Critical node cut parameterized by treewidth
and solution size is W[1]-hard

Akanksha Agrawal, Daniel Lokshtanov, and Amer E. Mouawad

Department of Informatics, University of Bergen, Norway.
akanksha.agrawal,daniello, a.mouawad@uib.no

Abstract. In the CRITICAL NODE CUT problem, given an undirected
graph G and two non-negative integers k£ and p, the goal is to find a
set S of exactly k vertices such that after deleting S we are left with at
most p connected pairs of vertices. Back in 2015, Hermelin et al. studied
the aforementioned problem under the framework of parameterized com-
plexity. They considered various natural parameters, namely, the size k
of the desired solution, the upper bound g on the number of remaining
connected pairs, the lower bound b on the number of connected pairs
to be removed, and the treewidth tw(G) of the input graph G. For all
but one combinations of the above parameters, they determined whether
CRITICAL NODE CuUT is fixed-parameter tractable and whether it ad-
mits a polynomial kernel. The only question they left open is whether
the problem remains fixed-parameter tractable when parameterized by
k +tw(G). We answer this question in the negative via a new problem of
independent interest, which we call SUMCSP. We believe that SUMCSP
can be a useful starting point for showing hardness results of the same
nature, i.e. when the treewidth of the graph is part of the parameter.

1 Introduction

Consider the following problem, called CRITICAL NODE CUT (or CNC for short).
We are given an undirected graph G and two non-negative integers k and pu.
The goal is to determine whether there exists a subset of the vertices of G, say
S, of size (exactly) k such that, in the graph G — S, we are left with at most
1 connected pairs of vertices; G — S denotes the graph obtained from G after
deleting vertices in S and the edges incident on them. Alternatively, if we let
C(G-S)={C1,...,Cy}, for some integer ¢, denote the set of maximal connected
components in G — 5, the objective is to guarantee that ZCec(G_S) (g) < p.
The CNC problem, having many real-world applications such as controlling the
spread of viruses in networks [9], has been investigated from various algorithmic
perspectives, e.g. heuristics [12] and approximations algorithms [13]. Since the
VERTEX COVER problem is a special case of CNC, i.e. when pu = 0, the problem
is clearly NP-complete. On the positive side, it is known that CNC can be solved
in polynomial time if we restrict the input graph to trees [4]. More generally, for
graphs of bounded treewidth, CNC can be solved in O(|V(G)[™()+1) time [1],
where tw(G) is the treewidth of G. We refer the reader to [9] for a more extensive
survey on CNC and its applications.

Hermelin et al. [9] initiated the study of the parameterized complexity of CNC.
In parameterized complexity [6], we are interested in whether the problem can be
solved in f(x)-n®® time, for various natural parameters s and some function f.
Alternatively, one can also ask whether or not CNC admits a polynomial kernel
for parameter , i.e. whether there is an algorithm that reduces any instance of
CNC in polynomial time to an equivalent instance of size K©(*). There are quite
a few natural choices for x in this case and the following choices were considered
by Hermelin et al. [9].

— The size k of the desired solution.

The upper bound p on the number of remaining connected pairs.

— The lower bound b on the number of connected pairs to be removed.
— The treewidth tw(G) of the input graph G.

For all but one combinations of the above parameters, Hermelin et al. determined
whether CRITICAL NODE CuT is fixed-parameter tractable (FPT) and whether
it admits a polynomial kernel. These results are summarized in Table 1. In this

Table 1. Summary of results due to Hermelin et al. [9].

Parameter Result

k I b tw(G) FPT Polynomial kernel
v no no
v no no
v yes no
v no no
v v yes yes
v v yes no
v v open no
v v yes yes
v v yes no
v v yes no
v v v yes yes
v v v yes yes
v v v yes no
v v v yes yes
v v v v yes yes

work, we complete the table by showing that CNC is W[1]-hard (or equivalently
not likely to be FPT) when parameterized by k + tw(G). We prove this result via
a new problem of independent interest, which we call SUMCSP. We believe that
SUMCSP can be a useful starting point for showing hardness results of the same
nature, i.e. when the treewidth of the graph is part of the parameter.

Overview of the reduction. Our starting point is the 4-REGULAR PARTITIONED
SUBGRAPH ISOMORPHISM (PSI) problem, which is known to be W[1]-hard [8,
10]. The problem is formally defined below.

4-REGULAR PARTITIONED SUBGRAPH ISOMORPHISM (PSI)

Input: A 4-regular pattern graph P with V(P) = {p1,p2, -+, p¢}, a host
graph H, and a coloring function col : V(H) — [{].

Question: Does there exist an injective function ¢ : V(P) — V(H) such
that for each ¢ € [{], col(¢(p;)) = i and for each p;p; € E(P), we have
o(pi)o(pj) € E(H)?

Parameter: |V(P)].

We reduce PSI to SUMCSP, which is formally defined next.

SuMCSP

Input: A directed graph D with vertex set V(D) and arc set A(D), vertex
weight function wy : V(D) — N, arc weight function w4 : A(D) — N, and
a list function ¢ : A(D) — 28%N guch that for all @ € A(D), and for all
(2,), (&',) € pla) we have 7 +y = 7'+’ = wa(a).

Question: Does there exists a function p : A(D) — N x N such that for
each a € A(D), p(a) € ¢(a) and for each v € V(D), 3_,cn+(y) fir(p(vu)) +
2 uen- (v sec(p(uv)) = wy (v), where fir((z,y)) = z and sec((z,y)) = y?
Parameter: |A(D)|.

Bodlaender et al. [2] introduced a very closely related problem to show that
PLANAR CAPACITATED DOMINATING SET is W[1]-hard. PLANAR CAPACITATED
DOMINATING SET was the first bidimensional problem to be shown W/[1]-hard and
the reduction was via an intermediate problem called PLANAR ARC SupPPLY. The
main difference between PLANAR ARC SUPPLY and SUMCSP is the additional
constraint we impose using the arc weight function, i.e. the fact that all pairs in
v(a), a € A(D), must sum to w4 (a). This constraint turns out to be crucial for
our reduction. Roughly speaking, the reduction from PSI to SUMCSP constructs
a directed graph D whose structure is more of less similar to the pattern graph
P (and its size is linear in |[V(P)|). Edges of H are encoded using the vertex and
arc weight functions as well as the function ¢. Having established the hardness of
SuMCSP, we then reduce SUMCSP to CRITICAL NOTE CUT. Let us first state
a formal definition of the latter problem.

CriTICAL NODE CuT (CNC)

Input: An undirected graph G and integers k and pu.

Question: Does there exist a set S C V(G) of size (exactly) k such that
> cec(a—s) (§) < u, where C(G — S) = {C1,...,Cy¢} denotes the set of
maximal connected components in G — 57

Parameter: k + tw(G).

