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Abstract. We initiate the study of the Bipartite Contraction problem from the
perspective of parameterized complexity. In this problem, we are given an n-vertex
graph G and an integer k, and the task is to determine whether we can obtain a bi-
partite graph from G by a sequence of at most k edge contractions. We show that
Bipartite Contraction is fixed-parameter tractable when parameterized by k. De-
spite a strong resemblance between Bipartite Contraction and the classical Odd
Cycle Transversal (OCT) problem, the methods developed to tackle OCT do not
seem to be directly applicable to Bipartite Contraction. To obtain our result, we
combine several techniques and concepts that are central in parameterized complexity:
iterative compression, irrelevant vertices, and important separators. To the best of our
knowledge, this is the first time the irrelevant vertex technique and the concept of
important separators are applied in unison. Furthermore, our algorithm may serve as
a comprehensible example of the usage of the irrelevant vertex technique.

1 Introduction

Odd Cycle Transversal (OCT) is a central problem in parameterized complexity. The
establishment of its fixed-parameter tractability by Reed, Smith, and Vetta [26] in 2004, set-
tling a long-standing open question [8], supplied the field with the powerful new technique of
iterative compression [24]. Both OCT and the closely related Edge Bipartization problem
take as input an n-vertex graph G and an integer k, and ask whether a bipartite graph can
be obtained by deleting at most k vertices, respectively k edges, from G. These two problems
can be viewed as two ways of measuring how close G is to being bipartite. Over the last few
years, a considerable amount of research has been devoted to studying different measures of
how close a graph is to being bipartite [9, 11, 16, 15], and how similarity to a bipartite graph
can be exploited [6]. Another natural similarity measure is defined by the following problem:

Bipartite Contraction

Input: An n-vertex graph G and an integer k.
Question: Can we obtain a bipartite graph from G by a sequence of

at most k edge contractions in G?

Considering the significant amount of interest the problems OCT and Edge Bipartization
have received, we find it surprising that Bipartite Contraction has not yet been studied
with respect to parameterized complexity.
? This work is supported by the Research Council of Norway. A preliminary version of this paper
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The classical computational complexity of contracting at most k edges in a given graph
to obtain a graph with a specific structure has been studied by Watanabe et al. [29, 30]
and by Asano and Hirata [1]. NP-completeness of Bipartite Contraction follows from an
easy polynomial-time reduction from Edge Bipartization, in which every edge of the input
graph is replaced by a path of sufficiently large odd length. The study of edge contractions
in general is motivated from Hamiltonian graph theory and graph minor theory, and it has
applications in computer graphics and cluster analysis [19]. Graph minors play a central role
in parameterized complexity, and the edge contraction operation in turn is essential in the
study of graph minors: a graph H is a minor of a graph G if H can be obtained from G
by a sequence of edge contractions, edge deletions, and vertex deletions. Although deciding
whether a graph H is a minor of a graph G can be done in cubic time for any fixed graph
H [27], deciding whether H can be obtained from G by edge contractions is NP-complete
already for some very small fixed graphs H, such as a path or a cycle on four vertices [2].

In this paper, we show that Bipartite Contraction is fixed-parameter tractable (FPT)
when parameterized by the number k of edges to be contracted, i.e., the problem can be
solved in time f(k)nO(1) for some function f that depends only on k and not on the size
of G. Although FPT algorithms for the problems OCT and Edge Bipartization exist [26]
(see also [15]), the key ingredients of those algorithms fundamentally differ from the ones
used in our algorithm. In the algorithm for OCT by Reed, Smith, and Vetta [26], iterative
compression is combined with maximum flow arguments. The recent nearly linear-time al-
gorithm for the two problems, due to Kawarabayashi and Reed [15], uses the notion of odd
minors, together with deep structural results of Robertson and Seymour [27] about graphs
of large treewidth without large clique minors. Interestingly, Bipartite Contraction does
not seem to be amenable to these approaches.

Although our algorithm is based on iterative compression, it seems difficult to adapt the
compression step from [26] for OCT to work for Bipartite Contraction. Instead, we
perform the compression step using a variant of the irrelevant vertex technique, introduced
by Robertson and Seymour [27] (see also [28]). In particular, if the treewidth of the input
graph is large, then we identify an irrelevant edge that can be deleted from the graph without
affecting the outcome. The irrelevant vertex technique has played a key role in the solutions
of several problems (see, e.g., [14, 16, 17]).

Our algorithm crucially deviates from previous work in the manner in which it finds the
irrelevant edge. While previous work has relied on large minor models as obstructions to small
treewidth, ours uses the fact that any graph of high treewidth contains a large p-connected
set X [7]. A vertex set X is p-connected if, for any two subsets X1 and X2 of X with
|X1| = |X2| ≤ p, there are |X1| vertex-disjoint paths with one endpoint in X1 and the other
in X2. Using p-connected sets in order to find irrelevant edges has several advantages. First,
our algorithm avoids the huge parameter-dependence which seems to be an inadvertent side
effect of applying Robertson and Seymour’s graph minors machinery. Second, our arguments
are nearly self-contained, and rely only on results whose proofs are simple enough to be taught
in a graduate class.

