
Hitting Topological Minors is FPT

Fedor V. Fomin∗ Daniel Lokshtanov† Fahad Panolan‡ Saket Saurabh§

Meirav Zehavi¶

Abstract

In the Topological Minor Deletion (TM-Deletion) problem input consists of an
undirected graph G, a family of undirected graphs F and an integer k. The task is to
determine whether G contains a set of vertices S of size at most k, such that the graph G\S
obtained from G by removing the vertices of S, contains no graph from F as a topological
minor. We give an algorithm for TM-Deletion with running time f(h?, k) · |V (G)|4. Here
h? is the maximum size of a graph in F and f is a computable function of h? and k. This
is the first fixed parameter tractable algorithm (FPT) for the problem. In fact, even for the
restricted case of planar inputs the first FPT algorithm was found only recently by Golovach
et al. [SODA 2020]. For this case we improve upon the algorithm of Golovach et al. [SODA
2020] by designing an FPT algorithm with explicit dependence on k and h?.

∗Department of Informatics, University of Bergen, Norway. fomin@ii.uib.no
†University of California Santa Barbara, USA. daniello@ucsb.edu
‡Department of Computer Science and Engineering, IIT Hyderabad, India. fahad@iith.ac.in
§The Institute of Mathematical Sciences, HBNI, Chennai, India. saket@imsc.res.in
¶Ben-Gurion University, Beersheba, Israel. meiravze@bgu.ac.il

1 Introduction

Many important graph optimization problems can be phrased as Π-Deletion problems. Here
input is a graph G on n vertices and the task is to find a minimum size vertex subset S such that
the graph G\S obtained from G by removing S and incident edges has the property Π. By a well
known result of Lewis and Yannakakis [56] almost all Π-Deletion problems are NP-complete.
For this reason the study of such problems has mostly been from the perspective of methods for
coping with computational intractability, such as approximation [3, 4, 5, 11, 25, 31, 35, 42, 52,
58, 59, 62, 76, 77, 79, 80], exact [7, 29, 33, 28, 30, 78], or parameterized algorithms [10, 12, 16,
26, 27, 31, 44, 54, 63, 65, 57, 21, 24]. In this paper we focus on parameterized algorithms for
Π-Deletion problems: more concretely, for every property Π the aim is to design an algorithm
for Π-Deletion that given a graph G and integer k, determines in time f(k)nO(1) time whether
a solution set S of size at most k exists. Such algorithms are called fixed parameter tractable
(FPT). We refer to the textbooks [21, 24, 27, 63] for an introduction to parameterized algorithms
and complexity.

Some of the most attractive results in parameterized complexity, called meta-theorems, si-
multaneously establish fixed parameter tractability of entire classes of problems [2, 19, 20, 26,
34, 36, 41, 72, 70]. Most of these results are of the form: problems expressible in certain frag-
ment of logic are FPT on some restricted classes of graphs, such as graphs of bounded treewidth
or cliquewidth or satisfy certain sparsity conditions. Unfortunately it appears unlikely that a
meta-theorem on this form will apply to wide classes of vertex deletion problems on general
graphs, since even very restricted logic (such as FO logic) already capture intractable problems
like Independent Set or Dominating Set (i.e. the problems that do not admit algorithms
with running time of the form f(k)nO(1), unless an unlikely collapse of the W-hierarchy occurs).

On general graphs, one of the deepest and prominent generic results about vertex deletion
problems is that Π-Deletion is (non-uniformly) FPT for every minor-closed property Π [26, 72].
Here a graph H is a minor of a graph G if H can be obtained from G by vertex and edge deletions
and edge contractions. A property is minor-closed if every minor of every graph that has the
property also has the property. This meta-algorithm rests on two pillars: first, by the Graph
Minors Theorem [72], the set of undirected graphs is well-quasi ordered by the minor relation.
Therefore, for every minor-closed family Π, there exists a finite list of graphs F (called forbidden
minors) such that a graph G is in Π if and only if no graph H ∈ F is a minor of G. Second,
by another celebrated result of Robertson and Seymour [70], there is an algorithm that given
graphs G and H determines whether H is a minor of G in time f(H) ·n3. Both of these results
are cornerstones of the celebrated Graph Minors project of Robertson and Seymour. Together
the two results yield for every k and minor closed family Π an algorithm for Π-Deletion with
running time f(Π, k) · n3: the family of graphs having a solution set S of size at most k is itself
a minor closed property. Hence it has a finite set of forbidden minors (that depends only on Π
and k), and whether G contains any one of these forbidden minors can be checked in f(Π, k) ·n3

time. This result, first observed by Fellows and Langston [26], together with the techniques
developed for it [69, 67, 68, 71, 70, 72], has been a driving force for a wealth of research within
parameterized algorithms [32, 23, 22, 40, 39, 49, 45, 48, 51, 50, 47].

Given the significance of the result for Π-Deletion for minor-closed families, it is very
natural to ask whether the success can be repeated. More concretely, our starting point is the
following question.

Can Π-Deletion be shown to be FPT for properties Π that are not (necessarily) closed
under taking minors, but instead closed under a different natural graph containment rela-
tion?

In this paper we answer this question in the affirmative by studying deletion to families

1

characterized by forbidding a finite family of topological minors. A graph H is a topological
minor of G if H can be obtained from G by deleting vertices or edges, and contracting edges
incident to at least one vertex of degree precisely 2. Closure under topological minors and
forbidden topological minors are defined just as for minors. More precisely we study the following
problem.

Topological Minor Deletion (TM-Deletion) Parameter: k + h?

Input: An undirected graph G, a family of undirected graphs F such that every graph in
F has at most h? vertices, and an integer k.
Question: Is there a vertex subset S ⊆ V (G) of size k such that G \ S contains no graph
from F as a topological minor?

Very recently Golovach et al. [38] proved that the special case of TM-Deletion where the
input graph G is required to be planar is FPT. They conjecture that this is the case for also for
general input graphs G. Our main result is a proof of this conjecture.

Theorem 1. There exists an algorithm for TM-Deletion with running time f(k, h?) ·n4, for
a computable function f .

Remarks to Theorem 1. Theorem 1 is a strict generalization of the algorithm for Π-
Deletion for minor closed families Π. Indeed, every minor-closed family Π has a finite list of
forbidden minors, and for every fixed graph H there is a finite list H of graphs such that G
contains H as a minor if and only if G contains some graph in H as a topological minor. To see
that the generalization is strict observe that the family Π of graphs of maximum degree 3 has
a finite list of topological minors (the star K1,4 with four leaves), but it is not minor closed.

The restriction to topological-minor-closed families with a finite set F of forbidden topolog-
ical minors is necessary. Indeed, there exist topological-minor-closed families Π such that it is
undecidable to determine whether an input graph G belongs to the family1.

Theorem 1 shows that TM-Deletion is FPT on arbitrary graphs. For the restricted case
when the input graph G is planar or embeddable in a surface of constant genus, we obtain a
faster algorothm.

Theorem 2. For every fixed integer g ≥ 0, TM-Deletion on graphs of Euler genus at most

g admits an algorithm with running time 22k·2
O((h?)2)

n2.

The algorithm of Theorem 2 matches the quadratic dependence on n of Golovach et al. [38],
and simultaneously improves the dependence on k and h? from an un-specified computable
function to triple exponential.

The very special case of TM-Deletion with k = 0 and F consisting of one graph H, is
known as the Topological Minor Containment (TMC) problem. In TMC input consists
of two undirected graphs G and H, and the task is to determine whether G contains H as a
topological minor.

Topological Minor Containment (TMC) Parameter: h? = |V (H)|
Input: Two undirected graphs, G and H.
Question: Does G contain H as a topological minor?

Since the cycle on |V (G)| vertices is a topological minor of G if and only if G is Hamilto-
nian, the problem of deciding whether a graph G contains a graph H as a topological minor is

1Let {Gi} be any infinite set of graphs such that no graph Gi is a topological minor of a graph Gj for i 6= j.
Then one can put property Π be the set of all topological minors of graphs Gi where the binary encoding of i
encodes a Turing machine that halts on the empty string.

