
12

Approximation Schemes for Low-rank Binary Matrix

Approximation Problems

FEDOR V. FOMIN and PETR A. GOLOVACH, Department of Informatics, University of

Bergen, Norway

DANIEL LOKSHTANOV, University of California Santa Barbara, USA

FAHAD PANOLAN, Department of Computer Science and Engineering, IIT Hyderabad, India

SAKET SAURABH, The Institute of Mathematical Sciences, HBNI, India

We provide a randomized linear time approximation scheme for a generic problem about clustering of bi-

nary vectors subject to additional constraints. The new constrained clustering problem generalizes a num-

ber of problems and by solving it, we obtain the first linear time-approximation schemes for a number of

well-studied fundamental problems concerning clustering of binary vectors and low-rank approximation of

binary matrices. Among the problems solvable by our approach are Low GF(2)-Rank Approximation, Low

Boolean-Rank Approximation, and various versions of Binary Clustering. For example, for Low GF(2)-

Rank Approximation problem, where for anm × n binary matrix A and integer r > 0, we seek for a binary

matrix B of GF(2) rank at most r such that the �0-norm of matrix A − B is minimum, our algorithm, for any

ϵ > 0 in time f (r , ϵ) · n ·m, where f is some computable function, outputs a (1 + ϵ)-approximate solution

with probability at least (1 − 1
e). This is the first linear time approximation scheme for these problems. We

also give (deterministic) PTASes for these problems running in time n
f (r) 1

ϵ2 log 1
ϵ , where f is some function

depending on the problem. Our algorithm for the constrained clustering problem is based on a novel sampling

lemma, which is interesting on its own.

CCS Concepts: • Theory of computation → Design and analysis of algorithms; • Mathematics of

computing → Probability and statistics;

Additional Key Words and Phrases: Binary matrix factorization, clustering, approximation scheme, random

sampling

ACM Reference format:

Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. 2019. Approxima-

tion Schemes for Low-rank Binary Matrix Approximation Problems. ACM Trans. Algorithms 16, 1, Article 12

(November 2019), 39 pages.

https://doi.org/10.1145/3365653

This project has received funding from the European Research Council (ERC) un-

der the European Union’s Horizon 2020 research and innovation programme (grant

agreement No. 819416) and from the Norwegian Research Council via grants MUL-

TIVAL and CLASSIS.

Authors’ addresses: F. V. Fomin and P. A. Golovach, Department of Informatics, University of Bergen, PB 7803, Bergen,

5020, Norway; emails: {fedor.fomin, petr.golovach}@uib.no; D. Lokshtanov, Department of Computer Science, University of

California Santa Barbara, 2104, USA; email: daniello@ucsb.edu; F. Panolan, Department of Computer Science and Engineer-

ing, IIT Hyderabad, Kandi, Sangareddy, 502285, India; email: fahad@iith.ac.in; S. Saurabh, The Institute of Mathematical

Sciences, HBNI, 4th CrossStreet, CIT Campus, Tharamani, Chennai, Tamil Nadu, 600113 and Department of Informatics,

University of Bergen, PB 7803, Bergen, 5020; email: saket@imsc.res.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1549-6325/2019/11-ART12 $15.00

https://doi.org/10.1145/3365653

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

https://doi.org/10.1145/3365653
mailto:permissions@acm.org
https://doi.org/10.1145/3365653

12:2 F. V. Fomin et al.

1 INTRODUCTION

Low-rank matrix approximation is a generic optimization problem, in which a given data matrix
has to be approximated by another matrix of low rank. It is at the heart of the methods used in
Machine Learning and Data Analysis like Principal Component Analysis (PCA) or Factor Analysis.
A recent trend inmany applications from datamining and knowledge discovery is the study of low-
rank approximation of binary matrices. This is due to the fact that in various settings, like in latent
semantic indexing, approximating a binary matrix by a low rank binary matrix is an easy way to
interpret data succinctly [7, 28, 29]. There are well-known and efficient techniques like Singular
Value Decomposition (SVD) for computing optimal low-rank approximation with respect to the
Frobenius norm for matrices over reals. Unfortunately, these methods are often inapplicable for
handling binary data. Moreover, it appears that most of the interesting variants of low-rank binary
matrix approximation are NP-complete. This is the reasonwhy themajority of the approaches used
in practice rely on heuristics with no provable guarantees. In this article, we show that despite
of their worst-case intractability, many problems around low-rank binary matrix approximation
admit efficient approximation algorithms, and their behavior can be analyzed rigorously.

To obtain approximation algorithms for low-rank approximation problems, we design approxi-
mation algorithms for a “constrained” version of binary clustering.

A k-ary relation R is a set of binary k-tuples with elements from {0, 1}. A k-tuple t = (t1, . . . , tk)
satisfies R, we write t ∈ R, if t is equal to one of the k-tuples from R.

Definition 1 (Vectors Satisfying R). Let R = {R1, . . . ,Rm } be a set of k-ary relations. We say
that a set C = {c1, c2, . . . , ck } of binary m-dimensional vectors satisfies R and write < C,R >, if
(c1[i], . . . , ck [i]) ∈ Ri for all i ∈ {1, . . . ,m}.

For example, for m = 2, k = 3, R1 = {(0, 0, 1), (1, 0, 0)}, and R2 = {(1, 1, 1), (1, 0, 1), (0, 0, 1)}, the
set of vectors

c1 =

(
0
1

)
, c2 =

(
0
0

)
, c3 =

(
1
1

)
satisfies R = {R1,R2}, because (c1[1], c2[1], c3[1]) = (0, 0, 1) ∈ R1 and (c1[2], c2[2], c3[2]) =
(1, 0, 1) ∈ R2.

Let us recall that the Hamming distance between two vectors x, y ∈ {0, 1}m , where x =

(x1, . . . ,xm)ᵀ and y = (y1, . . . ,ym)ᵀ, is dH (x, y) =
∑m

i=1 |xi − yi | or, in words, the number of posi-
tions i ∈ {1, . . . ,m} where xi andyi differ. For a set of vectorsC and a vector x, we define dH (x,C),
the Hamming distance between x and C , as the minimum Hamming distance between x and a
vector from C . Thus, dH (x,C) = minc∈C dH (x, c).

Then, we define the following problem:

Binary Constrained Clustering

Input: A set X ⊆ {0, 1}m of n vectors, a positive integer k , and a set of k-ary relations R =
{R1, . . . ,Rm }.
Task: Among all vector sets C = {c1, . . . , ck } ⊆ {0, 1}m satisfying R, find a set C minimizing
the sum

∑
x∈X dH (x,C).

First, we prove the following theorem:

Theorem 1. There is a deterministic algorithm that, given an instance of Binary Constrained

Clustering and ε > 0, runs in timem · nO (k2

ε2
log 1

ε)
, and outputs a (1 + ε)-approximate solution.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:3

Theorem 1 is a warm-up for our main theorem, which is stated as follows:

Theorem 2. There is an algorithm that for a given instance of Binary Constrained Cluster-

ing and ε > 0 in time 2O (k4

ε2
log 1

ε) · (1
ε

)O (k

ε2
log 1

ε)n ·m outputs a (1 + ε)-approximate solution with

probability at least (1 − 1
e

).

In other words, for any constant k and ε , the algorithm in linear time outputs a set of vectors
C = {c1, . . . , ck } ⊆ {0, 1}m satisfying R such that

∑
x∈X dH (x,C) ≤ (1 + ε) ·OPT , whereOPT is the

value of the optimal solution.
Theorems 1 and 2 have a number of interesting applications.

1.1 Applications of Theorems 1 and 2

Binary matrix factorization is the following problem: Given a binarym × n matrix; that is a matrix
with entries from the domain {0, 1},

A =

������
�

a11 a12 . . . a1n

a21 a21 . . . a2n

...
...
. . .

...
am1 am2 . . . amn

������
�
= (ai j) ∈ {0, 1}m×n ,

the task is to find a “simple” binarym × n matrix B that approximates A subject to some specified
constraints. One of the most widely studied error measures is the Frobenius norm, which for the
matrix A is defined as

‖A‖F =

√√
m∑

i=1

n∑
j=1

|ai j |2.

Here the sums are taken over R. Then, we want to find a matrix B with certain properties such
that

‖A − B‖2F
is minimum.

In particular, two variants of the problem were studied in the literature. In the first variant, one
seeks a matrix B of GF(2)-rank at most r . In the second variant, matrix B should be of Boolean rank
at most r . Depending on the selection of the rank, we obtain two different optimization problems.

Low GF(2)-Rank Approximation. Here the task is to approximate a given binary matrix A by a
matrix B that has GF(2)-rank at most r .

Low GF(2)-Rank Approximation

Input: Anm × n-matrix A over GF(2) and a positive integer r .
Task: Find a binarym × n-matrix B with GF(2)-rank(B) ≤ r such that ‖A − B‖2F is minimum.

Low Boolean-rank Approximation. LetA be a binarym × nmatrix. Now, we consider the elements
of A to be Boolean variables. The Boolean rank of A is the minimum r such that A = U ∧ V for
a Boolean m × r matrix U and a Boolean r × n matrix V, where the product is Boolean; that is,
the logical ∧ plays the role of multiplication and ∨ the role of sum. Here 0 ∧ 0 = 0, 0 ∧ 1 = 0,
1 ∧ 1 = 1 , 0 ∨ 0 = 0, 0 ∨ 1 = 1, and 1 ∨ 1 = 1. Thus, the matrix product is over the Boolean semi-
ring (0, 1,∧,∨). This can be equivalently expressed as the normal matrix product with addition
defined as 1 + 1 = 1. Binary matrices equipped with such algebra are called Boolean matrices.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:4 F. V. Fomin et al.

Low Boolean-Rank Approximation
Input: A Booleanm × n matrix A and a positive integer r .
Task: Find a Boolean m × n matrix B of Boolean rank at most r such that ‖A − B‖2F is
minimum.

Low-rank matrix approximation problems can be also treated as special cases of Binary Con-
strained Clustering. To keep the flow of the article, we postpone the proof of the following
lemmata until Section 9.

Lemma 1. For any instance (A, r) of Low GF(2)-Rank Approximation, one can construct in time

O (m + n + 22r) an instance (X ,k = 2r ,R) of Binary Constrained Clustering with the following

properties:

• for any α-approximate solution C of (X ,k,R), there is an algorithm that in time O (rmn)
returns an α-approximate solution B of (A, r), and

• for any α-approximate solution B of (A, r), there is an algorithm that in time O (rmn) returns

an α-approximate solution C of (X ,k,R).

Similarly for Low Boolean-Rank Approximation, we have the following lemma:

Lemma 2. For any instance (A, r) of Low Boolean-Rank Approximation, one can construct

in time O (m + n + 22r) an instance (X ,k = 2r ,R) of Binary Constrained Clustering with the

following properties:

• for any α-approximate solution C of (X ,k,R), there is an algorithm that in time O (rmn)
returns an α-approximate solution B of (A, r), and

• for any α-approximate solution B of (A, r), there is an algorithm that in time O (rmn) returns

an α-approximate solution C of (X ,k,R).

Hence, to design approximation schemes for Low Boolean-Rank Approximation and Low
GF(2)-Rank Approximation, it suffices to give an approximation scheme for Binary Con-
strained Clustering.

For α > 1, we say that an algorithm is an α-approximation algorithm for the low-rank approx-
imation problem if for a matrix A and an integer r it outputs a matrix B satisfying the required
constraints such that ‖A − B‖2F ≤ α · ‖A − Br ‖2F , where Br = argminrank(Br)=r ‖A − Br ‖2F . By The-
orems 1 and 2 and Lemmata 1 and 2, we obtain the following:

Corollary 1. There is an algorithm that for a given instance of Low Boolean-Rank Approxi-
mation (Low GF(2)-Rank Approximation) and ε > 0 in time(

1

ε

) (2
O (r)

ε2
log 1

ε)

· n ·m

outputs a (1 + ε)-approximate solution with probability at least (1 − 1
e

).

Corollary 2. There is a deterministic algorithm that for a given instance of Low Boolean-Rank

Approximation (Low GF(2)-Rank Approximation) and ε > 0 in time m · nO (2
2r

ε2
log 1

ε)
outputs a

(1 + ε)-approximate solution.

Let us observe that our results also yield randomized approximation scheme for the “dual”
maximization versions of the low-rank matrix approximation problems. In these problems one
wants to maximize the number of elements that are the same in A and B or, in other words,

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:5

to maximize the value of nm − ‖A − B‖2F . It is easy to see that for every binary m × n matrix A

there is a binary matrix B with GF(2)-rank(B) ≤ 1 such that ‖A − B‖2F ≤ mn/2. This implies that

‖A − Br ‖2F ≤ (mn − ‖A − Br ‖2F), where Br = argminrank(Br)=r ‖A − Br ‖2F . This observation implies

that for any matrix B satisfying ‖A − B‖2F ≤ (1 + ε) · ‖A − Br ‖2F ,
(mn − ‖A − Br ‖2F) − (mn − ‖A − B‖2F) = ‖A − B‖2F − ‖A − Br ‖2F

≤ ε ‖A − Br ‖2F ≤ ε (mn − ‖A − Br ‖2F).

1.2 Binary k-means

The special case of Binary Constrained Clustering where no constraints are imposed on the
centers of the clusters is Binary k-Means.

Binary k-Means
Input: A set X ⊆ {0, 1}m of n vectors and a positive integer k .
Task: Find a set C = {c1, . . . , ck } ⊆ {0, 1}m minimizing the sum

∑
x∈X dH (x,C).

Equivalently, in Binary k-Means, we seek to partition a set of binary vectors X into k clusters
{X1, . . . ,Xk } such that after we assign to each cluster its mean, which is a binary vector ci (not

necessarily from X) closest to Xi , then the sum
∑k

i=1

∑
x∈Xi

dH (ci , x) is minimum.
Of course, Binary Constrained Clustering generalizes Binary k-Means: For given instance

(X ,k) of Binary k-Means by taking sets Ri , 1 ≤ i ≤ m, consisting of all possible k-tuples {0, 1}k ,
we construct in time O (n +m + 2k) an instance (X ,k,R) of Binary Constrained Clustering
equivalent to (X ,k). Note that, since all the sets Ri are the same, it is sufficient to keep just one
copy of the set for the instance (X ,k,R). That is, any (1 + ε)-approximation to one instance is also
a (1 + ε)-approximation to another. Theorems 1 and 2 imply the following corollaries:

Corollary 3. There is an algorithm that for a given instance of Binary k-Means and ε > 0 in

time (1
ε

)O (k4

ε2
log 1

ε) · n ·m outputs a (1 + ε)-approximate solution with probability at least (1 − 1
e

).

Corollary 4. There is a deterministic algorithm that for a given instance of Binary k-Means

and ε > 0 in timem · nO (k2

ε2
log 1

ε)
outputs a (1 + ε)-approximate solution.

1.3 Variants of Binary Clustering

Theorems 1 and 2 can be used for many other variants of binary clustering. Let us briefly mention
some other clustering problems that fit in our framework.

For example, the following generalization of binary clustering can be formulated as Binary
ConstrainedClustering. Here the centers of clusters are linear subspaces of bounded dimension
r . (For r = 1 this is Binary k-Means and for k = 1 this is Low GF(2)-Rank Approximation.)
More precisely, in Binary Projective Clustering, we are given a set X ⊆ {0, 1}m of n vectors
and positive integers k and r . The task is to find a family of r -dimensional linear subspaces C =
{C1, . . . ,Ck } over GF(2) minimizing the sum∑

x∈X
dH

(
x,∪k

i=1Ci

)
.

To see that Binary Projective Clustering is the special case of Binary Constrained Clus-
tering, we observe that the condition that Ci is an r -dimensional subspace over GF(2) can be
encoded (as in Lemma 1) by 2r constraints. For completeness, we state the following lemma and a
proof sketch of it is given in Section 9:

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:6 F. V. Fomin et al.

Lemma 3. For any instance (X ,k, r) of Binary Projective Clustering, one can construct in

time O (m + n + 2k ·r) an instance (X ,k ′ = 2k ·r ,R) of Binary Constrained Clustering such that

any α-approximate solution C of (X ,k ′,R) is also an α-approximate solution of (X ,k, r), and vice

versa.

Similar arguments hold also for the variant of Binary Projective Clustering when instead of
r -dimensional subspaces, we use r -flats (r -dimensional affine subspaces).

In Correlative k-Bicluster Editing, we are given a bipartite graph, and the task is to change
the minimum number of adjacencies such that the resulting graph is a disjoint union of at most k
complete bipartite graphs [3]. This is the special case of Binary Constrained Clustering where
X is the set of column vectors of the bipartite adjacency matrix and each constrain Ri consists
of k-tuples and each of the k-tuples contains exactly one element 1 and all the other elements
are 0. Another problem that can be reduced to Binary Constrained Clustering is the following
variant of the Biclustering problem [40]. Here, for matrix A and positive integers k, r , we want to
find a binarym × n-matrix B with at most r pairwise-distinct rows and k pairwise-distinct columns
such that ‖A − B‖2F is minimum.

1.4 Previous Work

Low-rank binary matrix approximation. Low-rank matrix approximation is a fundamental and
extremely well-studied problem.When themeasure of the similarity between A and B is the Frobe-
nius norm of the matrix A − B, the rank-r approximation (for any r) of matrix A can be efficiently
found via the singular value decomposition (SVD). This is an extremely well-studied problem and
we refer to surveys and books [22, 27, 39] for an overview of this topic. However, SVD is not
guaranteed to find an optimal solution in the case when additional structural constraints on the
low-rank approximation matrix B (like being non-negative or binary) are imposed. In fact, most
of the variants of low-rank approximation with additional constraints are NP-hard.

For a long time the predominant approaches for solving such low-rank approximation prob-
lems with NP-hard constraints were either heuristic methods based on convex relaxations or opti-
mization methods. Recently, there has been considerable interest in the rigorous analysis of such
problems [4, 11, 32, 35].