Using p-connected sets in order to find an irrelevant vertex or edge is non-trivial, because
p-connectivity is a more “implicit” notion than that of a large minor model. We overcome this
difficulty by using important sets. Important sets and the closely related notion of important
separators were introduced in [21] to prove the fixed-parameter tractability of multiway cut
problems. The basic idea is that in many problems where terminals need to be separated
in some way, it is sufficient to consider separators that are “as far as possible” from one of
the terminals. Important separators turned out to be a crucial component, in some cases
implicitly, in the solutions of cardinal problems in parameterized complexity [4, 5, 23, 25]. To
the best of our knowledge, this is the first time the irrelevant vertex technique and important
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sets (or separators) are used together. We believe that this combination will turn out to be
a useful and powerful tool.

2 Definitions and Notation

All graphs considered in this paper are finite, undirected, and simple, i.e., do not contain
multiple edges or loops. Given a graph G, we denote its vertex set by V (G) and its edge set
by E(G). We also use the ordered pair (V (G), E(G)) to represent G. We let n = |V (G)| and
m = |E(G)|. For two graphs G1 = (V1, E1) and G2 = (V2, E2), the disjoint union of G1 and
G2 is the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). The deletion of an edge e ∈ E(G) yields the
graph G− e = (V (G), E(G) \ e). For a set X ⊆ V (G), we write G[X] to denote the subgraph
of G induced by X. A graph is connected if there is a path between each pair of its vertices.
A set X ⊆ V (G) is connected if the graph G[X] is connected. The connected components of
a graph are its maximal connected subgraphs. For any set X ⊆ V (G), we write δG(X) to
denote the set of edges in G that have exactly one endpoint in X. We define dG(X) = |δ(X)|.

The contraction of edge xy in G deletes vertices x and y from G, and replaces them by a
new vertex, which is made adjacent to precisely those vertices that were adjacent to at least
one of the vertices x and y. The resulting graph is denoted G/xy. Every edge contraction
reduces the number of vertices in the graph by exactly one. We point out that several edges
might disappear as the result of a single edge contraction. For a set S ⊆ E(G), we write G/S
to denote the graph obtained from G by repeatedly contracting an edge from S until no such
edges remain. Let H be a graph with V (H) = {h1, h2, . . . , h`}. A graph G is H-contractible if
H can be obtained from G by contracting edges. Saying that G is H-contractible is equivalent
to saying that G has a so-called H-witness structure W, which is a partition of V (G) into
witness sets W (h1),W (h2), . . . ,W (h`), satisfying the following properties: each witness set
induces a connected subgraph of G, and for every two hi, hj ∈ V (H), there is an edge in G
between a vertex of W (hi) and a vertex of W (hj) if and only if hi and hj are adjacent in
H. Let G′ = G[W (h1)] ∪ · · · ∪ G[W (h`)] be the graph obtained from G by removing all the
edges of G, apart from the ones that have both endpoints in the same witness set. In order
to contract G to H, it is necessary and sufficient to contract all the edges of some spanning
forest F of G′. Note that |E(F )| =

∑`
i=1(|W (hi)| − 1) = |V (G)| − |V (H)|.

A 2-coloring of a graph G is a function φ : V (G)→ {1, 2}. We point out that a 2-coloring
of G is merely an assignment of colors 1 and 2 to the vertices of G, and should therefore not
be confused with a proper 2-coloring of G, which is a 2-coloring with the additional property
that no two adjacent vertices receive the same color.

Let φ be a 2-coloring of a graph G. An edge uv ∈ E(G) is said to be good (with respect
to φ) if φ(u) 6= φ(v), and uv is called bad (with respect to φ) otherwise. A good component
of φ is the vertex set of a connected component of the graph (V (G), E′), where E′ ⊆ E(G) is
the set of all edges that are good with respect to φ. Note that the good components form a
partition of V (G), and that good components can have size 1. Any 2-coloring φ of G defines a
partition of V (G) into two sets V 1

φ and V 2
φ , which are the sets of vertices of G colored 1 and 2

by φ, respectively. A set X ⊆ V (G) is a monochromatic component of φ if G[X] is a connected
component of G[V 1

φ ] or a connected component of G[V 2
φ ]. Just like the good components, the

monochromatic components form a partition of V (G) and might be of size 1. We write Mφ

to denote the set of all monochromatic components of φ.
A tree decomposition of a graph G is a pair (T,X = {Xt : t ∈ V (T )}), where T is a tree

and X is a collection of subsets of V (G), satisfying the following three properties:

(1)
⋃
t∈V (T )Xt = V ;

(2) for every edge uv ∈ E(G), there exists t ∈ V (T ) such that {u, v} ⊆ Xt; and
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(3) for every v ∈ V (G), the graph T [{t : v ∈ Xt}] is connected.

The width of a tree decomposition is maxt∈V (T ) |Xt| − 1 and the treewidth of G, denoted
tw(G), is the minimum width over all tree decompositions of G.

The syntax of monadic second-order logic of graphs includes the logical connectives ∨, ∧,
¬, variables for vertices, for edges, for sets of vertices and for sets of edges, the quantifiers
∀, ∃ that can be applied to these variables, the binary relation = for expressing equality of
variables representing vertices, edges, sets of vertices and sets of edges, as well as the following
three binary relations:

– x ∈ X, expressing that x is an element of X, where either x is a vertex variable and X
is a vertex set variable or x is an edge variable and X is an edge set variable;

– inc(e, v), expressing that edge variable e is incident with vertex variable v;
– adj(u, v), expressing that vertex variables u and v are adjacent.

