. The output is the instance obtained
once none of these rules is applicable. Let us observe that each rule among Reduction Rules 4.1 to
4.16 can be applied in polynomial time, it strictly decreases the size of G and it does not increase k .
Thus, our kernelization algorithm runs in polynomial time.

For the sake of clarity, let us now abuse notation and denote the outputted instance by (G,k).
Let us observe that V (G) consists of the following vertices.
• Vertices in S , whose number is at most 3k .
• Vertices in bad cliques, whose number is at most 3µ(γ+δ (α+β+ α β

1−α )+
1
λη )k

1 2
3 (by Lemma 6.10).

• Vertices inM ∪ M̂ , whose number is at most (6(α + β) + 2α β
1−α )k

1 2
3 (by Lemmata 6.4 and 6.8)

• Vertices in Q̂ , whose number is at most 21
(α−1)β k

1 2
3 (by Observation 6.4).

Thus, the total number of vertices is indeed O(k1 2
3 ). This completes the proof. □

7 TRIANGLE PACKING IN TOURNAMENTS
In this section, we prove the following theorem.

Theorem 4. TPT admits a kernel with O(k3/2) vertices.

Let (T ,k) be an instance of TPT. There is a simple polynomial-time 1
3 -approximation algorithm

for TPT: greedily find a maximal collection, say S, of vertex-disjoint triangles in T and output S.
Indeed, if there is a collection S⋆ of of vertex-disjoint triangles inT with |S⋆ | > 3|S|, then there is
a triangle in S⋆ not hit by V (S), contradicting the assumption that S is maximal. If |S| < k

3 , then
we conclude that (T ,k) is a No-instance. If |S| ≥ k , then we conclude that (T ,k) is a Yes-instance.
Hence, we assume that k

3 ≤ |S| ≤ k − 1. Let S = V (S), then |S | ≤ 3k − 3. By maximality of S,T − S
does not have any directed triangle, and so by Proposition 5.1, T − S does not have any directed
cycle. Hence, S is a feedback vertex set of T . Let X = T − S . Note that since S is a feedback vertex
set, X is a transitive tournament.
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Let (T ,h) be an instance of TPT. We call a collection of at least h vertex-disjoint triangles of T as
a solution to the instance (T ,h). First, we have the following reduction rule.

Reduction Rule 7.1. If there exists s ∈ S such that there are 3k − 2 triangles pairwise intersecting
only at s , then remove s from T . The new instance is (T \ {s},k − 1).

The safeness of rule 7.1 is simple. In one direction, if S⋆ is a solution to (T ,k), by removing
the triangle (if any) containing s , we obtain a solution to (T \ {s},k − 1). In the other direction,
suppose that S⋆ is a solution to (T \ {s},k − 1). If |S⋆ | ≥ k , then S⋆ is a solution to (T ,k).
Hence |S⋆ | = k − 1. If there is a triangle, say sxy that is not hit by V (S⋆), then S⋆ ∪ {sxy} is a
solution to (T ,k). Otherwise, V (S⋆) hits all 3k − 2 triangles pairwise intersecting only at s , and so
|V (S⋆)| ≥ 3k − 2, which contradicts |S⋆ | = k − 1.
We apply Reduction Rule 7.1 exhaustively. By the same argument as for Reduction Rule 5.1,

for any vertex s ∈ S , we can check whether that exist 3k triangles intersecting pairwise only at
s in polynomial time. Thus, from now onwards, we assume that Reduction Rule 7.1 is no longer
applicable.
In this section, we reuse the notation used in Section 5. Throughout this section we work with

the unique ordering ≺ of vertices of X and use terms like consecutive vertices in X , smallest and
largest vertex in X .