As stated earlier, our reduction from SUMCSP to CNC heavily relies on the arc
weight function. Another crucial ingredient is the following proposition (which

follows by the convexity of @)

Proposition 1. Letxq,...,x; be non-negative integers and let x1+. . .4+x = kn.

Then, Z:jf (%) is minimized if x; = n, for all i. In other words, Zzzlf (%) s

minimized if szf (%) =k(3).

At a very high level, starting from an instance of SUMCSP, we create a graph G
(of bounded treewidth) where an optimal solution for CNC must separate the
graph into a fixed number of connected components, all having the same size.

2 Preliminaries

We denote the set of natural numbers by N. For k € N, by [k] we denote the set
{1,2,--+,k}. For sets X,Y, by X xY we denote the set {(z,y) |z € X,y € Y}.
Furthermore, for (z,y) € X x Y, we let fir((z,y)) = « and sec((x,y)) = vy, i.e.
the first and second coordinate of the (ordered) pair (x,y), respectively.

We use standard terminology from the book of Diestel [5] for graph-related
terms that are not explicitly defined here. We consider only finite graphs. For a
graph G, by V(G) and E(G) we denote the vertex and edge sets of G, respectively.
Similarly, for a directed graph or digraph D, by V(D) and A(D) we denote the
vertex and arc sets of D, respectively. For a graph G and v € V(G), by Ng(v)
we denote the set {u € V(GQ) | vu € E(G)}. For a digraph D and v € V(D), by
N7 (v) we denote the set {u € V(D) | vu € A(D)}, and by Np(v) we denote
the set {u € V(D) | uwv € A(D)}. We drop the subscript G (or D) from Ng(v),
N7 (v), or Nj(v) when the context is clear. For a vertex subset S C V(G), by
G|S] we denote the subgraph of G induced by S, i.e. the graph with vertex set S
and edge set {vu € E(G) | v,u € S}. By G — S we denote the graph G[V(G)\ S].

A path in a graph is a sequence of vertices P = vy, v, - -, vp such that for
all i € [¢ — 1], v;v;41 € E(G). We say that such a path is a path between v, and
ve or a v; — vy path of length ¢ — 1, and vertices vy, v, -+, v, lie on the path

P. Two vertices u,v € V(G) are said to be connected if there exists a u — v
path in G. A graph is connected if there is a path between every pair of vertices.
A maximal connected subgraph of G is called a component of G. For a pair of
vertices u,v € V(G), by distg(u,v) we denote the length of the shortest path
between u and v in G. For a graph G, by G? we denote the graph with vertex
set V(G?) = V(G) and edge set E(G?) = {uv | distg(u,v) < 2}

A cycle in a graph is a sequence of vertices C' = vy, vs, -+, vy such that C' is
a v — vy path and vivy € E(G). A tree is a connected graph without any cycles.
Note that a tree on n vertices has exactly n — 1 edges. A tree is said to be a
rooted tree if exactly one vertex in it has been designated as its root. A coloring
of a graph G with o € N colors is a map ¢ : V(G) — [a]. A coloring ¢ of G is
said to be a proper coloring if for each uv € E(G), p(u) # ¢(v).

A tree decomposition of a graph is a pair (X, 7T), where an element X € X
is a subset of V(G), called a bag, and T is a rooted tree with vertex set X
satisfying the following properties: (i) Uxcx X = V(G); (ii) For every uwv € E(G),
there exists X € X such that u,v € X; (iii) For all X,Y,Z € X, if Y lies on the
unique path between X and Z in 7, then X N Z C Y. For a graph G and its tree
decomposition (X, 7)), the width of the tree decomposition (X, 7)) is defined to
be maxxcx(|X|—1). The treewidth of a graph G, tw(G), is the minimum of the
widths of all its tree decompositions.

Parameterized complezity. A parameterized problem I7 is a subset of I x N,
where I is a finite alphabet. An instance of a parameterized problem is a tuple
(z, k), where k is called the parameter. A parameterized problem is said to be
fized-parameter tractable (FPT) if, for a given instance (x, k), we can decide
(z,k) € IT in time f(x) - |2|°M), where f(-) is an arbitrary function depending
only on . To prove that a problem is FPT, it is possible to give an explicit
algorithm, called a parameterized algorithm (or FPT algorithm), which runs in
time f(x) - |z/°M). On the other hand, to show that a problem is unlikely to
be FPT, it is possible to use polynomial-time parameter-preserving reductions
analogous to the concept of reductions in classical complexity theory. Here,
the notion of W[1]-hardness replaces that of NP-hardness. For more details on
parameterized complexity we refer to the books of Downey and Fellows [6], Flum
and Grohe [7], Niedermeier [11], and the recent book by Cygan et al. [3].

3 W]J1]-hardness of SumCSP

Let (P, H,col : V(H) — [¢]) be an instance of PSI, where V/(P) = {p; | i € [{]}
and V(H) = {h; | i € [n]}. For i € [{], we let CH = {h € V(H) | col(h) = i}. We
make a few assumption and adopt some conventions that will help simplify the
presentation. All numbers that appear in the construction will be represented in
binary. We assume that |V (H)| = n = 2, for some ¢ € N, i.e. t = logn. Otherwise,
if |[V(H)| =2 — 6, for some 0 < § < 2¢'~1 we can construct an equivalent
instance (H', P',col’ : V(H') — [¢']) of PSI with |V (H')| = 2!'+3, where H' is
obtained from H by taking the disjoint union of H at most 8 times and adding
0 copies of a 4-regular graph on 8 vertices (which exists) to H' and adjusting
P to obtain P’ and col to obtain col’ appropriately. Note that P is a 4-regular
graph, which implies that it has no isolated vertices. We assume a fixed cyclic
ordering <y on the vertices in H and a fixed cyclic ordering <p on the vertices
in P. Simply put, we have hy <g ... <g hyp <g h1 and p1 <p ... <y pr <y DP1-
With each vertex h; € V(H), or equivalently integer i € [n], we assign two binary
strings (or bitstrings for short) B, and By, as follows. We let B; denote the
binary representation of integer ¢ and B; denote the (bitwise) complement of B;.
We use O, and 1, to denote the bitstrings of length z consisting of all zeros and
all ones, respectively. We let By, = Q4B;04; and By, = 04:B,;04;. Note that
By, and By, are of length 9logn = 9t. The purpose of the additional zero bits
is to allow us to “correctly” handle overflows when summing binary numbers.
For two bitstrings B and B’, we slightly abuse notation and sometimes treat the
result of B + B’ as another bitstring (obtained after applying the usual binary
addition operator) or as an integer (in base 10). The context will be clear.

