
Algorithmica manuscript No.
(will be inserted by the editor)

On the Parameterized Complexity of Reconfiguration
of Connected Dominating Sets

Daniel Lokshtanov · Amer E. Mouawad? ·
Fahad Panolan · Sebastian Siebertz

Received: date / Accepted: date

Abstract In a reconfiguration version of a decision problem Q the input is an
instance of Q and two feasible solutions S and T . The objective is to determine
whether there exists a step-by-step transformation between S and T such
that all intermediate steps also constitute feasible solutions. In this work, we
study the parameterized complexity of the Connected Dominating Set
Reconfiguration problem (CDS-R). It was shown in previous work that
the Dominating Set Reconfiguration problem (DS-R) parameterized by
k, the maximum allowed size of a dominating set in a reconfiguration sequence,
is fixed-parameter tractable on all graphs that exclude a biclique Kd,d as a
subgraph, for some constant d ≥ 1. We show that the additional connectivity
constraint makes the problem much harder, namely, that CDS-R is W[1]-hard
parameterized by k + `, the maximum allowed size of a dominating set plus
the length of the reconfiguration sequence, already on 5-degenerate graphs. On
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the positive side, we show that CDS-R parameterized by k is fixed-parameter
tractable, and in fact admits a polynomial kernel on planar graphs.

Keywords reconfiguration · parameterized complexity · connected dominating
set · graph structure theory

1 Introduction

In a decision problem Q, we are usually asked to determine the existence of a
feasible solution for an instance I of Q. In a reconfiguration version of Q, we
are instead given a source feasible solution S and a target feasible solution T
and we are asked to determine whether it is possible to transform S into T by a
sequence of step-by-step transformations such that after each intermediate step
we also maintain feasible solutions. Formally, we consider a graph, called the
reconfiguration graph, that has one vertex for each feasible solution and where
two vertices are connected by an edge if we allow the transformation between
the two corresponding solutions. We are then asked to determine whether
S and T are connected in the reconfiguration graph, or even to compute a
shortest path between them. Historically, the study of reconfiguration questions
predates the field of computer science, as many classic one-player games can
be formulated as such reachability questions [21, 23], e.g., the 15-puzzle and
Rubik’s cube. More recently, reconfiguration problems have emerged from
computational problems in different areas such as graph theory [2, 19, 20],
constraint satisfaction [13,28] and computational geometry [6,22,26], and even
quantum complexity theory [12]. Reconfiguration problems have been receiving
considerable attention in recent literature, we refer the reader to [18,27,31] for
an extensive overview.

In this work, we consider the Connected Dominating Set Reconfigu-
ration problem (CDS-R) in undirected graphs. A dominating set in a graph
G is a set D ⊆ V (G) such that every vertex of G lies either in D or is adjacent
to a vertex in D. A dominating set D is a connected dominating set if the
graph induced by D is connected. The Dominating Set problem and its
connected variant have many applications, including the modeling of facility
location problems, routing problems, and many more [1, 15,35].

We study CDS-R under the Token Addition/Removal model (TAR model).
Suppose we are given a connected dominating set D of a graph G, and imagine
that a token is placed on each vertex in D. The TAR rule allows either the
addition or removal of a single token at a time from D, if this results in a
connected dominating set of size at most a given bound k ≥ 1. A sequence
D1, . . . , D` of connected dominating sets of a graph G is called a reconfiguration
sequence between D1 and D` under TAR if the change from Di to Di+1 respects
the TAR rule, for 1 ≤ i < `. The length of the reconfiguration sequence is `− 1.

The (Connected) Dominating Set Reconfiguration problem for
TAR gets as input a graph G, two (connected) dominating sets S and T and an
integer k ≥ 1, and the task is to decide whether there exists a reconfiguration
sequence between S and T under TAR using at most k tokens.
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Fig. 1: A graph G with a minimum dominating set of size k = 2 marked in dark
blue and the graph H obtained in the standard reduction from Dominating
Set to Connected Dominating Set. G has a dominating set of size k if
and only if H has a connected dominating set of size k + 1. If p is equal to the
pathwidth of G then the pathwidth of H is bounded by 2p+ 1.

Structural properties of the reconfiguration graph for k-dominating sets
were studied in [16,34]. The Dominating Set Reconfiguration problem
was shown to be PSPACE-complete in [17], even on split graphs, bipartite
graphs, planar graphs and graphs of bounded bandwidth. Both the pathwidth
and the treewidth of a graph are bounded by its bandwidth, hence the Dom-
inating Set Reconfiguration problem is PSPACE-complete on graphs
of bounded pathwidth and treewidth. These hardness results motivated the
study of the parameterized complexity of the problem. It was shown in [29]
that the Dominating Set Reconfiguration problem is W[2]-hard when
parameterized by k + `, where k is the bound on the number of tokens and `
is the length of the reconfiguration sequence. However, the problem becomes
fixed-parameter tractable (when parameterized by k) on graphs that exclude
a fixed complete bipartite graph Kd,d as a subgraph, as shown in [25]. Such
so-called biclique-free classes are very general sparse graph classes, including in
particular the planar graphs, which are K3,3-free.

In this work we study the complexity of CDS-R. The standard reduction
from Dominating Set to Connected Dominating Set shows that CDS-R
is also PSPACE-complete, even on graphs of bounded pathwidth (Figure 1).
We hence turn our attention to the parameterized complexity of the problem1.
We first show that the additional connectivity constraint makes the problem
much harder, namely, that CDS-R parameterized by k+ ` is W[1]-hard already
on 5-degenerate graphs. As 5-degenerate graphs exclude the biclique K6,6 as a
subgraph, Dominating Set Reconfiguration is fixed-parameter tractable
on much more general graph classes than its connected variant. To prove hard-
ness we first introduce an auxiliary problem that we believe is of independent
interest. In the Colored Connected Subgraph problem we are given a
graph G, an integer k, and a (not necessarily proper) coloring c : V (G)→ C,
for some color set C with |C| ≤ k. The question is whether G contains a vertex
subset H on at most k vertices such that G[H] is connected and H contains at
least one vertex of every color in C (i.e., c(H) = C). The reconfiguration variant
Colored Connected Subgraph Reconfiguration (CCS-R) is defined

1 We note that the problem is easily shown to be slicewise polynomial parameterized for
parameter k + ` as one can guess each set in the reconfiguration sequence.
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Fig. 2: The map of tractability for Connected Dominating Set Recon-
figuration. The classes colored in dark green admit an FPT algorithm with
parameter k, the classes colored in light green admit an FPT algorithm with
parameter k + `. On the classes colored in red the problem is W[1]-hard with
respect to the parameter k + `.

as expected. We first prove that CCS-R reduces to CDS-R by a parameter
preserving reduction (where k + ` is the parameter) and the degeneracy of the
reduced to graph is at most the degeneracy of the input graph plus one. We then
prove that the known W[1]-hard problem Multicolored Clique (see [4] for
definitions) reduces to CCS-R on 4-degenerate graphs. The last reduction has
the additional property that for an input (G, c, k) of Multicolored Clique
the resulting instance of CCS-R admits either a reconfiguration sequence of
length O(k3), or no reconfiguration sequence at all. Hence, we derive that both
CDS-R and CCS-R are W[1]-hard parameterized by k + ` on 5-degenerate
and 4-degenerate graphs, respectively.

The existence of a reconfiguration sequence of length at most ` with con-
nected dominating sets of size at most k can be expressed by a first-order
formula of length depending only on k and `. It follows from [14] that the
problem is fixed-parameter tractable parameterized by k + ` on every nowhere
dense graph class and the same is implied by [3] for every class of bounded
cliquewidth. Nowhere dense graph classes are very general classes of uniformly
sparse graphs, in particular the class of planar graphs is nowhere dense. Nowhere
dense classes are themselves biclique-free, but are not necessarily degenerate.
Hence, our hardness result on degenerate graphs essentially settles the question
of fixed-parameter tractability for the parameter k+` on sparse graph classes. It
remains an interesting open problem to find dense graph classes beyond classes
of bounded cliquewidth on which the problem is fixed-parameter tractable.
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We then turn our attention to the smaller parameter k alone. We show that
CDS-R parameterized by k is fixed-parameter tractable on the class of planar
graphs. Our approach is as follows. We first compute a small domination core
for G, a set of vertices that captures exactly the domination properties of G
for dominating sets of sizes not larger than k. The notion of a domination core
was introduced in the study of the Distance-r Dominating Set problem on
nowhere dense graph classes [5]. While the classification of interactions with the
domination core would suffice to solve Dominating Set Reconfiguration
on nowhere dense classes, additional difficulties arise for the connected variant.
In a second step we use planarity to identify large subgraphs that have very
simple interactions with the domination core and prove that they can be
replaced by constant size gadgets such that the reconfiguration properties of G
are preserved.

Observe that CDS-R parameterized by k is trivially fixed-parameter
tractable on every class of bounded degree. The existence of a connected
dominating set of size k implies that the diameter of G is bounded by k + 2,
which in every bounded degree class implies a bound on the size of the graph
depending only on the degree and k. We conjecture that CDS-R is fixed-
parameter tractable parameterized by k on every nowhere dense graph class.
However, resolving this conjecture remains open for future work (see Figure 2).

The rest of the paper is organized as follows. We give background on graph
theory and fix our notation in Section 2. We show hardness of CDS-R on
degenerate graphs in Section 3 and show how to handle the planar case in
Section 4.

