
Bisection of Bounded Treewidth Graphs by

Convolutions?

Eduard Eibena, Daniel Lokshtanovb, Amer E. Mouawadc

aDepartment of Computer Science, Royal Holloway, University of London, UK
bDepartment of Computer Science, UC Santa Barbara, US

cDepartment of Computer Science, American University of Beirut, Lebanon

Abstract

In the Bisection problem, we are given as input an edge-weighted graph
G. The task is to determine whether there exists a partition of V (G) into
two parts A and B such that ||A| − |B|| ≤ 1 and the sum of the weights
of the edges with one endpoint in A and the other in B is minimized.
We show that the complexity of the Bisection problem on trees, and
more generally on graphs of bounded treewidth, is intimately linked to the
(min,+)-Convolution problem. Here the input consists of two sequences
(a[i])n−1i=0 and (b[i])n−1i=0 , the task is to compute the sequence (c[i])n−1i=0 , where
c[k] = mini=0,...,k(a[i] + b[k − i]). In particular, we prove that if (min,+)-
Convolution can be solved in O(τ(n)) time, then Bisection of graphs
of treewidth t can be solved in time O(8ttO(1) log n · τ(n)), assuming a tree
decomposition of width t is provided as input. Plugging in the naive O(n2)
time algorithm for (min,+)-Convolution yields a O(8ttO(1)n2 log n) time
algorithm for Bisection. This improves over the (dependence on n of the)
O(2tn3) time algorithm of Jansen et al. [SICOMP 2005] at the cost of a worse
dependence on t. “Conversely”, we show that if Bisection can be solved in
time O(β(n)) on edge weighted trees, then (min,+)-Convolution can be
solved in O(β(n)) time as well. Thus, obtaining a sub-quadratic algorithm
for Bisection on trees is extremely challenging, and could even be impossi-

?A preliminary version of this paper was accepted for publication at the 27th Annual
European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching,
Germany.

Email addresses: eduard.eiben@rhul.ac.uk (Eduard Eiben), daniello@ucsb.edu
(Daniel Lokshtanov), aa368@aub.edu.lb (Amer E. Mouawad)

Preprint submitted to Journal of Computer and System Sciences January 17, 2021

ble. On the other hand, for unweighted graphs of treewidth t, by making use
of a recent algorithm for Bounded Difference (min,+)-Convolution
of Chan and Lewenstein [STOC 2015], we obtain a sub-quadratic algorithm
for Bisection with running time O(8ttO(1)n1.864 log n).

Keywords: bisection, treewidth, convolution, fine-grained complexity

1. Introduction1

A bisection of a graph G is a partition of V (G) into two parts A and2

B such that ||A| − |B|| ≤ 1. The weight of a bisection (A,B) of an edge-3

weighted graph G is the sum of the weights of all edges with one endpoint4

in A and the other in B. In the Bisection problem the task is to find a5

minimum weight bisection in an edge-weighted graph G given as input. The6

problem can be seen as a version of Minimum Cut with a balance constraint7

on the sizes of two sides of the cut. While Minimum Cut is solvable in8

polynomial time, Bisection is one of the classic examples of NP-complete9

problems [1]. Bisection has been studied extensively from the perspective10

of approximation algorithms [2, 3, 4, 5], parameterized algorithms [6, 7, 8]11

heuristics [9, 10] and average case complexity [11].12

In this paper we consider Bisection when the input graph is required13

to be a tree, or more generally a graph with treewidth at most t. For trees,14

an O(n3) time algorithm was given by MacGregor [12] already in 1978. This15

was improved to a parallel algorithm running in time O(log2 n log log n) on16

O(n2) processors by Goldberg and Miller [13]. This corresponds to a sequen-17

tial algorithm running in time O(n2 log2 n log log n). For graphs of bounded18

treewidth Jansen et al. [14] gave an algorithm that solves Bisection in time19

O(2tn3) if a tree decomposition of width t is given as input.20

The majority of natural graph problems are solvable in linear time on trees21

and bounded treewidth graphs (see e.g. Courcelle’s theorem [15]). Thus, it is22

quite natural to ask whether the dependence on n in the algorithm of Jansen23

et al. [14] could be improved to linear. Our first result goes “half the way”24

from Jansen et al.’s cubic algorithm to a linear time one, and matches (in25

fact slightly improves) the fastest known algorithm for Bisection on trees1.26

1Note that the Goldberg and Miller’s algorithm [13] is parallel, while ours is sequential.

2

Theorem 1.1. There is an algorithm that, given an edge-weighted graph G27

on n vertices together with a tree decomposition of G of width at most t,28

computes a minimum weight bisection of G in time O(8t · t5 · n2 · log n).29

Our algorithm crucially uses the (min,+)-convolution operation. The30

(min,+)-convolution of two number sequences (a[i])n−1i=0 and (b[i])n−1i=0 is a31

sequence (c[i])n−1i=0 , where c[k] = mini=0,...,k(a[i] + b[k − i]). In the (min,+)-32