Low GF(2)-Rank Approximation arises naturally in applications involving binary data sets
and serve as important tools in dimension reduction for high-dimensional data sets with binary
attributes (see References [12, 18, 21, 24, 34, 36, 41] for further information). Due to the numerous
applications of low-rank binary matrix approximation problems, various heuristic algorithms for
these problems could be found in the literature [14, 20, 21, 24, 36].

When it concerns a rigorous analysis of algorithms for Low GF(2)-Rank Approximation, the
previous results include the following: Gillis and Vavasis [15] and Dan et al. [12] have shown that
Low GF(2)-Rank Approximation is NP-complete for every r ≥ 1. A subset of the authors studied
parameterized algorithms for Low GF(2)-Rank Approximation in Reference [13].

The first approximation algorithm for Low GF(2)-Rank Approximation is due to Shen et al.
[36] who gave a 2-approximation algorithm for the special case of r = 1. Shen et al. [36] formu-
lated the rank-one problem as Integer Linear Programming and proved that its relaxation gives
a 2-approximation. They also observed that the efficiency of their algorithm can be improved by
reducing the linear program to the Max-Flow problem. Jiang et al. [21] found a much simpler
algorithm by observing that for the rank-one case, simply selecting the best column of the in-
put matrix yields a 2-approximation. Bringmann et al. [9] developed a 2-approximation algorithm
for r = 1 that runs in sublinear time. Thus, even for the special case r = 1, no polynomial time
approximation scheme was known prior to our work.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:7

For rank r > 1, Dan et al. [12] have shown that a (r/2 + 1 + r
2(2r−1))-approximate solution can

be formed from r columns of the input matrix A. Hence, by trying all possible r columns of A,

we can obtain r/2 + 1 + r
2(2r−1) -approximation in time nO (r) . Even the existence of a linear time

algorithm with a constant-factor approximation for r > 1 was open.
Low Boolean-Rank Approximation in the case of r = 1 coincides with Low GF(2)-Rank Ap-

proximation. Thus, by the results of Gillis and Vavasis [15] and Dan et al. [12] Low Boolean-
Rank Approximation is NP-complete already for r = 1. While computing GF(2)-rank (or rank
over any other field) of a matrix can be performed in polynomial time, deciding whether the
Boolean rank of a given matrix is at most r is already an NP-complete problem. This follows from
the well-known relation between the Boolean rank and covering edges of a bipartite graph by bi-

cliques [17]. Thus, for fixed r , the problem is solvable in time 22
O (r)

(nm)O (1) [13, 16] and unless

Exponential Time Hypothesis (ETH) fails, it cannot be solved in time 22
o (r)

(nm)O (1) [10].
There is a large body of work on Low Boolean-Rank Approximation, especially in the data

mining and knowledge discovery communities. In data mining, matrix decompositions are of-
ten used to produce concise representations of data. Since much of the real data such as word-
document data is binary or even Boolean in nature, the Boolean low-rank approximation could
provide a deeper insight into the semantics associated with the original matrix. There is a big
body of work done on Low Boolean-Rank Approximation, see, e.g., References [7, 8, 12, 26,
28, 29, 37]. In the literature the problem appears under different names such as Discrete Basis
Problem [28] or Minimal Noise Role Mining Problem [26, 30, 38].

Since for r = 1 Low Boolean-Rank Approximation is equivalent to LowGF(2)-Rank Approx-
imation, the 2-approximation algorithm for Low GF(2)-Rank Approximation in the case of r = 1
is also a 2-approximation algorithm for Low Boolean-Rank Approximation. For rank r > 1, Dan
et al. [12] described a procedure that produces a 2r−1 + 1-approximate solution to the problem.

Let us note that independently Ban et al. [6] announced a very similar algorithmic result. To
compare with our result, their algorithm is for matrices over any finite field but takes a slightly

worse running time (1
ε

)2
O (r)/ε2

n1+o (1) ·m, where o(1) = (log logn)1.1/ logn.

Binaryk-Means. This problemwas introduced by Kleinberg, Papadimitriou, and Raghavan [23]
as one of the examples of segmentation problems. Ostrovsky and Rabani [33] gave a randomized
PTAS for Binaryk-Means. In other words they show that for anyγ > 0 and 0 < ε < 1/8 there is an
algorithm finding a (1 + 8ε)2-approximate solution with probability at least 1 − n−γ . The running

time of the algorithm of Ostrovsky and Rabani is nf (ε,k) for some function f .
For the dual maximization problem, where one wants to maximize nm −∑k

i=1

∑
x∈Xi

dH (ci , x), a
significantly faster approximation is known. Alon and Sudakov [2] gave a randomized EPTAS. For
a fixed k and ε > 0 the running time of the (1 − ε)-approximation algorithm of Alon and Sudakov
is linear in the input length.

Binary k-Means can be seen as a discrete variant of the well-known k-Means Clustering.
This problem has been studied thoroughly, particularly in the areas of computational geometry
and machine learning. We refer to References [1, 5, 25] for further references to the works on
k-Means Clustering. In particular, the ideas from the algorithm for k-Means Clustering of
Kumar et al. [25] form the starting point of our algorithm for Binary Constrained Clustering.

The comparison of our results with the previous work is summarized in Table 1.

1.5 Our Approach

Sampling lemma and deterministic algorithm. Our algorithms are based on Sampling Lemma
(Lemma 4). Suppose we have a relation R ⊆ {0, 1}k and a weight tuple w = (w1, . . . ,wk),
where wi ≥ 0 for all i ∈ {1, . . . ,k }. Then Sampling Lemma says that for any ε > 0, there is a

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:8 F. V. Fomin et al.

Table 1. Comparison of Our Results with Previously Known Results

Problem
Our results Previous results

Approx Runtime Approx Runtime

Low GF(2)-Rank

Approximation
(1 + ε) f (r , ε) · n ·m 2 (for r = 1) nO (1) [9, 21, 36]

(r
2 + 1 + r

2(2r−1)) nO (r)[12]

Low Boolean Rank

Approximation
(1 + ε) f (r , ε) · n ·m 2 (for r = 1) nO (1) [9, 21, 36]

2r−1 + 1 nO (2r)m [12]

Binary k-Means (1 + ε) f (k, ε) · n ·m (1 + ε) nf (ε,k) [33]
Binary Projective
Clustering

(1 + ε) f (k, r , ε) · n ·m − −

Recently and independently Ban et al. [6] obtained the same approximation ration for Low Boolean Rank, Low

GF(2)-Rank, and Binary k-Means. To compare with our result, their algorithm is for matrices over any finite field

but has a worse running time f (r, ε) · n ·m · log2r
n. For Binary Projective Clustering, we are not aware of any

known approximation algorithms.

constant r = Θ(k
ε2 log

1
ε

) such that for any tuple p = (p1, . . . ,pk), 0 ≤ pi ≤ 1, r random samples
from Bernoulli distribution B (pi) for each i ∈ {1, . . . ,k } give a good estimate of the minimum
weighted by w distance of p from the tuples in R. For more details, we refer to Lemma 4. We
believe that Sampling Lemma, which proves that random samples of constant size provide a
good estimate to minimum weighted distance of probability distributions, will be of independent
interest.

With a small additional work our sampling lemma implies a deterministic PTAS for Binary
Constrained Clustering. Let J = (X ,k,R = {R1, . . . ,Rm }) be an instance of Binary Con-
strained Clustering and ε > 0. Let C = {c1, . . . , ck } be an optimum solution to J . Let X1 �
X2 . . . � Xk be a partition of X into cluster corresponding to C , that is such that

∑
x∈X dH (x,C) =∑k

i=1

∑
x∈Xi

dH (x, ci). By Sampling Lemma, for constant r = Θ(k
ε2 log

1
ε

) andweightwi = |Xi |, sam-
pling r vectors uniformly at random chosen with repetition from Xi for each i ∈ {1, . . . ,k }, pro-
duces a small instance of the problem whose solution is a (1 + ε)-approximate solution to J (see
Lemma 5). Thus, to find an approximate solution, we brute-force over all choices of w1, . . . ,wk ∈
[n] and k-sized families of r -sized (multi)sets. For each choice, we find a solution and then return
the best one. This almost immediately brings us to the deterministic PTAS claimed in Theorem 1.
However, to obtain EPTAS with linear running time, we need several additional ideas.

Linear time algorithm (Theorem 2). The general idea of our linear time algorithm for Binary
Constrained Clustering is inspired by the algorithm of Kumar et al. [25]. Very informally, the
algorithm of Kumar et al. [25] for k-Means Clustering is based on repeated sampling and does
the following: For any (optimum) solution, there is a cluster of size at least 1

k
-th of the number of

input vectors. Then when we sample a constant number of vectors from the input uniformly at
random, with a good probability, the sampled vectors will be from the largest cluster. Moreover,
if we sample sufficiently many (but still constant) number of vectors, they not only will belong to
the largest cluster with a good probability, but taking the mean of the sample as the center of the
whole cluster in the solution, we obtain a vector “close to optimum.” This procedure succeeds if
the size of the largest cluster is a large fraction of the number of vectors we used to sample from.
Then the main idea behind the algorithm of Kumar et al. is to assign vectors at a small distance
from the guessed center vectors to their clusters. Moreover, once some vectors are assigned to
clusters, the next largest cluster will be a constant (depending on k and ε) fraction the size of the
yet-unassigned vectors. With the right choice of parameters, it is possible to show that with a good
probability this procedure will be a good approximation to the optimum solution.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:9

On a very superficial level, we want to implement a similar procedure: iteratively sample, iden-
tify centers from samples, assign some of the unassigned vectors to the centers, then sample again,
identify centers, and so on. Unfortunately, it is not that simple. The main difficulty is that in Bi-
nary Constrained Clustering, even though we could guess vectors from the largest cluster, we
cannot select a center vector for this cluster, because the centers of “future” clusters should satisfy
constraints from R—selection of one center could influence the “future” in a very unpredicted way.
Since we cannot select a good center, we cannot assign vectors to the cluster, and thus we cannot
guarantee that sampling will find the next cluster. The whole procedure just falls apart!

Surprisingly, the sampling idea still works for Binary Constrained Clustering, but we have
to be more careful. The main idea behind our approach is that if we sample all “big” clusters
simultaneously and assign centers to these clusters such that the assigned centers “partially” satisfy
R, then with a good probability this choice does not mess up the solution much. After sampling
vectors from all big clusters, we

(i) find centers for the clusters sampled simultaneously, and
(ii) make these centers to be a subset of our final solution.

The proof that (i) works correctly is based on Sampling Lemma (Lemma 6). To show that we can
perform (ii), we prove that even after finding “approximately close centers” for the big clusters,
there exist centers for small clusters that together with the already found centers form a good

approximate solution (i.e, they obey the relation R and the cost of the corresponding solution is
small). As far as we succeed in finding with a good probability a subset of “good” center vectors, we
assign some of the remaining input vectors to the clusters around the centers. For the remaining
vectors, we proceed iteratively.

To implement this approach to work in linear time, we do the following: Let us remind that in
each iteration of the algorithm, after identifying some centroid vectors, we assign the remaining
vectors that are close to the identified centroids to the clusters around them. In fact, we show that
if the number of such vectors (vectors that are close to already found centers) is at most one half
of the remaining input vectors, then there exists at least one cluster (whose center is yet to be
computed) that contains a constant fraction of the remaining vectors. In the other case, we know
that the number of vectors assigned to already identified clusters is at least one half. This leads us
to the following recurrence relation:

T (n,k) = T
(n
2
,k

)
+ cT (n,k − k ′) + c ′n ·m,

for n,k ≥ 1, and T (n, 0) = T (0,k) = 1, where c and c ′ are constants depending on k and ε , and
k ′ ≥ 1. The above recurrence solves to f (k, ε) · n ·m for some function f . However, there is one
more complication. To apply Sampling Lemma, we need to know the weightswi or the sizes of the
optimum clusters in X . Thus, to compute optimum cluster centers from the samples, we have to
guess the values ofwi , but this is too costly if we target the linear running time. Instead, we know
that if the sizes of large clusters are comparable and if know them approximately, then we could
compute approximate cluster centers in linear time (see Lemma 6).

Organization of the article. The remaining part of the article is organized as follows: In Section 2,
we give notations, definitions, and some known results that we use throughout the article. In Sec-
tion 3, we give notations related to Binary Constrained Clustering. In Section 4, we prove
the Sampling Lemma, which we use to design both the PTAS and the linear time randomized ap-
proximation scheme for Binary Constrained Clustering. Then, in Section 5, we use Sampling
Lemma to design a deterministic PTAS for the problem. The subsequent sections are building to-
wards obtaining the linear time approximation scheme for the problem. In Section 9, we provide

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:10 F. V. Fomin et al.

the proofs that EPTASs for Low Boolean-Rank Approximation and Low GF(2)-Rank Approxi-
mation follows from Theorem 2.

2 PRELIMINARIES

We useN to denote the set {1, 2, . . .}. For an integern ∈ N , we use [n] as a shorthand for {1, . . . ,n}.
For a set U and a non-negative integer i , 2U and

(
U
i

)
denote the set of subsets of U and set of i

sized subsets of U , respectively. For a tuple b = (b1, . . . ,bk) ∈ {0, 1}k and an index i ∈ {1, . . . ,k },
b[i] denotes the ith entry of t , i.e, b[i] = bi . We use log to denote the logarithm with base 2.

In the course of our algorithm, we will be constructing a solution iteratively. When we find a
set of vectorsC = {c1, . . . , cr }, r < k , which will be part of a solution, these vectors should satisfy
relations in R. Thus, we have to guarantee that for some index set I ⊂ {1, . . . ,k } of size r , the set
of vectors C satisfies the part of R “projected” on I . More precisely,

Definition 2 (Projection of R on I , projI (R)). Let R ⊆ {0, 1}k be a relation and I = {i1, . . . , ir } ⊆
{1, . . . ,k } be a subset of indices, where i1 < i2 < · · · < ir . We say that a relation R′ ⊆ {0, 1}r is
a projection of R on I , denoted by projI (R), if R′ is a set of r -tuples from {0, 1}r such that u =
(u1, . . . ,ur) ∈ projI (R) if and only if there exists t ∈ R such that t[i j] = uj for all j ∈ {1, . . . , r }. In
other words, the tuples of projI (R) are obtained from tuples of R by leaving only the entries with

coordinates from I . For a family R = {R1, . . . ,Rm } of relations, where Ri ⊆ {0, 1}k , we use projI (R)
to denote the family {projI (R1), . . . , projI (Rm)}.

Thus, a set of vectors c1, . . . , cr ∈ {0, 1}m satisfies projI (R) if and only if for every � ∈ {1, . . . ,m}
there exists t ∈ R� such that for every j ∈ {1, . . . , r }, c�[j] = t[i j], where I = {i1, . . . , ir } and i1 <
i2 < · · · < ir . As far aswe fix a part of the solutionC = {c1, . . . , cr } and index set I of size r , such that
C satisfies projI (R), we can reduce the family of relations R by deleting from each relation Ri ∈ R
all k-tuples not compatible withC and I . More precisely, for every 1 ≤ i ≤ m, we can leave only k-
tuples whose projections on I are equal to (c1[i], . . . , cr [i]). Let the reduced family of relations be
R|(I,C) . Then in every solution S extendingC , the set of vectors S \C should satisfy the projection
of R|(I,C) on Ī = {1, . . . ,k } \ I . This brings us to the following definitions:

Definition 3 (Reducing Relations R to R|(I,C)). Let R ⊆ {0, 1}k be a relation and I = {i1, . . . , ir } ⊆
{1, . . . ,k } be a subset of indices, where i1 < i2 < · · · < ir , and let u = (u1, . . . ,ur) ∈ projI (R) be an
r -tuple. We say that relation R′ ⊆ R is obtained from R subject to I and u and write R′ = R |(I,u) , if

R′ = {t ∈ R | t[i j] = uj for all j ∈ {1, . . . , r }}.
For a set of vectors C = {c1, . . . , cr }, set I ⊆ {1, . . . ,k } of size r , and a family of relations
R = {R1, . . . ,Rm }, we denote by R|(I,C) the family of relations {R′1, . . . ,R′m }, where R′i =
Ri |(I, (c1[i], ...,cr [i])) for all i ∈ [m].

Definition 4 (R (I ,C): Projection of R|(I,C) on Ī). For a relation R ⊆ {0, 1}k , a subset of indices
I ⊆ {1, . . . ,k } of size r , and an r -tuple u = (u1, . . . ,ur) ∈ projI (R), we use R (I ,u) to denote the
projection of R |(I,u) on Ī = {1, . . . ,k } \ I .

For a family R = {R1, . . . ,Rm } of relations, a set of r ≤ k vectors C = {c1, . . . , cr } from {0, 1}m ,
and an r -sized set of indices I ⊆ {1, . . . ,k }, we useR (I ,C) to denote the family {R′1, . . . ,R′m }, where
R′i = Ri (I , ti) = projI (Ri |(I,ti)) and ti = (c1[i], . . . , cr [i]) for all i ∈ [m].

In other words, R (I ,u) consists of all (k − r)-tuples v , such that “merging” of u and v results in
a k-tuple from R.

We also use 0 and 1 to denote the vectors with all entries equal to 0 and 1, respectively, where
the dimension of the vectors will be clear from the context. For a vector x ∈ {0, 1}m and a set

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:11

X ⊂ {0, 1}m , we use dH (x,C) to denote the minimum Hamming distance (the number of different
coordinates) between x and vectors in C . For two sets X ,Y ⊂ {0, 1}m , we define

cost(X ,Y) =
∑
x∈X

dH (x,Y).

For a vector x ∈ {0, 1}m and an integer � > 0, we use B (x, �) to denote the open ball of radius �
centered at x; that is, the set of vectors in {0, 1}m at a Hamming distance less than � from x.

Probability. In the analysis of our algorithm, we will be using well-known tail inequalities like
the Markov’s and Hoeffding’s inequalities [19, 31].

Proposition 2.1 (Markov’s Ineqality). Let X be a non-negative random variable and a > 0.