2

NP-complete. The complexity study of TMC, which is also known as the Subgraph Homeo-
morphism problem, can be traced back to the 1970s [55]. TMC admits an algorithm running
in time nO(|E(H)|) by a reduction to nO(|E(H)|) instances of the Disjoint Paths problem (given
an undirected graph G and a set of k pairs, {si, ti}ki=1, the objective is to find k vertex-disjoint
paths connecting si to ti) [70]). Each of these Disjoint Paths instances can be solved by the
f(k)n3 algorithm of Robertson and Seymour [70]. One of the longstanding open questions in
parameterized complexity was whether TMC is FPT, that is, solvable in time f(H) ·nO(1) time.
In 2010, Grohe et al. [39] resolved this question in the affirmative by designing an algorithm
with running time f(H) · n3 for a computable function f .

Because the TM-Deletion contains TMC as a special case, Theorem 1 generalizes the
result of Grohe et al. [39]. It appears difficult to obtain an FPT algorithm for TM-Deletion
by invoking the results of Grohe et al. [39] in a black box fashion. Indeed, a part of our proof of
Theorem 1 is a new FPT algorithm for TMC. This new algorithm has some appealing features,
such as a “only” triple-exponential dependence on h? when the input graph G is planar or
embedded on a surface of constant Euler genus.

1.1 Related Work

For containment relations � that are not well-quasi-ordered we cannot hope for algorithmic
results for Π-Deletion for all �-closed families Π, because, just as for topological minors,
there exist �-closed families Π such that determining whether G is in the family is undecidable.
Hence one has to settle for results that handle only some �-closed properties Π, e.g. ones that
have a finite number of minimal elements that do not have the property. Even results of this type
are rare: to the best of our knowledge, prior to our work, the subgraph and induced subgraph
relations were the only relations � that on the hand are not a well quasi order, and on the
other hand admit an FPT algorithm for Π-Deletion for every �-closed family Π with a finite
number of�-forbidden graphs. For subgraphs and induced subgraphs, a simple and elegant FPT-
algorithm based on branching was obtained by Cai [10]. For most other natural containment
relations (such as induced minors or contractions) an FPT algorithm for Π-Deletion for every
�-closed family Π with a finite number of �-forbidden graphs would imply that P = NP (see
the discussion in Golovach et al. [38]).

For minor closed families Π excluding at least one planar graph, algorithms for Π-Deletion
with improved running times [8, 26, 31, 54, 37] have been found. For certain restricted immersion-
closed families Π, Giannopoulou et al. [37] obtained improved algorithms for the edge deletion
variant of Π-Deletion. A substantial body of work focuses on developing FPT algorithms for
Π-Deletion for concrete instantiations of Π, and on optimizing the running times of these
algorithms [10, 14, 6, 12, 16, 26, 31, 44, 54, 63, 65, 57, 43].

1.2 Our Methods

Our algorithm is built on the template of Robertson and Seymour’s algorithm for Disjoint
Paths [70]. This approach has previously successfully been deployed for an impressive array of
different problems [40, 44, 49, 45, 48, 51, 50, 47], including the algorithm for TMC by Grohe
et al. [39]. Algorithms using this scheme distinguish between the following three cases.

Case 1. The treewidth of the input graph G is small. Here small means that it is upper
bounded by a computable function of the parameters.

Case 2. The input graph G has a large clique minor. Here large means that the size of the
clique minor is lower bounded by a computable function of the parameters.

Case 3. Neither Case 1 nor Case 2 occurs, which means that treewidth of G is “large”, while
G excludes a “small” clique as a minor. In this case the “weak structure theorem” [70]
implies that the graph G contains a “large flat wall”. This is (essentially) a large grid

3

subgraph of G such that only the outer face vertices of the grid subgraph have neighbors
in G that are not also in the subgraph.

The algorithm for Case 1 is easy, as we can write a MSO (monadic second order) formula
for TM-Deletion and use the meta-theorems for graphs of bounded treewidth to obtain the
algorithm “for free” [2, 19]. The template for Cases 2 and 3 is to identify an irrelevant vertex,
that is a vertex v such that the answer to the problem under consideration is the same in G
and in G\v. The crucial and problem-dependent piece of algorithms using this template is how
they identify the irrelevant vertex, and this is where the novelty of such algorithms (including
ours) lies.

We now give a very high level outline of how our algorithm identifies irrelevant vertices. A
more detailed overview is provided in the next section. We will need to distinguish between
different types of irrelevance, so we will now introduce simplified versions of the technical notions
of irrelevance that we use.

Let us define 0-irrelevant, to mean that the δ-folio (the family of all graphs H of size at
most δ that are topological minors of G) is the same in G and G \ v. This is the notion of
irrelevance used for TMC, since removing a 0-irrelevant vertex will not change whether a small
graph H is a topological minor of G or not. Grohe et al. [39] give efficent algorithms to compute
a 0-irrelevant vertex when G contains a large clique minor or a large flat wall. The notion of
0-irrlevance is not strong enough for TM-Deletion, because even though the δ-folio of G and
G− v is the same there could exist a vertex set S of size at most k such that some small graph
H is in the δ-folio of G \ S, but not in the δ-folio of G \ (S ∪ {v}). Thus S is a solution for
TM-Deletion with F = {H} in G \ (S ∪ {v}) but not in G. This motivates the definition of
k-irrelevant vertices: a vertex v is k-irrelevant if for every set S of size at most k, the δ-folio of
G \ S and G \ (S ∪ {v}) is the same. Observe that removing a k-irrelevant vertex v from G will
not change whether G is a “yes” instance of TM-Deletion. By varying k we get a smooth
transition between 0-irrelevance, for which we already have an efficient algorithm from Grohe
et al. [39], and the notion of k-irrelevance that we need.

In the large clique minor case the algorithm to compute a k-irrelevant vertex is a branhcing
algorithm with a twist. Branching algorithms are ubiquitous in parameterized algorithms (see
e.g. [21]). Typically branching algorithms are employed to find some object (in our case we are
searching for a k-irrelevant vertex v). The branching algorithm non-deterministically “guesses”
some features of the object we are looking for. In the branch that guesses the “correct” features
of v the algorithm uses the guess to find v. Such a scheme cannot possibly work for us, because
we need to iteratively find many (perhaps as many as Ω(n)) irrelevant vertices, and we can not
afford to guess the features of all of these vertices.

Our branching algorithm instead guesses features of the set S. In each branch the algorithm
marks some vertices of the clique as “relevant”. The important properties of our branching
algorithm are: (a) The number of different branches is a function of k and h; (b) In each branch
the number of vertices in the clique minor marked as “relevant” is a function of k and h; and
(c) For every vertex v and set S of size at most k such that the δ-folio G \ (S ∪ {v}) and G \ S
is not the same, v is marked as relevant in the branch that correctly guesses the features of S.
Observe that if we start with a sufficiently large clique minor then some vertex v in the clique
minor will not be marked as relevant in any branch. By property (c) of the branching algorithm
this vertex is k-irrelevant and can be removed. As opposed to traditional branching algorithms,
here the irrelevance of v is not contingent on being in the correct branch, therefore we can run
this algorithm again and again to find new irrelevant vertices without getting a combinatorial
explosion of the number of non-deterministic guesses the algorithm needs to make. We believe
that this trick of mixing branching and irrelevant vertex techniques is interesting in its own
right and will find further applications.

For reasons that are too technical to go into in this brief overview the branching strategy

4

employed for the large clique minor case does not quite work out for the large flat wall case.
However, here a strengthening of the irrelevant vertex rule for TMC comes to the rescue. We
are able to show that in a sufficiently large flat wall W in G, one can efficiently find a large
subwall W ′ such that the δ-folio of G and G \W ′ are the same. Furthermore, W ′ depends only
on W and not on the rest of G. By W ′ being large we mean that the size of W ′ tends to infinity
as the size of W tends to infinity. Notice that this is stronger than finding just one 0-irrelevant
vertex in the flat wall case, because all vertices in W ′ can be deleted simultaneously without
changing the δ-folio.

