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Abstract7

In the Dominating Set problem the input is a graph G and an integer k, the task is to determine8

whether there exists a vertex set S of size at most k so that every vertex not in S has at least9

one neighbor in S. We consider the parameterized complexity of the Dominating Set problem,10

parameterized by the solution size k, and the weak closure of the input graph G. Weak closure11

of graphs was recently introduced by Fox et al. [SIAM J. Comp. 2020 ] and captures sparseness12

and triadic closure properties found in real world graphs. A graph G is weakly c-closed if for every13

induced subgraph G′ of G, there exists a vertex v ∈ V (G′) such that every vertex u in V (G′) which14

is non-adjacent to v has less than c common neighbors with v. The weak closure of G is the smallest15

integer γ such that G is weakly γ-closed. We give an algorithm for Dominating Set with running16

time kO(γ2k3)nO(1), resolving an open problem of Koana et al. [ISAAC 2020].17

One of the ingredients of our algorithm is a proof that the VC-dimension of (the set system18

defined by the closed neighborhoods of the vertices of) a weakly γ-closed graph is upper bounded by19

6γ. This result may find further applications in the study of weakly closed graphs.20
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1 Introduction25

A dominating set of a graph G = (V, E) is a set S ⊆ V of vertices of G such that every26

vertex in V /S is adjacent to at least one vertex in S. In the Dominating Set problem, the27

input is a graph G and a positive integer k and the task is to determine whether G has a28

dominating set of size at most k. Dominating Set is NP-complete and has been extensively29

studied within all established paradigms for coping with NP-hardness such as parameterized30

complexity, approximation algorithms and exact exponential time algorithms [9, 13, 19, 31].31

In fact, it is hard to overstate the pivotal role that Dominating Set has played in the32

development of parameterized complexity; it was, together with Clique, one of the first33

examples of natural parameterized problems that were proved intractable [13] as well as34

FPT-inapproximable [6, 8, 18].35

While, on the one hand, Dominating Set on general graphs has been a driver of paramet-36

erized intractability, on the other hand, the study of Dominating Set on restricted graph37

classes has been a treasure trove of algorithmic techniques. For instance, the subexponential38

time algorithms for Dominating Set on planar graphs [1, 7], and the linear kernel [2]39

on planar graphs led to the celebrated bidimensionality theory [11]. These algorithms and40

kernels have been extended to much wider classes of graphs, such as, (topological) minor free41

graphs [20], nowhere dense graphs [10, 14], d-degenerate graphs [3, 27], Ki,j-free graphs [27]42

and induced ladder-free graphs [17]. In this article we study the Dominating Set problem43

on c-closed graphs and weakly γ-closed graphs, which were recently introduced by Fox et44

al. [21].45
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23:2 Dominating Set in Weakly Closed Graphs

▶ Definition 1 ([21]). A graph G is said to be c-closed if for every pair of non-adjacent46

vertices u and v in G, ∣NG(u) ∩NG(v)∣ < c. A graph G is said to be weakly γ-closed if for47

every induced subgraph G′ of G there exists a vertex v in G′ such that for every vertex u48

in G′ not adjacent to v, ∣NG′(u) ∩NG′(v)∣ < γ. The closure of a graph G is the smallest c49

such that G is c-closed. The weak closure of a graph G is the smallest γ such that G is50

weakly γ-closed.51

The class of c-closed and weakly γ-closed graphs contains the class of graphs of maximum52

degree at most c and graphs with degeneracy at most γ, respectively. Additionally they53

capture the triadic closure principle, namely that two people who have many common friends54

in a social network are likely to be friends themselves. From an application viewpoint, the55

weak closure is typically found to be small for large real-world social network graphs [21, 23].56

In addition, the parameters also have the appealing feature that they are computable in57

polynomial time [21].58

Motivated by the salient features of (weakly) closed graphs, Koana et al. [24] initiated a59

systematic study of the parameterized complexity of computational problems on c-closed60

graphs, closely followed by Husic and Roughgarden [22]. Koana et al. [24] show that a number61

of problems, including Dominating Set, are FPT on closed graphs. In a follow up work62

Koana et al. [23] show that a number of problems remain FPT even on weakly closed graphs.63

Very recently, the same set of authors [25] provide polynomial kernels and kernel lower bounds64

for various problems including Connected Vertex Cover and Capacitated Vertex65

Cover on weakly closed graphs. They also obtain polynomial kernels for Dominating Set66

on weakly closed split graphs and weakly closed bipartite graphs. However, they were not67

able to obtain an FPT algorithm for Dominating Set on weakly closed graphs, leading68

them to pose the existence of such an algorithm as an open problem. Specifically, Koana et69

al. [23] asked whether the following parameterized problem is FPT or not.70

Dominating Set in weakly γ-closed graph Parameter: γ, k

Input: Weakly γ-closed graph G and a non-negative integer k.
Question: Does there exist a set X ⊆ V (G) of size at most k such that NG[X] = V (G).

71

In this work, we give an algorithm with running time kO(γ2k3)nO(1), resolving the problem72

in the affirmative. We now state our main result.73

▶ Theorem 2. There exists a deterministic algorithm that given as input a weakly γ-closed74

graph G and an integer k determines in time kO(γ2k3)nO(1) whether G has a dominating set75

of size at most k and outputs one if it exists.76

Methods. Our algorithm is based on domination cores, first defined by Dawar and77

Kreutzer [10] and then later employed in multiple settings [14, 15, 17]. A k-domination core78

of a graph is a set X of vertices of the graph such that every set of size at most k that79

dominates X dominates the whole graph. Observe that the set of all vertices of a graph is a80

domination core. It is well known (for example see [10] Lemma 4.1) that if one can efficiently81

compute a domination core whose size is upper bounded by a function of k, then we can82

obtain an FPT algorithm for Dominating Set. Thus our main technical contribution is an83

algorithm that given a graph produces a k-domination core of the graph of size kO(γk2).84

We now give a very rough sketch of the proof for our main technical claim – that every85

domination core W of size at least b, where b = kO(γk2) contains at least one vertex w such86

that W /{w} is also a domination core, and that such a vertex w can be found efficiently. In87

this exposition we focus only on the claim of existence of w. Suppose such a vertex w does88
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not exist. Then, for every vertex w ∈W there must exist a set Xw of size at most k that89

dominates all of W /{w}, but does not dominate w – otherwise W /{w} is still a domination90

core. We call a set W that has this property a k-threshold set1 and prove that a weakly91