2 Preliminaries

We denote the set of natural numbers by N. For n ∈ N, we let [n] = {1, 2, . . . , n}.
We assume that each graph G is finite, simple, and undirected. We let V (G)
and E(G) denote the vertex set and edge set of G, respectively. An edge
between two vertices u and v in a graph is denoted by {u, v} or uv. The
open neighborhood of a vertex v is denoted by NG(v) = {u | {u, v} ∈ E(G)}
and the closed neighborhood by NG[v] = NG(v) ∪ {v}. The degree of a vertex
v, denoted by dG(v), is |NG(v)|. For a set of vertices S ⊆ V (G), we define
NG(S) = {v 6∈ S | {u, v} ∈ E(G), u ∈ S} and NG[S] = NG(S) ∪ S. The
subgraph of G induced by S is denoted by G[S], where G[S] has vertex set
S and edge set {{u, v} ∈ E(G) | u, v ∈ S}. We let G − S = G[V (G) \ S]. A
graph G is d-degenerate if every subgraph H ⊆ G has a vertex of degree at
most d. For a set C, we use K[C] to denote the complete graph on vertex set C.
For an integer r ∈ N, an r-independent set in a graph G is a subset U ⊆ V (G)
such that for any two distinct vertices u, v ∈ U , the distance between u and v
in G is more than r. An independent set in a graph is a 1-independent set. A
subset of vertices U in G is called a separator in G if G−U has more than one
connected component. For s, t ∈ V (G), we say U is an (s, t)-separator in G if
there is no path from s to t in G− U .
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3 Hardness on degenerate graphs

In this section we prove that CDS-R and CCS-R are W[1]-hard when param-
eterized by k + ` even on 5-degenerate and 4-degenerate graphs, respectively.
Towards that, we first give a polynomial-time reduction from the W[1]-hard
Multicolored Clique problem to CCS-R on 4-degenerate graphs with the
property that for an input (G, c, k) of Multicolored Clique the resulting
instance of CCS-R admits either a reconfiguration sequence of length O(k3)
or no reconfiguration sequence at all. As a result, we conclude that CCS-R is
W[1]-hard when parameterized by k+ ` on 4-degenerate graphs. Then, we give
a parameter-preserving polynomial-time reduction from CCS-R to CDS-R.

Let us first formally define the CCS and CCS-R problems.

Colored Connected Subgraph (CCS) Parameter: k
Input: A graph G, a vertex-coloring c : V (G) → C, and k ∈ N such that
|C| ≤ k
Question: Is there a vertex subset S ⊆ V (G) of at most k vertices with at
least one vertex from every color class such that G[S] is connected?

Colored Connected Subgraph Reconf (CCS-R) Parameter: k
Input: A graph G, a vertex-coloring c : V (G) → C, two sets Qs, Qt ⊆
V (G), and k ∈ N such that |C|, |Qs|, |Qt| ≤ k, c(Qs) = c(Qt) = C, and
G[Qs],G[Qt] are connected
Question: Is there a reconfiguration sequence from Qs to Qt?

3.1 Reduction from Multicolored Clique to CCS-R

We now present the reduction from Multicolored Clique to CCS-R, which
we believe to be of independent interest. We can assume, without loss of
generality, that for an input (G, c, k) of Multicolored Clique,G is connected
and c is a proper vertex-coloring, i.e., for any two distinct vertices u, v ∈ V (G)
with c(u) = c(v) we have {u, v} /∈ E(G). Before we proceed let us define a
graph operation.

Definition 1 Let G be a graph and let c : V (G) → {1, . . . , k} be a proper
vertex coloring of V (G). Let H be a graph on the vertex set {1, . . . , k}. We
define the graph G �c H as follows. We remove all edges {u, v} ∈ E(G) such
that c(u) = i and c(v) = j and {i, j} 6∈ E(H). We subdivide every remaining
edge, i.e., for every remaining edge {u, v} we introduce a new vertex suv, remove
the edge {u, v} and introduce instead the two edges {u, suv} and {v, suv}. We
write W (G �c H) for the set of all subdivision vertices suv (see Figure 3).

That is, to construct G �c H, we first make a subgraph of G by deleting
the edges between different color classes if there are no edges between the
“corresponding” vertices in H, and then subdivide the remaining edges. Let
(G, c, k) be the input instance of Multicolored Clique, where G is a
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connected graph and c is a proper k-vertex-coloring of G. We construct an
instance (H, ĉ : V (H) 7→ [k + 1], Qs, Qt, 2k) of CCS-R (Qs and Qt are the
source and target sets that we describe later). Note that the bound on the sizes
of the solutions in the reconfiguration sequence is at most 2k.

• •u •

•v •

•

• •

1

2

3

4

(a) A graph G and a
proper coloring c : V (G)→
{1, . . . , 4}

•

•

•

•

1

2

3

4

(b) A graph H
on the vertex set
{1, . . . , 4}

• •u •

•v •

•

• •

• • •

•

•

suv = w1 w2 w3

w4

w5

(c) The graph G �c H. Here,
we have W (G �c H) =
{w1, . . . , w5}

Fig. 3: Construction of G �c H.

We first construct a routing gadget. For 1 ≤ i ≤ k, let T i be the star with
vertex set {1, . . . , k} having vertex i as the center. For any 1 ≤ i ≤ k and
1 ≤ r ≤ 20k, we let H(i,r) be a copy of the graph G �c T i. We let c(i,r) be the

the partial vertex-coloring of H(i,r) that is naturally inherited from G. For an
illustration, consider the input instance (G, c, k) of Multicolored Clique
depicted in Figure 3a. Then, T 2 is identical to the graph H in Figure 3b
and Figure 3c represents H(2,r) = G �c T 2, for any 1 ≤ r ≤ 20k. Now, for
1 ≤ i ≤ k we define a graph Hi as follows. We use W (H(i,r)) to denote the
set of subdivision vertices in H(i,r). For 1 ≤ r < 20k and all vertices u, v in
V (H(i,r)) \W (H(i,r)), we connect the copy of the subdivision vertex suv in
H(i,r) (if it exists) with the copies of the vertices u and v in H(i,r+1) (see
Figure 4 for an illustration of a portion of H1 and Figure 5 for an illustration
of a portion of H2). We use W (Hi) to denote the set of subdivision vertices⋃

r∈[20k]W (H(i,r)).

For each 1 ≤ i ≤ k, we use ci to denote a coloring on V (Hi) that is the union
of c(i,1), c(i,2), . . . , c(i,20k) and we color all the copies of the subdivision vertices
using a new color k+1. In other words, we know that for each u ∈ V (Hi) we have
u ∈ V (H(i,r)), for some r ∈ {1, . . . , 20k}. Hence, if u ∈ V (H(i,r)) \W (H(i,r))
then we set ci(u) = c(i,r)(u). For all suv ∈W (Hi), we set ci(suv) = k + 1.

Now, define a graph R, which is supergraph of H1 ∪ . . . ∪Hk, as follows.
For 1 ≤ i < k and all vertices u and v, we connect the copy of the subdivision
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H(1,1) H(1,2) H(1,3)

• • •

• •

•
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Fig. 4: Construction of H1 from the instance (G, c, k) depicted in Figure 3a.
The red edges are some of the “crossing” edges but not all of them.

H(2,1) H(2,2) H(2,3)

• • •

• •

•

• •
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•

•
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•

• •

• • •

•
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Fig. 5: Construction of H2 from the instance (G, c, k) depicted in Figure 3a.
The red edges are some of the “crossing” edges but not all of them.

vertex suv in H(i,20k) (if it exists) with the copies of the vertices u and v
in H(i+1,1) (see Figure 6 for an illustration).

We additionally introduce two subgraphs H0 and Hk+1. The graph H0 is
obtained by subdividing each edge of a star on vertex set {v1, . . . , vk} centered
at v1. Here we use w2, . . . , wk to denote the subdivision vertices. Similarly,
the graph Hk+1 is obtained by subdividing each edge of star on {x1, . . . , xk}
centered at xk. Here y1, . . . , yk−1 denote the subdivision vertices. Let c0 and
ck+1 be the colorings on {v1, . . . , vk, w2, . . . , wk} and {x1, . . . , xk, y1, . . . , yk−1},
respectively, defined as follows. For all 1 ≤ i ≤ k, c0(vi) = i and ck+1(xi) = i.
For all 2 ≤ i ≤ k, c0(wi) = k + 1 and for all 1 ≤ i ≤ k − 1, ck+1(yi) =
k + 1. Observe that we may interpret H0 as K[{v1, . . . , vk}] �c0 T 0 and Hk+1

as K[{x1, . . . , xk}] �ck+1
T k, where T 0 and T k are two stars on vertex set

{1, . . . , k}, with E(T 0) = {{1, i} : 2 ≤ i ≤ k} and E(T k) = {{k, i} : 1 ≤ i ≤
k − 1} (as previously defined).

Finally, for each 2 ≤ i ≤ k, we connect the “subdivision vertex” wi (adjacent
to v1 and vi) to all vertices v ∈ V (H(1,1)) colored 1 or i, i.e., with c(1,1)(v) ∈
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H(2,20k) H(3,1)

• • •

• •

•

• •

• • •

•
•

• • •

• •

•

• •

• •

•

Fig. 6: Illustration of the subgraph of R induced on V (H(2,20k)) ∪ V (H3,1)
constructed from the instance (G, c, k) depicted in Figure 3a. The red edges
are some of the “crossing edges”.

{1, i}. For each subdivision vertex sab ∈W (H(k,20k)), we connect sab to xk and
xi, where k = ck(a) = c(k,20k)(a) and i = ck(b) = c(k,20k)(b). Recall that sab
is adjacent to a vertex of color k and a vertex of color i, for some i < k. This
completes the construction of H (see Figure 7). We define ĉ : V (H) 7→ [k+1] to
be the union of c0, . . . , ck+1. We define the starting configuration Qs as the set
{v1, . . . , vk, w2, . . . , wk} and the target configuration Qt as the set {x1, . . . , xk,
y1, . . . , yk−1}.

•

•

•

•

•

•

•

v1

v2

v3

v4

w2

w3

w4

H(1,1) H(4,20k)

• • •

• •

•

• •

• • •

• ••

• • •

• •

•

• •

•

• • •

•

•

•

•

•

•

•

x1

x2

x3

x4

y1

y2

y3

Fig. 7: Illustration of connections between H0 and R, and Hk+1 and R from
the instance (G, c, k) depicted in Figure 3a. The red edges are some of the
“crossing edges” between H0 and H1, and Hk and Hk+1.

Proposition 1 The sets Qs and Qt are solutions of size 2k − 1 of the CCS
instance (H, ĉ, 2k).