This strengthening gives a simple way of locating k-irrelevant vertices in a flat wall: assuming
W = W0 is sufficiently large, apply the irrelevant wall lemma and find a large subwall W1 in
it. Re-apply the lemma to W1 to obtain W2 and so on, until we have a chain of sub-walls
W0,W1, . . . ,Wk+1. We claim that every vertex v in Wk+1 is k-irrelevant. To see this, consider
an arbitrary set S of size at most k. There exists some i such that (Wi \Wi+1) ∩ S = ∅. Set
Sout = S \Wi, we have that S ∩Wi ⊆Wi+1. Therefore, Wi is a flat wall in G \ Sout and hence
all of Wi+1 is irrelevant in G \ Sout. In other words, G \ Sout and G \ (Sout ∪Wi+1) have the
same δ-folio. But the δ-folio of G \ S is contained in the δ-folio of G \ Sout while the δ-folio of
G \ (Sout ∪Wi+1) contains the δ-folio of G \ (S ∪ {v}). So G \ S and G \ (S ∪ {v}) must have
the same δ-folio, proving that v is k-irrelevant. We believe that the methods employed to find
an irrelevant vertex/wall should be applicable to other problems as well.

Topological Minor Containment Our algorithm for TM-Deletion relies on several crucial
subroutines for TMC. First we need an FPT algorithm for TM-Deletion on bounded treewidth
graphs - this automatically yields such an algorithm for TMC on bounded treewidth graphs as
well. Second, in the large clique minor case of TM-Deletion we need an FPT algorithm for
TMC (for this we can invoke Grohe et al. [39]), and an efficient algorithm that finds 0-irrelevant
vertices in the case of a large grid minor. For this step we can also directly invoke the results
of Grohe et al. [39]. Finally, for the large flat wall case we need to find a large irrelevant flat
subwall of a huge flat wall. At present we do not know how to directly invoke the results of Grohe
et al. [39] to achieve this. For this reason we have included our own proof of the “irrelevant
wall” lemma. The irrelevant wall lemma and the bounded treewidth algorithm puts us quite
close to having an alternative FPT algorithm for TMC - all that is missing is an algorithm for
finding 0-irrelevant vetices in the case of large clique minors. For this reason we include that as
well even if the ideas here are essentially same as what is presented by Grohe et al. [39]. Our
algorithm for TMC has some appealing features, making it interesting in its own right.

The proof of the irrelevant subwall lemma crucially relies on the Unique Linkage Theorem of
Robertson and Seymour [73]. The Unique Linkage Theorem essentially states that there exists a
computable function h : N→ N, such that for any instance (G, {si, ti}ki=1) of Disjoint Paths,
if the graph G can be partitioned in two pieces A and B, such that A can be drawn in the plane
without edges crossing, at most a constant number of vertices of B are adjacent to a vertex
of A that is not on the outer face of A, all terminals {si, ti}ki=1 are in B, and and a vertex v
in A is insulated from the outer face of A by at least h(k) pairwise disjoint concentric cycles,
then v is irrelevant (for the Disjoint Paths problem, see (3.1) in [73] or Proposition 9.2 for
a formal statement). This means that (G, {si, ti}ki=1) is a “yes” instance of Disjoint Paths
if and only if (G \ v, {si, ti}ki=1) is. Robertson and Seymour state at the end of [70] that the
function h is computable, however, to the best of our knowledge no concrete upper bound for
h has been published. For the special cases of planar graphs and graphs of bounded genus a
single exponential bound is known [61].

The size bounds on W in our irrelevant subwall lemma depend on δ, but also on the bound
β(h?) for Disjoint Paths. As a consequence we get an algorithm for TMC whose running
time depends on the upper bound h for the “cycle insulation bound” in the Unique Linkage

5

Theorem for the Disjoint Paths. Specifically, we obtain the following theorem:

Theorem 3. TMC admits an algorithm with running time f(h?)·n3 on instances where f(h?) =

22O(r31)222
(r2·2

O((h?)4))

, r2 = β(2c·(h
?)4), r1 = β(22(c·(h

?)4)r2), β(·) is the cycle insulation bound for
the Unique Linkage Theorem for Disjoint Paths, and c is a constant.

While Theorem 3 does not yield a concrete bound on the running time of our algorithm, it
shows that it is sufficient to provide such a bound for the Unique Linkage Theorem. On graphs
of bounded genus our algorithm performs better - indeed it is the first algorithm for TMC on
planar graphs, and more generally on graph of bounded genus, with explicit bounds on the
running time dependence on h?.

Theorem 4. For every fixed integer g ≥ 0, TMC on graphs of Euler genus at most g admits

an algorithm with running time 222
O((h?)2)

n2.

Organization of the paper. In Section 2 we give a technical overview of our results and
methodologies. Section 3 contains graph theoretic notions needed in the paper, such as treewidth,
(topological) minors, grid, flat wall, etc. It also contains several known results. Section 4 gives
a roadmap of statements using which we derive our main results. In Section 5 we define the
notion of δ-representative and prove some auxiliary lemmas which are used in later sections.
In Section 6 we explain how to find a (δ, k)-irrelevant vertex when the input graph has a large
clique minor. Finding a δ-representative when the input graph has bounded treewidth is ex-
plained in Section 7. In Section 8, we explain how all the pieces can be put together using
recursive understanding to solve TMC. Sections 9 to 15 are devoted to explain the computation
of (δ, k)-irrelevant vertex when the input graph has a large flat wall. Finally, we conclude with
some future research avenues in Section 16.

2 Overview of our Proof and Techniques

In this section we give a brief overview of our proof. Our algorithm is built on the template
of Robertson and Seymour’s algorithm for Disjoint Paths [70]. Algorithms using this scheme
distinguish between the following three cases: Case 1: The treewidth of the input graph G is
small. Here small means that it is upper bounded by a computable function of the parameters.
Case 2: The input graph G has a large clique minor. Here large means that the size of the
clique minor is lower bounded by a computable function of the parameters. Case 3: Neither
Case 1 nor Case 2 occurs, which means that treewidth of G is “large”, while G excludes a
“small” clique as a minor. In this case the “weak structure theorem” [70] implies that the graph
G contains a “large flat wall”. This is (essentially) a large grid subgraph of G such that only the
outer face vertices of the grid subgraph have neighbors in G that are not also in the subgraph.

These three cases are enveloped under the “recursive understanding technique” [39]. This
top level structure of our algorithm is same as that of Grohe et al. [39]. The base of this recursive
scheme falls into Cases 1, 2 and 3, as mentioned above. Case (1) can be handled easily using
a standard dynamic programming algorithm [2, 19]. For case (2) we design a new algorithm
to find an irrelevant vertex for TM-Deletion, and for TMC we make use of the algorithm
by Grohe et al. [39]. For Case 3, as a subroutine for TM-Deletion, we need an algorithm
that finds not an irrelevant vertex but rather an irrelevant flat subwall. At present we do not
know how to directly invoke the results of Grohe et al. [39] to achieve this. For this reason
we have included our own proof of the “irrelevant wall” lemma. Thus, to find this irrelevant
flat subwall we give a complete stand alone proof with black box calls to the unique linkage
theorem of Robertson and Seymour [73]. Instead of solving TMC and TM-Deletion we solve

6

more general problems called “finding folio” and “hitting folio” in rooted graphs. These general
problems are essentially required to be solved in the recursive calls for TM-Deletionand TMC.
We start with some essential notations and definitions in the next subsection and then we move
to the technique of the proof.

2.1 Notations and (Informal) Definitions

For a graph G, we use n = |V (G)| and m = |E(G)|. A rooted graph is a graph with a specified
subset of vertices, called roots, denoted by R(G), and with an injective map ρG(R(G)) → N.
We say that two rooted graphs G1 and G2 are compatible if ρG2(R(G1)) = ρG2(R(G2)). In this
case we also say that the roots of G1 and G2 are the same, where we consider u ∈ R(G1) and
v ∈ R(G2) as identical if ρG1(u) = ρG2(v). For two (not necessarily vertex-disjoint) graphs G1

and G2, we use G1∪G2 to denoted the graph (V (G1)∪V (G2), E(G1)∪E(G2)). A separation of
a graph G is a pair (G1, G2) with the property that G = G1 ∪G2 and E(G1)∩E(G2) = ∅. The
order of the separation (G1, G2) is |V (G1)∩V (G2)|. For a separation (G1, G2) of G and a graph
G′1 with V (G1)∩V (G′1) = V (G1)∩V (G2), replacing G1 with G′1 in the separation (G1, G2) will
lead to the graph G′1 ∪G2.

