
Efficient Computation of Representative Weight Functions with

Applications to Parameterized Counting

Daniel Lokshtanov∗ Saket Saurabh† Meirav Zehavi‡

Abstract

In this paper we prove an analogue of the classic Bollobás lemma for approximate count-
ing. In fact, we match an analogous result of Fomin et al. [JACM 2016] for decision. This im-
mediately yields, for a number of fundamental problems, parameterized approximate count-
ing algorithms with the same running times as what is obtained for the decision variant using
the representative family technique of Fomin et al. [JACM 2016]. For example, we devise
an algorithm for approximately counting (a factor (1± ε) approximation algorithm) k-paths
in an n-vertex directed graph (#k-Path) running in time O((2.619k + no(1)) · 1

ε2 · (n+m)).
This improves over an earlier algorithm of Brand et al. [STOC 2018] that runs in time
O(4k · kO(1) · 1

ε2 · (n+m)).
Additionally, we obtain an approximate counting analogue of the efficient computation

of representative families for product families of Fomin et al. [TALG 2017], again essentially
matching the running time for decision. This results in an algorithm with running time
O((3.841k + |I|o(1)) · 1

ε6 · |I|) for computing a (1 + ε) approximation of the sum of the
coefficients of the multilinear monomials in a degree-k homogeneous n-variate polynomial
encoded by a monotone circuit (#Multilinear Monomial Detection). When restricted
to monotone circuits (rather than polynomials of non-negative coefficients), this improves
upon an earlier algorithm of Pratt [FOCS 2019] that runs in time 4.075k · 1

ε2 log 1
ε · n

O(1).

∗University of California, Santa Barbara, USA. daniello@ucsb.edu
†The Institute of Mathematical Sciences, HBNI, Chennai, India, and University of Bergen, Norway.

saket@imsc.res.in
‡Ben-Gurion University, Beersheba, Israel. meiravze@bgu.ac.il

1 Introduction and Overview

The seminal paper of Valiant on counting problem [Val79] showed that although Perfect
Matching is solvable in polynomial time, #Perfect Mathicng is unlikely to be. This paper
has since sparked vast interest in the study of counting problems. In this paper, we consider
counting problems from the lens of Parameterized Complexity [CFK+15, DF13, FG06]. Our
objective is twofold.

• Devise a general purpose algorithmic tool for parameterized counting problems.

• Use this tool to design state-of-the-art algorithms for several counting problems,
including #k-Path.

The subfield of Parameterized Counting Complexity was initiated by Flum and Grohe [FG04],
as early as 2002. Thus, this subfield has been around for the last 18 years, but until recently it
has remained largely unexplored, with exceptions that are few and far between [AR02, Kou08,
KW16b]. The last few years have seen a flurry of activities in this area resulting in the develop-
ment of new tools and settlement of some old problems [Cur13, CM14, CDM17, CX15, BDH18,
RW20, Bra19, DLM20]. We refer to the survey by Curticapean [Cur18] for a detailed exposition
to parameterized counting problems.

As is the case with classical complexity, most of the natural counting problems are #W[1]-
hard [FG04] in the realm of Parameterized Complexity, which means that they are unlikely
to be solvable in time f(k)nO(1) for any computable function f of k. A problem admitting
an algorithm with running time f(k)nO(1) is called fixed parameter tractable (FPT) and the
running time of the form f(k)nO(1) is called FPT-time. For example, Flum and Grohe [FG04]
showed that counting k-sized distinct (simple) paths in an undirected or directed graph (#k-
Path) is #W[1]-hard [FG04], although the decision version can be solved in FPT-time. In
fact, until this day #k-Path is considered the most classical example of a problem solvable in
FPT-time but which is #W[1]-hard. Further, Flum and Grohe [FG04] conjectured the same
for counting k-sized matchings (#k-Matching) even on bipartite graphs. Curticapean [Cur13]
and Curticapean and Marx [CM14] settled the parameterized complexity of #k-Matching by
showing that the problem is #W[1]-hard.

The intractability of counting problems leads to the question of approximately counting in
FPT-time. In particular, there is a long history of FPT-approximation schemes (FPT-ASs), that
is, f(k, ε−1)nO(1)-time algorithms that approximate the number of certain combinatorial objects
in the given input. Specifically, an FPT-AS for the #k-Path problem has been around for almost
two decades [AR02] and is one of the fundamental problems driving the field of parameterized
counting problems [AR02, ADH+08, AG10, BDH18, BLSZ19]. Recently, an approach based
on representative families has been successful in the design of FPT-time algorithms for a wide-
range of problems including k-Path (the decision version of #k-Path), thus it is natural to
consider a counting notion analogous to this notion. However, even just the existence of “small”
representative families for counting purposes has not been known. In this paper, we develop a
new technology that both asserts their existence and shows how to compute them efficiently.

1.1 Representative Functions (or Counters) and Applications

Our starting point is the notion of representative families [Mon85, Mar09]. Let U be a universe
and let S = {S1, . . . , St} be a family of subsets of U of size p. A subfamily Ŝ ⊆ S is q-
representative for S if for every set Y ⊆ U of size at most q, if there is a set X ∈ S disjoint
from Y, then there exists a set X ∈ Ŝ disjoint from Y . By the classical combinatorial result
of Bollobás, every family of sets of size p has a q-representative family with at most

(
p+q
p

)
1

Table 1: History of #k-Path
Ref. Time Technique Det. Extension

[AR02] kO(k)nO(1) Karp-Luby No Treewidth O(1)

[ADH+08] (2e)knO(1) Color-Coding No No Extension

[AG09] (2e)k+o(k)nO(1) Color-Coding Yes Treewidth O(1)

[BDH18] 4knO(1) Exterior Algebra No Pathwidth O(1)

[Pra19] 4.075knO(1) Waring Rank No Treewidth O(1)

[BLSZ19] 4k+o(k)nO(1) Divide & Color Yes Treewidth O(1)

This Paper 2.619knO(1) Representative Counters No Treewidth O(1)

sets [Bol65]. Given a family S of sets of size p, and an integer q, an efficient algorithm computing
a q-representative family Ŝ ⊆ S was given in [Mar06, Mar09, FLPS16]. The fact that Ŝ can
be efficiently computed from S (and its generalizations to representative matroids) has found
numerous applications in Parameterized and Exact Algorithms [Mon85, Mar09, FLPS16, SZ16,
FGPS19, FLPS17, KW12, KS17, Mar06].

In this paper we prove an analogue of this result for approximate counting. More precisely,
a function Ĉ : P → N0 where P ⊆

(
U
p

)
(such a function is called a counter) is said to (ε, q)-

represent a function C : P → N0 with respect to Q ⊆
(
U
q

)
if for every set Q ∈ Q, the following

condition is satisfied:
∑

P∈P:P∩Q=∅ C(P) ' (1± ε) ·
∑

P∈P:P∩Q=∅ Ĉ(P). We prove that, when P
and Q are “nice” (where the definition of “nice” is just the product of a minor technicality that
can be ignored at the moment and to which we will return later), given any function C : P → N0,
a function Ĉ : P → N0 that (ε, q)-represents C with respect to Q and whose support (denoted
by supp) size is

(
k
p

)
· 2o(k) · 1

ε2
· no(1) where k = p + q and n = |U |, can be computed with

success probability arbitrarily close to 1 and in time O(|supp(C)| · (kq)q · 2o(k) · 1
ε2
· n1+o(1)). We

demonstrate how the efficient construction of representative functions can be a powerful tool in
designing parameterized algorithms for counting problems.

1.1.1 Applications

The k-Path problem (on both directed and undirected graphs) is among the most exten-
sively studied parameterized problems [CFK+15, FLSZ19]. This problem has played a piv-
otal role in the development of Parameterized Complexity and has led to several new tools
and techniques in the area such as color-coding [AYZ95], divide & color [CKL+09b], algebraic
methods [KW16b, BKKZ17, Wil09] and representative families [Mon85, Mar09, FLPS16]. Af-
ter a long sequence of works in the past three decades, the current best known parameter-
ized algorithms for k-Path have running times 1.657knO(1) (randomized, polynomial space,
undirected only) [BHKK17, Bjö14] (extended in [BKKZ17]), 2knO(1) (randomized, polynomial
space) [Wil09], 2.554knO(1) (deterministic, exponential space) [Tsu19, Zeh15, FLPS16, SZ16],
and 4k+o(k)nO(1) (deterministic, polynomial space) [CKL+09a].

Similarly to k-Path, the counting analogue #k-Path plays a significant role in the de-
velopment of the field of parameterized counting. More than 15 years ago, Arvind and Ra-
man [AR02] utilized the classic method of color coding [AYZ95] and Karp-Luby approximate
counting technique to design a randomized exponential-space FPT-AS for #k-Path with run-
ning time kO(k)nO(1) whenever ε−1 ≤ kO(k). A few years afterwards, the development and use of
applications in computational biology to detect and analyze network motifs have already become
common practice [SIKS06, SSRS06, SI06, DSG+08, HWZ08]. Roughly speaking, a network mo-
tif is a small pattern whose number of occurrences in a given network is substantially larger

2

than its number of occurrences in a random network. Due to their tight relation to network
motifs, #k-Path and other cases of the #Subgraph Isomorphism problem became highly
relevant to the study of gene transcription networks, protein-protein interaction (PPI) net-
works, neural networks and social networks [MSOI+02]. In light of these developments, Alon et
al. [ADH+08] revisited the method of color coding to attain a running time whose dependency
on k is single-exponential rather than slightly super-exponential. Specifically, they designed
a simple randomized O((2e)kmε−2)-time exponential-space FPT-AS for #k-Path, which they
employed to analyze PPI networks of unicellular organisms. In particular, their algorithm has
running time 2O(k)m whenever ε−1 ≤ 2O(k). The first deterministic FPT-AS for #k-Path was
found in 2007 by Alon and Gutner [AG10]; this algorithm has an exponential space complexity
and running time 2O(k log log k)m log n whenever ε−1 = 2o(log k). Shortly afterwards, Alon and
Gutner [AG09] improved upon their previous work, and designed a deterministic exponential-

space FPT-AS for #k-Path with running time (2e)k+O(log
3 k)m log n whenever ε−1 = kO(1).

For close to a decade, this algorithm has remained the state-of-the-art. In 2016, Koutis and
Williams [KW16a] made the following conjecture.

Conjecture: #k-Path admits an FPT-AS with running time 2k(1ε)
O(1)nO(1).

After a decade, in 2018, Brand et al. [BDH18] provided a speed-up towards the resolution of
this conjecture. Specifically, they gave an algebraic randomized O(4kmε−2)-time exponential-
space algorithm. This was followed up by Björklund et al. [BLSZ19] who gave a deterministic
algorithm with almost similar running time. However, this algorithm is still far away from
resolving the conjecture of Koutis and Williams [KW16a].

As our first application we give an algorithm for #k-Path that runs in time O((2.619k +
no(1)) · 1

ε2
· (n + m)). This results brings the gap between the known algorithm and the con-

jecture close. While on a superficial level, we make use of the notion of parsimonious universal
families also present in [BLSZ19], our new result is centred around the efficient computation of
representative counter functions (a concept introduced in this paper), which requires to develop
a whole new machinery in general, and sampling primitives in particular, on which we elaborate
in Section 1.3.

The #k-Path problem is a special case of the #k-Subgraph Isomorphism problem, where
for a given n-vertex graph G and a given k-vertex graph F , the objective is to count the number
of distinct subgraphs of G that are isomorphic to F . In addition to #k-Path, parameterized
counting algorithms for two other variants of #k-Subgraph Isomorphism, when F is a tree,
and more generally, a graph of treewidth at most t, were studied in the literature. The algorithm
of Björklund et al. [BLSZ19] can be extended for these cases with running time similar to that for
#k-Path. Independently, Pratt [Pra19] obtained an algorithm for these cases as an application
of his algorithm for a more general problem, called #Multilinear Detection, which we
discuss in more detail in the following subsection.

In particular, we obtain Theorem 1.1 ahead as an application of our first tool. Before we
state it, let us give the definitions of the problems it addresses. In q-Set p-Packing we are
given a universe U , a family F of subsets of size q of U , and p ∈ N. Then, the objective is
to determine whether there exist at least p pairwise-disjoint sets in F . In q-Dimensional p-
Matching, we are given a universe U , a partition (U1, U2, . . . , Uq) of U , a family F of subsets
of size q of U where each subset contains exactly one element from each part Ui, and p ∈ N.
Then, the objective is to determine whether there exist at least p pairwise-disjoint sets in F . In
Graph Motif, we are given a graph G where each vertex is assigned a set of colors, a multiset
of colors M , and k ∈ N (the sought motif size). Then, the objective is to determine whether
there exist a subtree T of G on k vertices and a coloring of the vertices in T (each by a color
from its set) so that no color is used more times than its number of occurrences in M .

3

Theorem 1.1. For any 0 < ε < 1, the #k-Path, #q-Set p-Packing with k = qp, #q-
Dimensional p-Matching with k = (q − 1)p and #Graph Motif with k being twice the
sought motif size problems can be approximated with factor (1 ± ε) and success probability at
least 9

10 in time O((2.619k + |I|o(1)) · 1
ε2
· |I|), where k is the parameter and |I| is the input size.

Moreover, for any 0 < ε < 1, the #k-Tree (or, more generally, #Subgraph Isomorphism
where the treewidth of pattern graph is bounded by a fixed constant) can be approximated with
factor (1± ε) and success probability at least 9

10 in time 2.619k · 1
ε2
· |I|O(1).

1.2 Representation for Product Functions (or Counters) and Applications

Let P ⊆
(
U
p

)
. Given two functions C1 : P1 → N0 and C2 : P2 → N0 where P1 ⊆

(
U
p1

)
, P2 ⊆

(
U
p2

)
and p1 +p2 = p, the product C1×C2 (with respect to P) is the function C1×C2 : P → N0 defined
as follows: For each P ∈ P,

(C1 × C2)(P) =
∑

P1∈P1,P2∈P2:
P1∩P2=∅,P1∪P2=P

C1(P1) · C2(P2).

We prove that, given that P1,P2,P and Q ⊆
(
U
q

)
are “nice”, given any two functions

C1 : P1 → N0 and C2 : P2 → N0, a function Ĉ : P → N0 that (ε, q)-represents C = C1 × C2 with
respect to Q and whose support size is

(
k
p

)
· 2o(k) · 1

ε2
· no(1) where k = p + q, can be computed

with success probability arbitrarily close to 1 and in time

O
((

3.841k + |supp(C1)| · (
k

q + p2
)q+p2 + |supp(C2)| · (

k

q + p1
)q+p1

)
· 2o(k) · 1

ε2
· n1+o(1)

)
.

A more exact expression of the upper bound on the time complexity that precisely describes
the dependence on the sizes of the supports of C1 and C2 rather than the term 3.841k is given in
the paper. However, the crux here is that the time complexity to compute the output function
can be substantially smaller than even just the time to explicitly write up the function C1 × C2

that it represents (even if both C1 × C2 have already been reduced to have support size
(
k
p1

)
and

(
k
p1

)
)! For example, if both p1 and p2 are close to k/2, then the support of their product is

already 4k.
Our main application is a randomized algorithm for the #Multilinear Monomial De-

tection problem, mentioned in the previous subsection. In this problem, the objective is to
compute a (1+ ε) approximation of the sum of the coefficients of the multilinear monomials in a
degree-k homogeneous n-variate polynomial encoded by an arithmetic circuit with nonnegative
coefficients (i.e., a monotone circuit). Recently, Pratt [Pra19] developed a randomized (1 + ε)-
approximation algorithm for this problem with time complexity O(4.075k · 1

ε2
log 1

ε ·s(C)O(1)). In
fact, the result of Pratt [Pra19] is for a notably more general—it deals with the #Multilinear
Monomial Detection problem extended to only requiring the polynomial to have nonnega-
tive coefficients, thus allowing the arithmetic circuit to have negative coefficients, though not
the polynomial that it encodes. Improving upon this result for the case of monotone circuits,
we get the following.

Theorem 1.2. For any 0 < ε < 1 , the #Multilinear Monomial Detection problem (on
monotone circuits) can be approximated with factor (1± ε) and success probability at least 9

10 in

time O((3.841k + s(C)o(1)) · 1
ε6
· s(C)).

The decision version of #Multilinear Monomial Detection is the central problem
in the algebraic approach of Koutis and Williams for designing fast parameterized algorithms
[Kou08, KW16b, Wil09]. Here, the objective is to decide whether there exists a multilinear

4

monomial of degree-k with non-zero coefficient (rather than to compute the sum of coefficients of
such monomilas). Let s(C) denote the size of C. Williams [Wil09] gave a randomized algorithm
solving k-Multilinear Monomial Detection in time 2k ·s(C)O(1) (over monotone circuits).
The only known algorithm for the problem when there is no restriction on circuits is by Brand et
al. [BDH18], who gave an algorithm with running time 4.32k · s(C)O(1) (with exponential space
complexity). (Recently, further (yet unpublished) developments were given in the preprint
[BP20].) Afterwards, Arvind et al. [ACDM19] obtained an algorithm with the same running
time and with polynomial space complexity. The algorithms based on the algebraic method of
Koutis-Williams provide a dramatic improvement for a number of fundamental problems. See
the survey by Koutis and Williams [KW16a] for further details. The idea behind the approach
is to translate a given problem into the language of algebra by reducing it to the problem of
deciding whether a constructed polynomial has a multilinear monomial of degree k.

We note that #k-Subgraph Isomorphism can be reduced to the #Multilinear Mono-
mial Detection problem and thus one can obtain an algorithm (that is efficient when the
sought graph is of constant treewidth) for it as an application of Theorem 1.2. In fact, #k-
Subgraph Isomorphism reduces to #Multilinear Monomial Detection on specials cir-
cuits where we can obtain a faster algorithm. This is what is exploited in the proof of The-
orem 1.1. More precisely, the aforementioned special circuits are “d-skewed circuits” (mostly,
for d = O(1)), where every multiplication gate has at most one child whose polynomial can
consist of more than d monomials. Specifically, we have the following theorem, where we are
particularly interested in the case where ` = 0. This theorem is also our intermediate step to
derive Theorem 1.1.

Theorem 1.3. For any 0 < ε < 1 and ` ∈ N0, the #Multilinear Monomial Detec-
tion problem on 2o(k)s(C)`-skewed circuits can be approximated with factor (1± ε) and success
probability at least 9

10 in time O((2.619k + s(C)o(1)) · 1
ε2
· s(C)`+1).

1.3 Our Methods

In this subsection, we give a short overview of our proof and the tools we develop along the way,
which are of broader interest. Most of the overview concerns our computation of representative
counters (in the simpler, “non-product” setting), and it is structured as follows. We first extend
the definition of special families of sets called parsimonious universal families to have so called
membership queries. We then present an alternative definition of representation that assumes
the presence of such extended families, and argue that this alternative definition is equivalent
to our original definition of representation (which is also the one used for applications) up to
a minor error. After that, we turn to show how to compute representative counters according
to this alternative definition. To this end, we present a sampling procedure, which, given a
counter and a parsimonious universal family, samples (while using the membership queries of
the family) some sets from the support of the counter and assigns new values to them. We then
argue that this procedure, with high probability, yields a representative counter. After this,
we still have the task of computing a parsimonious universal family with membership queries.
Unfortunately, we do not know how to efficiently compute such a small family with efficient
membership queries. So, we define a weaker but more technical notion based on a partition
of the universe. We then present a sampling procedure that, with high probability, succeeds
in computing the required family. Afterwards, we argue that the weaker notion suffices for
our purposes. Lastly in this overview, we briefly address the case of product counters, where
computation of a representative counter is substantially more technically involved. After that,
we also briefly address our applications.

Representation via Similarity with Respect to an Approximately Parsimonious
Universal Family. Our computation of representative functions assumes access to so called

5

approximately parsimonious families with efficient membership procedures, defined as follows.
Let n, p, q ∈ N and 0 < ε < 1. Let U be a universe of size n, and let P ⊆

(
U
p

)
and

Q ⊆
(
U
q

)
. A family F ⊆ 2U is an ε-parsimonious (n, p, q)-universal family with respect to

(P,Q) if there exists T = T (n, p, q, ε) > 0, called a correction factor, such that for each pair
of disjoint sets P ∈ P and Q ∈ Q, it holds that (1 − ε) · T ≤ |F [P,Q]| ≤ (1 + ε) · T where
F [P,Q] = {F ∈ F : P ⊆ F,Q ∩ F = ∅}. A T̂ -membership query procedure is a procedure that
given any set P ∈ P as input, outputs the subfamily {F ∈ F : P ⊆ F} in time O(T̂). The
development of a procedure to compute small parsimonious families with efficient membership
query procedures is part of our paper, and it is of independent interest. We briefly discuss this
part later in the overview.

Our first key insight towards the computation of representative functions is to project the
notion of similarity between functions to approximately parsimonious families. To this end,
we extend the domains of functions as follows. Let C : P → N0 be a function. The extender
Cext : 2U → N0 is defined as follows. For any set F ⊆ U , let Cext(F) ,

∑
P∈(Fp)∩P

C(P).

Notice that for any set P ∈ P ⊆
(
U
p

)
, we have that Cext(P) = C(P). Then, we say that a

function C : P → N0 and a function Ĉ : P → N0 are (ε,F)-similar (with respect to a family
F ⊆ 2U), if for every set F ∈ F , (1 − ε) · Cext(F) ≤ Ĉext(F) ≤ (1 + ε) · Cext(F). Roughly,
the advantage of the definition of similarity compared to representation is that representation
requires to explicitly consider every set P ∈ P and every set Q ∈ Q, while similarity requires
to explicitly consider only every set P ∈ P (indirectly via the definition of the extenders of the
functions). The consideration of every set P ∈ P is not as “intimidating” as the consideration
of every set Q ∈ Q, as among the sets in P we only care about those that belong to the support
of the function which we want to represent and that is part of the input, while about the sets
in Q we do not know anything and they are not part of the input (so, it may be that |Q| is of
a prohibitive magnitude of

(
n
q

)
)! Specifically, we prove the following lemma.

Lemma 1.1. Let n, p, q ∈ N, 0 < ε < 1 and 0 < δ < 1. Let P ⊆
(
U
p

)
and Q ⊆

(
U
q

)
. Let

F ⊆ 2U be an ε-parsimonious (n, p, q)-universal family with respect to (P,Q). Let C : P → N0

and Ĉ : P → N0 be (δ,F)-similar. Then, Ĉ (4ε+ δ, q)-represents C with respect to Q.

Sampling the Support of the Input Function and Re-Adjusting the Assigned Values.
Our computation of representative functions is done in a sampling procedure defined as follows.
(Some explanation of the intuition behind it is given ahead.)

Definition 1.1 ((C,F)-Counter Sampling). Let U be a universe, and let F ⊆ 2U with
U ∈ F . Let p, L ∈ N0 and P ⊆

(
U
p

)
. Let C : P → N0. Then, (C,F , L)-counter sampling is the

randomized procedure that constructs Ĉ : P → N0 as follows. For any set P ∈ P, define

assocC,F ,L(P) , min
F∈F :P⊆F

Cext(F),

probC,F ,L(P) , min(1, L · C(P)

assocC,F ,L(P)
), and

countC,F ,L(P) ,
C(P)

probC,F ,L(P)
.

Then, for any set P ∈ P, set Ĉ(P) to countC,F ,L(P) with probability probC,F ,L(P) and to 0 with
probability 1− probC,F ,L(P).1

1Since U ∈ F , there exists F ∈ F such that P ⊆ F , hence assocC,F,L(P) is well defined.

6

The support of any function that can be potentially output is contained in the support of
the input function. Essentially, with this sampling procedure we aim to discard as many sets
as possible from the support of the input function (so that the output function will have small
support), while modifying the values of the sets that are kept so as to “make amends” for all
those sets we dropped—so that we obtain a representative function. Intuitively, each set P ∈ P
is associated, among the sets in F that contain it and hence whose value is effected by the value
of P (as assigned by the function and its extender), with a set F having minimum value. Thus,
P is associated with a set F for which P is most significant among all sets in F—that is, in
which the fraction of the value of P from the entire value of F is largest. In a sense, this means
that the value of F is most “vulnerable” in case P will be dropped from the support of the
function. Next, the probability of keeping P in the support is chosen to be proportional to its
fraction of value within F—the larger C(P) is, the larger is the probability to choose it, but at
the same time, the larger assocC,F ,L(P) is (which means that the set F associated with P , and
hence all other sets in F as well, are less vulnerable to P being dropped out), the smaller is the
probability to choose P . The factor L (whose exact value will be determined later) is meant to
boost up the probability to be larger than just the fraction of the value of P within F (else we
may drop “too many” sets from the support, and hence the output function will not represent
the input function). Due to this boosting factor, we also need to trim down the boosted fraction
to be 1 so that it will indeed represent a probability. Lastly, the new value of P when decided
to be kept in the support, is chosen in a way as to ensure that its expected value (being the
probability to keep it times its new value when it is kept) will be equal to its original value.

We prove our main theorem, stated below, by utilizing our sampling procedure.

Theorem 1.4. Let U be a universe. Let 0 < ε < 1, p, q, c ∈ N0, P ⊆
(
U
p

)
and Q ⊆

(
U
q

)
. Let

F ⊆ 2U be a 1
5ε-parsimonious (n, p, q)-universal family with respect to (P,Q), equipped with a

T -membership query procedure. Let C : P → N0. Then, a function Ĉ : P → N0 such that

1. for every P ∈ P, E[Ĉ(P)] = C(P), and

2. with success probability at least 1− 1
c , Ĉ (ε, q)-represents C with respect to Q and satisfies

|supp(Ĉ)| ≤ O((1ε)
2|F| log c log(c|F|)),

can be computed in time O(|supp(C)| · T).

Computation of Approximate Universal Families with Membership Query Proce-
dures for Balancedly Split Sets. While it is quite easy to compute a “small” approximate
universal family using the probabilistic method, this will yield a family F where given a set
P ∈

(
U
p

)
, the computation of all sets in the family that contain P may entail iterating over all

sets in F ! Even if the family F is just of size
(
k
p

)
(which is clearly a lower bound on the size

of F even if it is not required to be parsimonious, but just required to satisfy |F [P,Q]| ≥ 1
for all P,Q), this is much too costly for us. Instead, our construction can be viewed as a data
structure that enables to perform efficient membership queries after initialization (in which it
computes an approximately parsimonious family F in a fashion tailored to make its queries
efficient later). The construction is done only for “nice” sets, that is, sets that are roughly
balancedly split across some partitioned universe (this is made precise immediately). This is
merely a technicality, because a problem can be reduced in a black box fashion to a version
considering only nice sets as solution, as we will explain later in this overview.