7.1 Exploring the Vertex Cover Structure
Recall the notion of vertex cover for a set of arcs of T . Formally, for a subset of arcs A ⊆ E(T ), a
subset O ⊆ V (T ) is called a vertex cover for A if for every arc uv ∈ A, either u ∈ O or v ∈ O (or
both). However, the definition of strong arc is slightly different from that in Section 5. An arc xy of
T is called strong if (i) at least one vertex among x and y belongs to S , and (ii) there are at least 3k
vertices z ∈ V (T ) such that xyz is a triangle. Let F be the set of all the strong arcs of T , which can
be easily found in polynomial time.

Recall that throughout our kernelization algorithm, we work with the unique topological ordering
≺ of X . Accordingly, we have that if xx ′ is an arc in E(X ), then x ≺ x ′. Furthermore, we need the
following notion of distance.

Definition 7.1. Let x ,x ′ ∈ X be two vertices such that x ≺ x ′, and let d − 1 be the number of
vertices y such that x ≺ y ≺ x ′. Then, the distance between x and x ′ is d . Accordingly, x ′ − x := d
and x − x ′ := −d .

In addition, we need the following definition which concerns the relations between the vertices
in S and the vertices in X .

Definition 7.2. For s ∈ S and x ∈ V (X ), define f −s (x) =
��{y ∈ V (X ) : y ⪯ x , sy ∈ E(T )}

��, and
f +s (x) =

��{y ∈ V (X ) : y ≻ x , ys ∈ E(T )}
��.

Similar to Lemma 5.1, we can prove the following.

Lemma 7.1. For every s ∈ S , there is x ∈ X such that 0 ≤ f −s (x) − f +s (x) ≤ 1.

As in Section 5 we have the following notation.

Definition 7.3. For any s ∈ S , define φ(s) as the smallest vertex xs ∈ V (X ) satisfying the
inequalities in Lemma 7.1.

We now show that given Reduction Rule 7.1, neither f −s (φ(s)) nor f +s (φ(s)) can be too “large”.
Indeed, if there existed s ∈ S such that f −s (φ(s)) ≥ 3k − 1, then f +s (φ(s)) ≥ 3k − 2, and we could
have formed 3k − 2 triangles, each consisting of s , a vertex from {x ∈ V (X ) : x ⪯ φ(s), sx ∈ E(T )},
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and a vertex from {y ∈ V (X ) : y ≻ φ(s), ys ∈ E(T )}. In this case, Reduction Rule 7.1 is applicable.
However, as we assumed that Reduction Rule 7.1 is no longer applicable, we have that for all s ∈ S ,
f −s (φ(s)), f

+
s (φ(s)) ≤ 3k − 2. By using this assumption, we have useful certificates for strong arcs

similar to the one in Lemma 5.2.

Lemma 7.2. Let x ∈ X , and s, s ′ ∈ S . The following statements are true.

(1) If sx ∈ E(T ) and φ(s) − x ≥ 6k − 2, then sx is strong.
(2) If xs ∈ E(T ) and x − φ(s) ≥ 6k − 2, then xs is strong.
(3) If s ′s ∈ E(T ) and φ(s ′) − φ(s) ≥ 9k − 4, then ss ′ is strong.

To proceed, as before, we also need to introduce two terms concerning triangles.

Definition 7.4. Let x1x2x3 be a triangle of T , and A = {x1,x2,x3}. The span of x1x2x3 is the
maximum distance between any two vertices in (A \ S) ∪ φ(A ∩ S). Moreover, the triangle is called
local if none of its arcs belongs to F .

In the following lemma, we will show that a local triangle is indeed local in the sense that it
must have a “short” span. The proof of the following is identical to the one for Lemma 5.3

Lemma 7.3. Let x1x2x3 be a local triangle with at least one vertex from X . Then, its span is at most
18k − 8.

7.2 Applying the New Expansion Lemma
In what follows, we denote α = 3, β = 845, γ = 32, µ = 9, λ = 25, δ = 11, and ℓ = 3 so that
β − 36 − 3ℓ ≥ λγ (used in Observation 7.8), (µ − 2)ℓ > 4 (used in the proof of Observation 7.10),
(δ − 9)ℓ > 4 (used in the proof of Lemma 7.6), ℓ2 > 4 (used in Lemma 7.7), and (λ − 2α µ

3 − α)(γ −
2δ ) − 2αµ − ℓα > 0 (used in the proof of Lemma 7.5).