A rooted graph H is a minor in a rooted graph G if H is a minor in G with the additional
restriction that a root vertex v in H is mapped to a vertex subset in G that contains the identical
vertex of v in G. We say that H has detail ≤ δ if |E(H)| ≤ δ and |V (H) \ R(H)| ≤ δ. The
δ-minor folio of G is the set of all minors of G with detail ≤ δ.

A rooted graph H is a topological minor in a rooted graph G if H is a topological minor in G
with the additional restriction that a root vertex in H can only be mapped to its identical vertex
in G. That is, there is a pair of injective functions (φ, ϕ), where (a) φ is a map from V (H) to
V (G) with the restriction that for any u ∈ V (H), ρG(φ(u)) = ρH(u), (b) for any {x, y} ∈ E(H),
ϕ({x, y}) is a path from φ(x) to φ(y) in G such that {ϕ(e) : e ∈ E(H)} is a set of pairwise
internally vertex disjoint paths and no vertex in φ(V (H)) is an internal vertex in any of these
paths. We note that there is no restriction on where a non-root vertex of H could be mapped
to; in fact, it can be mapped to a root vertex in G. The pair (φ, ϕ) corresponds to a subgraph
G′ of G, which is a subdivision of H where the roots of H are mapped to their corresponding
vertices in G. We call G′ a realization of H in G witnessed by (φ, ϕ). Moreover, we call the
vertices of φ(H) terminals of (H,φ, ϕ). For an integer δ ∈ N, the δ-folio of a rooted graph G
is the set of topological minors H in G with |E(H)|+ is(H) ≤ δ, where is(H) is the number of
degree zero vertices in H. Given a rooted graph G and a graph X such that V (X) = R(G), The
(X, δ)-folio of G is the δ-folio of (G ∪ X) with R(G) as the set of roots. The extended δ-folio
of G is the function f whose domain is the set of all graphs on vertex set R(G), and for each
graph X on R(G), f(X) is equal to the (X, δ)-folio of G ∪X. The general problem of finding
the folio of a rooted graph is the following.

FindFolio Parameter: δ
Input: A rooted undirected graph G with |R(G)| ≤ 16δ2, and a non-negative integer δ.
Question: What is the extended δ-folio of G?

The bound 16δ2 in FindFolio is required to handle the base case of the recursion when there
is a large (depending on δ) clique minor in the graph, by the algorithm of Grohe et al. [39].

A vertex v in the input rooted graph G is irrelevant for FindFolio if the extended δ-folio
of G is same as the extended δ-folio of G \ v. For TM-Deletion, we need a stronger notion of
irrelevance. We say that a vertex v in a rooted graph G is (δ, k)-irrelevant if for any graph X on
R(G) and any vertex subset S ⊆ V (G) of size at most k, the δ-folio of G′ = (G∪X) \S (where
R(G′) = R(G) \ S) is equal to the the δ-folio of G′ \ v. Notice that a vertex v is irrelevant for
FindFolio if and only if it is (δ, 0)-irrelevant.

7

2.2 (Nice) Flat Wall and (Nice) Flat Wall Theorem

Let [n] denote the set {1, 2, . . . , n}. An a× b-grid is a graph G whose vertex set can be denoted
as {vi,j : i ∈ [a], j ∈ [b]}, so that the edge set of G is exactly {{vi,j , vi′,j′} : i, i′ ∈ [a], j, j′ ∈
[b], |i− i′|+ |j−j′| = 1}. Let J be an h×(2r) grid. For any column Cj (the path v1,j− . . .−vh,j)
of J , where j ∈ [2r], let ej1, e

j
2, . . . , e

j
h−1 be the edges of Cj , in the order of their appearance

on Cj , where ej1 is incident with v1,j . For any column Cj , if j is odd, then delete from the

graph J all edges eji where i is even. For any column Cj , if j is even, then delete from the

graph all edges eji where i is odd. After this, delete all vertices of degree 1. The resulting

graph Ŵ is the elementary wall of height h and width r (also called the (h × r)-elementary

wall) and the vertices of degree 2 in Ŵ are called the pegs of Ŵ . (See Figure 1 for an example).

• • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • •

Figure 1: Example of a (4× 5)-elementary wall

Ŵ . The red colored vertices are the pegs of Ŵ .

A wall W of size w (also called a (w×w)-wall)
is a subdivision of a (w × w)-elementary wall

Ŵ and the pegs of W are defined to be the
vertices of W that serve as the pegs of Ŵ . In
other words, Ŵ is a topological minor in W
where W itself is the realization of it. If there
is an (h × 2r)-grid minor in a graph G, then
there is an (h× r)-wall (as a subgraph) in G.
On the other hand if there is an (h×r)-wall in
a graph G, then there is an (h× r)-grid minor
in G.

Informally, a wall W in a graph G is called a flat wall if there is a “portion of the graph G”
that contains W and this portion, say, G′, can “almost” be drawn in a disc in the plane where
the pegs of W appear on the boundary of the disc in the order in which they appear on the outer
boundary of W . Moreover, the vertices in V (G)\V (G′) do not have neighbors strictly inside the
disc. More formally, a wall W is a flat wall in G if there is a tuple (A′, B′, C, G̃,G0, G1, . . . , Gk),
called flatness tuple, with the following properties.

1. (A′, B′) is a separation of G with V (C) = V (A′) ∩ V (B′) ⊆ V (D) and V (W) ⊆ V (B′),
where D is the outer boundary of W ;

2. C is a cycle graph, the pegs of W are in V (C), and the order in which the vertices of
V (C) appear in C is same as the order in which they appear on the outer boundary D of
W ;

3. B′ ∪ C = G0 ∪G1 ∪ . . . ∪Gk, and the graphs G0, G1, . . . , Gk are pairwise edge disjoint;
4. G0 and C are subgraphs of G̃, with V (G̃) = V (G0). Moreover, G̃ is a plane graph, and

the cycle C bounds its outer face;
5. For i ∈ {1, . . . , k}, |V (Gi)∩V (G0)| ≤ 3 and V (Gi)∩V (G0) forms a clique in G̃. Moreover,

if V (Gi) ∩ V (G0) = {u, v, w}, then some finite face of G̃ is incident with u, v, w and no
other vertex;

6. For all distinct i, j ∈ [k], V (Gi) ∩ V (Gj) ⊆ V (G0).
We say that a flat wall W is an `-nice flat wall, where ` ∈ N, if the tree-width of Gi, denoted

by tw(Gi), is at most `, for all i ∈ {1, . . . , k}. In this case we say that (A′, B′, C, G̃,G0, G1, . . . , Gk)
is an `-nice flatness tuple.

The flat wall theorem of Robertson and Seymour states that there are functions f and p
such that for any two positive integers t and w, any graph G containing a wall of size f(t, w)
(equivalently, there is a lower bound on the treewidth of G depending on f(t, w)), must contain
either (a) a Kt-minor, or (b) a subset A ⊂ V (G) of at most p(t) vertices and a flat wall of size
w in G \A. Kawarabayashi, Thomas and Wollan [53] proved that there is an O(t24m+ n) time
algorithm to output (a) or (b) with parameters f(t, w) = Θ(t24(t2 +w)) and p(t) = O(t24) (see
Proposition 3.4). Using this result and the fact that there is a linear time algorithm to output

8

a Kt-minor in a graph with at least 2t−3n edges [64], we prove the following lemma.

Lemma 2.1. There is a constant c ∈ N and an algorithm that given a graph G, and integers
g, w, t ≥ 1 such that g ≥ ct48(t2 + w), runs in time 2O(g58)n log2 n and outputs one of the
following.

(a) A tree decomposition of G of width at most tw = gO(1).
(b) A function φ witnessing that Kt is a minor of G.
(c) A subset A ⊆ V (G) of at most ct24 vertices and a tw-nice flat wall W of size at least

(w × w) in G \A, along with a tw-nice flatness tuple (A′, B′, C, G̃,G0, G1, . . . , Gk).

We would like to mention that a result similar to Lemma 2.1 is not new. For example, see
result (9.9) in [70] and Theorem 1.8 in [53]. To prove Lemma 2.1, we use “binary search” type
of arguments on the output of the flat wall theorem.