We now make the exposition of this part more precise. To this end, we need a few notations.
Let k, p ∈ N. A tuple U = (U1, , . . . , U√k) where U1, U2, . . . , U√k are pairwise-disjoint universes

is called a
√
k-partitioned universe. Moreover, a function f : {1, . . . ,

√
k} → {0, . . . , 2

√
k}

7

satisfying
∑√k

i=1 f(i) = k is called a k-splitting function. Lastly, a pair (f, g) of a k-splitting
function f : {1, . . . , t} → {0, . . . , 2

√
k} and a function g : {1, . . . ,

√
k} → {0, . . . ,

√
k} satisfying

g ≤ f (i.e., for every i ∈ {1, . . . ,
√
k}, g(i) ≤ f(i)) and

∑√k
i=1 g(i) = p, is called a (k, p)-

splitting function pair. Then, P ∈
(
U
p

)
is (U, f, g)-balancedly split if for every i ∈ {1, . . . ,

√
k},

it holds that |P ∩ Ui| = g(i). Further, PBAL
U,f,g

⊆
(
U
p

)
denotes the collection of all (U, f, g)-

balancedly split sets. Moreover, Q ∈
(
U
k−p
)

is complementary (U, f, g)-balancedly split if for

every i ∈ {1, . . . ,
√
k}, it holds that |Q∩Ui| = f(i)− g(i). Further, QCBAL

U,f,g
⊆
(
U
k−p
)

denotes the

collection of all complementary (U, f, g)-balancedly split sets.
We give the following construction for F equipped with a procedure to query membership.

Definition 1.2 (Parsimonious Universal Family Sampling). Let k, p ∈ N, 0 < ε < 1

and c, d ≥ 1. Let U = (U1, U2, . . . , U√k) be a partitioned universe with U =
⋃√k
i=1 Ui of size n,

and let (f, g) be a splitting function pair. Then, (U, f, g, ε, c, d)-universal family sampling is the
randomized procedure that constructs a family F ⊆ 2U as follows. For i ∈ {1, 2, . . . ,

√
k} and

j ∈ {1, 2, . . . , si} with

si =
(d · f(i))f(i)

g(i)g(i)(d · f(i)− g(i))f(i)−g(i)
· 1

ε̂2
· 10k · ln(nc),

where ε̂ = ln(1+ε)√
k

, construct a set Fi,j ⊆ Ui as follows: Each element in Ui is inserted in-

dependently with probability g(i)
d·f(i) into Fi,j. For i ∈ {1, 2, . . . ,

√
k}, denote Fi = {Fi,j : j ∈

{1, 2, . . . , si}}. Then, F = {F1,j1 ∪F2,j2 ∪ · · · ∪F√k,j√k : F1,j1 ∈ F1, Fi,j2 ∈ F2, . . . , Fi,j√k ∈ Ft}.

Definition 1.3 (Membership Query Procedure). Given P ∈ PBAL
U,f,g

, the procedure MEM-

BERSHIP naively computes F ′i = {Fi,ji ∈ Fi : P ∩ Ui ⊆ Fi,ji} (for every i ∈ {1, . . . ,
√
k}) by

iterating over every set in Fi; then, the output is {F1,j1 ∪F2,j2 ∪· · ·∪F√k,j√k : F1,j1 ∈ F ′1, F2,j2 ∈
F ′2, . . . , F√k,j√k ∈ F

′√
k
}.

We prove the following theorem.2

Theorem 1.5. Let k, p ∈ N with p ≤ k, and c, d ≥ 1. Let U = (U1, U2, . . . , U√k) be a

partitioned universe with U =
⋃√k
i=1 Ui of size n ≤ c, and let (f, g) be a splitting function pair.

With probability at least 1 − 1
c , the output family F ⊆ 2U of (U, 2, f, g, ε, c, d)-universal family

sampling, computed in time O(|F|n), satisfies the following conditions.

1. |F| ≤ (dk)k

pp(dk − p)k−p
· (1

ln2(1 + ε)
· 10k3 · ln(nc))

√
k.

2. F is an ε-parsimonious (n, p, k − p)-universal family with respect to (PBAL
U,f,g

,QCBAL
U,f,g

).

3. MEMBERSHIP is a T -membership query procedure where

T =

(
(dk)

√
k + (

dk

dk − p
)k−p(

dk

p
)p−p

′
)
·
(

1

ln2(1 + ε)
· 20k3 · ln(nc)

)√k
.

2We remark that the precise upper bounds given in this theorem, in particular the terms (dk)k

pp(dk−p)k−p and

(dk
dk−p)k−p(dk

p
)p−p

′
, cannot be loosened if one is to obtain the running times guaranteed for our applications.

8

Reduction of a Problem to a Partitioned Version. Lastly, we give a black box reduction,
which may also be of independent interest. Roughly, this reduction shows that if one can
approximately count solutions that are balancedly split (which can be an easier task, as in our
case), then one can approximately count all solutions. Formally, let Π be a problem whose
input consists, among possibly other components, of a universe U of size n and k ∈ N, and
whose solutions are subsets (resp. ordered subsets) of U of size k. Such a problem Π is said
to be splittable. The split version of Π is defined as follows. Its input consists of the same
components as the input of Π, and in addition, of a

√
k-partitioned universe U and a k-splitting

function f , and whose solutions are all the subsets (resp. ordered subsets) of U that are both
solutions of Π and are (U, f, f)-balancedly split.

Lemma 1.2. Let Π be a splittable problem such that the number of solutions of its split version
can be approximately counted with multiplicative error (1 ± α) in time T ≥ n with success

probability at least 1 − 1
c′ . Then, for any c ∈ N such that (4

√
k)
√
k · 1

β2k ln(nc) · 1
c′ ≤

1
2c and

0 < β < 1, the number of solutions of Π can be approximately counted with multiplicative error

(1± α)(1± β) in time O((4
√
k)
√
k · T · 1

β2k ln(nc)) with success probability at least 1− 1
c .

Extension to Product Functions. The computation of a representative function for a prod-
uct function is technically involved. Among the main difficulties being faced here is the fact that
we cannot even iterate over the support of the input product function (since that in itself is too
costly) and decide for each set in the support whether to insert it to the support of the output
function (with some probability and new assigned value). Instead, we pre-determine how many
sets to pick up, and devise a somewhat complex mechanism that allows us to efficiently sample
sets from the support according to some distribution without ever computing the support! In
particular, we now have two approximately parsimonious families rather than one (where one is
meant to separate between sets in P and sets in Q, and the other is meant to separate between
sets in P1 and sets in P2), and the sampling is done in three stages after some critical prepro-
cessing to efficiently determine (in part) the probability distributions used in these stages. The
first stage involves sampling a set P1 from the support of C1, the second (which depends on
the outcome of the first) involves sampling a pair of sets from our approximately parsimonious
families, and the third (which depends on the outcome of the first and second) involves sampling
a set P2 disjoint from P1 from the support of C2, so as to pick up P1 ∪ P2. We defer further
technical details on the extension to product functions to Section 5.

Applications. Our algorithm for #Multilinear Detection on skewed circuits is based on
dynamic programming over the nodes of the input circuit. For each node, we store a counter
that assigns to each monomial (encoded by the set containing its variables) of the polynomial of
the subcircuit rooted at the current node its coefficient with “small error”. (More precisely, for
each node together with a combination of other arguments, we store one such counter, but for
the sake of simplicity of this overview, we ignore these other arguments here.) When we consider
a node, we have already computed the aforementioned counters for all its outgoing neighbours.
So, as the circuit is skewed, we can explicitly compute the counter for the current node, and
then compute a representative counter for it and store the representative counter instead of it
(else, even though the circuit is skewed, after several levels just writing the polynomial via a
counter explicitly may take time

(
n
k

)
). When we reach the root, we can solve the problem.

On general (monotone) circuits we cannot write the polynomial (and hence the counter) of a
node that results from the multiplication of the polynomials stored for its outgoing neighbours
(within the desired time complexity) even after their sized have already been reduced by rep-
resentation. So, instead, here we use our computation for product counters that sidesteps this.
Having attained algorithms for #Multilinear Detection on skewed and general circuits, all

9

our other applications, including the algorithm for #k-Path, follow just by using reductions
known in the literature and observing that they are parsimonious.

1.4 Additional Related Works

The algorithms by Alon et al. [ADH+08] and Alon and Gutner [AG10, AG09], just like our
algorithms, extend to approximate counting of graphs of bounded treewidth. (This remark is
also made by Alon and Gutner [AG10, AG09].) In what follows, we briefly review works related
to exact counting and decision from the viewpoint of Parameterized Complexity. Since these
topics are not the focus of our work, the survey is illustrative rather than comprehensive.

The problem of counting the number of subgraphs of a graph G that are isomorphic to
a graph H—that is, #Subgraph Isomorphism with Pattern H—admits a dichotomy: If
the vertex cover number of H is bounded, then it is FPT [WW13], and otherwise it is #W[1]-
hard [CM14]. The #W[1]-hardness of #k-Path, originally shown by Flum and Grohe [FG04],
follows from this dichotomy. By using the “meet in the middle” approach, the #k-Path prob-
lem and, more generally, #Subgraph Isomorphism with Pattern H where H has bounded

pathwidth and k vertices, was shown to admit an n
k
2
+O(1)-time algorithm [BHKK09]. Later,

Björklund et al. [BKK17] showed that k
2 is not a barrier (which was considered to be the case

at that time) by designing an n0.455k+O(1)-time algorithm. A breakthrough that resulted in
substantially faster running times took place: Curticapean et al. [CDM17] showed that #Sub-
graph Isomorphism with Pattern H is solvable in time `O(`)n0.174` where ` is the number of
edges in H; in particular, this algorithm solves #k-Path in time kO(k)n0.174k. Recently, Arvind
et al. [ACDM19] obtained an algorithm for #Multilinear Monomial Detection with time
complexity nk/2+O(log k). Also recently, Dell et al. [DLM20] gave “black box” results for turning
algorithms which decide whether or not a witness exists into algorithms to approximately count
the number of witnesses (with overheads of kO(k) that are prohibitive for our settings).

2 Preliminaries

Let U be a universe, and let p, q ∈ N0 be non-negative integers. Then, let
(
U
p

)
be the collection

of subsets of U of size exactly p, and denote
(
U
≤p
)

=
⋃p
i=0

(
U
i

)
. Given two subsets P,Q of U

and a family F ⊆ 2U of subsets of U , denote F [P,Q] , {F ∈ F : P ⊆ F,Q ∩ F = ∅}. Given
a function f : U → R, let supp(f) = {u ∈ U : f(u) 6= 0} denote the support of f . Given two
functions f : U → R and g : U → R such that for every a ∈ A, it holds that g(a) ≤ f(a), we
denote g ≤ f .

A central notion in our proofs is of parsimonious universal families, defined as follows.

Definition 2.1 (ε-Parsimonious Universal Family, Generalization of [BLSZ19]). Let
n, p, q ∈ N and 0 < ε < 1. Let U be a universe of size n, and let P ⊆

(
U
p

)
and Q ⊆

(
U
q

)
. A

family F ⊆ 2U is an ε-parsimonious (n, p, q)-universal family with respect to (P,Q) if there
exists T = T (n, p, q, ε) > 0, called a correction factor, such that for each pair of disjoint sets
P ∈ P and Q ∈ Q, it holds that (1− ε) · T ≤ |F [P,Q]| ≤ (1 + ε) · T .

The special case of Definition 2.1 where P =
(
U
p

)
and Q =

(
U
q

)
is the definition of an ε-

parsiminious universal family in [BLSZ19]. For parsimonious universal families, the following
proposition is known, based on a straightforward sampling argument.

Proposition 2.1 ([BLSZ19]). Let c ∈ N be a fixed constant. Let n, p, q ∈ N and 0 < ε < 1, and
denote k = p + q. Let U be a universe of size n. An ε-parsimonious (n, p, q)-universal family

10

F ⊆ 2U of size t = O
(
kk

ppqq
· k log n · 1

ε2

)
, can be computed with success probability at least

1− 1/nck in time O(t · n).

We will need more sophisticated parsimonious universal families, constructed in a manner to
enable having an efficient “membership query” procedure—that is, a procedure that given any
set P ∈

(
U
p

)
, outputs all the sets in the family that contain P . We will address the computation

of such families and procedures in Section 3.2. Formally, they are defined as follows.

Definition 2.2 (Membership Query Procedure). Let n, p, q ∈ N and 0 < ε < 1. Let U be
a universe of size n, and let P ⊆

(
U
p

)
and Q ⊆

(
U
q

)
. Let F ⊆ 2U be an ε-parsimonious (n, p, q)-

universal family with respect to (P,Q). A T -membership query procedure is a procedure that
given any set P ∈ P as input, outputs the subfamily {F ∈ F : P ⊆ F} in time O(T).

For the case of so called product counters (defined in Section 5), we need to further generalize
the notion of a membership procedure as well as consider disjointness procedures. Because our
computation easily extends to the more general notion of membership procedure, we already
give the definition here, so that in Section 3.2 we can directly present the computation for the
more general notion and avoid repetition.

Definition 2.3 (General Membership and Disjointness Query Procedures). Let n, p, q ∈
N and 0 < ε < 1. Let U be a universe of size n. Let P ⊆

(
U
p

)
, P ′ ⊆ {P ′ ⊆ P : P ∈ P} and

Q ⊆
(
U
q

)
. Let F ⊆ 2U be an ε-parsimonious (n, p, q)-universal family with respect to (P,Q). A

T -membership query procedure with respect to P ′ is a procedure that given any set P ′ ∈ P ′ as
input, outputs the subfamily {F ∈ F : P ′ ⊆ F} in time O(T).

Additionally, A T -disjointness query procedure is a procedure that given any set Q ∈ Q as
input, outputs the subfamily {F ∈ F : Q ∩ F = ∅} in time O(T).

We will also make use of the following well known inequality to bound probabilities.

Proposition 2.2 (Chernoff Bound). Let X1, . . . , X` be independent random variables bounded

by the interval [0, 1]. Let X =
∑̀
i=1

Xi. For any ε ≥ 0, Pr(|X − E[X]| > εE[X]) ≤ 2e−
ε2E[X]

2 .

Lastly, we need to define the notion of an arithmetic circuit. An arithmetic circuit C over a
commutative ring R is a simple labelled directed acyclic graph whose internal nodes are labeled
by + or × and whose leaves (in-degree zero nodes) are labeled from X where X = {x1, x2, ..., xn}
is a set of variables. There is a node of out-degree zero, called the root node or the output gate.
The size of C, denoted by s(C), is the number of nodes, sV(C), plus the number of arcs, sA(C),
in the digraph.

3 Representative Counters

In this section, we will be working with counters, defined as follows.

Definition 3.1 (Counter). Let U be a universe. Let p ∈ N0, and let P ⊆
(
U
p

)
. A function

C : P → N0 is called a counter. A counter is encoded as a collection of pairs, where each pair
consists of an element P ∈ supp(C) and its value C(P).

The main objective of this section is to compute representative counters, defined as follows.

11

Definition 3.2 ((Approximate) Representative Counter). Let U be a universe. Let α ≤
1, β ≥ 1, and let p, q ∈ N0. Let P ⊆

(
U
p

)
and Q ⊆

(
U
q

)
. A counter Ĉ : P → N0 is said to

(α, β, q)-represent a counter C : P → N0 with respect to Q if for every set Q ∈ Q, the following
condition is satisfied.

α ·
∑

P∈P:P∩Q=∅

C(P) ≤
∑

P∈P:P∩Q=∅

Ĉ(P) ≤ β ·
∑

P∈P:P∩Q=∅

C(P).

When α = 1− ε and β = 1 + ε for some 0 < ε < 1, Ĉ is said to (ε, q)-represent C.

Further, we will need the representative counter to be, in expectation, not just similar, but
identical to the given counter.

Definition 3.3 ((Exact) Representative Counter in Expectation). Let U be a universe.
Let p ∈ N0, and let P ⊆

(
U
p

)
. A sampled counter Ĉ : P → N0 is said to represent in expectation

a counter C : P → N0 if for every set P ∈ P, the following condition is satisfied.

E
Ĉ
[Ĉ(P)] = C(P).

We will first show how to efficiently compute representative counters under the assumption
that we can compute parsimonious universal families equipped with efficient membership query
procedures. Next, we will show how to compute a parsimonious universal family equipped with
efficient membership query procedure for specific choices of (P,Q). We remark that in what
follows, we implicitly suppose that the counter to represent has non-empty support, because
otherwise representation is trivial.

3.1 Computation of Representative Counters of Small Support

We first extend the notion of a counter to also assign values to sets of size larger than p.

Definition 3.4 (Domain Extension). Let U be a universe. Let p ∈ N0, and let P ⊆
(
U
p

)
.

Let C : P → N0 be a counter. The extender Cext : 2U → N0 is defined as follows. For any set
F ⊆ U , define

Cext(F) ,
∑

P∈(Fp)∩P

C(P).

Notice that for any set P ∈ P, we have that Cext(P) = C(P). Now, we present an alternative
(to Definition 3.2) notion of similarity between counters, based on a given family F (that will,
when used ahead, be a parsimonious universal family). In particular, it makes similarly, in a
sense, be more focused, considering only sets in F rather than all possible choices of P ∈ P
and Q ∈ Q in order to measure similarity. Being more focused, working with this definition for
the computation of representative counters will also yield efficiency. Notice that this definition
does not replace Definition 3.2—the usage of representative counters for applications will require
Definition 3.2.

Definition 3.5 ((ε,F)-Similarly). Let U be a universe, and let F ⊆ 2U . Let 0 < ε < 1, and
let p ∈ N0 and P ⊆

(
U
p

)
. Let C : P → N0 and Ĉ : P → N0 be two counters. We say that C and

Ĉ are (ε,F)-similar if for every set F ∈ F , (1− ε) · Cext(F) ≤ Ĉext(F) ≤ (1 + ε) · Cext(F).

We now prove that for the sake of efficient computation of representative counters, we can
indeed work with the new definition.

Lemma 3.1. Let n, p, q ∈ N, 0 < ε < 1 and 0 < δ < 1. Let P ⊆
(
U
p

)
and Q ⊆

(
U
q

)
. Let

F ⊆ 2U be an ε-parsimonious (n, p, q)-universal family with respect to (P,Q). Let C : P → N0

and Ĉ : P → N0 be (δ,F)-similar counters. Then, Ĉ (4ε+ δ, q)-represents C with respect to Q.

12

Proof. To prove that Ĉ (ε, q)-represents C with respect to Q, consider some set Q ∈ Q. First,
observe that

(∗)
∑

P∈P:P∩Q=∅

|F [P,Q]| · C(P) =
∑

P∈P:P∩Q=∅

∑
F∈F [P,Q]

C(P)

=
∑

F∈F :Q∩F=∅

∑
P∈P:P⊆F

C(P)

=
∑

F∈F :Q∩F=∅

Cext(F).

Let T be the correction factor of F . Then, for any set P ∈ P, we have that (1 − ε)T ≤
|F [P,Q]| ≤ (1 + ε)T . On the one hand, this implies that

(I)
∑

P∈P:P∩Q=∅

C(P) =
1

(1− ε)T
·

∑
P∈P:P∩Q=∅

(1− ε)T · C(P)

≤ 1

(1− ε)T
·

∑
P∈P:P∩Q=∅

|F [P,Q]| · C(P)

=
1

(1− ε)T
·

∑
F∈F :Q∩F=∅

Cext(F).

Here, the last equality was derived from equality (*). Symmetrically, we have that

(II)
∑

P∈P:P∩Q=∅

Ĉ(P) ≤ 1

(1− ε)T
·

∑
F∈F :Q∩F=∅

Ĉext(F).

On the other hand, this implies that

(III)
∑

P∈P:P∩Q=∅

C(P) =
1

(1 + ε)T
·

∑
P∈P:P∩Q=∅

(1 + ε)T · C(P)

≥ 1

(1 + ε)T
·

∑
P∈P:P∩Q=∅

|F [P,Q]| · C(P)

=
1

(1 + ε)T
·

∑
F∈F :Q∩F=∅

Cext(F).

Again, the last equality was derived from equality (*). Symmetrically, we have that

(IV)
∑

P∈P:P∩Q=∅

Ĉ(P) ≥ 1

(1 + ε)T
·

∑
F∈F :Q∩F=∅

Ĉext(F).

Because C and Ĉ are (δ,F)-similar, for any set F ∈ F , we have that (1 − δ) · Cext(F) ≤
Ĉext(F) ≤ (1 + δ) · Cext(F). On the one hand, combined with inequalities (II) and (III), this
implies that ∑

P∈P:P∩Q=∅

Ĉ(P) ≤ 1

(1− ε)T
·

∑
F∈F :Q∩F=∅

Ĉext(F)

≤ (1 + δ)

(1− ε)T
·

∑
F∈F :Q∩F=∅

Cext(F)

=
(1 + δ)(1 + ε)

(1− ε)
· 1

(1 + ε)T
·

∑
F∈F :Q∩F=∅

Cext(F)

≤ (1 + δ)(1 + ε)

(1− ε)
·

∑
P∈P:P∩Q=∅

C(P).

13

On the other hand, combined with inequalities (I) and (IV), this implies that∑
P∈P:P∩Q=∅

Ĉ(P) ≥ 1

(1 + ε)T
·

∑
F∈F :Q∩F=∅

Ĉext(F)

≥ (1− δ)
(1 + ε)T

·
∑

F∈F :Q∩F=∅

Cext(F)

=
(1− δ)(1− ε)

(1 + ε)
· 1

(1− ε)T
·

∑
F∈F :Q∩F=∅

Cext(F)

≥ (1− δ)(1− ε)
(1 + ε)

·
∑

P∈P:P∩Q=∅

C(P).

Overall, we have that

(1 + δ)(1− ε)
(1 + ε)

·
∑

P∈P:P∩Q=∅

Ĉ(P) ≤
∑

P∈P:P∩Q=∅

C(P) ≤ (1 + δ)(1 + ε)

(1− ε)
·

∑
P∈P:P∩Q=∅

Ĉ(P).

Notice that 1− ε > 1− ε− 2ε2 = (1− 2ε)(1 + ε), and hence (1− ε)/(1 + ε) > 1− 2ε; similarly,
1 + ε > 1 + ε − 2ε2 = (1 + 2ε)(1 − ε), and hence (1 + ε)/(1 − ε) > 1 + 2ε. Moreover, because
0 < ε, δ < 1, (1 − δ)(1 − 2ε) = 1 − (2ε + δ − 2εδ) > 1 − (4ε + δ), and (1 + δ)(1 + 2ε) =
1 + (2ε+ δ + 2εδ) < 1 + (4ε+ δ). Thus,

(1− (4ε+ δ)) ·
∑

P∈P:P∩Q=∅

C(P) ≤
∑

P∈P:P∩Q=∅

Ĉ(P) ≤ (1 + (4ε+ δ)) ·
∑

P∈P:P∩Q=∅

C(P).

Since the choice of Q ∈ Q was arbitrary, the proof is complete.

Our computation of representative counters will be done in a sampling procedure defined as
follows. (Some explanation of the intuition behind it is given ahead.)

Definition 3.6 ((C,F)-Counter Sampling). Let U be a universe, and let F ⊆ 2U with U ∈ F .
Let p, L ∈ N0 and P ⊆

(
U
p

)
. Let C : P → N0 be a counter. Then, (C,F , L)-counter sampling

is the randomized procedure that constructs a counter Ĉ : P → N0 as follows. For any set
P ∈ P, define

assocC,F ,L(P) , min
F∈F :P⊆F

Cext(F),

probC,F ,L(P) , min(1, L · C(P)

assocC,F ,L(P)
), and

countC,F ,L(P) ,
C(P)

probC,F ,L(P)
.

Then, for any set P ∈ P, set Ĉ(P) to countC,F ,L(P) with probability probC,F ,L(P) and to 0 with
probability 1− probC,F ,L(P).3

Firstly, observe that the support of any counter that can be potentially output is contained
in the support of the input counter. Essentially, with this sampling procedure we aim to discard
as many sets as possible from the support of the input counter while modifying the values of
those that are kept so that we obtain a representative counter of small support. Intuitively, each
set P ∈ P is associated, among the sets in F that contain it and hence whose value is effected
by the value of P (as assigned by the counter), with a set F having minimum value. Thus,

3Since U ∈ F , there exists F ∈ F such that P ⊆ F , hence assocC,F,L(P) is well defined.

14

P is associated with a set F for which P is most significant among all sets in F—that is, in
which the fraction of the value of P from the entire value of F is largest. In a sense, this means
that the value of F is most “vulnerable” in case P will be dropped from the support of the
counter. Next, the probability of keeping P in the support is chosen to be proportional to its
fraction of value within F—the larger C(P) is, the larger is the probability to choose it, but at
the same time, the larger assocC,F ,L(P) is (which means that the set F associated with P , and
hence all other sets in F as well, are less vulnerable to P being dropped out), the smaller is the
probability to choose P . The factor L (whose exact value will be determined later) is meant to
boost up the probability to be larger than just the fraction of the value of P within F (else we
may drop “too many” sets from the support, and hence the output counter will not represent
the input counter). Due to this boosting factor, we also need to trim down the boosted fraction
to be 1 so that it will indeed represent a probability. Lastly, the new value of P when decided
to be kept in the support, is chosen in a way as to ensure that its expected value (being the
probability to keep it times its new value when it is kept) will be equal to its original value.

We first show the the size of the support of the output counter is expected to be “small” (in
case the size of the family F and the boosting factor L are both “small”).

Lemma 3.2. Let U be a universe, and let F ⊆ 2U with U ∈ F . Let p, L ∈ N0 and P ⊆
(
U
p

)
.

Let C : P → N0 be a counter. Then, the expected size of the support of the output counter Ĉ of
(C,F , L)-counter sampling is upper bounded as follows.

E[|supp(Ĉ)|] ≤ |F| · L.

Moreover, for any ĉ ≥ 0, we have that Pr(|supp(Ĉ)| > (ĉ+ 1) · |F| · L) ≤ 2e−
ĉ2

2 .

Proof. Observe that

E[|supp(Ĉ)|] =
∑
P∈P

probC,F ,L(P) (1)

=
∑
P∈P

min(1, L · C(P)

assocC,F ,L(P)
) (2)

≤ L ·
∑
P∈P

C(P)

assocC,F ,L(P)
(3)

≤ L ·
∑
F∈F

∑
P∈P:assocC,F,L(P)=Cext(F)

C(P)

assocC,F ,L(P)
(4)

= L ·
∑
F∈F

∑
P∈P:assocC,F,L(P)=Cext(F)

C(P)

Cext(F)
(5)

≤ L ·
∑
F∈F

 1

Cext(F)
·

∑
P∈P:assocC,F,L(P)=Cext(F)

C(P)

 (6)

≤ L ·
∑
F∈F

 1

Cext(F)
·

∑
P∈P:P⊆F

C(P)

 (7)

≤ L ·
∑
F∈F

1

Cext(F)
· Cext(F) = L · |F|. (8)

Here, (1), (3), (5), (6) and the equality at (8) are immediate. The equality (2) follows from
the definition of probC,F ,L(P). The inequality (4) follows from the observation that for each set
P ∈ P, there exists a (not necessarily unique) set F ∈ F such that assocC,F ,L(P) = C(F). The
inequality (7) follows from the definition of assocC,F ,L, and the inequality at (8) follows from
the definition of Cext.