We now consider the instance (H, ĉ,Qs, Qt, 2k) of the CCS-R problem. Let
us give some high-level intuition about the construction before proceeding to
formal proofs. Assuming that (G, c, k) is a yes-instance of Multicolored
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Clique, we show how to construct a reconfiguration sequence from Qs to Qt as
follows. Our goal is to shift the connected vertices of Qs through the subgraphs
H1, . . . ,Hk (in that order) while maintaining connectivity and eventually
reaching Qt. To do so, we use the corresponding vertices of the clique in
each Hi,j to maintain colorful sets and we use the vertices corresponding to
subdivided edges to maintain connectivity. In the reverse direction, we shall
show that in any reconfiguration sequence, each part of the constructed graph,
i.e., each Hi, will allow us to guarantee that there exists a vertex colored i
that is connected to vertices of every other color (while maintaining the choice
of vertices along the way).

Before we analyze the reconfiguration properties of H, let us first verify
that H is 4-degenerate.

Lemma 1 The graph H is 4-degenerate.

Proof We iteratively remove minimum degree vertices and show that we can
always remove a vertex of degree at most 4 in each step.

– Every subdivision vertex w ∈W (Hi) for 1 ≤ i ≤ k has degree at most 4; it
has 4 neighbors in V (Hi) ∪ V (Hi+1).

– After removal of all subdivision vertices the degree of the remaining vertices
of each Hi is at most one. That is, a vertex in H(1,1) may have a neighbor
in {w2, . . . , wk}.

– After the removal of V (H1) ∪ . . . V (Hk), the degree of all vertices except
v1 and xk is at most 2.

– Finally we remove v1 and xk.

This completes the proof. ut

Lemma 2 Let T1, T2 be two trees on vertex set {1, . . . , k} and let f1, . . . fk−1
be an ordering of the edges in T2. Then, in polynomial time, we can find an
ordering e1, . . . , ek−1 of the edges in T1 such that the following holds. In the
sequence of graphs T ′0, T

′
1, . . . , T

′
k−1 on vertex set {1, . . . , k}, where for each

0 ≤ i ≤ k − 2, T ′i+1 = T ′i + fi − ei and T ′0 = T1, we have that T ′i is a tree, for
all i ∈ [k − 1], and T ′k−1 = T2.

Proof We proceed by induction on ` = |E(T1) \ E(T2)|. In the base case, we
have ` = 0 and E(T1) = E(T2). In this case f1, . . . fk−1 is also the required
ordering of the edges in T1 (note that the sequence of graphs consists of only
T1 = T2 in this case).

Now consider the induction step, ` > 1. Let j be the first index in {1, . . . , k−
1} such that fj /∈ E(T1). We add fj to T1 and this creates a cycle in T1. Hence,
there exists an edge ej ∈ E(T1) \ E(T2) whose removal results in a tree. That
is, T ′1 = T1 + fj − ej is a tree. Notice that |E(T ′1) \ E(T2)| = ` − 1. By the
induction hypothesis, there is a sequence g1, . . . , gk−1 of edges in E(T ′1) such
that for the sequence of graphs T ′1 = T ′′0 , T

′′
1 , . . . , T

′′
k−1 on vertex set {1, . . . , k},

we have T ′′i+1 = T ′′i +fi− gi, each T ′′i is a tree, and T2 = T ′′k−1, 0 ≤ i < k. Since
j is the first index in {1, . . . , k − 1} such that fj /∈ E(T1), T ′1 = T1 + fj − ej ,
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and T ′′0 , T
′′
1 , . . . , T

′′
k−1 are trees, we have that gi = fi for all i < j. Notice that

fj ∈ E(T ′1) and E(T1) = (E(T ′1) \ {fj}) ∪ {ej}.
We claim that e1, . . . , ej−1, ej , ej+1, . . . , ek−1, where ei = gi for all i < j,

is the required sequence of edges in T1. Let T ′0, T
′
1, . . . , T

′
k−1 be the sequence

where, for each 0 ≤ i ≤ k − 2, T ′i+1 = T ′i + fi − ei and T ′0 = T1. Since
gi = fi = ei for all i < j, we have that T1 = T ′0 = T ′1 = . . . = T ′j−1. Moreover,
T ′j = T1 + {f1, . . . , fj} − {e1, . . . , ej} = T1 + {f1, . . . , fj} − {g1, . . . , gj} = T ′′j
because E(T1) = (E(T ′1) \ {fj}) ∪ {ej} and ei = gi for all i < j. Then, the
sequence T ′j , . . . , T

′
k−1 is the same as the sequence T ′′j , . . . , T

′′
k−1. Therefore, the

sequence e1, . . . , ej−1, ej , ej+1, . . . , ek−1 of edges in T1 satisfies the conditions
of the lemma. ut

Lemma 3 If there exists a k-colored clique in G then there is reconfiguration
sequence of length O(k3) from Qs to Qt in (H, ĉ, 2k).

Proof We aim to shift the connected vertices of Qs through the subgraphs
H1, . . . ,Hk (in that order) to maintain connectivity and eventually shift to Qt.

For each ui ∈ V (G), 1 ≤ j ≤ k and 1 ≤ r ≤ 20k, we use u
(j,r)
i to denote the

copy of ui in H(j,r).
Let C = {u1, . . . , uk} be a k-colored clique in G such that c(ui) = i, for all

1 ≤ i ≤ k. To prove the lemma, we need to define a reconfiguration sequence
starting from Qs and ending at Qt such that the cardinality of any solution in
the sequence is at most 2k. First we define k “colored” trees T̂1, . . . , T̂k each
on 2k − 1 vertices, and then prove that there are reconfiguration sequences
from Qs to V (T̂1), V (T̂i) to V (T̂i+1) for all 1 ≤ i < k, and V (T̂k) to Qt.

We start by defining T̂1, . . . , T̂k. For each 1 ≤ i ≤ k, Ci = {u(i,1)1 , . . . , u
(i,1)
k }

and Si = {z ∈ V (H(i,1)) : |NH(i,1)(z) ∩ Ci| = 2}. That is, for each 1 ≤ j ≤ k

and j 6= i, s
u
(i,1)
i u

(i,1)
j
∈ Si (the subdivision vertex on the edge u

(i,1)
i u

(i,1)
j is in

Si), and |Si| = k − 1. In other words, Ci contains the copies of the vertices of
the clique C in H(i,1) and Si contains subdivision vertices corresponding to
k − 1 edges in the clique incident on the ith colored vertex of the clique, such
that H[Ci ∪ Si] is a tree. Now, define T̂i = H[Ci ∪ Si]. It is easy to verify that

ĉ(Ci ∪Si) = {1, . . . , k+ 1} and hence Ci ∪Si = V (T̂i) is a solution to the CCS
instance (H, ĉ, 2k). Let Ts = H[Qs] and Tt = H[Qt]. Note that Ts and Tt are
trees on 2k − 1 vertices each.

Case 1: Reconfiguration from Qs to V (T̂1). Informally, we move to T̂1
by adding a token on u

(1,1)
i and then removing a token from vi for i in the

order 2, . . . , k, 1 (for a total of 2k token additions/removals). Finally, we move
the tokens from {w2, . . . , wk−1} to S1 in 2(k − 1) steps. The length of the
reconfiguration sequence is 2k + 2(k − 1) = 4k − 2.

Formally, we define Z0 = Qs and for each 1 ≤ j ≤ k − 1, Z2j−1 =

Z2j−2 ∪ {u(1,1)j+1 } and Z2j = Z2j−1 \ {vj+1}. That is, for each 1 ≤ j ≤ k − 1,

Z2j−1 = {u(1,1)2 , . . . , u
(1,1)
j+1 } ∪ {vj+1 . . . , vk, v1} ∪ {w1, . . . , wk−1}, and

Z2j = {u(1,1)2 , . . . , u
(1,1)
j+1 } ∪ {vj+2 . . . , vk, v1} ∪ {w1, . . . , wk−1}.
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Next, we define Z2k−1 and Z2k as

Z2k−1 = {u(1,1)2 , . . . , u
(1,1)
k , u

(1,1)
1 } ∪ {v1} ∪ {w1, . . . , wk−1}, and

Z2k = {u(1,1)2 , . . . , u
(1,1)
k , u

(1,1)
1 } ∪ {w1, . . . , wk−1}.

In other words, the first five sets in the reconfiguration sequence look as follows:

Z0 = {v2, . . . , vk, v1} ∪ {w1, . . . , wk−1}
Z1 = {u(1,1)2 } ∪ {v2, . . . , vk, v1} ∪ {w1, . . . , wk−1}

Z2 = {u(1,1)2 } ∪ {v3, . . . , vk, v1} ∪ {w1, . . . , wk−1}

Z3 = {u(1,1)2 , u
(1,1)
3 } ∪ {v3, . . . , vk, v1} ∪ {w1, . . . , wk−1}

Z4 = {u(1,1)2 , u
(1,1)
3 } ∪ {v4, . . . , vk, v1} ∪ {w1, . . . , wk−1}

Z5 = {u(1,1)2 , u
(1,1)
3 , u

(1,1)
4 } ∪ {v4, . . . , vk, v1} ∪ {w1, . . . , wk−1}.

It is easy to verify that Z1, . . . Z2k are solutions to the CCS instance
(H, ĉ, 2k). Thus, we now have a reconfiguration sequence Z0, Z1, . . . , Z2k, where
Z0 = Qs.

Next, we explain how to get a reconfiguration sequence from Z2k to V (T̂1).

Recall that Z2k = C1 ∪ {w1, . . . , wk−1} and V (T̂1) = C1 ∪ S1. Let sj =
s
u
(1,1)
1 u

(1,1)
j

, for all 2 ≤ j ≤ k. Notice that S1 = {s2, . . . , sk}. To obtain a

reconfiguration sequence from Z2k to V (T̂1), we add sj and then remove wj

for j in the order 2, . . . , k. Since wj and sj connect the same two vertices from
C1, this reconfiguration sequence will maintain connectivity. Moreover, it is
easy to verify that each set in the reconfiguration sequence uses all the colors
{1, . . . , k + 1}. Therefore, there exists a reconfiguration sequence of length

4k − 2 from Qs to V (T̂1).