3 Bipartite Contraction and the Cost of 2-Colorings

In the Bipartite Contraction problem we are given a graph G and an integer k, and
the task is to determine whether there exists a set S ⊆ E(G) of at most k edges such that
G/S is bipartite. The main goal of this paper is to show that this problem is fixed-parameter
tractable when parameterized by k. In this section, we show that in order to obtain this goal,
it suffices to prove fixed-parameter tractability of another problem, which we call Cheap
Coloring Extension.

The cost of a 2-coloring φ of a graph G is defined as
∑
X∈Mφ

(|X| − 1), where Mφ is
the set of monochromatic components of φ. Note that the cost of a 2-coloring φ of G is 0 if
and only if φ is a proper 2-coloring of G. The following lemma allows us to reformulate the
Bipartite Contraction problem in terms of 2-colorings of the input graph G.

Lemma 1. A graph G has a 2-coloring φ of cost at most k if and only if there exists a set
S ⊆ E(G) of at most k edges such that G/S is bipartite.

Proof. Suppose G has a 2-coloring φ of cost at most k. We build an edge set S as follows.
For each monochromatic component X ∈Mφ, find a spanning tree TX of G[X] and add the
|X|−1 edges of TX to S. The total number of edges in S is exactly the cost of φ, so |S| ≤ k. It
remains to argue that G′ = G/S is bipartite. Note that G′ is obtained from G by contracting
each spanning tree TX to a single vertex tX . Let φ′ be the 2-coloring of G′ that assigns to
each tX ∈ V (G′) the color of the corresponding monochromatic component X ∈ Mφ. Since
each monochromatic component has been contracted to a single vertex, G′ has no edge that
is bad with respect to φ′. Hence φ′ is a proper 2-coloring of G′, implying that G′ is bipartite.

For the reverse direction, suppose there is a set S ⊆ E(G) of at most k edges such that
G′ = G/S is bipartite. We define G∗ to be the graph with the same vertex set as G and edge
set S, i.e., G∗ = (V (G), S). Let W be the G′-witness structure of G whose witness sets are
exactly the connected components of G∗. Let φ′ be a proper 2-coloring of G′. We construct a
2-coloring φ of G as follows. For every v ∈ V (G), we set φ(v) = φ′(y), where y is the vertex
in V (G′) such that v ∈ W (y). Since the monochromatic components of φ are exactly the
connected components of the graph G∗, and since G∗ contains exactly |S| edges, the cost of
φ is at most |S| ≤ k. ut

An instance of the Cheap Coloring problem consists of a graph G and an integer k,
and the task is to decide whether G has a 2-coloring of cost at most k. Lemma 1 implies that
the problems Bipartite Contraction and Cheap Coloring are equivalent.

The deletion of an edge can not increase the cost of a 2-coloring, and can only decrease
the cost of a 2-coloring by at most one. We state this as the following observation.
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Observation 1 Let φ be a 2-coloring of G of cost k. For any edge uv ∈ E(G), the cost of φ
in G− uv is k or k − 1.

Observation 1 allows us to use the well-known iterative compression technique of Reed,
Smith and Vetta [26] to reduce the Cheap Coloring problem to the Cheaper Coloring
problem. The Cheaper Coloring problem takes as input a graph G, an integer k, and a
2-coloring φ of G of cost k+ 1, and the task is to either find a 2-coloring of G of cost at most
k, or to conclude that such a coloring does not exist.

Lemma 2. If there is an algorithm for Cheaper Coloring that runs in time f(k)nc for
some constant c, then there is an algorithm for Cheap Coloring that runs in time f(k)ncm.

Proof. Suppose there exists an algorithm for Cheaper Coloring that runs in time f(k)nc.
Then we can solve an instance (G, k) of Cheap Coloring by iterating over the edges
e1, e2, . . . em of G as follows. For every i ∈ {1, . . . ,m}, we define Gi to be the graph with
vertex set V (G) and edge set Ei = {ej : j ≤ i}. The graph G1 has a 2-coloring φ1 of cost
0, which is at most k. For the first k iterations, we trivially maintain a 2-coloring of cost at
most k. Now, in iteration i of the algorithm, assume that we have a 2-coloring φi of cost at
most k in Gi. By Observation 1, the cost of φi in Gi+1 is at most k + 1. If the cost of φi in
Gi+1 is at most k, then we proceed to iteration i + 1. Otherwise, we run the algorithm for
Cheaper Coloring with input (Gi+1, k, φi). If the algorithm concludes that Gi+1 has no
2-coloring of cost at most k, then, by Observation 1, neither does G. If, on the other hand,
the algorithm outputs a 2-coloring φi+1 of Gi+1 of cost at most k, then we proceed to the
(i + 1)th iteration. Since we call the algorithm for Cheaper Coloring at most m times,
each time with parameter k, the time bound follows. ut

We have now almost reached the variant of the problem that will be the focus of attention
in the remainder of this paper. Given a graph G and two disjoint vertex sets T1, T2 ⊆ V (G),
a 2-coloring φ of G is a (T1, T2)-extension if φ colors every vertex in T1 with 1 and every
vertex in T2 with 2. A (T1, T2)-extension φ of G is a cheapest (T1, T2)-extension if there is no
(T1, T2)-extension φ′ of G with strictly lower cost than φ. We define the following problem:

Cheap Coloring Extension

Input: A n-vertex bipartite graph G, two integers k and t, and two
disjoint vertex sets T1 and T2 such that |T1|+ |T2| ≤ t.