γ-closed graph can not contain a k-threshold set of size at least b.92

The advantage of shifting our attention from k-domination cores to k-threshold sets is93

that k-threshold sets are closed under subsets – every subset of a k-threshold set is also a94

k-threshold set. This allows us to “dig for structure”, that is, prove results of the form “if G95

has a sufficiently large k-threshold set W then W contains a large (as a function of k and96

∣W ∣) k-threshold set W ′ with some additional property”.97

By invoking a (multi-color version of the) Ramsey Theorem [4] on an appropriately98

constructed auxiliary graph, we extract from W a sufficiently large and sufficiently symmetric99

threshold set W ′ ⊆ W . The existence of a large and symmetric threshold set W ′ in turn100

implies that G must contain as an induced subgraph one of three simple pattern graphs101

(such as a complete bipartite graph with γ + 1 vertices on both sides). Each one of these102

three pattern graphs can easily be shown not to be weakly γ-closed, contradicting that G103

was weakly γ-closed in the first place.104

We remark that the actual proof proceeds in a different order of the exposition above.105

First, in Section 3 we define the pattern graphs that we will use and show that they are106

not weakly γ-closed. In Section 5 we prove that a purely existential upper bound on the107

size of k-threshold sets implies both an FPT algorithm to find a small k-domination core,108

and an FPT algorithm for Dominating Set. In Section 6 we obtain the aforementioned109

upper bound on the size of k-threshold sets in weakly γ-closed graphs by showing that a110

k-threshold set of size at least b = kO(γk2) implies that G must contain one of the forbidden111

pattern graphs from Section 3.112

Efficiently computing a domination core W of size kO(γk2) immediately leads to a113

2kO(γk2)
nO(1) time algorithm for Dominating Set on weakly γ-closed graphs. Indeed, to114

find a dominating set for G of size k (if one exists), it is sufficient to find a set S of size at115

most k that dominates all of W . This can be done by trying all possible partitions of W116

into k parts P1, . . . , Pk, and then determining whether there exists for every part Pi a single117

vertex si ∈ V (G) that dominates Pi. This algorithm already resolves the open problem of118

Koana et al. [23] in the affirmative. At the same time the double exponential running time119

dependence on k is unsatisfactory.120

We are able to improve the running time of our algorithm for Dominating Set to121

kO(γ2k3)nO(1) by proving an additional purely graph-theoretic result regarding the structure122

of weakly γ-closed graphs. A set system (U,F) consists of a universe U along with a collection123

F of subsets of U . A subset containing A ⊆ U is shattered by F if each subset of A can be124

expressed as the intersection of A with a set in F . The Vapnik-Chervonenkis dimension125

(VC-dimension) of a set system is the cardinality of the largest subset A of U that is shattered126

by F . The VC-dimension of a graph is defined as the VC-dimension of the set system induced127

by the closed neighbourhoods of its vertices. We prove in Section 4 that weakly γ-closed128

graphs have VC-dimension at most 6γ.129

▶ Theorem 3. Every weakly γ-closed graph has VC-dimension at most 6γ.130

Theorem 3 is tight up to the constant factor 6 (see Section 4 for a simple construction of a131

weakly γ-closed graph with VC-dimension γ).132

1 Note that a k-threshold set is not necessarily a k-domination core, however every inclusion minimal
k-domination core is a k-threshold set.
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23:4 Dominating Set in Weakly Closed Graphs

Theorem 3 (together with our bound on the size of k-threshold sets) quite directly leads133

to a kO(γ2k3)nO(1) time algorithm for Dominating Set on weakly γ-closed graphs. Indeed,134

the double exponential running time of the previous algorithm came from the algorithm to135

determine whether there exists a set S of size at most k that dominates the entire domination136

core W . The size of the k-domination core W is assumed to be upper bounded by kO(γk2).137

Our improved algorithm to find S is remarkably simple: if two vertices u and v not in W138

have exactly the same set of neighbors in W , we remove u from the graph (since we can139

always pick v in its place). After this reduction, the Sauer-Shelah Lemma [28, 29] (See140

Lemma 8) implies that there are at most kO(γ2k2) vertices left in G. Then a brute force141

algorithm that tries all possibilities for S takes time kO(γ2k3)nO(1).142

We believe that Theorem 3 will find further uses in the design of algorithms for problems143

on weakly γ-closed graphs. For an example Theorem 3 also immediately implies that144

the improved approximation algorithm for Dominating Set on graphs of bounded VC-145

dimension [5, 16] applies to weakly γ-closed graphs (see Section 4 for details).146

2 Notation and Preliminaries147

In this section we give notations, and definitions that we use throughout the paper. Unless148

specified we will be using all general graph terminologies from the book of Diestel [12].149

Given a graph G, we use V (G) and E(G) to denote the set of vertices and edges,150

respectively. We denote the open neighbourhood of a vertex v in G by NG(v) = {u ∶ u ∈151

V (G), (u, v) ∈ E(G)} and closed neighbourhood by NG[v] = {v} ∪ NG(v). Further, we152

denote the non-neighbourhood of v by NG[v] = V (G)/N[v]. We extend this notation to a set153

S ⊆ V (G) as well, that is NG(S) = ⋃
v∈S

NG(v), NG[S] = ⋃
v∈S

NG[v] and NG[S] = V (G)/NG[S].154

Whenever the graph G is clear from the context, we will omit the subscript. A dominating155

set of G is a set of vertices S ⊆ V (G) such that N[S] = V (G). For any X ⊆ V (G), we use156

the notation G[X] to denote the subgraph induced by X in G.157

We use the symbol ⊍ to denote the disjoint union operation on sets. Let l be a positive158

integer. We use the notation [l] to denote the set {1, . . . , l}. A graph G having vertex set159

V (G) = A ⊍B is called a split graph if A is a clique and B is an independent set. A graph160

G is d-degenerate if every subgraph G′ of G has a vertex having degree at most d. We will161

need the notion of weak ordering of a weakly γ-closed graph. It is very similar to notion of162

degeneracy ordering for degenerate graphs [12].163

▶ Definition 4 ([21]). A weak ordering O of a weakly γ-closed graph G is an ordering164