Case 2: Reconfiguration from V (T̂i) to V (T̂i+1). First we define 20k
trees P1, . . . P20k, each on 2k − 1 vertices such that for all 1 ≤ r ≤ 20k, (i)

V (Pr) ⊆ V (H(i,r)), and (ii) T̂i = P1. Then we give a reconfiguration sequence
from V (Pr) to V (Pr+1) for all r ∈ [20k − 1] and a reconfiguration sequence

from V (P20k) to V (T̂i+1).
Recall that C = {u1, . . . , uk} is a k-colored clique in G such that c(ui) = i

for all 1 ≤ i ≤ k. For each 1 ≤ r ≤ 20k, let Cr
i = {u(i,r)1 , . . . , u

(i,r)
k } and

Sr
i = {z ∈ V (H(i,r)) : NH(i,r)(z) ∩ Cr

i = 2}. That is, for each 1 ≤ j ≤ k and

j 6= i, s
u
(i,r)
i u

(i,r)
j
∈ Sr

i (i.e, the subdivision vertex on the edge u
(i,r)
i u

(i,r)
j is in

Sr
i ) and |Sr

i | = k − 1. Let Pr = H[Cr
i ∪ Sr

i ]. Notice that for all r ∈ [20k], Pr is
a tree on 2k − 1 vertices. Moreover, for each 1 ≤ r ≤ 20k, V (Pr) is a solution
to the CCS instance (H, ĉ, 2k).

Case 2(a): Reconfiguration from V (Pr) to V (Pr+1). By arguments similar
to those given for Case 1, one can prove that there is a reconfiguration sequence
of length 4k− 2 from V (Pr) to V (Pr+1), for all 1 ≤ r < 20k. For completeness
we give the details here. Fix an integer 1 ≤ r < 20k. Let sj = s

ui,r
i u

(i,r)
j

and
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s′j = s
u
(i,r+1)
i u

(i,r+1)
j

for all j ∈ {1, . . . , k} \ {i}. Notice that Sr
i = {sj : j ∈

{1, . . . , k} \ {i}} and Sr+1
i = {s′j : j ∈ {1, . . . , k} \ {i}}. Now we define Z0 =

V (Pr) = Cr
i ∪ Sr

i and for each 1 ≤ j ≤ i− 1, Z2j−1 = Z2j−2 ∪ {u(i,r+1)
j } and

Z2j = Z2j−1 \ {u(i,r)j }. That is, for each 1 ≤ j ≤ i− 1,

Z2j−1 = {u(i,r+1)
1 , . . . , u

(i,r+1)
j } ∪ {u(i,r)j . . . , u

(i,r)
k } ∪ Sr

i , and

Z2j = {u(i,r+1)
1 , . . . , u

(i,r+1)
j } ∪ {u(i,r)j+1 . . . , u

(i,r)
k } ∪ Sr

i .

For each i ≤ j ≤ k−1, Z2j−1 = Z2j−2∪{u(i,r+1)
j+1 } and Z2j = Z2j−1\{u(i,r)j+1 }.

That is, for each i ≤ j ≤ k − 1,

Z2j−1 = {u(i,r+1)
1 , . . . , u

(i,r+1)
i−1 , u

(i,r+1)
i+1 , . . . , u

(i,r+1)
j+1 } ∪

{u(i,r)j+1 . . . , u
(i,r)
k , u

(i,r)
i } ∪ Sr

i

and

Z2j = {u(i,r+1)
1 , . . . , u

(i,r+1)
i−1 , u

(i,r+1)
i+1 , . . . , u

(i,r+1)
j+1 } ∪

{u(i,r)j+2 . . . , u
(i,r)
k , u

(i,r)
i } ∪ Sr

i .

Next, we define Z2k−1 and Z2k as

Z2k−1 = {u(i,r+1)
1 , . . . , u

(i,r+1)
k } ∪ {u(i,r)i } ∪ Sr

i , and

Z2k = {u(i,r+1)
1 , . . . , u

(i,r+1)
k } ∪ Sr

i .

Next, for each 1 ≤ j ≤ k− 1, let Z2k+2j−1 = Z2k+2j−2 ∪{s′j} and Z2k+2j =
Z2k+2j−1 \ {sj}. It is easy to verify that Z1, . . . Z4k−2 are solutions to the
CCS instance (H, ĉ, 2k) and Z0, . . . , Z4k−2 is a reconfiguration sequence where
Z0 = V (Pr) and Z4k−2 = V (Pr+1).

Case 2(b): Reconfiguration from V (P20k) to V (T̂i+1). Next, we explain

how to get a reconfiguration sequence from V (P20k) to V (T̂i+1) using Lemma 2.
Recall that we have

C20k
i = {u(i,20k)1 , . . . , u

(i,20k)
k } and

S20k
i = {z ∈ V (H(i,20k)) : |NH(i,20k)(z) ∩ C20k

i | = 2}.

Let Ci+1 = {u(i+1,1
1 , . . . , u

(i+1,1)
k } and Si+1 = {z ∈ V (H(i+1,1)) : NH(i+1,1)(z)∩

Ci+1 = 2}. For ease of presentation, let sj = s
u
(i,20k)
i u

(i,20k)
j

for all j ∈
{1, . . . , k}\{i}. Also, let s′j = s

u
(i+1,1)
i u

(i+1,1)
j

for all j ∈ {1, . . . , k}\{i+1}. That

is, S20k
i = {sj : j ∈ {1, . . . , k} \ {i}} and Si+1 = {s′j : j ∈ {1, . . . , k} \ {i+ 1}}.

Notice that V (P20k) = C20k
i ∪ S20k

i and V (T̂i+1) = Ci+1 ∪ Si+1.
Towards proving the required reconfiguration sequence, we give a reconfigu-

ration sequence from C20k
i ∪ S20k

i to Ci+1 ∪ S20k
i and then from Ci+1 ∪ S20k

i

to Ci+1 ∪ Si+1. The reconfiguration sequence from C20k
i ∪ S20k

i to Ci+1 ∪ S20k
i
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is similar to the one in Case 1. That is, we add u
(i+1,1)
j and delete u

(i,20k)
j for

j in the order 1, . . . , i− 1, i+ 1, . . . , k, i. This gives a reconfiguration sequence
from C20k

i ∪ S20k
i to Z = Ci+1 ∪ S20k

i of length 2k.
Next we explain how to get a reconfiguration sequence from Z = Ci+1∪S20k

i

to Ci+1 ∪ Si+1. Notice that H[Z] and T̂i+1 = H[Ci+1 ∪ Si+1] are trees. Recall
that T i is the star on {1, . . . , k} with vertex i being the center, and T i+1 is is
the star on {1, . . . , k} with vertex i being the center. Also, cj is a coloring on

Hj which is inherited from the coloring c of G. That is, ci+1(u
(i+1,1)
j ) = j for

all 1 ≤ j ≤ k. Then, H[Z] = K[Ci+1] �ci+1
T i and T̂i+1 = H[Ci+1 ∪ Si+1] =

K[Ci+1] �ci+1
T i+1.

Let ei+1
1 , . . . , ei+1

k−1 be an arbitrary ordering of the the edges in T i+1. By

Lemma 2, we have a sequence ei1, . . . , e
i
k−1 of edges in T i such that for the

sequence T i
0, T

i
1, . . . , T

i
k−1 on vertex set {1, . . . , k}, where for each 0 ≤ j ≤ k−2,

T i
j+1 = T i

j + ei+1
j − eij and T i

0 = T i, the following holds.

(i) T i
j is a tree for all 0 ≤ j ≤ k − 1, and

(ii) T i
k−1 = T i+1.

This implies that, from the sequences ei1, . . . , e
i
k−1 and ei+1

1 , . . . , ei+1
k−1, we

get a sequence f1, . . . , f
′
k−1 on S20k

i and a sequence f ′1, . . . , f
′
k−1 on Si+1 such

that the for the sequence L0, . . . , L2(k−1), where L0 = Ci+1 ∪ {f1, . . . , fk−1}
and for all 1 ≤ j ≤ k − 1 L2j−1 = (L2j−2 ∪ {f ′i}), L2j = L2j−1 \ {fi} the
following holds.

(1) H[Li] is connected for all 0 ≤ i ≤ k − 1, and
(2) Lk−1 = Si+1 ∪ Ci+1.

Here, conditions (1) and (2) follow from conditions (i) and (ii), respectively.
Moreover, ĉ(Li) = [k + 1] for all 0 ≤ i ≤ 2(k − 1) and L0 = Z. Thus,

L0, . . . , L2(k−1) is a valid reconfiguration sequence from Z to V (T̂i+1). Note
that the ordering on the edges implies an ordering by which we can move
the subdivision vertices from Si to Si+1 without violating connectivity. This

implies that there is a reconfiguration sequence from V (P20k) to V (T̂i+1), of

length 4k − 2. Therefore, we have a reconfiguration sequence from V (T̂i) to

V (T̂i+1) of length O(k2).

Case 3: Reconfiguration from V (T̂k) to V (Tt). The arguments for this
case are similar to those given in Case 1, we therefore omit the details. By
summing up the lengths of reconfiguration sequences, we get that if (G, c, k)
is a yes-instance of Multicolored Clique then there is a reconfiguration
sequence from Qs to Qt, of length O(k3). ut

Lemma 4 If there is a reconfiguration sequence from Qs to Qt then there is a
k-colored clique in G.

Proof For each 1 ≤ i ≤ k + 1, let Ri be the set of vertices colored by the color
i. That is, Ri = ĉ−1(i). First, we prove some auxiliary claims. The proofs of
the following two claims follow from the construction of H and the definition
of ĉ.
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Claim 1 (i) R1 ∪ . . . ∪Rk is an independent set in H, and (ii) every vertex
in Rk+1 is connected to vertices of at most two distinct colors.

Claim 2 Let v, w ∈ V (H) \ (V (H0) ∪ V (Hk+1)) be two distinct vertices such
that ĉ(v) = ĉ(w) and ĉ(v) ∈ {1, . . . , k}. If v and w have a common neighbor in
V (H) \ V (H0), then v and w are copies of same vertex z ∈ V (G).

Claim 3 Let Y ⊆ V (H) be a vertex subset such that ĉ(Y ) = {1, . . . , k + 1}
and H[Y ] is connected. Then, |Y | ≥ 2k − 1.