15

For the second claim in the proof, let ĉ ≥ 1. Because E[|supp(Ĉ)|] ≤ |F| · L, we have that
Pr(|supp(Ĉ)| > (ĉ+ 1) · |F| ·L) ≤ Pr(||supp(Ĉ)| −E[|supp(Ĉ)|]| > ĉ ·E[|supp(Ĉ)|]). By Chernoff

bound (Proposition 2.2), the aforementioned term is upper bounded by 2e−
ĉ2E[|supp(Ĉ)|]

2 . In case

E[|supp(Ĉ)|] ≥ 1, then the aforementioned term is upper bounded by 2e−
ĉ2

2 , which completes
the proof. Else, in case E[|supp(Ĉ)|] < 1, we have that

E[|supp(Ĉ)|] =
∑
P∈P

probC,F ,L(P)

=
∑
P∈P

min(1, L · C(P)

assocC,F ,L(P)
) < 1.

Thus, for every P ∈ P, we have that probC,F ,L(P) = L · C(P)
assocC,F,L(P) . Moreover, for every P ∈ P,

we have that assocC,F ,L(P) ≤ Cext(U), and therefore probC,F ,L(P) ≥ L · C(P)
Cext(U) . However, we

thus derive that E[|supp(Ĉ)|] =
∑

P∈P probC,F ,L(P) ≥ L ·
∑
P∈P C(P)

Cext(U) = L ≥ 1, which is a
contradiction.

Now, we present a statement regarding the new values and probabilities assigned by the
sampling procedure. This statement will be used soon together with the observation ahead,
towards the proof that the output counter is likely to represent the input one.

Lemma 3.3. Let U be a universe, and let F ⊆ 2U with U ∈ F . Let p, L ∈ N0 and P ⊆
(
U
p

)
.

Let C : P → N0 be a counter. Then, for all P ∈ P and F ∈ F such that P ⊆ F , at least one of
the following two conditions is satisfied.

• countC,F ,L(P) ≤ Cext(F)

L
.

• probC,F ,L(P) = 1.

Proof. Consider some P ∈ P and F ∈ F such that P ⊆ F . We need to prove that at least
one of the two conditions in the lemma is satisfied. In case probC,F ,L(P) = 1, we are done.
Thus, we next suppose that probC,F ,L(P) 6= 1. Then, by the definition of probC,F ,L(P), we

have that probC,F ,L(P) = L · C(P)
assocC,F,L(P) . By the definition of assocC,F ,L(P), we have that

assocC,F ,L(P) ≤ Cext(F). Thus, probC,F ,L(P) ≥ L · C(P)
Cext(F) . From this inequality and the

definition of countC,F ,L(P), we derive that

countC,F ,L(P) =
C(P)

probC,F ,L(P)
≤ C(P)

L · C(P)
Cext(F)

=
Cext(F)

L
.

This completes the proof.

We will also need the following two simple observations where the first asserts representation
in expectation and the second, which is an immediate consequence of the first, concerns the
expected output value of each set in F .

Observation 3.1. Let U be a universe, and let F ⊆ 2U with U ∈ F . Let p, L ∈ N0 and
P ⊆

(
U
p

)
. Let C : P → N0 be a counter. The output counter Ĉ of (C,F , L)-counter sampling

represents in expectation C.

Proof. Consider some set P ∈ P. Then, the definition of (C,F , L)-counter sampling yields that

E[Ĉ(P)] = probC,F ,L(P) · countC,F ,L(P) = C(P).

Since the choice of P was arbitrary, we derive that Ĉ represents in expectation C.

16

Observation 3.2. Let U be a universe, and let F ⊆ 2U with U ∈ F . Let p, L ∈ N0 and
P ⊆

(
U
p

)
. Let C : P → N0 be a counter. For any set F ⊆ U , for the output counter Ĉ of

(C,F , L)-counter sampling, we have that E[Ĉext(F)] = Cext(F).

Proof. Consider some set F ⊆ U . Then,

E[Ĉext(F)] = E[
∑

P∈(Fp)∩P

Ĉ(P)] (1)

=
∑

P∈(Fp)∩P

E[Ĉ(P)] (2)

=
∑

P∈(Fp)∩P

C(P) = Cext(F). (3)

Here, equality (1) and the second equality at (3) follow from the definition of domain extension,
equality (2) follows from the linearity of expectation, and the first equality at (3) follows from
Observation 3.1.

From Lemma 3.3 and Observation 3.2, we derive the following corollary.

Corollary 3.1. Let U be a universe, and let F ⊆ 2U with U ∈ F . Let p, L ∈ N0 and P ⊆
(
U
p

)
.

Let C : P → N0 be a counter. For any F ∈ F , for the output counter Ĉ of (C,F , L)-counter

sampling, we have that E[Ĉext(F)
W] ≥ L where W = max{countC,F ,L(P) : P ∈ P, probC,F ,L(P) <

1}.

Proof. Consider some F ∈ F . By Lemma 3.3, for all P ∈
(
F
p

)
∩ P such that probC,F ,L(P) < 1,

it must hold that countC,F ,L(P) ≤ Cext(F)
L , implying that necessarily W ≤ Cext(F)

L . Therefore,

E[
Ĉext(F)

W
] =

1

W
· E[Ĉext(F)] ≥ L

Cext(F)
· E[Ĉext(F)] = L.

Here, the last equality follows from Observation 3.2.

We are now ready to prove that the output counter is likely to represent the input one.

Lemma 3.4. Let U be a universe, and let F ⊆ 2U with U ∈ F . Let p, c, L ∈ N0 such that
L ≥ 2 1

ε2
ln(2c|F|). Let P ⊆

(
U
p

)
. Let C : P → N0 be a counter. Then, the probability that C and

the output counter Ĉ of (C,F , L)-counter sampling are (ε,F)-similar is at least 1− 1
c .

Proof. Consider some F ∈ F , and denote W = max{countC,F ,L(P) : P ∈ P, probC,F ,L(P) < 1}.
For any P ∈

(
F
p

)
∩P such that probC,F ,L(P) < 1, define `P = 1 and the random variable XP,1 =

Ĉ(P)
W . For any P ∈

(
F
p

)
∩P such that probC,F ,L(P) = 1, define `P = d Ĉ(P)

W e and the deterministic

variable XP,`P = Ĉ(P)
W −(`P −1), as well as for any i ∈ {1, . . . , `P −1}, the deterministic variable

XP,i = 1, and notice that
∑`P

i=1XP,i = Ĉ(P)
W . Then, {XP,i : P ∈

(
F
p

)
∩ P, i ∈ {1, . . . , `P }} is a

collection of independent random variables bounded by the interval [0, 1]. Here, independence
among variables XP,i corresponding to the same set P ∈

(
F
p

)
∩P follows because these variables

are deterministic. Let X =
∑

P∈(Fp)∩P

`P∑
i=1

XP,i. By Chernoff bound (Proposition 2.2),

Pr(|X − E[X]| > εE[X]) ≤ 2e−
ε2E[X]

2 .

17

Observe that X =
∑

P∈(Fp)∩P

`P∑
i=1

XP,i =
∑

P∈(Fp)∩P

Ĉ(P)

W
=

Ĉext(F)

W
. Thus, E[X] = E[Ĉext(F)

W],

hence by Observation 3.2, E[X] =
Cext(F)

W
. This means that |X −E[X]| > εE[X] is true if and

only if |Ĉext(F)− Cext(F)| > ε · Cext(F) is true. Thus, by this equivalence between events,

Pr(|Ĉext(F)− Cext(F)| > ε · Cext(F)) ≤ 2e−
ε2E[X]

2 .

Recall that E[X] = E[Ĉext(F)
W], hence by Corollary 3.1 and the given lower bound on L, E[X] ≥

L ≥ 2 1
ε2

ln(2c|F|). Thus,

Pr(|Ĉext(F)− Cext(F)| > ε · Cext(F)) ≤ 2e−
ε2·(2 1

ε2
ln(2c|F|))
2

= 2e− ln(2c|F|) =
2

2c|F|
=

1

c|F|
.

As the choice of F ∈ F was arbitrary, union bound implies that the probability that there
exists F ∈ F such that (1−ε) · Ĉext(F) > Cext(F) or Cext(F) > (1+ε) · Ĉext(F) is upper bounded

by |F| · 1

c|F|
=

1

c
. Thus, the probability that C and Ĉ are (ε,F)-similar is at least 1− 1

c .

We now turn to analyze the time complexity of the sampling procedure.

Lemma 3.5. Let U be a universe. Let p, L ∈ N0 and P ⊆
(
U
p

)
. Let F ⊆ 2U with U ∈ F be an

ε-parsimonious (n, p, q)-universal family F , equipped with a T -membership query procedure. Let
C : P → N0 be a counter. Then, the time complexity of (C,F , L)-counter sampling is bounded
by O(|supp(C)| · T).

Proof. First, we initialize the value Cext(F) of each set F ∈ F to be 0. Then, for every set
P ∈ supp(C), we compute F ′ = {F ∈ F : P ⊆ F} in time O(T) using the membership query
procedure (which implies that |F ′| = O(T)), and then for each set F ∈ F ′ we update Cext(F)
by adding C(P) to it. Thus, in time O(|supp(C)| · T) we correctly compute Cext(F) for all
F ∈ F . Now, for each set P ∈ supp(C), we can compute assocC,F ,L(P) in time O(T), then
probC,F ,L(P) in time O(1), and lastly countC,F ,L(P) in time O(1). Overall, we have so far spent
time O(|supp(C)| · T). Finally, picking up sets using their probabilities and new values is done
in time O(|supp(C)|).

We conclude this subsection with the following theorem.

Theorem 3.1. Let U be a universe. Let 0 < ε < 1, p, q, c ∈ N0, P ⊆
(
U
p

)
and Q ⊆

(
U
q

)
.

Let F ⊆ 2U be an 1
5ε-parsimonious (n, p, q)-universal family with respect to (P,Q) of size S,

equipped with a T -membership query procedure. Let C : P → N0 be a counter. Then, a counter
Ĉ : P → N0 such that

1. Ĉ necessarily (with probability 1) represents in expectation C, and

2. with success probability at least 1− 1
c , Ĉ (ε, q)-represents C with respect to Q and satisfies

|supp(Ĉ)| ≤ O((1ε)
2S log c(log c+ logS)),

can be computed in time O(|supp(C)| · T).

18

Proof. Without loss of generality, we suppose that U ∈ F , else we just add U to F . By Lemma
3.1, to prove the theorem, it suffices to compute in time O(|supp(C)| ·T) a counter Ĉ :

(
U
p

)
→ N0

that necessarily represents in expectation C, and that with probability at least 1− 1
c is (ε5 ,F)-

similar to C and satisfies |supp(Ĉ)| ≤ O((1ε)
2S log c log(cS)).

Fix L = d2 1
(ε
5
)2

ln(4cS)e = O((1ε)
2 log(cS)). By Lemma 3.2 with ĉ =

√
2ln(4c), with prob-

ability at most 2e−
ĉ2

2 = 2e−ln(4c) = 1
2c , we have that the expected size of the support of the

output counter Ĉ of (C,F , L)-counter sampling is upper bounded as follows.

E[|supp(Ĉ)|] ≤ (ĉ+ 1)SL.

Moreover, by Lemma 3.4, C and Ĉ are (ε5 ,F)-similar with probability at least 1− 1
2c . By union

bound, the probability that |supp(Ĉ)| ≥ (ĉ + 1)SL or that C and Ĉ are not (ε5 ,F)-similar is

at most 1
2c + 1

2c = 1
c . Thus, with probability at least 1 − 1

c , both |supp(Ĉ)| ≤ (c̃ + 1)SL =

O(log c ·S · (1ε)
2 log(cS)) = O((1ε)

2S log c(log c+logS)) and C and Ĉ are (ε5 ,F)-similar. Further,

by Lemma 3.5, Ĉ is computed in time O(|supp(C)| ·T). Lastly, by Observation 3.1, Ĉ necessarily
represents in expectation C. This completes the proof.

We remark that as a corollary to this theorem (with c = 2 and where the membership query
procedure is simply brute-force) and Proposition 2.1, we can already assert the existence of
representative counters of small support.

3.2 Computation of Parsimonious Universal Families Equipped with Mem-
bership Query Procedures for Balancedly-Split Sets

We will be able to equip our parsimonious universal families with efficient membership query
procedures only when we deal with P and Q that are “balancedly split”. Towards the definition
of this term, we first present the following definition.

Definition 3.7 (Partitioned Universe, Splitting Function Pair). Let t, k, p, b ∈ N. A
tuple U = (U1, U2, . . . , Ut) where U1, U2, . . . , Ut are pairwise-disjoint universes is called a t-
partitioned universe. Moreover, a function f : {1, 2, . . . , t} → {0, 1, . . . , dbk/te} that satisfies∑t

i=1 f(i) = k is called a (t, k, b)-splitting function. Lastly, a pair (f, g) of a (t, k, b)-splitting
function f : {1, 2, . . . , t} → {0, 1, . . . , dbk/te} and a function g : {1, 2, . . . , t} → {0, 1, . . . , dbk/te}
that satisfies g ≤ f and

∑t
i=1 g(i) = p, is called a (t, k, p, b)-splitting function pair.

When t or (t, k, p, b) is clear from context, we do not mention it explicitly. Notice that when
p = k, necessarily g = f . We now present a definition which will be useful only for Section 5;
by considering it already here, we will be able to avoid repetition of arguments.

Now, we define the notion of balancedly split sets.

Definition 3.8 (Balancedly Split Sets I). Let t, k, p, b ∈ N with p ≤ k. Let U = (U1, U2, . . . ,
Ut) be a partitioned universe with U =

⋃t
i=1 Ui, and let (f, g) be a splitting function pair. Then,

P ∈
(
U
p

)
is (U, f, g)-balancedly split if for every i ∈ {1, 2, . . . , t}, it holds that |P ∩ Ui| = g(i);

in case k = p, P is (U, f)-balancedly split . Further, PBAL
U,f,g

⊆
(
U
p

)
denotes the collection of

all (U, f, g)-balancedly split sets. Moreover, Q ∈
(
U
k−p
)

is complementary (U, f, g)-balancedly

split if for every i ∈ {1, 2, . . . , t}, it holds that |Q ∩ Ui| = f(i)− g(i). Further, QCBAL
U,f,g

⊆
(
U
k−p
)

denotes the collection of all complementary (U, f, g)-balancedly split sets.

When U, f and g are clear from context, we do not mention it explicitly.
Our computation of universal families will be done in a sampling procedure defined as follows.

19

Definition 3.9 (Parsimonious Universal Family Sampling). Let t, k, p, b ∈ N with p ≤ k,
0 < ε < 1 and c, d ≥ 1. Let U = (U1, U2, . . . , Ut) be a partitioned universe with U =

⋃t
i=1 Ui of

size n, and let (f, g) be a splitting function pair. Then, (U, f, g, ε, c, d)-universal family sampling
is the randomized procedure that constructs a family F ⊆ 2U as follows.

• For i ∈ {1, 2, . . . , t}:

– For j ∈ {1, 2, . . . , si} with

si =
(d · f(i))f(i)

g(i)g(i)(d · f(i)− g(i))f(i)−g(i)
· 1

ε̂2
· 10k · ln(nc),

where ε̂ = ln(1+ε)
t , construct a set Fi,j ⊆ Ui as follows. Each element in Ui is inserted

independently with probability
g(i)

d · f(i)
into Fi,j.

– Denote Fi = {Fi,j : j ∈ {1, 2, . . . , si}}.

• Then, construct F = {F1,j1 ∪ F2,j2 ∪ · · · ∪ Ft,jt : F1,j1 ∈ F1, Fi,j2 ∈ F2, . . . , Fi,jt ∈ Ft}.

We remark that d can depend on any argument of interest (e.g., k and p). We begin the
analysis of the sampling procedure by an observation concerning its time complexity and by
giving an upper bound on the size of the family it produces.

Observation 3.3. Let t, k, p, b ∈ N with p ≤ k, 0 < ε < 1 and c, d ≥ 1. Let U = (U1, U2, . . . , Ut)
be a partitioned universe with U =

⋃t
i=1 Ui of size n, and let (f, g) be a splitting function pair.

Then, the time complexity of (U, b, f, g, ε, c, d)-universal is O(|F|n), where F ⊆ 2U is the output
family.

Lemma 3.6. Let t, k, p, b ∈ N with p ≤ k, 0 < ε < 1 and c, d ≥ 1. Let U = (U1, U2, . . . , Ut)
be a partitioned universe with U =

⋃t
i=1 Ui of size n, and let (f, g) be a splitting function

pair. Then, the output family F ⊆ 2U of (U, b, f, g, ε, c, d)-universal family sampling necessarily

satisfies |F| ≤ (dk)k

pp(dk − p)k−p
· (1

ln2(1 + ε)
· 10k3 · ln(nc))t.

Proof. Because t ≤ k and ε̂ = ln(1+ε)
t , we have that 1

ε̂2
≤ 1

ln2(1+ε)
· k2. Thus,

|F| =
t∏
i=1

si

=

t∏
i=1

(
(d · f(i))f(i)

g(i)g(i)(d · f(i)− g(i))f(i)−g(i)
· 1

ε̂2
· 10k · ln(nc)

)

≤

(
t∏
i=1

(d · f(i))f(i)

g(i)g(i)(d · f(i)− g(i))f(i)−g(i)

)
·
(

1

ln2(1 + ε)
· 10k3 · ln(nc)

)t
.

Recall that f : {1, 2, . . . , t} → {1, 2, . . . , dbk/te} and g ≤ f satisfy
∑t

i=1 f(i) = k and
∑t

i=1 g(i) =
p. Relaxing the supposition f : {1, 2, . . . , t} → {1, 2, . . . , dbk/te} to f : {1, 2, . . . , t} → {1, 2, . . . ,

k}, the maximum value of the term

t∏
i=1

(d · f(i))f(i)

g(i)g(i)(d · f(i)− g(i))f(i)−g(i)
is attained when f(i) = k

and g(i) = p for some i ∈ {1, 2, . . . , t}, and f(i′) = g(i′) = 0 for all other i′ ∈ {1, 2, . . . , t} \ {i}.

Then, the value is
(dk)k

pp(dk − p)k−p
. This completes the proof.

20

We proceed by giving a lower bound for the probability of failure of the procedure to produce
a parsimonious universal family with respect to a balancedly split pair.

Lemma 3.7. Let t, k, p, b ∈ N with p ≤ k, 0 < ε < 1 and c, d ≥ 1. Let U = (U1, U2, . . . , Ut)
be a partitioned universe with U =

⋃t
i=1 Ui of size n, and let (f, g) be a splitting function

pair. With probability at least 1 − 1
2c , the output family F ⊆ 2U of (U, b, f, g, ε, c, d)-universal

family sampling is an ε-parsimonious (n, p, q)-universal family with respect to (PBAL
k,f,g ,QCBAL

k,f,g)

with correction factor upper bounded by

(
1

(ln(1+ε)t)2
· 10k · ln(nc)

)t
.

Proof. Towards the proof of the lemma, we first show that the following claim is correct.

Claim 3.1. With probability at least 1 − 1
2c , for every i ∈ {1, 2, . . . , t}, we have that Fi is

an ε̂-parsimonious (|Ui|, g(i), f(i)− g(i))-universal family with respect to (
(
Ui
g(i)

)
,
(

Ui
f(i)−g(i)

)
) with

correction factor Ti =
1

ε̂2
· 10k · ln(nc).

Proof. By union bound, it suffices to choose some i ∈ {1, 2, . . . , t}, and prove that with failure
probability at most 1

2ct , we have that Fi is an ε̂-parsimonious (|Ui|, g(i), f(i) − g(i))-universal

family with respect to (
(
Ui
g(i)

)
,
(

Ui
f(i)−g(i)

)
) with correction factor Ti =

1

ε̂2
· 10k · ln(nc). Further,

by union bound, because there are at most |Ui|f(i) ≤ nk pairs of disjoint sets P ∈
(
Ui
g(i)

)
and Q ∈(

Ui
f(i)−g(i)

)
, it suffices to choose some such pair of disjoint sets P ∈

(
Ui
g(i)

)
and Q ∈

(
Ui

f(i)−g(i)
)
, and

prove that with failure probability at most 1
2ctnk

, it holds that (1− ε̂)Ti ≤ |Fi[P,Q]| ≤ (1 + ε̂)Ti.
Towards the proof of the above, observe that each set Fi,j ∈ Fi contains P and is disjoint

from Q with probability
g(i)g(i)(d · f(i)− g(i))f(i)−g(i)

(d · f(i))f(i)
. Thus, the expected number of sets in Fi

that contain P and are disjoint from Q is Ti. Because the sets in Fi are sampled independently
from one another, by Chernoff bound (Proposition 2.2), we have that

Pr(||Fi[P,Q]| − Ti| > ε̂Ti) ≤ 2e−
ε̂2Ti
2

= 2e−5k·ln(nc) =
2

(nc)5k
≤ 2

n4 · nk · c
≤ 1

2ct

Here, the last inequality follows since n ≥ max(2, t). This completes the proof of the claim.

We now return to the proof of the lemma. Let T =

t∏
i=1

Ti where Ti is the correction factor

of Fi. Then, T =

(
1

ε̂2
· 10k · ln(nc)

)t
. Due to Claim 3.1, to prove the lemma it suffices to

show that, under the assumption that for every i ∈ {1, 2, . . . , t}, we have that Fi ⊆ 2Ui is
an ε̂-parsimonious (|Ui|, g(i), f(i) − g(i))-universal family with respect to (

(
Ui
g(i)

)
,
(

Ui
f(i)−g(i)

)
), it

holds that F is an ε-parsimonious (n, p, q)-universal family with respect to (PBAL,QCBAL) with
correction factor T . Towards the proof of this, consider some pair of disjoint sets P ∈ PBAL

and Q ∈ QCBAL). Then,

|F [P,Q]| =
t∏
i=1

|Fi[P ∩ Ui, Q ∩ Ui]|.

Because P ∈ PBAL and Q ∈ QCBAL, it holds that for every i ∈ {1, 2, . . . , t}, P ∩ Ui ∈
(
Ui
g(i)

)
and Q ∩ Ui ∈

(
Ui

f(i)−g(i)
)
. Thus, for every i ∈ {1, 2, . . . , t}, because Fi is an ε̂-parsimonious

21

(|Ui|, g(i), f(i)− g(i))-universal family with respect to (
(
Ui
g(i)

)
,
(

Ui
f(i)−g(i)

)
), it holds that

(1− ε̂)Ti ≤ |Fi[P ∩ Ui, Q ∩ Ui]| ≤ (1 + ε̂)Ti

Therefore, on the one hand,

|F [P,Q]| ≤
t∏
i=1

(1 + ε̂)Ti = (1 + ε̂)t · T = (1 +
ln(1 + ε)

t
)t · T ≤ eln(1+ε)·T = (1 + ε) · T .

On the other hand,

|F [P,Q]| ≥
t∏
i=1

(1− ε̂)Ti = (1− ε̂)t · T = (1− ln(1 + ε)

t
)t · T ≥ (1− ln(1 + ε)) · T ≥ (1− ε) · T .

Here, the inequality (1 − ln(1+ε)
t)t ≥ (1 − ln(1 + ε)) follows since the larger t is (starting at 1),

the larger the value of (1 − ln(1+ε)
t)t (approaching e− ln(1+ε)), and the inequality ln(1 + ε) ≤ ε

follows from Taylor series. Because the choice of the disjoint sets P ∈ PBAL and Q ∈ QCBAL

was arbitrary, the proof is complete.

To devise an efficient membership query procedure, we also need to upper bound, for any
set P , the number of sets in F that contain P . We consider any choice of P of size p′ ≤ p rather
than just any choice of P of size exactly p to have general membership procedures as required
for Section 5.

Lemma 3.8. Let t, k, p, b ∈ N with p ≤ k, 0 < ε < 1 and c, d ≥ 1. Let U = (U1, U2, . . . , Ut) be a
partitioned universe with U =

⋃t
i=1 Ui of size n, and let (f, g) be a (t, k, p, b)-splitting function

pair. With probability at least 1 − 1
2c , the output family F ⊆ 2U of (U, b, f, g, ε, c, d)-universal

family sampling has the following property: For every g′ be such that (f, g′) is a (t, k, p′, b)-
splitting function pair (for some p′ ≤ p) where g′ ≤ g and set P ∈ PBAL

U,f,g′
, we have that

|{F ∈ F : P ⊆ F}| ≤ (
d · k

d · k − p
)k−p · (d · k

p
)p−p

′ · (1

ln2(1 + ε)
· 20k3 · ln(nc))t.

Proof. Towards the proof of the lemma, we first show that the following claim is correct.

Claim 3.2. With probability at least 1 − 1
2c , for every i ∈ {1, 2, . . . , t}, g′(i) ≤ g(i) and P ∈(

Ui
g′(i)

)
, we have that |{F ∈ Fi : P ⊆ F}| ≤ (

d · f(i)

d · f(i)− g(i)
)f(i)−g(i) · (d · f(i)

g(i)
)g(i)−g

′(i) · 1

ln2(1 + ε)
·20k3 · ln(nc).

Proof. Denote Ei = (
d · f(i)

d · f(i)− g(i)
)f(i)−g(i) · (d · f(i)

g(i)
)g(i)−g

′(i) · 1

ln2(1 + ε)
· 10k3 · ln(nc). By

union bound and because |
(
Ui
≤p
)
| ≤ nk, it suffices to choose some i ∈ {1, 2, . . . , t}, g′(i) ≤ g(i)

and P ∈
(
Ui
g′(i)

)
, and prove that with failure probability at most 1

2ctnk
, we have that |{F ∈

Fi : P ⊆ F}| ≤ Ei. To this end, observe that each set Fi,j ∈ Fi contains P with probability

(
g(i)

d · f(i)
)g
′(i). Thus, the expected number of sets in Fi that contain P is Ei. Because the sets in

Fi are sampled independently from one another, by Chernoff bound (Proposition 2.2), we have
that

Pr(||Fi[P,Q]| − Ei| > Ei) ≤ 2e−
Ei
2

≤ 2e−5k·ln(nc) =
2

(nc)5k
≤ 2

n4 · nk · c
≤ 1

2ct

Here, the last inequality follows since n ≥ max(2, t). This completes the proof of the claim.