Convolution problem the input consists of the two sequences (a[i])n−1i=0 and33

(b[i])n−1i=0 , the task is to compute their convolution (c[i])n−1i=0 . A direct applica-34

tion of the definition of (min,+)-convolution yields a O(n2) time algorithm35

to compute it. The bulk of the work of our algorithm consists of making a se-36

ries of (min,+)-convolution steps. In fact, the running time of our algorithm37

can be stated as O(8t · t · log n · τ(t2n)), where τ(n) is the running time of38

an algorithm computing the (min,+)-convolution of two sequences of length39

n. Therefore, there are two natural avenues for attempting to improve the40

algorithm of Theorem 1.1 to sub-quadratic. The first approach is to design41

a sub-quadratic algorithm for (min,+)-convolution, the second is to design42

an entirely different algorithm avoiding convolution altogether.43

It turns out that the first approach is quite challenging, perhaps even44

impossible. Indeed, in the spirit of fine-grained complexity [16] analysis,45

Cygan et al. [17] identified a number of problems that admit algorithms with46

running time O(n2−ε) if and only if (min,+)-Convolution does. With this47

background they conjecture that (min,+)-Convolution does not admit a48

O(n2−ε) time algorithm.49

Thus, if we want to improve the algorithm of Theorem 1.1 to a sub-50

quadratic algorithm without disproving the conjecture of Cygan et al. [17],51

we need to avoid (min,+)-convolution altogether. However, it turns out52

that (min,+)-convolution is unavoidable! In particular, we prove that a53

sub-quadratic algorithm for Bisection on trees implies one for (min,+)-54

Convolution as well.55

Theorem 1.2. If Bisection on weighted trees can be solved in time O(n2−ε)56

for ε > 0, then (min,+)-Convolution can be solved in O(n2−δ) time for57

δ > 0.58

Theorem 1.2 together with Theorem 1.1 (or rather its re-statement in59

terms of convolutions), puts Bisection on weighted trees in the class of60

problems equivalent to (min,+)-Convolution [17].61

3

In light of Theorem 1.2, the Bisection problem on unweighted graphs62

(where all weights are 1) becomes a natural target. Our final contribu-63

tion is a sub-quadratic algorithm for Bisection on unweighted graphs of64

bounded treewidth. Our algorithm also works for the case when all weights65

are bounded by a constant W .66

Theorem 1.3. There is an algorithm that, given an edge-weighted graph G,67

where all edge weights are integers between 1 and W , together with a tree68

decomposition of G of width t, computes a minimum weight bisection of G69

in time O(8t · (tW)O(1) · n1.864 log n).70

The key observation behind the algorithm of Theorem 1.3 is that the71

(min,+)-convolution steps in the algorithm of Theorem 1.1 are applied to72

sequences (a[i])n−1i=0 and (b[i])n−1i=0 where a[i] and b[i] are both essentially equal73

to the minimum possible sum of weights of the edges between the two sides A74

and B of a partition (A,B) of V (G) with |A| = i. Bounded treewidth graphs75

have many vertices of small degree, and moving one vertex of small degree76

from one A to B or vice versa changes the number of edges between A and77

B by at most its degree. Thus, a[i] and a[i+ 1] cannot be too different. This78

allows us to use the faster algorithm for (min,+)-Convolution of Chan79

and Lewenstein [18] for “bounded difference” sequences.80

Organization of the paper. We start by setting up the needed nota-81

tion in Section 2. Section 3 is devoted to proving our algorithmic results -82

namely Theorems 1.1 and 1.3. Theorem 1.2 is proved in Section 4.83

2. Preliminaries84

2.1. The (min,+)-Convolution problem85

For integer n, we let [n] := {0, 1, . . . , n}. Given a sequence A ∈ Zn and86

an integer i ∈ [n− 1], we denote by Ai the i-th coordinate of A.87

Definition 2.1 ((min,+)-Convolution problem). Given two sequences
(a[i])n−1i=0 and (b[i])n−1i=0 , compute a third sequence (c[i])n−1i=0 , where

c[k] = min
i=0,...,k

(a[i] + b[k − i]).

Equivalently, we have
c[k] = min

i+j=k
(a[i] + b[j]).

4

In the (min,+)-Convolution problem, we sometime require the target88

sequence to be computed all the way up to 2n − 2, i.e., (c[i])2n−2i=0 . In both89