Next we give the definition of intervals.

Definition 7.5. A set Y ⊆ V (X ) is an interval if it contains all the vertices in X that lie between
the largest and smallest elements in Y (with respect to the ordering ≺ induced by X ).7 We refer to |Y |
as the length of Y .

We partition V (X ) into disjoint intervals, each of length βk . That is, we follow the vertices of
V (X ) from left to right in the ordering ≺, and partition them into disjoint intervals X1, . . . ,Xp such
that each Xi , 1 ≤ i < p, is of length βk . Let Si := {s ∈ S : φ(s) ∈ Xi }.

Definition 7.6. Let Xi be an interval such that |Si | ≥ α
√
k , then we call Xi bad of Type 1.

Clearly, there are less than 3
α

√
k bad intervals of Type 1, since |S | < 3k .

Observation 7.1. There are at most 3
√
k

α bad intervals of Type 1 among X1, . . . ,Xp .

For each i , we call a 3-approximation algorithm to TPT on the tournament T [Xi ∪ Si ]. If the
3-approximation algorithm returns a solution of size least

√
k , we call Xi bad of Type 2. There are at

most
√
k bad interval of Type 2; otherwise, the (obviously vertex-disjoint) union of 3-approximate

solutions of all these bad intervals has size at least k , and we conclude immediately that (T ,k) is a
Yes-instance.

Observation 7.2. There are at most
√
k bad intervals of Type 2 among X1, . . . ,Xp .

7That is, the elements of Y are consecutive with respect to ≺.
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Observations 7.1 and 7.2 imply that there are at least (p − 1) − 3
α

√
k −
√
k non-bad intervals – we

do not call them good yet, since we will introduce another type of bad intervals. For every non-bad
interval Xi , let Y⋆

i be the sub-interval of Xi excluding 18k smallest vertices and 18k largest vertices.
Then every Y⋆

i has length (β − 36)k . Recall that a triangle is local if it has no arcs in common with
F . We give here two observations for later use.

Observation 7.3. If xyz is a local triangle with x ∈ Y⋆
i for some i , then x ,y, z ∈ Xi ∪ Si .

Proof. By Lemma 7.3, xyz has span at most 18k − 8. Note that x ∈ Y⋆
i , while Y⋆

i is obtained
from Xi by excluding 18k smallest and 18k largest vertices, so ({x ,y, z} ∩ X ) ∪ φ({x ,y, z} ∩ S) is a
subset of Xi . In other words, x ,y, z ∈ Si ∪ Xi . □

Observation 7.4. If Xi is a non-bad interval, then every collection of vertex-disjoint local triangles
contains less than 6

√
k vertices in Y⋆

i .

Proof. Suppose for a contradiction that there is a collection O of local triangles with at least
6
√
k vertices of Y⋆

i . Since each local triangle contains at most two vertices of Y⋆
i (Y⋆

i is transitive),
the collection has at least 3

√
k local triangles. Let us consider a local triangle xyz with x ∈ Y⋆

i . By
Observation 7.3, x ,y, z ∈ Si ∪ Xi . Hence O contains at least 3

√
k triangles in Xi ∪ Si . This implies

that a 3-approximation algorithm for TPT when run onT [Xi ∪ Si ] returns a solution of size at least
√
k . Therefore Xi is bad of Type 2, a contradiction. □

We remark that Observation 7.4 is very strong since it allows us to upper bound the number of
vertex-disjoint triangles intersects a specific interval.