O = {v1, . . . , vn} of V (G) such that for each vi ∈ V (G) and for each u ∈ NGi[vi], it holds165

that ∣NGi(u) ∩NGi(vi)∣ < γ, where Gi = G[{vi, . . . , vn}]. A forward neighbour of vi is a166

vertex adjacent to vi in Gi.167

3 Obstructions to Weak Closure168

In this section, we define a few simple pattern graphs and proceed to show that they (except169

split half-graphs, which are weakly 1-closed) are not weakly γ-closed. Many of our proofs are170

of the form “every weakly γ-closed graph G either has some desirable property or contains171

one of these patterns. The second case contradicts that G is weakly γ-closed, so we conclude172

that G has the desirable property”.173
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▶ Definition 5. 2 Given a positive integer n, let A = {a1, . . . , an}, B = {b1, . . . , bn} and174

C = {c1, . . . , cn} be disjoint vertex sets. We define the following graphs:175

1. A bipartite graph G with vertex set V (G) = A ⊍B and bipartition A and B is called a176

complete bipartite graph of order n if ∀i, j ∈ [n], (ai, bj) ∈ E(G).177

2. A graph G with vertex set V (G) = A ⊍B is called a semi split co-matching of order178

n if A is a clique and ∀i, j ∈ [n], (ai, bj) ∈ E(G) iff i ≠ j. The edges between B can be179

arbitrary.180

3. A graph G with vertex set V (G) = A⊍B is called a split half graph of order n if G is a181

split graph with B being the independent set and ∀i, j ∈ [n], (ai, bj) ∈ E(G) iff j > i.182

4. A graph G with vertex set V (G) = A⊍B ⊍C is called a double split half graph of order183

n if G[A ∪B] and G[B ∪C] are split half graphs with B being the independent set. That184

is ∀i, j ∈ [n], (ai, bj) ∈ E(G) iff j > i and (bi, cj) ∈ E(G) iff j > i. The edges between A185

and C can be arbitrary.186

▶ Lemma 6. 3 If G is weakly γ-closed, then it does not contain any of the following graphs187

as an induced subgraph.188

(i) Complete bipartite graph of order n ≥ γ.189

(ii) Semi split co-matching of order n > γ.190

(iii) Double split half graphs of order n ≥ 3γ.191

4 VC-dimension of Weakly Closed Graphs192

In this section we prove Theorem 3, that is we show that the VC dimension of weakly193

γ-closed graphs is at most 6γ. Recall that the VC-dimension of a graph is defined as the194

VC-dimension of the set system induced by the closed neighbourhoods of its vertices.195

Proof of Theorem 3. Suppose that the VC dimension of G is greater than 6γ. We will show196

that G is not weakly closed, thus contradicting our assumption. Since we assumed that the197

VC dimension is at least 6γ + 1, there is a set X ⊆ V (G) of size 6γ + 1 that is shattered in G.198

Since X is shattered, for each x ∈X, there exists a vertex y that dominates all vertices in X199

except x. We note that for each x ∈X, there can be more than one such vertex but we need200

only one for our proof. We will call y the partner of x and x the partner of y. Observe that201

no two vertices in X can have the same partner. Let Y be the set of partners of all vertices202

in X. Also observe that every x ∈X dominates all vertices in Y except its partner and every203

y ∈ Y dominates all vertices in X except its partner. We start by extracting a sufficiently204

large clique from X or Y .205

▷ Claim 7. There exists a clique Z of size at least γ + 1 such that Z ⊆X or Z ⊆ Y .206

Proof. Let X1 be an arbitrary subset of X of size 3γ, and let Y1 be an arbitrarily chosen set207

of 3γ vertices in Y that have no partner in X1. If ∣X1 ∩ Y1∣ > γ then Z =X1 ∩ Y1 is a clique208

that satisfies the conclusion of the lemma since every vertex in Y1 dominates X1.209

We proceed with the case that ∣X1 ∩ Y1∣ ≤ γ. Define X ′ = X1/Y1 and Y ′ = Y1/X1 (i.e.210

remove common vertices from X1 and Y1). Note that ∣X ′∣ ≥ 2γ and ∣Y ′∣ ≥ 2γ, that X ′ and Y ′211

are disjoint, and that every vertex in X ′ is adjacent to every vertex in Y ′. Let OX′∪Y ′ be the212

order induced by a weak ordering O of G on X ′ ∪ Y ′. There must be γ + 1 vertices all from213

either X ′ or Y ′ among the first 2γ + 1 vertices in OX′∪Y ′ . Let Z be the set of these γ + 1214

2 Refer to Figure 1 in Appendix A
3 Proof in Appendix A

CVIT 2016



23:6 Dominating Set in Weakly Closed Graphs

vertices all from X ′ or Y ′. Since all vertices in X ′ are adjacent to all vertices in Y ′, every215

pair of vertices in Z must have at least γ common forward neighbours in the ordering O.216

Thus, since G is weakly γ-closed, Z must be a clique. ◀217

Let Z be a clique as provided by Claim 7. Let PZ be the set of partners of all vertices in218

Z. Observe that Z and PZ are disjoint: for every z ∈ Z its partner z′ does not dominate z219

(by definition of partners) and therefore cannot be in Z, since Z is a clique. Next, we observe220

that every vertex z in Z is adjacent to every vertex in PZ except its partner by the definition221

of X and Y and the fact that Z ⊆X or Z ⊆ Y . The induced subgraph G[Z ∪ PZ] is a semi222

split co-matching (Definition 5) because Z is a clique, Z and PZ are disjoint and every vertex223

z in Z is adjacent to every vertex in PZ except its partner. This contradicts Lemma 6,224

concluding the proof. ◀225

Theorem 3 is tight up to the constant factor 6, since there exists a weakly γ-closed graph226

having VC-dimension γ: Consider the bipartite graph G with V (G) = A ⊍B where A has227

γ vertices and for each set S ⊆ A, B has one vertex whose neighbourhood is S. The graph228