22

We now return to the proof of the lemma. Due to Claim 3.1, to prove the lemma it suffices
to show that, under the assumption that for every i ∈ {1, 2, . . . , t}, g′(i) ≤ g(i) and P ∈

(
Ui
g′(i)

)
, we

have that |{F ∈ Fi : P ⊆ F}| ≤ (
d · f(i)

d · f(i)− g(i)
)f(i)−g(i) · (d · f(i)

g(i)
)g(i)−g

′(i) · 1

ln2(1 + ε)
· 20k3 · ln(nc),

it holds that for every g′ be such that (f, g′) is a (t, k, p′, b)-splitting function pair where

g′ ≤ g and set P ∈ PBAL
U,f,g′

, we have that |{F ∈ F : P ⊆ F}| ≤ (d · k)k−p

(d · k − p)k−p
· (d · k

p
)p−p

′ ·

(
1

ln2(1 + ε)
· 20k3 · ln(nc))t. Towards the proof of this, consider some set P ∈ PBAL

U,f,g′
. Then,

|{F ∈ F : P ⊆ F}| =
t∏
i=1

|{F ∈ Fi : P ∩ Ui ⊆ F}|.

Because P ∈ PBAL
U,f,g′

, it holds that for every i ∈ {1, . . . , t}, P ∩ Ui ∈
(
Ui
g′(i)

)
, and therefore

|{F ∈ Fi : P ∩ Ui ⊆ F}| ≤ (
d · f(i)

d · f(i)− g(i)
)f(i)−g(i) · (d · f(i)

g(i)
)g(i)−g

′(i) · 1

ln2(1 + ε)
· 20k3 · ln(nc).

Thus,

|{F ∈ F : P ⊆ F}|

≤
t∏
i=1

(
(

d · f(i)

d · f(i)− g(i)
)f(i)−g(i) · (d · f(i)

g(i)
)g(i)−g

′(i) · 1

ln2(1 + ε)
· 20k3 · ln(nc)

)

≤

(
t∏
i=1

(
d · f(i)

d · f(i)− g(i)
)f(i)−g(i) · (d · f(i)

g(i)
)g(i)−g

′(i)

)
·
(

1

ln2(1 + ε)
· 20k3 · ln(nc)

)t
.

Recall that f : {1, 2, . . . , t} → {1, 2, . . . , dbk/te} and g′ ≤ g ≤ f satisfy
∑t

i=1 f(i) = k,∑t
i=1 g(i) = p and

∑t
i=1 g

′(i) = p′. Relaxing the supposition f : {1, 2, . . . , t} → {1, 2, . . . , dbk/te}

to f : {1, 2, . . . , t} → {1, 2, . . . , k}, the maximum of
t∏
i=1

(
d · f(i)

d · f(i)− g(i)
)f(i)−g(i) · (d · f(i)

g(i)
)g(i)−g

′(i)

is attained when f(i) = k, g(i) = p and g′(i) = p′ for some i ∈ {1, 2, . . . , t}, and f(i′) = g(i′) =

g′(i′) = 0 for all other i′ ∈ {1, 2, . . . , t} \ {i}. Then, the value is
(d · k)k−p

(d · k − p)k−p
· (d · k

p
)p−p

′
. This

completes the proof.

The property in Lemma 3.7 together with the product-like manner in which we construct F
yields an efficient membership query procedure as follows.

Definition 3.10 (Membership Query Procedure for Parsimonious Universal Family
Sampling). Let t, k, p, b ∈ N with p ≤ k, 0 < ε < 1 and c, d ≥ 1. Let U = (U1, U2, . . . , Ut) be
a partitioned universe with U =

⋃t
i=1 Ui of size n. Let (f, g) be a (t, k, p, b)-splitting function

pair. Let F ⊆ 2U be the output family of (U, b, f, g, ε, c, d)-universal family sampling. Then,
the procedure MEMBERSHIP is defined as follows. Let {Fi}ti=1 be the collection of families
sampled to construct F (see Definition 3.9). Given g′ such that (f, g′) is a (t, k, p′, b)-splitting
function pair (for some p′ ≤ p) where g′ ≤ g and P ∈ PBAL

U,f,g′
, MEMBERSHIP naively computes

F ′i = {Fi,ji ∈ Fi : P ∩ Ui ⊆ Fi,ji} by iterating over every set in Fi; then, it outputs {F1,j1 ∪
F2,j2 ∪ · · · ∪ Ft,jt : F1,j1 ∈ F ′1, F2,j2 ∈ F ′2, . . . , Ft,jt ∈ F ′t}, computed using naive enumeration.

We now assert that our procedure is indeed an efficient membership query procedure as a
corollary of Lemma 3.8.

23

Corollary 3.2. Let t, k, p, b ∈ N with p ≤ k, 0 < ε < 1 and c, d ≥ 1. Let U = (U1, U2, . . . , Ut) be
a partitioned universe with U =

⋃t
i=1 Ui of size n. Let (f, g) be a (f, g) be a (t, k, p, b)-splitting

function pair. Let F ⊆ 2U be the output family of (U, b, f, g, ε, c, d)-universal family sampling.
Then, with probability at least 1 − 1

2c , for every g′ be such that (f, g′) is a (t, k, p′, b)-splitting
function pair (for some p′ ≤ p) where g′ ≤ g, the procedure MEMBERSHIP is a T -membership
query procedure with respect to PBAL

U,f,g′
for

T =

(
(d · bk)bk/t + (

d · k
d · k − p

)k−p · (d · k
p

)p−p
′
)
·
(

1

ln2(1 + ε)
· 20k3 · ln(nc)

)t
.

Proof. Let X = (
d · k

d · k − p
)k−p · (d · k

p
)p−p

′ ·
(

1

ln2(1 + ε)
· 20k3 · ln(nc)

)t
. The claim that MEM-

BERSHIP is a membership query procedure (i.e., that given P ∈ PBAL
U,f,g′

, the output is in-

deed {F ∈ F : P ⊆ F}) is immediate from the definition of F . Further, by Lemma 3.8,
maxP∈PBAL

U,f,g′
|{F ∈ F : P ⊆ F}| ≤ X with probability at least 1− 1

2c . Now, under the assump-

tion that the aforementioned inequality holds, consider any set P ∈ PBAL
U,f,g′

. Then, the running

time of MEMBERSHIP is bounded by

O(

t∑
i=1

si + |{F ∈ F : P ⊆ F}|)

= O(
t∑
i=1

(d · f(i))f(i)

g(i)g(i)(d · f(i)− g(i))f(i)−g(i)
· 1

ln2(1 + ε)
· 10k3 · ln(nc) +X)

= O(
t∑
i=1

(d · f(i))f(i) · 1

ln2(1 + ε)
· 10k3 · ln(nc) +X)

= O(

t∑
i=1

(d · bk/t)bk/t · 1

ln2(1 + ε)
· 10k3 · ln(nc) +X)

= O(t · (d · bk)bk/t · 1

ln2(1 + ε)
· 10k3 · ln(nc) +X) = O(T).

By putting together Observation 3.3, Lemma 3.6, Lemma 3.7 and Corollary 3.2, we derive
our main statement regarding the produced family F .

Theorem 3.2. Let t, k, p, b ∈ N with p ≤ k, 0 < ε < 1 and c, d ≥ 1. Let U = (U1, U2, . . . , Ut)
be a partitioned universe with U =

⋃t
i=1 Ui of size n, and let (f, g) be a splitting function pair.

With probability at least 1 − 1
c , the output family F ⊆ 2U of (U, b, f, g, ε, c, d)-universal family

sampling, computed in time O(|F|n), satisfies all of the following conditions.

1. |F| ≤ (dk)k

pp(dk − p)k−p
·
(

1

ln2(1 + ε)
· 10k3 · ln(nc)

)t
.

2. F is an ε-parsimonious (n, p, k−p)-universal family with respect to (PBAL
U,f,g

,QCBAL
U,f,g

), whose

correction factor is upper bounded by

(
1

ln2(1 + ε)
· 10k3 · ln(nc)

)t
.

3. With respect to F and any g′ be such that (f, g′) is a (t, k, p′, b)-splitting function pair (for
some p′ ≤ p) where g′ ≤ g, MEMBERSHIP is a T -membership query procedure with respect
to PBAL

U,f,g′
for

T =

(
(d · bk)bk/t + (

dk

dk − p
)k−p(

dk

p
)p−p

′
)
·
(

1

ln2(1 + ε)
· 20k3 · ln(nc)

)t
.

24

In Section 4, we will be interested only in the case where b = 2, ε =
ln 3

2
5k2

, p′ = p and
d = 1.447 = O(1); later, we will run our entire process multiple times to enable having arbitrarily

small error. Then, (1
ln2(1+ε)

)t ≤ (ε − ε2/2)t (by Taylor series), upper bounded by 2O(
√
k log k).

Further, we will choose c ≥ n and t = d
√
ke. By these substitutions, we obtain the following

corollary of Theorem 3.2.

Corollary 3.3. Let k, p ∈ N with p ≤ k, and c ≥ 1. Let U = (U1, U2, . . . , Ud
√
ke) be a

partitioned universe with U =
⋃d√ke
i=1 Ui of size n ≤ c, and let (f, g) be a splitting function pair.

With probability at least 1 − 1
c , the output family F ⊆ 2U of (U, 2, f, g,

ln 3
2

5k2
, c, 1.447)-universal

family sampling, computed in time O(|F|n), satisfies all of the following conditions.

1. |F| ≤ (1.447k)k

pp(1.447k − p)k−p
· 2O(

√
k log k) · log

√
k c.

2. F is a
ln 3

2
5k2

-parsimonious (n, p, k − p)-universal family with respect to (PBAL,QCBAL).

3. With respect to F , MEMBERSHIP is a T -membership query procedure for

T =

(
1.447k

1.447k − p

)k−p
· 2O(

√
k log k) · log

√
k c.

3.3 Reducing a Problem to Its Split Version

Because we only deal with balancedly split sets, we now develop a simple procedure whose
employment will allow us to reduce the general case to one focused only on balancedly split
sets. To this end, we need the following definition.

Definition 3.11 (Balancedly Split Sets II). Let t, k, b ∈ N. Let U = (U1, U2, . . . , Ut) be a
partitioned universe with U =

⋃t
i=1 Ui. Then, P ∈

(
U
k

)
is (U, k, b)-balancedly split if for every

i ∈ {1, 2, . . . , t}, it holds that |P ∩ Ui| ≤ dbk/te.

We now present the procedure.

Lemma 3.9. Given t, k, b ∈ N and c ≥ 1, a universe U of size n, and 0 < δ < 1 with
b2 k2t ≥ ln(4t), a collection U of 4

δ2
k ln(2nc) t-partitioned universes over U such that the following

property holds with probability at least 1− 1
c (resp. 1) can be computed in time O(n 1

δ2
k ln(nc)):

for every set P ∈
(
U
k

)
, the (resp. expected) number of partitioned universes U ∈ U such that

P is (U, k, b)-balancedly split is between (1 − δ)X and (1 + δ)X (resp. exactly X) for some
X = X(n, k, t, b, δ) > 0. (We note that X can be computed in time O(|U| · (2bkt)t)).

Proof. Denote r = 4
δ2
k ln(2nc). Given the input t, k, c, U, b, δ, the algorithm constructs U =

{U1,U2, . . . ,Ur} as follows. For i = 1, 2, . . . , r, the partitioned universe Ui = (Ui,1, Ui,2, . . . , Ui,t)
is constructed as follows. Each element u ∈ U is inserted into exactly one part Ui,j where the
choices of j ∈ {1, 2, . . . , t} are made independently and uniformly at random. Clearly, the time
complexity of the algorithm is O(nr).

Let X denote the expected number of partitioned universes U ∈ U such that any set P ∈
(
U
k

)
is (U, k, b)-balancedly split. Note that X is the same for all sets P ∈

(
U
k

)
, thus it is well defined.

The exact value of X will be calculated later.
Now, arbitrarily choose some set P ∈

(
U
k

)
. Additionally, consider some i ∈ {1, 2, . . . , r}.

Notice that for any j ∈ {1, 2, . . . , t}, the expected number of elements in P contained in Ui,j is
k/t, therefore Chernoff bound (Proposition 2.2) implies that the probability that the number of

elements in P contained in Ui,j is not upper bounded by dbk/te is at most 2e
−b2(k/t)

2 ≤ 2e− ln(4t) =

25

1
2t where the inequality follows from the supposition b2 k2t ≥ ln(4t) in the lemma. Then, by union
bound, the probability that P is not (U, k, b)-balancedly split is at most t · 1

2t = 1
2 , hence the

probability that it is (U, k, b)-balancedly split is at least 1
2 . Therefore, X ≥ r

2 . In turn, by
Chernoff bound (Proposition 2.2) and this lower bound on X, the probability that the number
of partitioned universes U ∈ U such that P is (U, k, b)-balancedly split is not between (1− δ)X
and (1 + δ)X is at most 2e−

δ2X
2 ≤ 2e−

δ2r
4 = 2e−k ln(2nc) = 2

(2nc)k
≤ 1

nkc
.

Since the choice of P ∈
(
U
k

)
was arbitrary and by union bound, the probability that there

exists P ∈
(
U
k

)
such that the number of partitioned universes U ∈ U such that P is (U, k, ε)-

balancedly split is not between (1− δ)X and (1 + δ)X is upper bounded by
(
n
k

)
· 1
nkc
≤ 1

c . Thus,

with probability at least 1− 1
c , for every set P ∈

(
U
k

)
the number of partitioned universes U ∈ U

such that P is (U, k, b)-balancedly split is between (1− δ)X and (1 + δ)X.
It remains to calculate X. To this end, arbitrarily choose some set P ∈

(
U
k

)
and i ∈

{1, 2, . . . , r}. Clearly, X = r ·Y , where Y is the probability that P is (Ui, k, b)-balancedly split.
Now, observe that

Y =
∑

`1,`2,...,`t∈{1,2,...,dbk/te}
s.t.

∑t
j=1 `j=k

(
k

`1

)
·
(
k − `1
`2

)
· · ·
(
k −

∑t−1
j=1 `j

`t

)
· (1/t)k.

This completes the proof.

We now present the our main utility of this procedure, which is a reduction of a problem to
a “split” version of itself. To this end, we first define the notion of a split version of a problem.

Definition 3.12 (Splittable Problem). Let Π be a problem whose input consists, among
possibly other components, of a universe U of size n and k ∈ N, and whose solutions are subsets
(resp. ordered subsets) of U of size k. Such a problem Π is said to be splittable. Then, the
general split version of Π is defined as follows. Its input consists of the same components as
the input of Π, and in addition, of a t-partitioned universe U for some t ∈ N, b ∈ N and a
(t, k, b)-splitting function f , and whose solutions are all the subsets (resp. ordered subsets) of
U that are both solutions of Π and are (U, f)-balancedly split. When t =

√
k and b = 2, the

general split version is called the split version in short.

Next, we present the reduction.

Lemma 3.10. Let Π be a splittable problem such that the number of solutions of the general
split version of Π can be approximately counted with multiplicative error (1± α) (resp. and the
expectation equals the exact number of solutions) in time T = T (α, t, b) (where t, b are input to
the split version) and with success probability at least 1 − 1

c′ . Then, for any c ∈ N such that
(2bk/t)t · 1

β2k ln(nc) · 1c′ ≤
1
2c and 0 < β < 1, the number of solutions of Π can be approximately

counted with multiplicative error (1 ± α)(1 ± β) (resp. and the expectation equals the exact
number of solutions) in time O(((2bk/t)t · T + n) · 1

β2k ln(nc)) where b2 k2t ≥ ln(4t) and with

success probability at least 1− 1
c .

Proof. Let ALG1 be the algorithm supposed to approximately count solutions of the general
split version of Π with multiplicative error (1 ± α) where the expectation equals the exact
number of solutions in time T and with success probability at least 1 − 1

c′ . We remark that if
the condition regarding the expectation is not assumed to hold, then disregard the arguments
below concerning its satisfaction for the output. Then, we design an algorithm ALG2 as follows.
Given an instance I of Π, c ∈ N and 0 < β < 1, ALG2 executes the following operations.

26

1. Use the algorithm in Lemma 3.9 to compute a collection U of 4
β2k ln(4nc) t-partitioned

universes over U such that the following property holds with probability at least 1 − 1
2c

(resp. 1): for every set P ∈
(
U
k

)
, the (resp. expected) number of partitioned universes U ∈

U such that P is (U, k, b)-balancedly split is between (1−β)X and (1+β)X (resp. exactly
X) for some X = X(n, k, t, b, β) > 0.

2. Let F be the family of all (t, k, b)-splitting functions.

3. For every partitioned universe U ∈ U :

(a) For every f ∈ F :

i. Run ALG1 on (I,U, b, f) as input, and denote its output by OU,f .

(b) Let OU =
∑
f∈F

OU,f .

4. Output O =
1

X
·
∑
U∈U

OU.

By Lemma 3.9, Step 1 is performed in time O(n 1
β2k ln(nc)). Now, observe that |F| ≤ (dbk/te+

1)t = O((2bk/t)t). Thus, we perform Step 3(a)i |U| · |F| = O(1
β2k ln(nc) · (2bk/t)t) times,

where each single performance is done in time O(T). Thus, the total running time is indeed
O(((2bk/t)t · T + n) · 1

β2k ln(nc)).

By union bound, with probability at least 1 − |U||F| · 1
c′ −

1
2c , which is lower bounded by

1 − (2bk/t)t · 1
β2k ln(nc) · 1

c′ −
1
2c ≥ 1 − 1

c , the call to the algorithm in Lemma 3.9 as well as

all calls to ALG2 are successful. Thus, to prove the lemma, it suffices to prove that E[O] is
the exact number of solutions, and that under the aforementioned condition (of all calls being
successful), the number of solutions of Π is necessarily approximated by O with multiplicative
error (1± α)(1± β).

First, observe that for any U ∈ U , the number of (U, k, b)-balancedly split solutions is
exactly the sum over all f ∈ F of the number of (U, f)-balancedly split solutions. Thus,
because the approximation factor of ALG2 is (1 ± α) and the expectation is exact, we have
that for any U ∈ U , the number of (U, k, b)-balancedly split solutions is exactly E[OU], and
(under the aforementioned condition) it is approximated by OU with multiplicative error (1 ±
α). Now, recall that for every set P ∈

(
U
k

)
(and, in particular, for every solution of Π), the

number of partitioned universes U ∈ U such that P is (U, k, b)-balancedly split is in expectation
X, and (under the aforementioned condition) it is between (1 − β)X and (1 + β)X. Since

O =
1

X
·
∑
U∈U

OU, we conclude that indeed the number of solutions of Π is E[O], and that

(under the aforementioned condition) it is necessarily approximated by O with multiplicative
error (1± α)(1± β).

For the (non-general) split version and α = β = 1
2 , in which we will be specifically interested,

we obtain the following corollary.

Corollary 3.4. Let Π be a splittable problem such that the number of solutions of the split
version of Π can be approximately counted with multiplicative error (1± 1

2) where the expectation
equals the exact number of solutions in time T and with success probability at least 1 − 1

c′ .

Then, for any c ∈ N such that 4k(4
√
k)
√
k ln(nc) · 1

c′ ≤
1
c , the number of solutions of Π can be

approximately counted with multiplicative error between 1
4 and 21

4 where the expectation equals

the exact number of solutions in time O((2O(
√
k log k) ·T+n)·k ln(nc)) and with success probability

at least 1− 1
c .

27

Lastly, we give a lemma that can be considered folklore (but whose proof is given for com-
pleteness), whose utility is to enable us to focus on achieving some small constant multiplicative
error for a counting problem, as this can be boosted to an arbitrarily small error as follows.

Lemma 3.11. Let Π be a problem that admits a randomized algorithm that, given an instance of
Π whose number of solutions is X, returns a number Y such that E[Y] = X and αX ≤ Y ≤ βX
for some 0 < α ≤ 1 and β ≥ 1 in time T with success probability 1 − 1

c′ . Then, for any

0 < ε < 1 and c ≥ 1 such that t
c′ ≤

1
2c where t = 2β

ε2
dln(4c)e, Π also admits an algorithm

that, given an instance of Π whose number of solutions is X, returns a number Z such that
(1− ε)X ≤ Z ≤ (1 + ε)X in time O(β

ε2
log c · T) with success probability at least 1− 1

c .

Proof. Let ALG1 denote the algorithm given in the supposition of the lemma. Let 0 < ε < 1.
Then, we design an algorithm ALG2 as follows. Given an instance I of Π, ALG2 executes the
following operations.

1. For i = 1, 2, . . . t: Call ALG1 with I as input and let Yi denote the result.

2. Output Z = 1
t ·
∑t

i=1 Yi.

First, notice that the time complexity of ALG2 is O(t · T) = O(β
ε2

log c · T). Second, by union
bound, with success probability at least 1 − t

c′ ≥ 1 − 1
2c , all the calls it makes to ALG1 are

successful. Thus, by union bound, to prove the lemma, it suffices to prove that under the
assumption that all the calls made to ALG1 are successful, with probability at least 1 − 1

2c , it
holds that (1− ε)X ≤ Z ≤ (1 + ε)X.

For all i ∈ {1, 2, . . . , t}, denote Y ′i = Yi
βX . Moreover, denote Z ′ =

∑t
i=1 Y

′
i . Notice that

(1− ε)X ≤ Z ≤ (1 + ε)X if and only if (1− ε) tβ ≤ Z
′ ≤ (1 + ε) tβ , and thus it suffices to consider

the probability that the latter event occurs. Since all calls are assumed to be successful, we have
that 0 ≤ Y ′i ≤ 1. Moreover, by linearity of expectation, E[Z ′] =

∑t
i=1E[Y ′i] =

∑t
i=1

E[Yi]
βX = t/β.

Therefore, (1 − ε) tβ ≤ Z ′ ≤ (1 + ε) tβ if and only if |Z ′ − E[Z ′]| ≤ εE[Z ′], and thus it further
suffices to consider the probability that the latter event occurs. By Chernoff Bound (Proposition
2.2), we have that

Pr(|Z ′ − E[Z ′]| > εE[Z ′]) ≤ 2e−
ε2E[Z′]

2

= 2e
− ε

2t
2β

= 2e− ln(4c) =
1

2c
.

Thus, |Z ′ − E[Z ′]| ≤ εE[Z ′] with probability at least 1− 1
2c . As claimed above, this completes

the proof.

Combining Corollary 3.4 and Lemma 3.11, we have the following read-to-use corollary. We
did not make any attempt to optimize the lower bound on c′, but just give a short expression.
Clearly, the success probability can be boosted to any constant close to 1. To simplify notation,
we will work with 9

10 .

Corollary 3.5. Let Π be a splittable problem such that the number of solutions of the split
version of Π can be approximated with multiplicative error (1 ± 1

2) in time T ≥ n where the
expectation equals the exact number of solutions, and with success probability at least 1 − 1

c′ .

Then, for any 0 < ε < 1 such that c′ ≥ 1
ε2
· (1000

√
k)
√
k · ln(n1

ε), the number of solutions of Π

can be approximated with multiplicative error (1 ± ε) in time 2O(
√
k log k) · T · 1

ε2
(log n + log 1

ε))
and with success probability at least 9

10 .

28

Proof. Denote c′′ = 2ct where c = 10, α = 1
4 , β = 21

4 and t = 2β
ε2

ln(4c). Then, 4k(4
√
k)
√
k ln(nc′′)·

1
c′ ≤

1
c′′ . Thus, by Corollary 3.4, the number of solutions of Π can be approximately counted

with multiplicative error between 1
4 and 21

4 in time T ′ = O((2O(
√
k log k) · T + n) · k ln(nc′′))

and with success probability at least 1 − 1
c′′ . Therefore, by Lemma 3.11, the number of so-

lutions of Π can be approximated with multiplicative error (1 ± ε) in time O(β
ε2

log c · T ′) =

2O(
√
k log k) · T · 1

ε2
(log n+ log 1

ε)) and with success probability at least 9
10 .

4 Main Applications

We will first consider the problem of approximately counting the number of multilinear mono-
mials of a polynomial encoded by a “skewed” arithmetic circuit. Because many problems are
known to be reducible to the aforementioned problem where the output arithmetic circuit is
“skewed” and the reduction is parsimonious, we will immediately derive a large number of
applications.

4.1 An Algorithm for #Multilinear Monomial Detection on Skewed Cir-
cuits

In the Multilinear Monomial Detection problem, the input consists of an arithmetic
circuit C over Z+ with variable set X = {x1, . . . , xn} representing a polynomial PC(X) over
Z, and the objective is to decide whether PC(X) construed as a sum of monomials contains a
multilinear monomial of degree k. In the approximate counting version called #Multilinear
Monomial Detection, we aim to approximate

∑
m∈MulLink(PC(X)) coeff(PC(X),m) where

MulLink(PC(X)) is the set of multilinear monomials of PC(X) of degree k and coeff(PC(X),m)
is the coefficient of m.

Given a node v of an arithmetic circuit C, we denote by Cv the sub-arithmetic circuit of C
defined by the subdigraph of C induced by the set of nodes reachable from v in C; note that
v is the root of Cv. For any integer d ∈ N, we say that a node v of an arithmetic circuit C is
d-skewed if the number of distinct (including both multilinear and non-multilinear) monomials
(with non-zero coefficient) of the polynomial PCv(X) represented by Cv is at most d. Notice
that if a node if d-skewed, then all of its children are d-skewed as well. Moreover, we say that an
arithmetic circuit is d-multiplication skewed (or, in short, d-skewed) if for every multiplication
node v of X (which, by our assumption, has two children), at most one of the children of v
is not d-skewed. We also denote by degadd(C) the maximum number of multiplication nodes
that can be reached from an addition node in C while traversing internally only addition nodes.
When all addition nodes can only have outgoing arcs to multiplication nodes, degadd(C) is
upper bounded by the maximum outgoing degree of an addition node in C. Clearly, in general,
degadd(C) ≤ s(C).

We will be using the following folklore proposition. It can be obtained by straightforward
dynamic programming, where at each node of the circuit, we explicitly store the polynomial
corresponding to the sub-circuit rooted at it, where when we reach a polynomial having more
than d distinct monomials, we do not continue the computation for that node (notice that the
monomials of the polynomial can be computed one by one, so if we reach monomial d + 1, we
stop and assign null).

Proposition 4.1 (Folklore). On d-skewed circuits for any d ∈ N, the following can be computed
in time O(s(C)d): For every node v in C, if v is d-skewed, then compute Wv := Pv, and
otherwise compute Wv := null.

We now present our main application. We remark that the success probability can be
boosted to any constant below 1. Further, we can deal with d-skewed circuits also when d is not

29

bounded by 2o(k) · s(C)O(1), though this will worsen the running time (depending on how much
larger d is).4 In our applications, ` = 0, and thus we emphasize the time obtained in that case.

Theorem 4.1. For any 0 < ε < 1 and ` ≥ 0, the #Multilinear Monomial Detection
problem on 2o(k)s(C)`-skewed circuits can be approximated with factor (1± ε) and success prob-
ability at least 9

10 in time O((2.619k + s(C)o(1)) · 1
ε2
· s(C)1+`degadd(C)). In particular, when

` = 0, the time is O((2.619k + s(C)o(1)) · 1
ε2
· s(C)degadd(C)).