We now apply the New Expansion Lemma the first time to introduce the bad intervals of Type 3;
later on, we will apply the New Expansion Lemma the second time to detect a relevant vertex. Let
Y⋆ be the union of allY⋆

i such that the correspondingXi is non-bad. Let us consider the (undirected)
bipartite graphG with vertex bipartition (S,Y⋆), and E(G) consists of edges corresponding to those
arcs in F which has one endpoint in S and another endpoint in Y⋆. By applying New Expansion
Lemma (Lemma 3.2) on G, we obtain Ŷ⋆ and Ŝ satisfying the following.

Observation 7.5. Ŝ has an ℓ
√
k-expansion to Ŷ⋆ in G, NG (Ŷ

⋆
i ) ⊆ Ŝ and |Y⋆ \ Ŷ⋆ | ≤ ℓ

√
k |S |.

We can now define the third type of bad intervals.

Definition 7.7. For every i , if |Y⋆
i \ Ŷ

⋆ | ≥ 3ℓk , then Xi is called bad of Type 3.

Then there are at most
√
k bad intervals of Type 3 since |Y⋆ \ Ŷ⋆ | ≤ ℓ

√
k |S | < 3ℓk3/2.

Observation 7.6. There are at most
√
k bad intervals of Type 3 among X1, . . . ,Xp .

Finally, we are ready to define the notion of good interval.

Definition 7.8. Let Xi be an interval such that it is not bad of Types 1, 2 or 3, then it is called good.

Observations 7.1, 7.2 and 7.6 imply that there are at least p − − 3
α

√
k −
√
k −
√
k good intervals.

Then we have the following observation.

Observation 7.7. If p ≥
( 3
α + 3

)√
k then there are at least

√
k good intervals.

For every good Xi , let Yi = Y⋆
i ∩ Ŷ⋆. Then |Yi | ≥ |Y⋆

i | − |Y
⋆
i \ Ŷ

⋆ | ≥ (β − 36 − 3ℓ)k . Since,
β − 36 − 3ℓ ≥ λγ , we have the following observation.

Observation 7.8. |Yi | ≥ λγk for every good Xi .
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Given x ,x ′ ∈ Yi with x ≺ x ′, we say that x and x ′ are consecutive in Yi if there is no y ∈ Yi such
that x ≺ y ≺ x ′. Note that Yi is not a sub-interval of Xi , so two consecutive vertices in Yi are not
necessary consecutive in Xi . To avoid confusion, we do not introduce the distance notion between
two vertices in Yi ; however, the order ≺ in Yi is the restriction of ≺ on X . The following observation
is immediate from Observation 7.4.

Observation 7.9. If Xi is good, then every collection of vertex-disjoint local triangles contains less
than 6

√
k vertices in Yi .

For a vertex s ∈ Si , φ(s) can be thought as a “balanced projection" of s on X . However, φ(s)
may not be a balanced projection of s on Yi . Thus, we wish to find a balanced projection of
s on Yi . To do so, we repeat what we did before to find φ(s) as follows. For every s ∈ Si , let
R−s (x) = {y ∈ Yi : y ⪯ x , sy ∈ E(T )} and R+s (x) = {y ∈ Yi : y ≻ x ,ys ∈ E(T )}. Note that R−s (x) and
R+s (x) only count arcs between s and Yi .

Lemma 7.4. For every s ∈ Si , there is x ∈ Yi such that 0 ≤ |R−s (x)| − |R+s (x)| ≤ 1.

The proof of Lemma 7.4 is similar to that of Lemma 5.1, where note that |R−s (x ′)| − |R+s (x ′)| =
|R−s (x)| − |R

+
s (x)| + 1 for every x ≺ x ′ consecutive in Yi .

Definition 7.9. For any s ∈ Si , define θ (s) to be the smallest vertex in Yi satisfying the inequalities
in Lemma 7.4.

We denote R+s = R+s (θ (s)),R
−
s = R−s (θ (s)) for short. We could not upper bound |R−s | and |R+s | as what

we did for φ(s); thus, we overcome this by introducing the notions of heavy and light.

Definition 7.10. Given s ∈ Si , if |R−s | ≥ µ
√
k + 1, then we call s heavy; otherwise, we call s light.