2.3 Case 2: Graph with Large Clique Minor

In this section we outline an algorithm to find a (δ, k)-irrelevant vertex (for the definition see
Section 2.1) in a rooted graph G, when G has a large clique minor. Our irrelevant vertex rule
could be viewed as (δ, k)-irrelevant vertex version of a result of Robertson and Seymour (Propo-
sition 5.5). Our algorithm exploits the notion of important separators, defined by Marx [60]. It
is a branching algorithm that goes over different guesses for how the deletion set S could look.
For each guess and all sets S that match the guess, the algorithm marks all the vertices in the
clique minor model that are relevant (that is, not irrelevant) if we delete such a set S. Since we
go over all possible guesses we would have marked all relevant vertices for all S. By our choice
of t (the size of the clique minor), there will be one model set which is not marked and we can
prove that any vertex in that model set is (δ, k)-irrelevant.

Let us briefly recall important separators. Given a graph G and two vertex sets X and Y ,
an X-Y -separator is a vertex set Z ⊆ V (G) such that there is no path from X \ Z to Y \ Z in
G \ Z. An X-Y -separator Z is called a minimal X-Y -separator if no proper subset of Z is also
an X-Y -separator. Given a vertex set Z, we define the reach of X in G\Z as the set RG(X,Z)
of vertices reachable from A by a path in G \ Z. We can now define a partial order on the
set of minimal A-B separators as follows. Given two minimal X-Y separators Z1 and Z2, we
say that Z1 is “at least as good as” Z2 if |Z1| ≤ |Z2| and RG(X,Z2) ⊂ RG(Y,Z1). In simple
words, Z1 “costs less” than Z2 in terms of the number of vertices deleted and Z1 “is pushed
further towards Y ” than Z2 is. A minimal X-Y -separator Z is an important X-Y -separator if
no minimal X-Y -separator other than Z is at least as good as S. The important properties of
these separators are the following. There is a unique important X-Y -separator of minimum size
and for every k, the number of important X-Y -separators of size at most k is at most 4k [15].

Let G be a graph and Z ⊆ V (G). We say that the δ-minor folio of G relative to Z is generic
if the δ-minor folio of the rooted graph G with R(G) = Z contains every graph with |Z| roots
and with detail at most δ (see Section 2.1 for the definition of detail). Let G1, . . . , Gt be the
connected subgraphs in the input graph G, where V (G1), . . . , V (Gt) are the model sets of Kt in
G. The result of Robertson and Seymour (Proposition 5.5) informally states the following. For
a large t (depending on δ and |R(G)|), there exists a separation (A,B) of minimum order such
that R(G) ⊆ V (A), V (Gi) ⊆ V (B)\V (A) for some i ∈ {1, . . . , t}, and any vertex in V (B)\V (A)
is irrelevant for the δ-minor folio of G. Moreover B \ v relative to V (A) ∩ V (B) is generic. It
turns out that R′ = V (A) ∩ V (B) is the unique important R(G)-N(V (Gi))-separator.

In our branching algorithm we first enrich the roots of G as follows. For each graph X on
R(G) and each H in the δ-folio of G ∪X we find a realization GH of H as a topological minor
in G ∪X (of course if it exists). Then we add all the branch vertices (i.e., the vertices in GH
to which V (H) is mapped) and its neighbors in GH to R(G). Let R = R(G) be the new set

9

of roots. Notice that the cardinality of R is bounded by a function of δ and |R| alone. For
each such graph H one can get a graph H ′ of detail at most 4δ (see Figure 4) such that any
minor model of the rooted graph H ′ (where all vertices are roots) in G can be turned into a
topological minor H of G. By Proposition 5.5 any vertex in B \v is (δ, 0)-irrelevant. Notice that
most of the vetices in the minor model are irrelevant. Towards obtaining (δ, k)-irrelevance, we
branch based on the behavior of S as follows. From above recall R and the unique important
R(G)-N(V (Gi))-separator R′ = V (A) ∩ V (B).
Case 1: S contains some vertex “between” R and R′. That is S ∩ V (A) 6= ∅. In this case we
call the algorithm recursively to mark (δ, k− 1)-relevant vertices in B′ = B \ (S ∩R′). Towards
this we guess the intersection of S with R′ and for each guess we recursively mark (δ, k − 1)-
relevant vertices in B′ = B \ (S ∩ R′). This implies that the branching factor of the algorithm
is bounded by a function of |R′| and k alone. Since the extended δ-folio of G \ S is a function
of the extended δ-folios of A \ S and B \ S, and |V (B′) ∩ S| < k, any (δ, k)-irrelevant vertex is
also “(δ, k)-irrelevant for sets that have same behavior as S”.

Case 2: All of S is on the “right hand side” of R′. That is S ⊆ V (B) \ V (A). Notice that
(A,B \S) is a separation of G \S. If (A,B \S) satisfies the conditions of Proposition 5.5, then
any vertex v ∈ V (B) \ V (A) is irrelevant for the 4δ-minor folio in G \ S, and hence “(δ, k)-
irrelevant for sets that have same behavior as S”. If (A,B \ S) does not satisfy the conditions
of Proposition 5.5, then one of the following happens: either there is a R′-N(V (Gi))-separator
of size strictly less than |R′| or there is a R′-N(V (Gi))-separator of size |R′| which is at least
as good as R′. In either case there is a minimal R′-N(V (Gi))-separator of size at most |R′|+ k
containing at least one vertex from S. So if we guess an important separator R′′ that is better
than this separator, then we know that S contains one vertex “to the left” of R′′ and so we are
back to Case 1 (for R′′ this time). Here of course it is crucial that the number of important
separators is small and that each important separator contains vertices from a small number of
model sets of Kt.

2.4 Irrelevant Vertex in a Large Flat Wall

Our objective is to find a (δ, k)-irrelevant vertex. Here, we briefly explain how to find a (δ, k)-
irrelevant vertex under the assumption that we already have an algorithm that finds a large (δ, 0)-
irrelevant subwall within a given (“slightly” larger) wall, which is (δ, 0)-irrelevant irrespective
of what is the graph G outside the given wall. That is, suppose we have an algorithm A that
given a large flat wall W outputs a large subwall W ′ such that the δ-folios of G and G \W ′ are
the same, and the subwall W ′ depends only on W in the following sense. For any Y ⊆ V (G)
disjoint from W , the δ-folio of G \ Y and (G \ Y) \W ′ are the same. The overview of such an
algorithm is given in subsection 2.5. Here, the size of W ′ depends on the size of W . That is,
there is a function g(δ, t) (where t is the size of clique minor used in the previous subsection)
such that if the size of W is at least g(δ, t)w′ × g(δ, t)w′, then the size of W ′ is at least w′ ×w′.
Notice that this is stronger than finding just one (δ, 0)-irrelevant vertex in the flat wall case,
because all vertices in W ′ can be deleted simultaneously without changing the δ-folio (critically,
without consideration of the part of the graph outside the input wall).

Now we explain how to use algorithm A to find a (δ, k)-irrelevant vertex. We set w =
g(δ, t)k+2. We start with a wall W0 = W of size w×w. In step 1, we apply algorithm A to find
a large subwall W1 of order g(δ, t)k+1. Re-apply A on W1 to obtain W2 and so on, until we have
a chain of subwalls W0,W1, . . . ,Wk+1. That is, in step i, we apply A on Wi−1 and obtain a
subwall Wi of size g(δ, t)k+2−i. We claim that every vertex v in Wk+1 is (δ, k)-irrelevant. To see
this, consider an arbitrary set S of size at most k. By pigeonhole principle, there exists some
i ∈ {0, . . . , k} such that (Wi \Wi+1) ∩ S = ∅. Set Sout = S \Wi, we have that S ∩Wi ⊆ Wi+1.
Therefore, Wi is a flat wall in G \ Sout and hence all of Wi+1 is irrelevant in G \ Sout. In other

10

words, G\Sout and G\ (Sout∪Wi+1) have the same δ-folio. But the δ-folio of G\S is contained
in the δ-folio of G\Sout while the δ-folio of G\ (Sout∪Wi+1) contains the δ-folio of G\ (S∪{v}).
So G \ S and G \ (S ∪ {v}) must have the same δ-folio, proving that v is (δ, k)-irrelevant.