G is weakly γ-closed and has VC-dimension at least γ since A is shattered by the closed229

neighborhood of vertices in B.230

4.1 Set Cover and graphs of bounded VC-dimension231

In the Set Cover problem, we are given a universe U , a family F of sets over U , and a232

positive integer k and the task is to determine whether there exists a subfamily F ′ ⊆ F of233

size at most k such that ⋃
X∈F ′

X = U . It is known [28, 29] that if the VC-dimension of a set234

system (U,F) is bounded, then the size of the family F must be bounded.235

▶ Lemma 8 (Sauer-Shelah lemma [28, 29]). If the VC-dimension of a set system (U,F) is236

bounded by d, then F can consist of at most ∑d
i=0 (∣U ∣i

) = O(∣U ∣d) sets.237

We will exploit the fact that weakly closed graphs have bounded VC-dimension in the238

following way. Dominating Set on a graph of bounded VC-dimension corresponds to Set239

Cover on the set system (U,F) where U = V (G) and F = {N[v] ∶ v ∈ U}.240

For a general set system (U,F), there is a naive algorithm that goes over all families F ′241

of size at most k in F and checks whether F ′ is a set cover in time ∣F ∣k ∣U ∣O(1). However if242

the VC-dimension of (U,F) is bounded by d, then by Lemma 8, ∣F ∣ = O(∣U ∣d) and therefore243

this algorithm solves Set Cover in O(∣U ∣kd) time.244

▶ Theorem 9. There exists a deterministic algorithm that given a Set Cover instance245

(U,F , k) such that the VC-dimension of (U,F) is bounded by d determines in time O(∣U ∣kd)246

whether the instance has a set cover of size at most k and outputs one if it exists.247

We remark that this is not an FPT algorithm parameterized by k and d. However we will be248

invoking Theorem 9 with ∣U ∣ bounded by 2poly(k) and d bounded by 6γ in our algorithm for249

Dominating Set.250

An upper bound on the VC-dimension of G also leads to an improved approximation251

algorithm for Dominating Set. Indeed Brönnimann and Goodrich [5] give a O(d log(dk))252

approximation algorithm for set systems of VC-dimension d, where k is the size of the optimal253

solution. This, together with Theorem 3 directly yields a O(γ log(γk))-approximation for254

Dominating Set on weakly γ-closed graphs.255
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5 Dominating Set in Weakly Closed Graphs256

Our algorithm is based on domination cores, which have been used for several algorithms for257

the Dominating Set problem [14, 15, 17].258

▶ Definition 10. Given a graph G, an integer k, a set S ⊆ V (G) is called a k-domination259

core of G if ∀X ⊆ V (G) such that ∣X ∣ ≤ k and S ⊆ N[X], it holds that N[X] = V (G).260

It is easy to see that the set of all vertices in a graph is a trivial domination core. We261

wish to prove that weakly γ-closed graphs contain k-domination cores whose size is upper262

bounded by a function of k and γ. This naturally leads our attention to inclusion minimal263

k-domination cores.264

▶ Definition 11. A k-domination core W is called a minimal k-domination core if265

∀w ∈W , W /{w} is not a k-domination core.266

We note that whenever k is clear from the context, we will omit k while referring to267

domination cores. In the following lemma, we provide a bound on the size of minimal268

domination cores in weakly γ-closed graphs.269

▶ Lemma 12. Every minimal k-domination core of a weakly γ-closed graph G has size at270

most b, where b = kO(γk2).271

Lemma 12 leads to the following intuitive algorithm - Start with the trivial domination272

core D = V and as long as ∣D∣ > b keep discarding a vertex x from D such that D remains a273

domination core (we will soon discuss how to algorithmically identify the vertex x, for now274

ignore this issue).275

Finally use D to construct a Set Cover instance having universe D and family F =276

{N[v] ∩D ∶ v ∈ V (G)}. Since G is weakly γ-closed, by Theorem 3, G has VC-dimension at277

most 6γ. Thus, the Set Cover instance also has VC-dimension at most 6γ and so we use278

Theorem 9 to find a set cover of size at most k if exists from which a dominating set for G279

can easily be recovered.280

We now turn to the issue of identifying a vertex x to remove from D when ∣D∣ > b. To281

this end, we will use the following property of every minimal k-domination core W : for each282

w ∈W , there is a set Xw of size at most k that dominates all of W /{w} but not w. Indeed,283

suppose there is a w ∈W for which no such Xw exists, and consider a set X of size at most284

k which dominates W /{w}. Then X also dominates w (by the non-existence of Xw) and by285

extension all of G (since W is a k-domination core). But then W /{w} is also a domination286

core, contradicting minimality. We capture this property in the following definition.287

▶ Definition 13. A vertex set S is a k-threshold set if for every v ∈ S there exists a set288

Xv of size at most k so that N[Xv] ∩ S = S/{v}.289

Also note that every subset S′ of a k-threshold set S is also a k-threshold set because290

for every v ∈ S′, a set Xv of size at most k such that N[Xv] ∩ S = S/{v} also satisfies291

N[Xv] ∩ S′ = S′/{v} as S′ ⊆ S. We will use this property explicity in the next section. For292

now, the discussion leading up to Definition 13 immediately leads to the following observation.293

294

▶ Observation 14. Every minimal k-domination core of a graph G is also a k-threshold set295

of G.296

CVIT 2016



23:8 Dominating Set in Weakly Closed Graphs

Since every minimal k-domination core is a k-threshold set, we will bound the size of k-297

threshold sets in weakly γ-closed graphs, proving Lemma 12 and leading to an algorithm.298

299

▶ Lemma 15. Every k-threshold set of a weakly γ-closed graph G has size at most b, where300

b = kO(γk2)
301

We now outline how Lemma 15 can be used to identify a vertex x to be removed from a302

domination core D having size more than b such that D/{x} still remains a domination core.303

No subset of D having size b + 1 can be a threshold set because of Lemma 15. Thus, we can304

pick an arbitrary subset X of D having size b + 1 and for each x ∈ X, test whether X/{x}305

has a dominating set of size at most k without dominating x. Since X is not a threshold set,306

we will find a vertex x ∈ X for which such a dominating set does not exist. Thus, we can307

remove x from D and D/{x} will still remain a domination core.308

We are now ready to patch up our ideas and provide the full algorithm to prove Theorem 2309

assuming Lemma 15 is true. We dedicate the next section solely for the proof of Lemma 15.310

Proof of Theorem 2 (assuming the statement of Lemma 15). We first provide the algorithm:311

Initialize D = V (G). As long as ∣D∣ > b, arbitrarily pick a subset X of D having size b + 1.312