Task: Find a (T1, T2)-extension φ of cost at most k, or to conclude
that such a 2-coloring does not exist.

We point out that the input graph G is bipartite, and that the sets T1 and T2 are not related
to the sets of the bipartition of G.

Lemma 3. If there is an algorithm for Cheap Coloring Extension that runs in time
f(k, t)nc for some constant c, then there is an algorithm for Cheaper Coloring that runs
in time 4k+1f(k, 2k + 2)nc.

Proof. Given an f(k, t)nc time algorithm for Cheap Coloring Extension, we show how
to solve an instance (G, k, φ) of Cheaper Coloring. Let S be the set of all bad edges in G
with respect to φ, and let X be the set of endpoints of the edges in S. Since φ has cost k+ 1,
we have |X| ≤ 2k + 2. We create 22k+2 = 4k+1 instances of Cheap Coloring Extension
as follows.

For every possible partition of X into two sets X1 and X2, we set k′ = k and t = |X|,
and we build a graph G(X1, X2) from G in the following way. As long as there is an edge
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uv ∈ S such that u and v are both in X1 or both in X2, contract the edge uv, put the new
vertex resulting from the contraction into the set Xi that u and v belonged to, and decrease
k′ by 1. Since the cost of φ is at most k + 1, we contract at most k + 1 edges in this way,
and hence k′ ≥ −1. When there are no such edges left, then we discard this partition of X
into X1 and X2 if k′ = −1; otherwise, we continue to build an instance of Cheap Coloring
Extension as follows. Delete all edges uv ∈ S with u ∈ Xi and v ∈ Xj such that i 6= j. Since
S contains all the edges of G that are bad with respect to φ, and each of the edges of S is
either contracted or deleted, the resulting graph G(X1, X2) has no bad edges with respect to
φ and is therefore bipartite. Thus we obtain an instance (G(X1, X2), k′, t,X1, X2) of Cheap
Coloring Extension with k′ ≥ 0.

We now show that (G, k, φ) is a yes-instance of Cheaper Coloring if and only if there
is a partition of X into X1 and X2 such that (G(X1, X2), k′, t,X1, X2) with k′ ≥ 0 is a
yes-instance of Cheap Coloring Extension.

Suppose that (G, k, φ) is a yes-instance of Cheaper Coloring. Then there exists a 2-
coloring φ∗ of G of cost at most k. Let X1 and X2 be the vertices of X that are colored 1
and 2 by φ∗, respectively. Consider the set S′ ⊆ S of edges that were contracted in order to
obtain G(X1, X2) from G in the way described earlier. Since every edge in S′ is bad with
respect to φ∗, the cost of φ∗ decreased by 1 with every edge contraction. Hence, φ∗ is an
(X1, X2)-extension of G(X1, X2) of cost k′. We conclude that (G(X1, X2), k′, t,X1, X2) is a
yes-instance of Cheap Coloring Extension.

For the reverse direction, suppose there is a partition of X into X1 and X2 such that
(G(X1, X2), k′, t,X1, X2) is a yes-instance of Cheap Coloring Extension with k′ ≥ 0, i.e.,
the bipartite graph G(X1, X2) has an (X1, X2)-extension ψ of cost at most k′. Let S′ ⊆ S be
the set of edges that were contracted in G to create the instance (G(X1, X2), k′, t,X1, X2).
Since k′ = k − |S′| ≥ 0, we have that |S′| ≤ k. We define a 2-coloring θ of G by coloring
both endpoints of every edge uv in S′ with the color that ψ assigned to the vertex resulting
from the contraction of the edge uv, and coloring all other vertices in G with the color they
received from ψ. Clearly, the cost of θ is at most k′ + |S′| = k, and therefore (G, k, φ) is a
yes-instance of Cheaper Coloring.

Since we need to run the f(k, t)nc time algorithm for Cheap Coloring Extension at
most 4k+1 times, with parameters k′ ≤ k and t = |X| ≤ 2k + 2 at each iteration, the time
bound follows. ut

The next section is devoted to showing that Cheap Coloring Extension is fixed-
parameter tractable when parameterized by k and t. The reason we want to work with the
Cheap Coloring Extension problem rather than with the Bipartite Contraction
problem directly is that, as we shall see in Section 4.2, Cheap Coloring Extension is a
“cut” problem, and is therefore amenable to techniques based on important separators [21].

4 Solving Cheap Coloring Extension in FPT Time

In this section, we present an algorithm for the Cheap Coloring Extension problem. For
the remainder of this section, let (G, k, t, T1, T2) be a given instance of Cheap Coloring
Extension, where G is assumed to be connected. Recall that G is bipartite. The high level
structure of our algorithm is as follows. If the treewidth of G is bounded by a function of k
and t, then we can use standard dynamic programming techniques to solve the problem in
time f(k, t)n. If, on the other hand, the treewidth of G is large, then we can find a large set
of vertices which is “highly connected”. In this case we show how to find in f(k, t)nO(1) time
an edge e ∈ E(G), such that G has a (T1, T2)-extension of cost at most k if and only if G− e
does. We then re-run our algorithm on G− e.