The correctness will follow from Lemma 4.1 below as we will show immediately. Notice that
in the splittable version of #Multilinear Monomial Detection, the value to approximate is∑

m∈M̃ulLink(PC(X))
coeff(PC(X),m) where M̃ulLink(PC(X)) is the set of multilinear monomials

of PC(X) of degree k where for every i ∈ {1, 2, . . . ,
√
k}, the number of variables that are part

of the monomial and belong to Ui is f(i), for U = (U1, U2, . . . , U√k) being the input a
√
k-

partitioned universe (where
⋃√k
i=1 Ui = X) and f being the input (

√
k, k, 2)-splitting function.

Lemma 4.1. For any 0 < ε < 1 and ` ≥ 0, the splittable version of #Multilinear Monomial
Detection problem on 2o(k)s(C)`-skewed circuits can be computed exactly in expectation and

approximated with factor (1± 1
2) and success probability at least 1− ε2

(1000
√
k)
√
k ln(s(C) 1

ε
)

in time

2.61804k · 2o(k) · s(C)`+1degadd(C) · logO(
√
k)(1ε · s(C)).

Before we prove Lemma 4.1, we first assert that together with Corollary 3.5, it implies
Theorem 4.1.

Proof of Theorem 4.1. By Corollary 3.5, Lemma 4.1 implies that following statement. For any
0 < ε < 1 and ` ≥ 0, the #Multilinear Monomial Detection problem on 2o(k)s(C)`-
skewed circuits can be approximated with factor (1 ± ε) and success probability at least 9

10

in time 2.61804k · 2o(k) · 1
ε2
· s(C)`+1degadd(C) · logO(

√
k)(1ε · s(C)). First, notice that in case

1
ε ≥ (n + 1)k, we can solve the problem exactly in time O(1

ε2
· s(C)) since we can solve it

in time O((n + 1)2k · s(C)) by simple dynamic programming that stores, for each node, what
is the coefficient of each multilinear monomial of the polynomial corresponding to that node
(because there are at most (n+ 1)k distinct multilinear monomials). Thus, we can assume that
1
ε < (n+1)k and attain the time complexity 2.61804k ·2o(k) · 1

ε2
·s(C)`+1degadd(C)·logO(

√
k) s(C).

Second, observe that if s(C) ≤ 22
o(
√
k)

, then logO(
√
k) s(C) = 2o(k), so the problem is solvable

within time 2.61804k · 2o(k) · 1
ε2
· s(C)`+1degadd(C). Otherwise, when s(C) > 22

o(
√
k)

, we have

that k < o(log2 log s(C)) and thus 2.61804k · 2o(k) · logO(
√
k) s(C) = s(C)o(1), so the problem is

solvable in time 1
ε2
· s(C)`+1+o(1)degadd(C). From this, and since 2.61804k · 2o(k) = O(2.619k),

we derive the theorem.

We now turn to prove Lemma 4.1.

Proof of Lemma 4.1. It is well known that we can replace any arithmetic circuit C with an
equivalent circuit with fan-in two for all the internal nodes with linear blow up in the size. For
example, replacing each node of in-degree greater than 2 with at most s(C) many nodes of the
same label and in-degree 2, we can convert a circuit C to a circuit C ′ of size s(C ′) = O(s(C))
(specifically, sV(C ′) = O(sV(C) + sA(C)) and sA(C ′) = O(sA(C))). Moreover, degadd(C ′) =
degadd(C). So, from now onwards, we always assume that we are given a circuit of this form.

4Specifically, if d = 2δk · s(C)O(1), then the time complexity can be bounded by ck · 1
ε2
· s(C)O(1) for a constant

c that is clearly upper bounded but can also be can be substantially smaller than 2.619 · 2δ by optimizing choices
of constants tailored to the δ at hand.

30

We first describe our algorithm. Afterwards, we assert its correctness and analyze its running
time. The algorithm, denoted by ALG, is based on dynamic programming. We treat the input
set of variables as our universe (e.g., when computing representative families or parsimonious
universal families). Consider an input (C, k,U, f) (where U = (U1, U2, . . . , U√k) is a

√
k-

partitioned universe and f is a (
√
k, k, 2)-splitting function), and let X denote the variable set

corresponding to C.
We will use the following notation (we do not compute all the counters defined here, but only

some of them in a table N defined immediately; the rest will be approximately represented as will
be argued in the proof of correctness later). For every node v of C, p ∈ {1, 2, . . . , k}, and g such
that (f, g) is a (

√
k, k, p, 2)-splitting pair, let Bv,p,k : PBAL

U,f,g
→ N0 be the counter defined as fol-

lows. For every set P ∈
(
X
p

)
, Bv,p,k(P) is defined to be

∑
m∈MulLinp,g(PCv (X)) coeff(PCv(X),m)

where MulLinp,g(PCv(X)) is the set of multilinear monomials of PCv(X) whose degree is p and
such that for every i ∈ {1, 2, . . . ,

√
k}, the number of variables that are part of the monomial

and belong to Ui is g(i) (we remark that the second condition, regarding g, implies the first
condition, regarding p).

We now start the description of our algorithm, ALG. It first allocates a table M that has an
entry M [v, p, g] for every node v of C, p ∈ {1, 2, . . . , k}, and g such that (f, g) is a (

√
k, k, p, 2)-

splitting pair. Notice that, given v and p, there are at most (2k)
√
k choices for g, and thus the

table has at most s(C)k(2k)
√
k entries. The entry will store a counter C : PBAL

U,f,g
→ N0 (recall

that we only explicitly store the assignment of values to the support.) We also use the algorithm
in Proposition 4.1 to compute Wv for each node v of C. From this, we can clearly compute a
table N [v, p, g] indexed like M and where N [v, p, g] stores the counter that assigned to each

First, for all p ∈ {1, 2, . . . , k} and g such that (f, g) is a (
√
k, k, p, 2)-splitting pair, ALG

invokes Corollary 3.3 to compute, with success probability at least 1− 1
c , a family Fp,g ⊆ 2X of

(U, 2, f, g,
ln 3

2
5k2

, c, 1.447)-universal family sampling, where c =
(1000

√
k)
√
k ln(s(C) 1

ε
ε2

·s(C)(2k)2(
√
k+1),

that satisfies all of the following conditions.

1. |Fp,g| ≤
(1.447k)k

pp(1.447k − p)k−p
· 2O(

√
k log k) · log

√
k(

1

ε
s(C)).

2. Fp,g is a
ln 3

2
5k2

-parsimonious (n, p, q)-universal family with respect to (PBAL,QCBAL).

3. With respect to Fp,g, MEMBERSHIP is a T -membership query procedure for

T = (
1.447k

1.447k − p
)k−p · 2O(

√
k log k) · log

√
k(

1

ε
s(C)).

Next, the counters at the entries of M are computed by using a topological order with
respect to the first argument v (thus, when we compute an entry M [v, p, g] where v is not a
leaf, the two entries M [v1, p1, g1] and M [v2, p2, g2] such that v1 and v2 are outgoing neighbors
of v have already been computed). The computation of an entry M [v, p, g] is done as follows.
(We could have included all skewed nodes at the basis, but prefer to write in this way so it will
be easily extendible later to the case of general circuits where we do not have the table N .)

Basis (Leaf). If p 6= 1, then M [v, p, g] stores the counter having empty support. Else, if v /∈ Ui
where i is the unique index in {1, 2, . . . ,

√
k} such that g(i) = 1, then also M [v, p, g] stores the

counter having empty support. Otherwise, M [v, p, g] stores the counter whose support contains
only the set {xi} where xi is the label of v, and this set is assigned 1.

Addition Node. Let v1 and v2 be the two outgoing neighbors of v. Then, the counter C :
PBAL
U,f,g

:→ N0 stored at the entry M [v, p, g] is defined as follows. For every set P ∈ PBAL
U,f,g

, define

31

C(P) = C1(P) + C2(P) where C1 and C2 are the counters stored at M [v1, p, g] and M [v2, p, g],
respectively.

Multiplication Node. Let v1 and v2 be the two outgoing neighbors of v. Let I be the
set consisting of all quadruples (p1, p2, g1, g2) such that p1, p2 ∈ N, p1 + p2 = p, (f, g1) and
(f, g2) are (

√
k, k, p1, 2) and (

√
k, k, p2, 2)-splitting function pairs, respectively, and for every

i ∈ {1, 2, . . . ,
√
k}, it holds that g1(i)+g2(i) = g(i). Then, for every quadruple (p1, p2, g1, g2) ∈ I,

let C(p1,p2,g1,g2) : PBAL
U,f,g

→ N0 be the counter defined as follows. For every set P ∈ PBAL
U,f,g

,

define C(p1,p2,g1,g2)(P) =
∑

P1∈PBAL
U,f,g1

,P2∈PBAL
U,f,g2

:P1∩P2=∅

Cv1,p1,g1(P) · Cv2,p2,g2(P) where Cv1,p1,g1 and

Cv2,p2,g2 are the counters stored at M [v1, p1, g1] and M [v2, p2, g2], respectively, where if N [v1, p1,
g1] is not null, then use it instead to define Cv1,p1,g1 , and otherwise (N [v2, p2, g2] must not be
null), use N [v2, p2, g2] instead to define Cv2,p2,g2 . Then, the counter C : PBAL

U,f,g
:→ N0 is defined

as follows. For every set P ∈ PBAL
U,f,g

, define C(P) =
∑

(p1,p2,g1,g2)∈I

C(p1,p2,g1,g2)(P). The entry

M [v, p, g] stores the counter Ĉ : PBAL
U,f,g

→ N0 obtained by applying Theorem 3.1 with respect to

QCBAL
U,f,g

, Fp,g and the aforementioned counter C, where n is clear (being |X|), p is clear, q = k−p,

ε′ (denoted by ε in the statement but here denoted by ε′ to avoid overloading notation) is
ln 3

2
k2

,

and c = (1000
√
k)
√
k

ε2
ln(s(C)1ε) · s(C)(2k)2(

√
k+1) (the same as defined earlier in this proof).

Output. The final answer returned by ALG is
∑

P∈PBAL
U,f,f

C(P) where C is the counter stored at

M [root(C), k, f]. This completes the description of the algorithm.

Time Complexity. First, notice that the time complexity of the computation of each family

Fp,g is upper bounded by O(|Fp,g|s(C)) =
(1.447k)k

pp(1.447k − p)k−p
· 2O(

√
k log k) · s(C) · log

√
k(

1

ε
s(C)).

Notice that for any non-negative integer p ≤ k,
(1.447k)k

pp(1.447k − p)k−p
= O(2.61804k). (Later,

when considering the computation corresponding to a multiplication node, we will even bound
a larger expression by O(2.61804k).) Moreover, there are at most 2o(k) pairs (p, g) for which we
compute a family Fp,g. Thus, the time taken to compute all families Fp,g is altogether bounded

by 2.61804k · s(C) · logO(
√
k)(1ε · s(C)).

We are left with the time complexity of the computation of M and N . To this end, notice
that the number of entries of M is upper bounded by 2o(k)s(C). This are also the number of
entries of N , and thus, by Propostion 4.1, we can already conclude that N can be computed
within the desired time. Thus, to conclude the time complexity in the lemma, it remains to show

that each entry of M can be computed in time 2.61804k ·2o(k) ·s(C)`degadd(C)·logO(
√
k)(1ε ·s(C)).

For this purpose, consider some entry M [v, p, g]. If v is a leaf node, then the time complexity is
constant. Else, v has two outgoing neighbors v1 and v2. We have two cases.

• In case v is an addition node, |supp(C)| ≤ |supp(C1)|+ |supp(C2)|. Moreover, C can clearly
be computed in time O(|supp(C1)|+ |supp(C2)|).

• In case v is a multiplication node, |supp(C)| ≤
∑

(p1,p2,g1,g2)∈I

|supp(Cv1,p1,g1)| · |supp(Cv2,p2,g2)|.

Moreover, C is clearly computable in timeO(
∑

(p1,p2,g1,g2)∈I

|supp(Cv1,p1,g1)| · |supp(Cv2,p2,g2)|).

32

By Theorem 3.1 (because each counter stored at an entry corresponding to a multiplication
node above has been obtained by the application of this theorem), for any counter Cmul stored
at some entry M [v′, p′, g′] where v′ is a multiplication node, we have that

|supp(Cmul)| ≤ O(k2 · |Fp′,g′ | · log(
(1000

√
k)
√
k ln(s(C) 1

ε
)

ε2
s(C)(2k)2(

√
k+1))

·(log(
(1000

√
k)
√
k ln(s(C) 1

ε
)

ε2
s(C)(2k)2(

√
k+1)) + log |Fp′,g′ |))

≤ (1.447k)k

p′p
′
(1.447k − p′)k−p′

· 2o(k) · logO(
√
k)(

1

ε
s(C)).

Second, notice that for any counter Cadd stored at some entry M [v′, p′, g′] where v′ is a addition
node, we have that the support of Cadd is the union of the support of counters stored at entries
M [v′′, p′′, g′′] where v′′ is a multiplication node reachable from v′ while internally traversing only
addition nodes. Therefore,

|supp(Cadd)| ≤ (1.447k)k

p′p
′
(1.447k − p′)k−p′

· 2o(k) · degadd(C) · logO(
√
k)(

1

ε
s(C)).

Thus, in case v is an addition node, we can already conclude that the computation time of

the entry M [v, p, g] is upper bounded by
(1.447k)k

pp(1.447k − p)k−p
· 2o(k) · degadd(C) · logO(

√
k)(

1

ε
s(C)),

where
(1.447k)k

pp(1.447k − p)k−p
= O(2.61804k) (similarly to our consideration of the computation of

parsimonious families).
We thus now focus only on the case where v is a multiplication node. Recall that both

|supp(C)| and the time to compute C are upper bounded by O(
∑

(p1,p2,g1,g2)∈I |supp(Cv1,p1,g1)| ·
|supp(Cv2,p2,g2)|). Therefore, because |I| = 2o(k), we further obtain an upper bound of 2o(k) ·
max(p1,p2,g1,g2)∈I |supp(Cv1,p1,g1)| · |supp(Cv2,p2,g2)|. From the above discussion, we know that for
any (p1, p2, g1, g2) ∈ I and i ∈ {1, 2} such that Cvi,pi,gi = M [vi, pi, gi], we have that

|supp(Cvi,pi,gi)| ≤
(1.447k)k

ppii (1.447k − pi)k−pi
· 2o(k) · degadd(C) · logO(

√
k)(

1

ε
s(C)).

Thus, because the input arithmetic circuit C is 2o(k)s(C)`-skewed (we remark in the proof for
general circuits we will not be able to rely on this, but just use the analogous equation to the
one above for both i = 1 and i = 2), we further derive that both |supp(C)| and the time to
compute C are bounded from above by

max
1≤p̂≤k

(1.447k)k

p̂p̂(1.447k − p̂)k−p̂
· 2o(k) · s(C)`degadd(C) · logO(

√
k)(

1

ε
s(C)).

By Theorem 3.1, the time required to compute Ĉ is bounded by O(|supp(C)| · T) where

T = (
1.447k

1.447k − p
)k−p · 2O(

√
k log k) · log

√
k(

1

ε
s(C)).

Combining this with the aforementioned upper bound on |supp(C)|, we derive that, overall, the
time complexity is bounded by

max
1≤p̂≤p

(1.447k)k

p̂p̂(1.447k − p̂)k−p̂
(

1.447k

1.447k − p
)k−p · 2o(k) · s(C)`degadd(C) · logO(

√
k)(

1

ε
s(C)).

Because any value p ∈ {1, . . . , k} is to be taken into consideration, we derive that the time
required to compute a single entry of M is bounded by

max
1≤p≤k,1≤p̂≤p

(1.447k)k

p̂p̂(1.447k − p̂)k−p̂
(

1.447k

1.447k − p
)k−p · 2o(k) · s(C)`degadd(C) · logO(

√
k)(

1

ε
s(C)).

33

First, notice that the maximum is achieved when p̂ = p—indeed, the larger p is, the smaller
(1.447k
1.447k−p)k−p is, thus one is to choose a larger p only in order to choose the largest possible p̂.

Therefore, we further derive an upper bound of

max
1≤p≤k

(1.447k)2k−p

pp(1.447k − p)2k−2p
· 2o(k) · s(C)`degadd(C) · logO(

√
k)(

1

ε
s(C)).

The maximum is achieved when p = αk for α ≈ 0.55277 (the exact same computation of
maximum of this expression is done in both [FLPS16, SZ16] where the reader can find further

details). Then, the expression above is upper bounded by 2.61804k ·2o(k) ·degadd(C)·logO(
√
k)(1ε ·

s(C)). This completes the analysis of the time complexity of ALG.

Correctness. Notice that ALG performs at most k · (2k)
√
k calls to the algorithm in Corollary

3.3 (one for every choice of p and g), and at most s(C) · k · (2k)
√
k calls to the algorithm in

Theorem 3.1 (at most one for every choice of v, p and g). As the failure probability for each one

of them is upper bounded by 1
c = 1/

(
(1000

√
k)
√
k ln(s(C) 1

ε
)

ε2
· s(C)(2k)2(

√
k+1)

)
, we have by union

bound that the probability that at least one call will fail is upper bounded by ε2

(1000
√
k)
√
k ln(s(C) 1

ε
)
.

Thus, with probability at least 1− ε2

(1000
√
k)
√
k ln(s(C) 1

ε
)
, all calls to the algorithms in Corollary 3.3

and Theorem 3.1 were successful. Thus, to prove the correctness of ALG, we prove the following
claim. (We remark that one can use p instead of p2 and still the proof will go through by relying
on the skeweness of the circuit, but we refrain from doing that so that the proof for general
circuits later will be similar.)

Claim 4.1. For every node v of C, p ∈ {1, 2, . . . , k}, and g such that (f, g) is a (
√
k, k, p, 2)-

splitting pair, the following holds: The counter Ĉ stored at M [v, p, g] equals Bv,p,g in expectation

(i.e., for each P ∈ PBAL
U,f,g

, the expected value assigned by Ĉ equals Bv,p,g(P)), and, under the

assumption that all calls to the algorithms in Corollary 3.3 and Theorem 3.1 are successful, it

((1− ln 3
2

k2
)p

2
, (1 +

ln 3
2

k2
)p

2
, k − p)-represents Bv,p,g with respect to QCBAL

U,f,g
.

Proof. For arguments that do not concern expectation, we will implicitly assume that all calls to
the algorithms in Corollary 3.3 and Theorem 3.1 are successful. The proof is done by induction
on the order of the computation of the entries of M (specifically topological order with respect
to the first argument). In the basis, where v is a leaf, the counter Ĉ stored at M [v, p, g] clearly
equals Bv,p,g, thus the claim trivially holds. Now, consider some entry M [v, p, g] where v is not
a leaf, and suppose that the claim holds for all entries that are computed before M [v, p, g]. We
need to consider two cases depending on whether v is an addition node or a multiplication node.

Case I: Addition Node. Note that PCv(X) = PCv1 (X) + PCv2 (X). Therefore, for any

P ∈ PBAL
U,f,g

, we have that Bv,p,g(P) = Bv1,p,g(P) + Bv2,p,g(P). By the inductive hypothe-

sis, C1 and C2 represent in expectation and ((1 − ln 3
2

k2
)p

2
, (1 +

ln 3
2

k2
)p

2
, k − p)-represent Bv1,p,g

and Bv2,p,g, respectively, with respect to QCBAL
U,f,g

. Thus, for every P ∈ PBAL
U,f,g

, we have that

E[C2(P)] = Bv1,p,g(P) and E[C2(P)] = Bv2,p,g(P); therefore, by linearity of expectation,
E[C(P)] = E[C1(P)] + E[C2(P)] = Bv1,p,g(P) + Bv2,p,g(P), which means that C represent
in expectation Bv,p,g.

Moreover, by the aforementioned inductive assumption regarding approximate representa-
tion, for every Q ∈ QCBAL

U,f,g
and i ∈ {1, 2}, we have that

(1−
ln 3

2

k2
)p

2 ·
∑

P∈PBAL
U,f,g

:P∩Q=∅

Bvi,p,g(P) ≤
∑

P∈PBAL
U,f,g

:P∩Q=∅

Ci(P) ≤ (1+
ln 3

2

k2
)p

2 ·
∑

P∈PBAL
U,f,g

:P∩Q=∅

Bvi,p,g(P).

34

Thus, for every Q ∈ QCBAL
U,f,g

, we have that∑
P∈PBAL

U,f,g
:P∩Q=∅

C(P)

=
∑

P∈PBAL
U,f,g

:P∩Q=∅

(C1(P) + C2(P))

=
∑

P∈PBAL
U,f,g

:P∩Q=∅

C1(P) +
∑

P∈PBAL
U,f,g

:P∩Q=∅

C2(P)

≤ (1 +
ln 3

2

k2
)p

2
∑

P∈PBAL
U,f,g

:P∩Q=∅

Bv1,p,g(P) + (1 +
ln 3

2

k2
)p

2
∑

P∈PBAL
U,f,g

:P∩Q=∅

Bv2,p,g(P)

= (1 +
ln 3

2

k2
)p

2
∑

P∈PBAL
U,f,g

:P∩Q=∅

(Bv1,p,g(P) + Bv2,p,g(P))

= (1 +
ln 3

2

k2
)p

2
∑

P∈PBAL
U,f,g

:P∩Q=∅

Bv,p,g(P).

Symmetrically, for every Q ∈ QCBAL
U,f,g

, we conclude that

∑
P∈PBAL

U,f,g
:P∩Q=∅

C(P) ≥ (1−
ln 3

2

k2
)p

2
∑

P∈PBAL
U,f,g

:P∩Q=∅

Bv,p,g(P).

Thus, C ((1− ln 3
2

k2
)p

2
, (1 +

ln 3
2

k2
)p

2
, k − p)-represents Bv,p,g with respect to QCBAL

U,f,g
.

Case II: Multiplication Node. Note that PCv(X) = PCv1 (X) · PCv2 (X). Therefore, for any

P ∈ PBAL
U,f,g

, we have that

Bv,p,g(P) =
∑

(p1,p2,g1,g2)∈I

∑
P1∈PBAL

U,f,g1
,P2∈PBAL

U,f,g2
:

P1∩P2=∅,P1∪P2=P

Bv1,p1,g1(P1) ·Bv2,p2,g2(P2).

Further, by the computation at a multiplication node, for every P ∈ PBAL
U,f,gi

,

C(P) =
∑

(p1,p2,g1,g2)∈I

∑
P1∈PBAL

U,f,g1
,P2∈PBAL

U,f,g2
:

P1∩P2=∅,P1∪P2=P

Cv1,p1,g1(P1) · Cv2,p2,g2(P2)

We first consider representation in expectation. By the inductive hypothesis, for every
(p1, p2, g1, g2) ∈ I and i ∈ {1, 2}, Cvi,pi,gi represents in expectation Bvi,pi,gi , and therefore for
every Pi ∈ PBAL

U,f,gi
, we have that E[Cvi,pi,gi(Pi)] = Bvi,pi,gi(Pi). Unfortunately, this does not

suffice to obtain representation in expectation, and here we have to rely on the skewness of
the circuit. This is also the reason why for general circuits, we do not claim representatiob
in expectation, which therefore requires us to make certain modification that overall lead to
another factor of 1

ε2
in the running. Towards the correct proof that relies on skeweness, we

35

will also briefly explain why otherwise the proof does not work. By the two aforementioned
equalities and linearity of expectation, we get that

E[C(P)] = E[
∑

(p1,p2,g1,g2)∈I

∑
P1∈PBAL

U,f,g1
,P2∈PBAL

U,f,g2
:

P1∩P2=∅,P1∪P2=P

Cv1,p1,g1(P1) · Cv2,p2,g2(P2)]

=
∑

(p1,p2,g1,g2)∈I

∑
P1∈PBAL

U,f,g1
,P2∈PBAL

U,f,g2
:

P1∩P2=∅,P1∪P2=P

E[Cv1,p1,g1(P1) · Cv2,p2,g2(P2)]

Then, we would have like to say that the above is equal to

=
∑

(p1,p2,g1,g2)∈I

∑
P1∈PBAL

U,f,g1
,P2∈PBAL

U,f,g2
:

P1∩P2=∅,P1∪P2=P

E[Cv1,p1,g1(P1)] · E[Cv2,p2,g2(P2)]

=
∑

(p1,p2,g1,g2)∈I

∑
P1∈PBAL

U,f,g1
,P2∈PBAL

U,f,g2
:

P1∩P2=∅,P1∪P2=P

Bv1,p1,g1(P1) ·Bv2,p2,g2(P2) = Bv,p,g(P).

Unfortunately, if both Cv1,p1,g1(P1) and Cv2,p2,g2(P2) were to be taken from M , then they might
not be independent and thus the above may not be true. However, by relying on skewness,
we computed one of them, say, Cv1,p1,g1(P1), by taking the entry N [v1, p1, g1], which makes
Cv1,p1,g1(P1) deterministic, being necessarily equal to Bv1,p1,g1 . Thus, the above transitions
hold, and C indeed represents in expectation Bv,p,g.

We now consider approximate representation. By relying on skeweness, the proof can be
slightly simplified, but as said earlier, we refrain from doing this so that this proof can also be
used for general circuits. In case p = 1, I is empty (since p1 and p2 should each be at least 1
and together sum to p), and then for any P ∈ PBAL

U,f,g
, we have that C(P) = Bv,p,g(P). Thus, in

this case, clearly C ((1− ln 3
2

k2
)p

2−1, (1+
ln 3

2
k2

)p
2−1, k−p)-represents Bv,p,g with respect to QCBAL

U,f,g
.

Next, suppose that p ≥ 2. Arbitrarily choose some Q ∈ QCBAL
U,f,g

. By the inductive hypothesis,

for every (p1, p2, g1, g2) ∈ I and i ∈ {1, 2}, Cvi,pi,gi ((1 − ln 3
2

k2
)p

2
, (1 +

ln 3
2

k2
)p

2
i , k − pi)-represents

Bvi,pi,gi with respect to QCBAL
U,f,gi

. Thus, for every i ∈ {1, 2} and Q̃ ∈ QCBAL
U,f,gi

, we have that

(1−
ln 3

2

k2
)p

2
i ·

∑
Pi∈PBAL

U,f,gi
:Pi∩Q̃=∅

Bvi,pi,gi(Pi) ≤
∑

Pi∈PBAL
U,f,gi

:Pi∩Q̃=∅

Ci(Pi) ≤ (1+
ln 3

2

k2
)p

2
i ·

∑
Pi∈PBAL

U,f,gi
:Pi∩Q̃=∅

Bvi,pi,gi(Pi).

We now proceed to combine the above expressions to show that
∑

P∈PBAL
U,f,g

:P∩Q=∅ C(P) ≤

(1 +
ln 3

2
k2

)p
2−1∑

P∈PBAL
U,f,g

:P∩Q=∅Bv,p,g(P). The proof that also
∑

P∈PBAL
U,f,g

:P∩Q=∅ C(P) ≥ (1 −
ln 3

2
k2

)p
2−1∑

P∈PBAL
U,f,g

:P∩Q=∅Bv,p,g(P) is symmetric. To this end, observe that for every (p1, p2, g1,

g2) ∈ I and P1 ∈ PBAL
U,f,g1

such that P1 ∩ Q = ∅, it holds that P1 ∪ Q ∈ QCBAL
U,f,g2

; similarly, for

every (p1, p2, g1, g2) ∈ I and P2 ∈ PBAL
U,f,g2

such that P2 ∩Q = ∅, it holds that P2 ∪Q ∈ QCBAL
U,f,g1

.