For each x ∈X, construct a Set Cover instance Ix = (Ux,Fx, k) with universe Ux =X/{x}313

and family Fx = {N[y]∩X/{x} ∶ y ∈ N[x]}. Solve Ix using Theorem 9. If Ix is a no instance,314

set D =D/{x} and proceed to start of the loop.315

After the loop terminates, construct the Set Cover instance I = (U,F , k) where U =D316

and F = {Xv = N[v] ∩D ∶ v ∈ V (G)}. Use Theorem 9 to find a set cover S ⊆ F having size317

at most k if exists for I. Return no and terminate the algorithm if I is a no instance. If I is318

a yes instance, return the set D′ = {v ∶Xv ∈ S}.319

▷ Claim 16. During each iteration of the loop, the algorithm finds a vertex x to remove320

from D.321

Proof. Consider an arbitrary iteration of the loop. It is clear that ∣D∣ > b since the algorithm322

enters the loop. Observe that no subset of D having size b + 1 can be a k-threshold set323

by Lemma 15. Let X be the subset of D picked by the algorithm in that iteration, it is324

clear that X is not a k-threshold set. Thus, by definition of a k-threshold set, there exists a325

vertex x ∈ X for which X/{x} does not have a dominating set of size at most k that does326

not dominate x. It is also easy to see that X/{x} has a dominating set of size at most k327

not dominating x if and only if Ix has a set cover of size at most k. Thus, there is a vertex328

x ∈ X for which Ix does not have a set cover of size at most k. Therefore, the algorithm329

would have removed at least one element from D in that iteration. ◀330

▷ Claim 17. In each iteration of the algorithm, D is a domination core.331

Proof. Since the set of all vertices of G is itself a trivial domination core, the algorithm332

starts with a domination core D = V (G). Let X be the subset of D of size b+1 picked by the333

algorithm in that iteration. Also let x ∈X be the vertex removed from D in that iteration.334

By the previous claim, such an x exists. Since the algorithm removed x from D, the set335

cover instance Ix must have been a no instance. It is easy to see that Ix is a no instance336

if and only if X/{x} does not have a dominating set of size at most k without dominating337

x. Thus, since every set of size at most k dominating D/{x} will dominate X/{x} which in338

turn will dominate x, D/{x} is a k-domination core.339

Thus, in all iterations of the algorithm, D is a k-domination core. ◀340
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Now consider D in the last step of the algorithm. The algorithm reaches this step because of341

the first claim. It is easy to see that I is an yes instance if and only if D has a dominating342

set of size at most k. Since D is a domination core by the previous claim, this implies that343

G has dominating set of size at most k if and only if I is a yes instance. Thus, the algorithm344

returns a dominating set of G of size at most k if one exists, otherwise returns no. Namely,345

the recovered set D′ is a dominating set of G.346

For the runtime, the time taken to identify a vertex to remove from D when ∣D∣ > b347

is bO(γk) using Theorem 9 as ∣Ux∣ = b and the VC-dimension of the set system (Ux,Fx) is348

bounded by 6γ by Theorem 3. This step is repeated at most n − b times. The final step to349

find the dominating set again takes bO(γk) time since in the last step D has size at most b.350

Thus, in total the algorithm takes bO(γk)nO(1) time which is kO(γ2k3). ◀351

6 Threshold Sets in Weakly Closed Graphs352

In this section, we prove the crux of our algorithm, namely Lemma 15 which bounds the size353

of threshold sets in weakly γ-closed graphs. We first begin by stating that the graph induced354

by any k-threshold set of a weakly γ-closed graph is sparse.355

▶ Lemma 18. 4 Given any weakly γ-closed graph G and k-threshold set S of G, G[S] is356

(γ − 1)k-degenerate.357

Since every d-degenerate graph on n vertices has an independent set of size at least n/(d +358

1) [12], any large k-threshold set will also have a large independent set. This leads us to359

define the following notion.360

▶ Definition 19. A k-threshold set S of a graph G is called an independent k-threshold361

set of G if S is an independent set.362

Further, since every k-threshold set S of a weakly γ-closed graph has an independent set of363

size at least ∣S∣
(γ−1)k+1 and since every subset of a k-threshold set is also a k-threshold set, we364

obtain the following result.365

▶ Lemma 20. Every k-threshold set S of a weakly γ-closed graph has an independent366

k-threshold set of size at least ∣S∣
(γ−1)k+1 .367

By the previous lemma, it is clear that to bound the size of threshold sets in weakly closed368

graphs, it is enough to bound the size of independent threshold sets. This fact along with369

Lemma 21 stated below combined prove Lemma 155.370

▶ Lemma 21. Every independent k-threshold set of a weakly γ-closed graph G has size at371

most kO(γk2).372

We prove Lemma 21 by contradiction. Assuming that G has a large independent k-373

threshold set, we first use results from Ramsey theory to extract a sufficiently large and highly374

symmetric independent 2-threshold set (this is never proved explitly in the argument). The375

highly structured independent 2-threshold set implies that G contains one of the obstructions376

from Lemma 6, contradicting that G is weakly γ-closed.377

4 Proof in Appendix B
5 proof in Appendix C.
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Proof of Lemma 21. Let W be an independent k-threshold set of a weakly γ-closed graph378

G having size greater than (315k2)(316γk2). As a first step, we will use results from Ramsey379

theory to obtain three subsets of vertices of G having useful properties. We will then use380

these sets to show that G has one of the graphs listed in Lemma 6 as an induced subgraph.381

By Lemma 6, this will imply that G is not a weakly γ-closed graph, contradicting our382

assumption and thus completing the proof.383

Since W is a k-threshold set of G, for every vertex w ∈W there exists a set Xw ⊆ V (G)384

of size at most k that dominates all vertices in W except w. For each w ∈ W , order the385

vertices in Xw arbitrarily. Let Xw = {x1
w, . . . , xpw

w } be the ordering. Also order the vertices386

in W arbitrarily. Let W = {w1, . . . , wq} be the ordering.387

We now create an auxiliary edge-colored complete graph H with vertex set W . Each388

color will be a tuple6 whose size and possible values will become clear in the next step where389

we assign colors to the edges.390

For every pair i, j ∈ [∣W ∣] such that i < j, we color the edge (wi, wj) in H as follows:391