cases, the problem is trivially solvabled in O(n2) time. Recent breakthroughs90

have shown that computing the (min,+)-Convolution for monotone non-91

decreasing sequences with integer values bounded by O(n) can be achieved92

in O(n1.864) deterministic time [18]. Moreover, we can relax these require-93

ments [19] and simply require that the sequences have bounded differences,94

i.e., |a[i]− a[i+ 1]|, |b[i]− b[i+ 1]| ∈ O(1).95

2.2. Graphs and the Bisection problem96

We assume that each graph G is finite, simple, and undirected. We let97

V (G) and E(G) denote the vertex set and edge set of G, respectively. The98

open neighborhood of a vertex v is denoted by NG(v) = {u | {u, v} ∈ E(G)}99

and the closed neighborhood by NG[v] = NG(v) ∪ {v}. For a set of vertices100

S ⊆ V (G), we define NG(S) = {v 6∈ S | {u, v} ∈ E(G), u ∈ S} and NG[S] =101

NG(S) ∪ S. The subgraph of G induced by S is denoted by G[S], where102

G[S] has vertex set S and edge set {{u, v} ∈ E(G) | u, v ∈ S}. We let103

G− S = G[V (G) \ S].104

Given a graph G and two disjoint sets A,B ⊆ V (G), we denote by105

E(A,B) the subset of edges of G with one endpoint in A and the other106

endpoint in B. Given an edge-weighted graph G and a weight function107

w : E(G) → N over the edges of G, a bisection of G is a partition of V (G)108

into two disjoint sets A,B ⊆ V (G) such that ||A| − |B|| ≤ 1 and the weight109

of bisection (A,B) is
∑

e∈E(A,B) w(e). Formally, the Bisection problem is110

defined as follows:111

Definition 2.2 (Bisection problem). Given an edge-weighted graph G, find112

a bisection (A,B) of G of minimum weight.113

2.3. Treewidth and tree decompositions114

Definition 2.3. A tree decomposition of a graph G is a pair ({Xi | i ∈115

V (T)}, T), where {Xi | i ∈ V (T)} is a collection of subsets of V(G), T is a116

rooted tree such that the following conditions hold:117

�

⋃
i∈V (T)Xi = V (G);118

� For all edges {u, v} ∈ E(G), there exists i ∈ V (T) with u, v ∈ Xi;119

5

� For every vertex v ∈ V (G), the subgraph of T induced by {i ∈ V (T) |120

v ∈ Xi} is connected.121

The width of a tree decomposition ({Xi | i ∈ V (T)}, T) is maxi∈V (T)(|Xi|−122

1). The treewidth of a graph G, tw(G), is the minimum width over all possi-123

ble tree decompositions of the graph. We call the vertices of the tree T nodes124

and the sets Xi bags. A family of graphs where each graph has treewidth at125

most some fixed constant t is called a bounded treewidth family of graphs. A126

graph within a bounded treewidth family is called a bounded treewidth graph.127

Given a tree decomposition ({Xi | i ∈ V (T)}, T) of an n-vertex graph G128

of treewidth k, we can turn this decomposition in time in O(kO(1) · n) into a129

nice tree decomposition with at most O(k|V (G)|) nodes, i.e., a decomposition130

of the same width and satisfying the following properties:131

� The root bag as well as all leaf bags are empty;132

� Every node of the tree decomposition is of one of four different types:133

– Leaf node: a node i with Xi = ∅ and no children;134

– Introduce node: a node i with exactly one child j such that Xi =135

Xj ∪ {v} for some vertex v ∈ Xj;136

– Forget node: a node i with exactly one child j such that Xi =137

Xj \ {v} for some vertex v ∈ Xj;138

– Join node: a node i with two children j1 and j2 such that Xi =139

Xj1 = Xj2 .140

Theorem 2.1 (Bodlaender et al. [20]). There exists an algorithm, that given141

an n-vertex graph G and an integer k, in time 2O(k)n log n either outputs that142

the treewidth of G is larger than k, or constructs a tree decomposition of G143

of width at most 3k + 4.144

Combining Theorem 2.2 below with standard arguments (we refer the145

reader to [20] for more details), we arrive at Proposition 2.1, which is the146

form that will be required to obtain our algorithms.147

Theorem 2.2 (Bodlaender and Hagerup [21]). There is an algorithm that,148

given a tree decomposition of width k with O(n) nodes of a graph G, finds149

a rooted binary tree decomposition of G of width at most 3k + 2 with depth150

O(log n) in O(kn)-time.151

6

Proposition 2.1. There is an algorithm that, given an n-vertex graph G152

and a tree decomposition of G of width k, runs in O(kn)-time, and computes153

a nice tree decomposition of G of width 3k + 2, height O(k log n), and with154

O(kn) nodes.155

3. Algorithms for Bisection on Bounded Treewidth Graphs156

We start by reviewing the O(2t · n3)-time algorithm for solving the Bi-157

section problem on graphs of treewidth at most t by Jansen et al. [14].158

The algorithm is a standard dynamic programming algorithm over a tree159

decomposition. Given a graph G together with its nice tree decomposition160

({Xi|i ∈ V (T)}, T) of width t the algorithm works as follows.161

For each node i ∈ V (T), we let Yi denote the set of all vertices in Xj,162

where either j is a descendant of i in T or j = i. The algorithm computes for163

each i ∈ V (T), an array mwpi (which stands for minimum weight partition)164

containing O(2t · |Yi|) entries. For each ` ∈ {0, 1, . . . , |Yi|} and each S ⊆ Xi,165

the entry mwpi(`, S) is set to minS′⊆Yi,|S′|=`,S′∩Xi=S(
∑

e∈E(S′,Yi\S′) w(e)). That166

is, mwpi(`, S) is equal to the minimum possible weight of a partition where167

S and Xi \ S are in different parts of the partition and the side including168

S is of cardinality exactly `. When such a partition is not possible, we set169

mwpi(`, S) to ∞.170

We compute the entries of the array following the levels of the tree de-171

composition in a bottom-up manner as follows.172

� Let i be a leaf in T . Note that Yi = Xi = ∅. We set mwpi(0, ∅) = 0.173

� Let i be a forget node with one child j such that Xi ⊆ Xj. Then, for all
` ∈ {0, 1, . . . , |Yi|} and S ⊆ Xi, we set

mwpi(`, S) = min
S′⊆Xj ,S′∩Xi=S

(mwpj(`, S
′)).

Note that there are exactly two subsets S ′ that satisfy the condition S ′ ⊆174

Xj and S ′ ∩ Xi = S. Those subsets are S and S ∪ {v}, where v is the175

forgotten vertex.176

� Let i be an introduce node with one child j such that Xj ∪ {v} = Xi and
v 6∈ Xj. Then, for all ` ∈ {0, 1, . . . , |Yi|} and S ⊆ Xi, if v ∈ S we set

mwpi(`, S) = mwpj(`− 1, S \ {v}) +
∑

e∈{{v,s}|s∈Xi\S}

w(e).

7

Otherwise, we set

mwpi(`, S) = mwpj(`, S) +
∑

e∈{{v,s}|s∈S}

w(e).