Proof Let B = Y \ ĉ−1(k+1) = Y ∩(R1∪ . . .∪Rk). Since ĉ(Y ) = {1, . . . , k+1},
|B| ≥ k and by Claim 1(i), B is an independent set in H. By Claim 1(ii), each
vertex in Ri+1 is connected to vertices of at most two distinct colors. Thus,
since H[Y ] is connected, the claim follows. ut

Suppose (H, ĉ,Qs, Qt, 2k) is a yes-instance of CCS-R. Then, there is a
reconfiguration sequence D1, . . . , D` for ` ∈ N, where D1 = Qs and D` = Qt.
Without loss of generality, we assume that the sequence D1, . . . , D` is a minimal
reconfiguration sequence. Then, by Claim 3, for each i ∈ [`], 2k−1 ≤ |Di| ≤ 2k.

Moreover, since |D1| = |D`| = 2k − 1, we have that for each even i, Di is
obtained from Di−1 by a token addition, and for each odd i, Di is obtained
from Di−1 by a token removal. This also implies that for each even i, |Di| = 2k,
for each odd i, |Di| = 2k − 1, and ` is odd.

Claim 4 Let i ∈ [`] and |Di| = 2k− 1. Then, for all 1 ≤ j ≤ k, |Di ∩Rj | = 1,
and |Di ∩Rk+1| = k − 1. Moreover, each vertex in Di ∩Rk+1 will be adjacent
to exactly two vertices in H[Di] and these vertices will be of different colors
from {1, . . . , k}.

Proof By Claim 1, R1 ∪ . . . ∪Rk is independent and every vertex of Rk+1 is
adjacent to vertices of at most two different color classes. Hence, we need at
least k − 1 vertices from Rk+1 that make the connections between the vertices
of Di colored with {1, . . . , k}. The above statement along with the assumption
|Di| = 2k − 1 imply the claim. ut

Claim 5 Let i ∈ {2, . . . ` − 1}. Let v ∈ Di and w ∈ Di+1 such that v, w /∈
V (H0) ∪ V (Hk+1), at most one vertex in {v, w} is in V (H(1,1)), and ĉ(v) =
ĉ(w) ∈ {1, . . . , k}. Then, v and w are copies of the same vertex in G. Moreover,
v, w ∈ V (Hj) ∪ V (Hj+1) for some j ∈ [k − 1].

Proof Suppose v and w are not copies of the same vertex z ∈ V (G). We know
that |Di| = 2k − 1 or |Di| = 2k.

Case 1: |Di| = 2k−1. Since Di is a solution, Di induces a connected subgraph
in H. By Claim 4, |Di ∩Rj | = 1 for all j ∈ {1, . . . , k} and |Di ∩Rk+1| = k− 1.
Also, by Claim 1, (i) R1 ∪ . . . ∪Rk is an independent set in H, and (ii) every
vertex in Rk+1 is connected to vertices of at most two distinct colors. Statements
(i) and (ii), and the fact that |Di| = 2k − 1 imply that (iii) H[Di] is a tree
and each vertex in Di ∩Rk+1 is incident to exactly two vertices in Di. Since
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|Di+1| = |Di| + 1, in reconfiguration step i + 1, we add a vertex to obtain
Di+1. We know that v ∈ Di. Since, for any color q ∈ [k], there is exactly one
vertex in Di of color q (i.e., |Di ∩ Rq| = 1), we have that Di+1 = Di ∪ {w}.
Moreover, in step i+ 2, the vertex removed from Di+1 will be from {v, w} and
that vertex will be v (because of the minimality assumption of the length of
the reconfiguration sequence). That is, Di+2 = (Di ∪ {w}) \ {v}. Notice that
|Di| = |Di+2| = 2k−1. Let b a vertex in Di+2 which is adjacent to w in H[Di+2].
Since Rk+1 ∩Di = Rk+1 ∩Di+2 and |Di| = |Di+2| = 2k − 1, by Claim 1, the
neighbors of b in H[Di] and H[Di+2] are of the same color. This implies that
b is adjacent to v in H[Di]. Thus, we proved that {b, w}, {b, v} ∈ E(H). If
b ∈ V (H0), then v, w ∈ V (H(1,1)) which is a contradiction to the assumption.
Otherwise, by Claim 2, we conclude that v and w are copies of same vertex.

Case 2: |Di| = 2k. In this case Di+1 is obtained by removing a vertex from
Di. Moreover, i ≥ 3, because we have two vertices in Di from V (H)\D1. Since
|Di+1| = 2k − 1, because of Claim 4, Di+1 is obtained by removing the vertex
v from Di. That is, Di+1 = Di \ {v} and v, w ∈ Di. Then, again by Claim 4,
there is v′ ∈ {v, w} such that Di−1 ] {v′} = Di. Let w′ = {v, w} \ {v′}. Since
i ≥ 3, we now apply Case 1 with respect to w′ ∈ Di−1 and v′ ∈ Di to complete
the proof. ut

Claim 6 For any index j ∈ {1, . . . , k} and color q ∈ {1, . . . , k}, there exist
an odd i ∈ {3, . . . , `} and r ∈ {5k, . . . , 15k} such that Di contains a vertex of
color q from V (Hj,r).

Proof Without loss of generality, assume that k ≥ 2. Moreover, for any odd
i ∈ [`−2], there is a vertex common in Di and Di+2 (since k ≥ 2). This implies
that H[D1 ∪ D3 . . . D`] is a connected subgraph of H. Notice that for any
j ∈ {1, . . . , k} and r ∈ [20k], V (H(j,r)) is a (v1, x1)-separator in H. Therefore,
since H[D1∪D3 . . . D`] is connected and v1, x1 ∈ D1∪D`, (i) for any j ∈ [k] and
r ∈ [20k], there is an odd i ∈ [`] such that Di contains a vertex from V (H(j,r)).
Now fix an index j ∈ {1, . . . , k} and a color q ∈ {1, . . . , k}. By statement (i),
there is an odd i ∈ {1, . . . , `} such that Di contains a vertex from V (H(j,10k)).
Since H[Di] is connected, |Di| = 2k − 1, Di ∩ V (H(j,10k)) 6= ∅, and any vertex

in V (H) \
⋃15k

r=5k V (H(j,r)) is at distance more that 5k (by the construction of

H), we have that all the vertices in Di belong to
⋃15k

r=5k V (H(j,r)). Moreover,
by Claim 4, Di contains a vertex colored q and that will also be present in⋃15k

r=5k V (H(j,r)). This completes the proof of the claim. ut

Claim 7 For any color q ∈ {1, . . . , k}, the vertices of color q from
⋃k

i=2 V (Hi)
used in the reconfiguration sequence D1, . . . , D` are copies of the same vertex
z ∈ V (G). Moreover, exactly one vertex from V (Hj) of color q is used in the
reconfiguration for all 2 ≤ j ≤ k.

Proof Fix a color q ∈ {1, . . . , k}. By Claim 6, there are vertices of color q from
V (Hj) for all j is used in the reconfiguration sequence. By Claim 5, all these
vertices are copies of the same vertex z ∈ V (G). ut
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Now we define a k-size vertex subset C ⊆ V (G) and prove that C is a
clique in G. We let C = {ai ∈ V (G) : 1 ≤ i ≤ k, c(ai) = i, and the copy of ai in
V (H2) is used in D1, . . . , D`}. Because of Claim 7, we have that |C| = k and
C contains a vertex of each color in c. C = {a1, . . . , ak} ⊆ V (G) and for each
q ∈ [k], c(aq) = q. We now prove that C is indeed a clique in G. Towards that,
we need to prove that for each 1 ≤ q < j ≤ k, {aq, aj} ∈ E(G).

Claim 8 Let 1 ≤ q < j ≤ k. Then, {aq, aj} ∈ E(G).

Proof By Claim 6, we know that there exist an odd i ∈ [`] and r ∈ {5k, . . . , 15k}
such that Di contains a vertex of color q in V (H(j,r)). Thus, by Claim 7, a
copy of aj and a copy of aq are present in Di. Let uj and uq be the vertices in
Di colored with j and q, respectively. By Claim 7, uj is a copy of aj and uq is
a copy of aq. Any vertex b in V (Hj) colored k + 1 is adjacent to vertices of
exactly two colors, out of which one color is j. Moreover, by the construction
of H, (a) if b is adjacent to x and y in V (Hj), and x and y are copies of x′ and
y′ in G, respectively, then {x′, y′} ∈ E(G). We know that H[Di] is connected,
|Rs ∩Di| = 1 for all 1 ≤ s ≤ k, Di \Rk+1 is an independent set in H, and each
vertex in Di colored with k+ 1 is adjacent to exactly two vertices in Di \Rk+1

with one of them being uj (see Claims 1 and 4). This implies that there is
common neighbor b for uq and uj and hence {aq, aj} ∈ E(G), by statement
(a) above. This completes the proof of the claim. ut

This completes the proof of the lemma. ut

Theorem 1 CCS-R parameterized by k + ` is W[1]-hard on 4-degenerate
graphs.

3.2 Reduction from CCS-R to CDS-R.

We give a polynomial-time parameter-preserving reduction from CCS-R to
CDS-R that is fairly straightforward. Let (G, c,Qs, Qt, k) be an instance of
CCS-R. Let c : V (G) 7→ {1, . . . , k′}, where k′ ≤ k. We construct a graph H as
follows. For each 1 ≤ i ≤ k′, we add a vertex di and connect di to all the vertices
in c−1(i). Next, for each 1 ≤ i ≤ k′, we add a pendant vertex xi (i.e., {di, xi}
is an edge). Let D = {d1, . . . , dk′}. We output (H,Qs ∪D,Qt ∪D, k + k′) as
the new CDS-R instance.

Lemma 5 If G is a d-degenerate graph then H is a (d+ 1)-degenerate graph.