We also assume that, along with instance (P, H,col : V(H) — [{]), we are
given a proper coloring colpz : V(P) — [21] of P2. Observe that such a coloring
exists and can be computed in time polynomial in the size of the graph P;
the maximum degree of a vertex in P? is bounded by 20 and a graph with
maximum degree d admits a d + 1 proper coloring. For a vertex p; € V(P),
we let idx; = colpz(p;). In what follows, we will always deal with bitstrings of

9t 9t
block block

21-2-9-t
Fig. 1. An illustration of the division of a bitstring into groups and blocks.

length 21 -2-9-t. A block consists of 9t consecutive bits. We note that two
distinct blocks do not intersect in any bit position. Blocks will usually be set
to bistrings of the form Q4B;04;, Q4 B;Qys, Oy 1Oy, gy, or Log, i € [n]. A
group consists of 2 -9 - ¢ consecutive bits. Two distinct groups do not intersect
in any bit position and a group consists of two blocks (see Figure 1). Note that
we have exactly 21 groups, which is equal to the number of colors in colpz. The
reason why we need colpz will become clearer later. Intuitively, since we will
be encoding the possible edges (from H) between a vertex in P and its four
neighbors, we need to make sure that two of its neighbors do not get assigned
the same group in a bitstring. Given a bitstring S of length 21-2-9 -¢, we let
block[¢](S) denote the ith block of S, i € [42], and we let group[j](S) denote the
jth group of S, j € [21]. We also use the notation group[i | j](S) to denote the
ith and jth group of S, i,j € [21]. Finally, we note that, since the length of
bitstrings will be bounded by O(logn), all numbers in the construction will be
bounded by n®1). We are now ready to describe the construction of instance
(D,wy : V(D) = Nywa : A(D) = N, ¢ : A(D) — 2MN) of SUMCSP. We start
with the description of the edge selection gadget.

ij ai_;} bt} b?]
9 i

Wi

Fig. 2. An illustration of the edge selection gadget E;j.

Edge selection gagdet. For every (unordered) pair of numbers 4, j € [¢] such that
pip; € E(P), we add an edge selection gadget E;; (E;; is a graph and not an
edge set) to D. Note that both E;; and Ej; refer to the same edge selection
gadget, which will be responsible for selecting an edge in the host graph H.
Moreover, idx; # idx;, since colpz is a proper coloring of P?. We assume, without
loss of generality, that ¢ < j. We let V(E;;) = {aij, a;-j, bﬁj, b;-j, w;; } and we let

A(E;j) = {a” ”, aj wU, w;ja; a b”b;], b;]wij, w;;b7 } (see Figure 2). We now

describe the contruction of ¢ : A() — 28N and wy : A(D) — N. We assume
that all bitstrings are initialized to Q37g;. That is, whenever we do not explicitly
specify the value of a group (block) in a bitstring, it is set to all zeros.

— Consider aa ” € A(Ei;). For each u € C/' and v € CI" such that uv € E(H),

we create a palr of bitstrings (S, (a”a?), T, (a” a”)) and add it to p(a’a” 7).

We set the following groups: S

grouplidx; | idx;](Suv(a;’ay)) = BuBy | ByBy;

grouplidx; | idx;] (T (a”a”)) BB, | B,By;

grouplidx; |'idxj](w,4(al ”)) 0410404104 | Qs 104,041, Oy

— Consider aw;; € A(E;;). For each u € CH and v € CJH such that uv €
E(H), we create a pair of bitstrings (Su, (a7 wij), Tuv(ajwi;)) and add it to
¢(awij). We set the following groups:
grouplidx; | idxj](Sm)(a”wU)) = ByBy | Qg By;
grouplidx; | idxj](Tw(aj w”)) = B,B, | Qg B,;
grouplid; | idx;](wa(a} wi;)) = 041,04:04: 1,04 | 04,0104 04,1, sy

— Consider w;;ja;’ € A(E;;). For each uw € CH and v € CH such that uv €
E(H), we create a pair of bitstrings (Su(wijal?), Tuy(wijal)) and add it to
o(w;j;a; 7). We set the followmg groups:
group[ldxz | idx;](Suo(wija;")) = Qg¢ B, | ByBy;
grouplidx; | idx;](Tow(wijal)) = Qg B, | ByBy;
grouplidx; | |dxj](wA(w”)) 04100404 1,044 | 044 1,004,041, 0y4.

— Consider b”b” € A(E;;). For each u € C/ and v € C such that uv € E(H),
we create a pair of bitstrings (Su, (b;b}), Tuy (b;05)) and add it to ¢ (b;’07).
We set the following groups:
grouplidx; | idx;](Suv(b;0%)) = BuBuy | ByBy;
grouplidx; | idx;}(Ty, (b;07)) = BuBy | ByBuy;
grouplidx; l.ide](wA(ijbé-j)) = 041,04 041,04 | 04t 1,040y, 1,0y

— Consider b7 wi; € A(E;;). For each u € Cff and v € Cf! such that uv € E(H),
we create a pair of bitstrings (Sy, (07 wij), Tuw (b5 wi;)) and add it to (b wj).
We set the following groups:
grouplidx; | idxj](Suv(b;.]wij)) = By By | Qg By;
grouplidx; | idxj](Tuv(b;jwij)) = B,B, | ®9t§v;
gl’OUp[idXi | idxj](wA(bijwlj)) = ©4t]lt®4t©4t]]-t©4t | ©4t©t©4t©4t1t©4t~

— Consider w”b] € A(E;;). For each u € Cf and v € Cf' such that wv €
E(H), we create a pair of bitstrings (Su,(wi; b7, T (wij,07)) and add it to
o(w;;by7). We set the following groups:
grouplidx; | idxj](Sm)(w”b”)) Qg By | ByBy;
group[idx; | idx;](w(wu,bz)) = Qg; B, | B,B.;
grouplidx; | idx;](wa(w;;b;)) = 040;0404 1,04y | 04t 1;044 04 14Oy

Compatibility between edge selection gadgets. We add edges between various edge
selection gadgets to ensure that for each i € [¢], the edges selected by the gadgets
are incident on the same vertex in C. The selection of an edge by a gadget will
be determined by the pair of number selected from ¢(a), where a € A(E;;) and
pipj € E(P). For each p; € V(P), we have |[Np(p;)| = 4, since P is a 4-regular
graph. For ¢ € [{], let Np(p;) = {pj,Pjs+ Pjs»Pjs }>» Where we assume a (fixed and
cyclic) ordering on the vertices in Np(p;) based on the ordering <p . That is,
we assume pj, <p Pj, <p Pj; <P Pj; <P Pj,- Below we describe the set of arcs
added between Ejj, , E;j,, Eij, and E;j,, we call this set A;. We also describe the
values assigned by wa(-) and ¢(-) to arcs in A; (see Figure 3).

Wijy Wijs

[S) [) [‘r

ija ija ij4 ija ijs ijs iJ3 i3

@; @, b b; a; s b, b;

ij1 ij1 ij1 ij1 ij2 ij2 ij2 ijjo)
Y b; b a:; a; b; b a; a;
[o—> J

Wijy Wiy

Fig. 3. An illustration of edge selection gadgets and the additional edges between them.