� Let i be a join node with two children j1 and j2, where Xi = Xj1 = Xj2 .
For all ` ∈ {0, 1, . . . , |Yi|} and S ⊆ Xi, we set

mwpi(`, S) =
`1+`2−|S|=`

min
`1,`2≥|S|

mwpj1(`1, S) + mwpj2(`2, S)−
∑

e∈E(S,Xi\S)

w(e)

 .

We omit the proof of correctness and refer the reader to [14] for more de-177

tails. We focus here on the runtime analysis. Analyzing the above algorithm178

on the tree decomposition of width t and height O(t log n), we obtain the179

following lemma.180

Lemma 3.1. There is an algorithm that, given an edge-weighted graph G181

on n vertices and a nice tree decomposition of width t, height O(t log n), and182

O(tn) nodes, computes a minimum weight bisection of G in time O(2t+1 ·183

t · log n · τ(t2n)), where τ(|Yi|) is the time required to compute the entries184

mwpi(`, S) for all ` ∈ [|Yi|] and a fixed S in a join node.185

Proof. Let ({Xi|i ∈ V (T)}, T) be the nice tree decomposition of G given as186

input. The time spent at each leaf node, introduce node, or forget node i is187

bounded by O(2t+1 · |Yi|). Moreover, by our assumption the time spend in188

each join node is O(2t+1τ(|Yi|)).189

Now let us split the nodes of T into r = O(t log n) levels L0, . . . , Lr190

depending on the distance of the node from the root of T . We analyze191

the running time on each level separately. Clearly, the running time at192

level k is at most O(
∑

i∈Lk
2t+1τ(|Yi|)). Moreover, given i, j ∈ Lk the193

nodes i and j cannot be descendants of each other. Therefore, from the194

definition of a tree decomposition and Yi and Yj respectively, it follows195

that Yi ∩ Yj ⊆ Xi ∩ Xj and (Yi \ Xi) ∩ (Yj \ Xj) = ∅. Summing over196

all i ∈ Lk, we get
∑

i∈Lk
|Yi| ≤

∑
i∈Lk
|Xi| + n ≤

∑
i∈V (T) |Xi| + n ≤197

O(t2n). Clearly τ(|Yi|) = Ω(|Yi|) and it follows that O(
∑

i∈Lk
2t+1τ(|Yi|)) ≤198

O(2t+1(
∑

i∈Lk
τ(|Yi|)) ≤ O(2t+1τ(t2n)). Combined with the fact that the199

height of the tree decomposition is O(t log n), we get the claimed running200

time of O(2t+1 · t · log n · τ(t2n)).201

8

Lemma 3.2. Let i be a join node with children j1 and j2, where Xi = Xj1 =202

Xj2. There is an algorithm that, for a fixed S ⊆ Xi, computes all the entries203

mwpi(`, S), for all ` ∈ [|Yi|], in time O(τ(|Yi|)) if there is an O(τ(|Yi|)) time204

algorithm solving an instance of (min,+)-Convolution with two sequences205

(a[p])
|Yi|
p=0 and (b[p])

|Yi|
p=0, where a[p] = mwpj1(p, S) for p ∈ [|Yj1|] and a[p] =∞206

otherwise and b[p] = mwpj1(p, S) for p ∈ [|Yj2|] and a[p] =∞ otherwise.207

Proof. Recall that

mwpi(`, S) =
`1+`2−|S|=`

min
`1,`2≥|S|

mwpj1(`1, S) + mwpj2(`2, S)−
∑

e∈E(S,Xi\S)

w(e)

 .

Let W =
∑

e∈E(S,Xi\S) w(e). Note that for a fixed i and a fixed S, both∑
e∈E(S,Xi\S) w(e) and |S| are fixed. Hence,

mwpi(`, S) = min
`1+`2−|S|=`,`1,`2≥|S|

(
mwpj1(`1, S) + mwpj2(`2, S)

)
−W.

Let (c[p])
2|Yi|−1
p=0 be the (min,+)-convolution of the sequences (a[p])

|Yi|
p=0 and208

(b[p])
|Yi|
p=0; that is c[k] = minq+r=k(a[q] + b[r]). Finally, we set mwpi(p, S) =209

c[p − |S|] −W , for p ∈ {|S|, |S| + 1, . . . , |Yi|}. All other entries are set to210

∞.211

Combining the Lemmas 3.1 and 3.2 with Theorem 2.2 we conclude the212

proof of Theorem 1.1. We remark that if a tree decomposition is not given213

then we can compute it, using the algorithm of Theorem 2.1, at the cost of214

a worse dependence on t.215

Proof of Theorem 1.1. We assume that (min,+)-Convolution can be solved216

in O(τ(n)) time. Using Proposition 2.1, we can compute in O(tn) time a217

nice tree decomposition ({Xi|i ∈ V (T)}, T) of G, such that the width of the218

decomposition is 3t+ 2, the height is O(t log n), and the number of nodes of219

T is O(tn). Afterwards, we invoke the algorithm of Lemma 3.1 to compute220

the minimum weight bisection in time O(23t+3 ·(3t+2)·log n·τ((3t+2)2n)) =221

O(8t · t · log n · τ(t2n)) using the O(τ(|Yi|)) time algorithm to compute the222

(min,+)-convolution needed in the join nodes. Plugging in the naive O(n2)223

time algorithm for (min,+)-Convolution gives τ(n) = O(n2), completing224

the proof.225

9

3.1. Bounded Edge Weights226

We now turn our attention to the case when the maximum weight of every227

edge in the input graph is bounded by some constant W . We show that in this228

case, we can actually compute a minimum bisection of a bounded treewidth229

graph of size n in time O(8t · (tW)O(1) ·n1.864 log n) or, more generally, O(8t ·230