2.5 Irrelevant Subwall in a Large Flat Wall

Here, the objective is to find an irrelevant subwall with respect to the extended δ-folio of a
rooted graph G. One can easily show that any irrelevant subwall for the problem of finding
the (non-extended) “δ+ |R(G)|-folio” of G (call this problem FindFolio?) is also an irrelevant
subwall for FindFolio. Let δ? = δ + |R(G)|. In this subsection we explain how to find an
irrelevant subwall for the problem of finding the δ?-folio of a given graph G. For FindFolio?,
we define a solution as a set

S = {(H,φ, ϕ) : H is in the δ?-folio and witnessed by (φ, ϕ)}.

For exposition purposes, we will suppose (of course, only in the overview) that for each rooted
graph H, there is at most one tuple in S that contains H. For a solution S, we say that⋃

(H,φ,ϕ)∈S φ(V (H)) is the set of terminals with respect to S.
Assume that we are given a tw-nice flat wall of size w×w in G \A. That is, in this case we

have a flatness tuple (A′, B′, C, G̃,G0, G1, . . . , Gk′) in G \ A. Also for exposition purposes, we
assume that A = ∅ and k′ = 0. The presence of apex vertices A and “protrusions” G1, . . . , Gk′

will add technical difficulty to the material, but the conceptual explanation will remain the same
at its core. That is, we have a flat wall W in G with a flatness tuple (A′, B′, C, G̃,G0). Without
loss of generality, we assume that G̃ = G0 ∪C. That is, G = A′ ∪B′, (A′, B′) is a separation of
G and B′ ∪C = G0 ∪C is a planar graph. Moreover, V (W) ⊆ V (B′) and the vertices from the
“non-planar portion” A′ of G are not adjacent to G0 except on C. Notice that we can choose
the size w of the wall W in Lemma 2.1 and the value we choose will be a function of δ and
|R(G)|.

At this point, let us briefly revisit the Disjoint Paths problem, see how we can find an
irrelevant vertex with respect to it, and then figure out the difficulties in the case of FindFolio?.

Disjoint Paths (Dis-Paths) Parameter: |T | = k?

Input: An undirected graph G, and a set T = {{s, t} : s, t ∈ V (G)}.
Question: Does G contain a set of internally vertex disjoint paths that for every {s, t} ∈ T ,
contains one path whose endpoints are s and t?

Robertson and Seymour [73] proved that a vertex that is sufficiently “insulated” in the
aforementioned planar piece G0 of G is an irrelevant vertex for Disjoint Paths. In other words,
there is a function h such that if there is a set of h(k?) many “concentric cycles” {C0, . . . , Ch(k?)}
in G0 (see Definition 9.1), where no terminal vertex in T is in the inner face of any of these
cycles, then all vertices in the inner face of C0 are (in fact, simultaneously) irrelevant (see
Proposition 9.2). The difficulty in the case of FindFolio? is that we do not know which are
the terminal vertices! (Where, roughly speaking, the terminal vertices are those to belong to
the image of φ, and the sought internally vertex disjoint paths reflect the computation of ϕ.)
However, because the terminal vertices should belong somewhere (for every H in the folio), the
existence of an irrelevant subwall is guaranteed for a large enough w by the aforementioned
result in [73]. However, as we are given no information as to where the terminal vertices are,
we face major difficulty in the computation of where this irrelevant subwall is.

The starting point of our method is finding a noose (i.e., a closed curve in the plane) enclosed
workspace that contains a “large” grid of inner nooses (clarified below), where the graph induced
on the vertices inside the enclosing (outer) noose has bounded treewidth. Here, both the size
of the grid and the treewidth are a function of δ and |R(G)|. For a noose N , we use in(N) to

11

denote the set of vertices and edges fully contained in the interior (including boundary) of the
noose. Informally, an (a × b)-noose grid N is a grid of disjoint nooses {Ni,j : i ∈ [a], j ∈ [b]}
such that G̃[in(Ni,j)∩V (G)] is connected and for each edge in the grid there is an edge between
two vertices in the corresponding nooses. A (p, 2q)-workspace is a pair (M,N), where N is a
(2q × 2q)-noose grid N and M is a noose with the following properties.

• G̃[in(M)∩V (G)] is connected and M is a minimum noose that encloses G̃[in(M)∩V (G)].

• The treewidth of G̃[in(M) ∩ V (G)] is at most p.

• Each vertex in G̃[in(M) ∩ V (G)] is exactly in the interior of one noose N ∈ N .

The nooses in N can be partitioned into q “frames”: the nooses in the outer boundary of the
grid N yield Frame[q − 1], the nooses in the outer boundary after deletion of Frame[q − 1] yield
Frame[q − 2], and so on (see Figure 2). Now, we come to a critical definition: a solution S of
FindFolio? is (`, η)-untangled, for some 0 < `− 3 < ` + 3 < q − 1 and η ∈ N, if the following
holds (with the most critical property being the second one).

(a) There is no terminal with respect to S in the nooses in
⋃
`−3≤j≤`+3 Frame[j].

(b) For any (H,φ, ϕ) ∈ S, the realization GH witnessed by (φ, ϕ) uses at most η nooses
in Frame[`], and each used noose in Frame[`] is exactly in “one crossing subpath” of a
path in {ϕ(e) : e ∈ E(H)}. That is, the restriction of GH (i.e., partial solution) is small
(depending on η and δ) and it “behaves nicely” on the frame `.

(b) No vertices in the “horizontal nooses” of Frame[`] (i.e., {Ni,j : i ∈ {q− `, q+ 1 + `}, q− ` ≤
j ≤ q + 1 + `}) are used by S.

The proof that there exists an (`, η)-untangled solution (for certain ` and η where η is
“small”) is very technical, and requires several steps (where in each step, we assert the existence
of a “nicer” solution than before, until we eventually arrive at an (`, η)-untangled solution).

Afterwards, we prove that there exist η, λ, µ (depending on δ) and s ∈ [q/λ − µ − 1] with
the following property. Let si = s(iλ − 1) for all 1 ≤ i ≤ µ. Then, the set of “partial
solutions” satisfying conditions (b) and (c) within G̃[

⋃
j≤s1,N∈Frame[j] in(N) ∩ V (G)] and the

set of partial solutions satisfying these conditions within . . . , G̃[
⋃
j≤sµ,N∈Frame[j] in(N)∩ V (G)]

are “identical”.2 We choose µ in such a way that there exists an integer ` ∈ {s1, . . . , sµ} such
that there is a solution S that is (`, η)-untangled. Since the treewidth of G̃[in(M)∩ V (G)] is at
most p (which is upper bounded by a function of δ), using standard dynamic programming on
tree decomposition we compute the set of partial solutions corresponding to each of the frames
indexed s1, . . . , sµ. Even though we do not know `, we prove that there is a “patch” from the
partial solution of the frame indexed s1 to get a solution without using any vertex in any of
the “upper” (top horizontal) nooses in Frame[s1],Frame[s1 + 1], . . . ,Frame[s1 + w′]. Thus, the
subwall within the graph formed by these nooses of Frame[s1],Frame[s1 + 1], . . . ,Frame[s1 +w′]
is irrelevant.

2.6 Planar and Bounded Genus Graphs

Lastly, we explain the reason for faster running time with respect to planar graphs, or, more
generally, graphs of bounded genus (Theorem 2 and Theorem 4). Recall that the starting
point of our algorithm is Lemma 2.1 with respect to general graphs. However, with respect
to a planar graph, or, more generally, a graph of bounded genus graph G, using the linear

2There are properties beyond isomorphism needed to be satisfied by partial solutions on different frames so
that we will consider them as identical. Those technical details are omitted here.

12

Frame[q − 1]

Frame[s1]

Frame[sµ]

• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• •

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

Figure 2: Example of frames. The bullets represent nooses in the noose grid N .

dependence between treewidth and the size of the largest grid minor in G, in time O(w2n) we
get either a 2w× 2w grid minor in G (equivalently, a w×w-flat wall without apex vertices and
protrusions) or a tree decomposition of G of width O(w). (Clearly, we do get a large clique
minor because graphs of bounded genus do not have them.) In the case of bounded treewidth,
we use standard technique to solve the problem. In the case of a flat wall, we find an irrelevant
vertex as explained in Section 2.5. However, here instead of Proposition 9.2, we use its planar
version proved by Adler et al. [1] (see Proposition 9.1) or the bounded genus version proved
by Mazoit [61], where h(k?) ≤ 2ck

?
for some constant c depending on g. These simplifications

and tools yield the running times 22k·2
O((h?)2)

n2 and 222
O((h?)2)

n2 in Theorem 2 and Theorem 4,
respectively.