Thus, we overall have that

36

∑
P∈PBAL

U,f,g
:P∩Q=∅

C(P)

=
∑

P∈PBAL
U,f,g

:P∩Q=∅

∑
(p1,p2,g1,g2)∈I

∑
P1∈PBAL

U,f,g1
,P2∈PBAL

U,f,g2
:

P1∩P2=∅,P1∪P2=P

Cv1,p1,g1(P1) · Cv2,p2,g2(P2)

=
∑

(p1,p2,g1,g2)∈I

∑
P1∈PBAL

U,f,g1
:P1∩Q=∅

Cv1,p1,g1(P1) ·

∑

P2∈PBAL
U,f,g2

:

P2∩(P1∪Q)=∅

Cv2,p2,g2(P2)

≤
∑

(p1,p2,g1,g2)∈I

∑
P1∈PBAL

U,f,g1
:P1∩Q=∅

Cv1,p1,g1(P1) ·

(1 +
ln 3

2

k2
)p

2
2

∑
P2∈PBAL

U,f,g2
:

P2∩(P1∪Q)=∅

Bv2,p2,g2(P2)

= (1 +
ln 3

2

k2
)p

2
2

∑
(p1,p2,g1,g2)∈I

∑
P2∈PBAL

U,f,g2
:P2∩Q=∅

Bv2,p2,g2(P2) ·

∑

P1∈PBAL
U,f,g1

:

P1∩(P2∪Q)=∅

Cv1,p1,g1(P1)

≤ (1 +
ln 3

2

k2
)p

2
2

∑
(p1,p2,g1,g2)∈I

∑
P2∈PBAL

U,f,g2
:P2∩Q=∅

Bv2,p2,g2(P2) ·

(1 +
ln 3

2

k2
)p

2
1

∑
P1∈PBAL

U,f,g1
:

P1∩(P2∪Q)=∅

Bv1,p1,g1(P1)

= (1 +

ln 3
2

k2
)p

2
1+p

2
2

∑
P∈PBAL

U,f,g
:P∩Q=∅

∑
(p1,p2,g1,g2)∈I

∑
P1∈PBAL

U,f,g1
,P2∈PBAL

U,f,g2
:

P1∩P2=∅,P1∪P2=P

Bv1,p1,g1(P1) ·Bv2,p2,g2(P2)

≤ (1 +
ln 3

2

k2
)p

2−1
∑

P∈PBAL
U,f,g

:P∩Q=∅

∑
(p1,p2,g1,g2)∈I

∑
P1∈PBAL

U,f,g1
,P2∈PBAL

U,f,g2
:

P1∩P2=∅,P1∪P2=P

Bv1,p1,g1(P1) ·Bv2,p2,g2(P2)

≤ (1 +
ln 3

2

k2
)p

2−1
∑

P∈PBAL
U,f,g

:P∩Q=∅

Bv,p,g(P)

Here, the last inequality followed because p21 + p22 ≤ (p− 1)2 + 12 = p2 − 2p+ 2 ≤ p2 − 1, where
the last inequality is satisfied because p ≥ 2 in the current case.

Thus, because the choice of Q ∈ QCBAL
U,f,g

was arbitrary, also when p ≥ 2, we have that C

((1− ln 3
2

k2
)p

2−1, (1 +
ln 3

2
k2

)p
2−1, k − p)-represents Bv,p,g with respect to QCBAL

U,f,g
.

Note that Ĉ represents in expectation and (
ln 3

2
k2
, k − p)-represents C with respect to QCBAL

U,f,g
.

First, for every P ∈ PBAL
U,f,g

, we thus have that both E[Ĉ(P)] = C(P) and E[C(P)] = Bv,p,g(P),

therefore E[Ĉ(P)] = Bv,p,g(P). Thus, Ĉ represents in expectation Bv,p,g. Second, for every
Q ∈ QCBAL

U,f,g
, we have that

(1−
ln 3

2

k2
) ·

∑
P∈PBAL

U,f,g
:P∩Q=∅

C(P) ≤
∑

P∈PBAL
U,f,g

:P∩Q=∅

Ĉ(P) ≤ (1 +
ln 3

2

k2
) ·

∑
P∈PBAL

U,f,g
:P∩Q=∅

C(P).

37

Recall that, because C ((1 − ln 3
2

k2
)p

2−1, (1 +
ln 3

2
k2

)p
2−1, k − p)-represents Bv,p,g with respect to

QCBAL
U,f,g

, we also have that

(1−
ln 3

2

k2
)p

2−1 ·
∑

P∈PBAL
U,f,g

:P∩Q=∅

C(P) ≤
∑

P∈PBAL
U,f,g

:P∩Q=∅

Ĉ(P) ≤ (1+
ln 3

2

k2
)p

2−1 ·
∑

P∈PBAL
U,f,g

:P∩Q=∅

C(P).

Combining both expression, we derive that

(1−
ln 3

2

k2
)p

2 ·
∑

P∈PBAL
U,f,g

:P∩Q=∅

Bv,p,g(P) ≤
∑

P∈PBAL
U,f,g

:P∩Q=∅

Ĉ(P) ≤ (1+
ln 3

2

k2
)p

2 ·
∑

P∈PBAL
U,f,g

:P∩Q=∅

Bv,p,g(P).

Since the choice of Q ∈ QCBAL
U,f,g

was arbitrary, we conclude that C ((1− ln 3
2

k2
)p

2
, (1+

ln 3
2

k2
)p

2
, k−p)-

represents Bv,p,g with respect to QCBAL
U,f,g

.

Having proved the claim, we turn to complete the proof of the theorem. To this end,
notice that the exact solution to splittable version, being

∑
m∈M̃ulLink(PC(X))

coeff(PC(X),m),

equals
∑

P∈PBAL
U,f,f

Br,k,f (P) where r = root(C). Recall that the final answer returned by ALG is∑
P∈PBAL

U,f,f

C(P) where C is the counter stored at M [r, k, f]. By Claim 4.1, for every P ∈ PBAL
U,f,f

,

the expected value of C(P) equals Br,k,f (P), and therefore the expected value of the final
answer returned by ALG is

∑
m∈MulLink(PC(X)) coeff(PC(X),m). Moreover, by By Claim 4.1, C

((1− ln 3
2

k2
)k

2
, (1+

ln 3
2

k2
)k

2
, 0)-represents Br,k,f with respect toQCBAL

U,f,f
. Thus, for every Q ∈ QCBAL

U,f,f
,

(1−
ln 3

2

k2
)k

2 ·
∑

P∈PBAL
U,f,f

:P∩Q=∅

Br,k,f (P) ≤
∑

P∈PBAL
U,f,f

:P∩Q=∅

C(P) ≤ (1+
ln 3

2

k2
)k

2 ·
∑

P∈PBAL
U,f,f

:P∩Q=∅

Br,k,f (P).

Observe that when f = g, the family QCBAL
U,f,g

consists only of the empty set. Thus, the expression

above simplifies to

(1−
ln 3

2

k2
)k

2 ·
∑

P∈PBAL
U,f,f

Br,k,f (P) ≤
∑

P∈PBAL
U,f,f

C(P) ≤ (1 +
ln 3

2

k2
)k

2 ·
∑

P∈PBAL
U,f,f

Br,k,f (P).

Lastly, note that (1− ln 3
2

k2
)k

2 ≥ (1− ln 3
2) > (1− 1

2), as well as that (1 +
ln 3

2
k2

)k
2 ≤ eln

3
2 = (1 + 1

2).
Therefore, the last expression yields that

(1− 1

2
) ·

∑
P∈PBAL

U,f,f

Br,k,f (P) ≤
∑

P∈PBAL
U,f,f

C(P) ≤ (1 +
1

2
) ·

∑
P∈PBAL

U,f,f

Br,k,f (P).

This completes the proof.

For all our problem-specific applications, the natural circuit constructions in the reductions
produce circuits that are not only skewed, but also have the following property: Every addition
node has out-degree at most 1 and all of its out-going neighbors are multiplication nodes. We
refer to such circuits as additively simple. It is straightforward to see that for such circuits,
we do not obtain the term degadd(C) in the time complexity in Theorem 4.1. Indeed, in
the computation of the time complexity in Lemma 4.1, when we consider a multiplication

38

node, the size of the support of the counters stored in its addition child are dependent only
on their outgoing-degrees (because every addition node has all of its out-going neighbors are
multiplication nodes), and the out-degree of each addition node will only be accounted for once
(because every addition node has in-degree 1). Thus, we also state the following theorem.

Theorem 4.2. For any 0 < ε < 1 and ` ≥ 0, the #Multilinear Monomial Detection
problem on 2o(k)s(C)`-skewed additively simple circuits can be approximated with factor (1± ε)
and success probability at least 9

10 in time O((2.619k + s(C)o(1)) · 1
ε2
· s(C)1+`). In particular,

when ` = 0, the time is O((2.619k + s(C)o(1)) · 1
ε2
· s(C)).

4.2 Reductions to #Multilinear Monomial Detection on Skewed Circuits

A wide variety of problems are well-known to be (in fact, even often very easily) reducible to the
Multilinear Monomial Detection problem on 2o(k)s(C)`-skewed additively simple circuits
where the size of the output circuit is linear in kO(1) multiplied by the size of the input instance
(see, e.g., [KW16b, KW16a]), and it can be easily verified that the reductions are parsimonious.
This includes, for example, k-Path, k-Tree (or, more generally, Subgraph Isomorphism
where the treewidth of input graph is bounded by a fixed constant), r-Set k-Packing, r-
Dimensional k-Matching, Graph Motif, and more. For all of the aforementioned problems
except k-Tree, the produced circuit is, in fact, O(1)-skewed, where for k-Tree, s(C)O(1)

circuits are produced and each of them is 2o(k)-skewed (see the direct application of the method
of representative families to solve k-Tree in [FLPS16]). First, we state the aforementioned
applications as a corollary of Theorem 4.2.

Theorem 4.3. For any 0 < ε < 1, the #k-Path, #q-Set p-Packing with k = qp, #q-
Dimensional p-Matching with k = (q − 1)p and # Graph Motif problems can be approxi-
mated with factor (1± ε) and success probability at least 9

10 in time O((2.619k + |I|o(1)) · 1
ε2
· |I|),

where k is the parameter and |I| is the input size. Moreover, for any 0 < ε < 1, the #k-Tree
(or, more generally, #Subgraph Isomorphism where the treewidth of input graph is bounded
by a fixed constant) can be approximated with factor (1 ± ε) and success probability at least 9

10

in time 2.619k · 1
ε2
· |I|O(1).

For the sake of illustration, we will explicitly give here the circuit produced for #k-Path,
and verify that it is 1-skewed and additively simple. For the other problems, we refer the reader
to the aforementioned references in this subsection (which also encompass #k-Path).

Proof of Theorem 4.3 for #k-Path. In the #k-Path problem, we are given a digraph D and
a parameter k ∈ N, and the objective is to count the number of solutions being k-paths—simple
directed paths in D that consist of exactly k vertices.5 We will only explicitly give a proof
for the case of #k-Path. To this end, we present a parsimonious reduction from #k-Path
to #Multilinear Monomial Detection on 1-skewed additively simple circuits where the
output circuit is of size linear in the size of the input graph. By Theorem 4.2, this will yield that
for any 0 < ε < 1, #k-Path can be approximated with factor (1 ± ε) and success probability
at least 9

10 in time O((2.619k + |G|o(1)) · 1
ε2
· |G|) (where |G| = |V (G)|+ |E(G)|).

Given an instance (G, k) of #k-Path, we construct an arithmetic circuit C as follows. The
set of variables is X = {xv : v ∈ V (G)}. For every pair (v, p) of a vertex v ∈ V (G) and integer
p ∈ {1, . . . , k}, we have two nodes Nv,p,+ and Nv,p,× if p ≥ 2, and only one node Nv,p,× if
p = 1. Every node Nv,p,× where p = 1 is a leaf labeled xv. Every node Nv,p,+ is an addition
node with outgoing arcs to all nodes Nu,p−1,× such that (u, v) ∈ E(G). Every node Nv,p,× is a
multiplication node with outgoing arcs to Nv,p,+ and Nv,1,×. Lastly, we have a root node N+

5The case where the input graph is undirected can be reduced to the case where it is directed by transforming
each undirected edge to two arcs of opposing directions—this blows up the number of solutions by precisely 2.

39

with outgoing arcs to Nv,k,× for all v ∈ V (G). This completes the description of the reduction.
In what follows, we will use the abbreviation Cv,p to denote CNv,p,× .

First, it is clear that the construction correspond to an arithmetic circuit (in particular,
the constructed digraph is acyclic) and that it is 1-skewed and additively simple. Moreover,
the number of nodes is O(k|V (G)|) and the number of arcs is O(k

∑
v∈V (G) degreeG(v)) =

O(k|E(G)|). Thus, is remains to prove that the reduction is correct—specifically, we will show
that the number of k-paths in G is equal to

∑
m∈MulLink(PC(X)) coeff(PC(X),m). To this end,

we will prove the following claim.

Claim 4.2. For every node Nv,p,× where v ∈ V (G) and p ∈ {1, 2, . . . , k}, we have that⋃k
i=1 MulLini(PCv,p(X)) = MulLinp(PCv,p(X)) = {xvj1xvj2 · · ·xvjp : {vj1 , vj2 , . . . , vjp} is the ver-

tex set of a p-path in G that ends at v}, and the coefficient of every multilinear monomial
xvj1xvj2 · · ·xvjp ∈ MulLinp(PCv,p(X)) is the number of p-paths in G with vertex set {vj1 , vj2 , . . . ,
vjp} that end at v.

Proof. We prove the claim by induction on v corresponding to a topological order on C (as an
undirected acyclic graph). For leaf nodes Nv,p,×, where p = 1, the claim is trivially true. Now,
consider some multiplication node Nv,p,×, and suppose that the claim is true for every node
Nv′,p′,× that is reachable from v. On the one hand, from the construction of C, we have that
PCv,p(X) = xv ·

∑
u:(u,v)∈E(G) PCu,p−1(X). On the other hand, each p-path in G that ends at v

consists of a distinct (p − 1)-path in G that excludes v to which we append v at the end. By
the inductive hypothesis, for every outgoing neighbor u of v and p − 1, we already know that
the claim holds. These three statements together straightforwardly yield that the claim holds
for v and p as well.

Having proved this claim, we know that for every vertex v ∈ V (G) and p ∈ {1, 2, . . . , k}, the
number of p-paths inG that end at v is equal to the sum

∑
m∈MulLinp(PCv,p (X)) coeff(PCv,p(X),m).

Therefore, the sum
∑

m∈MulLink(PC(X)) coeff(PC(X),m), which is equal to the sum∑
v∈V (G)

∑
m∈MulLink(PCv,k (X)) coeff(PCv,k(X),m), is precisely the number of k-paths in G.

5 Extension to Representation of Product Counters and #Mul-
tilinear Monomial Detection on General Circuits

In this section we will compute representative counter for counters implicitly described as the
product of two counters, and then use it to derive an algorithm for #Multilinear Monomial
Detection on general circuits.

Definition 5.1 ((Implicit) Product Counter). Let U be a universe. Let p1, p2 ∈ N0, and
let P1 ⊆

(
U
p1

)
,P2 ⊆

(
U
p2

)
and P ⊆

(
U
p

)
where p = p1 + p2. Let C1 : P1 → N0 and C2 : P2 → N0 be

two counters. Then, the product of C1 and C2, denoted by C1 × C2, is the counter C : P → N0

defined as follows: For each P ∈ P → N0, C(P) =
∑

P1∈P1,P2∈P2:
P1∩P2=∅,P1∪P2=P

C1(P1) · C2(P2) (which equals

∑
P1∈P1,P2∈P2:
P1∪P2=P

C1(P1) · C2(P2)).

We remark that we will never be storing product counters explicitly but only representatives
of them (so, computationally, the product counters will be stored and referred to only implicitly
via their components P1 and P2); indeed, just storing product counters consumes too much time
when P1 and P2 are large—even when defined as the product of two counters already reduced

40

by Theorem 3.1 , the dependency on k of the size of the support of the product counter can
reach 4k.

In what follows, we first show (in Section 5.1) how to compute representative counters for
product counters assuming that we have parsimonious families equipped with general member-
ship and disjointness procedures. Additionally, we also show how to compute such parsimonious
families, which just requires a minor adaptation of Section 3.2. Afterwards, we show (in Section
5.3) that the algorithm in Section 4.1, with very slight modification that in particular involves
using the computations of representative counters and parsimonious families given in this section
rather than just those in Section 3, already solves #Multilinear Monomial Detection on
general circuits in the desired time. Specifically, the new ideas required to handle the product
case are present in the first subsection ahead, where the other two only contain straightforward
modifications of Section 3.

5.1 Extension to Computation of Representative Product Counters of Small
Support

We first remind that, by making use of Lemma 3.1, we can focus on the alternative definition
of representation that depends on a given family F . Now, we directly proceed to the definition
of our sampling procedure. Here, four important modifications are made. First, we do not
iterate over every set in the support of the counter that we want to represent (and decide
whether to keep it or not) since just enumerating the support can be too time consuming for
us—remember that we represent the counter that we want to represent only implicitly; instead,
we decide in advance how many sets to choose. Second, linked to the first, we still attempt
to somewhat simulate (C,F ,H)-counter sampling, yet the probabilities considered there cannot
be computed efficiently enough—specifically, the problematic issue is the determination of the
values assocC,F ,L(P). Instead, we will slightly alter the probabilities, so they may be larger than
before, but still small enough so that the support of the output counter will be small. This leads
to the third and fourth modifications, with the third one being the necessity of having not just
one parsimonious family, but two, as well as general membership and disjointness procedures
(whose usage will be explicitly addressed in the time complexity analysis of the process), and
the fourth one referring to some calculations done in a “preprocessing step”, that is, before the
actual sampling begins.

Definition 5.2 ((C1,C2,F ,H, L1, L2)-Counter Sampling). Let U be a universe. Let p1, p2, L1,
L2 ∈ N0, and let P1 ⊆

(
U
p1

)
,P2 ⊆

(
U
p2

)
and P ⊆

(
U
p

)
where p = p1 + p2. Let C1 : P1 → N0 and

C2 : P2 → N0 be two counters. Let F ,H ⊆ 2U . Then, (C1,C2,F ,H, L1, L2)-counter sampling is
the randomized procedure that constructs a counter Ĉ : P → N0 as follows.

1. Preprocessing I: Neighbourhood Computations. For every P1 ∈ supp(C1), compute
NF (P1) = {F ∈ F : P1 ⊆ F} and NH(P1) = {H ∈ H : P1 ⊆ H}. For every P2 ∈
supp(C2), compute NF (P2) = {F ∈ F : P2 ⊆ F} and NH(P2) = {H ∈ H : P1 ∩H = ∅}.
For every F ∈ F , compute N1(F) = {P1 ∈ supp(C1) : P1 ⊆ F} and N2(F) = {P2 ∈
supp(C2) : P2 ⊆ F}. For every H ∈ H, compute N1(H) = {P1 ∈ supp(C1) : P1 ⊆ H} and
N2(H) = {P2 ∈ supp(C2) : P2 ∩H = ∅}.

2. Preprocessing II: Approximate Domain Extension. For every F ∈ F and H ∈
H, compute N1(F,H) = N1(F) ∩ N1(H), N2(F,H) = N2(F) ∩ N2(H) and W (F) =
1

L1
·
∑
H∈H

∑
(P1,P2)∈N1(F,H)×N2(F,H)

C1(P1) · C2(P2).

41

3. Preprocessing III: Probabilities to Select Sets From supp(C1). For every P1 ∈

supp(C1), compute p̃rob(P1) =
∑

(F,H)∈NF (P1)×NH(P1)

∑
P2∈N2(F,H)

C1(P1) · C2(P2)

W (F)
. Afterwards,

for every P1 ∈ supp(C1), compute prob(P1) = p̃rob(P1)/W
? where W ? =

∑
P1∈supp(C1)

p̃rob(P1).

4. Preprocessing IV: Probabilities to Select Family Pairs. For every F ∈ F and

H ∈ H, compute W2(F,H) =
∑

P2∈N2(F,H)

C2(P2). Further, for every P1 ∈ supp(C1), F ∈

NF (P1) and H ∈ NH(P1), compute probP1
(F,H) = W2(F,H)/W2(P1) where W2(P1) =∑

(F,H)∈NF (P1)×NH(P1)

W2(F,H).

5. Sampling. For i = 1, 2, . . . , t where t = L2 ·W ?:

(a) Randomly select one set from supp(C1), where the probability to select P1 ∈ supp(C1)
is prob(P1). Denote the selected set by P i1.

(b) Randomly select one pair from NF (P i1) × NH(P i1) where the probability to select
(F,H) ∈ NF (P i1)×NH(P i1) is probP1

(F,H). Denote the selected pair by (F i, H i).

(c) Randomly select one set from N2(F
i, H i) where the probability to select P2 ∈ N2(F

i, H i)
is C2(P2)/W2(F

i, H i). Denote the selected set by P i2.

(d) Compute p̃rob(P i1, P
i
2) = p̃rob(P1) ·

C2(P2)

W2(P1)
. (We remark that this term is equal to

p̃rob(P1) ·
∑

F∈NF (P1)∩NF (P2),
H∈NH(P1)∩NH(P2)

probP1
(F,H) · C2(P2)

W2(F,H)
.)

6. Output. Lastly, Ĉ : P → N0 is constructed as follows. For every P ∈ P, define C(P) =∑
i∈{1,...,t}:P i1∪P i2=P

C1(P
i
1) · C2(P

i
2)

L2 · p̃rob(P i1, P
i
2)

.

We begin with a trivial observation regarding the size of the support of the output counter.

Observation 5.1. Let U be a universe. Let p1, p2, L1, L2 ∈ N0, and let P1 ⊆
(
U
p1

)
,P2 ⊆

(
U
p2

)
and

P ⊆
(
U
p

)
where p = p1+p2. Let C1 : P1 → N0 and C2 : P2 → N0 be two counters. Let F ,H ⊆ 2U .

Then, the size of the support of the output counter Ĉ of (C1,C2,F ,H, L1, L2)-counter sampling
is L2 ·W ?.

Thus, to upper bound the size of the support, we proceed to upper bound W ?. Towards
this, we first assert that in Step 2 of the sampling procedure, we compute domain extensions
almost correctly.

Lemma 5.1. Let U be a universe. Let p1, p2, L1, L2 ∈ N0, and let P1 ⊆
(
U
p1

)
,P2 ⊆

(
U
p2

)
and

P ⊆
(
U
p

)
where p = p1+p2. Let C1 : P1 → N0 and C2 : P2 → N0 be two counters. Let F ,H ⊆ 2U

where H is an ε-parsimonious (n, p1, p2)-universal family with respect to (P1,P2) with correction
factor L1. Then, for every F ∈ F , we have that (1− ε)Cext(F) ≤W (F) ≤ (1 + ε)Cext(F) where
C = C1 × C2 and W is as defined in (C1,C2,F ,H, L1, L2)-counter sampling.

Proof. Consider some set F ∈ F . Observe that, because H is an ε-parsimonious (n, p1, p2)-
universal family with respect to (P1,P2) with correction factor L1, we have the following bounds:
for every pair of disjoint sets P1 ∈ P1 and P2 ∈ P2, it holds that (1−ε)·L1 ≤ |H[P1, P2]| ≤ (1+ε)·

42

L1. Moreover, note that for every pair of sets P1 ∈ P1 and P2 ∈ P2, if (P1, P2) ∈ N1(H)×N2(H)
for some H ∈ H, then P1 ∩ P2 = ∅. Thus, we have that

W (F) =
1

L1
·
∑
H∈H

∑
(P1,P2)∈N1(F,H)×N2(F,H)

C1(P1) · C2(P2)

=
1

L1
·

∑
P1∈P1,P2∈P2:

P1,P2⊆F,P1∩P2=∅

∑
H∈H:

P1⊆H,P2∩H=∅

C1(P1) · C2(P2)

=
1

L1
·

∑
P1∈P1,P2∈P2:

P1,P2⊆F,P1∩P2=∅

|H[P1, P2]| · C1(P1) · C2(P2)

≤ (1 + ε) ·
∑

P1∈P1,P2∈P2:
P1,P2⊆F,P1∩P2=∅

C1(P1) · C2(P2)

= (1 + ε) ·
∑

P∈(Fp)∩P

∑
P1∈P1,P2∈P2:
P1∪P2=P

C1(P1) · C2(P2)

= (1 + ε) ·
∑

P∈(Fp)∩P

C(P) = (1 + ε)Cext(F).

Symmetrically, we derive that (1− ε)Cext(F) ≤W (F).

We are now ready to upper bound W ?.

Lemma 5.2. Let U be a universe. Let p1, p2, L1, L2 ∈ N0, and let P1 ⊆
(
U
p1

)
,P2 ⊆

(
U
p2

)
and

P ⊆
(
U
p

)
where p = p1+p2. Let C1 : P1 → N0 and C2 : P2 → N0 be two counters. Let F ,H ⊆ 2U

where H is an ε-parsimonious (n, p1, p2)-universal family with respect to (P1,P2) with correction
factor L1. Then, W ? ≤ 1+ε

1−ε · L1 · |F| where W ? is as defined in (C1,C2,F ,H, L1, L2)-counter
sampling.

43

Proof. Denote C = C1 × C2. Thus, we have that

W ? =
∑

P1∈supp(C1)

p̃rob(P1)

=
∑

P1∈supp(C1)

∑
(F,H)∈NF (P1)×NH(P1)

∑
P2∈N2(F,H)

C1(P1) · C2(P2)

W (F)

≤ 1

1− ε
·

∑
P1∈supp(C1)

∑
(F,H)∈NF (P1)×NH(P1)

∑
P2∈N2(F,H)

C1(P1) · C2(P2)

Cext(F)

=
1

1− ε
·
∑
F∈F

∑
P1∈P1,P2∈P2:

P1,P2⊆F,P1∩P2=∅

∑
H∈H:

P1⊆H,P2∩H=∅

C1(P1) · C2(P2)

Cext(F)

=
1

1− ε
·
∑
F∈F

∑
P1∈P1,P2∈P2:

P1,P2⊆F,P1∩P2=∅

|H[P1, P2]| ·
C1(P1) · C2(P2)

Cext(F)

≤ 1 + ε

1− ε
· L1 ·

∑
F∈F

∑
P1∈P1,P2∈P2:

P1,P2⊆F,P1∩P2=∅

C1(P1) · C2(P2)

Cext(F)

=
1 + ε

1− ε
· L1 ·

∑
F∈F

∑
P∈(Fp)∩P

∑
P1∈P1,P2∈P2:
P1∪P2=P

C1(P1) · C2(P2)

Cext(F)

=
1 + ε

1− ε
· L1 ·

∑
F∈F

∑
P∈(Fp)∩P

C(P)

Cext(F)

=
1 + ε

1− ε
· L1 ·

∑
F∈F

1 =
1 + ε

1− ε
· L1 · |F|.