Thus, if s is light, |R−s |, |R+s | ≤ µ
√
k . Let

Ri =
⋃

{s ∈Si |s is light}

(
R−s ∪ R

+
s
)
.

Then |Ri | ≤ 2µ
√
k |Si | ≤ 2αµk since |Si | ≤ α

√
k .

Recall from Observation 7.8 that |Yi | ≥ λγ . We partition Yi into subsets Yi,1, ...,Yi,λ√k where
|Yi, j | ≥ γ

√
k for every j ≤ λ

√
k , and x ≺ x ′ for every x ∈ Yi, j ,x

′ ∈ Yi, j′ with j < j ′ (it is useful to
think that Yi, j is a “sub-interval" of Yi ; however, we would like to avoid that term since Yi itself is
not an interval).

Definition 7.11. A set Yi, j is called fit if |Yi, j ∩ Ri | < 3
√
k and θ (Si ) ∩ Yi, j = ∅.

Since |Ri | ≤ 2αµk , there are at most 2α µ
3
√
k sets Yi, j such that |Yi, j ∩Ri | ≥ 3

√
k . Since |Si | ≤ α

√
k ,

there are at most α
√
k intervals Yi, j such that Yi, j contains θ (s) for some s ∈ Si . Thus, there

are at least (λ − 2α µ
3 − α)

√
k fit subset Yi, j of every Yi . For each fit Yi, j , let Y−i, j ,Y+i, j be the δ

√
k

smallest vertices and δ
√
k largest vertices in Yi, j , respectively, and Y ′i, j ≥ Yi, j \ (Y

−
i, j ∪ Y

+
i, j ). Then

Y ′i, j = (γ − 2δ )
√
k . Let

Ai =

( ⋃
{j |Yi, j is fit}

Y ′i, j

)
\ Ri and A =

⋃
{i |Xi is good}

Ai .

Then

|Ai | ≥

(
λ −

2αµ
3 − α

)
√
k(γ − 2δ )10

√
k − |Ri | ≥

((
λ −

2αµ
3 − α

)
(γ − 2δ ) − 2αµ

)
k,
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and by Observation 7.7, we have |A| ≥
√
k((λ −

2α µ
3 − α)(γ − 2δ ) − 2αµ)k .

Now we apply the New Expansion Lemma (Lemma 3.2) the second time, this time onG[A∪ Ŝ], to
get Â and ÜS such that ÜS has an ℓ

√
k-expansion into Â inG[A∪Ŝ],NG[A∪Ŝ ](Â) ⊆

ÜS and |A\Â| ≤ ℓ
√
k |Ŝ |.

Lemma 7.5. ÜS has an ℓ
√
k-expansion into Â in G, NG (Â) ⊆ ÜS and Â is nonempty.

Proof. Since G[A ∪ Ŝ] is a induced subgraph of G, then clearly ÜS has an ℓ
√
k-expansion into Â

inG . By Observation 7.5, NG (Ŷ
⋆) ⊆ Ŝ , so there is no edge between Ŷ⋆ and S \ Ŝ inG . Thus, there is

no edge between Â and S \ Ŝ in G since Â ⊆ Ŷ⋆. Since NG[A∪Ŝ ](Â) ⊆
ÜS , there is no edge between Â

and Ŝ \ ÜS in G[A ∪ Ŝ]. Thus, there is no edge between Â and Ŝ \ ÜS in G. In other words, NG (Â) ⊆ ÜS .
Observe that |A \ Â| ≤ ℓ

√
k |Ŝ | ≤ ℓ

√
k |S | ≤ ℓαk3/2. Hence, Â ≥ |A| − |A \ Â| ≥ ((λ − 2α µ

3 − α)(γ −

2δ ) − 2αµ)k3/2 − ℓαk3/2 > 0. This proves the lemma. □

7.3 Using Expansion to Detect an Irrelevant Vertex
Recall that a triangle is local if it contains no strong arc, i.e. it has no arcs in common with F . In
the next lemma, we will show that given a mixed collection of local triangles and strong arcs, it is
possible to exclude a particular vertex of Â from the collection.