Then

Pr(X ≥ a · E[X]) ≤ 1

a
.

Proposition 2.2 (Hoeffding’s Ineqality). Let X1, . . . ,Xn be independent random variables

such that each Xi is strictly bounded by the intervals [ai ,bi]. Let X =
∑n

i=1Xi and t > 0. Then

Pr(X − E[X] ≥ t) ≤ e
(− 2t2∑

i∈[n] (bi −ai)2
)
.

3 NOTATIONS RELATED TO BINARY CONSTRAINED CLUSTERING

Let J = (X ,k,R = {R1, . . . ,Rm }) be an instance of Binary Constrained Clustering and C =
{c1, . . . , ck } be a solution to J ; that is, a set of vectors satisfying R. Then the cost ofC is cost(X ,C).
Given a setC , there is a natural waywe can partition the set of vectors inX intok setsX1 � · · · � Xk

such that

cost(X ,C) =
k∑

i=1

cost(Xi , {ci }) =
k∑

i=1

∑
x∈Xi

dH (x, ci).

Thus, for each vector x in Xi , the closest to x vector from C is ci . We call such partition clustering

of X induced by C and refer to sets X1, . . . ,Xk as to clusters corresponding to C .
We use OPT(J) to denote the optimal solution to J . That is,

OPT(J) = min{cost(X ,C) | 〈C,R〉}.
Note that in the definition of a vector setC satisfiying relations R, we require that the size of C is
k . We also need a relaxed notion for vector sets of size smaller than k to satisfy a part of R.

Definition 5 (Vectors Respecting R). Let C = {c1, . . . , ci } ⊆ {0, 1}m be a set of binary vectors,
where i ≤ k , we say that C respects R if there is an index set I ⊆ {1, . . . ,k } such that <
C, projI (R) >; that is, C satisfies projI (R). In other words, C is a solution to (X , i, projI (R)).

Notice that given a set C ′ of i ≤ k vectors that respects R, one can extend it to a set C in time
linear in the size of J such that C satisfies R. Thus, C is a (maybe non-optimal) solution to J such
that cost(X ,C) ≤ cost(X ,C ′). We will use this observation in several places and thus state it as a
proposition.

Proposition 3.1. Let J = (X ,k,R = {R1, . . . ,Rm }) be an instance of Binary Constrained
Clustering and C ′ = {c1, . . . , ci } ⊆ {0, 1}m for i ≤ k be a set of vectors respecting R. Then there

is linear time algorithm that finds a solution C to J such that cost(X ,C) ≤ cost(X ,C ′).

Definition 6. Let J = (X ,k,R) be an instance of Binary Constrained Clustering. For i ∈
{1, . . . ,k }, we define

OPTi (J) = min{cost(X ,C} : |C | = i and C respects R}.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:12 F. V. Fomin et al.

An equivalent way of defining OPTi (J) is

OPTi (J) = min{OPT(X , i, projI (R)) : I ⊆ {1, . . . ,k } and |I | = i}.
Notice that

OPT1 (J) ≥ OPT2 (J) ≥ · · · ≥ OPTk (J) = OPT(J).

4 SAMPLING PROBABILITY DISTRIBUTIONS

One of the main ingredients of our algorithms is the lemma about sampling of specific probability
distributions.

Informally, Sampling Lemma proves the following: Suppose we have k bins numbered by
{1, . . . ,k }. Each bin contains a certain amount of balls, each ball is labelled either by 1 or by 0.
Each bin is assigned a non-negative weight wi . For example, it can be the number of balls in the
bin, but generally the lemma works for any weight. Let pi be the ratio of balls labelled by 1 in the
bin i to the total number of balls in this bin. We want to solve the following problem: Given a rela-
tion R ⊆ {0, 1}k (that is a set of binary k-tuples), we want to find the values ui ∈ {0, 1}, 1 ≤ i ≤ k ,
minimizing the value

k∑
i=1

wi |ui − pi |, (1)

and such that the k-tuple u = (u1, . . . ,uk) belongs to R; that is, u is equal to one of the k-tuples of
R. Without constraints, the values ui minimizing Equation (1) are selected by the majority rule: if
bin i contains more 1s than 0s (that is, pi > 1/2), we putui = 1, otherwise, we putui = 0. However,
with the constraints the situation changes and now the weights of the bins come into play. We still
can solve this problem by trying all k-tuples from R and selecting the one minimizing the sum.
Since all k-tuples are binary, we make at most 2k tries in total.

However, for the purposes of our algorithm, we need to know how to optimize Equation (1) in
the case when the values pi are not known to us. We know the weight of each bin but we cannot
look inside and count the number of balls with 1s and 0s. We are allowed to observe some random
balls from each bin but each sample is costly. Then Sampling Lemma asserts that for every ε and
k , we can select a constant r depending on ε and k only such that sampling only r balls from each
bin can be used for a good approximation of Equation (1). A bit more precisely, for each sample,
we compute the value qi , the ratio of balls labelled by 1 from this sample to r , and find a k-tuple
v = (v1, . . . ,vk) belongs to R and minimizing

k∑
i=1

wi |vi − qi |. (2)

Let OPT be the minimum value in Equation (1) subject to R. Then Sampling Lemma states that

E

⎡⎢⎢⎢⎢⎣

k∑
i=1

wi |vi − pi |
⎤⎥⎥⎥⎥⎦
≤ (1 + ε)OPT .

Thus, the random variable v brings us to a pretty good estimation in Equation (1) and to find a
good approximation for Equation (1) it suffices to find the best fit to Equation (2) subject to R.

To state the lemma, we use the following notations: For a real p between 0 and 1, we will denote
by B (p) the Bernoulli distribution that assigns probability p to 1 and 1 − p to 0. We will write
X ∼ B (p) to denote that X is a random variable with distribution B (p).

Definition 7 (Weighted Distance dw). For two k-tuples u = (u1, . . . ,uk) and v = (v1, . . . ,vk) over
reals and k-tuple w = (w1, . . . ,wk) withwi ≥ 0, the distance from u to v weighted by w is defined

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:13

as

dw (u, v) =
k∑

i=1

wi |ui −vi |.

Lemma 4 (Sampling Lemma). There exists c > 0 such that for every ε > 0, positive integers k and

r ≥ c · k
ε2 · log 1

ε
, k-tuples p = (p1, . . . ,pk) with 0 ≤ pi ≤ 1, and w = (w1, . . . ,wk) with 0 ≤ wi , and

relation R ⊆ {0, 1}k , the following is satisfied:

For every 1 ≤ i ≤ k and 1 ≤ j ≤ r , let X j
i ∼ B (pi), and let Q = (Q1, . . . ,Qk) be the k-tuple of ran-

dom variables, where Qi =
1
r

∑r
j=1X

j
i . Let dmin be the minimum distance weighted by w from p to a

k-tuple from R. Let q be a k-tuple from R within the minimum weighted by w distance to Q—that is,

q = argminx∈Rd
w (x,Q)—and let D = dw (q, p). Then E[D] ≤ (1 + ε)dmin .

Proof. Let u = argminx∈Rd
w (x, p). Then dmin = d

w (u, p). Let Rsmall be the set of all tuples
v ∈ R such that dw (v, p) ≤ (1 + ε

2)dmin . Let Rbiд = R \ Rsmall . We will prove the following claim:

Claim 1. For every v ∈ Rbiд ,

Pr(dw (v,Q) ≤ dw (u,Q)) ≤ dmin

dw (v, p)
· ε

2k+1
.

Assuming Claim 1, we complete the proof of the lemma:

E[D] =
∑

v ∈Rsmall

dw (v, p) · Pr(q = v) +
∑

v ∈Rbiд

dw (v, p) · Pr(q = v)

≤ dmin

(
1 +

ε

2

)
+

∑
v ∈Rbiд

dw (v, p) · Pr(dw (v,Q) ≤ dw (u,Q))

≤ dmin

(
1 +

ε

2

)
+

∑
v ∈Rbiд

dw (v, p) · dmin

dw (v, p)
· ε

2k+1

≤ dmin

(
1 +

ε

2

)
+ dmin ·

ε

2
≤ dmin (1 + ε).

Hence, all that remains to prove the lemma is to prove Claim 1.

Proof of Claim 1. We will assume without loss of generality that ε ≤ 1
10 . By renaming 0 to 1

and vice versa at the coordinates i whereui = 1, we may assume that u = 0. Thus, dmin = d
w (0, p).

We may now rewrite the statement of the claim as:

Pr(dw (v,Q) ≤ dw (0,Q)) ≤ dw (0, p)

dw (v, p)
· ε

2k+1
. (3)

Consider now the weight k-tuple w′ = (w ′1, . . . ,w
′
k

) wherew ′i = wi if vi = 1 andw ′i = 0 if vi =

0. We have that Pr(dw (v,Q) ≤ dw (0,Q)) = Pr(dw′ (v,Q) ≤ dw′ (0,Q)), and that
dw′ (0,p)

dw′ (v,p)
≤ dw (0,p)

dw (v,p) .

Hence, to prove Equation (3), it is sufficient to prove

Pr(dw′ (v,Q) ≤ dw′ (0,Q)) ≤ dw′ (0, p)

dw′ (v, p)
· ε

2k+1
.

In other words, it is sufficient to prove Equation (3) under the additional assumption that
wi = 0 whenever vi = 0. Under this assumption, we have that dw (v,Q) = dw (1,Q), and that

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:14 F. V. Fomin et al.

dw (v, p) = dw (1, p). Thus, it is suffices to prove that dw (1, p) ≥ (1 + ε
2) · dw (0, p) implies that

Pr(dw (1,Q) ≤ dw (0,Q)) ≤ dw (0, p)

dw (1, p)
· ε

2k+1
. (4)

Letw∗ =
∑k

i=1wi . We have thatdw (0, p) + dw (1, p) = w∗. Thus,dw (1, p) ≥ (1 + ε
2) · dw (0, p) im-

plies that dw (0, p) ≤ w∗

2+ ε
2
. We also have that dw (1,Q) + dw (0,Q) = w∗, and therefore dw (1,Q) ≤

dw (0,Q) if and only if dw (0,Q) ≥ w∗

2 . Furthermore, dw (1, p) ≤ w∗. Hence, to prove the claim (in

particular, Equation (4)) it is sufficient to show that dw (0, p) ≤ w∗

2+ ε
2
implies

Pr

(
dw (0,Q) ≥ w∗

2

)
≤ dw (0, p)

w∗
· ε

2k+1
. (5)

We now prove Equation (5) distinguishing between two cases.

Case 1, dw (0, p) > w∗

128k
.

We have that dw (0,Q) =
∑k

i=1

∑r
j=1

wi

r
X j

i . Thus, d
w (0,Q) is the sum of kr independent random

variables, grouped into groups of size r , where all variables in group i take value wi

r
with probability

pi and value 0 with probability 1 − pi . It follows that E[dw (0,Q)] = dw (0, p) ≤ w∗

2+ ε
2
. Hence, w∗

2 −
E[dw (0,Q)] ≥ w∗

2 −
w∗

2+ ε
2
> εw∗

10 , where the last inequality follows from the assumption that ε ≤ 1
10 .

Thus, we may use Proposition 2.2 to upper bound Pr(dw (0,Q) ≥ w∗

2).

Pr

(
dw (0,Q) ≥ w∗

2

)
≤ Pr

(
dw (0,Q) − E[dw (0,Q)] >

εw∗

10

)

≤ exp
��
�
− 2ε2 (w∗)2

100Σk
i=1Σr

j=1

(
wi

r

)2 ��
�

≤ exp

(
−ε

2r

50

)

≤ w∗

128k
· 128k
w∗
· ε

128k · 2k+1

≤ dw (0, p)

w∗
· ε

2k+1
.

Here the second transition is by Proposition 2.2, while the fourth is by the choice of r = Ω(k
ε2 ·

log 1
ε

).

Case 2, dw (0, p) ≤ w∗

128k
.

For every i such thatwi ≥ w∗

4k
, we have pi ≤ 1

32 . Since Qi is binomially distributed, we have that

Pr
(
Qi ≥

1

4

)
=

r∑
t= � r

4 �

(r
t

)
pt

i (1 − pi)r−t ≤ 2r · p
r
4

i ≤ pi · 2r ·
(
1

32

) r
4 −1
≤ pi · 2−

r
4 −5 ≤ pi

4k2
· ε

2k+1
.

Here the last inequality follows from the fact that r = Ω(k
ε2 · log 1

ε
).

For every i such thatwi ≥ w∗

4k
, we have that pi ≤ dw (0,p)

w∗ · 4k , since otherwisewipi > dw (0, p), a
contradiction. Thus, for every such i , we have

Pr
(
Qi ≥

1

4

)
≤ dw (0, p)

w∗k
· ε

2k+1
.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:15

By the union bound, we have that

Pr
���
�

∑
i :wi ≥w∗

4k

wiQi ≥
w∗

4

���
�
≤ dw (0, p)

w∗
· ε

2k+1
.

Since ∑
i :wi <

w∗
4k

wiQi <
w∗

4

(with probability 1), it follows that

Pr

(
dw (0,Q) ≥ w∗

2

)
≤ dw (0, p)

w∗
· ε

2k+1
. �

This proves the claim, and completes the proof of Lemma 4. �

5 WARM-UP: DETERMINISTIC PTAS

As a warm-up, let us show how Sampling Lemma can be used to obtain a deterministic PTAS for
Binary Constrained Clustering. Towards that, we need the following definition:

Definition 8. Let k,m ∈ N and R = {R1, . . . ,Rm } be a family of relations, where Ri ⊆ {0, 1}k
for each i ∈ {1, . . . ,m}. Let {S1, . . . , Sk } be a family of multisets of vectors from {0, 1}m and
w1, . . . ,wk ∈ R≥0. For a vector (multi)set B ⊆ {0, 1}m , let z (i) (B) be the number of vectors in B
with the ith entry equal to 0 and let d (i) (B) = |B | − z (i) (B) be the number of vectors in B with the
ith entry equal to 1. Then bestR (S1, . . . , Sk ,w1, . . . ,wk) is a set of vectors {c1, . . . , ck } satisfying
R, which is defined as follows: For i ∈ {1, . . . ,m} and a k-tuple b = (b1, . . . ,bk) ∈ Ri , let

fi (b1, . . . ,bk) =
∑
j ∈Ib

w j · z (i) (S j) +
∑

j ∈[k]\Ib

w j · d (i) (S j),

where Ib = {j ∈ {1, . . . ,k } : bj = 1}. The set {c1, . . . , ck } is such that (c1[i], . . . , ck [i]) ∈ Ri and
fi (c1[i], . . . , ck [i]) = minb∈Ri

fi (b), 1 ≤ i ≤ m.

Lemma 5. Let J = (X ,k,R = {R1, . . . ,Rm }) of Binary Constrained Clustering, ε > 0, and

r = Θ(k
ε2 log

1
ε

) is the constant defined in Lemma 4. Then there exist w1, . . . ,wk ∈ [n] and a fam-

ily {S ′1, . . . , S ′k } of r sized multisets of vectors from X , such that

cost(X , bestR (S ′1, . . . , S
′
k ,w1, . . . ,wk)) ≤ (1 + ε)OPT(J).

Proof. LetC∗ = {c∗1, . . . , c∗k } be an optimal solution to J with corresponding clusters P1, . . . , Pk .

That is, OPT(J) = cost(X ,C∗) =
∑k

i=1 cost(Pi , {c∗i }). For each i ∈ {1, . . . ,k }, we set wi = |Pi |. For
each i ∈ {1, . . . ,k }, we define a multiset Si of r vectors, where each vector in Si is chosen uniformly
at random with repetition from Pi . To prove the lemma it is enough to prove that

E[cost(X , bestR (S1, . . . , Sk ,w1, . . . ,wk))] ≤ (1 + ε)OPT(J). (6)

Recall the definition of functions fi , 1 ≤ i ≤ m (see Definition 8). For i ∈ {1, . . . ,m} and a k-tuple
b = (b1, . . . ,bk) ∈ Ri ,

fi (b1, . . . ,bk) =
∑
j ∈Ib

w j · z (i) (S j) +
∑

j ∈[k]\Ib

w j · d (i) (S j), (7)

where Ib = {j ∈ {1, . . . ,k } : bj = 1}. The set bestR (S1, . . . , Sk ,w1, . . . ,wk) = {c1, . . . , ck } is such
that (c1[i], . . . , ck [i]) ∈ Ri and fi (c1[i], . . . , ck [i]) = minb∈Ri

fi (b), 1 ≤ i ≤ m.
Notice that bestR (S1, . . . , Sk ,w1, . . . ,wk) = {c1, . . . , ck } is a random variable. We define a

random variable Y =
∑k

i=1 cost(Pi , {ci }). To prove Equation (6), it is enough to prove that

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:16 F. V. Fomin et al.

E[Y] ≤ (1 + ε)OPT(J). We define functions дi for all i ∈ [m], which denotes the cost of each
element in the relation Ri with respect to the partition P1 � . . . � Pk of X . Formally, for each
b = (b1, . . . ,bk) ∈ Ri , we put

дi (b) =
∑
j ∈Ib

z (i) (Pj) +
∑

j ∈[k]\Ib

d (i) (Pj), (8)

where Ib = {j ∈ {1, . . . ,k } : bj = 1}. Let Vi = дi (c∗1[i], . . . , c
∗
k
[i]). Notice that OPT(J) =

∑m
i=1Vi .

Let Yi = дi (c1[i], . . . , ck [i]), 1 ≤ i ≤ m. By Equation (8) and the definition of Y , we have that
Y =

∑m
i=1 Yi . By the linearity of expectation, we have that E[Y] =

∑m
i=1 E[Yi]. Thus, to prove that

E[Y] ≤ (1 + ε)OPT(J), it is sufficient to prove that E[Yi] ≤ (1 + ε)Vi for every i ∈ [m].

Claim 2. For every i ∈ [m], E[Yi] ≤ (1 + ε)Vi .