Here, the first inequality followed from Lemma 5.1, and the second inequality followed because
H is an ε-parsimonious (n, p1, p2)-universal family with respect to (P1,P2) with correction factor
L1.

From Observation 5.1 and Lemma 5.2, we derive the following corollary.

Corollary 5.1. Let U be a universe. Let p1, p2, L1, L2 ∈ N0, and let P1 ⊆
(
U
p1

)
,P2 ⊆

(
U
p2

)
and

P ⊆
(
U
p

)
where p = p1+p2. Let C1 : P1 → N0 and C2 : P2 → N0 be two counters. Let F ,H ⊆ 2U

where H is an ε-parsimonious (n, p1, p2)-universal family with respect to (P1,P2) with correction
factor L1. Then, the size of the support of the output counter Ĉ of (C1,C2,F ,H, L1, L2)-counter
sampling is upper bounded by 1+ε

1−ε · L1 · L2 · |F|.

We now show that the output counter represents in expectation the (implicit) input product
counter.

Lemma 5.3. Let U be a universe. Let p1, p2, L1, L2 ∈ N0, and let P1 ⊆
(
U
p1

)
,P2 ⊆

(
U
p2

)
and P ⊆

(
U
p

)
where p = p1 + p2. Let C1 : P1 → N0 and C2 : P2 → N0 be two counters.

Let F ,H ⊆ 2U . The output counter Ĉ of (C1,C2,F ,H, L1, L2)-counter sampling represents in
expectation C = C1 × C2.

Proof. Consider some set P ∈ P. Then, by the definition of (C1,C2,F ,H, L1, L2)-counter

44

sampling and linearity of expectation, we have that

E[Ĉ(P)]

= E[
∑

i∈{1,...,t}:P i1∪P i2=P

C1(P
i
1) · C2(P

i
2)

L2 · p̃rob(P i1, P
i
2)

]

=
∑

P1∈P1,P2∈P2:P1∪P2=P

t∑
i=1

Pr(P1 = P i1 ∧ P2 = P i2) · C1(P
i
1) · C2(P

i
2)

L2 · p̃rob(P i1, P
i
2)

=
∑

P1∈P1,P2∈P2:P1∪P2=P

t∑
i=1

prob(P1) ·
∑

F∈NF (P1)∩NF (P2),
H∈NH(P1)∩NH(P2)

probP1
(F,H) · C2(P2)

W2(F,H)

· C1(P1) · C2(P2)

L2 · p̃rob(P1, P2)

=
∑

P1∈P1,P2∈P2:P1∪P2=P

t · C1(P1) · C2(P2)

L2 ·W ?

=
∑

P1∈P1,P2∈P2:P1∪P2=P

C1(P1) · C2(P2) = C(P)

Since the choice of P was arbitrary, we derive that Ĉ represents in expectation C.

Having proved Lemma 5.3, we derive the following observation (just like Observation 3.2
followed from Observation 3.1).

Observation 5.2. Let U be a universe. Let p1, p2, L1, L2 ∈ N0, and let P1 ⊆
(
U
p1

)
,P2 ⊆

(
U
p2

)
and P ⊆

(
U
p

)
where p = p1 + p2. Let C1 : P1 → N0 and C2 : P2 → N0 be two counters.

Let F ,H ⊆ 2U . For any set F ⊆ U , for the output counter Ĉ of (C1,C2,F ,H, L1, L2)-counter
sampling, we have that E[Ĉext(F)] = Cext(F) where C = C1 × C2.

We now turn to prove that the output counter is likely to represent the (implicit) input
product counter.

Lemma 5.4. Let U be a universe of size n. Let 0 < ε < 1 and 0 < δ < 1. Let p1, p2, L1, L2 ∈ N0

and c ≥ 1 with L2 ≥ 2(1+δ)
ε2

ln(2c|F|), and let P1 ⊆
(
U
p1

)
,P2 ⊆

(
U
p2

)
and P ⊆

(
U
p

)
where

p = p1 + p2. Let C1 : P1 → N0 and C2 : P2 → N0 be two counters. Let F ,H ⊆ 2U where H is
an δ-parsimonious (n, p1, p2)-universal family with respect to (P1,P2) with respect to (P1,P2)
with correction factor L1. Then, the probability that C = C1 × C2 and the output counter Ĉ of
(C1,C2,F ,H, L1, L2)-counter sampling are (ε,F)-similar is at least 1− 1

c .

Proof. Consider some F ∈ F . For every P1 ∈ P1, P2 ∈ P2 and i ∈ {1, 2, . . . , t}, let XP1,P2,i

be a random variable that is equal to
C1(P1) · C2(P2)

L2 · p̃rob(P1, P2)
if the sampling procedure selects P i =

P (which occurs with probability prob(P1) ·
∑

F∈NF (P1)∩NF (P2),
H∈NH(P1)∩NH(P2)

probP1
(F,H) · C2(P2)

W2(F,H)
), and 0

45

otherwise. Notice that

C1(P1) · C2(P2)

L2 · p̃rob(P1, P2)
=

C1(P1) ·W2(P1)

L2 · p̃rob(P1)

=
C1(P1) ·W2(P1) ·W (F)

L2 ·
∑

(F,H)∈NF (P1)×NH(P1)

∑
P2∈N2(F,H) C1(P1) · C2(P2)

=
C1(P1) ·

∑
(F,H)∈NF (P1)×NH(P1)

∑
P2∈N2(F,H) C2(P2) ·W (F)

L2 ·
∑

(F,H)∈NF (P1)×NH(P1)

∑
P2∈N2(F,H) C1(P1) · C2(P2)

=
W (F)

LL2

≤ (1 + δ)Cext(F)

L2
.

Here, the inequality followed from Lemma 5.1. Denote M =
(1 + δ)Cext(F)

L2
. Moreover, for

every P ∈ P and i ∈ {1, 2, . . . , t}, denote X ′P1,P2,i
= XP1,P2,i/M , and observe that X ′P1,P2,i

is
upper bounded by 1.

Denote X =

t∑
i=1

∑
P1∈P1,P2∈P2:

P1,P2⊆F,P1∩P2=∅

XP1,P2,i and X
′

=

t∑
i=1

∑
P1∈P1,P2∈P2:

P1,P2⊆F,P1∩P2=∅

X ′P1,P2,i. Observe

that X = Ĉext(F), and hence X
′

=
Ĉext(F)

M
=

L2 · Ĉext(F)

(1 + δ) · Cext(F)
. Further, by Observation

5.2, E[Ĉext(F)] = Cext(F), and therefore E[X] = Cext(F) and E[X
′
] =

L2

1 + δ
. Additionally, we

derive that (1−ε)·Ĉext(F) > Cext(F) or Cext(F) > (1+ε)·Ĉext(F) if and only if (1−ε)·X ′ > E[X
′
]

or E[X
′
] > (1 + ε) ·X ′. By Chernoff Bound (Proposition 2.2), we derive that Pr(|X ′−E[X

′
]| >

εE[X
′
]) ≤ 2e−

ε2E[X′]
2 = 2e

− ε2L2
2(1+δ) ≤ 2e− ln(2c|F|) =

1

c|F|
.

As the choice of F ∈ F was arbitrary, union bound implies that the probability that there
exists F ∈ F such that (1−ε) · Ĉext(F) > Cext(F) or Cext(F) > (1+ε) · Ĉext(F) is upper bounded

by |F| · 1

c|F|
=

1

c
. Thus, the probability that C and Ĉ are (ε,F)-similar is at least 1− 1

c .

We proceed to consider the time complexity of the sampling procedure.

Lemma 5.5. Let U be a universe of size n. Let 0 < δF < 1 and 0 < δH < 1. Let
p1, p2, q, L1, L2 ∈ N0 and c ≥ 1, and let P1 ⊆

(
U
p1

)
,P2 ⊆

(
U
p2

)
, P ⊆

(
U
p

)
where p = p1 + p2,

and Q ⊆
(
U
q

)
. Let C1 : P1 → N0 and C2 : P2 → N0 be two counters. Let F ,H ⊆ 2U where:

• F is an δF -parsimonious (n, p, q)-universal family with respect to (P,Q) with a TF1 -
membership query procedure with respect to P1 and a TF2 -membership query procedure
with respect to P2.

• H is an δH-parsimonious (n, p1, p2)-universal family with respect to (P1,P2) with a THcon-
membership query procedure and a THdis-membership query procedure.

Then, the running time of (C1,C2,F ,H, L1, L2)-counter sampling is bounded by O(supp(C1)|(TF1 ·
THcon) + |supp(C2)|(TF2 · THdis) + 1+δH

1−δH · L1 · L2 · |F|).

Proof. First, we note that for every P1 ∈ P1, |NF (P1)| ≤ TF1 and |NH(P1)| ≤ THcon, and for every
P2 ∈ P2, |NF (P2)| ≤ TF2 and |NH(P2)| ≤ THdis. This also implies that Step 1 can be performed
in time O(|supp(C1)|(TF1 + THcon) + |supp(C2)|(TF2 + THdis)).

46

For Step 2, first note that N1(F,H) and N2(F,H) simultaneously for all F ∈ F and H ∈ H
can be computed in timeO(supp(C1)|(TF1 ·THcon)+|supp(C2)|(TF2 ·THdis)) by iterating over every set
P1 ∈ supp(C1) and adding every pair of set F ∈ NF (P1) and H ∈ NH(P1) to N1(F,H) (there are
at most TF1 ·THcon such pairs), as well as iterating over every set P2 ∈ supp(C2) and adding every
pair of set F ∈ NF (P2) and H ∈ NH(P2) to N2(F,H) (there are at most TF2 · THdis such pairs).
Second, note that W (F) simultaneously for all F ∈ F can be computed in timeO(supp(C1)|(TF1 ·
THcon)+ |supp(C2)|(TF2 ·THdis)) by first computing SUM1(F,H) :=

∑
P1∈N2(F,H) C1(P1) for all F ∈

F and H ∈ H altogether in time O(|supp(C1)|(TF1 ·THcon)), as well as computing SUM2(F,H) :=∑
P2∈N2(F,H) C2(P2) for all F ∈ F and H ∈ H altogether in time O(|supp(C2)|(TF2 · THdis)), and

secondly computing for all F ∈ F the expression 1
L1

∑
H∈H SUM1(F,H) · SUM2(F,H) (which

equals W (F)) altogether in time O(|F||H|), which is upper bounded by O(supp(C1)|(TF1 ·THcon)+
|supp(C2)|(TF2 · THdis)).

For Step 3, for each set P1 ∈ supp(C1), we can now compute p̃rob(P1) in time O(TF1 · THcon)

because it simply equals
∑

(F,H)∈NF (P1)×NH(P1)
SUM2(F,H)

W (F) . Thus, we compute p̃rob(P1) for all

P1 ∈ supp(C1) altogether in time O(|supp(C1)| · TF1 · THcon). Afterwards, W ? can clearly be
computed in time O(|supp(C1)|), and then, prob(P1) for all P1 ∈ supp(C1) altogether can also
clearly be computed in time O(|supp(C1)|).

For Step 4, for each F ∈ F and H ∈ H, observe that W2(F,H) equals SUM2(F,H) and
hence has already been computed. For each P1 ∈ supp(C1), we compute W2(P1) in time
O(TF1 · THcon). Then, for each P1 ∈ supp(C1), F ∈ NF (P1) and H ∈ NH(P1) (there are at most
|supp(C1)| · TF1 · THcon such triples to consider), we compute probP1

(F,H) in time O(1). Thus,
altogether this step is performed in time O(|supp(C1)| · TF1 · THcon).

Due to all preprocessing steps, note that Step 5 is performed in time O(L2 · W ?). By
Lemma 5.2, this is upper bounded by O(1+δH1−δH · L1 · L2 · |F|).

Lastly, for Step 6, we can compute P for all P ∈ supp(C) simultaneously by iterating over
each i ∈ {1, . . . , t}, inserting P = P i1 ∪ P i2 to the support of the constructed counter C (if it has

not already been inserted), and adding
C1(P i1)·C2(P i2)

L2·p̃rob(P i1,P i2)
to the value assigned to P . Overall, this

takes time O(t) as did the previous step.

We conclude with the main theorem of this section.

Theorem 5.1. Let U be a universe. Let 0 < ε < 1. Let p1, p2, q, L1, c ∈ N0, c ≥ 1. Let
P1 ⊆

(
U
p1

)
,P2 ⊆

(
U
p2

)
, P ⊆

(
U
p

)
where p = p1 + p2, and Q ⊆

(
U
q

)
. Let C1 : P1 → N0 and

C2 : P2 → N0 be two counters. Let F ,H ⊆ 2U where:

• F is a ε
5 -parsimonious (n, p, q)-universal family with respect to (P,Q) with a TF1 -membership

query procedure with respect to P1 and a TF2 -membership query procedure with respect
to P2.

• H is a 1
2 -parsimonious (n, p1, p2)-universal family with respect to (P1,P2) with correction

factor L1, a THcon-membership query procedure and a THdis-membership query procedure.

Denote C = C1 × C2. Then, a counter Ĉ : P → N0 such that

1. Ĉ necessarily (with probability 1) represents in expectation C as well as satisfies |supp(Ĉ)| ≤
O(L1 · 1

ε2
· |F| · ln(c|F|)), and

2. with success probability at least 1− 1
c , Ĉ (ε, q)-represents C with respect to Q,

can be computed in time O(|supp(C1)|(TF1 ·THcon)+ |supp(C2)|(TF2 ·THdis)+L1 · 1ε2 · |F| · ln(2c|F|)).

47

Proof. Let L2 = 3
(ε
5
)2

ln(2c|F|). We use (C1,C2,F ,H, L1, L2)-counter sampling. The claim that

|supp(Ĉ)| ≤ O(L1 · 1ε2 · |F|· ln(2c|F|)) directly follows from Lemma 5.3 (where ε in that statement

is equal to 1
2). The claim that Ĉ represents in expectation C directly follows from Lemma 5.3. By

Lemma 5.4, the probability that C = C1×C2 and the output counter Ĉ of (C1,C2,F ,H, L1, L2)-
counter sampling are (1

5ε ,F)-similar is at least 1− 1
c , in which case, Lemma 3.1 implies that Ĉ

(ε, q)-represents C with respect to Q. This completes the proof.

As already explained in the proof of Claim 4.1, we are not be able to argue that the output
of our algorithm for #Multilinear Monomial Detection is correct in expectation, which
will prevent us from re-running that algorithm multiple times in order to improve its error.
Instead, we will re-run each computation of representative families locally to improve its error.
The proof of this lemma is similar to the proof of Lemma 3.11.

Lemma 5.6. Let 0 < ε ≤ δ < 1. Suppose that we have an algorithm that give a counter
C : P → N0 corresponding to some P ⊆

(
U
p

)
for some given universe U of size n and k, p, c ∈ N,

computes a counter that (δ, k − p)-represents C with respect to some Q ⊆
(
U
k−p
)

with success

probability 1 − 1
2c , and necessarily represents in expectation C and has support size Sδ,C,n,k,p,c,

in time Tδ,C,n,k,p,c. Then, we have an algorithm that give a counter C : P → N0 corresponding

to some P ⊆
(
U
p

)
for some given universe U and k, p, c ∈ N, computes a counter that (ε, k− p)-

represents C with respect to Q with success probability 1− 1
c , and necessarily has support size at

most O(1
ε2
k log(cn) · Sδ,C,n,k,p,c′), in time O(1

ε2
k log(cn) · Tδ,C,n,k,p,c′) where c′ = 8

ε2
k ln(4cn) · c.

Proof. Let ALG1 denote the algorithm given in the supposition of the lemma. Let 0 < ε, δ < 1.
Then, we design an algorithm ALG2 as follows. Given an input C : P → N0 corresponding to
some P ⊆

(
U
p

)
for some given universe U of size n and k, p, c ∈ N, ALG2 executes the following

operations, where t = 2(1+δ)
ε2

k ln(4cn) ≤ 4
ε2
k ln(4cn).

1. For i = 1, 2, . . . t: Call ALG1 with the same input but success parameter c′ = t · 2c and let
Ĉi denote the result.

2. Output Ĉ : P → N defined as follows. For every P ∈ P, define Ĉ(P) = 1
t ·
∑t

i=1 Ĉi(P).

First, it is clear that the support size and the time complexity are as stated in the lemma.
Second, by union bound, with success probability at least 1 − t

c′ ≥ 1 − 1
2c , all the calls ALG2

makes to ALG1 are successful. Thus, by union bound, to prove the lemma, it suffices to prove
that under the assumption that all the calls made to ALG1 are successful, with probability at
least 1 − 1

2c , it holds that Ĉ (ε, k − p)-represents C with respect to Q. Since there are at most
nk choices for Q ∈ Q, by union bound, it suffices to consider some arbitrary Q ∈ Q, and show
that with probability at least 1− 1

2c·nk , the following condition is satisfied.

(1− ε) ·
∑

P∈P:P∩Q=∅

C(P) ≤
∑

P∈P:P∩Q=∅

Ĉ(P) ≤ (1 + ε) ·
∑

P∈P:P∩Q=∅

C(P).

Denote X =
∑

P∈P:P∩Q=∅ C(P), Y =
∑

P∈P:P∩Q=∅ Ĉ(P). For all i ∈ {1, 2, . . . , t}, denote

Yi =
∑

P∈P:P∩Q=∅ Ĉi(P) and Y ′i = Yi
(1+δ)X . Moreover, denote Z ′ =

∑t
i=1 Y

′
i . Notice that

(1− ε)X ≤ Z ≤ (1 + ε)X if and only if (1− ε) t
(1+δ) ≤ Z ′ ≤ (1 + ε) t

(1+δ) , and thus it suffices to
consider the probability that the latter event occurs. Since all calls are assumed to be successful,
we have that 0 ≤ Y ′i ≤ 1. Moreover, by linearity of expectation, E[Z ′] =

∑t
i=1E[Y ′i] =∑t

i=1
E[Yi]

(1+δ)X = t/(1+δ). Therefore, (1− ε) t
(1+δ) ≤ Z

′ ≤ (1+ ε) t
(1+δ) if and only if |Z ′−E[Z ′]| ≤

48

εE[Z ′], and thus it further suffices to consider the probability that the latter event occurs. By
Chernoff Bound (Proposition 2.2), we have that

Pr(|Z ′ − E[Z ′]| > εE[Z ′]) ≤ 2e−
ε2E[Z′]

2

= 2e
− ε2t

2(1+δ)

= 2e−k ln(4cn) = 2
1

(4nc)k
≤ 1

2c · nk
.

Thus, |Z ′−E[Z ′]| ≤ εE[Z ′] with probability at least 1− 1
2c·nk . As claimed above, this completes

the proof.

From Theorem 5.1 and Lemma 5.6, we derive the following corollary.

Corollary 5.2. Let U be a universe. Let 0 < ε ≤ δ < 1. Let p1, p2, q, L1, c ∈ N0, c ≥ 1.
Let P1 ⊆

(
U
p1

)
,P2 ⊆

(
U
p2

)
, P ⊆

(
U
p

)
where p = p1 + p2, and Q ⊆

(
U
q

)
. Let C1 : P1 → N0 and

C2 : P2 → N0 be two counters. Let F ,H ⊆ 2U where:

• F is a δ
5 -parsimonious (n, p, q)-universal family with respect to (P,Q) with a TF1 -membership

query procedure with respect to P1 and a TF2 -membership query procedure with respect
to P2.

• H is a 1
2 -parsimonious (n, p1, p2)-universal family with respect to (P1,P2) with correction

factor L1, a THcon-membership query procedure and a THdis-membership query procedure.

Denote C = C1 × C2. Then, a counter Ĉ : P → N0 such that

1. Ĉ necessarily (with probability 1) satisfies |supp(Ĉ)| ≤ O(1
ε2
·L1 · 1

δ2
· |F| · ln(1εk ln(nc)|F|) ·

ln(nc)), and

2. with success probability at least 1− 1
c , Ĉ (ε, q)-represents C with respect to Q,

can be computed in time

O
((

1

ε2
k log(nc) · (|supp(C1)|(TF1 ·THcon) + |supp(C2)|(TF2 ·THdis) + L1 ·

1

ε2
· |F| · ln(

1

ε
k ln(nc)|F|)

))
.

Similarly, from Theorem 3.1 and Lemma 5.6, we derive the following corollary.

Corollary 5.3. Let U be a universe. Let 0 < ε, δ < 1, p, q, c ∈ N0, P ⊆
(
U
p

)
and Q ⊆

(
U
q

)
. Let

F ⊆ 2U be an 1
5δ-parsimonious (n, p, q)-universal family with respect to (P,Q), equipped with a

T -membership query procedure. Let C : P → N0 be a counter. Then, a counter Ĉ : P → N0 such
that with success probability at least 1 − 1

c , Ĉ (ε, q)-represents C with respect to Q and satisfies

|supp(Ĉ)| ≤ O(1
ε2
k log(cn) · 1

δ2
|F| log(1

ε2
k log(cn)) log(1

ε2
k log(cn)|F|)), can be computed in time

O(1
ε2
k log(cn) · |supp(C)| · T).

Clearly, Corollary 5.3 can be used directly after Corollary 5.2 so as to shrink the support
of the output as best as possible, as well as before it so as to shrink the support of the input
counter as best as possible.

49

5.2 Extension of the Computation of Parsimonious Universal Families to
Equip General Membership and Disjointness Procedures

We first present a lemma analogous to Lemma 3.8, to bound the number of sets in the family
resulting from the process of universal family sampling that are disjoint from a give complemen-
tary balancedly split set (of size k−p). Because we do not need to consider general disjointness,
the description is in fact slightly simpler than that of Lemma 3.8. The proof is symmetric, but
we present it here for the sake of completeness.

Lemma 5.7. Let t, k, p, b ∈ N with p ≤ k, 0 < ε < 1 and c, d ≥ 1. Let U = (U1, U2, . . . , Ut)
be a partitioned universe with U =

⋃t
i=1 Ui of size n, and let (f, g) be a (t, k, p, b)-splitting

function pair. With probability at least 1 − 1
2c , the output family F ⊆ 2U of (U, b, f, g, ε, c, d)-

universal family sampling has the following property: For every set Q ∈ QCBAL
U,f,g

, we have that

|{F ∈ F : Q ∩ F = ∅}| ≤ (
d · k
p

)p · (1

ln2(1 + ε)
· 20k3 · ln(nc))t.

Proof. Towards the proof of the lemma, we first show that the following claim is correct.

Claim 5.1. With probability at least 1 − 1
2c , for every i ∈ {1, 2, . . . , t} and Q ∈

(
Ui

f(i)−g(i)
)
, we

have that |{F ∈ Fi : Q ∩ F = ∅}| ≤ (
d · f(i)

g(i)
)g(i) · 1

ln2(1 + ε)
· 20k3 · ln(nc).

Proof. Denote Ei = (
d · f(i)

g(i)
)g(i) · 1

ln2(1 + ε)
· 10k3 · ln(nc). By union bound and because |

(
Ui
≤k−p

)
|

≤ nk, it suffices to choose some i ∈ {1, 2, . . . , t} and Q ∈
(

Ui
f(i)−g(i)

)
, and prove that with failure

probability at most 1
2ctnk

, we have that |{F ∈ Fi : Q ∩ F = ∅}| ≤ Ei. To this end, observe

that each set Fi,j ∈ Fi is disjoint from Q with probability (
f(i)− g(i)

d · f(i)
)f(i)−g(i). Thus, the ex-

pected number of sets in Fi that are disjoint from Q is Ei. Because the sets in Fi are sampled
independently from one another, by Chernoff bound (Proposition 2.2), we have that

Pr(||Fi[P,Q]| − Ei| > Ei) ≤ 2e−
Ei
2

≤ 2e−5k·ln(nc) =
2

(nc)5k
≤ 2

n4 · nk · c
≤ 1

2ct

Here, the last inequality follows since n ≥ max(2, t). This completes the proof of the claim.

We now return to the proof of the lemma. Due to Claim 3.1, to prove the lemma it suffices
to show that, under the assumption that for every i ∈ {1, 2, . . . , t} and Q ∈

(
Ui

f(i)−g(i)
)
, we

have that |{F ∈ Fi : P ⊆ F}| ≤ (
d · f(i)

g(i)
)g(i) · 1

ln2(1 + ε)
· 20k3 · ln(nc), it holds that for every

set Q ∈ QCBAL
U,f,g

, we have that |{F ∈ F : Q ∩ F = ∅}| ≤ (
d · k
p

)p · (1

ln2(1 + ε)
· 20k3 · ln(nc))t.

Towards the proof of this, consider some set Q ∈ QCBAL
U,f,g

. Then,

|{F ∈ F : Q ∩ F}| =
t∏
i=1

|{F ∈ Fi : Q ∩ Ui ∩ F = ∅}|.

Because Q ∈ QCBAL
U,f,g

, it holds that for every i ∈ {1, . . . , t}, Q ∩ Ui ∈
(

Ui
f(i)−g(i)

)
, and therefore

50

|{F ∈ Fi : Q ∩ Ui ∩ F = ∅}| ≤ (
d · f(i)

g(i)
)g(i) · 1

ln2(1 + ε)
· 20k3 · ln(nc). Thus,

|{F ∈ F : Q ∩ F = ∅}| ≤
t∏
i=1

(
(
d · f(i)

g(i)
)g(i) · 1

ln2(1 + ε)
· 20k3 · ln(nc)

)
≤

(
t∏
i=1

(
d · f(i)

g(i)
)g(i)

)
·
(

1

ln2(1 + ε)
· 20k3 · ln(nc)

)t
.

Recall that f : {1, 2, . . . , t} → {1, 2, . . . , dbk/te} and g ≤ f satisfy
∑t

i=1 f(i) = k and
∑t

i=1 g(i) =
p. Relaxing the supposition f : {1, 2, . . . , t} → {1, 2, . . . , dbk/te} to f : {1, 2, . . . , t} → {1, 2, . . . ,

k}, the maximum value of
t∏
i=1

(
d · f(i)

g(i)
)g(i) is attained when f(i) = k and g(i) = p some

i ∈ {1, 2, . . . , t}, and f(i′) = g(i′) = 0 for all other i′ ∈ {1, 2, . . . , t} \ {i}. Then, the value

is (
d · k
p

)p. This completes the proof.

We now present a procedure symmetric to the procedure MEMBERSHIP from Section 3.2 to
handle disjointness rather than membership. Again, because we do not need to consider general
disjointness, the description is in fact simpler than that of MEMBERSHIP.