(tW)O(1) · n1.864+ε), for ε > 0.231

Lemma 3.3. Let G be an edge-weighted graph with maximum weight of an232

edge W with a tree decomposition ({Xi | i ∈ V (T)}, T) of width t. Then for233

every node i ∈ V (T), every S ⊆ Xi and every ` ∈ {|S|, . . . |Yi| − |Xi \S| − 1}234

it holds that |mwpi(`, S)−mwpi(`+ 1, S)| ≤ (2t+ 1) ·W .235

Proof. It is easy to see that mwpi(`, S) = mwpi(|Yi| − `,Xi \ S). Hence,236

without loss of generality, we can assume that mwpi(`, S) ≤ mwpi(`+ 1, S).237

Now let A be a set of size ` such that S = A ∩ Xi and mwpi(`, S) =238 ∑
e∈E(A,A) w(e). It is well-known that we can order the vertices of graph239

G such that every vertex has at most tw(G) neighbors earlier in the order-240

ing [22]. Let us denote such an ordering by σ and let v be the last vertex241

from Yi \ (A∪Xi) in σ. We show that “switching the side” of v allows us to242

bound mwpi(` + 1, S). Note that we pick a vertex Yi \ (A ∪ Xi) since S is243

fixed and, consequently, Xi \S is also fixed. We have E(A∪{v}, A ∪ {v}) =244

(E(A,A) \ E({v}, A)) ∪ E({v}, A ∪ {v}). It follows that mwpi(` + 1, S) ≤245

mwpi(`, S) + |E({v}, A ∪ {v})| ·W . By the choice of v, all the vertices in246

A ∪ {v} are either earlier in σ than v or in Xi. Moreover, v has only at most247

tw(G) many neighbors that are earlier in σ than v and there are at most t+1248

vertices in Xi, hence |E({v}, A ∪ {v})| ≤ tw(G) + t + 1. Since tw(G) ≤ t,249

the lemma follows.250

Observe, that the bound of Lemma 3.3 is tight up to a multiplicative251

constant. As an example achieving difference |mwpi(`, S)−mwpi(`+1, S)| ≤252

(t+ 1) ·W take S = Xi and an instance where the edges in Yi have all weight253

W and are precisely all the pairs with one endpoint in Xi and the other in254

Yi \Xi.255

Lemma 3.3 tells us that the restriction of the sequences (a[p])
|Yi|
p=0 and256

(b[p])
|Yi|
p=0 for which we need to compute the (min,+)-Convolution in Lemma257

3.2 to entries that are not ∞ has bounded difference. However, these two258

restricted sequences might not have the same length and it is not straightfor-259

ward how to adapt the algorithm by Chan and Lewenstein [18]. To overcome260

10

this issue, we use a standard trick to change these sequence to monotone261

non-decreasing sequences with integer values bounded by O(n) and pad the262

shorter sequence by some large value. This trick is outlined by Chan and263

Lewenstein [18] but never formally stated, we repeat it here for completeness.264

Theorem 3.1 ([18]). Monotone (min,+)-Convolution with all entries265

in {0, . . . , nD} can be solved in time O((nD)1.859) by a randomized algorithm,266

or in time O((nD)1.864) deterministically.267

We remark that Chan and Lewenstein [18] do not explicitly state the268

dependence on D. It is easy to see from their arguments that the dependence269

on D is at most O(D1.864), but we suspect that it is much better.270

Lemma 3.4. Let n1, n2 be two integers such that n1 ≤ n2 and let sequences271

(a[p])n1
p=0 and (b[p])n2

p=0 be two sequences with the difference bounded by an272

integer D and all entries in {0, . . . , n2D
′}, for some integer D′. Then we273

can compute the sequence (c[p])n1+n2
p=0 such that c[k] = mini+j=k(a[i] + b[j]) in274

time O((2n2(D +D′))1.864).275

Proof. To compute (c[p])n1+n2
p=0 we start by changing the sequences (a[p])n1

p=0276

and (b[p])n2
p=0 to bounded monotone sequences (a′[p])n1

p=0 and (b′[p])n2
p=0 by277

adding D · i to a′[i] and b′[i], respectively. Note that mini+j=k(a[i] + b[j]) =278

mini+j=k(a
′[i] + b′[j]) − D · k. Now let C = max(a′[n1], b

′[n2]). Finally, we279

create sequences (a′′[p])n2
p=0 by setting a′′[p] = a′′[p] if a′′[p] is defined and280

a′′[p] = 2C + 1 otherwise. It is easy to see that mini+j=k(a
′[i] + b′[j]) =281

mini+j=k(a
′′[i] + b′[j]) for all k ∈ {0, . . . , n1 + n2}. Therefore, to compute282

the (min,+)-convolution of the sequences (a[p])n1
0 and (b[p])

|n2|
0 it suffices to283

compute the (min,+)-convolution of the sequences (a′′[p])n2
p=0 and (b′[p])n2

p=0,284

which are both monotone with integer entries between 0 and C ≤ 2(D · n2 +285

n2D
′) + 1 and the proof follows due to Theorem 3.1.286

We are now in position to prove Theorem 1.3.287

Proof of Theorem 1.3. Same as in the proof of Theorem 1.1, we start by using288

Proposition 2.1 to compute a nice tree decomposition ({Xi|i ∈ V (T)}, T) of289

G, such that the width of the decomposition is 3t+2, the height is O(t log n),290

and the number of nodes of T is O(tn).291

Afterwards, we invoke the algorithm of Lemma 3.1 to compute the mini-292

mum weight bisection in time O(8t · t · log n · τ(t2n)), where O(τ(|Yi|)) is the293