Proof. Fix an index i ∈ [m]. Let zj = z (i) (Pj) and dj = d
(i) (Pj). Thus, zj (dj) is the number of

vectors from Pj whose ith coordinate is 0 (1). Let nj = |Pj | and pj =
dj

nj
, j ∈ {1, . . . ,k }. Since each

vector from S j is equally likely to be any vector in Pj , for every vector v ∈ S j ,

Pr(v[i] = 1) =
dj

nj
= pj and Pr(v[i] = 0) =

zj

nj
= 1 − pj . (9)

Let p = (p1, . . . ,pk). We define k-tuple w = (w1, . . . ,wk) and claim that for every b =

(b1, . . . ,bk) ∈ Ri , d
w (b, p) = дi (b). Indeed,

dw (b, p) =

k∑
j=1

w j |bj − pj |

=
∑
j ∈Ib

w j (1 − pj) +
∑

j ∈[k]\Ib

w j · pj

=
∑
j ∈Ib

zj +
∑

j ∈[k]\Ib

dj (Becausew j = |Pj | = nj)

= дi (b). (10)

For each set S j = {v1, . . . ,vr }, 1 ≤ j ≤ k , and 1 ≤ q ≤ r , we define random variable X
q
j , which is

1 when vq[i] = 1 and 0 otherwise. By Equation (9), we have that X
q
j ∼ B (pj) for all 1 ≤ j ≤ k and

1 ≤ q ≤ r . Let Q = (Q1, . . .Qk) be the k-tuple of random variables, where Q j =
1
r

∑r
q=1X

q
j . From

the definitions of z (i) (S j), d
(i) (S j) and X

q
j , we have that

z (i) (S j) =
r∑

q=1

(
1 − Xq

j

)
and d (i) (S j) =

r∑
q=1

X
q
j . (11)

For b ∈ Ri , we express dw (b,Q) in terms of fi (b).

dw (b,Q) =

k∑
j=1

w j |bi −Q j |

=
∑
j ∈Ib

w j (1 −Q j) +
∑

j ∈[k]\Ib

w j ·Q j

=
∑
j ∈Ib

w j · ��
�
1 − 1

r

r∑
q=1

X
q
j
��
�
+

∑
j ∈[k]\Ib

w j · ��
�
1

r

r∑
q=1

X
q
j
��
�

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:17

=
1

r
��
�

∑
j ∈Ib

w j · ��
�

r∑
q=1

(
1 − Xq

j

)��
�
+

∑
j ∈[k]\Ib

w j · ��
�

r∑
q=1

X
q
j
��
�
��
�

=
1

r
��
�

∑
j ∈Ib

w j · z (i) (S j) +
∑

j ∈[k]\Ib

w j · d (i) (S j)
��
�

(by (11))

=
1

r
fi (b). (by (7)) (12)

Let
q = argmin

x∈Ri

dw (x,Q).

By Equation (12) and by the definition of the vector set {c1, . . . , ck }, we have that q =

(c1[i], . . . , ck [i]).
We also define k-tuple

u = argmin
x∈Ri

dw (x, p).

This implies that
dw (u, p) = дi (c∗1[i], . . . , c

∗
k [k]) = Vi . (13)

Thus, the minimumweighted by w distancedmin from p to a k-tuple from Ri is equal tod
w (u, p).

Let D be the random variable that is a minimum weighted by w distance from q to p. By Lemma 4,

E[dw (q, p)] = E[D] ≤ (1 + ε)dmin = (1 + ε)dw (u, p). (14)

Finally, we upper bound E[Yi].

E[Yi] = E[дi (q)]

= E[dw (q, p)] (by (10))

≤ (1 + ε) · dw (u, p) (by (14))

≤ (1 + ε)Vi . (by (13)).

This completes the proof of the claim. �

By Claim 3, the fact that OPT(J) =
∑m

i=1Vi , and by the linearity of expectation, we have that
E[Y] ≤ (1 + ε)OPT(J). This completes the proof of the lemma. �

Lemma 5 implies Theorem 1, because of the following: We go over all choices of w1, . . . ,wk ∈
{1, . . . ,n} and collections of r sized (multi)sets {S ′1, . . . , S ′k } of vectors from X , and then compute
cost(X , bestR (S ′1, . . . , S

′
k
,w1, . . . ,wk)). Then, we choose the best solution accordingly. The remain-

ing part of the article is built towards obtaining a linear time randomized approximation scheme
for Binary Constrained Clustering.

6 SAMPLING INSTANCES WITH LARGE CLUSTERS

In this section, we prove the algorithmic variant of Sampling Lemma,whichwill be themain engine
of our randomized algorithm. Informally, the lemma says that if there is an optimal solutionC for
the set of vectors X such that each of the clusters corresponding to C contains a large fraction of
the vectors from X , then sampling a constant number of vectors from X for each cluster is a good
estimate for a good approximate solution. In fact, we need a stronger property: We want to derive
a good clustering of a subset of vectors Z ⊆ X that is unknown to us (a hidden subset).

Lemma 6 (Algorithmic Sampling Lemma). Let X ⊆ {0, 1}m be a set of n binary vectors and

Z ⊆ X be (an unknown) set of vectors. Let J = (Z ,k,R = {R1, . . . ,Rm }) be an instance of Binary

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:18 F. V. Fomin et al.

Constrained Clustering. Suppose that there exists a solution C∗ = {c∗1, . . . , c∗k } (not necessarily

optimal) to J with corresponding clusters P1, . . . , Pk and 1 ≥ β > 0 such that |Pj | ≥ nβ for all j ∈
{1, . . . ,k }. We denote the cost of C∗ by V = cost(Z ,C∗) =

∑k
i=1 cost(Pi , {c∗i }).

Then there exists an algorithm A with the following specifications:

• Input of A is X , k , R = {R1, . . . ,Rm }, δ , ε > 0, 0 < β ≤ 1, and values w1, . . . ,wk (promised

bounds on the sizes of clusters Pi) such that for some constant c , for each j ∈ {1, . . . ,k },
|Pj |
c
≤ w j ≤

(1 + δ) |Pj |
c

.

• Output ofA is a solutionC = {c1, . . . , ck } to J such that
∑k

i=1 cost(Pi , {ci }) ≤ (1 + ε)2 (1 + δ)V

with probability at least
ε ·β r ·k

1+ε
, where r = Θ(k

ε2 log
1
ε

).

• A runs in time O ((k
ε

)2 log 1
ε
·∑m

i=1 |Ri |).

Proof. Let r be the constant defined for k and ε in Lemma 4. That is, r = Θ(k
ε2 · log 1

ε
). For

a vector b = (b1, . . . ,bk) ∈ {0, 1}k , we define Ib = {j ∈ {1, . . . ,k } : bj = 1}. For a vector set B ⊆ X ,

let z (i) (B) be the number of vectors in B with the ith entry equal to 0. Similarly, let d (i) (B) =
|B | − z (i) (B) be the number of vectors in B with the ith entry equal to 1.

Algorithm. The algorithm A is very simple. We sample k times (with possible repetitions) uni-
formly at random r vectors from X . Thus, we obtain k sets of vectors S1, . . . , Sk , each of the sets is
of size r . Based on these samples, we output a solutionC = {c1, . . . , ck } as follows: For each index
i ∈ {1, . . . ,m} and a k-tuple b = (b1, . . . ,bk) ∈ Ri , let

fi (b1, . . . ,bk) =
∑
j ∈Ib

w j · z (i) (S j) +
∑

j ∈[k]\Ib

w j · d (i) (S j). (15)

Then C is a set of vectors minimizing functions fi subject to constraints in R. More precisely,
we define a vector set C = {c1, . . . , ck } such that (c1[i], . . . , ck [i]) ∈ Ri and fi (c1[i], . . . , ck [i]) =
minb∈Ri

fi (b), for all i ∈ [m]. In other words,C = bestR (S1, . . . , Sk ,w1, . . . ,wk). Clearly,C is a so-
lution to J .

Running time. We assume that input vectors X are stored in an array and that we can sample
a vector u.a.r from a set of n vectors stored in an array in constant time. For each i ∈ [m] and
b ∈ Ri , the computation of fi (b) takes time O (r · k). Then computations of functions fi (b) for all
i ∈ [m] and b ∈ Ri require O ((

∑m
i=1 |Ri |) (k

ε
)2 log 1

ε
) time. For each i , we use an array of length k to

store the k-tuple from Ri , which gives the minimum of fi computed so far during the computation.
Therefore, the running time of the algorithm follows.

Correctness. Let E be the event that for all j ∈ {1, . . . ,k }, S j ⊆ Pj . Since |Pj | ≥ |X | · β for all
j ∈ {1, . . . ,k }, we have that

Pr(E) ≥ βr ·k . (16)

From now on, we assume that the event E happened. Therefore, we can think that each vector in
S j is chosen uniformly at random from Pj (with repetitions). Notice that the outputC = {c1, . . . , ck }
is a random variable. We define a random variable Y =

∑k
i=1 cost(Pj , {cj }).

Now, we prove that E[Y | E] ≤ (1 + ε) (1 + δ)V . We define functions дi for all i ∈ [m], which
denotes the cost of each element in the relation Ri with respect to the partition P1 � . . . � Pk of Z .
Formally, for each b = (b1, . . . ,bk) ∈ Ri , we put

дi (b) =
∑
j ∈Ib

z (i) (Pj) +
∑

j ∈[k]\Ib

d (i) (Pj). (17)

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:19

Let Vi = дi (c∗1[i], . . . , c
∗
k
[i]). Notice that V =

∑m
i=1Vi . Let Yi = дi (c1[i], . . . , ck [i]), 1 ≤ i ≤ m. By

Equation (17) and the definition of Y , we have that Y =
∑m

i=1 Yi . By the linearity of conditional
expectation, we have that E[Y | E] =

∑m
i=1 E[Yi | E]. Thus, to prove that E[Y | E] ≤ (1 + ε) (1 +

δ)V , it is sufficient to prove that E[Yi | E] ≤ (1 + ε) (1 + δ)Vi for every i ∈ [m].

Claim 3. For every i ∈ [m], E[Yi | E] ≤ (1 + ε) (1 + δ)Vi .

Proof. Fix an index i ∈ [m]. Let zj = z (i) (Pj) and dj = d
(i) (Pj). Thus, zj (dj) is the number of

vectors from Pj whose ith coordinate is 0 (1). Let nj = |Pj | and pj =
dj

nj
, j ∈ {1, . . . ,k }. Since we

assume that E happened, each vector from S j is equally likely to be any vector in Pj . That is, for
every vector v ∈ S j , we have that

Pr(v[i] = 1 | E) =
dj

nj
= pj and Pr(v[i] = 0 | E) =

zj

nj
= 1 − pj . (18)

Let p = (p1, . . . ,pk). We define a k-tuple y = (n1, . . . ,nk) and claim that for every b =

(b1, . . . ,bk) ∈ Ri , d
y (b, p) = дi (b). Indeed,

dy (b, p) =

k∑
j=1

nj |bj − pj |

=
∑
j ∈Ib

nj (1 − pj) +
∑

j ∈[k]\Ib

nj · pj

=
∑
j ∈Ib

zj +
∑

j ∈[k]\Ib

dj

= дi (b). (19)

For each set S j = {v1, . . . ,vr }, 1 ≤ j ≤ k and 1 ≤ q ≤ r , we define a random variable L
q
j , which

is 1 when vq[i] = 1 and 0 otherwise. Let us denote by X
q
j the random variable L

q
j | E . By Equa-

tion (18), we have that X
q
j ∼ B (pj) for all 1 ≤ j ≤ k and 1 ≤ q ≤ r . Let Q = (Q1, . . .Qk) be the

k-tuple of random variables, where Q j =
1
r

∑r
q=1X

q
j . From the definitions of z (i) (S j), d

(i) (S j) and

X
q
j , we have that

z (i) (S j) =
r∑

q=1

(
1 − Xq

j

)
and d (i) (S j) =

r∑
q=1

X
q
j . (20)

Let w = (w1, . . . ,wk). Next, for any b ∈ Ri , we express dw (b,Q) in terms of fi (b).

dw (b,Q) =

k∑
j=1

w j |bi −Q j |

=
∑
j ∈Ib

w j (1 −Q j) +
∑

j ∈[k]\Ib

w j ·Q j

=
∑
j ∈Ib

w j · ��
�
1 − 1

r

r∑
q=1

X
q
j
��
�
+

∑
j ∈[k]\Ib

w j · ��
�
1

r

r∑
q=1

X
q
j
��
�

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:20 F. V. Fomin et al.

=
1

r
��
�

∑
j ∈Ib

w j · ��
�

r∑
q=1

(1 − Xq
j)��
�
+

∑
j ∈[k]\Ib

w j · ��
�

r∑
q=1

X
q
j
��
�
��
�

=
1

r
��
�

∑
j ∈Ib

w j · z (i) (S j) +
∑

j ∈[k]\Ib

w j · d (i) (S j)
��
�

(by (20))

=
1

r
fi (b). (by (15)) (21)

Let

q = argmin
x∈Ri

dw (x,Q).

By Equation (21) and by the definition of the vector set C = {c1, . . . , ck }, we have that q =

(c1[i], . . . , ck [i]).
We also define k-tuples

u = argmin
x∈Ri

dw (x, p) and u∗ = argmin
x∈Ri

dy (x, p).

Thus, the minimumweighted by w distancedmin from p to a k-tuple from Ri is equal tod
w (u, p).

LetD be the random variable that is theminimumweighted by w distance from q to p. By Lemma 4,

E[dw (q, p) | E] = E[D] ≤ (1 + ϵ)dmin = (1 + ϵ)dw (u, p). (22)

Since (c∗1[i], . . . , c
∗
k
[i]) ∈ Ri , and because dy (b, p) = дi (b) for each b ∈ Ri (by Equation (19)), we

have that

dy (u∗, p) ≤ дi (c∗1[i], . . . , c
∗
k [k]) = Vi . (23)

Finally, we upper bound E[Yi | E].

E[Yi | E] = E[дi (q) | E]

= E[dy (q, p) | E] (by (19))

≤ c · E[dw (q, p) | E] (because nj ≤ cw j for all j ∈ [k])

≤ c · (1 + ε) · dw (u, p) (by (22))

≤ c · (1 + ε) · dw (u∗, p) (by the choice of u)

≤ (1 + ε) (1 + δ)dy (u∗, p) (because cw j ≤ (1 + δ)nj for all j ∈ [k])

≤ 0(1 + ε) (1 + δ)Vi . (by (23))

This completes the proof of the claim. �

By Claim 3, the fact that V =
∑m

i=1Vi , and by the linearity of expectation, we have that

E[Y | E] ≤ (1 + ε) (1 + δ)V .

Combined with the Markov’s inequality (Proposition 2.1), this implies that

Pr
(
Y ≥ (1 + ε)2 (1 + δ)V ��� E

)
≤ 1

1 + ε
.

Therefore,

Pr
(
Y ≤ (1 + ε)2 (1 + δ)V ��� E

)
≥ ε

1 + ε
. (24)

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:21

Finally,

Pr(Y ≤ (1 + ε)2 (1 + δ)V) ≥ Pr
(
(Y ≤ (1 + ε)2 (1 + δ)V) ∩ E

)
= Pr

(
Y ≤ (1 + ε)2 (1 + δ)V ��� E

)
· Pr(E)

≥ ε

1 + ε
· βr ·k . (by (24) and (16))

This completes the proof of the lemma. �

7 NON-IRREDUCIBLE INSTANCES AND EXTENDABLE SOLUTIONS

For the algorithm of k-means clustering, Kumar et al. [25] used the notion of irreducible in-
stances. We introduce a similar notion for Binary Constrained Clustering.

7.1 Non-irreducible Instances

Definition 9. Let J = (X ,k,R) be an instance of Binary Constrained Clustering, j ∈
{2, . . . ,k } and α > 0. We say that J is (j,α)-irreducible if OPTj−1 (J) ≥ (1 + α)OPTj (J).

The following property of irreducible instances plays an important role in our algorithm:

Lemma 7. Let J = (X ,k,R) be an instance of Binary Constrained Clustering. For every 0 <
ϵ ≤ 4 and 0 < α ≤ ϵ

8k
, the following holds: Let

k̂ =

{
1, if J is not (i,α)-irreducible for all i ∈ {2, . . . ,k },
max{i : J is (i,α)-irreducible}, otherwise.

Then OPT
k̂

(J) ≤ (1 + ϵ
4)OPT(J).

Proof. By the choice of k̂ , for every k̂ ≤ i < k , we have that OPTi (J) ≤ (1 + α)OPTi+1 (J). Thus,
OPT

k̂
(J) ≤ (1 + α)k OPTk (J) = (1 + α)k OPT(J). Since

(1 + α)k ≤
(
1 +

ϵ

8k

)k

=

k∑
i=0

(
k

i

) (ϵ

8k

) i

≤
k∑

i=0

(ϵ
8

) i

= �
�
1 +

ϵ

8

k−1∑
i=0

(ϵ
8

) i�
�

≤ �
�
1 +

ϵ

8

k−1∑
i=0

(
1

2

) i�
�
≤

(
1 +

ϵ

4

)
, (because ϵ ≤ 4)

we have that OPT
k̂

(J) ≤ (1 + ϵ
4)OPT(J). �

Due to Proposition 3.1 and Lemma 7, to obtain a (1 + ϵ)-approximate solution to Binary Con-
strained Clustering, it is sufficient to learn how to approximate irreducible instances. Indeed,
let J = (X ,k,R = {R1, . . . ,Rk }) be an instance to Binary Constrained Clustering and suppose

that for ϵ > 0 and α ≤ ϵ
8k
, instance J is not (k,α)-irreducible. Then for the index k̂ defined in

Lemma 7, we have that k̂ < k and OPT
k̂

(J) ≤ (1 + ϵ
4)OPT(J). The definition of OPT

k̂
(J), implies

that

OPT
k̂

(J) = min{OPT(X , k̂, projI (R)) | I ⊆ {1, . . . ,k } and |I | = k̂ }.