— We add the arc aijl szz to A; and, for each u € C¥, we add a pair of bitstrings
(Su(ai %), Ty(a’'b7?)) to p(a’'b’?). We set the following groups:

grouplidx;] (S, (a?'07?)) = B, Qqy;
grouplidx;] (T, (a2 b7?)) = B,Qyy;
group|idx;] (w4 (ajjlbzh)) = 041;040q;.
— We add the arc a??b7® to A; and, for each u € CH, we add a pair of bitstrings

(Su(a?b7), T, (a7?b7)) to (a?b7*). We set the following groups:
ngUP[idXi](Su(aijz bjjs)) = B,Oy;

group[idxi](Tu(a::j2 b*)) = B,Qg;;

grouplidx;] (w4 (aij2 szg)) = 041,0400;.

— We add the arc aijg' b;j‘* to A; and, for each u € C}!, we add a pair of bitstrings
(Su(ai?b*), Tu(ai?b*)) to w(a;’*bi’*). We set the following groups:

group[idxi](Su(a?:3 bz“)) = B,0y;
grouplidx;] (T (a;*b;*)) = BuOgy;
group(idx;](wa(a;*b;*)) = 04104 Q.

KA

— We add the arc a;”*b}’* to A; and, for each u € CH | we add a pair of bitstrings
(Su(a?*b"), Ty (a* b)) to p(a?*b’"). We set the following groups:

K2

group[idxi](Su(az;]:“b;;J:l)) = B,0y;;
grouplidx;] (T (a;”* b)) = BuOyy;
grouplidx;](wa(a;*b7’")) = Q4 104 Qgy.

This completes the description of the vertices and arcs of D, and the functions
wa : A(D) — N and ¢ : A(D) — 28R We now move to description of the
functions wy : V(D) — N.

The vertex weight function. For each i,j € [¢], i < j, we set wy (+) as follows.

— For all u € {az:j, a;-j, b;j, b;-j, }, we set wy (u) to be the bitstring X, of length
378log n, where group[idx;](X,) = 041;04,041,04 and grouplidx,](X,,) =
04¢1,04404; 1, 0.

— For w;;, we set wv(wij) to be the bitstring X, of length 378log n, which we
construct as follows. We let Y be the bitstring of length ¢ corresponding to
the integer 2¢ — 2, i.e. a bitstring of length ¢ with the last bit set to zero and
all other bits set to one. Let Y’ to be the bitstring of length 4t corresponding
to the integer 1, i.e. the bitstring of length 4¢ with the last bit set to one and
all other bits set to zero. We set group[idx;|(Xy,,) = 041;04Y'Y Oy and

grouplidx;|(Xu,,) = 041,04, Y'Y Oy '

This finishes the description of the instance (D, wy : V(D) — Nywy : A(D) —
N, ¢ : A(D) — 2Ny of SUMCSP for a given instance (P, H,col : V(H) — [{])
of PSI. Below we state some propositions and lemmata that will be useful in
establishing the equivalence of the two instances.

Proposition 2. Let X,Y be two bitstrings of length logq. Then X +Y =27 —1
if and only if X =Y.

Proposition 3. Let X and Y be two bitstrings each of length 42 -9 -t and
consisting of 21 groups, where t = logn. Assume that, for each i € [21], group i
in X consists of a bitstring of the form X; = Q4B Q4 and group i in'Y consists
of a bitstring of the form Y; = Q4B Qu, x,y € [n]. Then, X +Y is a bitstring
of length 42 -9 - t with the ith group equal to X; +Y;, i € [21].

Lemma 1. Let (D,wy : V(D) — Nywy : A(D) = Nyp : A(D) — 28<N) pe
a yes-instance of SUMCSP and p : A(D) — N x N be a solution. Consider
pi, pir, P, Dy € V(P) such that az:jbz:j ,a;jsz € A(D). For u € CH and v €

o i . i e . i
€y e hove plaraf) = (Sunlaie,’), Tunla o)) if and only if pla) =
(Su(ai’by), Tu(a;’b;")) and p(ajjbj]) = (Sv(a’jjbj])?Tv(ajjbjj))'

Proof. Let u € C! and v € Cf' such that p(azjsz,) = (Su(a::jb::j/)7 Tu(aijsz’))
ij pi'jy _ ijyi'y ijyi'j / H / H

and p(aj_ ; bj”) = (Sy(a; bJ)?Tv(aj bj ”)).“Also, let v’ € C;" and v' € Cj* such
¥ 7\ 1) 1) 1J 1] .

that p(a;’,a;) = (Sww(a;aj’), T (a;’ aj’)). Observe that it is enoggh to show

that v =« and v = v’. Recall that by construction we have N (a;”) = {w;;},

Np(a?) = {aéj,bij/}, and block[1](grouplidx;](wy (a’))) = 041,04, i.e. the
first block of the idx;th group of wv(aij) is Qg 1;0y. Moreover,..We have
block{1](grouplidx (T (wiyall))) = o, block[1)(grouplie](Suns (a7'a?)) =
By, and block[1](grouplidx;](Suv(a;’b;’))) = B,. Combining Propositions 2

and 3 with the fact that Qg;, B, , and B, must sum to Q4 1;0,4; implies that
u = u’. An analogous argument can be given to show that v = v'. O

Lemma 2. Let (D,wy : V(D) = Nywy : A(D) — N, : A(D) — 2VN) pe
a yes-instance of SUMCSP and p : A(D) — N x N be a solution. Consider

Di; it Dy, Dy € V(P) such that aij/bﬁj7a;/jb;j € A(D). Foru € CH and v €

G, we have pB/) = (Suo(bb)), Tuu(08)) if and only if p(ai’ b)) =
(Su(ai’ 0), Tu(ai” b)) and p(a;”’b7) = (Sy(a57b7), To(a;’b3)).