3 Preliminaries

We use [n] and [n]0 as shorthands for {1, 2, . . . , n} and {0, 1, . . . , n}, respectively. The domain
and image of a function f : A → B are denoted by dom(f) and ima(f), respectively. For a
subset A′ ⊆ A, f(A′) denotes the set of elements b ∈ B for which there exists a ∈ A′ such that
b = f(a). Given two tuples of m integers, t = (n1, n2, . . . , nm) and t′ = (n′1, n

′
2, . . . , n

′
m), we

define the relation < lexicographically, that is, we have t < t′ if and only if there exists i ∈ [m]
such that ni < n′i and for all j ∈ [i], nj ≤ n′j .

13

3.1 Minors, Plane Graphs and Treewidth

Given a graphG, we denote its vertex set and its edge set by V (G) and E(G), respectively. When
G is clear from context, denote n = |V (G)| and m = |E(G)|. In this paper we consider only
graphs without multiple edges, self loops and labels. The set of isolated vertices of G is denoted
by is(G). Given a subset U ⊆ V (G), G[U] denotes the subgraph of G induced by U , and G \ U
denotes the subgraph G[V (G)\U]. Given a vertex v ∈ V (G), G\v denotes the subgraph G\{v}.
Given a vertex v ∈ V (G), dG(v) denotes the degree of v in G, and NG(v) denotes the set of
neighbors of v in G. For a subset U ⊆ V (G), NG(U) = (

⋃
v∈U NG(v))\U . Given (not necessarily

vertex-disjoint) graphs G1 and G2, denote the graph G′ = (V (G1)∪ V (G2), E(G1)∪E(G2)) by
G1 ∪G2.

Given paths P = v1 − v2 − · · · − vt and P ′ = u1 − u2 − · · · − u` where vt = u1, PP ′

denotes the path v1 − v2 − · · · − (vt = u1) − u2 − · · · − u`. An a × b-grid is a graph G whose
vertex set can be denoted as {vi,j : i ∈ [a], j ∈ [b]}, so that the edge set of G is exactly
{{vi,j , vi′,j′} : i, i′ ∈ [a], j, j′ ∈ [b], |i− i′|+ |j− j′| = 1}. The height of the grid is a and the width
of the grid is b. For i ∈ [a] and j ∈ [b], the row Ri of the grid is the path vi,1 − vi,2 − . . .− vi,b,
and the column Cj of the grid is v1,j − v2,j − . . . − va,j . Given a vertex set V , AllGraphs(V)
denotes the set of all graphs on V . Given t ∈ N, Kt is the clique on t vertices.

Observation 3.1. For a vertex set V , the number of graphs in AllGraphs(V) is 2(|V |2).

We proceed to present the notion of a separation of a graph.

Definition 3.1 (Separation). A separation in graph G is a pair (G1, G2) of subgraphs of G,
such that G = G1∪G2 and E(G1)∩E(G2) = ∅. The order of the separation is |V (G1)∩V (G2)|.

Definition 3.2 ((s, t)-Separator). For a graph G and s, t ∈ V (G), a subset S ⊆ V (G) \ {s, t}
is called an (s, t)-separator, if s and t are in two different connected components of G \ S.

Minor, Topological Minor. Let G and H be two undirected graphs. We say that H is a
minor of G if there exists a function φ : V (H) → 2V (G) such that for all h ∈ V (H), G[φ(h)] is
a connected graph, for all distinct h, h′ ∈ V (H), φ(h) ∩ φ(h′) = ∅, and for all {h, h′} ∈ E(H),
there exist u ∈ φ(h) and v ∈ φ(h′) such that {u, v} ∈ E(G). The sets φ(h1), . . . , φ(h`) where
V (H) = {h1, . . . , h`}, are called the model sets. Let Paths(G) be the set of all (simple) paths in
G. We say that H is a topological minor of G if there exist injective functions φ : V (H)→ V (G)
and ϕ : E(H)→ Paths(G) such that for all e = {h, h′} ∈ E(H), the endpoints of ϕ(e) are φ(h)
and φ(h′), for all distinct e, e′ ∈ E(H), the paths ϕ(e) and ϕ(e′) are internally vertex-disjoint,
and there do not exist a vertex v in the image of φ and an edge e ∈ E(H) such that v is an
internal vertex on ϕ(e). The vertices and edges in φ(V (H)) and ϕ(E(H)) form a subgraph G′

in G. That is V (G′) contains the vertices in φ(V (H)) and the vertices in the paths in ϕ(E(H)).
The edge set of G′ is the edges in that paths in ϕ(E(H)). Then we call G′ is a realization of H
in G.

Plane Graphs. A graph G is planar if there exists a mapping from every vertex in V (G) to
a point on the plane, and from every edge e ∈ E(G) to a curve on the plane where the extreme
points of the curve are the points mapped to the endpoints of e, and all curves are disjoint
except on their extreme points. Such a mapping is called an embedding in the plane, or simply
an embedding. A plane graph is a planar graph having a fixed embedding. For a planar graph G,
we can define its faces as follows: delete all the edges and vertices of G from the plane. Then,
the remaining part of the plane is a collection of disjoint areas. Each such area is called a face.
The face whose area is unbounded is called the outer-face, and every other face is an interior
face. When we say that a point is contained in a face, we mean that the point may also lie on

14

•

•

•

•

•

•

•
•

(a) This drawing is not nice

•

•

•

•

• •

• •

(b) Nicely drawn embedding, where the boundary
of outer face is blue edges

Figure 3: Graph G with two embeddings

the boundary of the face. Deletion of a cycle C in a plane graph from the plane results in two
disjoint areas. The area which contains the exterior-face of C, while the other area is called the
interior-face of C. The union of C and interior(exterior)-face of C is called the inner(outer)-face
of C. A noose is a closed curve in the plane or surface. We say that a noose N encloses a graph
G if all of the vertices as well as edges of G lies in the interior (including the boundary) of G.
The minimum noose that encloses G is the noose that encloses minimum area among all nooses
that enclose G.

Observation 3.2. Let G be a plane graph. The minimum noose that encloses G is the noose
that encloses exactly those points in the plane that do not belong to the outer-face of G.

Given a plane graph G and a noose N , inG(N) denotes the set of vertices and edges of G
that lie entirely in the interior (including the boundary) of N , and outG(N) denotes the set
of vertices and edges of G that lie in the exterior (including the boundary) of N . In addition,
in?G(N) denotes the set of vertices of G that lie in the strict interior (excluding the boundary) of
N and the edges of G that (excluding their endpoints) lie in the strict interior of N . Note that
if a noose encloses a vertex set U , it does not imply that the noose encloses the graph induced
by U as some edges of that graph may not be enclosed by the noose. In other words, given a
plane graph G and a noose N , it might hold that G[in(N) ∩ V (G)] is not enclosed by N . We
say that a plane graph G is nicely drawn if every connected component of G can be enclosed
by a noose that does not contain vertices of other connected components. In other words, for
every two connected components C and C ′ of G, it holds that C lies in the outer-face of C ′ and
vice versa (see Figure 3 for an illustration).

Observation 3.3. Let G be a nicely drawn plane graph and U ⊆ V (G) such that G′ = G[U] is
a connected subgraph of G. Then, there is a noose N such that V (G′) ∪ E(G′) = in?G(N).

Treewidth. Treewidth is a structural parameter indicating how much a graph resembles a
tree. Formally, treewidth is defined as follows.

Definition 3.3 (Tree Decomposition). A tree decomposition of a graph G is a pair (T, β)
of a rooted tree T and β : V (T)→ 2V (G), such that

• for any edge {x, y} ∈ E(G) there exists a node v ∈ V (T) such that x, y ∈ β(v), and

• for any vertex x ∈ V (G), the subgraph of T induced by the set Tx = {v ∈ V (T) : x ∈ β(v)}
is a non-empty tree.

The width of (T, β) is maxv∈V (T){|β(v)|} − 1. The treewidth of G, denoted by tw(G), is the
minimum width over all tree decompositions of G.

15

We also define a form of a tree decomposition that simplifies the design of DP algorithms.