Lemma 7.6. Let x ∈ Â and assume that there is a vertex-disjoint collection O of local triangles and
strong arcs such that |O| = k and x belongs to a local triangle of O. Then there is a vertex-disjoint
collection O ′ of local triangles and strong arcs such that |O ′ | = k and x does not belong to any local
triangle or strong arc of O.

Proof. Let O be the vertex set of O, then |O | ≤ 3k . Assume that the statement of the lemma
was false and let xyz ∈ O and x ∈ Yi, j . By Observation 7.3, we have y, z ∈ Xi ∪ Si since Yi j ⊆ Y⋆

i .
Thus, either y ∈ Si or z ∈ Si ; otherwise, xyz is transitive. We first prove the following observation.

Observation 7.10. Neither y nor z is heavy.

Proof. Suppose that y is heavy. If there are v ∈ R−y ,v
′ ∈ R+y such that v,v ′ < O , then O ′ :=

(O \ {xyz}) ∪ {yvv ′} is a desired collection, a contradiction. Thus we conclude that either R−y ⊆ O
or R+y ⊆ O .

If R+y ⊆ O , we will show that we can exchange some strong arc of O with some strong arc outside
to “free" one vertex of R+y from O. Since R+y ⊆ Yi , by Observation 7.9, at most 6

√
k vertices in R+y

belong to a local triangle in O. Recall that |R+y | ≥ µ
√
k by the definition of heaviness. Thus at least

(µ−6)
√
k vertices belong to some strong arcs of O; we call that setZ . Then O contains a matching of

strong arcs from Z into S (since a strong arc must contain at least one vertex in S). LetW be the set
of vertices of S in that matching, then |W | = |Z | ≥ (µ − 2)

√
k . Note that Z ⊆ Ŷ⋆ since Ri ⊆ Yi ⊆ Ŷ⋆.

By Observation 7.5, we have NG (Ŷ
⋆) ⊆ Ŝ , and soW ⊆ NG (Z ) ⊆ Ŝ . By Observation 7.5 again, we

have |NG (W )| ≥ ℓ
√
k |W | ≥ (µ − 2)ℓk > 4k = |O | + k . We choose an arbitrary u ∈ NG (W ) (among

at least k candidates) such that u < O , let w ∈ W be a neighbor of u in G (such w always exists
since u ∈ NG (W )). Suppose thatwv ∈ O, then v ∈ Z ⊆ R+y . Then removewv from O and addwu
to O. We still call the new collection O. In doing so, we free v ∈ R+y from O.

If R−y ⊆ O , by repeating the above argument, we can free some v ′ ∈ R−y from O. Note that since
we have k candidates to choose to exchange strong arcs, we can avoid “recapturing" v into O. Then
O ′ := (O \ {xyz}) ∪ {yvv ′} is a desired collection, a contradiction. Similarly, we can show that z is
not heavy. □

We have 3 cases:
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Case 1:y ∈ Si and z ∈ Xi . Theny is light by Observation 7.10, and since x ∈ Â ⊆ AwhileA∩Ri = ∅,
we have x < Ri , and so x < R+y ∪ R−y . Combining with xy ∈ E(T ), we have θ (y) > x . Recall that
Y+i, j is the set of δ

√
k largest vertices of Yi, j , and hence u ≺ v for every u ∈ Y ′i, j ,v ∈ Y+i, j . Since

x ∈ Y ′i, j , we have x ≺ v for every v ∈ Y+i, j . Note that θ (y) ≻ x , and θ (y) < Yi, j since Yi, j is fit. Thus
θ (y) ≻ v for every v ∈ Y+i, j . Since R+y ∪ R−y ⊆ Ri , we have vy ∈ E(T ) for every v ∈ Y+i, j \ Ri . Besides,
|Y+i, j ∩ Ri | < 3

√
k since Yi, j is fit, and so |Y+i, j \ Ri | ≥ |Y+i, j | − |Y+i, j ∩ Ri | ≥ (δ − 3)

√
k .