6



To make the distinction between the two cases in our algorithm more precise, we use the
following notion, due to Diestel et al. [7]. A set X ⊆ V (G) is p-connected in G if |X| ≥ p and,
for all subsets X1, X2 ⊆ X with |X1| = |X2| ≤ p, there are |X1| vertex-disjoint paths in G
with one endpoint in X1 and the other in X2. Diestel et al. [7] prove the following statement
in the proof of Proposition 3 (ii): if h ≥ p and G contains no p-connected set of size h, then
G has treewidth < h+ p− 1. (In fact, they prove a stronger version of this statement using
the notion of an externally p-connected set, but we do not need this stronger assertion for
our purposes.) We define a set X to be well-connected if it is |X|/2-connected. Using this
definition, the result of Diestel et al. [7] can be seen to imply the following.

Theorem 1 ([7]). If tw(G) > w, then G contains a well-connected set of size at least 2w/3.

The proof of Theorem 1 is constructive. In fact, given G and w, a tree decomposition
of width at most w or a well-connected set of size at least 2w/3 can be computed in time
cwnO(1) for some constant c [7]. We use Theorem 1 to compute either a tree-decomposition of
G of width at most 3(4k2) t 44k2

+3 or a well-connected set Y of size at least 2(4k2) t 44k2
+2.

Section 4.1 deals with the first case, whereas the second case is covered in Section 4.2.

4.1 Small Treewidth

Suppose our algorithm has found a tree-decomposition of G of width at most 3(4k2) t 44k2
+3.

We use the following celebrated theorem by Courcelle [3] to solve the Cheap Coloring
Extension problem in this case.

Theorem 2 ([3]). There is an algorithm that tests whether a monadic second-order formula
ψ holds on a graph G of treewidth w, in time f(|ψ|, w)n.

We remark that Theorem 2 holds even when the input graph G is supplemented by unary
relations α1, . . . , αp on vertices and edges and the monadic second-order formula ψ is allowed
to use these relations [3].

Lemma 4. There is an algorithm that, given an instance (G, k, t, T1, T2) of Cheap Col-
oring Extension together with a tree-decomposition of G of width w, solves the instance in
time f(k, t, w)n.

Proof. We show that the Cheap Coloring Extension problem can be formulated in
monadic second-order logic. To see this, we define two unary relations α1 and α2 on the
vertex set of the input graph G = (V,E) such that α1(v) is true if v ∈ T1 and α2(v) is true
if v ∈ T2. We claim that the following formula holds on a graph G = (V,E) if and only if G
has a (T1, T2)-extension of cost at most k.

ψ := ∃C1, C2 ⊆ V , ∃S ⊆ E , ∃e1, e2, . . . , ek ∈ E :[(
S = {e1, e2, . . . , ek}

)
∧
(
∀v ∈ V : (α1(v)→ v ∈ C1) ∧ (α2(v)→ v ∈ C2)

)
∧
(
∀e ∈ E , ∀u, v ∈ V :

(
(u 6= v) ∧ inc(e, u) ∧ inc(e, v)

)
→
(
(u ∈ C1 ∧ v ∈ C2) ∨ (u ∈ C2 ∧ v ∈ C1)
∨ (∀X1 ⊆ V : (u ∈ X1 ∧ v /∈ X1)→ ∃e′ ∈ S , ∃x, y ∈ V :

inc(e′, x) ∧ inc(e′, y) ∧ x ∈ X1 ∧ y /∈ X1

)]
The interpretation of ψ is as follows. The sets C1 and C2 are the vertices of G colored

1 and 2, respectively, by a (T1, T2)-extension φ. The edge set S contains all the edges, k in
total, of a spanning tree of each monochromatic component of φ. Every edge e = uv of G is
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either good or bad. If uv is a good edge, then φ assigns different colors to u and v (fourth
line of the formula). If uv is a bad edge, then the fifth and sixth lines of the formula state
that for every subset X1 of vertices of G containing u but not v, there is an edge e′ = xy in
G such that x ∈ X1 and y /∈ X1. To see why this is the case, suppose uv is a bad edge of
G. If uv belongs to S, then we can simply take xy = uv. Suppose uv does not belong to S.
Let X be the monochromatic component of φ such that G[X] contains uv, and let X1 be any
subset of V (G) containing u but not v. Since S contains all the edges of a spanning tree of
G[X], there exists a path P in G[X] from u to v, using only edges of S. Hence we can take
xy to be the first edge of P that has one endpoint (x) in X1 and the other endpoint (y) in
V (G) \X1.

Note that, for simplicity, we took some liberties in the formulation of the monadic second-
order formula. For example, the expression S = {e1, e2, . . . , ek} can easily be translated into
monadic second-order logic by demanding that every edge ei ∈ S and that any edge in S
must be one out of e1, e2, . . . , ek. Similarly, operators such as → can be reformulated using
the ∧, ∨, and ¬ operators. Applying Theorem 2 to this formulation completes the proof of
the lemma. ut

We would like to remark that, given an instance (G, k, t, T1, T2) of Cheap Coloring
Extension together with a tree-decomposition of G of width w, it is possible to solve that
instance in time (w+ 1)O(w)n using standard dynamic programming techniques, which gives
a much faster algorithm than the one obtained by applying Theorem 2 on the monadic
second-order formula.