Proof. Let u € Cff and v € Cf' such that p(aij,b?) = (Su(aij'b;:j),Tu(aij,bjj))
and p(a;-/jb;-j) = (Sv(a;-/jb;j),Tv(a;/jb;j)). Also, let v/ € Cff and v € Cff
such that p(b;’b5) = (S (007), Turer (b;07)). Tt is enough to show that
u = u' and v = v'. Recall that by construction we have N, (b;) = {wi;, a'y,
N{(b7) = {b7}, and block[1](grouplidx;](wy (a;’))) = 041,04, Moreover, we

have block[l](group[idxi](qul,f"j’b;]))) = Oy, block[l](group[idxi](Su/v/(szb;j))) =
B/, and bIock[l](group[@xi}(Tuv(aﬁjlb?))) = B,,. Combining Propositions 2 and 3
with the fact that Qg;, B,/, and B, must sum to Q4 1;0Qy4; implies that u = v’.
An analogous argument can be given to show that v = v'. a

Lemma 3. Let (D,wy : V(D) = Nywa : A(D) = N,¢ : A(D) — 2N pe q
yes-instance of SUMCSP and p : A(D) — N x N be a solution. Let i,j € [{],
where i < j and p;p; € E(P), and let u € CH and v € CJH. Then, the following
three statements are equivalent:

(1) pla9a) = (Sunlaa) Tus(aa?);

(2) p(wl]aij) = (Suv(wuazj)aTuv(wzja'zj));

(3) p(a;]wij) = (Suv(aéjwij)aTuv(a?wij))-

Proof. Letu € CH v € CJH, and p(aijaéj) = (Suv(aija;j), Tm,(aija;-j)). Moreover,

let p(wija::j) = (Syor (wijaij),Tu/v/ (wijaij)), where v/ € CH and ' € C]H. To
prove that statement (1) holds if and only statement (2) holds, it is enough to show

that u = «’ and v = v'. Recall that by construction we have N (a;’) = {w;;} and
Nf(a) = {aj-j, b7}, for some b7 € V(D) where pjs is a neighbor of p; which
comes after p; in the fixed cyclic ordering of the neighbors of p;. Moreover, we have
block[2](grouplidx;] (T (wija;’))) :“B%/, block[2](grouplidx;}(Suv(a;’a?))) =
B., and block[2](grouplidx;](Tuwrw (a;’ b’))) = Qgt, where v’ € Cf1, v" € Cf,
and p(szaz:j/) = (Su,,v,,(szazj/), Tuuvu(b?a?/)). This together with the fact that

the second block in the idx;th group of wy (aij) is 04;1;0y4; (and Propositions 2

10

and 3) implies that u = «/. An analogous argument can be given to show that
v = v'. Using a symmetric argument, it can be shown that statement (1) holds if
and only statement (3) holds. O

Lemma 4. Let (D,wy : V(D) = Nywa : A(D) — N, : A(D) — 28N pe q
yes-instance of SUMCSP and p : A(D) — N x N be a solution. Let i,j € [{],
where i < j and p;p; € E(P), and let u € CH and v € C'JH. Then, the following
three statements are equivalent:

(2) plwib?) = (S0, 7o),
(3) p(b7wis) = (Suw (b7 wij), Tuw (b wij)).

Proof. For u € CH and v € CH et p(b7bY) = (S0 (b77), T0u (b7b7)). More-
over, let p(wijbjj) = (Su/v/(w,;jsz),Tulvl (wijsz)), where v’ € CH and v' € C’jH.
To prove that statement (1) holds if and only statement (2) holds, it is enough to
show that u = u’ and v = v'. Recall that by construction we have N7 (a;’) = {b}'}
and N, (b7) = {wij, aéj,}, for some bjj, € V(D) where p;: is a neighbor of p; which
comes after p; in the fixed cyclic ordering of the neighbors of p;. Moreover, we have
block[2](group|idx;] (T (wijay’))) = Bu, block([2](grouplidx;](Sus (b;'07))) =
B,, and block[2](group[idxi](TuuUu(b;jaij/))) = Qg, where u” € CF, v" € Cf,
and p(b7a") = (Syryr (b7al), Tu,,q,u(b?aj_jf)). This together with the fact that
second block in the idx;th group of wy (b;) is 041,04 (and Propositions 2
and 3) implies that u = «/. An analogous argument can be given to show that

v =v’. Using a symmetric argument, it can be shown that statement (1) holds if
and only statement (3) holds. O

Lemma 5. Let (D,wy : V(D) — Nywa : A(D) = N,p : A(D) — 2NxN)
be a yes-instance of SUMCSP and p : A(D) — N x N be a solution. Let
i,j € [€], i < j, pipj € E(P), and u € CH and v € C’]H. Then, p(ai’a?) =
(Suv(aya})), Tun(a;? a}))) if and only if p(b;7b7) = (Suw(b767), Tun (b)757)).
Proof. Let i,j € [f], i < j, and let (p;,p;) € E(P). Let u,u/ € CH and
H I N ij g ij ij igriiy
v,v" € O such thz‘%tup(aijajj) = (Sw(aai), Tuy(a;’ay)) and p(b;b7) =
(Survr (6705), Turwr (b07)). We need to show that u’ = u and v’ = v. From Lem-
ij ij ij J

mas 3 and 4, we know that p(w;ja;’) = (Suw(wija;’), Tuw(wija;’)), p(aé- w;;) =
(Suw (a;]wij)a Ty (a;jwij))v p(b;‘]wij) = (Suv (b;‘]wij)7 Ty (b;']wij))v and p(w;;b;) =
(Survr (Wib), Ty (w;ij7)). Moreover, we have block[1](group[idx;](Sus (w;jal’)))
= B,,, block[1](grouplidx;] (S (wi;b7))) = By, block[l](group[idxj](Tuv(a;jwij)))
= Oy, and block[l](group[idxj](Tufvf(béjwij))) = Qg;. This together with the fact
that first block in the idx;th group of wy (wj;) is 04104 (and Propositions 2

and 3) implies that v = v’. An analogous argument shows that u = u'. a

11

Lemma 6. (P,H,col : V(H) — [{]) is a yes-instance of PSI if and only if
(D,wy : V(D) = Nywa : A(D) = N, : A(D) — 28¥<N) 4s g yes-instance of
SuMCSP.

Proof. In the forward direction, let (P, H,col : V(H) — [¢]) be a yes-instance of
PSI and ¢ : V(P) — V(H) be an injective function such that for each i € [¢],
col(¢(p;)) = 4, and, for each (p;,p;) € E(P), we have (¢(p;), ¢(p;)) € E(H). For
i € [0, let hf = ¢(p;). We now define p : A(D) — R x R such that for each
e € A(D), we have p(e) € p(e) and for each v € V(D), 3=, c v+ (v, u))) +
2uen- () 2(p((u,v))) = wy (v). For i € [{] and for each e € E;, we set p(e) =
(SG(py> Topy)- For i,j € [{], i < j such that (p;,p;) € E(P) and for each
e € A(E;j), we set p(e) = (S;(pi)¢(pj)7 T;(pi)¢(pj)). Recall that by construction, p
satisfies all the desired properties.