We can make a guess for the value of k̂ and then guess an index subset I ⊂ {1, . . . ,k } of size k̂ .
For each of the (k − 1) · 2k−1 guesses of k̂ and I , we form instance J ′ = (X , k̂, projI (R)). We know

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:22 F. V. Fomin et al.

that for at least one of our guesses, we will have a (k̂,α)-irreducible instance J ′ with OPT(J ′) =
OPT

k̂
(J). By Lemma 7 and Proposition 3.1, any (1 + ϵ/4)-approximate solution to J ′ is extendable

in linear time to a (1 + ϵ/4)2-approximate solution (and hence a (1 + ϵ)-approximate solution) to
J . As a result, if J is not (k,α)-irreducible, then a (1 + ϵ/4)-approximate solution to J ′ will bring
us to a (1 + ϵ)-approximate solution to J . Hence, everything boils down to the approximation of
(k,α)-irreducible instances.

7.2 Extendable Solutions

By Lemma 6, if there is a solution such that the sizes of all corresponding clusters are constant
fractions of the number of the input vectors, then sampling produces a good approximate solution.
However, there is no guarantee that such a favorable condition will occur. To overcome this, we
sample vectors for large clusters and then identify some vectors in the input that we can safely

delete and make the next largest remaining cluster a constant fraction of the rest of the vectors.
Towards that, we need the following definition:

Definition 10 (δ -extension of a Solution). Let J = (X ,k,R) be an instance of Binary Con-
strained Clustering and δ ≥ 0. Let B ⊆ X andC1 ⊆ {0, 1}m be a set ofk1 vectors for somek1 ≤ k .
We say that the pair (C1,B) is δ -extendable for the instance J if there is a vector set C2 ⊆ {0, 1}m
of size k − k1 such thatC1 ∪C2 satisfies R and cost(B,C1) + cost(X \ B,C1 ∪C2) ≤ (1 + δ)OPT(J).
We also say that C2 is a δ -extension of (C1,B).

In particular, if (C1,B) is δ -extendable for J , then there is a set C ⊇ C1 such that C is a solution
to J with cost at most (1 + δ)OPT(J) even when B is assigned to the clusters corresponding to the
center vectors in C1. This implies that after we find such a set C1, it is safe to delete the vectors
in B from the input set of vectors. If C2 is a δ -extension of (C1,B), then there exists index subset
I ⊆ {1, . . . ,k } of size |C1 | such thatC1 satisfies projI (R) andC2 satisfies R (I ,C1). The proof of the
next observation follows directly from the definition of δ -extension.

Observation 7.1. Let J = (X ,k,R) be an instance of Binary Constrained Clustering, δ ′ ≥
δ ≥ 0, and (C1,B) be a δ -extendable pair for J . Then

• (C1,B) is also δ ′-extendable for J ,
• if C2 is a δ -extension of (C1,B), then C2 is also a δ ′-extension of (C1,B), and

• for each B′ ⊆ B, the pair (C1,B
′) is δ -extendable for J .

Let (C1,B) be a pair that is δ -extendable for J andC ⊇ C1 be such thatC \C1 is a δ -extension of
(C1,B). While the setC \C1 is not known to us and we do not know yet how to compute it, as we
will see in the following lemma, we can proceed successfully even if only the minimum Hamming
distance t between vectors in C1 and C \C1 is known. We show that if we know t , then we can
find a set of vectors B′ ⊆ X \ B such that B′ is not only safe to delete but the number of vectors in
X \ (B ∪ B′) that will be assigned to clusters corresponding to C1 (in the solution C) is at most a
constant fraction of the number of vectors in X \ (B ∪ B′). In other words, the number of vectors
that will be assigned to clusters corresponding to C \C1 will be at least a constant fraction of the
number of vectors in X \ (B ∪ B′). This information is of crucial importance; it yields that from
the remaining set of vectors at least one of the clusters assigned to C \C1 is large, and thus could
be found by sampling.

Lemma 8. Let J = (X ,k,R) be an instance of Binary Constrained Clustering and δ ≥ 0.

Let (C1,B), where B ⊆ X and C1 ⊆ {0, 1}m , be a δ -extendable pair for J . Let C2 be a δ -extension

of (C1,B) and t = min{dH (c, c′) : c ∈ C1, c
′ ∈ C2}. Let (Z1,Z2) be a partition of X \ B such that

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:23

cost(X \ B,C1 ∪C2) = cost(Z1,C1) + cost(Z2,C2). Let B′ =
⋃

c∈C1
B (c, t/2) ∩ (X \ B). Then the fol-

lowing conditions hold:

(i) B′ ⊆ Z1. Moreover, B′ consists of the first |B′ | vectors of X \ B in the ordering according to the

non-decreasing distance dH (x,C1) (where x ∈ X \ B).

(ii) cost(X \ (B ∪ B′),C1 ∪C2) = cost(Z1 \ B′,C1) + cost(Z2,C2). Moreover, (C1,B ∪ B′) is δ -

extendable for J and C2 is a δ -extension of (C1,B ∪ B′).
(iii) If J is (k, 5δ ′)-irreducible for some δ ′ ≥ δ , then |Z2 | ≥ (δ ′

1+δ ′) |X \ (B ∪ B′) |. If in addition,

|B′ | ≤ |X \B |
2 , then |Z2 | ≥ (δ ′

2(1+δ ′)) |X \ B |.

Proof. We start with (i). Since t = min{dH (c, c′) : c ∈ C1, c
′ ∈ C2}, for any vector x in⋃

c∈C1
B (c, t/2), the value dH (x,C2) is strictly greater than t/2. Because cost(X \ B,C1 ∪C2) =

cost(Z1,C1) + cost(Z2,C2), we conclude that B′ ⊆ Z1. Now if we order the vectors of X \ B ac-
cording to their distances to C1 (the smallest distance comes first and ties are broken arbitrarily),
then the first |B′ | vectors in this ordering are within distance strictly less than t/2 from C1, while
for any other vector x � B′, dH (x,C1) ≥ t/2. This concludes the proof of (i).

Before proceeding with (ii) and (iii), we observe the following: First, since C2 is a δ -extension
of (C1,B), we have that

cost(X ,C1 ∪C2) ≤ cost(B,C1) + cost(X \ B,C1 ∪C2) ≤ (1 + δ)OPT(J).

By the definition of the sets Z1 and Z2, we have that

cost(B,C1) + cost(X \ B,C1 ∪C2) = cost(B,C1) + cost(Z1,C1) + cost(Z2,C2)

= cost(B ∪ Z1,C1) + cost(Z2,C2).

Thus,

cost(X ,C1 ∪C2) ≤ cost(B ∪ Z1,C1) + cost(Z2,C2) ≤ (1 + δ)OPT(J). (25)

We need one more observation and its proof follows directly from the definition of the sets Z1

and Z2.

Observation 7.2. For every x ∈ Z1, dH (x,C1 ∪C2) = dH (x,C1) and for every y ∈ Z2, dH (y,C1 ∪
C2) = dH (y,C2).

Now, we prove condition (ii). First, by Observation 7.2 and the fact that B′ ⊆ Z1, we have that

cost(X \ (B ∪ B′),C1 ∪C2) = cost(Z1 \ B′,C1) + cost(Z2,C2). (26)

To prove that (C1,B ∪ B′) is δ -extendable for J and thatC2 is a δ -extension of (C1,B ∪ B′), we note
that

cost(B ∪ B′,C1) + cost(X \ (B ∪ B′),C1 ∪C2)

= cost(B ∪ B′,C1) + cost(Z1 \ B′,C1) + cost(Z2,C2) (by (26))

≤ (1 + δ)OPT(J). (by (25) and because B′ ⊆ Z1)

Now, we prove condition (iii) of the lemma. Let C2 = {c1, . . . , c� }, where � = k − |C1 |. Let Y1 �
· · · � Y� be a partition of Z2 such that

cost(Z2,C2) =
�∑

j=1

∑
y∈Yj

dH (cj , y).

Let vector c ∈ C1 and index r ≤ � be such that t = dH (c, cr).

Claim 4. If J is (k, 5δ ′)-irreducible for some δ ′ ≥ δ , then |Z1 \ B′| ≤ 1
δ ′ · |Yr |.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:24 F. V. Fomin et al.

Proof. For the sake of contradiction, assume that |Z1 \ B′| > 1
δ ′ · |Yr |. This implies that

cost(Z1 \ B′,C1) ≥ t
2δ ′ |Yr |. Thus,

t |Yr | ≤ 2δ ′cost(Z1 \ B′,C1) ≤ 2δ ′cost(Z1,C1). (27)

Now, we upper bound cost(X ,C1 ∪ (C2 \ {cr })) − cost(X ,C1 ∪C2), by considering the the change
in cost when we reassign the vectors in Yr to the cluster with center c.

cost(X ,C1 ∪ (C2 \ {cr })) − cost(X ,C1 ∪C2) ≤
∑
y∈Yr

(dH (y, c) − dH (y, cr))

≤
∑
y∈Yr

dH (c, cr) (by the triangle inequality)

= |Yr | · t
≤ 2δ ′ · cost(Z1,C1). (by (27)) (28)

But then

OPTk−1 (J) ≤ cost(X ,C1 ∪ (C2 \ {cr }))
≤ cost(X ,C1 ∪C2) + 2δ ′cost(Z1,C1) (by (28))

≤ (1 + δ) · OPT(J) + 2δ ′(1 + δ) · OPT(J) (by (25))

≤ (1 + δ + 4δ ′) · OPT(J) (since δ ≤ 1)

≤ (1 + 5δ ′) · OPT(J). (since δ ≤ δ ′)

This contradicts the assumption that J is (k, 5δ ′)-irreducible. �

Since Yr ⊆ Z2, by Claim 4, we have that |Z1 \ B′| ≤ 1
δ ′ · |Z2 |. The sets Z1 and Z2 form a partition

of X \ B and, because B′ ⊆ Z1, we have that X \ (B ∪ B′) = (Z1 \ B′) ∪ Z2. This implies that |X \
(B ∪ B′) | ≤ |Z2 |(1 + 1/δ ′), and hence

|Z2 | ≥
δ ′

1 + δ ′
· |X \ (B ∪ B′) |.

Finally, we prove the last condition in (iii). If |B′ | ≤ |X \B |
2 , then

|Z2 | ≥ δ ′

1 + δ ′
· |X \ (B ∪ B′) |

≥ δ ′

1 + δ ′
· (|X \ B | − |B′ |)

≥ δ ′

2(1 + δ ′)
· |X \ B |.

This completes the proof of the lemma. �

Due to Lemma 8, once we have a partial solution C1, we can identify a set B′ of vectors such
that the number of vectors in the largest cluster corresponding toC \C1 (hereC is a good solution
that contains C1) is at least a constant fraction of the remaining vectors. This allows us to further
use Lemma 6 as formally explained in Lemma 10. To make the statements in Lemma 10 easier, we
make use of one of the bestδ -extension of (C1,B) as derived in the following lemma:

Definition 11 (Good δ -extension). For an instance J = (X ,k,R = {R1, . . . ,Rm }) of Binary Con-
strained Clustering, δ ≥ 0, B ⊆ X and C1 ⊆ {0, 1}m of size k ′, a δ -extension C2 of (C1,B) is a
good δ -extension of (C1,B) if there is a partition Z1 � Z2 = X \ B and an index set I ⊆ {1, . . . ,k } of
size k ′ such that

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:25

• cost(X \ B,C1 ∪C2) = cost(Z1,C1) + cost(Z2,C2),
• C1 satisfies projI (R), and
• C2 is an optimal solution to J ′ = (Z2,k − k ′,R′ = R (I ,C1)).

We will refer to J ′ as the C2-optimal reduced instance.

Lemma 9. Let J = (X ,k,R = {R1, . . . ,Rm }) be an instance of Binary Constrained Clustering
and δ ≥ 0. Let B ⊆ X and C1 ⊆ {0, 1}m be a set of k ′ vectors for some k ′ ≤ k such that (C1,B) is

δ -extendable for J . Then there is a good δ -extension C2 of (C1,B).

Proof. Among all the δ -extensions of (C1,B), let C2 be a δ -extension of (C1,B) such that
cost(X \ B,C1 ∪C2) is minimized. We prove that C2 is the required δ -extension of (C1,B).

Let

η = cost(X \ B,C1 ∪C2).

SinceC2 is a δ -extension of (C1,B), there is a set I ⊆ {1, . . . ,k } of size k ′ and a partition Z1 � Z2 of
X \ B such that C1 and C2 satisfy families of relations projI (R) and R (I ,C1) correspondingly, and

η = cost(Z1,C1) + cost(Z2,C2) ≤ (1 + δ)OPT(J).

By the choice of C2, for every δ -extension C ′2 of (C1,B), we have that cost(X \ B,C1 ∪C ′2) ≥ η.
For the sake of contradiction, assume that C2 is not an optimal solution to (Z2,k − k ′,R (I ,C1)).
LetC∗2 be an optimal solution to (Z2,k − k ′,R (I ,C1)). Then cost(Z2,C

∗
2) < cost(Z2,C2). Moreover,

C1 ∪C∗2 satisfies R and hence is a solution to J . Since cost(Z2,C
∗
2) < cost(Z2,C2), we conclude that

cost(X \ B,C1 ∪C∗2) ≤ cost(Z1,C1) + cost(Z2,C
∗
2) < cost(Z1,C1) + cost(Z2,C2) = η.

This contradicts the choice of C2, which, in turn, completes the proof of the lemma. �

To state the next lemma, we need one more definition.

Definition 12 (Set ofκ-heavy Clusters). Letκ > 0,X be a vector set, andX1, . . . ,X� be a clustering
ofX . We say that a subset of clustersX ⊆ {X1, . . . ,X� } is a set ofκ-heavy clusters if for everyY ∈ X
and Z � X, |Y | > κ |Z |.

The following lemma says that if we have an irreducible instance J with δ -extendable pair
(C1,B), then it is possible to construct a larger extendable pair by adding to C1 a set of “approx-
imate” centers of heavy clusters from optimal clustering of the instance J ′ obtained from J by
“subtracting” (C1,B).

Lemma 10. Let δ ≥ 0 and 0 ≤ α ≤ 1. Let J = (X ,k,R = {R1, . . . ,Rm }) be a (k, 5δ ′)-irreducible in-

stance of Binary Constrained Clustering for some δ ′ ≥ δ . Let the pair (C1,B) where B ⊆ X and

C1 ⊆ {0, 1}m , |C1 | < k , be δ -extendable for J . Let C2 = {c∗1, . . . , c∗� } be a good δ -extension of (C1,B)
and J ′ = (Z2, � = k − |C1 |,R′ = R (I ,C1)) be the correspondingC2-optimal reduced instance. (The ex-

istence of suchC2 is guaranteed by Lemma 9.) Let also X1, . . . ,X� be the set of clusters corresponding

to the solution C2 of J ′ and let I ′ ⊆ {1, . . . , �}, |I ′ | = k ′, be the set of indices of the k
α

-heavy clusters

from this set.

Then for every solution C ′2 = {ci : i ∈ I ′} to J ′1 = (
⋃

i ∈I ′ Xi ,k
′, projI ′ (R′)) satisfying condition∑

j ∈I ′
cost(X j , {cj }) ≤ (1 + α) ·

∑
j ∈I ′

cost(X j , {c∗j }),

the pair (C1 ∪C ′2,B) is (5δ + 4α)-extendable for J .

Proof. Because C2 is a δ -extension of (C1,B), we have that

cost(B,C1) + cost(X \ B,C1 ∪C2) ≤ (1 + δ)OPT(J).

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:26 F. V. Fomin et al.

The assumption that C2 is a good δ -extension of (C1,B), yields that there are Z1 � Z2 = X \ B
and I ∈ ([k]

|C1 |) such that

• cost(X \ B,C1 ∪C2) = cost(Z1,C1) + cost(Z2,C2),
• C1 satisfies projI (R), and
• C2 is an optimal solution to J ′ = (Z2, � = k − |C1 |,R′ = R (I ,C1)).

Hence,

cost(X ,C1 ∪C2) ≤ cost(B ∪ Z1,C1) + cost(Z2,C2) ≤ (1 + δ)OPT(J). (29)

For the ease of presentation, we assume that I ′ = {1, . . . ,k ′}. LetW1 =
⋃

j=I ′ X j andW2 = Z2 \
W1. LetC3 = {ck ′+1, . . . , c� } be an optimal solution to J ′2 = (W2, � − k ′,R′(I ′,C ′2)). From the solution
C3 of J

′
2, we define a solution C ′3 = {c′k ′+1, . . . , c

′
�
} to J ′2 as follows: For each i ∈ [m], we set

(c′k ′+1[i], . . . , c
′
�[i]) =

{
(c∗

k ′+1[i], . . . , c
∗
�
[i]), if (c1[i], . . . , ck ′[i]) = (c∗1[i], . . . , c

∗
k ′[i]),

(ck ′+1[i], . . . , c�[i]), otherwise.

Observation 7.3. C ′3 is a solution to J ′2 .

Proof. From the definition ofC ′3, we have that for any i ∈ [m], (c′
k ′+1[i], . . . , c

′
�
[i]) ∈ R′(I ′,C ′2).