4.2 Large Treewidth and Irrelevant Edges

Suppose our algorithm did not find a tree-decomposition of G of small width, but instead
found a well-connected set Y of size at least 2(4k2) t 44k2

+ 2. We use Y throughout this
section to refer to this specific set. An edge e ∈ E(G) is said to be irrelevant if it satisfies
the following property: G has a (T1, T2)-extension of cost at most k if and only if G− e does.
We will show that the presence of the large well-connected set Y guarantees the presence of
an irrelevant edge e in G. Hence we find such an irrelevant edge e in G, delete it from the
graph, and solve Cheap Coloring Extension on the instance (G − e, k, t, T1, T2). Since
each iteration of this process deletes an edge, we will find a tree-decomposition of the graph
under consideration of small width after at most m iterations, in which case we solve the
problem as described in Section 4.1.

Lemma 5. Let φ be a 2-coloring of G. No bad edge has both endpoints in the same good
component of φ.

Proof. Suppose, for contradiction, that G has a bad edge uv such that both u and v belong
to a good component C of φ. Since uv is bad, we have φ(u) = φ(v). Every good component
is connected, so there is a path P in C, starting in u and ending in v, consisting only of good
edges. The path P must contain an even number of edges, implying that P and uv together
form an odd cycle in G. This contradicts the assumption that G, which is part of the instance
(G, k, t, T1, T2) of Cheap Coloring Extension that we are solving, is bipartite. ut

Lemma 6. Let uv ∈ E(G). If φ is a cheapest (T1, T2)-extension of G− uv and u and v are
in the same good component of φ, then uv is irrelevant.

Proof. Suppose u and v belong to the same good component of a cheapest (T1, T2)-extension
φ of G−uv. Note that φ is a 2-coloring of G, and that the edge uv in G is good with respect to
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φ as a result of Lemma 5. Hence φ is a (T1, T2)-extension of G, and the cost of φ in G equals
the cost of φ in G−uv. As a result of Observation 1, φ must be a cheapest (T1, T2)-extension
of G. Since the cost of a cheapest (T1, T2)-extension of G− uv equals the cost of a cheapest
(T1, T2)-extension of G, the edge uv is irrelevant by definition. ut

In order to use Lemma 6, we need to identify two adjacent vertices u and v in G that
will end up in the same good component of some cheapest (T1, T2)-extension of G− uv. The
vertices in Y are good candidates, because they are so highly connected to each other. Over
the next few lemmas we formalize this intuition. We start with two lemmas that will allow
us, in the proof of Lemma 9 below, to bound the number of bad edges and the number of
good components of a cheapest (T1, T2)-extension of G of cost at most k.

Lemma 7. Let φ be a 2-coloring of G. If φ has cost at most k, then there are less than 2k2

bad edges.

Proof. Let M′φ = {X ∈ Mφ : |X| ≥ 2} be the set of monochromatic components of φ
containing more than one vertex, and letG′ be the disjoint union of the graphs induced inG by
the elements ofM′φ, i.e.,G′ =

⋃
X∈M′φ

G[X]. By definition, the cost of φ is
∑
X∈Mφ

(|X|−1) =∑
X∈M′φ

(|X| − 1), which is exactly the number of edges in any spanning forest of G′. Since
any forest on at most k edges without isolated vertices has at most 2k vertices, we have
|V (G′)| ≤ 2k. Every bad edge has both endpoints in V (G′), so the number of bad edges is at
most

(
2k
2

)
= 2k2 − k < 2k2. ut

Lemma 8. Let φ be a cheapest (T1, T2)-extension of G. Every good component of φ contains
a vertex from T1 ∪ T2.

Proof. Suppose a good component C of φ does not contain any vertex from T1 ∪ T2. We
build a coloring φ′ from φ by changing the color of every vertex in C, leaving the color of
every other vertex unchanged, i.e., φ′(v) = 3 − φ(v) if v ∈ C, and φ′(v) = φ(v) if v /∈ C.
Since φ(v) = φ′(v) for every v ∈ T1 ∪ T2, φ′ is a (T1, T2)-extension of G. Furthermore, every
edge that was good with respect to φ is good with respect to φ′, while every edge in δG(C)
was bad with respect to φ and is good with respect to φ′. Recall that G is assumed to be
connected. Hence there is some vertex v ∈ C which is incident with at least one edge that
was bad with respect to φ. On the other hand, all edges incident with v are good with respect
to φ′. Hence {v} is a monochromatic component of φ′, but {v} was not a monochromatic
component of φ. This means that |Mφ| < |Mφ′ |. This, together with the observation that
the number of edges that are bad with respect to φ′ is not higher than the number of edges
that were bad with respect to φ, implies that the cost of φ′ is strictly less than the cost of φ.
This contradicts the assumption that φ is a cheapest (T1, T2)-extension of G. ut

The next lemma shows that almost all the vertices of Y appear in the same good compo-
nent of any cheapest (T1, T2)-extension φ of G of cost at most k. In fact, we prove that the
same holds if we remove any edge of G.

Lemma 9. Let uv ∈ E(G) and let φ be a cheapest (T1, T2)-extension of G−uv. If φ has cost
at most k, then there exists exactly one good component C∗ of φ satisfying |Y \ C∗| ≤ 2k2,
and every other good component C ′ of φ satisfies |Y ∩ C ′| ≤ 2k2.