In the reverse direction let (D, wy : V(D) = N,was : A(D) = N,p : A(D) —
28N be a yes-instance of SUMCSP and p : A(D) — N x N be a solution. From
Lemmas 1 to 5, it follows that for each 4, j € [¢], ¢ < j with (p;,p;) € E(P), there
exists u € CfT and v € CJ" such that for all e € A(Ey;), p(e) = (S5, Tg,), for all
e € A(E;), ple) = (S5, T¢) and, for all e € A(E;), p(e) = (S5, T5). For i € [£], let

h} be the vertex such that for all e € A(E;), we have p(e) = (Sy,.,Tf.). We show
that ¢ : V(P) — V(H) such that for i € [¢], ¢(p;) = h}, is a solution for PSI.
For i € [¢] and k € [4], let pj, be neighbors of p; in P such that for each
k' € [3], jr < jawy1. Further, let h¥ be the vertex such that p((a’*,b7%)) =
(S0 ey W will show that ¢ : V(P) — V(H) such that for
i € 14, o(p:) = h¥ is a solution for PSI. From construction it follows that for
each i € [{], col(h}) = i. Consider an edge (p;,p;) € E(P), where i < j. From
construction of D we know that we have E;; as sub-digraph of D. Furthermore,
we also have (h, h’) € E(H) since for each e € A(E;;) we have (SfL:?Tﬁ;) € ¢(e)

i 'Y
and we added such a pair only if h; and hj are adjacent. a

Theorem 1. SUMCSP is W[1]-hard when parameterized by the number of ver-
tices in the pattern graph.

Proof. Let (D,wy : V(D) — Nywa : A(D) — N,p : A(D) — 2MN) be the
contructed instance of SUMCSP given instance (P, H,col : V(H) — [{]) of PSIL.
An easy trace of the construction shows that it can be accomplished in time
polynomial in |V (H)| and that all the numbers appearing in the construction
are bounded by |V(H)|®™M. Moreover, note that P is 4-regular and therefore
|E(P)| = O(|[V(P)]). Since (by construction) the number of arcs in D is linear in
the number of edges in P, we have |A(D)| = O(|V(P)|). Combining all of the
above with Lemma 6 and the W[1]-hardness of PSI completes the proof. O

4 WI[1])-hardness of CNC

Let (D,wy : V(D) = Nywy : A(D) = N, : A(D) — 2"*N) be an instance of
SUMCSP. We let Wymaz = Maxyey(py(wy (v)), i.e. the maximum weight of a

12

vertex in D, we let Wamaz = MaXqe a(p)(wa(a)), i.e. the maximum weight of an arc
in D, and we let wyig = (Wamaz - Womaz)°°. We assume, without loss of generality,
that the number of arcs in D is greater than some constant, say |A(D)| > 50, and
that Wymaes > 2|A(D)| (otherwise we can increase all numbers in the SUMCSP
instance appropriately). Moreover, we let W* = (k + 3)(wpig + Womaz + 2). For
each vertex v € V(D), we define a quantity W,, = W* — (k + 3)(wy (v) + 2) =
(k + 3)(whig + Wymaz — Wy (v)). We shall create an instance (G, k, i) of CNC,
where k = 2|A(D)|, p = |V(D)] - (V‘;*), and tw(G) = kM), We now proceed to
the contruction of the graph G.

Contruction. For each vertex v € V(D), we create a clique K, of size 2(k + 3)
and an independent set I, of size W,. We add all edges between vertices in
K, and vertices in I,. For each arc a = wv € A(D), we create a chain H,,
(which will connect K,, and K,) as follows. H,, consists of wa(a)+ 1 connecting
pairs of vertices Puy = {po, .. ., Pw,(uv)}, i-e. each pair p; € Py, consists of two
(independent) vertices {p},p?}. Moreover, we have wa(a) border walls B, =
{b1, ..., buw,(a)}, each of size k + 1, i.e. each wall consists of k + 1 (independent)
vertices. We add all edges between K, and pair pg and we add all edges between
K, and py , (uv)- Next, we add all edges between p; 1 and b; and all edges between
b; and p;, for i € [wa(a)]. We call the pair py the first pair of P,, and denote it
by first(Pyy). Similarly, we call the pair py, , (uv) the last pair of Py, and denote it
by last(Pyy). Then, we sort all entries (i, j) € ¢(a) in increasing order based on
the first coordinate. Let {(i1,j1), (i2,72),- .-, (ir,jr)} denote the resulting sorted
set. We assume, without loss of generality, that the set contains no duplicates.
This assumption is justified by the fact that for all (i, 7), (¢/,7") € ¢(a) we have
i+i=1+7 =ws(a). We add all edges (if they do not already exist) between
K, and vertices {p} ,p} } and all edges between K, and vertices {p; ,p? }. We
call the pair p;, the left pair of Py, and denote it by left(P,,). Similarly, we call
the pair p;_ the right pair of Py, and denote it by right(P,,). Finally, for each
two consecutive entries (i,) and (i, j/) we add all edges between {p},p?} and
{pl,.p?}. This completes the construction of the graph G (see Figure 4).

Proposition 4. tw(G) = kW),

Below we prove a series of lemmas that allows us to transform any solution S
to an instance (G, k, u) of CNC into an “equally good” solution S’ having some
“nice” structural properties. We say that a solution S splits a connecting pair
{pt, p?}if |Sn{p',p?}| = 1. Welet C(G—S) = {C1,...,C,} denote the maximal
connected components in G — S. We classify a component C € C(G — S) into one
of three types. We say C' is a small component whenever C' does not contain any
vertices from K, or I, for all v € V(D). We say C'is a large component whenever
C intersects with at least two cliques K,, and K,, u,v € V(D). We say that C' is
a medium component otherwise. Note that, for any v € V(D), any solution of size
k cannot separate G[V(I,) UV (K,)] into two or more components. Therefore, if
C(G — S) consists of only medium components then |C(G — 5)| is exactly |V (D)]
and S includes exactly one connecting pair from each chain H,,, uv € A(D). We
say S is well structured whenever C(G — S) consists of only medium components.

13

Independent

-—

. Do =
first(Puv
L

4
7 Y

AR
SV

P Zlet(P) U pi, = right(Pu,)
= laSt(PuU)

Fig. 4. An illustration of parts of the construction of the graph G.

Lemma 7. Let S be a solution to (G,k,u) and let C(G — S) = {C4,...,Cy}.
If 1SN Uyev(p) (V) UV (Ky))| > 0 then there exists a solution S such that

151 = 151, Serecio-s1 (3) < Toeee—s) (5): and 180 Uyeyp) (V1) U
V(K| =[S N Uyevp) (V) UV(KL))[- 1.