Hence, C ′3 is a solution to J2. �

Recall that we define R′ = R (I ,C1). BecauseC1 ∈ projI (R),C ′2 ∈ projI ′ (R′), andC ′3 ∈ R′(I ′,C ′2),
we have thatC1 ∪C ′2 ∪C ′3 is a solution to J . We will prove thatC ′3 is indeed a (5δ + 4α)-extension
of C1 ∪C ′2. Towards that, we define

Δ1 =
∑
j ∈I ′

∑
x∈X j

dH (x, c∗j) =
∑
j ∈I ′

cost(X j , {c∗j }), (30)

and

Δ2 =
∑

j ∈[�]\I ′

∑
x∈X j

dH (x, c∗j) =
∑

j ∈[�]\I ′
cost(X j , {c∗j }). (31)

By counting the number of mismatches at each of the coordinates of the vectors inW1 with its
corresponding center in {c∗1, . . . , c∗k ′ }, we get that

m∑
r=1

∑
j ∈I ′

∑
x∈X j :x[r]�c∗j [r]

1 =
∑
j ∈I ′

cost(X j , {c∗j }) = Δ1, (32)

where the last equality follows from Equation (30). SinceC is an optimal solution to J ′ with corre-
sponding clusters X1, . . . ,X� , we have that OPT(J ′) = Δ1 + Δ2. Combining Equation (30) with the
assumption

∑
j ∈I ′ cost(X j , {cj }) ≤ (1 + α) (

∑
j ∈I ′ cost(X j , {c∗j })), we have that

cost(W1,C
′
2) ≤

∑
j ∈I ′

cost(X j , {cj }) ≤ (1 + α)Δ1. (33)

By arguments similar to the reasoning for Equation (32) and by Equation (33), we obtain the
following:

m∑
r=1

∑
j ∈I ′

∑
x∈X j :x[r]�cj [r]

1 =
∑
j ∈I ′

cost(X j , {cj }) = (1 + α)Δ1. (34)

We claim that

Claim 5. cost(W2,C
′
3) ≤ Δ2 + (3α · Δ1)

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:27

Before proving the claim, let us show how it concludes the proof of the lemma. By Equation (33)
and Claim 5, we have that

cost(W1,C
′
2) + cost(W2,C

′
3) ≤ (1 + α)Δ1 + Δ2 + (3α · Δ1)

≤ (1 + 4α) (Δ1 + Δ2)

≤ (1 + 4α)cost(Z2,C2), (35)

where the last inequality follows from the fact that C2 = {c∗1, . . . , c∗� } is a solution to J ′ with the
corresponding clusters X1, . . . ,X� and Equations (30) and (31).

Now, we prove that C ′3 is a (5δ + 4α)-extension of (C1 ∪C ′2,B) for J . Towards that, we upper
bound η = cost(B,C1 ∪C ′2) + cost(X \ B,C1 ∪C ′2 ∪C ′3).

η ≤ cost(B,C1) + cost(Z1,C1) + cost(W1,C
′
2) + cost(W2,C

′
3)

≤ cost(B,C1) + cost(Z1,C1) + (1 + 4α)cost(Z2,C2) (by (35))

≤ (1 + δ)OPT(J) + (4α)cost(Z2,C2) (by (29))

≤ (1 + δ)OPT(J) + (4α) (1 + δ)OPT(J) (by (29))

≤ (1 + 5δ + 4α)OPT(J). (since α ≤ 1)

This, subject to the proof of Claim 5, completes the proof of the lemma.We need onemore technical
claim to prove Claim 5.

Claim 6. For any j ∈ [�] \ I ′,

∑
r ∈[m]:c′j [r]�c∗j [r]

|X j | ≤
3α

k
· Δ1.

Proof. Fix j ∈ [�] \ I ′. For any r ∈ [m] such that c′j [r] � c∗j [r], by the definition of

(c′
k ′+1[r], . . . , c

′
k
[r]), we have that (c1[r], . . . , ck ′[r]) � (c∗1[r], . . . , c

∗
k ′[r]). That is, for any r ∈ [m]

such that c′j [r] � c∗j [r], there is jr ∈ I ′ such that cjr
[r] � c∗jr

[r]. Define a map f from Ij = {r ∈ [m] :

c′j [r] � c∗j [r]} to I ′ as follows: f (r) = jr , where jr is an arbitrary index in I ′ such that cjr
[r] � c∗jr

[r].
We define sets

A[r] = {x ∈ Xf (r) | x[r] � cf (r)[r]},

and

B[r] = {x ∈ Xf (r) | x[r] � c∗f (r)[r]}.

Since |X j | < α
k
|Xf (r) |, for every r ∈ Ij (by the assumption that the clusters with the indices from

I ′ are k
α
-heavy), we have that

|X j | ≤
α

k
|Xf (r) | =

α

k
��
�

∑
x∈A[r]

1 +
∑

x∈B[r]

1
��
�
.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:28 F. V. Fomin et al.

Therefore,

∑
r ∈[m]:c′j [r]�c∗j [r]

|X j | ≤
∑

r ∈[m]:c′j [r]�c∗j [r]

α

k
��
�

∑
x∈A[r]

1 +
∑

x∈B[r]

1
��
�

≤ α

k

���
�

���
�

∑
r ∈[m]:c′j [r]�c∗j [r]

∑
x∈A[r]

1
���
�
+
���
�

∑
r ∈[m]:c′j [r]�c∗j [r]

∑
x∈B[r]

1
���
�

���
�

≤ α

k

���
�

���
�

∑
r ∈[m]:c′j [r]�c∗j [r]

∑
x∈A[r]

1
���
�
+ Δ1

���
�

(by (32))

≤ α

k
((1 + α)Δ1 + Δ1) (by (34))

≤ 3α

k
Δ1. (since α ≤ 1) �

Now, we are ready to proceed with the proof of Claim 5.

Proof of Claim 5. We bound

cost(W2,C
′
3) ≤

∑
j ∈[�]\I ′

∑
x∈X j

dH (x, c′j)

=
∑

j ∈[�]\I ′

∑
x∈X j

m∑
r=1

|x[r] − c′j [r]|

=
∑

j ∈[�]\I ′

∑
x∈X j

���
�

∑
r ∈[m]:c′j [r]=c∗j [r]

|x[r] − c′j [r]| +
∑

r ∈[m]:c′j [r]�c∗j [r]

|x[r] − c′j [r]|
���
�

≤
∑

j ∈[�]\I ′

∑
x∈X j

���
�
dH (x, c∗j) +

∑
r ∈[m]:c′j [r]�c∗j [r]

|x[r] − c′j [r]|
���
�

= Δ2 +
∑

j ∈[�]\I ′

∑
x∈X j

∑
r ∈[m]:c′j [r]�c∗j [r]

|x[r] − c′j [r]| (by (31))

= Δ2 +
∑

j ∈[�]\I ′

∑
r ∈[m]:c′j [r]�c∗j [r]

∑
x∈X j

|x[r] − c′j [r]|

≤ Δ2 +
∑

j ∈[�]\I ′

∑
r ∈[m]:c′j [r]�c∗j [r]

|X j |

≤ Δ2 +
∑

j ∈[�]\I ′

3α

k
· Δ1 (by Claim 6)

≤ Δ2 + (3α · Δ1). �

The last inequality completes the proof of Claim 5, which, in turn, completes the proof of the
lemma. �

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:29

8 PUTTING ALL TOGETHER: PROOF OF THEOREM 2

As we already mentioned in Section 7, the most essential part of the proof of Theorem 2 is to
approximate irreducible instances. We start from the approximation algorithm for irreducible in-
stances and then use this algorithm to prove Theorem 2.

8.1 Approximating Irreducible Instances

Now, we have sufficient ingredients to design an algorithm for outputting a (1 + ε)-approximate
solution under the assumption that the given instance is (k, ε

8k∗)-irreducible for some k∗ ≥ k . More
precisely, in this section, we prove the following theorem:

Theorem 3. There is an algorithm with the following specifications:

• The input of the algorithm is an instance J = (X ,k,R = {R1, . . . ,Rm }) of Binary Con-
strained Clustering, ε > 0, and k∗ ≥ k such that J is (k, ε

8k∗)-irreducible.

• The output of the algorithm is a solutionC to J such that cost(X ,C) ≤ (1 + ε
40k∗)OPT(J) with

probability at least

p (k∗,k, ε) =
(ε

1 + ε

)k

·
���
�

εk(
40k · k∗ · (5k − 1)

)k−1
· 2k · (40k∗ + ε)

���
�

c′·k2

ε2
log 1

ε

.

• The running time of the algorithm is 2O (k2+k log(k∗)) · n ·m · (1
ε

)O (k) .

First, we provide an overview of the algorithm informally without mentioning actual values
of the parameters. Then, we reason about how to set different parameters that will lead to the
required algorithm. And then, we give a formal proof of Theorem 3.

On a high level, our algorithm works as follows: Let J = (X ,k,R) be the input instance. We
consider a tuple (C ′, S,δ) to be a partial solution where S ⊆ X , δ ≥ 0, and C ′ ⊆ {0, 1}m , |C ′ | ≤ k .
We say that a partial solution (C ′, S,δ) is a good partial solution, if (C ′,X \ S) is δ -extendable for
J ; that is, C ′ is a set of cluster centers. Moreover C ′ can be extended to a (1 + δ)-approximate
solution with X \ S being assigned to the clusters corresponding to C ′. Initially, we set our set of
partial solution to be P = {(∅,X , 0)}. Clearly (∅,X , 0) is a good partial solution. At each iteration,
we maintain an invariant that P contains a good partial solution with high probability. At any step
if there is a partial solution (C1, S,δ) ∈ P such that |C1 | < k and S � ∅, we do the following: First,
we delete (C1, S,δ) from P and then we add the following partial solutions to P: Let v1, . . . , v |S |
be the vectors in S ordered according to the non-decreasing order of dH (vi ,C1).

(i) We add (C1, S
′,δ), where S ′ is the last � |S |2 � vectors in the order v1, . . . , v |S | .

(ii) For any choice of k ′ ∈ {1, . . . ,k − |C1 |}, we extend the set C1 assuming (C1,X \ S) is δ -
extendable (see the below paragraph for a brief explanation).

Assume that C2 is a good δ -extension of (C1,X \ S) (see Definition 11). Since C2 is a good δ -

extension of (C1,X \ S), there exist I ∈ ([k]
|C1 |) and a partition Z1 � Z2 of S such that C2 is an opti-

mum solution to J ′ = (Z2, � = k − |C1 |,R (I ,C1)) and cost(S,C1 ∪C2) = cost(Z1,C1) + cost(Z2,C2)

(see Lemma 9). Let B′ be the set defined in Lemma 8. If |B′ | ≥ � |S |2 �, then by Lemma 8(ii) and Ob-
servation 7.1, (C1, S

′,δ) is δ -extendable for J (this is covered in item (i) above). Suppose the size of

B′ is at most � |S |2 �. Then, by Lemma 8(iii), we know that |Z2 | is a constant fraction of |S |. There-
fore, the size of the largest cluster among the clusters corresponding toC2 in the instance J ′ is also
a constant fraction of |S |. Let X1, . . . ,X� be the clusters corresponding to the solution C2, where
� = |C2 |. For the ease of presentation, assume that |X1 | ≥ |X2 | . . . ≥ |X� |. Let k ′ be the smallest

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:30 F. V. Fomin et al.

integer such that |Xk ′ | is “much larger than” |Xk ′+1 |. In other words, for any i ∈ {1, . . . ,k ′ − 1}, the
size of Xi is at most a constant times |Xi+1 |. This implies that the size of X j is a constant fraction
of |S | for any j ∈ {1, . . . ,k ′}. Therefore, we use Lemma 6 to compute an approximate set of centers
C ′ for the clustersX1, . . . ,Xk ′ . Then, we add (C1 ∪C ′, S, 5δ + 4α) to P (this case is covered in item
(ii) above). The explanation for setting the parameter α and how to estimate weights wi used in
Lemma 6 is given in the next paragraph. At the end, for any tuple (C, S,δ) ∈ P, either |C | = k or
S = ∅. Then, we output the best solution among all the tuples in P. The correctness of the algo-
rithm will follow from the invariant that P contains a good partial solution with high probability
at each iteration.

Now, we explain how to set different parameters for the algorithm, which are used in Lemmas 6,
8, and 10. We have an assumption that J is (k, ε

8k∗)-irreducible. In Lemmas 8 and 10, we want J
to be (k, 5δ ′)-irreducible. So, we set δ ′ = ε

40k∗ . Initially, we set P = {(∅,X , 0)}. At each iteration,
we extend a partial solution (C1, S,δ1) either by deleting half of vectors from S or by computing
a set of center vectors using Lemma 6 and the correctness of the step (assuming (C1,X \ S) is δ1-
extendable) follows from Lemma 10. For the initial application of Lemma 10 (i.e., where (C1, S,δ1) =
(∅,X , 0)), we have that δ1 = 0. Then after each application of Lemma 10, we get a partial solution
that we expect to be (5δ1 + 4α)-extendable (we fix α later). The number of times Lemma 10 is
applied to get a particular solution in P (at the end of the algorithm) is at most k . This implies that
at the end some solution in P is γ (k)-extendable (by Observation 7.1), where γ (k) can be obtained
from the following recurrence relation:

γ (0) = 0, and

γ (k ′) = 5γ (k ′ − 1) + 4α , for k ′ ∈ {1, 2, . . . ,k }.

The above recurrence relation solves to γ (k ′) = (5k ′ − 1)α for any k ′ ∈ {0, 1, . . . ,k }. Moreover,

by Lemma 10, we need γ (k ′) to be at most δ ′ for all k ′ ∈ {0, 1, . . . ,k }. Thus, we set α = δ ′

(5k−1)
.

From Lemma 6, we expect a (1 + α)-approximate solution for a restricted instance derived from
J . So, we use ε = α

7 and δ = α
7 in the application of Lemma 6. To apply Lemma 6, we also need

the value for β and promised bounds on the sizes of the clusters for which we are seeking center
vectors. Towards that, we give a detailed explanation of how to use Lemma 6. Notice that (C1, S,δ1)
is a partial solution already computed and we assumed that (C1,X \ S) is δ1-extendable for J .
Let C2 be a good δ -extension of (C1,X \ S). Since C2 is a good δ -extension of (C1,X \ S), there

exist I ∈ ([k]
|C1 |) and a partition Z1 � Z2 of S such that C2 is an optimum solution to J ′ = (Z2, � =

k − |C1 |,R (I ,C1)) and cost(S,C1 ∪C2) = cost(Z1,C1) + cost(Z2,C2) (see Lemma 9). Let B′ be the
set defined in Lemma 8. The application of Lemma 6 is important for the partial solution (C1, S,δ1)

only when the size of B′ is at most |S |2 . Then, by Lemma 8(iii), we know that |Z2 | ≥ (δ ′

2(1+δ ′)) |S |.
Therefore, the largest cluster corresponding to the solution C2 of J ′ is at least (δ ′

2k (1+δ ′)) |S |. Let
X1, · · · ,X� be the clusters corresponding toC2, where � = |C2 |. For the ease of presentation, assume

that |X1 | ≥ |X2 | . . . ≥ |X� |. Let k ′ be the smallest integer such that |Xk ′ | > k
α
|Xk ′+1 |. Therefore, we

have that |X1 | ≤ k
α
|X2 | ≤ · · · ≤ (k

α
)k ′−1 |Xk ′ |. (Here the set [k ′] plays the role of I ′ in Lemma 10, i.e.,

[k ′] is a set of indices of k
α
-heavy clusters.) This implies that the size of X j is at least (α

k
)k ′−1 |X1 | ≥

(α
k

)k−1 δ ′

2k (1+δ ′) |S | (because
α
k
≤ 1) for any j ∈ [k ′]. So, we set β = (α

k
)k−1 δ ′

k (2+δ ′) . We set the value

c in Lemma 6 to be |Xk ′ |. Notice that we do not have to know the value of c explicitly, but instead,
we need to know the weights wi s within a promised bound. From the value of c , it is clear that

for any j ∈ [k ′],
|X j |

c
≤ (k

α
)k ′−j ≤ (k

α
)k ′−1. Let h = (k

α
)k ′−1. Then there exists w j ∈ {(1 + δ)0, (1 +

δ)1 . . . , (1 + δ)log1+δ h } such that
|X j |

c
≤ w j ≤

(1+δ) |X j |
c

. Thus, we apply Lemma 6 for all possible

valuesw1, . . . ,wk ′ ∈ {(1 + δ)0, (1 + δ)1 . . . , (1 + δ)log1+δ h } and extend the set C1 in each case.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:31

ALGORITHM 1: Algorithm for Binary Constrained Clustering assuming the input instance is

(k, ε
8k∗)-irreducible, where k is the number of vectors allowed in the solution, ε is the approximation

factor, and k∗ ≥ k .

Input: An instance J = (X ,k,R = {R1, . . . ,Rm }) of Binary Constrained Clustering and ε > 0.

Output: A solution C ⊆ {0, 1}m for J .
1 P ← {(∅,X , 0)}
2 δ ′ ← ε

40k∗ , α ←
δ ′

(5k−1)
, β ←

(
α
k

)k−1 · δ ′

2k (1+δ ′) , ε ←
α
7 , and δ ←

α
7 .

3 for (C1, S,δ1) ∈ P such that |C1 | < k and S � ∅ do

4 P ← P \ {(C1, S,δ1)}
5 Let π be a linear order of S according to the non-decreasing distance dH (v,C1), where v ∈ S .
6 Let S ′ be the last � |S |2 � vectors in the order π .

7 P ← P ∪ {(C1, S
′,δ1)}

8 Guess I ∈
(
[k]
|C1 |

)
such that (i) < C1, projI (R) > (for a proper ordering of the vectors in C1),

(ii) there is a good δ1-extension C2 of (C1,X \ S), and (iii) < C2,R (I ,C1) >.
9 R′ ← R (I ,C1).

10 � ← k − |C1 |
11 for k ′ ∈ {1, . . . ,k − |C1 |} and I ′ ∈

(
[�]
k ′

)
do

12 h ←
(

k
α

)k ′−1

13 for w1, . . . ,wk ′ ∈ {(1 + δ)0, (1 + δ)1 . . . , (1 + δ)log1+δ h } do

14 C ′ ← the output of Algorithm A from Lemma 6 on input S,k ′, projI ′ (R′), β,δ , ε , and
w1, . . . ,wk ′

15 P ← P ∪ {(C1 ∪C ′, S, 5δ1 + 4α)}

16 Let C be such that there is (C,S∗,δ∗) ∈ P for some S∗ ⊆ X ,δ∗ ≥ 0 and cost(X ,C) = min{cost(X ,C ′) :
there is S ′ ⊆ X ,δ1 ≥ 0 such that (C ′, S ′,δ1) ∈ P}.