Note that z ∈ Xi and zx ∈ E(T ), so z ≺ x ≺ v for every v ∈ Y+i, j . If there is v ∈ Y+i, j \ Ri
such that v < O , then O ′ := (O \ {xyz}) ∪ {vyz} is a desired collection, a contradiction. Thus we
conclude that there is no such v . In other words, Y+i, j \ Ri ⊆ O . Since Y+i, j ⊆ Yi , by Observation
7.9, at most 6

√
k vertices in Y+i, j \ Ri belong to local triangles in O, while we showed above that

|Y+i, j \ Ri | ≥ (δ − 3)
√
k . Thus at least (δ − 3 − 6)

√
k = (δ − 9)

√
k vertices of Y+i, j \ Ri belong to some

strong arcs of O. Then by the same arguments as in the proof of Observation 7.10, combined with
the assumption that (δ − 9)ℓ > 4, we can exchange strong arcs of O to free some v ∈ Y+i, j \ Ri from
O. Then O ′ := (O \ {xyz}) ∪ {vyz} is a desired collection, a contradiction.
Case 2: y ∈ Xi and z ∈ Si . This case is similar to Case 1, but we will consider Y−i, j (instead of Y+i, j )
to employ the fact that v ≺ x for every v ∈ Y−i, j .
Case 3: y, z ∈ Si . Then by a similar argument as in Case 1, both y, z are light and θ (z) ≺ x ≺ θ (y).
Then we have θ (z) ≺ v ≺ θ (y) for every v ∈ Y+i, j since θ (y),θ (z) < Yi, j . Note that zv,vy ∈ E(T )

for every v ∈ Y+i, j \ Ri , then we repeat the argument in Case 1 to reach the contradiction. This
concludes the proof. □

We can now strengthen Lemma 7.6 by omitting the assumption that x belongs to a local triangle
of O.

Lemma 7.7. Let x ∈ Â and suppose that there is a vertex-disjoint collection O of local triangles and
strong arcs with |O| = k . Then there is a vertex-disjoint collection O ′ of local triangles and strong arcs
such that |O ′ | = k and x does not belong to any triangle or strong arc of O.

Proof. Let O be the vertex set of O, then |O | ≤ 3k and x ∈ O (otherwise, the lemma is obvious).
If x belongs to a local triangle of O, then we apply Lemma 7.6. Otherwise, x belongs to a strong arc
of O, say xy (note that in this proof, we do not consider the orientation of a strong arc, i.e. when
we say uv is a strong arc, we mean either uv or vu is a strong arc).

By Lemma 7.5, NG (Â) ⊆ ÜS , and so y ∈ NG (x) ⊆ ÜS , and |NG (y) ∩ Â| ≥ ℓ
√
k |{y}| = ℓ

√
k . Let

Z = NG (y)∩Â. If there isv ∈ Z such thatv < O , then O ′ := (O \{xy})∪{vy} is a desired collection.
Thus, we conclude that Z ⊆ O .

Suppose that there is v ∈ Z such that v belongs to a local triangle of O. Since v ∈ Â, we apply
Lemma 7.6 tov and obtain a collection O ′′ such that |O ′′ | = k andv does not belong to any triangle
or strong arc of O ′′. Note also that according to the proof of Lemma 7.6, O ′′ is obtained from O
by exchanging some strong arcs and a local triangle. If x is freed by these exchange, then O ′′ is a
desired collection. Note that it is impossible that x is freed and then recaptured to O ′ in a strong
arc, since we can always have k candidates of strong arcs, and so we can avoid recapturing x . x
is freed and then recaptured to O ′ in a local triangle, then we just apply Lemma 7.6 again to x to
find a desired collection. Thus, we concluded that x is “untouched" during the swapping procedure
above, i.e. xy ∈ O ′′. Then O ′ := (O ′′ \ {xy}) ∪ {vy} is a desired collection.