Proof. Let w be a vertex in SN (V(I,) UV(K,)), for some u € V(D). Note
that (by construction) |V (I,,)| > k and |V (K,)| > k. Moreover, for all wy,ws €
V(I,) UV(K,), we have Ng(w1) = Ng(ws). Therefore, since |S| = k, we have
IC(G = S)| =|C((G - S) U {w})|. In other words, if w € V(I,) or w € V(K,)
then there exists at least one vertex w’ € S such that w’ € V(1) or w' € V(K,),
respectively. Let C,, € C(G — S) denote the component in G — S containing w’'.
Note that C,, is either a medium or a large component, since a small component
(by definition) does not intersect with U, ey (p)(V (L) U V(Ky)). If Cyr is a
large component then it must contain a vertex w” which belongs to some chain
H,,, for some v € V(D). We let 8" = (S \ {w}) U {w”}. Tt is not hard to
see that S’ does in fact satisfy all the required properties. If C,, is a medium
component then we have two cases to consider. If we can find a w” (belonging to
some chain) then the same replacement argument as above holds. Otherwise, we
know that the size of V(Cy) is at most |V (I,)| + |V (Ky,)| = Wy +2(k+3) =
(k =+ 3)(Whig + Womaz — wy (u) +2) < (K + 3)(Whig + Womae + 2). However, since
S does not include exactly two vertices from each chain, we know that C(G — S)
must include at least one large component, say C”, of size at least 2(k + 3)wpg-
Replacing w with a vertex w” € V(C") N Hyr,, for some v'v" € V(D), produces
the required set S’ (recall that we assume wymqae > 2|A(D)] = k). O

By repeated applications of Lemma 7, we can assume that a solution S does
not intersect with V(I,,) UV (K,), for all u € V(D). In what follows, we always
assume that S satisfies this property. Using similar arguments, we can show that
S also does not intersect with any border walls.

14

Lemma 8. Let S be a solution to (G,k,pu) and let C(G — S) = {Ch,...,C¢}.
If [S N Uypeap) Buvl > 0 then there exists a solution S’ such that |S'| =

IS, Ycrecia—sn () < > cec(G-s) ($), 15" n Unevpy(V(Lu) UV(KL))| =
1S 0 Unevpy(VHu) UV(EL))|, and |S" 0 U,,ea(p) Buol is strictly less than

|S n queA(D) BUU‘

Proof. Let w be a vertex in SNb, where b € By, for some uv € A(D). Recall that
(by construction) |b| = k 4+ 1 and, for all wy,wy € b, we have Ng(w1) = Ng(ws).
Therefore, since |S| = k, we have |C(G — 5)| = |C((G— S)U{w})|. In other words,
there exists at least one vertex w’ ¢ S such that w’ € b. Let Cy € C(G — 5)
denote the component in G — S containing w’. If C,, is a medium or large
component then we can always find a vertex w” from some connecting pair, i.e.
w” € Pyy, to replace w and obtain S’. If C,, is a small component then either
|V (Cy)| =1, in which case we can replace w by any connecting pair vertex, or
C\ contains some vertex w’’ € Py, as needed. O

Lemmas 7 and 8 imply that we can always assume that S includes vertices
from connecting pairs only. We now proceed to showing that S does not split
any connecting pair. We use split(G, S) to denote the number of connecting pairs
split by S in G.

Lemma 9. Let S be a solution to (G, k,) such that S C U, a(py Puv and let
C(G—S8)={Cy,...,Ce}. If split(G,S) > 0 then there exists a solution S’ such

c’ c
that |S'| = [S], Yereea—s) (2) < Leece-s) (2): 8" € Unvea(p) Puv, and
split(G, S") < split(G, S).

Proof. Given that k is even, we know that split(G, S) must also be even. Assume
that S splits two connecting pairs {p', p?} and {q', ¢*}. Without loss of generality,
we assume that p',¢' € S, p%,¢®> € S, p2 € V(Cp), g2 € V(Cy), and |V (Cp)| <
[V (C,)|, where C,, Cy € C(G—S). Welet S” = (S\{p1})U{q2}. It is not hard to see
that regardless of whether C), = Cy or not, Y oreca-sr) (€) < Yoeccia-s) (%)
as needed. O

Lemma 10. Let S be a solution to (G, k, p) such that S C U,,e 4(p) Puv and
split(G,S) = 0. Let C(G — S) = {C1,...,C¢}. Assume that |S N Py,| = 2z > 10,
for some wv € A(D), and hence there exists uivy, ..., Uy—1V,—1 € A(D) such
that |S N Py,v,| = 0, for i € [x — 1]. Then, there exists S’ such that |S’| =
ST, ZC'eC(G—S/) (Cz) < ZCEC(G—S) (5)7 5 C queA(D) Puvs split(G,S") =
0, left(Pyy) U right(Py,) U first(Pyy) U last(Pyy) C S, 1S N Puw| = 8, and
[S" N Pyyw| =2, fori € [z—1].

Proof. Recall the construction of Py, = {po, .-, Puw,(uv)}- We add all edges
between K, and pair pg = first(P,,) and we add all edges between K, and
Puw s (uv) = 13st(Puv). Next, we sort all entries (7,j) € ¢(uv) in increasing order
based on the first coordinate. Let {(i1,J1), (i2,72), -.-, (ir,jr)} denote the
resulting sorted set. We add all edges between K, and vertex p;, = left(Pyy)

15

and all edges between K, and vertex p; = right(P,,). Finally, for each two
consecutive entries (4, 7) and (i/,5"), we add all edges between p; and p;. Let us
assume that 0 # i1 # 4, # wa(uv), as the same arguments hold when that is not
case. Since [SNPyy| > 10, we know that S includes at least 5 pairs from P,,. Let
S" = (S\ Puw)U left(Pyy) U right(Pyy) U first(Puy) U last(Pyy) U left(Puy,v,) U - ..
U left(Pu, _yov,_,)- It remains to show that 3o ccg_sn) (g/) <D cecc-9) (g)
Note that in the graph G[V(K,)U V(K,)U H,,| — S’ we have five connected
components, where two of those components are exactly K, and K,. Hence, the
total number of connected pairs that are introduced by removing some of the
pairs in S NPy, is at most ((Hs);"“”"”). However, for each pair left(P,,,,) that
we add to S’ the number of connected pairs decreases by at least (k + 3)wpig >
((FF3)wemas) (recall that wymae > k + 1 and k > 100). O

Since k is even, we know (from Lemma 10 and the fact that split(G,S) = 0)
that, for all uv € A(D), |S NPyl €{0,2,4,6,8}.

Lemma 11. Let S be a solution satisfying the following properties: (1) S C
Uwvea(p) Puvs (2) split(G,S) = 0; (3) |SNPuyy| € {0,2,4,6,8}, for alluv € A(D);
(4) If |S N Puy| = 8, for uv € A(D), then left(Pyy) U right(Puy) first(Puy) U
last(Pyy) € S. Then, there exists a solution S’ satisfying the following properties:
(i) S" C queA(D) Puv; (it) split(G,S") = 0; (iii) |S"NPyy| = 2, for alluv € A(D).