17 return a solution D ⊇ C using Proposition 3.1.

Now, we are ready to give the formal proof of the theorem.

Proof of Theorem 3. The pseudocode of our algorithm is given in Algorithm 1. First, we define
an iteration of the algorithm to be the execution of one step of the for loop at Line 3. That is, at the
beginning of an iteration, one partial solutionwill be deleted fromP and later during the execution
of the iteration many partial solutions will be added to P (see Lines 7 and 15). Next, we prove
that the algorithm terminates. Notice that when there is no partial solution (C1, S,δ1) ∈ P with
|C1 | < k and S � ∅, then the algorithm terminates. When there is a partial solution (C1, S,δ1) ∈ P
with |C1 | < k and S � ∅, then there is an iteration of the algorithm (Line 3) where in the for loop,
we consider (C1, S,δ1), delete (C1, S,δ1) from P, and add many partial solutions to P. For each
such partial solution (C ′1, S

′,δ2), either |C ′1 | > |C1 | or |S ′ | < |S |. This implies that Algorithm 1 will
terminate.

Now, we prove the correctness of the algorithm. That is, we prove that Algorithm 1 will return
a (1 + ε

40k∗)-approximate solution with probability at least p (k∗,k, ε).
For convenience, we let the 0th iteration to be the initial assignments before any of the execution

of Line 3. That is, at the end of the 0th iteration, we have that P = {(∅,X , 0)}. When we apply in
Line 14 Algorithm A from Lemma 6 on input S,k ′, projI ′ (R′), β , δ , ε , and w1, . . . ,wk ′ , we know

that by Lemma 6, it outputs a solution with probability at least
ε ·β r ·k

1+ε
, where r = Θ(k

ε2 log
1
ε

). Let

c ′ be a constant such that r = c ′ · k
ε2 log

1
ε
.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:32 F. V. Fomin et al.

Correctness Invariant: At the end of every iteration of the algorithm, there is a
partial solution (C, S,δ1) ∈ P such that (C,X \ S) is δ1-extendable for J with prob-

ability at least (
ε β r

1+ε
)q where q = |C |.

We need the following observation to prove the correctness invariant:

Observation 8.1. At any step of the algorithm, for any partial solution (C, S,δ1) ∈ P, δ1 ≤ δ ′.

Proof Sketch. By induction on the number of iteration of the algorithm one can prove that
at the end of each iteration, for any partial solution (C, S,δ1) ∈ P, δ1 ≤ γ (|C |). Recall that γ (k ′) =
(5k ′ − 1)α and γ (k ′) ≤ δ ′ for all k ′ ∈ {0, 1, . . . ,k }. Thus, the observation follows. �

Claim 7. Correctness invariant is maintained at the end of every iteration.

Proof. We prove the claim using induction on the number of iterations. The base case is for the
0th iteration. Since at the end of 0th iteration (∅,X , 0) ∈ P and the fact that (∅, ∅) is 0-extendable
for J with probability 1, the base case follows. Now, we consider the induction step. That is, con-
sider the iteration i of the algorithm where i > 0. Let (C1, S,δ

∗) be the partial solution for which
the iteration i corresponds to. At the beginning of iteration i , (C1, S,δ

∗) ∈ P and by induction
hypothesis there is a partial solution (C ′, S ′,δ1) ∈ P satisfying the properties mentioned in the
correctness invariant. Notice that during the iteration i , we will delete (C1, S,δ

∗) from P and add
many partial solutions to P. If (C ′, S ′,δ1) � (C1, S,δ

∗), then at the end of iteration i , (C ′, S ′,δ1) ∈ P
and the invariant follows.

So now, we assume that (C1, S,δ
∗) = (C ′, S ′,δ1). This implies that (C1,X \ S) is δ ∗-extendable

for J with probability at least (
ε β r

1+ε
)q , where q = |C1 |. By Lemma 9, there is a good δ ∗-extension

C2 of (C1,X \ S), a partition Z1 � Z2 of X \ S, and I ∈ (k
|C1 |) such that C1 ∈ projI (R) and C2 is an

optimum solution to (Z2,k − |C1 |,R (I ,C1)) and cost(S,C1 ∪C2) = cost(Z1,C1) + cost(Z2,C2). Let
t = minc∈C1,c′ ∈C2 dH (c, c′). Let B′ =

⋃
c∈C1
B (c, t ′/2) ∩ S and S∗ = S \ B′. Then by Lemma 8, we get

the following:

(i) B′ ⊆ Z1 and B′ consists of the first |B′ | vectors of S in the ordering according to the non-
decreasing distance dH (x,C1) where x ∈ S .

(ii) cost(S∗,C1 ∪C2) = cost(Z1 \ B′,C1) + cost(Z2,C2). Moreover, (C1,X \ S∗) is δ ∗-extendable
for J and C2 is a δ

∗-extension of (C1,X \ S∗).
(iii) Since δ ∗ ≤ δ ′ (by Observation 8.1) and the fact that J is (k, 5δ ′)-irreducible (because of our

assumption), we have that |Z2 | ≥ (δ ′

1+δ ′) |S
∗ |. If |B′ | ≤ |S |

2 , then |Z2 | ≥ (δ ′

2(1+δ ′)) |S |.

Suppose |B′ | > |S |2 . Recall the definition of S ′ from Line 6. Notice that S \ S ′ ⊆ B′. Therefore,
by the assumption that (C1,X \ S) is δ ∗-extendable for J and by Lemma 8(ii) and Observation 7.1,

(C1,X \ S ′) is δ ∗-extendable for J . Since (C1,X \ S) is δ ∗-extendablewith probability at least (
ε β r

1+ε
)q ,

(C1,X \ S ′) is δ ∗-extendable with probability at least (
ε β r

1+ε
)q .

Now consider the case |B′ | ≤ |S |
2 . We know that C2 is an optimum solution to (Z2, � = k −

|C1 |,R (I ,C1)). Let C2 = {c1, . . . , c� } and Y1, . . .Y� be the clusters corresponding to the solution
C2 of (Z2, � = k − |C1 |,R (I ,C1)). Let π be a permutation of [�] such that |Yπ (1) | ≥ · · · ≥ |Yπ (�) |.
Let X j = Yπ (j) and c∗j = cπ (j) for all j ∈ [�]. Let k ′ be the smallest integer in [�] such that

|Xk ′ | > (k
α

) |Xk ′+1 |. This implies that |X1 | ≤ (k
α

) |X2 | ≤ · · · ≤ (k
α

)k ′−1 |Xk ′ |. Thus, by the fact that

|X1 | ≥ |Z2 |
� ≥

|Z2 |
k

, we have that for any j ∈ [k ′],

|X j | ≥
(α
k

)k ′−1 |Z2 |
k
. (36)

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:33

Let I ′ = {π (j) : j ∈ [k ′]}. By statement (iii) above and Equation (36), for all j ∈ I ′,

|Yj | ≥
(α
k

)k ′−1
· δ ′

2k (1 + δ ′)
|S | ≥

(α
k

)k−1
· δ ′ · |S |
2k (1 + δ ′)

(
Since

α

k
≤ 1

)
. (37)

This implies that for all j ∈ I ′, |Yj | ≥ β |S |. Let C∗ = {cj : j ∈ I ′}. Let V =
∑

j ∈I ′ cost(Yj , cj). More-

over, (a) {Yj : j ∈ I ′} is a set of k
α
-heavy clusters (see Definition 12). Let c = |Yk ′ |. Notice that (b)

for any j ∈ I ′, Yj

c
≤ (k

α
)k ′−1. Let R′ = R (I ,C1) and J ′ be the instance (Z =

⋃
j ∈I ′ Yj ,k

′, projI ′ (R′)).
Now in the iteration i , consider the execution of for loop at Line 11 for k ′ and I ′. Notice

that for any j ∈ I ′, there existsw ∈ {(1 + δ)0, (1 + δ)1 . . . , (1 + δ)log1+δ h }, where h = (k
α

)k ′−1, such

that
|Yj |
c
≤ w ≤ (1+δ) |Yj |

c
. Now consider the for loop at Line 13 for values w1, . . . ,wk ′ such that

|Yπ (j) |
c
≤ w j ≤

(1+δ) |Yπ (j) |
c

for all j ∈ [k ′]. Then, by Lemma 6, in Line 14, we get a setC ′ = {c′i : i ∈ I ′}
of k ′ cluster centers such that with probability at least

ε ·β r ·k′

1+ε
,∑

i ∈I ′
cost(Yi , {c′i }) ≤ (1 + ε)2 (1 + δ)V ≤ (1 + α) ·

∑
j ∈I ′

cost(Yj , cj). (38)

Therefore, (C1 ∪C ′, S, 5δ ∗ + 4α) belongs to P at the end of the iteration i with probability at least

(
ε ·β r

1+ε
) (q+k ′) = (

ε ·β r

1+ε
) |C1∪C ′ | . Then by Lemma 10, (C1 ∪C ′,X \ S) is (5δ ∗ + 4α)-extendable for J and

this completes the proof of the claim. �

Now for the proof of the correctness of the algorithm consider the invariant at the end of the
last iteration. At the end of last iteration for all (C, S,δ1) ∈ P, we have that either |C | = k or S = ∅.
Then by Claim 7, at the end of the last iteration, P contains a partial solution (C, S,δ1) that is
δ1-extendable with probability at least

p =

(
εβr

1 + ε

)k

. (39)

Then the output set D ⊇ C is a (1 + δ1)-approximate solution of J with probability at least p, by
Proposition 3.1. By Observation 8.1, D is a (1 + ε

40k∗)-approximate solution of J . By substituting
the values of β and r into Equation (39), we bound the value of p as follows:

p =

(ε

1 + ε

)k

· �
�

(
δ ′

k (5k − 1)

)k−1
δ ′

2k (1 + δ ′)
�
�

r ·k

=

(ε

1 + ε

)k

·
���
�

(
ε

40k∗

)k

(
k (5k − 1)

)k−1
· 2k · (1 + ε

40k∗)

���
�

r ·k

=

(ε

1 + ε

)k

·
���
�

εk(
40k · k∗ · (5k − 1)

)k−1
· 2k · (40k∗ + ε)

���
�

r ·k

=

(ε

1 + ε

)k

·
���
�

εk(
40k · k∗ · (5k − 1)

)k−1
· 2k · (40k∗ + ε)

���
�

c′·k2

ε2
log 1

ε

.

Running time. Now, we analyze the running time of the algorithm. Notice that in the algorithm,
initially, we haveP = {(∅,X , 0)} and in each step, we delete a partial solution fromP and addmany
partial solutions. Towards analyzing the running time, we define a node-labelled rooted tree T as
follows: The root is labelled with (∅,X , 0). Each node of the tree is labelled with a partial solution

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:34 F. V. Fomin et al.

(C, S,δ1), which corresponds an execution of for loop at Line 3. For a node labelled with (C, S,δ1),
let S1, . . . , S� be the tuples added to P during the iteration corresponding to (C, S,δ1). Then the
node labelled (C, S,δ1) will have � children and they are labelled with S1, . . . , S� , respectively.
Therefore, the number of iterations in the algorithm is equal to the number of nodes in the tree
T . In each iteration (corresponding to a partial solution (C, S,δ1)), we sort the set S of vectors
according to the Hamming distance to C (see Line 5). This can be done in time O (kn′m), where

n′ = |S |. Then, we add (C, S ′,δ1) toP, where |S ′ | ≤ |S |
2 . Then, because of Lines 8, 11, and 13, we add

at most L = 22k · (log1+δ
k
α

)k tuples to P (in Line 14) where the cardinality of the first entry of each

tuple is strictly more than |C |. The time required to execute the Line 14 is at mostO (m2k (k
ε

)2 log 1
ε

)
(by Lemma 6). Therefore, the time spent in one iteration of the algorithm is at most

O �
�
L · 2kn′ ·m ·

(
k

ε

)2
log

1

ε
�
�
.

For any nodev labelled with (C, S,δ1), let N (k − |C |, |S |) be the time taken by the iterations that
are labelled by the nodes of the subtree ofT , rooted at the node v . The value of N (k − |C |, |S |) can
be upper bounded using the following recurrence formula: There is a constant c such that for any
0 ≤ k ′ ≤ k and 0 ≤ n′ ≤ n,

N (k ′,n′) ≤
⎧⎪⎨⎪⎩

c if k ′ = 0 or n′ = 0

N (k ′ + n′

2) + L · N (k ′ − 1,n′) +
(
cL · 2kn′m

(
k
ε

)2
log 1

ε

)
if k ′,n′ > 0

. (40)

Clearly, the running time of the algorithm will be upper bounded by N (k,n). We claim that

N (k,n) ≤ c · (2L)k23k2 · n ·m ·
(
k

ε

)2
log

1

ε
.

Towards that, we prove that for any 0 ≤ k ′ ≤ k and 0 ≤ n′ ≤ n, N (k ′,n′) ≤ c · 2k · Lk ′23k ′2 · n′ ·
m(k

ε
)2 log 1

ε
using induction. The base case is when k ′ = 0 or n′ = 0 and it holds by Equation (40).

By induction hypothesis, we have that

N (k ′,n′) ≤ �
�
c · 2kLk ′23k ′2 n

′m

2

(
k

ε

)2
log

1

ε
�
�
+ �

�
L · c2kLk ′−123(k ′−1)2n′m

(
k

ε

)2
log

1

ε
�
�

+ �
�
cL · 2kn′ ·m

(
k

ε

)2
log

1

ε
�
�
.

To prove that N (k ′,n′) ≤ c2k · Lk ′23k ′2 · n′ ·m · (k
ε

)2 log 1
ε
, it is enough to prove that 23k ′2−1 +

23(k ′−1)2 + 1 ≤ 23k ′2 , which is true for any k ′ ≥ 1.
Therefore, we upper bound the running time of the algorithm as follows:

N (k,n) ≤ �
�
c2k23k2 · n ·m

(
k

ε

)2
log

1

ε
�
�
· Lk

≤
(
2O (k2) · n ·m

(
1

ε

)2
log

1

ε

)
· 22k ·

(
log1+δ

k

α

)k

≤
(
2O (k2) · n ·m

(
1

ε

)2
log

1

ε

)
· �
�

ln k
α

ln(1 + δ)
�
�

k

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:35

≤
(
2O (k2+k log(k∗)) · n ·m · 1

ε2
log

1

ε

)
· �
�

ln 1
ε

ln(1 + δ)
�
�

k

≤
(
2O (k2+k log(k∗)) · n ·m · 1

ε2
log

1

ε

)
· �
�

(1 + δ) ln 1
ε

δ
�
�

k

≤
(
2O (k2+k log(k∗)) · n ·m

)
·
(
1

ε

)O (k)

.

This completes the proof of the theorem. �

8.2 The Final Step

Now, we are ready to prove Theorem 2. Let J = (X ,k,R) be the input instance. Let

p (k∗,k, ε) =
(ε

1 + ε

)k

·
���
�

εk(
40k · k∗ · (5k − 1)

)k−1
· 2k · (40k∗ + ε)

���
�

c′·k2

ε2
log 1

ε

be the success probability from Theorem 3, where c ′ is a constant. For each I ⊆ [k], we apply
Theorem 3 on (X , |I |, projI (R)) and ε

4 (where we substitute k = |I | and k∗ = k) 1
p (k, |I |, ε

4) times.

Let C ′I be the best solution obtained by the above process. By using Proposition 3.1, let CI be
the solution for J obtained from C ′I . Then, we output the best solution among {CI : I ⊆ [k]}. The
running time of the algorithm mentioned in Theorem 3 is 2O (k2+k log(k∗)) · n ·m · (1

ε
)O (k) , and the

running time of the algorithm mentioned in Proposition 3.1 is linear in the input size. Thus, the

running time of our algorithm is at most 1
p (k,k, ε

4) · 2
O (k2) · (1

ε
)O (k) · n ·m. The value of 1

p (k,k, ε
4) is

upper bounded as follows:

1

p (k,k, ε
4)
=

(
4 + ε

ε

)k

·
���
�

(
40k2 · (5k − 1)

)k−1
· 2k · (40k + ε

4)(
ε
4

)k

���
�

c′·k2

ε2
log 1

ε

=

(
1

ε

)O (k)

· 2O
(

k4

ε2
log 1

ε

)
·
(
1

ε

)O (
k

ε2
log 1

ε

)

= 2
O

(
k4

ε2
log 1

ε

)
·
(
1

ε

)O (
k

ε2
log 1

ε

)
.

Thus, the running time of our algorithm is 2O (k4

ε2
log 1

ε) · (1
ε

)O (k

ε2
log 1

ε)n ·m.

Now, we prove the correctness of the algorithm. Let k̂ ∈ [k] be the integer defined in Lemma 7.

We know that OPT
k̂

(J) ≤ (1 + ε
4)OPT(J). This implies that there is I ∈

([k]
k̂

)
such that the OPT(J ′)

is at most (1 + ε
4)OPT(J), where J ′ = (X , k̂, projI (R)). In the iteration of our algorithm correspond-

ing to I , we get a solution C ′I to J ′ of cost at most (1 + ε
160k

)OPT(J ′) with probability at least

1 − (1 − p (k∗, |I |, ε
4)1/p (k∗, |I |, ε

4) ≥ 1 − 1
e
. By Proposition 3.1, CI is a solution to J of cost at most

(1 + ε
160k

)OPT(J ′). Thus, by Lemma 7, the cost of CI is (1 + ε
4) (1 + ε

160k
)OPT(J) ≤ (1 + ε)OPT(J).

This completes the proof of the theorem.

9 PROOFS OF LEMMATA 1, 2, AND 3

In this section, we provide the missing proofs of Lemmata 1, 2, and 3. Recall that in Lemma 1, we
claim the following:

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

12:36 F. V. Fomin et al.