11

time required to compute the entries mwpi(`, S) for all ` ∈ [|Yi|] and a fixed294

S in a join node.295

It remains to show that we can compute mwpi(`, S) for all ` ∈ [|Yi|] and296

a fixed S in time O((tW)O(1) · |Yi|1.864). By Lemma 3.2, this is equivalent to297

solving an instance of (min,+)-convolution with two sequences (a[p])
|Yi|
p=0 and298

(b[p])
|Yi|
p=0, where a[p] = mwpj1(p, S) for p ∈ [|Yj1|] and a[p] = ∞ otherwise299

and b[p] = mwpj1(p, S) for p ∈ [|Yj2|] and a[p] = ∞ otherwise. Note that300

mwpj1(`, S) (mwpj1(`, S)) is set to ∞ if ` < |S| or ` > |Yj1| − |Xj1 \ S|301

(` > |Yj2| − |Xj2 \ S|). Hence, from Lemma 3.3 it follows that if both a[p]302

and a[p + 1] (respectively b[p] and b[p + 1]) are finite, then |a[p + 1] − a[p]|303

(respectively |b[p + 1] − b[p]|) is bounded by (2t + 1) ·W , where W is the304

maximum weight of an edge in G, and hence it is constant. To finish the305

proof, let nj1 = |Yj1| − |S| − |Xj1 \ S| and nj2 = |Yj2| − |S| − |Xj2 \ S| and306

let sequences (a′[p])
nj1
p=0 and (b′[p])

nj2
p=0 be such that a′[p] = a[p + |S|] and307

b′[p] = b[p+ |S|]. That is a′ and b′ are created from a and b by removing ∞308

from the sequences. For all k ∈ {2|S|, . . . , nj1 +nj2 + 2|S|} (that is whenever309

mini+j=k(a[i]+b[j]) 6=∞) it holds that mini+j=k(a[i]+b[j]) = mini+j=k(a
′[i′−310

|S|] + b′[j′ − |S|]) = mini′+j′=k−2|S|(a
′[i′] + b′[j′]). Therefore, to compute311

the (min,+)-convolution of the sequences (a[p])
|Yi|
0 and (b[p])

|Yi|
0 , it suffice to312

compute the sequence (c′[p])
nj1

+nj2
0 such that c′[k] = mini+j=k(a

′[i] + b′[j]).313

Clearly, due to Lemma 3.3, (a′[p])
nj1
p=0 and (b′[p])

nj2
p=0 have difference bounded314

by (6t + 5) · W . Moreover, let n′ = max(nj1 , nj2), then it is easy to see315

that both a[|S|] and b[|S|] are at most |S| · n′ ·W ≤ (3t + 3) · n′ ·W and316

hence the entries in (a′[p])
nj1
p=0 and (b′[p])

nj2
p=0 are all integers between 0 and317

(3t+3)·n′ ·W+(6t+5)·W ·n′ = (9t+8)·W ·n′. Therefore, we can compute the318

sequence (c′[p])
nj1

+nj2
0 in O(((30t+ 26) ·W ·n′)1.864) by Lemma 3.4, finishing319

the proof.320

4. Tree Bisection is as Hard as (min,+)-Convolution321

We complement Theorem 1.3 by showing that if the Bisection prob-322

lem can be solved in subquadratic time, i.e., in time O(n2−ε) for ε > 0, on323

weighted trees then the (min,+)-convolution problem can be solved in sub-324

quadratic time as well, i.e., in time O(n2−δ) for δ > 0. We follow a strategy325

similar to that of [23] used for proving a lower bound on the Tree Sparsity326

problem.327

12

Definition 4.1 (SUM3 problem). Given three sequences A,B,C ∈ Zn, de-328

cide if the following statement is true: ∃i, j : Ai +Bj + Ci+j ≤ 0.329

Theorem 4.1 ([23, 24]). The (min,+)-Convolution problem can be solved330

in time O(n2−ε), for ε > 0, if and only if the SUM3 problem can be solved331

in O(n2−δ) time, for δ > 0.332

Hence, given Theorem 4.1, we prove the main theorem of this section by333

a reduction from SUM3 to the Bisection problem on weighted trees. We334

start by describing the construction.335

Let W be equal to 10 times the largest absolute value of an entry in A, B,336

and C. We create a root vertex r. Consider A ∈ Zn. We first construct a path337

PA = {r, a0, a1, . . . , an−1} of n vertices (excluding r) such that the weight of338

the ith edges is W +Ai, for i = 0, 1, . . . , n−1. Similarly, for B ∈ Zn, we con-339

struct a path PB = {r, b0, b1, . . . , bn−1} of n vertices (excluding r) such that340

the weight of the ith edges is W +Bi, for i = 0, 1, . . . , n− 1. We then create341

a new vertex c and a path PC = {c, c0, c1, . . . , cn−1, cn, cn+1, . . . , c2n−1, r}342

of 2n + 1 vertices such that the weight of the ith edges is W + Ci, for343

i = 0, 1, . . . , n − 1 and the weight is nW otherwise (i > n − 1). Finally,344

we attach 30n pendant vertices to r, 10n pendant vertices to an−1, 10n pen-345

dant vertices to bn−1, and 10n− 1 pendant vertices to c. The weight of each346

of those edges is nW . We let T denote the resulting tree (see Figure 1). Note347