Proof. Let sg, s1, s2, s3, and sy denote the cardinality of {uv € A(D) | |SN
Puw| = 0}, {uv € A(D) | |S N Puw| = 2}, {uv € A(D) | |S N Pu| = 4},
{uv € A(D) | |S NPyl = 6}, and {uv € A(D) | |S N Pyuy| = 8}, respectively.
Note that sg + s1 + s2 + 83 + 84 = |A(D)| and 281 + 485 + 6s3 + 8s4 = k. Hence,
2(sp + 81+ 2+ 83 + 84) = 281 + 489 + 653 + 8s4 and sg = S + 283 + 3s4.

Let sy, s¥, s¥, s¥, and s} denote the cardinality of {vw € A(D) | (u =
vVu=w)AISN Py =0}, {vw e AD) | (u=vVu=w)A|SN Pyl =2},
{vw e AD) | (u=vVu=w)A|SN Py =4}, {vw € ADD) | (u=vVu=
w) A |S N Pyw| = 6}, and {vw € A(D) | (u = vV u = w) A|S NPyl = 8},
respectively. We claim that there exists a vertex u € V(D) such that 0 < s}
implies s§ < sy + 2s4 + 3s. Assume otherwise. Since EuEV(D) s =284, 1 €
{0,1,2,3,4}, we have 3~ () 56 > Duev(p) 52 + 2uev(p) 295 + 2uev(p) 351
which is equivalent to 2sy > 2s5 + 4s3 + 6s4, a contradiction to the fact that
So = So + 283 + 3s4. Hence, the claim follows.

Now, we let u € V(D) such that s§ < sy + 2s§ + 3s}. We create a new
solution S’ as follows. We let S" = S\ U, e 4(p)A(u=oviumiw) Pow- Then, for each
vw € A(D), if u = v we add right(Puw) to " and if u = w we add left(Py.) to
S’. If we are left with additional non-used budget, i.e. if |S’| < k, we pick the
remaining pairs from chains whose intersection with S’ is empty. Note that, after
this replacement, we reduce the number of large components by at least one.
Therefore, > crccig-s) (02/) <> cecc-s) (g) In other words, the number of

connected pairs increases by at most ((k+3)(w“-"+w"m”2+2)+k(k+3)w‘”"”). However,

since we reduce the number of large components, the number of connected pairs
decreases by at least (2(k+32’)“"”'9) The lemma follows by repeating the replacement

16

procedure as long as we can find a vertex u with 0 < sff < s§+2s% +3s}. When no
such vertex exists, it must be the case that S’ NP,,| = 2, for all wv € A(D). O

We are now ready to prove the correctness of the reduction, which is implied
by Lemmas 12 and 13 below.

Lemma 12. If (D,wy : V(D) = Nywa : A(D) = N,¢ : A(D) — 28<N) js g
yes-instance of SUMCSP then (G, k, p) is a yes-instance of CNC.

Proof. Let p : A(D) — N x N be a solution to the SUMCSP instance. We
construct a solution S to the CNC instance by picking one connecting pair
from each chain as follows. Initially, we set S = (). For each uv € A(D), we let
Puv = {P0s -+, Pwa(uv) 1> We let p(uv) = (Tu, Yuv), and we set S = S U pg,, .
It is not hard to see that G — S consists of exactly |V (D)| components (as
we pick one connecting pair from each chain). We associate each component
with some vertex u € V(D). The size of each component is exactly |V (K,)| +
V] + oen ik + 3w + Soen-u (& +3yow = VK| + V(L)) +
(k+3)wy(u) = 2(k+ 3) + (k + 3)(Whig + Womaz — wv (v)) + (K + 3wy (u) =
(k + 3)(wpig + Womaz +2) = W7, a

Lemma 13. If (G,k,un) is a yes-instance of CNC then (D,wy : V(D) —
N,wa : A(D) = N, : A(D) — 28N} is a yes-instance of SUMCSP.

Proof. Let S be a solution to (G, k,). From Lemmas 7 to 11, we know that
S must be well structured. In other words, S C U,,ca(p) Puv, sPlit(G,S) =
0, and |S N Pyy| = 2, for all uv € A(D). Hence, the number of components
in G — 8 is exactly |[V(D)[. Let C(G — S) = {C1,...,Cly(py}- Recall that
W* = (k4 3)(wpig + Womaz +2) and p = |V (D)] - (VZ*) Therefore, we have
ZCGC(G_S) (g) < |V(D)|- (Vg*) Applying Proposition 1, we know that each
component in C(G—.S) must have W* vertices. We associate each component with
some vertex u € V(D). Note that K, contains 2(k + 3) vertices and I,, contains
(k + 3)(Wpig + Wymaz — wy (v)) vertices. Therefore, W* — |V(K,)| — |V (L,)| =
(k + 3)wy (u). Since each chain H,, or H,,, v is a neighbor of u, contributes
(k + 3)x vertices, for some x, to the component associated with w, the sum
of those contributions must equal (k + 3)wy (u). But this implies that there
exists p : A(D) — N x N such that for each wv,vu € A(D), p(uv) € p(uv),

plvu) € @(vu) and Y,y ir(p(un) + Xy seclp(vn) = wy (w). O

Theorem 2. CNC is W[1]-hard when parameterized by solution size and the
treewidth of the input graph.

References

1. Bernardetta Addis, Marco Di Summa, and Andrea Grosso. Removing critical nodes
from a graph: complexity results and polynomial algorithms for the case of bounded
treewidth. Optimization online (www.optimization-online.org), 2011.

17

10.
11.

12.

13.

Hans L. Bodlaender, Daniel Lokshtanov, and Eelko Penninkx. Planar capacitated
dominating set is W{1]-hard. In IWPEC, volume 5917 of Lecture Notes in Computer
Science, pages 50—-60. Springer, 2009.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déaniel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

Marco Di Summa, Andrea Grosso, and Marco Locatelli. Complexity of the critical
node problem over trees. Comput. Oper. Res., 38(12):1766-1774, December 2011.
Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics. Springer, 2012.

Rod G. Downey and Michael R. Fellows. Parameterized complexity. Springer-Verlag,
1997.

Jorg Flum and Martin Grohe. Parameterized Complezity Theory. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 2006.

Martin Grohe and Déniel Marx. On tree width, bramble size, and expansion.
Journal of Combinatorial Theory Series B, 99(1):218-228, 20009.

Danny Hermelin, Moshe Kaspi, Christian Komusiewicz, and Barak Navon. Pa-
rameterized complexity of critical node cuts. Theor. Comput. Sci., 651:62—75,
2016.

Déniel Marx. Can you beat treewidth? Theory of Computing, 6(1):85-112, 2010.

Rolf Niedermeier. Invitation to fized-parameter algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, 2006.

Mario Ventresca. Global search algorithms using a combinatorial unranking-based
problem representation for the critical node detection problem. Comput. Oper.
Res., 39(11):2763-2775, November 2012.

Mario Ventresca and Dionne Aleman. A derandomized approximation algorithm
for the critical node detection problem. Comput. Oper. Res., 43:261-270, March
2014.

18