Definition 5.3 (Disjointness Query Procedure for Parsimonious Universal Family
Sampling). Let t, k, p, b ∈ N with p ≤ k, 0 < ε < 1 and c, d ≥ 1. Let U = (U1, U2, . . . , Ut) be
a partitioned universe with U =

⋃t
i=1 Ui of size n. Let (f, g) be a (t, k, p, b)-splitting function

pair. Let F ⊆ 2U be the output family of (U, b, f, g, ε, c, d)-universal family sampling. Then, the
procedure DISJOINTNESS is defined as follows. Let {Fi}ti=1 be the collection of families sampled
to construct F (see Definition 3.9). Given Q ∈ QCBAL

U,f,g
, MEMBERSHIP naively computes F ′i =

{Fi,ji ∈ Fi : Q∩Ui∩Fi,ji} by iterating over every set in Fi; then, it outputs {F1,j1 ∪F2,j2 ∪ · · · ∪
Ft,jt : F1,j1 ∈ F ′1, F2,j2 ∈ F ′2, . . . , Ft,jt ∈ F ′t}, computed using naive enumeration.

We now assert that our procedure is indeed an efficient membership query procedure as a
corollary of Lemma 5.7. The proof is symmetric to the proof of the analogous Corollary 3.2,
but we present it here for the sake of completeness.

Corollary 5.4. Let t, k, p, b ∈ N with p ≤ k, 0 < ε < 1 and c, d ≥ 1. Let U = (U1, U2, . . . , Ut) be
a partitioned universe with U =

⋃t
i=1 Ui of size n. Let (f, g) be a (f, g) be a (t, k, p, b)-splitting

function pair. Let F ⊆ 2U be the output family of (U, b, f, g, ε, c, d)-universal family sampling.
Then, with probability at least 1 − 1

2c , the procedure MEMBERSHIP is a T -membership query
procedure with respect to PBAL

U,f,g′
for

T =

(
(d · bk)bk/t + (

d · k
p

)k−p
)
·
(

1

ln2(1 + ε)
· 20k3 · ln(nc)

)t
.

Proof. Let X = (
d · k
p

)p · (1

ln2(1 + ε)
· 20k3 · ln(nc))t. The claim that DISJOINTNESS is a mem-

bership query procedure (i.e., that given Q ∈ QCBAL
U,f,g

, the output is indeed {F ∈ F : Q∩F = ∅})
is immediate from the definition of F . Further, by Lemma 5.7, maxQ∈QCBAL

U,f,g
|{F ∈ F : Q∩F =

∅}| ≤ X with probability at least 1− 1
2c . Now, under the assumption that the aforementioned

inequality holds, consider any set Q ∈ QCBAL
U,f,g

. Then, the running time of DISJOINTNESS is

bounded by

51

O(

t∑
i=1

si + |{F ∈ F : Q ∩ F = ∅}|)

= O(
t∑
i=1

(d · f(i))f(i)

g(i)g(i)(d · f(i)− g(i))f(i)−g(i)
· 1

ln2(1 + ε)
· 10k3 · ln(nc) +X)

= O(
t∑
i=1

(d · f(i))f(i) · 1

ln2(1 + ε)
· 10k3 · ln(nc) +X)

= O(

t∑
i=1

(d · bk/t)bk/t · 1

ln2(1 + ε)
· 10k3 · ln(nc) +X)

= O(t · (d · bk)bk/t · 1

ln2(1 + ε)
· 10k3 · ln(nc) +X) = O(T).

From Theorem 3.2 (where c in that theorem is equal to twice the c in the new theorem, so
that the failure probability is divided by 2, and therefore the constants 10 and 20 are changed
to 20 and 30, respectively, here) and Corollary 5.4, we derive the following theorem.

Theorem 5.2. Let t, k, p, b ∈ N with p ≤ k, 0 < ε < 1 and c, d ≥ 1. Let U = (U1, U2, . . . , Ut)
be a partitioned universe with U =

⋃t
i=1 Ui of size n, and let (f, g) be a splitting function pair.

With probability at least 1 − 1
c , the output family F ⊆ 2U of (U, b, f, g, ε, c, d)-universal family

sampling, computed in time O(|F|n), satisfies all of the following conditions.

1. |F| ≤ (dk)k

pp(dk − p)k−p
· (1

ln2(1 + ε)
· 20k3 · ln(nc))t.

2. F is an ε-parsimonious (n, p, k−p)-universal family with respect to (PBAL
U,f,g

,QCBAL
U,f,g

), whose

correction factor is upper bounded by (
1

ln(1 + ε)
)2 · 20k3 · ln(nc))t.

3. With respect to F and any g′ be such that (f, g′) is a (t, k, p′, b)-splitting function pair (for

some p′ ≤ p) where g′ ≤ g, MEMBERSHIP is a T p
′

con-membership query procedure with
respect to PBAL

U,f,g′
for

T p
′

con =

(
(d · bk)bk/t + (

dk

dk − p
)k−p(

dk

p
)p−p

′
)
·
(

1

ln2(1 + ε)
· 30k3 · ln(nc)

)t
.

4. With respect to F , DISJOINTNESS is a Tdis-disjointness query procedure for

Tdis =

(
(d · bk)bk/t + (

dk

p
)p
)
·
(

1

ln2(1 + ε)
· 30k3 · ln(nc)

)t
.

We will be specifically interested in the case where t = d
√
ke, b = 2, ε =

ln 3
2

5(2k)2
, c ≥ n, and

d = O(1) (but not 1.447 as before), thus we explicitly give the following corollary.

Corollary 5.5. Let t, k, p ∈ N with p ≤ k, 0 < ε < 1 and c, d ≥ 1. Let U = (U1, U2, . . . , Ut) be a
partitioned universe with U =

⋃t
i=1 Ui of size n, and let (f, g) be a splitting function pair. With

probability at least 1 − 1
c , the output family F ⊆ 2U of (U, 2, f, g,

ln 3
2

5(2k)2
, c, d)-universal family

sampling, computed in time O(|F|n), satisfies all of the following conditions.

52

1. |F| ≤ (dk)k

pp(dk − p)k−p
· 2O(

√
k log k) · log

√
k c.

2. F is an
ln 3

2
5(2k)2

-parsimonious (n, p, k− p)-universal family with respect to (PBAL
U,f,g

,QCBAL
U,f,g

),

whose correction factor is upper bounded by 2O(
√
k log k) · log

√
k c.

3. With respect to F and any g′ be such that (f, g′) is a (t, k, p′, b)-splitting function pair (for

some p′ ≤ p) where g′ ≤ g, MEMBERSHIP is a T p
′

con-membership query procedure for

T p
′

con = (
dk

dk − p
)k−p(

dk

p
)p−p

′ · 2O(
√
k log k) · log

√
k c.

4. With respect to F , DISJOINTNESS is a Tdis-disjointness query procedure for

Tdis = (
dk

p
)p · 2O(

√
k log k) · log

√
k c.

Lastly, we give a corollary for Lemma 3.10 with slightly different parameters than Corollary
3.4 and where correctness of expectation is not assumed. Specifically, here we substitute α =
β = ε

4 (where b = 2 and t =
√
k as before). Then, since 0 < ε < 1, (1− α)(1− β) = (1− ε

4)2 =

1− ε
2 + ε2

16 ≥ 1− ε and (1 +α)(1 +β) = (1 + ε
4)2 = 1 + ε

2 + ε2

16 ≤ 1 + ε, and we have the following
corollary.

Corollary 5.6. Let Π be a splittable problem such that the number of solutions of the split
version of Π can be approximately counted with multiplicative error (1± ε

4) in time T and with

success probability at least 1− 1
c′ . Then, for any c ∈ N such that 4k(4

√
k)
√
k ln(nc) · 1c′ ≤

1
c , the

number of solutions of Π can be approximately counted with multiplicative error between 1
4 and

21
4 in time O((2O(

√
k log k) · T + n) · 1

ε2
k ln(nc)) and with success probability at least 1− 1

c .

5.3 An Algorithm for #Multilinear Monomial Detection on General Cir-
cuits

We now show how the algorithm in Section 4.1, with slight modification, solves #Multilinear
Monomial Detection on general circuits in the desired time.

Theorem 5.3. For any 0 < ε < 1 , the #Multilinear Monomial Detection problem
can be approximated with factor (1± ε) and success probability at least 9

10 in time O((3.841k +

s(C)o(1)) · 1
ε6
· s(C)).

As in Section 4.1, but now using Corollary 5.6 rather than Corollary 3.5 (to avoid the
requirement to prove that expectation is correct, which we cannot do), the correctness follows
from Lemma 5.8 below.

Lemma 5.8. For any 0 < ε < 1, the splittable version of #Multilinear Monomial Detec-
tion problem can be computed exactly in expectation and approximated with factor (1± ε

4) and

success probability at least 1− 1

(1000
√
k)
√
k ln s(C)

in time 3.8104k · 2o(k) · 1
ε4
· s(C) · logO(

√
k) s(C).

Proof. The algorithm is the same as the algorithm in the proof of Lemma 4.1 with the following
minor differences. First, we compute the universal families Fp,g as before but with smaller

ε′ =
ln 3

2
5(2k)2

and c = (1000
√
k)
√
k ln(s(C)1ε) ·s(C)k100(

√
k). Then, we compute additional universal

families by using Corollary 5.5 (where the constants dk,p,p′ , d̂k,p,p′ = O(1) specified ahead will
be fixed later) as follows. For all p ∈ {1, 2, . . . , k}, p1 ∈ {1, 2, . . . , p} and g such that (f, g)

53

is a (
√
k, k, p, 2)-splitting pair, we compute with success probability at least 1 − 1

c , a family

Fp,g,p1 ⊆ 2X of (U, 2, f, g,
ln 3

2
5(2k)2

, c, dk,p,p1)-universal family sampling, where c is as defined earlier

in this proof, that satisfies all of the following conditions.

1. |Fp,g,p1 | ≤
(dk,p,p1k)k

pp(dk,p,p′k − p)k−p
· 2O(

√
k log k) · log

√
k s(C).

2. Fp,g,p1 is an
ln 3

2
5(2k)2

-parsimonious (n, p, k−p)-universal family with respect to (PBAL
U,f,g

,QCBAL
U,f,g

).

3. With respect to Fp,g,p1 and any g′ be such that (f, g′) is a (
√
k, k, p′, 2)-splitting func-

tion pair (for some p′ ≤ p) where g′ ≤ g, MEMBERSHIP is a T p
′

con-membership query
procedure for

T p
′

con = (
dk,p,p1k

dk,p,p1k − p
)k−p(

dk,p,p1k

p
)p−p

′ · 2O(
√
k log k) · log

√
k s(C).

Additionally, for all p ∈ {1, 2, . . . , k}, g such that (f, g) is a (
√
k, k, p, 2)-splitting pair, p1 ∈

{1, 2, . . . , p} and g1 ≤ g such that (f, g1) is a (
√
k, p, p1, 2)-splitting pair, we compute with success

probability at least 1− 1
c , a family Hp,g,p1,g1 ⊆ 2X of (U, 2, g, g1,

ln 3
2

5(2k)2
, c, d̂k,p,p1)-universal family

sampling, where c is as defined earlier in this proof, that satisfies all of the following conditions.

1. |Hp,g,p1,g1 | ≤
(d̂k,p,p1k)k

pp(d̂k,p,p1k − p)k−p
· 2O(

√
k log k) · log

√
k s(C).

2. Hp,g,p1,g1 is an 1
2 -parsimonious (n, p, k−p)-universal family with respect to (PBAL

U,f,g
,QCBAL

U,f,g
),

whose correction factor is upper bounded by 2O(
√
k log k) · log

√
k s(C).

3. With respect to Hp,g,p1,g1 , DISJOINTNESS is a Tdis-disjointness query procedure for

Tdis = (
d̂k,p,p1k

p
)p · 2O(

√
k log k) · log

√
k s(C).

The order of computation, the computation for leaf and addition nodes, and the computation
of the output, all remain unchanged. Notice that we do not compute the table N , because this is,
in the worst case, useless. With respect to multiplication nodes, we do not compute C(p1,p2,g1,g2)

(but instead a representative Ĉ(p1,p2,g1,g2)) and thus neither C (but instead a representative C?)
explicitly as before, and invoke Corollary 5.2 before Corollary 5.3 along the way. For the sake
of clarity, we present the full computation in this case below.

Multiplication Node. Let v1 and v2 be the two outgoing neighbors of v. Let I be the
set consisting of all quadruples (p1, p2, g1, g2) such that p1, p2 ∈ N, p1 + p2 = p, (f, g1) and
(f, g2) are (

√
k, k, p1, 2) and (

√
k, k, p2, 2)-splitting function pairs, respectively, and for every

i ∈ {1, 2, . . . ,
√
k}, it holds that g1(i)+g2(i) = g(i). First, for every quadruple (p1, p2, g1, g2) ∈ I,

let Ĉ(p1,p2,g1,g2) : PBAL
U,f,g

→ N0 be the counter obtained by invoking Corollary 5.2 with respect

to X as the universe, ε′ (denoted by ε in the statement but here denoted by ε′ to avoid over-

loading notation) being ln(1+ε)
(2k)2

, δ being
ln 3

2
(2k)2

, p1, p2, q = k − p, PBAL
U,f,g

as P and QCBAL
U,f,g

as

Q, PBAL
U,g,g1

as P1, PBAL
U,g,g2

as P2, the counter stored at M [v1, p1, g1] as C1, the counter stored

at M [v2, p2, g2] as C2, Fp,g,p1 as F , Hp,g,p1,g1 as H and c as defined earlier in this proof.
Second, the counter C? : PBAL

U,f,g
:→ N0 is defined as follows. For every set P ∈ PBAL

U,f,g
,

54

define C?(P) =
∑

(p1,p2,g1,g2)∈I

Ĉ(p1,p2,g1,g2)(P). Third, the entry M [v, p, g] stores the counter

Ĉ : PBAL
U,f,g

→ N0 obtained by applying Corollary 5.3 with respect to X as the universe, ε′ (de-

noted by ε in the statement but here denoted by ε′ to avoid overloading notation) being ln(1+ε)
(2k)2

,

δ =
ln 3

2
(2k)2

, p1, p2, q = k − p, PBAL
U,f,g

as P and QCBAL
U,f,g

as Q, C? as C, Fp,g as F , and c as defined

earlier in this proof.

Time Complexity and Correctness. Time complexity analysis and correctness follow the
same lines as in the proof of Lemma 4.1, where the obtained expressions in the time complexity
analysis are (essentially) the same as in [FLPS17] and hence bounded in the exact same way
(which results in the time bound stated in the lemma, and also where the constants analogous
to dk,p,p1 and d̂k,p,p1 are fixed). Thus, repetition of these details are omitted. For the sake of
clarity, we only state the main claim regarding correctness (where Bv,p,g is defined as in the
proof of Lemma 4.1), which is proved by induction similarly to the proof of Claim 4.1.

Claim 5.2. For every node v of C, p ∈ {1, 2, . . . , k}, and g such that (f, g) is a (
√
k, k, p, 2)-

splitting pair, the following holds: Under the assumption that all calls to the algorithms in Corol-
laries 5.5, 5.2 and 5.3 are successful, the counter Ĉ stored at M [v, p, g] ((1 − ln(1+ε)

(2k)2
)(2p)

2
, (1 +

ln(1+ε)
(2k)2

)(2p)
2
, k − p)-represents Bv,p,g with respect to QCBAL

U,f,g
.

6 Conclusion and Open Problems

In this paper, we presented a general tool to design FPT-approximation schemes for counting
problems. Specifically, we introduced the notion of a representative function where our main
contribution is a novel sampling procedure to compute representative functions of small support
efficiently. Along the way, we developed a data structure to efficiently query membership and
disjointness in approximately universal families, which is of independent interest. We have
demonstrated the wide applicability of our tool by developing a O((2.619k + |I|o(1)) · 1

ε2
· |I|)-

time algorithm for #Multilinear Monomial Detection on skewed circuits, #k-Path, and
several other problems as well (including #q-Set p-Packing with k = qp, #q-Dimensional
p-Matching with k = (q−1)p, # Graph Motif, and #Subgraph Isomorphism for pattern
graphs of constant treewidth). Additionally, we developed a O((3.841k + |I|o(1)) · 1

ε6
· |I|)-time

algorithm for #Multilinear Monomial Detection on general (monotone) circuits.
We conclude our paper with a few open problems.

• Does the #k-Path problem admit an FPT-approximation scheme with running time
2k(1ε)

O(1)nO(1)?

• Does the #Multilinear Monomial Detection problem admit an FPT-approximation
scheme with running time substantially better than 3.841k(1ε)

O(1)nO(1)? In particular, can

the time bound 2.619k(1ε)
O(1)nO(1) given for #k-Path be matched?

• Can our result for the #Multilinear Monomial Detection problem be extended to
non-monotone arithmetic circuits (where subtraction is allowed)?

• Are there relations between techniques based on exterior algebra, Hadamard product,
warring rank and representative functions?

• Can we compute representative functions efficiently with respect to linear matroids rather
than only set systems (i.e., uniform matroids)? For more information on representation
with respect to a matroid, we refer to [FLPS16].

55

• We remark that results on bounded skewness by themselves may be of interest in this
context. Can we derive a general theorem about the problems that admits them? What
can be said in this context on VP-circuits and homomorphism polynomials?

Acknowledgements. We thank one of the reviewers of a previous version of the paper for
telling us about monotone arithmetic circuits.

References

[ACDM19] Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay.
Fast exact algorithms using hadamard product of polynomials. In Arkadev Chat-
topadhyay and Paul Gastin, editors, 39th IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science, FSTTCS 2019,
December 11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages 9:1–9:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 5, 10

[ADH+08] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and
Süleyman Cenk Sahinalp. Biomolecular network motif counting and discovery by
color coding. In Proceedings 16th International Conference on Intelligent Systems
for Molecular Biology (ISMB), Toronto, Canada, July 19-23, 2008, pages 241–249,
2008. 1, 2, 3, 10

[AG09] Noga Alon and Shai Gutner. Balanced hashing, color coding and approximate
counting. In Parameterized and Exact Computation, 4th International Workshop,
IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Pa-
pers, pages 1–16, 2009. 2, 3, 10

[AG10] Noga Alon and Shai Gutner. Balanced families of perfect hash functions and their
applications. ACM Trans. Algorithms, 6(3):54:1–54:12, 2010. 1, 3, 10

[AR02] Vikraman Arvind and Venkatesh Raman. Approximation algorithms for some pa-
rameterized counting problems. In Algorithms and Computation, 13th International
Symposium, ISAAC 2002 Vancouver, BC, Canada, November 21-23, 2002, Proceed-
ings, pages 453–464, 2002. 1, 2

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856,
1995. 2

[BDH18] Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 151–164, 2018. 1, 2, 3, 5

[BHKK09] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting
paths and packings in halves. In Algorithms - ESA 2009, 17th Annual European
Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, pages 578–
586, 2009. 10

[BHKK17] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow
sieves for parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139,
2017. 2

[Bjö14] Andreas Björklund. Determinant sums for undirected hamiltonicity. SIAM J.
Comput., 43(1):280–299, 2014. 2

56

[BKK17] Andreas Björklund, Petteri Kaski, and Lukasz Kowalik. Counting thin sub-
graphs via packings faster than meet-in-the-middle time. ACM Trans. Algorithms,
13(4):48:1–48:26, 2017. 10

[BKKZ17] Andreas Björklund, Vikram Kamat, Lukasz Kowalik, and Meirav Zehavi. Spotting
trees with few leaves. SIAM J. Discrete Math., 31(2):687–713, 2017. 2

[BLSZ19] Andreas Björklund, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Ap-
proximate counting of k-paths: Deterministic and in polynomial space. In Chris-
tel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors,
46th International Colloquium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 24:1–24:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 1, 2, 3, 10

[Bol65] B. Bollobás. On generalized graphs. Acta Math. Acad. Sci. Hungar, 16:447–452,
1965. 2

[BP20] Cornelius Brand and Kevin Pratt. An algorithmic method of partial derivatives.
CoRR, abs/2005.05143, 2020. 5

[Bra19] Cornelius Brand. Patching colors with tensors. In Michael A. Bender, Ola Svens-
son, and Grzegorz Herman, editors, 27th Annual European Symposium on Algo-
rithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume
144 of LIPIcs, pages 25:1–25:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. 1

[CDM17] Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis
for counting small subgraphs. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, pages 210–223, New York, NY,
USA, 2017. ACM. 1, 10

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015. 1, 2

[CKL+09a] J. Chen, J. Kneis, S. Lu, D. Mölle, S. Richter, P. Rossmanith, S. Sze, and F. Zhang.
Randomized divide-and-conquer: Improved path, matching, and packing algo-
rithms. SIAM Journal on Computing, 38(6):2526–2547, 2009. 2

[CKL+09b] Jianer Chen, Joachim Kneis, Songjian Lu, Daniel Molle, Stefan Richter, Peter
Rossmanith, Sing-Hoi Sze, and Fenghui Zhang. Randomized divide-and-conquer:
Improved path, matching, and packing algorithms. SIAM Journal on Computing,
38(6):2526––2547, 2009. 2

[CM14] Radu Curticapean and Dániel Marx. Complexity of counting subgraphs: Only the
boundedness of the vertex-cover number counts. In 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 130–139, 2014. 1, 10

[Cur13] Radu Curticapean. Counting matchings of size k is W[1]-hard. In Fedor V. Fomin,
Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Lan-
guages, and Programming - 40th International Colloquium, ICALP 2013, Riga,
Latvia, July 8-12, 2013, Proceedings, Part I, volume 7965 of Lecture Notes in Com-
puter Science, pages 352–363. Springer, 2013. 1

57

[Cur18] Radu Curticapean. Counting problems in parameterized complexity. In Christophe
Paul and Michal Pilipczuk, editors, 13th International Symposium on Parameter-
ized and Exact Computation, IPEC 2018, August 20-24, 2018, Helsinki, Finland,
volume 115 of LIPIcs, pages 1:1–1:18. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2018. 1

[CX15] Radu Curticapean and Mingji Xia. Parameterizing the permanent: Genus, apices,
minors, evaluation mod 2k. In Venkatesan Guruswami, editor, IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 994–1009. IEEE Computer Society, 2015. 1

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer, 2013. 1

[DLM20] Holger Dell, John Lapinskas, and Kitty Meeks. Approximately counting and sam-
pling small witnesses using a colourful decision oracle. In Shuchi Chawla, editor,
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA
2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2201–2211. SIAM, 2020.
1, 10

[DSG+08] Banu Dost, Tomer Shlomi, Nitin Gupta, Eytan Ruppin, Vineet Bafna, and Roded
Sharan. Qnet: A tool for querying protein interaction networks. Journal of Com-
putational Biology, 15(7):913–925, 2008. 2

[FG04] Jörg Flum and Martin Grohe. The parameterized complexity of counting problems.
SIAM J. Comput., 33(4):892–922, 2004. 1, 10

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 2006. 1

[FGPS19] Fedor V. Fomin, Petr A. Golovach, Fahad Panolan, and Saket Saurabh. Editing to
connected f-degree graph. SIAM J. Discrete Math., 33(2):795–836, 2019. 2

[FLPS16] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient
computation of representative families with applications in parameterized and exact
algorithms. J. ACM, 63(4):29:1–29:60, 2016. 2, 34, 39, 55

[FLPS17] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Repre-
sentative families of product families. ACM Trans. Algorithms, 13(3):36:1–36:29,
2017. 2, 55

[FLSZ19] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernel-
ization: Theory of Parameterized Preprocessing. Cambridge University Press, 2019.
2

[HWZ08] Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. Algorithm engineering
for color-coding with applications to signaling pathway detection. Algorithmica,
52(2):114–132, 2008. 2

[Kou08] Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In
Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms,
Automata, Complexity, and Games, pages 575–586, 2008. 1, 4

58

[KS17] Stefan Kratsch and Manuel Sorge. On kernelization and approximation for the
vector connectivity problem. Algorithmica, 79(1):96–138, 2017. 2

[KW12] Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices:
New tools for kernelization. In 53rd Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012,
pages 450–459. IEEE Computer Society, 2012. 2

[KW16a] Ioannis Koutis and Ryan Williams. Algebraic fingerprints for faster algorithms.
Commun. ACM, 59(1):98–105, 2016. 3, 5, 39

[KW16b] Ioannis Koutis and Ryan Williams. LIMITS and applications of group algebras for
parameterized problems. ACM Trans. Algorithms, 12(3):31:1–31:18, 2016. 1, 2, 4,
39

[Mar06] Dániel Marx. Parameterized coloring problems on chordal graphs. Theor. Comput.
Sci., 351(3):407–424, 2006. 2

[Mar09] Dániel Marx. A parameterized view on matroid optimization problems. Theor.
Comput. Sci., 410(44):4471–4479, 2009. 1, 2

[Mon85] B. Monien. How to find long paths efficiently. In Analysis and design of algo-
rithms for combinatorial problems (Udine, 1982), volume 109 of North-Holland
Math. Stud., pages 239–254. North-Holland, Amsterdam, 1985. 1, 2

[MSOI+02] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network
motifs: Simple building blocks of complex networks. Science, 298(5594):824–827,
2002. 3

[Pra19] Kevin Pratt. Waring rank, parameterized and exact algorithms. In David Zucker-
man, editor, 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 806–823.
IEEE Computer Society, 2019. 2, 3, 4

[RW20] Marc Roth and Philip Wellnitz. Counting and finding homomorphisms is universal
for parameterized complexity theory. In Shuchi Chawla, editor, Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5-8, 2020, pages 2161–2180. SIAM, 2020. 1

[SI06] Roded Sharan and Trey Ideker. Modeling cellular machinery through biological
network comparison. nat. biotechnol. 24, 427-433. Nature biotechnology, 24:427–33,
05 2006. 2

[SIKS06] Jacob Scott, Trey Ideker, Richard M. Karp, and Roded Sharan. Efficient algo-
rithms for detecting signaling pathways in protein interaction networks. Journal of
Computational Biology, 13(2):133–144, 2006. 2

[SSRS06] Tomer Shlomi, Daniel Segal, Eytan Ruppin, and Roded Sharan. Qpath: a method
for querying pathways in a protein-protein interaction network. BMC Bioinformat-
ics, 7:199, 2006. 2

[SZ16] Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-
based approach. J. Comput. Syst. Sci., 82(3):488–502, 2016. 2, 34

[Tsu19] Dekel Tsur. Faster deterministic parameterized algorithm for k -path. Theor. Com-
put. Sci., 790:96–104, 2019. 2

59

[Val79] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput.
Sci., 8:189–201, 1979. 1

[Wil09] Ryan Williams. Finding paths of length k in O∗(2k)) time. Inf. Process. Lett.,
109(6):315–318, 2009. 2, 4, 5

[WW13] Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and count-
ing weighted subgraphs. SIAM J. Comput., 42(3):831–854, 2013. 10

[Zeh15] Meirav Zehavi. Mixing color coding-related techniques. In Algorithms - ESA 2015
- 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Pro-
ceedings, pages 1037–1049, 2015. 2

60