We conclude that every element ofZ belongs to some strong arc ofO. ThenO contains amatching
of strong arcs from Z to S . LetW be the set of vertices of S in that matching, then |W | = |Z | ≥ ℓ

√
k .

Note that Z ⊆ Â. By Lemma 7.5, we have NG (Â) ⊆ ÜS , and soW ⊆ ÜS . By Lemma 7.5 again, we have

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:42 F. Fomin et al.

|NG (W )| ≥ ℓ
√
k |W | ≥ ℓ

√
k × ℓ

√
k = ℓ2k > 4k = |O | + 4. Thus, there is u ∈ NG (W ) such that u < O .

Let w ∈ W be a neighbor of u in G (such w always exists since u ∈ NG (W )). Let wv ∈ O. Then
O ′ := (O \ {xy,wv}) ∪ {vy,wu} is a desired collection. □

Finally, we are ready to state the reduction rule that removes an irrelevant vertex.

Reduction Rule 7.2. Let x be an arbitrary vertex in Â. Remove x from T . The new instance is
(T \ {x},k).

Lemma 7.8. Reduction Rule 7.2 is safe.

Proof. If is obvious that if (T \ {x},k) is a Yes-instance, then (T ,k) is a Yes-instance. Conversely,
suppose that (T ,k) is a Yes-instance with some solution O⋆, while (T \ {x},k) is a No-instance.
Then |O⋆ | = k . Let O be the collection of local triangles and strong arcs obtained from O as follows.
For every uvw ∈ O⋆, if uvw is local, then uvw ∈ O; otherwise, uvw must contain some strong
arcs, then choose an arbitrary strong arc of uvw to be in O. Then |O| = k . Applying Lemma 7.7,
we obtain a collection O ′ such that x does not belong to any local triangle and strong arc of O ′.

We now construct a solution to (T \ {x},k) by repeating the following argument sequentially.
Pick an arbitrary strong arc of O ′, say yz, we choose a vertexw such that yzw is a triangle,w , x
andw does not belong to any element of O ′ and set O ′ := (O ′ \ {yz}) ∪ {yzw}. It is clear that we
can always proceed the exchange since the vertex set O ′ \ {yz} has at most 3k − 3 vertices, while
there are 3k possible choices forw since yz is strong, so we can always find the desiredw . At the
end of the process O ′ is a solution to (T \ {x},k). This concludes the proof. □

7.4 Proof of Theorem 4
We are finally ready to present the proof of Theorem 2.

Proof of Theorem 2. Let (T ,k) be an instance of TPT. Our kernelization algorithm simply
applies (exhaustively) Reduction Rules 7.1 and 7.2. The output is the instance obtained once none of
these rules is applicable. Let us observe that each of Reduction Rules 7.1 and 7.2 can be applied in
polynomial time, it strictly decreases the size ofG and it does not increase k . Thus, our kernelization
algorithm runs in polynomial time.

For the sake of clarity, let us now abuse notation and denote the output instance by (T ,k). Let us
observe that V (T ) consists of the following vertices.
• Vertices in S , whose number is at most 3k .
• Vertices of X , whose number is at most pβ

√
k = O(k3/2) since p ≤

( 3
α + 3

)√
k .

Thus, the total number of vertices is indeed O(k3/2). This complete the proof. □

8 CONCLUSION
In this paper we designed first subquadratic vertex kernels for FVST, CVD, TPT, and Induced
P3-Packing. All our kernels were based on the classical Expansion Lemma and the two new versions
we proved in this article. We believe that our approach of designing kernels will be fruitful for
similar implicit packing and covering problems. A most natural open question is whether these
problems admit a kernel with O(k) vertices. Another interesting avenue is to find other problems
where the methods developed in this paper can be applied.
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