For any instance (A, r) of Low GF(2)-Rank Approximation , one can construct in time O (m +
n + 22r) an instance (X ,k = 2r ,R) of Binary Constrained Clustering with the following prop-

erty: Given any α-approximate solution C of (X ,k,R), an α-approximate solution B of (A, r) can be

constructed in time O (rmn) and vice versa.

Proof of Lemma 1. Observe that if GF(2)-rank(B) ≤ r , then B has at most 2r distinct columns,
because each column is a linear combination of at most r vectors of a basis of the column space of
B. Also, the task of Low GF(2)-Rank Approximation can equivalently be stated as follows: Find
vectors s1, . . . , sr ∈ {0, 1}m over GF(2) such that

n∑
i=1

min{dH (s, ai) | s is a linear combination of s1, . . . , sr }

is minimum, where a1, . . . , an are the columns of A. To encode an instance of Low GF(2)-Rank
Approximation as an instance of Binary Constrained Clustering, we construct the following
relationR: Setk = 2r . Let Λ = (λ1, . . . , λk) be thek-tuple composed by all distinct vectors of {0, 1}r .
Thus, each element λi ∈ Λ is a binary r -vector. We define R = {(xᵀλ1, . . . ,xᵀλk) | x ∈ {0, 1}r }.
Thus, R consists of k = 2r k-tuples and every k-tuple in R is a row of the matrix Λᵀ · Λ. Now, we
defineX to be the set of columns of A and for each i ∈ [m], Ri = R. Note that, since all Ri are equal,
we can construct and keep just one copy of R.

To show that the instance (A, r) of Low GF(2)-Rank Approximation is equivalent to the con-
structed instance (X ,k,R), assume first that the vectors s1, . . . , sr ∈ {0, 1}m over GF(2) compose
an (approximate) solution of Low GF(2)-Rank Approximation. For every i ∈ [k], we consider
λᵀi = (λi [1], . . . , λi [r]) and define vector

ci = λi [1]s1 ⊕ · · · ⊕ λi [r]sr ,

where ⊕ denotes the sum over GF(2), and set C = {c1, . . . , ck }. Observe that C contains all linear
combinations of s1, . . . , sr . For every i ∈ [k] and j ∈ [m], we have that ci [j] = (s1[j], . . . , sr [j])λi .
Therefore, (c1[j], . . . , ck [j]) ∈ R for j ∈ [m]. Since for every i ∈ [n],

min{dH (s, ai) | s is a linear combination of s1, . . . , sr } = min{dH (cj , ai) | j ∈ [k]},

we have that
n∑

i=1

min{dH (s, ai) | s is a linear combination of s1, . . . , sr } =
n∑

i=1

dH (ai ,C) =
∑
x∈X

dH (x,C).

For the opposite direction, assume thatC = {c1, . . . , ck } is an (approximate) solution for (X ,k,R).
We construct the vectors s1, . . . , sr as follows: Let j ∈ [m]. We have that (c1[j], . . . , ck [j]) ∈ R.
Therefore, there is x ∈ {0, 1}r such that (c1[j], . . . , ck [j]) = (xᵀλ1, . . . , xᵀλk). We set si [j] = x[i]
for i ∈ [r]. Observe that C is the set of all linear combinations of the vectors s1, . . . , sr . Hence,∑

x∈X
dH (x,C) =

∑
x∈X

min{dH (s, x) | s is a linear combination of s1, . . . , sr }

=

n∑
i=1

min{dH (s, ai) | s is a linear combination of s1, . . . , sr }.

Notice that to find vectors x, formally, we have to solve m systems of linear equations with r
variables such that each system contains 2r equations. But, since Λ contains all pairwise distinct
vectors of {0, 1}r , we can find the solution by checking the equations corresponding to the vec-
tors containing unique non-zero elements. This immediately implies that for any α-approximate
solutionC of (X ,k,R) an α-approximate solution B of (A, r) can be constructed in time O (rm). �

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:37

Recall that in Lemma 2, we claim that for any instance (A, r) of LowBoolean-RankApproxima-
tion, one can construct in time O (m + n + 22r) an instance (X ,k = 2r ,R) of Binary Constrained
Clusteringwith the following property: Given any α-approximate solution C of (X ,k,R) an α-

approximate solution B of (A, r) can be constructed in time O (rmn) and vice versa. The proof of
Lemma 2 essentially repeats the proof of Lemma 1. While we are working now with the Boolean
semi-ring (0, 1,∧,∨), we still can use exactly the same trick to reduce Low Boolean-Rank Ap-
proximation to Binary Constrained Clustering. The only difference is that GF(2) summations
and products are replaced by ∨ and ∧, respectively, in the definition of the relation R. Thus, every
k-tuple in R is a row of the matrix Λᵀ ∧ Λ.

Next, we give a proof sketch of Lemma 3.

Proof sketch of Lemma 3. The task of Binary Projective Clustering can equivalently be
stated as follows: Find vectors s1,1, . . . , s1,r , . . . , sk,r ∈ {0, 1}m over GF(2) such that∑

x∈X
min{dH (s, x) | i ∈ [k] and s is a linear combination of si,1, . . . , si,r }

is minimum. Now the construction of relation R is analogous to that of Lemma 1. Set q =
2r . Let Λ = (λ1, . . . , λq) be the q-tuple composed by all distinct vectors of {0, 1}r . Thus, each
element λi ∈ Λ is a binary r -vector. We define R′ = {(xᵀλ1, . . . ,xᵀλq) | x ∈ {0, 1}r } and R =
{(b1,1, . . . ,b1,q ,b2,1, . . . ,b2,q , . . . ,bk,1, . . . ,bk,q) | for all i ∈ [k], (bi,1, . . . ,bi,q) ∈ R′}. Thus, R con-

sists of k ′ = 2k ·r tuples of length k2r each. Now, we define Ri = R for all i ∈ [m]. This completes
the construction of instance (X ,k ′,R) of Binary Constrained Clustering.

The proof of correctness of the lemma is similar to the proof of Lemma 1. �

REFERENCES

[1] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. 2004. Approximating extent measures of points.

J. ACM 51, 4 (2004), 606–635. DOI:https://doi.org/10.1145/1008731.1008736
[2] Noga Alon and Benny Sudakov. 1999. On two segmentation problems. J. Alg. 33, 1 (1999), 173–184. DOI:https://doi.

org/10.1006/jagm.1999.1024

[3] Noga Amit. 2004. The Bicluster Graph Editing Problem. Master’s thesis. Tel Aviv University.

[4] Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. 2012. Computing a nonnegative matrix

factorization—provably. In Proceedings of the 44th ACM Symposium on Theory of Computing (STOC’12). ACM, 145–162.

[5] Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. 2002. Approximate clustering via core-sets. In Proceedings of the 34th

ACM Symposium on Theory of Computing (STOC’02). ACM, 250–257. DOI:https://doi.org/10.1145/509907.509947
[6] F. Ban, V. Bhattiprolu, K. Bringmann, P. Kolev, E. Lee, and D. P. Woodruff. 2019. A PTAS for �_p -low rank approxi-

mation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’19). 747–766.

[7] Eduard Bartl, Radim Belohlávek, and Jan Konecny. 2010. Optimal decompositions of matrices with grades into

binary and graded matrices. Ann. Math. Artific. Intell. 59, 2 (June 2010), 151–167. DOI:https://doi.org/10.1007/
s10472-010-9185-y

[8] Radim Belohlávek and Vilém Vychodil. 2010. Discovery of optimal factors in binary data via a novel method of matrix

decomposition. J. Comput. Syst. Sci. 76, 1 (2010), 3–20. DOI:https://doi.org/10.1016/j.jcss.2009.05.002
[9] Karl Bringmann, Pavel Kolev, andDavid P.Woodruff. 2017. Approximation algorithms for �0-low rank approximation.

In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS’17). 6651–6662. Retrieved

from http://papers.nips.cc/paper/7242-approximation-algorithms-for-ell_0-low-rank-approximation.

[10] L. Sunil Chandran, Davis Issac, and Andreas Karrenbauer. 2016. On the parameterized complexity of biclique cover

and partition. In Proceedings of the 11th International Symposium on Parameterized and Exact Computation (IPEC’16)

(LIPIcs), Vol. 63. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, 11:1–11:13. DOI:https://doi.org/10.4230/LIPIcs.
IPEC.2016.11

[11] Kenneth L. Clarkson and David P. Woodruff. 2015. Input sparsity and hardness for robust subspace approximation. In

Proceedings of the 56th Symposium on Foundations of Computer Science (FOCS’15). IEEE Computer Society, 310–329.

[12] Chen Dan, Kristoffer Arnsfelt Hansen, He Jiang, Liwei Wang, and Yuchen Zhou. 2015. On low rank approximation

of binary matrices. CoRR abs/1511.01699 (2015). Retrieved from http://arxiv.org/abs/1511.01699.

[13] Fedor V. Fomin, Petr A. Golovach, and Fahad Panolan. 2018. Parameterized low-rank binary matrix approximation.

In Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (ICALP’18). (LIPIcs),

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

https://doi.org/10.1145/1008731.1008736
https://doi.org/10.1006/jagm.1999.1024
https://doi.org/10.1006/jagm.1999.1024
https://doi.org/10.1145/509907.509947
https://doi.org/10.1007/s10472-010-9185-y
https://doi.org/10.1007/s10472-010-9185-y
https://doi.org/10.1016/j.jcss.2009.05.002
http://papers.nips.cc/paper/7242-approximation-algorithms-for-ell_0-low-rank-approximation
https://doi.org/10.4230/LIPIcs.IPEC.2016.11
https://doi.org/10.4230/LIPIcs.IPEC.2016.11
http://arxiv.org/abs/1511.01699

12:38 F. V. Fomin et al.

Vol. 107. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, 53:1–53:16. DOI:https://doi.org/10.4230/LIPIcs.ICALP.

2018.53

[14] Yinghua Fu, Nianping Jiang, and Hong Sun. 2010. Binary matrix factorization and consensus algorithms. In Proceed-

ings of the International Conference on Electrical and Control Engineering (ICECE’10). IEEE, 4563–4567.

[15] Nicolas Gillis and Stephen A. Vavasis. 2015. On the complexity of robust PCA and �1-norm low-rank matrix approx-

imation. CoRR abs/1509.09236 (2015). Retrieved from http://arxiv.org/abs/1509.09236.

[16] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. 2008. Data reduction and exact algorithms for clique

cover. ACM J. Exper. Alg. 13 (2008). DOI:https://doi.org/10.1145/1412228.1412236
[17] David A. Gregory, Norman J. Pullman, Kathryn F. Jones, and J. Richard Lundgren. 1991. Biclique coverings of regular

bigraphs and minimum semiring ranks of regular matrices. J. Combin. Theor. Ser. B 51, 1 (1991), 73–89. DOI:https://
doi.org/10.1016/0095-8956(91)90006-6

[18] Harold W. Gutch, Peter Gruber, Arie Yeredor, and Fabian J. Theis. 2012. ICA over finite fields—Separability and

algorithms. Sig. Proc. 92, 8 (2012), 1796–1808. DOI:https://doi.org/10.1016/j.sigpro.2011.10.003
[19] Wassily Hoeffding. 1963. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58,

301 (1963), 13–30. DOI:https://doi.org/10.1080/01621459.1963.10500830
[20] Peng Jiang and Michael T. Heath. 2013. Mining discrete patterns via binary matrix factorization. In Proceedings of the

Industrial Conference on Data Mining Workshops (ICDM’13). IEEE Computer Society, 1129–1136.

[21] Peng Jiang, Jiming Peng, Michael Heath, and Rui Yang. 2014. A clustering approach to constrained binary matrix fac-

torization. In Data Mining and Knowledge Discovery for Big Data: Methodologies, Challenge and Opportunities. Springer

Berlin, 281–303.

[22] Ravindran Kannan and Santosh Vempala. 2009. Spectral algorithms. Found. Trends Theor. Comput. Sci. 4, 3–4 (2009),

157–288. DOI:https://doi.org/10.1561/0400000025
[23] Jon Kleinberg, Christos Papadimitriou, and Prabhakar Raghavan. 2004. Segmentation problems. J. ACM 51, 2 (2004),

263–280. https://doi.org/10.1145/972639.972644

[24] Mehmet Koyutürk and Ananth Grama. 2003. PROXIMUS: A framework for analyzing very high dimensional discrete-

attributed datasets. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD’03). ACM, New York, NY, 147–156. DOI:https://doi.org/10.1145/956750.956770
[25] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. 2010. Linear-time approximation schemes for clustering problems

in any dimensions. J. ACM 57, 2 (2010), 5:1–5:32. DOI:https://doi.org/10.1145/1667053.1667054
[26] Haibing Lu, Jaideep Vaidya, Vijayalakshmi Atluri, and Yuan Hong. 2012. Constraint-aware role mining via extended

Boolean matrix decomposition. IEEE Trans. Depend. Sec. Comput. 9, 5 (2012), 655–669. DOI:https://doi.org/10.1109/
TDSC.2012.21

[27] Michael W. Mahoney. 2011. Randomized algorithms for matrices and data. Found. Trends Mach. Learn. 3, 2 (2011),

123–224. Retrieved from http://dx.doi.org/10.1561/2200000035.

[28] Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and Heikki Mannila. 2008. The discrete basis

problem. IEEE Trans. Knowl. Data Eng. 20, 10 (2008), 1348–1362. DOI:https://doi.org/10.1109/TKDE.2008.53

[29] Pauli Miettinen and Jilles Vreeken. 2011. Model order selection for Boolean matrix factorization. In Proceedings of

the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’11). ACM, 51–59.

DOI:https://doi.org/10.1145/2020408.2020424
[30] Barsha Mitra, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri. 2016. A survey of role mining. ACM Comput.

Surv. 48, 4, Article 50 (Feb. 2016), 37 pages. DOI:https://doi.org/10.1145/2871148
[31] Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Randomized Algorithms and Probabilistic Anal-

ysis. Cambridge University Press, New York, NY.

[32] Ankur Moitra. 2016. An almost optimal algorithm for computing nonnegative rank. SIAM J. Comput. 45, 1 (2016),

156–173. DOI:https://doi.org/10.1137/140990139
[33] Rafail Ostrovsky and Yuval Rabani. 2002. Polynomial-time approximation schemes for geometric min-sum median

clustering. J. ACM 49, 2 (2002), 139–156. DOI:https://doi.org/10.1145/506147.506149
[34] Amichai Painsky, Saharon Rosset, and Meir Feder. 2016. Generalized independent component analysis over finite

alphabets. IEEE Trans. Inform. Theor. 62, 2 (2016), 1038–1053. DOI:https://doi.org/10.1109/TIT.2015.2510657
[35] Ilya P. Razenshteyn, Zhao Song, and David P. Woodruff. 2016. Weighted low rank approximations with provable

guarantees. In Proceedings of the 48th ACM Symposium on Theory of Computing (STOC’16). ACM, 250–263. DOI:
https://doi.org/10.1145/2897518.2897639

[36] Bao-Hong Shen, Shuiwang Ji, and Jieping Ye. 2009. Mining discrete patterns via binary matrix factorization. In Pro-

ceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’09). ACM,

New York, NY, 757–766. DOI:https://doi.org/10.1145/1557019.1557103
[37] Jaideep Vaidya. 2012. Boolean matrix decomposition problem: Theory, variations, and applications to data engineer-

ing. In Proceedings of the 28th IEEE International Conference on Data Engineering (ICDE’12). IEEE Computer Society,

1222–1224. DOI:https://doi.org/10.1109/ICDE.2012.144

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

https://doi.org/10.4230/LIPIcs.ICALP.2018.53
https://doi.org/10.4230/LIPIcs.ICALP.2018.53
http://arxiv.org/abs/1509.09236
https://doi.org/10.1145/1412228.1412236
https://doi.org/10.1016/0095-8956(91)90006-6
https://doi.org/10.1016/0095-8956(91)90006-6
https://doi.org/10.1016/j.sigpro.2011.10.003
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1561/0400000025
https://doi.org/10.1145/972639.972644
https://doi.org/10.1145/956750.956770
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1109/TDSC.2012.21
https://doi.org/10.1109/TDSC.2012.21
http://dx.doi.org/10.1561/2200000035
https://doi.org/10.1109/TKDE.2008.53
https://doi.org/10.1145/2020408.2020424
https://doi.org/10.1145/2871148
https://doi.org/10.1137/140990139
https://doi.org/10.1145/506147.506149
https://doi.org/10.1109/TIT.2015.2510657
https://doi.org/10.1145/2897518.2897639
https://doi.org/10.1145/1557019.1557103
https://doi.org/10.1109/ICDE.2012.144

Approximation Schemes for Low-rank Binary Matrix Approximation Problems 12:39

[38] Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo. 2007. The role mining problem: Finding a minimal descriptive set

of roles. In Proceedings of the 12th ACM Symposium on Access Control Models and Technologies (SACMAT’07). 175–184.

DOI:https://doi.org/10.1145/1266840.1266870
[39] David P. Woodruff. 2014. Sketching as a tool for numerical linear algebra. Found. Trends Theor. Comput. Sci. 10, 1–2

(2014), 1–157. DOI:https://doi.org/10.1561/0400000060
[40] Sharon Wulff, Ruth Urner, and Shai Ben-David. 2013. Monochromatic bi-clustering. In Proceedings of the 30th Inter-

national Conference on Machine Learning (ICML’13) (JMLR Workshop and Conference Proceedings), Vol. 28. JMLR.org,

145–153. Retrieved from http://jmlr.org/proceedings/papers/v28/.

[41] Arie Yeredor. 2011. Independent component analysis over Galois fields of prime order. IEEE Trans. Inform. Theor. 57,

8 (2011), 5342–5359. DOI:https://doi.org/10.1109/TIT.2011.2145090

Received November 2018; revised August 2019; accepted August 2019

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 12. Publication date: November 2019.

https://doi.org/10.1145/1266840.1266870
https://doi.org/10.1561/0400000060
http://jmlr.org/proceedings/papers/v28/
https://doi.org/10.1109/TIT.2011.2145090