1. One entry for the number r such that xr
wi

dominates wj (if more than one such r exists,392

choose one arbitrarily)393

2. One entry for the number s such that xs
wj

dominates wi (if more than one such s exists,394

choose one arbitrarily)395

3. For each pair7 of vertices in the multi-set {wi, wj , xr
wi

, xs
wj

, xr
wj

, xs
wi
} one entry from396

{0, 1, 2} to denote whether those two vertices are (0) the same vertex (1) different and397

adjacent vertices or (2) different and non-adjacent vertices.398

From the definition of H, it follows that the number of possible distinct edge-colors of H399

is at most 315k2. Let B ⊆W be a monochromatic clique of maximum size in H and let τ be400

the color of all the edges in the clique. We will now use the well-known fact (from Ramsey401

theory [4]) that every edge-colored complete graph on n vertices colored with t colors has402

a monochromatic clique of size at least logt(n)/t to lower bound the size of B. Since the403

number of possible distinct edge-colors of H is at most 315k2 and the size of W is greater404

than (315k2)(316γk2), the size of B is at least 3γ.405

Let B = {b1, . . . , bl} be the ordering of vertices of B in W . Let r and s be the two entries406

in τ that denote the numbers such that for every pair i, j ∈ [l] having i < j, xr
bi

dominates407

bj and xs
bj

dominates bi. Let A = {xr
b1

, . . . , xr
bl
} and C = {xs

b1
, . . . , xs

bl
} be ordered multi-sets.408

For now, we will assume that A and C could be multi-sets but we will soon prove that it is409

not the case. We now capture some desired properties of A, B and C.410

▷ Claim 22. The multi-sets B = {b1, . . . , bl}, A = {xr
b1

, . . . , xr
bl
}, and C = {xs

b1
, . . . , xs

bl
} satisfy411

the following properties:412

1. B is an independent set in G.413

2. A, B and C are sets.414

3. A ∩B = ∅, B ∩C = ∅ and either A ∩C = ∅ or A = C.415

4. ∀i ∈ [l], (bi, xr
bi
) ∉ E(G) and (bi, xs

bi
) ∉ E(G).416

5. ∀i, j ∈ [l] such that j > i, (xr
bi

, bj) ∈ E(G) and (bi, xs
bj
) ∈ E(G).417

6. A and C are each either an independent set or a clique in G.418

7. ∀i, j ∈ [l], such that j < i, (xr
bi

, bj) ∈ E(G) or ∀i, j ∈ [l], such that j < i (xr
bi

, bj) ∉ E(G).419

8. ∀i, j ∈ [l], such that j < i, (bi, xs
bj
) ∈ E(G) or ∀i, j ∈ [l], such that j < i, (bi, xs

bj
) ∉ E(G).420

6 When comparing equality of two edge colors, we compare corresponding entries of the two tuples in the
order they are defined. Thus the order of the entries in the tuples matter.

7 We will not need all 15 pairs in our arguments. The colors are defined in this way to keep the description
simple.
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Proof. Since B ⊆W and W is a independent threshold set, it follows that B is an independent421

set (property 1). We now prove property 2. By definition, B is a subset of W which is a set.422

Now we prove that for each pair i, j ∈ [l] such that i < j, xr
bi
≠ xr

bj
and xs

bi
≠ xs

bj
. Since r and423

s are entries in the coloring τ , xr
bi

dominates bj and xs
bj

dominates bi. But by definition xr
bj

424

does not dominate bj and xs
bi

does not dominate bi. Therefore xr
bi
≠ xr

bj
and xs

bi
≠ xs

bj
.425

For property 3, we first show that A ∩B = ∅. We prove that ∀i, j ∈ [l], bi ≠ xr
bj

. If i = j,426

then bi ≠ xr
bj

because by definition xr
bi

belongs to Xi and thus does not dominate bi. Let427

bi = xr
bj

for some i > j, then in the coloring τ the entry corresponding to the pair of vertices bi428

and xr
bj

must be 0 since they are the same. Thus, since all edges in clique B in H have color429

τ , it means that xr
b1
= b2 and xr

b1
= b3 but b2 ≠ b3. Thus, bi ≠ xr

bj
. Similarly, we can prove430

that bi ≠ xr
bj

in the case when i < j. The proof that B ∩C = ∅ is symmetric and therefore431

omitted.432

Now, we show that A ∩ C = ∅ or A = C. If r = s, then A = C. If r ≠ s, we will show433

that ∀i, j ∈ [l], xr
bi
≠ xs

bj
. If i = j, by the definition of Xbi , it follows that xr

bi
≠ xs

bi
. If i ≠ j,434

without loss of generality let us consider the case when i < j and a similar argument will435

hold for the case when i > j. If xr
bi
= xs

bj
, then by our coloring τ , xr

b1
= xs

b2
and xr

b1
= xs

b3
. But436

xs
b2
≠ xs

b3
by property 2. Thus, xr

bi
≠ xs

bj
.437

Property 4 is true because A ∩B = ∅, B ∩C = ∅ and for each bi in B, xr
bi

and xs
bi

are in438

Xi and thus do not dominate bi. Property 5 follows because A ∩B = ∅, B ∩C = ∅ and the439

fact that r and s are entries in the coloring τ such that ∀i, j ∈ [l], having j > i, xr
bi

dominates440

bj and xs
bj

dominates bi.441

Since A ∩B = ∅ and B ∩ C = ∅, ∀i, j ∈ [l] such that j < i the coloring τ has an entry442

with value either 1 or 2 corresponding to each pair in {(xr
bi

, xr
bj
), (xs

bi
, xs

bj
), (xr

bi
, bj), (bi, xs

bj
)}.443

Since (1) denotes that the pair of vertices are adjacent and (2) denotes that the pair of444

vertices are non-adjacent, properties 6-8 are true. This completes the proof.445

◀446

We now use the sets (Claim 22 Property 2) A, B, and C to show that G has one of the graphs447

listed in Lemma 6 as an induced subgraph. For this, we will use the properties listed in448

Claim 22. We remark that we will directly refer to them as properties rather than referring449

to the claim each time. Recall that l = ∣A∣ = ∣B∣ = ∣C ∣. Firstly, we divide into two cases based450

on whether A = C or not.451

452

Case (i) A = C : By property 3, A and B are disjoint. We divide this case further453

into two cases based on property 6 - A is either an independent set or a clique.454

(a) A is a clique: Let G′ = G[A ∪B]. Then, B is an independent set (by property 1) and455