that the total number of vertices in T is 60n+ 4n = 64n.348

Lemma 4.1. Let A,B,C ∈ Zn be an instance of SUM3 and let T be the349

corresponding instance of Bisection. Then ∃i, j : Ai+Bj +Ci+j ≤ 0 if and350

only if T has a bisection of weight less than or equal 3W .351

Proof. Assume that ∃i, j : Ai + Bj + Ci+j ≤ 0. We claim that T admits352

a bisection whose weight is at most 3W . First, note that such a bisection353

cannot contain any of the pendant edges because they are too heavy, i.e.,354

have weight larger than 3W . We pick one edge from each of the three paths355

PA, PB, and PC . In particular, we pick the i-th edge from PA, the j-th edge356

from PB, and the k-th edge from PC , where k = i + j. The total weight is357

therefore 3W + Ai + Bj + Ci+j ≤ 3W . The total number of vertices in the358

r-partition is 30n+ i+ j + 2n− k = 32n and the total number of vertices in359

the abc-partition is 30n+ 2n+ k − (i+ j) = 32n, as needed.360

For the other direction, assume that T admits a bisection (X, Y) whose361

weight is at most 3W . Notice, that from the choice of W and the construc-362

tion, it follows that the weight of any at least four edges is at least 3W + 6W
10

,363

13

r

a0 a1 a2 a3

b0 b1 b2 b3

c7 c6 c5 c4 c3 c2 c1 c0 c

10n− 1 pendant vertices

10n pendant vertices

10n pendant vertices

30n pendant vertices

Figure 1: The reduction from SUM3 (for n = 4) to the Bisection problem on weighted
trees.

and consequently |E(X, Y)| ≤ 3. We claim that E(X, Y) contains exactly364

three edges from T , each edge from a different path. Assume otherwise, i.e.,365

that at least one path remains untouched. Then, the corresponding partition366

will contain at least 40n vertices which is greater than 32n vertices. Now, let367

E(X, Y) contain the i-th edge from PA, the j-th edge from PB, and the k-th368

edge from PC . It remains to show that k = i + j. The size of the partition369

containing r is 30n+ i+ j+ 2n− k. Since the number of vertices in T is 64n370

and both partitions must have equal size, we get 30n+ i+ j + 2n− k = 32n371

and therefore i+ j = k, as needed.372

The construction, together with Proposition 4.1 and Lemma 4.1 concludes373

the proof of Theorem 1.2.374

References375

[1] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to376

the Theory of NP-Completeness, W. H. Freeman, 1979.377

[2] U. Feige, R. Krauthgamer, K. Nissim, Approximating the minimum378

bisection size (extended abstract), in: STOC, 2000, pp. 530–536.379

[3] U. Feige, R. Krauthgamer, A polylogarithmic approximation of the min-380

imum bisection, SIAM J. Comput. 31 (4) (2002) 1090–1118.381

14

[4] S. Khot, N. K. Vishnoi, The unique games conjecture, integrality gap382

for cut problems and embeddability of negative-type metrics into 1, J.383

ACM 62 (1) (2015) 8:1–8:39.384

[5] H. Räcke, Optimal hierarchical decompositions for congestion minimiza-385

tion in networks, in: STOC, 2008, pp. 255–264.386

[6] T. N. Bui, A. Peck, Partitioning planar graphs, SIAM J. Comput. 21 (2)387

(1992) 203–215.388

[7] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Min-389

imum bisection is fixed parameter tractable, in: STOC, ACM, 2014, pp.390

323–332.391

[8] R. van Bevern, A. E. Feldmann, M. Sorge, O. Suchý, On the param-392

eterized complexity of computing graph bisections, in: WG, 2013, pp.393

76–87.394

[9] T. N. Bui, C. Heigham, C. Jones, F. T. Leighton, Improving the per-395

formance of the kernighan-lin and simulated annealing graph bisection396

algorithms, in: D. E. Thomas (Ed.), Proceedings of the 26th ACM/IEEE397

Design Automation Conference, Las Vegas, Nevada, USA, June 25-29,398

1989., ACM Press, 1989, pp. 775–778. doi:10.1145/74382.74527.399

URL https://doi.org/10.1145/74382.74527400

[10] T. N. Bui, L. C. Strite, An ant system algorithm for graph bisection, in:401

GECCO, Morgan Kaufmann, 2002, pp. 43–51.402

[11] T. N. Bui, S. Chaudhuri, F. T. Leighton, M. Sipser, Graph bisection403

algorithms with good average case behavior, Combinatorica 7 (2) (1987)404

171–191.405

[12] R. M. Macgregor, On partitioning a graph: a theoretical and empirical406

study. (1979).407

[13] M. Goldberg, Z. Miller, A parallel algorithm for bisection width in trees,408