Proof For each vertex v ∈ V (G), dH(v) = dG(v) + 1. Thus, after removing
V (G) and {xi : 1 ≤ i ≤ k′}, the remaining graph is edgeless. ut

It is easy to verify that for any reconfiguration sequence Qs = R1, . . . , R` =
Qt of the instance (G, c,Qs, Qt, k) of CCS-R, Qs ∪D = R1 ∪D, . . . , R` ∪D =
Qt ∪D is a reconfiguration sequence of the instance (H,Qs ∪D,Qt ∪D, k+ k′)
of CDS-R. Now we prove the reverse direction.
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Lemma 6 If (H,Qs∪D,Qt∪D, k+k′) is a yes-instance then (G, c,Qs, Qt, k)
is a yes-instance.

Proof Notice that the set D is contained in any connected dominating set of
H. Moreover for any minimal connected dominating set Z in H, Z ∩ {xi : 1 ≤
i ≤ k′} = ∅, H[Z \D] is connected, and Z \D contains a vertex from c−1(i)
for all 1 ≤ i ≤ k′ (recall that G is a subgraph of H). Therefore, by deleting
D from each set in a reconfiguration sequence of (H,Qs ∪D,Qt ∪D, k + k′),
we get a valid reconfiguration sequence of (G, c,Qs, Qt, k). This completes the
proof. ut

Thus, by Theorem 1, we have the following theorem.

Theorem 2 CDS-R parameterized by k + ` is W[1]-hard on 5-degenerate
graphs.

4 Fixed-parameter tractability on planar graphs

This section is devoted to proving that CDS-R under TAR parameterized by k
is fixed-parameter tractable on planar graphs. In fact, we show that the problem
admits a polynomial kernel. Recall that a kernel for a parameterized problem
Q is a polynomial-time algorithm that computes for each instance (I, k) of
Q an equivalent instance (I ′, k′) with |I ′| + k′ ≤ f(k) for some computable
function f . The kernel is polynomial if the function f is polynomial. We prove
that for every instance (G,S, T, k) of CDS-R, with G planar, we can compute
in polynomial time an instance (G′, S, T, k) where |V (G′)| ≤ h(k) for some
polynomial h, G′ planar, and where there exists a reconfiguration sequence
under TAR from S to T in G (using at most k tokens) if and only if such a
sequence exists in G′.

Our approach is as follows. We first compute a small domination core for
G, that is, a set of vertices that captures exactly the domination properties
of G for dominating sets of sizes not larger than k. While the classification of
interactions with the domination core would suffice to solve Dominating Set
Reconfiguration, additional difficulties arise for the connected variant. In a
second step we use planarity to identify large subgraphs that have very simple
interactions with the domination core and prove that they can be replaced
by constant size gadgets such that the reconfiguration properties of G are
preserved.

4.1 Domination cores

Definition 2 Let G be a graph and let k ≥ 1 be an integer. A k-domination
core is a subset C ⊆ V (G) of vertices such that every set X ⊆ V (G) of size at
most k that dominates C also dominates G.
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It is not difficult to see that Dominating Set is fixed-parameter tractable
on all graphs that admit a k-domination core of size at most f(k) that is com-
putable in time g(k) ·nc, for any computable functions f, g and constant c. This
approach was first used (implicitly) in [5] to solve Distance-r Dominating
Set on nowhere dense graph classes. In case k is the size of a minimum (distance-
r) dominating set, one can establish the existence of a linear size k-domination
core on classes of bounded expansion [7] (including the class of planar graphs)
and a polynomial size (in fact an almost linear size) k-domination core on
nowhere dense graph classes [9, 24]. If k is not minimum, there exist classes of
bounded expansion such that a k-domination core must have at least quadratic
size [8]. The most general graph classes that admit k-domination cores are
given in [10]. Moreover, Dominating Set Reconfiguration and Distance-
r Dominating Set Reconfiguration are fixed-parameter tractable on all
graphs that admit small (distance-r) k-domination cores [25,33].

Lemma 7 There exists a polynomial h such that for all k ≥ 1, every planar
graph G admits a polynomial-time computable k-domination core of size at
most h(k).

The lemma is implied by Theorem 1.6 of [24] by the fact that planar graphs
are nowhere dense. We want to stress again that the polynomial size of the
k-domination core results from the fact that k may not be the size of a minimum
dominating set, if k is minimum we can find a linear size core. Explicit bounds
on the degree of the polynomial can be derived from [30, 32], but we refrain
from doing so to not disturb the flow of ideas.

The following lemma is immediate from the definition of a k-domination
core.

Lemma 8 If C is a k-domination core and D is a dominating set of size at
most k that contains a vertex set W ⊂ D such that N [D]∩C = N [D\W ]∩C =
C, then D \W is also a dominating set.

Definition 3 Let G be a graph and let A ⊆ V (G). The projection of a vertex
v ∈ V (G) \ A into A is the set N(v) ∩ A. If two vertices u, v have the same
projection into A we write u ∼A v.

Obviously, the relation ∼A is an equivalence relation. The following lemma
is folklore, one possible reference is [11].

Lemma 9 Let G be a planar graph and let A ⊆ V (G). Then there exists a
constant c such that there are at most c · |A| different projections to A, that is,
the equivalence relation ∼A has at most c · |A| equivalence classes.

4.2 Reduction rules

Let G be an embedded planar graph. We say that a vertex v touches a face
f if v is drawn inside f or belongs to the boundary of f or is adjacent to a
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vertex on the boundary of f . We fix two connected dominating sets S and T
of size at most k. We will present a sequence of lemmas, each of which implies
a polynomial-time computable reduction rule that allows us to transform G to
a planar graph G′ that inherits its embedding from G, with S, T ⊆ V (G′) and
that has the same reconfiguration properties with respect to S and T as G. To
not overload notation, after stating a lemma with a reduction rule, we assume
that the reduction rule is applied until this is no longer possible and call the
resulting graph again G. We also assume that whenever one or more of our
reduction rules are applicable, then they are applied in the order presented. We
will guarantee that S and T will always be connected dominating sets of size
at most k, hence, after each application of a reduction rule, we can recompute
a k-domination core in polynomial time. This yields only polynomial overhead
and allows us to assume that we always have marked a k-domination core C of
size at most h(k) as described in Lemma 7. This allows us to state the lemmas
as if G and C are fixed. Without loss of generality we assume that C contains
S and T .

Definition 4 A set W of vertices or edges is irrelevant if there is a reconfig-
uration sequence from S to T in G if and only if there is a reconfiguration
sequence from S to T in G−W .

Definition 5 Let u, v ∈ V (G) be distinct vertices. We call the set D(u, v) :=
(N(u)∩N(v))∪{u, v} the diamond induced by u and v. We call |N(u)∩N(v)|
the thickness of D(u, v).

Lemma 10 If G contains a diamond D(u, v) of thickness greater than 3k,
then at least one of u or v must be occupied by a token in every step of every
reconfiguration sequence from S to T .

Proof Assume S = S1, . . . , St = T is a reconfiguration sequence from S to T
and u, v 6∈ Si for some 1 ≤ i ≤ t. Then every s ∈ Si can dominate at most 3

•u

•v

s• • • • •

Fig. 8: A vertex s ∈ Si can dominate at most 3 vertices of N(u) ∩N(v).

vertices of N(u)∩N(v): otherwise u, v, s together with 3 vertices of N(u)∩N(v)
different from u, v and s would form a complete bipartite graph K3,3. ut

Lemma 11 If G contains a diamond D(u, v) of thickness greater than 3k,
then we can remove all internal edges in D(u, v), i.e., edges with both endpoints
in N(u) ∩N(v).
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Proof Assume S = S1, . . . , St = T is a reconfiguration sequence from S to
T . According to Lemma 10, for each 1 ≤ i ≤ t, Si ∩ {u, v} 6= ∅. Hence all
vertices of N(u) ∩N(v) are always dominated by at least one of u or v, say
by u. Moreover, having tokens on more than one vertex of N(u) ∩N(v) will
never create connectivity via internal edges that is not already there via edges
incident on u. In other words, for any connected dominating set S of G, if an
edge yz is used for connectivity, where y, z ∈ N(u) ∩N(v), then the edge can
be replaced by the path yuz or the path yvz (depending on which of u or v is
in S). ut

As described earlier, we now apply the reduction rule of Lemma 11 until
this is no longer possible, and name the resulting graph again G. As we did
not make use of the properties of a k-domination core in the lemma, it is
sufficient to recompute a k-domination core C after applying the reduction
rule exhaustively. In the following it may be necessary to recompute it after
each application of a reduction rule. We will not mention these steps explicitly
in the following.

Lemma 12 If G contains a diamond D(u, v) of thickness greater than 4|C|+
3k + 1 then G contains an irrelevant vertex.

Proof Let H be the subgraph of G induced by D(u, v). We enumerate the
vertices of N(u) ∩N(v) consecutively as x1, . . . , xt for some t > 4|C|+ 3k + 1.
We let X = {x1, . . . , xt}. Note that since we have t vertex-disjoint paths
between u and v in H, these paths define the boundaries of t faces in the plane
embedding of H (after applying the reduction rule of Lemma 11, H has all the
edges {u, x} and {v, x} for x ∈ N(u) ∩N(v) and no other edges). Each vertex
in C \ {u, v} can be adjacent in H to at most two vertices in X, hence each
vertex in C \ {u, v} can touch at most 3 consecutive faces of H.

•
u

•v

•• • • • • • • •
c1•

c2 •
f g

x1 x3x2

Fig. 9: Every vertex of C \ {u, v} can touch at most 3 consecutive faces of H.
In the figure we assume the vertices c1 and c2 are in C \ {u, v}. The faces that
are touched by c1 or c2 are colored in blue. The uncolored faces f and g are
not touched by vertices of C \ {u, v}.

This leaves |C| + 3k + 1 faces of H that are not touched by a vertex of
C \ {u, v}. By the pigeonhole principle we can find 2 adjacent faces f and g of
H that are not touched by a vertex of C \ {u, v}.
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We let x1 and x2 denote the two vertices on the boundary of face f different
from u and v and we let x2 and x3 denote the two vertices on the boundary of
face g different from u and v. Recall that, due to Lemma 11, we know that there
are no edges between those three vertices. Let W denote the set of all vertices
contained in the face of the cycle u, x1, v, x3, u. In particular, W contains x2.
We claim that the vertices of W can be removed from G without changing
the reconfiguration properties of G, i.e., W is a set of irrelevant vertices. Let
G′ = G −W . First observe that, since S, T ⊆ C, W ∩ (S ∪ T ) = ∅, hence
S, T ⊆ V (G′). We show that reconfiguration from S to T is possible in G if
and only if reconfiguration from S to T is possible in G′.