∀i, j ∈ [l] (xr
i , bi) ∉ E(G′) if i = j (by property 4) and (xr

i , bj) ∈ E(G′) otherwise (by456

properties 5 and A = C). Thus G′ is a semi split co-matching of order l ≥ 3γ.457

(b) A is an independent set: Let A′ = {xr
b1

, . . . , xr
bγ
}, B′ = {bγ+1, . . . , b2γ}, and G′ = G[A′∪B′].458

Observe that we can define sets A′ and B′ since l ≥ 3γ. Again, by property 5, ∀i ∈459

{1, . . . , γ}, j ∈ {γ + 1, . . . , 2γ}, (xr
bi

, bj) ∈ E(G′). Thus G′ is a complete bipartite graph of460

order γ.461

Case (ii) A ≠ C : Since A ≠ C, by property 3 the sets A, B, and C are disjoint. We divide462

this case further based on properties 6-8.463

(a) A is an independent set: Let A′ = {xr
b1

, . . . , xr
bγ
}, B′ = {bγ+1, . . . , b2γ} and G′ = G[A′∪B′].464

We can show that G′ is a complete bipartite graph by the same argument as case (i.b).465

(b) C is an independent set: Same argument as the previous case with sets B′ = {b1, . . . , bγ},466

C ′ = {xs
bγ+1

, . . . , xs
b2γ
} and graph G′ = G[B′ ∪C ′].467
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(c) A is a clique and ∀i ∈ [l], ∀j < i, xr
bi

is adjacent to bj : Similar to case (i.a), G′ = G[A∪B]468

is a semi split co-matching of order l ≥ 3γ.469

(d) C is a clique and ∀i ∈ [l], ∀j < i, bi is adjacent to xs
bj

: Same argument as previous case470

with G′ = G[B ∪C].471

(e) A and C are cliques, ∀i ∈ [l], ∀j < i, xr
bi

is not adjacent to bj and ∀i ∈ [l], ∀j < i, bi is not472

adjacent to xs
bj

: Let G′ = G[A ∪B ∪C]. By the case we are in and property 5, it follows473

that G′ is a double split half graph with B being the independent set (property 1).474

Thus, in all cases G[A ∪ B ∪ C] is not weakly γ-closed by Lemma 6, contradicting the475

assumption that G is weakly γ-closed, and completing the proof of the lemma. ◀476

7 Conclusion and Barriers to Further Improvements477

In this work we gave an algorithm for Dominating Set with running time 2O(γ2k3)nO(1).478

This resolves affirmatively an open problem of Koana et al. [23] who asked whether the479

problem is fixed-parameter tractable when parameterized by k and the weak closure γ of the480

input graph. Our running time hides a large constant in the exponent. We made no effort to481

optimize this constant because, at this point, it is not even clear that the form O(γ2k3) of482

the exponent in the running time is near-optimal.483

On the way to obtaining our main result, we proved that every minimal k-domination484

core of G has size at most kO(γk2). We also showed that the VC-dimension of a weakly485

γ-closed graph G is at most 6γ and used this result in our FPT algorithm for Dominating486

Set and to obtain an O(γ log(γk))-approximation for Dominating Set. The bound on487

VC-dimension might be interesting for other problems on weakly-closed graphs.488

Our work leaves the following natural open problem: does Dominating Set admit489

a kernel of size kf(γ) for some function f? One natural approach would be to improve490

the bound in Lemma 12 by obtaining a polynomial upper bound for the size of minimal491

domination cores in weakly closed graphs. Unfortunately, this is not possible: for every492

positive integer k, there exists a weakly 1-closed graph with a minimal k-domination core of493

size 2k+1 (see Appendix D). Notice that the argument only shows an obstacle for using this494

approach for getting polynomial kernels and does not rule out the existence of polynomial495

kernels.496

In light of the O(γ log(γk)) approximation algorithm from Section 4, it is natural to497

ask whether Dominating Set could admit for every fixed constant γ a constant factor498

approximation algorithm on weakly γ-closed graphs. It is known from [30] Theorem 2499

that there exists a c such that a polynomial time c log n
log log n

-approximation algorithm for500

Dominating Set in K3,3-free graphs would imply that NP ⊆ DTIME(2n1−ε) for some501

0 < ε < 1/2. The graphs constructed in the reduction8 are also weakly 3-closed and hence we502

get the same result for weakly 3-closed graphs.503
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A Proof of Lemma 6 (Obstructions to Weak Closure)599

In order to prove Lemma 6, we will first prove that complete bipartite graphs, semi split600

co-matchings and double split half graphs (see Figure 1) having order more than γ, γ, and601

3γ respectively are not weakly γ-closed.602
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Figure 1 Sufficiently large (a) complete bipartite graph, (b) semi split co-matching and (c) double
split half graph are not weakly γ-closed. Edges are colored black and non-edges are colored red. Note
that there may be arbitrary edges between the vertices in B in a semi split co-matching and between
the two cliques (A and C) in a double split half graph. On the other hand split half graphs are weakly
1-closed.

Let G be a graph, if for a vertex v in G, there exists a non-neighbour u in G such that603

∣N(u) ∩N(v)∣ ≥ γ, we will refer to u as a weak-pair of v. Observe that if u is a weak-pair of604

v, then v is also a weak-pair of u. To prove that G is not weakly γ-closed, it is enough to605

show that every vertex in G has a weak-pair.606

▶ Lemma 23. If G is a complete bipartite graph of order n ≥ γ, it is not weakly γ-closed.607

Proof. Let V (G) = {a1, . . . , an} ⊍ {b1, . . . , bn}. First, we show that ∀i, j ∈ [n], having i ≠ j,608

ai is a weak-pair of aj . It holds that (ai, aj) ∉ E(G) and ∣N(ai) ∩N(aj)∣ ≥ γ since it is a609

complete bipartite graph and n ≥ γ. Similarly ∀i, j ∈ n, having i ≠ j, bi is a weak-pair of bj .610

Thus G is not weakly γ-closed. ◀611

▶ Lemma 24. If G is a semi split co-matching of order n > γ, it is not weakly γ-closed.612

Proof. Let V (G) = {a1, . . . , an}⊍ {b1, . . . , bn}. We show that ∀i ∈ [n], bi is a weak-pair of ai613

and thus ai is a weak-pair of bi. Since G is a semi-split co-matching, ai is not adjacent to bi614

and both ai and bi are adjacent to all aj , j ≠ i. Because n > γ, ∣N(ai) ∩N(bi)∣ ≥ γ. Since all615

vertices in G have a weak pair, it is not weakly γ-closed. ◀616

▶ Lemma 25. If G is a double split half graph of order n ≥ 3γ, it is not weakly γ-closed.617