Computers & Mathematics with Applications 15 (4) (1988) 259–266.409

[14] K. Jansen, M. Karpinski, A. Lingas, E. Seidel, Polynomial time ap-410

proximation schemes for max-bisection on planar and geometric graphs,411

in: Proceedings of the 18th Annual Symposium on Theoretical Aspects412

15

https://doi.org/10.1145/74382.74527
https://doi.org/10.1145/74382.74527
https://doi.org/10.1145/74382.74527
https://doi.org/10.1145/74382.74527
https://doi.org/10.1145/74382.74527
https://doi.org/10.1145/74382.74527
https://doi.org/10.1145/74382.74527
http://dl.acm.org/citation.cfm?id=646515.759237
http://dl.acm.org/citation.cfm?id=646515.759237
http://dl.acm.org/citation.cfm?id=646515.759237

of Computer Science, STACS ’01, Springer-Verlag, Berlin, Heidelberg,413

2001, pp. 365–375.414

URL http://dl.acm.org/citation.cfm?id=646515.759237415

[15] B. Courcelle, The monadic second-order logic of graphs. i. recognizable416

sets of finite graphs, Inf. Comput. 85 (1) (1990) 12–75.417

[16] V. V. Williams, On some fine-grained questions in algorithms and com-418

plexity, in: Proceedings of the ICM, 2018.419

[17] M. Cygan, M. Mucha, K. Wegrzycki, M. Wlodarczyk, On problems420

equivalent to (min, +)-convolution, ACM Trans. Algorithms 15 (1)421

(2019) 14:1–14:25.422

URL https://dl.acm.org/citation.cfm?id=3293465423

[18] T. M. Chan, M. Lewenstein, Clustered integer 3sum via additive com-424

binatorics, in: R. A. Servedio, R. Rubinfeld (Eds.), Proceedings of the425

Forty-Seventh Annual ACM on Symposium on Theory of Computing,426

STOC 2015, Portland, OR, USA, June 14-17, 2015, ACM, 2015, pp.427

31–40. doi:10.1145/2746539.2746568.428

URL https://doi.org/10.1145/2746539.2746568429

[19] K. Bringmann, F. Grandoni, B. Saha, V. V. Williams, Truly sub-cubic430

algorithms for language edit distance and rna-folding via fast bounded-431

difference min-plus product, in: I. Dinur (Ed.), IEEE 57th Annual Sym-432

posium on Foundations of Computer Science, FOCS 2016, 9-11 October433

2016, Hyatt Regency, New Brunswick, New Jersey, USA, IEEE Com-434

puter Society, 2016, pp. 375–384. doi:10.1109/FOCS.2016.48.435

URL https://doi.org/10.1109/FOCS.2016.48436

[20] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Loksh-437

tanov, M. Pilipczuk, A ck n 5-approximation algorithm for treewidth,438

SIAM J. Comput. 45 (2) (2016) 317–378. doi:10.1137/130947374.439

URL https://doi.org/10.1137/130947374440

[21] H. L. Bodlaender, T. Hagerup, Parallel algorithms with optimal speedup441

for bounded treewidth, SIAM J. Comput. 27 (6) (1998) 1725–1746. doi:442

10.1137/S0097539795289859.443

URL https://doi.org/10.1137/S0097539795289859444

16

http://dl.acm.org/citation.cfm?id=646515.759237
https://dl.acm.org/citation.cfm?id=3293465
https://dl.acm.org/citation.cfm?id=3293465
https://dl.acm.org/citation.cfm?id=3293465
https://dl.acm.org/citation.cfm?id=3293465
https://doi.org/10.1145/2746539.2746568
https://doi.org/10.1145/2746539.2746568
https://doi.org/10.1145/2746539.2746568
https://doi.org/10.1145/2746539.2746568
https://doi.org/10.1145/2746539.2746568
https://doi.org/10.1109/FOCS.2016.48
https://doi.org/10.1109/FOCS.2016.48
https://doi.org/10.1109/FOCS.2016.48
https://doi.org/10.1109/FOCS.2016.48
https://doi.org/10.1109/FOCS.2016.48
https://doi.org/10.1109/FOCS.2016.48
https://doi.org/10.1109/FOCS.2016.48
https://doi.org/10.1137/130947374
https://doi.org/10.1137/130947374
https://doi.org/10.1137/130947374
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1137/S0097539795289859

[22] T. Kloks, Treewidth, Computations and Approximations, Vol. 842 of445

Lecture Notes in Computer Science, Springer, 1994. doi:10.1007/446

BFb0045375.447

URL https://doi.org/10.1007/BFb0045375448

[23] A. Backurs, P. Indyk, L. Schmidt, Better approximations for tree spar-449

sity in nearly-linear time, in: Proceedings of the Twenty-Eighth Annual450

ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, Society for451

Industrial and Applied Mathematics, Philadelphia, PA, USA, 2017, pp.452

2215–2229.453

URL http://dl.acm.org/citation.cfm?id=3039686.3039831454

[24] V. V. Williams, R. R. Williams, Subcubic equivalences between path,455

matrix, and triangle problems, J. ACM 65 (5) (2018) 27:1–27:38. doi:456

10.1145/3186893.457

URL http://doi.acm.org/10.1145/3186893458

17

https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
http://dl.acm.org/citation.cfm?id=3039686.3039831
http://dl.acm.org/citation.cfm?id=3039686.3039831
http://dl.acm.org/citation.cfm?id=3039686.3039831
http://dl.acm.org/citation.cfm?id=3039686.3039831
http://doi.acm.org/10.1145/3186893
http://doi.acm.org/10.1145/3186893
http://doi.acm.org/10.1145/3186893
https://doi.org/10.1145/3186893
https://doi.org/10.1145/3186893
https://doi.org/10.1145/3186893
http://doi.acm.org/10.1145/3186893

	Introduction
	Preliminaries
	The (min, +)-Convolution problem
	Graphs and the Bisection problem
	Treewidth and tree decompositions

	Algorithms for Bisection on Bounded Treewidth Graphs
	Bounded Edge Weights

	Tree Bisection is as Hard as (min,+)-Convolution