Assume S = S1, . . . , St = T is a reconfiguration sequence from S to T in G.
Let S′1, . . . , S

′
t, where for 1 ≤ i ≤ t, S′i := Si if Si does not contain a vertex of

W and S′i := (Si \W ) ∪ {x1} otherwise. Note that this modification leaves S
and T unchanged, hence, S′1 = S1 and S′t = St. We claim that S′1, . . . , S

′
t is a

reconfiguration sequence from S to T in G′.

Claim 9 For 1 ≤ i ≤ t, S′i is a dominating set of G, and hence also of G′.

Proof No vertex of W is adjacent to a vertex of C \ {u, v} and W ∩ C = ∅
by construction. Hence, the only vertices of C that are possibly adjacent to
a vertex of W are the vertices u and v. Whenever Si contains a vertex of W ,
we have x1 ∈ S′i, which dominates both u and v. Hence, S′i dominates at least
the vertices of C that Si dominates. We use Lemma 8 to conclude that S′i is a
dominating set of G. ut

Claim 10 For 1 ≤ i ≤ t, S′i is connected.

Proof Let s1, s2 ∈ Si \W and let P be a shortest path between s1 and s2 in
G[Si]. We have to show that there exists a path between s1 and s2 in G[S′i]. If
P does not use a vertex of W , then there is nothing to show. Hence, assume P
uses a vertex of W . By definition of W , both s1 and s2 lie outside or on the
boundary of the face h of the cycle u, x1, v, x3 that contains x2. Hence, P must
enter and leave the face h, and as P is a shortest path, it must enter and leave
via opposite vertices, i.e., via u and v, or via x1 and x3 (as all other pairs are
linked by an edge and we could find a shorter path). If P contains u and v,
then we can replace the vertices of W on P by x1 and we are done.

Hence, assume P uses x1 and x3. As D(u, v) is a diamond of thickness
greater than 4|C|+ 3k + 1 > 3k, according to Lemma 10 at least one of the
vertices u and v, say u, is contained in Si, and by definition also in S′i. Then
we can replace the vertices of W on P by u and we are again done. ut

Finally, the following claim is immediate from the definition of each S′i.
Combining Claims 9, 10, and 11, we conclude that S′1, . . . , S

′
t is a reconfiguration

sequence from S to T in G′.

Claim 11 S′i+1 is obtained from S′i by the addition or removal of a single
token for all 1 ≤ i < t.
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To prove the opposite direction, assume S = S′1, . . . , S
′
t = T is a reconfigu-

ration sequence from S to T in G′. We claim that this is also a reconfiguration
sequence from S to T in G. All we have to show is that S′i is a dominating
set of G for all 1 ≤ i ≤ t. This follows immediately from the fact that S′i is
a dominating set of G′, and hence, as W is not adjacent to C \ {u, v} and
W ∩ C = ∅, also a dominating set of C in G. Then according to Lemma 8, S′i
also dominates G. We conclude that there is a reconfiguration sequence from
S to T in G if and only if there is a reconfiguration sequence from S to T in
G′ = G−W . ut

We may in the following assume that G does not contain diamonds of
thickness greater than 4|C|+ 3k + 1.

Corollary 1 If a vertex v ∈ V (G) has degree greater than (4|C|+ 3k + 1) · k,
then the token on v is never lifted throughout a reconfiguration sequence.

Proof Assume S = S1, . . . , St = T is a reconfiguration sequence from S to T
in G and assume there is Si with v 6∈ Si. The dominating set Si has at most k
vertices and must dominate N(v). Hence, there must be one vertex u ∈ Si that
dominates at least a 1/k fraction of N(v), which is larger than 4|C|+ 3k + 1.
Then there is a diamond D(u, v) of thickness greater than 4|C|+ 3k+ 1, which
does not exist after application of the reduction rule of Lemma 12. ut

According to Corollary 1, the only vertices that can have high degree after
applying the reduction rules are vertices that are never lifted throughout a
reconfiguration sequence. This gives rise to another reduction rule that is
similar to the rule of Lemma 11.

Lemma 13 Assume v is a vertex of degree greater than (4|C| + 3k + 1) · k.
Then we may remove all edges with both endpoints in N(v).

Proof Let G′ be the graph obtained from G by removing all edges with both
endpoints in N(v). We claim that reconfiguration between S and T is possible
in G if and only if it is possible in G′. The fact that S and T are in fact
connected dominating sets in G′ is implied by the argument below.

Assume S = S1, . . . , St = T is a reconfiguration sequence from S to T in G.
We claim that the same sequence is a reconfiguration sequence in G′. According
to Corollary 1, v ∈ Si for all 1 ≤ i ≤ t. This implies that Si is connected in G′

for all 1 ≤ i ≤ t, as all x, y ∈ Si that are no longer connected by an edge in G′

but were connected in G are connected via a path of length 2 using the vertex
v. It is also easy to see that Si is a dominating set in G′, as all vertices that
are no longer dominated by s ∈ Si in G are still dominated by v. Observe that
this in particular implies that S and T are connected dominating sets in G′.
Vice versa, if S = S1, . . . , St = T is a reconfiguration sequence from S to T in
G′, this is trivially also a reconfiguration sequence in G. ut

The following reduction rule is obvious.
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Lemma 14 If a vertex v has more than k+1 pendant neighbors, i.e., neighbors
of degree exactly one, then it suffices to retain exactly k + 1 of them in the
graph.

Lemma 15 There are at most c|C| · (4|C|+ 3k + 1) vertices of V (G) \C that
have 2 neighbors in C, where c is the constant of Lemma 9.

Proof According to Lemma 9 there are at most c|C| different projections to C.
Each projection class that has at least 3 representatives has size at most 2, as
otherwise we would find a K3,3 as a subgraph, contradicting the planarity of G.
Consider a class with a projection of size 2 into C. Denote these two vertices
of C by u and v. If this class has more than 4|C|+ 3k+ 1 representatives, then
D(u, v) is a diamond of thickness greater than 4|C| + 3k + 1, which cannot
exist after exhaustive application of the reduction rule of Lemma 12. ut

We now come to the description of our final reduction rule. Let D denote
the set of vertices containing both C and all vertices of V (G) \ C having at
least two neighbors in C. In other words, V (G) \D contains all those vertices
in V (G) \ C that have exactly one neighbor in C. According to Lemma 15
at most c|C| · (4|C|+ 3k + 1) vertices have two neighbors in C, hence |D| ≤
c|C| · (4|C|+ 3k + 1) + |C| =: p.

Lemma 16 Assume there are two vertices u and v with degree greater than
4p+ (4|C|+ 3k + 1) · k + 1. Let P be a maximum set of vertex-disjoint paths
of length at least 2 that run between u and v using only vertices in V (G) \D.
If |P| > 4p+ (4|C|+ 3k + 1) · k + 1, then there is G′ such that the instances
(G,S, T, k) and (G′, S, T, k) are equivalent, G′ is planar, and |V (G′)| < |V (G)|.

Proof We first show that we can essentially establish the situation depicted in
Figure 10. We may assume that the paths of P are induced paths, otherwise
we may replace them by induced paths. Let H be the graph induced on u, v
and the vertices of P . In the figure, the paths of P are depicted by thick edges,
while the diagonal edges do not belong to the paths. This situation is similar
to the situation in the proof of Lemma 12. Just as in the proof of Lemma 12,
we find two adjacent faces f, g of H that do not touch a vertex of D \ {u, v}.

Claim 12 The paths bounding f and g have length 3, i.e., they have exactly
two inner vertices.

Proof First observe that P ∈ P cannot have length exactly 2, as then P
contains a vertex adjacent to both u and v. However, the vertices with this
property lie in D, and hence by construction not on P .

Assume there is P ∈ P of length greater than 3. Let M(u) denote the
neighbors of u that are in V (G) \D and are only adjacent to u and to no other
vertex of C. Similarly, let M(v) denote the neighbors of v that are in V (G) \D
and are only adjacent to v and to no other vertex of C. By construction, the faces
f and g do not contain vertices ofD\{u, v}. Furthermore, P contains exactly one
vertex of M(u) and exactly one vertex of M(v). It cannot contain two vertices
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Fig. 10: An exemplary situation handled by Lemma 16.

of one of these sets, as otherwise P is not an induced path. Hence, assume
that P contains another vertex x that is not in M(u)∪M(v). Then x must be
dominated by a vertex different from u and from v. However, by construction,
the faces f and g do not touch a vertex of D \ {u, v} ⊇ (S ∪ T ) \ {u, v}, a
contradiction. ut

Denote by xf , yf the two vertices that lie on the boundary of f and not on
the boundary of g and by xg, yg the two vertices that lie on the boundary of g
and not on the boundary of f . Assume that xf , xg ∈M(u) and yf , yg ∈M(v).
Denote by zu, zv the vertices shared by f and g different from u and v that
are adjacent to u and v, respectively. Denote by W the set of all vertices that
lie inside the face h of the cycle u, xf , yf , v, yg, xg, u that contains the vertices
zu and zv. Hence W contains at least the vertices zu and zv. By Corollary 1,
we know that u, v ∈ Si, for all 1 ≤ i ≤ t (both u and v can never be lifted).
Consequently, by Lemma 13, we know that there are no edges with both
endpoints in N(v) nor edges with both endpoints in N(u). Combining the
previous fact with the fact that all vertices of W are adjacent to either u or
v (but not both) and to no other vertex of C ⊇ S ∪ T , we conclude that W
consists of exactly the two vertices zu and zv and that there are no edges
between zu and xg, xf and no edges between zv and yg, yf . Note that we can
safely assume that none of the degree-one neighbors of u or v are inside W .
We claim that the vertices zu and zv are irrelevant and can be removed after
possibly introducing an additional edge to the graph. Recall that S and T do
not contain the vertices zu and zv. We define G′ as follows.