Proof. Let V (G) = {a1, . . . , an} ⊍ {b1, . . . , bn} ⊍ {c1, . . . , cn}.618

First, we will prove that ∀i ∈ [n], bi has a weak-pair. Since G is a double split half619

graph, observe that ∀i ∈ [n], bi is adjacent to all cj , j > i and to all aj , j < i. Thus,620
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since both G[{a1, . . . , an}] and G[{c1, . . . , cn}] are cliques and n ≥ 3γ, it follows that either621

∣N[bi] ∩N[ai]∣ ≥ γ or ∣N[bi] ∩N[ci]∣ ≥ γ. Hence, since bi is not adjacent to both ai and ci,622

either ai or ci is a weak pair of bi.623

Second, we will prove that ∀i ∈ [n], ai has a weak-pair. We divide the proof into two624

cases: (a) i > γ and (b) i ≤ γ.625

For case (a), we will show that bi is a weak-pair of ai. Since G is a double split half626

graph, ai is not adjacent to bi, bi is incident to all aj , j < i and G[{a1, . . . , an}] is a clique.627

Thus, as we are in the case when i > γ, it follows that ∣N(ai) ∩N(bi)∣ ≥ γ. This proves that628

bi is a weak-pair of ai.629

For case (b), we will show that either bi or some cj , j > n− γ is a weak-pair of ai. If ai is630

not adjacent to some cj , j > n − γ, then since G is a double split half graph, both ai and cj631

are adjacent to all bk, i < k < j. Since, n ≥ 3γ, i ≤ γ and j > n − γ, ∣N(ai) ∩N(cj)∣ ≥ γ and632

thus cj is a weak-pair of ai. If ai is adjacent to all cj , j > n − γ. Then again since G is a633

double split half graph, ai is not adjacent to bi and bi is adjacent to all cj , j > n − γ. Thus,634

it follows that ∣N(ai) ∩N(bi)∣ ≥ γ since n ≥ 3γ. This proves that bi is a weak-pair of ai.635

Finally, we can use a very similar argument to that used for ais to prove that ∀i ∈ [n], ci636

has weak-pair. But here the two cases will be (a) i ≤ n − γ and (b) i > n − γ.637

Therefore, since all vertices have a weak-pair, G is not weakly γ-closed. ◀638

We give a short proof for lemma 6 using the previous lemmas.639

Proof of Lemma 6. By the definition of weakly γ-closed graphs any graph having an induced640

subgraph that is not weakly γ-closed graph is also not weakly γ-closed. Thus, Lemma 6641

follows from all the previous lemmas in this section. ◀642

B Proof of Lemma 18643

We now prove Lemma 18 which says that given a weakly γ-closed graph G and a k-threshold644

set S of G, G[S] is (γ − 1)k-degenerate.645

Proof of Lemma 18. Given a weak ordering O of a weakly γ-closed graph G, let the order646

induced by O on a subset S of vertices of G be denoted by OS . To complete the proof, it is647

enough to prove the following claim.648

▷ Claim 26. Given any weakly γ-closed graph G, weak ordering O of G and k-threshold set649

S of G, every vertex in S has forward degree at most (γ − 1)k in OS .650

Proof. Suppose the claim was not true. Let u be the first vertex in OS having more than651

(γ − 1)k forward neighbours in OS . Let F be the set of forward neighbours of u in OS . Also,652

let X be a dominating set of S/{u} having size at most k and not dominating u. Since S is653

a k-threshold set of G, such a set X exists.654

Firstly we prove that every vertex v ∈X that is not adjacent to u can dominate at most655

γ − 1 vertices in F since G is weakly γ-closed. If v is ahead of u in the ordering O, then since656

no non-neighbour of u can have more than γ − 1 forward common neighbours with u, v is657

adjacent to at most γ − 1 vertices in F . Similarly, if u is ahead of v in O, the same argument658

holds with respect to v.659

Now, since ∣F ∣ > (γ − 1)k and ∣X ∣ ≤ k, by pigeon hole principle there is a vertex v ∈ X660

that is adjacent to more than γ − 1 vertices in F . Therefore u must be equal to or adjacent661

to v as G is weakly γ-closed. Thus, we have reached a contradiction to the fact that X did662

not dominate u. This completes the proof. ◀663
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Let O be a weak ordering of G, then by the above claim, OS is a degeneracy ordering of664

G[S] with degeneracy (γ − 1)k. Thus G[S] is a (γ − 1)k-degenerate graph. ◀665

C Proof of Lemma 15666

We now give a short proof for Lemma 15, that is we prove that the size of k-threshold sets in667

weakly γ-closed graphs is at most kO(γk2).668

Proof of Lemma 15. Lemma 20 shows that every k-threshold set S of a weakly γ-closed669

graph must have an independent k-threshold set of size at least ∣S∣
(γ−1)k+1 . Lemma 21 shows670

that every independent k-threshold set of a weakly γ-closed graph has size at most kO(γk2).671

Combining these two results, we can infer that every k-threshold set of a weakly γ-closed672

graph must have size at most kO(γk2). ◀673

D Minimal k-domination cores of size 2k in weakly 1-closed graphs674

Consider the graph G obtained by taking a complete binary tree T of depth k+1 and making675

every node adjacent to all its ancestors. The set S of all the nodes in level k + 1 is a minimal676

k-domination core.677

S is a k-domination core because any vertex adjacent to any vertex v in S is adjacent to678

all vertices adjacent to v. Thus since N[S] = V (G), any set of size at most k dominating S679

will dominate V (G) as well.680

For every vertex v ∈ S, let Av be the set of ancestors of v in T and let Cv be the set681

of all children of all the nodes in Av in T . Then for each v ∈ S, the set Cv/(Av ∪ {v}) is a682

dominating set of S/{v} of size k that does not dominate v. Therefore S is minimal.683

It is natural to ask whether the example can be strengthened to give a c-closed graph684

with an exponential size minimal k-domination core. However, it is possible to upper bound685

the size of minimal k-domination cores in c-closed graphs by ckc+1. We omit the proof of686

this statement, as it is out of scope for this paper.687
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