Proof. Suppose φ has cost at most k, and let C be a good component of φ. We first show
that either |Y \ C| ≤ 2k2 or |Y ∩ C| ≤ 2k2. Suppose for contradiction that |Y ∩ C| > 2k2

and |Y \ C| > 2k2. We define Y1 to be the smallest of the two sets Y ∩ C and Y \ C,
and Y2 to be any subset of the largest of the two sets such that |Y2| = |Y1|. Note that
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2k2+1 ≤ |Y1| = |Y2| ≤ |Y |/2. By the definition of a well-connected set, there are |Y1| ≥ 2k2+1
vertex-disjoint paths with one endpoint in Y ∩C and the other in Y \C. At least 2k2 of these
paths exist in G− uv, and each of those must contain an edge in δG−uv(C). Since each edge
in δG−uv(C) is bad, it follows that φ has at least 2k2 bad edges, contradicting Lemma 7.

Now suppose for contradiction that φ does not have a good component C∗ with |Y \C∗| ≤
2k2. Then |Y ∩C| ≤ 2k2 for every good component C of φ, as we showed earlier. Since φ has
at most t = |T1|+ |T2| good components as a result of Lemma 8, at most t 2k2 vertices of Y
appear in good components. The fact that the size of Y is much larger than t 2k2, together
with the observation that every vertex of G appears in a good component by definition,
yields the desired contradiction. Hence we know that φ has a good component C∗ with
|Y \ C∗| ≤ 2k2. The uniqueness of C∗ follows from the sizes of Y and C∗, and the fact that
the good components of φ are pairwise disjoint. ut

There are two problems with how to exploit the knowledge obtained from Lemma 9. The
first is that, even though we know that almost all the vertices of Y appear in the same good
component together, we do not know exactly which ones do. The second problem is that we
are looking for an edge with both endpoints in the same good component, and Y could be
an independent set and thus not immediately give us an edge to delete.

We deal with both problems by employing the very useful notion of important sets. For
two vertices x, y ∈ V (G), we say that a set X ⊆ V (G) is (x, y)-important if it satisfies the
following three properties: (1) x ∈ X and y /∈ X; (2) G[X] is connected; and (3) there is no
X ′ ⊃ X, y 6∈ X ′ such that dG(X ′) ≤ dG(X) and G[X ′] is connected. The following theorem
was first proved in [4]. We use here the formulation in [20], because that one best fits the
purposes of this paper.

Theorem 3 ([4, 20]). Let x, y be two vertices in a graph G. For every p ≥ 0, there are at
most 4p (x, y)-important sets X such that dG(X) ≤ p. Furthermore, these important sets can
be enumerated in time 4p nO(1).

Suppose G − uv has a cheapest (T1, T2)-extension φ of cost at most k for an edge uv ∈
E(G). We will use the important sets together with Lemma 9 to identify vertices in Y which
must be in the unique good component C∗ of φ that contains all but at most 2k2 vertices of
Y . We first build a graph G∗ from G by adding a new vertex y∗ and making y∗ adjacent to
all vertices in Y . We then enumerate all x ∈ T1 ∪ T2 and all (x, y∗)-important sets X in G∗

such that dG∗(X) ≤ 4k2. By Theorem 3, this can be done in time 44k2
nO(1) for each choice

of x. Finally, we define the set Z to be the union of all enumerated sets X. In other words,

Z = {w ∈ V (G∗) : ∃x ∈ T1 ∪ T2, X ⊆ V (G∗), w ∈ X, dG∗(X) ≤ 4k2, X is (x, y∗)-important}

Observe that, given G and Y , Z can be computed in time t 44k2
nO(1). We will use the set Z

in the following way. First we show that if there is an edge uv ∈ E(G) such that neither u
nor v belongs to Z, then the edge uv is irrelevant. Then we show that such an edge always
exists.

Lemma 10. Let uv ∈ E(G) such that u /∈ Z and v /∈ Z. Then uv is irrelevant.

Proof. Let φ be a cheapest (T1, T2)-extension of G−uv, and suppose φ has cost at most k. Let
C∗ be a good component of φ such that |Y \C∗| ≤ 2k2. By Lemma 9, such a component C∗

exists, and every other good component C of φ satisfies |Y ∩C| ≤ 2k2. We prove that both u
and v are in C∗. Suppose u /∈ C∗. Then u ∈ C for some other good component of φ, since by
definition every vertex belongs to some good component, possibly of size 1. Now C induces
a connected subgraph in G− uv, and all edges leaving C in G− uv are bad with respect to

10



φ by the definition of a good component. Since φ has less than 2k2 bad edges by Lemma 7,
it follows that dG−uv(C) < 2k2, and thus dG(C) ≤ 2k2. Furthermore, because |Y ∩C| ≤ 2k2,
we have that dG∗(C) ≤ 4k2. Finally, by Lemma 8, C must contain a vertex x ∈ T1 ∪ T2.
Hence there must be an (x, y∗)-important set X such that C ⊆ X and d(X) ≤ 4k2 in G∗.
But C ⊆ X ⊆ Z, which implies that u ∈ Z, contradicting the assumption that u /∈ Z. The
proof that v ∈ C∗ is identical. We conclude that both u and v belong to the good component
C∗, and hence, by Lemma 6, uv is irrelevant. ut

Lemma 11. G contains an edge uv such that u /∈ Z and v /∈ Z.