– If {u, v} 6∈ E(G) and ({xf , zv} ∈ E(G) or {yf , zu} ∈ E(G)) and ({xg, zv} ∈
E(G) or {yg, zu} ∈ E(G)) then G′ is obtained from G by deleting zu and
zv and introducing the edge {xf , yg}.

– Otherwise, G′ is obtained from G by simply deleting zu and zv.

We claim that (G,S, T, k) and (G′, S, T, k) are equivalent instances of CDS-
R. Assume first that there exists a reconfiguration sequence S = S1, . . . , St = T
in G. We distinguish two cases. First assume that {u, v} ∈ E(G). Hence, G′

is obtained from G by simply deleting zu and zv. Let S′1, . . . , S
′
t, where for
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1 ≤ i ≤ t, S′i = Si \ {zu, zv}. We claim that S′1, . . . , S
′
t is a reconfiguration

sequence from S to T in G′.

Claim 13 For 1 ≤ i ≤ t, S′i is a dominating set of G, and hence also of G′.

Proof The vertices zu and zv are not adjacent to a vertex of C \ {u, v} and
{zu, zv}∩C = ∅. Hence, the only vertices of C that are possibly adjacent to zu
or zv are the vertices u and v. According to Lemma 1, u, v ∈ Si, and moreover
u, v ∈ S′i, for all 1 ≤ i ≤ t. Hence, S′i dominates at least the vertices of C that
Si dominates. We use Lemma 8 to conclude that S′i is a dominating set of
G. ut

Claim 14 For 1 ≤ i ≤ t, S′i is connected.

Proof Let s1, s2 ∈ Si \ {zu, zv} and let P be a shortest path between s1 and s2
in G[Si]. We have to show that there exists a path between s1 and s2 in G[S′i].
If P does not use zu nor zv then there is nothing to prove. Hence, assume P
uses zu or zv (or both). By definition of W , both s1 and s2 lie outside the face
h of the cycle u, xf , yf , v, yg, xg, u that contains zu, zv. Hence, P must enter
and leave the face h, say it enters at u and leaves at yf . All other possibilities
are handled analogously. Then we can avoid the vertices zu and zv by walking
to v first, then u (or xf ), and then to yf . ut

The next claim follows from the definition of S′i and the fact that we can
remove any duplicate consecutive sets in a reconfiguration sequence.

Claim 15 S′i+1 is obtained from S′i by the addition or removal of a single
token for all 1 ≤ i < t.

This finishes the proof in case {u, v} ∈ E(G). Hence, we assume now that
{u, v} 6∈ E(G) and ({xf , zv} ∈ E(G) or {yf , zu} ∈ E(G)) and ({xg, zv} ∈ E(G)
or {yg, zu} ∈ E(G)). That is, G′ is obtained from G by deleting zu and zv and
introducing the edge {xf , yg}. We now obtain S′i from Si, for 1 ≤ i ≤ t, by
replacing

– zu by xf and zv by yg if Si ∩ {zu, zv} = {zu, zv},
– zu by xf if Si ∩ {zu, zv} = {zu}, and
– zv by yg if Si ∩ {zu, zv} = {zv}.

We claim that S′1, . . . , S
′
t is a reconfiguration sequence from S to T in G′.

We need no new arguments to prove that each S′i is a dominating set of G and
hence of G′ and that each S′i+1 is obtained from S′i by adding or removing one
token. It remains to show that each S′i is connected in G′.

Claim 16 For 1 ≤ i ≤ t, S′i is connected in G′.

Proof According to Lemma 1, u, v ∈ Si, and also u, v ∈ S′i, for all 1 ≤ i ≤ t. If
Si \{zu, zv} is connected, S′i is also connected, hence assume Si \{zu, zv} is not
connected. As X = {u, xf , zu, xg} is connected via u and Y = {v, yf , zv, yg} is
connected via v, it suffices to show that our vertex exchange creates a connection
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in G′ between any vertex of X and any vertex of Y . If Si ∩ {zu, zv} = {zu, zv}
this is clear, as we shift the tokens to xf and yg and in G′ we have introduced
the edge {xf , yg}. If Si∩{zu, zv} = {zu}, then {zu, yg} ∈ E(G) and yg ∈ Si, or
{zu, yf} ∈ E(G) and yf ∈ Si. We move the token zu to xf . In the first case we
have connectivity via the new edge {xf , yg} ∈ E(G′), and in the second case we
have connectivity via the edge {xf , yf} ∈ E(G). The case Si ∩ {zu, zv} = {zv}
is symmetric. ut

This finishes the proof that if (G,S, T, k) is a positive instance then
(G′, S, T, k) is a positive instance. Now assume that there exists a reconfigura-
tion sequence S = S′1, . . . , S

′
t = T in G′. In case we do not introduce the new

edge to obtain G′ from G, we do not need new arguments to see that S′1, . . . , S
′
t

is a reconfiguration sequence also in G. Moreover, if G′′[S′i] is connected for all i,
where G′′ is obtained from G′ by removing the edge {xf , yg}, then again there
is nothing to prove as G′ is a subgraph of G and therefore S = S′1, . . . , S

′
t = T

is a reconfiguration sequence in G. Hence, assume that there exists at least
one contiguous subsequence σ starting at index s and ending at index f (with
possibly s = f) such that G′′[S′s], G

′′[S′s+1], . . . , G′′[S′f ] are not connected. In
other words, there exists a subsequence of length one or more that uses the edge
{xf , yg} for connectivity. Moreover, we assume, without loss of generality (the
other case is symmetric), that S′s is obtained from S′s−1 by adding a token on
vertex yg, i.e., S′s = S′s−1∪{yg}, and S′f+1 is obtained from S′f by removing the
token on vertex xf , i.e., S′f+1 = S′f \ {xf}. We also assume that E(G) contains
the edges {xf , zv} and {zu, yg} (the remaining cases are handled identically). It
remains to show how to modify σ so that it does not use the edge {xf , yg} for
connectivity and remains a valid reconfiguration sequence in G. By applying
the same arguments for any such subsequence we obtain the required reconfig-
uration sequence in G. We modify σ as follows. We let S′′i = (S′i \ {yg})∪ {zv},
for s ≤ i ≤ f . Then we replace S′f+1 by four new sets A1, A2, A3, and A4,
where A1 = S′f \ {xf}, A2 = A1 ∪ {zu}, A3 = A2 \ {zv}, A3 = A3 ∪ {yg}, and
A4 = A3 \ {zu}. Using the fact that the vertices xf , yf , xg, yg are not adjacent
to vertices of D \ {u, v}, it is easy to see that this yields a valid reconfiguration
sequence, as both domination and connectivity are preserved. This completes
the proof of the lemma. ut

We are ready to state the final result.

Theorem 3 CDS-R under TAR parameterized by k admits a polynomial
kernel on planar graphs.

Proof Our kernelization algorithm starts by computing (in polynomial time) a
k-domination core C of size at most h(k) as described in Lemma 7. Without
loss of generality we assume that C contains S and T . After each application
of a reduction rule, we recompute the core, giving a polynomial blow-up of the
running time. We are left to prove that each reduction rule can be implemented
in polynomial time and that we end up with a polynomial number of vertices.
It is clear that the reduction rules of Lemma 12, Lemma 13 and Lemma 14 can
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easily be implemented in polynomial time. The reduction rule of Lemma 16
is slightly more involved, however, we can use a standard maximum-flow
algorithm to compute in polynomial time a maximum set of vertex-disjoint
paths in a subgraph of G. It remains to bound the size of G. Recall that we
call D the set of all vertices C and of all vertices of V (G) \ C that have at
least 2 neighbors in C. It follows from Lemma 15 that D has size at most
c|C| · (4|C|+ 3k+ 1) + |C| =: p, where c is the constant of Lemma 9. We are left
to bound the number of vertices in V (G) \C having exactly one neighbor in C
(recall that each vertex in V (G) \ C has at least one neighbor in S ∪ T ⊆ C).

Let p′ = (4p+ (4|C|+ 3k + 1) · k + 1) · (4|C|+ 3k + 1) · k + k + 1, which is
still a polynomial in k. Towards a contradiction, assume that there exists an
equivalence class Q in ∼C with a projection of size one containing more than
p′ vertices. Let u ∈ C denote the projection of the aforementioned class. Due
to Lemma 14, we know that at most k+ 1 of the vertices in Q are pendant, i.e.,
adjacent to only u in G. Since we cannot apply the reduction rule of Lemma 13
any more, we know that there are no edges with both endpoints in Q. Hence,
all but k + 1 vertices of Q must be adjacent to at least one other vertex in
V (G) \ C. Let R = NG(Q) \ {u} denote this set of neighbors. No vertex in
R can be adjacent to more than 4|C| + 3k + 1 vertices of Q, as we cannot
apply the reduction rule of Lemma 12. The vertices of R must be dominated
by S, and cannot be dominated by u, as otherwise two neighbors of u would be
connected. Hence, there is v ∈ S different from u that dominates at least a 1/k
fraction of R. This implies the existence of at least 4p+ (4|C|+ 3k + 1) · k + 1
vertex-disjoint paths of length at least 2 that run between u and v. But in this
case, the reduction rule of Lemma 16 is applicable. Therefore, we conclude that
Q cannot exist, obtaining a bound on the size of all equivalence classes of ∼C ,
as needed. ut

5 Conclusion

We have shown that the CDS-R problem parameterized by k is fixed-parameter
tractable for planar graphs and (trivially) for graphs of bounded degree. More-
over, a simple observation shows that the problem is fixed-parameter tractable
parameterized by k+ ` on every nowhere dense graph class and the same holds
for every class of bounded cliquewidth. On the negative side, our reduction
shows that CDS-R parameterized by k+ ` is W[1]-hard on 5-degenerate graphs.
It remains open to determine where exactly the boundary between tractable
and intractable lies for CDS-R parameterized by k. We conjecture that CDS-R
is fixed-parameter tractable parameterized by k on every nowhere dense graph
class. However, resolving this conjecture remains open for future work (see
Figure 2). Towards proving that conjecture, we believe that the classes of
graphs of bounded pathwidth or treewidth are the obvious next classes to
study.
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