Proof. We first prove that dG(Z) ≤ (4k2) t 44k2
and |Z ∩ Y | ≤ (4k2) t 44k2

. For the first
inequality, it suffices to show that dG∗(Z) ≤ (4k2) t 44k2

, because G is a subgraph of G∗. By
Theorem 3, there exist at most 44k2

(x, y∗)-important sets X with dG∗(X) ≤ 4k2 for each
x ∈ T1∪T2. Since Z is the union of all those sets over all elements of T1∪T2, and |T1∪T2| = t

by definition, the first inequality follows. To see that |Z ∩Y | ≤ (4k2) t 44k2
, observe that each

(x, y∗)-important set X in G∗ with dG∗(X) ≤ 4k2 contains at most 4k2 vertices of Y , since
each vertex in Y is a neighbour of y∗.

In order to prove that G contains an edge uv with u /∈ Z and v /∈ Z, we arbitrarily choose
two disjoint subsets Y1, Y2 of Y such that Z ∩Y ⊆ Y2 and |Y1| = |Y2| = (4k2) t 44k2

+ 1. Since
|Y | ≥ 2(4k2) t 44k2

+ 2 by assumption and we showed that |Z ∩ Y | ≤ (4k2) t 44k2
, such sets

Y1, Y2 always exist. By the definition of a well-connected set, there are |Y1| = (4k2) t 44k2
+ 1

vertex-disjoint paths starting in Y1 and ending Y2. For every 1 ≤ i ≤ |Y1|, let uivi be the first
edge on the ith such path, with ui ∈ Y1. Recall that Z ∩ Y ⊆ Y2 by assumption. Since all of
the ui’s are in Y1, none of them are in Z. Thus, each vi that belongs to Z contributes one
to dG(Z), as then uivi ∈ δG(Z). Since we bounded dG(Z) from above by (4k2) t 44k2

at the
start of this proof, not every vi can belong to Z. Hence there is an edge uivi with neither
endpoint in Z. ut

We are now ready to state the main lemma of this section.

Lemma 12. Cheap Coloring Extension can be solved in time f(k, t)nO(1).

Proof. Let (G, k, t, T1, T2) be an instance of Cheap Coloring Extension, and let f be an
appropriate function that does not depend on n. We first apply Theorem 1 and the remark
immediately following it to compute, in time f(k, t)nO(1), either a tree-decomposition of G
of width at most 3(4k2) t 44k2

+ 3 or a well-connected set Y of size at least 2(4k2) t 44k2
+ 2.

If we get a tree-decomposition of small width, we apply Lemma 4 to solve the problem in
additional time f(k, t)n. If we find a well-connected set Y , we continue to find an irrelevant
edge e ∈ E(G) and delete it from G. Lemmas 10 and 11 guarantee that such an edge always
exists. In order to find e, we first compute the set Z. We already argued that this can be
done in time f(k, t)nO(1) if G and Y are given. We can find an irrelevant edge as explained
in the proof of Lemma 11 in additional polynomial time, since this amounts to computing
Z ∩Y , choosing Y2 to contain the whole intersection and as many more vertices as needed to
obtain |Y2| = (4k2) t 44k2

+ 1, choosing Y1 to be any subset of Y \ Y2 such that |Y1| = |Y2|,
and checking all edges leaving Y1 to find one whose endpoints do not belong to Z. The total
running time of this whole procedure is clearly f(k, t)nO(1).

After an irrelevant edge e is deleted from G, we run the whole procedure on (G −
e, k, t, T1, T2). This can be repeated at most |E(G)| = nO(1) times, and hence the total
running time f(k, t)nO(1) follows. ut

Our main result immediately follows from Lemmas 1, 2, 3, and 12.
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Theorem 4. Bipartite Contraction is fixed-parameter tractable when parameterized by k.

We end this section with a remark on the running time. If we use Lemma 4 in the proof
of Lemma 12, then the parameter dependence of the whole algorithm is dominated by a very
large function in k [3]. However, as we remarked after Lemma 4, we can obtain a running

time of (4O(k2))4
O(k2)

n = 22O(k2)
n for the small treewidth case in the proof of Lemma 12.

This is because the treewidth of the instance at hand is 44k2
kO(1) = 44k2+O(log k) = 4O(k2)

when the small treewidth case applies. This gives a total running time of of 22O(k2)
nO(1) for

our algorithm for Bipartite Contraction.

5 Concluding Remarks

We showed that Bipartite Contraction is fixed-parameter tractable. Very recently, Marx
et al. [22] showed that Bipartite Contraction is “almost linear-time FPT” by presenting
an algorithm that solves the problem in time f(k)·n·α(n, n), where α is the inverse Ackermann
function. Their algorithm is based on an interesting combinatorial result, called the Treewidth
Reduction Theorem, and uses the algorithm for solving OCT from [15] as a subroutine. As
such, the arguments used in [22] are completely different than the ones used in our approach.

A highly relevant question is whether Bipartite Contraction admits a polynomial
kernel, i.e., a polynomial-time algorithm that transforms an instance (G, k) into an equiva-
lent instance (G′, k′) of size g(k), where g is a polynomial in k. Very recently, Kratsch and
Wahlström [18] showed that the problems OCT and Edge Bipartization admit random-
ized polynomial kernels, which can be obtained using a novel kernelization approach based
on matroid theory.

We conclude with the following question: Can some of the algorithms that currently use
Robertson-Seymour machinery to find an irrelevant vertex, be modified in such a way that
they find an irrelevant vertex using p-connected sets instead?
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