Definition 3.4 (Nice Tree Decomposition). A tree decomposition (T, β) of a graph G is
nice if for the root r of T , β(r) = ∅, and each node v ∈ V (T) is of one of the following types.

• Leaf: v is a leaf in T and β(v) = ∅.
• Forget: v has one child, u, and there is a vertex x ∈ β(u) such that β(v) = β(u) \ {x}.
• Introduce: v has one child, u, and there is a vertex x ∈ β(v) such that β(v)\{x} = β(u).

• Join: v has two children, u and w, and β(v) = β(u) = β(w).

For v ∈ V (T), we say that β(v) is the bag of v, and γ(v) denotes the union of the bags of v
and the descendants of v in T . Given a tree decomposition (T, β), Bodlaender [9] showed how
to construct a nice tree decomposition of the same width as (T, β) in linear time. As formally
stated by the following proposition, a nice tree decomposition of small width can be computed
by a parameterized algorithm whose dependency on n is linear.

Proposition 3.1 ([9]). Given a graph G and t ∈ N, in time O(2O(t3 log t)n) we can decide
whether tw(G) ≤ t, and if the answer is positive, compute a nice tree decomposition of G of
width at most t.

With respect to treewidth and TMC, the following proposition is known.

Proposition 3.2 ([74]). TMC is solvable in time O(tO(t)n) if every input instance (G,H, k) is
given along with a tree decomposition of G of width t.

As a corollary to Propositions 3.1 and 3.2, we have the following proposition.

Proposition 3.3. TMC is solvable in time O(2O(tw3 log tw)n), where tw = tw(G).

3.2 Flat Wall

Here, we recall the definition of a flat wall and a result to compute a large flat wall in a graph
G if the treewidth of G is large and it has no large clique minor [53, 17]. We first present the
definition of an elementary wall.

Definition 3.5 (Elementary wall). Let J be an h×(2r) grid. For any column Cj of J , where

j ∈ [2r], let ej1, e
j
2, . . . , e

j
h−1 be the edges of Cj, in the order of their appearance on Cj, where ej1

is incident on v1,j. For any column Cj, if j is odd, then delete from the graph J all edges eji
where i is even. For any column Cj, if j is even, then delete from the graph all edges eji where i

is odd. After this, delete all vertices of degree 1. The resulting graph Ŵ is the elementary wall
of height h and width r. (See Figure 1 for an example).

The definition of an elementary wall directly implies the following observation.

Observation 3.4. Every h× (2r) grid contains an h× r elementary wall as a subgraph.

Let Ŵ be an elementary wall. Let E1 be the set of edges of Ŵ that correspond to the
horizontal edges of the original grid and let E2 be the set of the edges of Ŵ that correspond
to the vertical edges of the original grid. That is, E1 ⊆ {vi,jvi,j+1 : i ∈ [h], j ∈ [2r − 1]} and

E2 ⊆ {vi,jvi+1,j : i ∈ [h− 1], j ∈ [2r]}. The subgraph of Ŵ consisting of E1 forms a collection
of h vertex disjoint paths, denoted by R1, . . . , Rh, where for i ∈ [h], Ri is incident on vi,1. Let
V1 and Vh denote the set of all vertices of R1 and Rh, respectively. There is a unique set C of r
vertex disjoint paths, where each path C ∈ C starts at a vertex of V1, ends at a vertex of Vh, and
is internally vertex disjoint from V1 ∪ Vh. We let C1 and Cr denote the leftmost and rightmost

16

paths in C. The subgraph Z = R1 ∪ C1 ∪ Rh ∪ Cr of Ŵ is a simple cycle and it is called the
outer boundary of Ŵ . All the vertices of Z that have degree 2 in Ŵ are called pegs of Ŵ .

A graph W is a wall of height h and width r, or an h×r-wall, if and only if it is a subdivision
of the elementary wall Ŵ of height h and width r. Notice that, in this case, Ŵ is a topological
minor of W . Let (φ, ψ) be a pair of functions that witnesses that Ŵ is a topological minor. The

pegs of W are the vertices to which the pegs of Ŵ are mapped by the map φ. The following
observation is immediate.

Observation 3.5. An (h, r)-wall contains the h× r-grid as a minor.

A wall minor in a graph can be turned into a wall subgraph in the graph.

Observation 3.6. If a graph G contains a (w×w)-wall as a minor, then there is a (w×w)-wall
as subgraph in G. Moreover, there is a linear time algorithm which given a graph G and a minor
model of a (w × w)-wall in G, outputs a (w × w)-wall in G.

In the following definition, we consider the notion of a subwall.

Definition 3.6 ([17]). Let W and W ′ be two walls, where W ′ is a subgraph of W . We say that
W ′ is a sub-wall of W if and only if every row of W ′ is a subpath of a row of W , and every
column of W ′ is a subpath of a column of W .

Towards the definition of a flat wall, we also need to recall the notion of X-reduction.

Definition 3.7 (X-reduction). Let G be a graph, X ⊆ V (G), and let (L,R) be a separation
of G of order at most 3 with X ⊆ V (R). Moreover, assume that the vertices of V (L) ∩ V (R)
are connected in L. Let H be the graph obtained from R by adding edges connecting every pair
of vertices in V (L) ∩ V (R). We say that H is an elementary X-reduction in G, determined by
(L,R). We say that a graph J is an X-reduction of G if it can be obtained from G by a series
of elementary X-reductions.

Now, we define C-flat graphs, which are closely related to flat walls (defined later).

Definition 3.8 (C-flat graph). Let G be a graph, and let C be a cycle in G. We say that G is
C-flat if there exists a plane graph J that is a C-reduction of G where C bounds the outer-face
of J .

The following is an equivalent definition of C-flat graphs, which is conceptually easier to
work with. The terminology that we use to phrase this definition follows from [17] (which also
states the equivalence). The equivalence itself is proved in [53], where a C-flat graph is phrased
as an Ω-rendition.

Definition 3.9 (C-flat graph). Let G be a graph, and let C be a cycle in G. We say that G
is C-flat if there exist subgraphs G0, G1, . . . , Gk of G, and a plane graph G̃ such that:

1. G = G0 ∪G1 ∪ . . . ∪Gk, and the graphs G0, G1, . . . , Gk are pairwise edge disjoint;

2. C is a subgraph of G0;

3. G0 is a subgraph of G̃, with V (G̃) = V (G0). Moreover, G̃ is a plane graph, and the cycle
C bounds its outer face;

4. For i ∈ [k], |V (Gi) ∩ V (G0)| ≤ 3;

• If |V (Gi) ∩ V (G0)| = 2, then u and v are adjacent in G̃;

17

• If V (Gi) ∩ V (G0) = {u, v, w}, then some finite face of G̃ is incident with u, v, w and
no other vertex;3

5. For all distinct i, j ∈ [k], V (Gi) ∩ V (Gj) ⊆ V (G0).

Now, we specify two additional properties that we would like G0, G1, . . . , Gk, G̃ to satisfy.

Observation 3.7. There is an algorithm that, given a connected graph G, a cycle C in G,
subgraphs G0, G

′
1, . . . , G

′
k′ of G and a plane graph G̃′ witnessing that G is C-flat, outputs sub-

graphs G0, G1, . . . , Gk of G and a plane graph G̃ witnessing that G is C-flat and also satifying
the following conditions:

6. For any i ∈ [k], u ∈ V (Gi) \ V (G0) and v ∈ V (G0) ∩ V (Gi), there is a path from u to v
with all internal vertices being in V (Gi) \ V (G0), and

7. For any edge {u, v} ∈ E(G̃)\E(G0), there exists i ∈ [k] such that {u, v} ⊆ V (Gi)∩V (G0).

The running time of the algorithm is bounded by O(n).

Proof sketch. To ensure that condition 7 is satisfied, we can simply remove all edges {u, v} ∈
E(G̃′) \ E(G0) from G̃′ if there is no i ∈ [k′] with {u, v} ⊆ V (G′i) ∩ V (G0).

To ensure that condition 6 is satisfied, if there exist i ∈ [k′], u ∈ V (G′i) \ V (G0) and
v ∈ V (G0) ∩ V (G′i) such that there is no path from u to v with all internal vertices being in
V (G′i)\V (G0), then we “split” G′i into smaller graphs. For each ∅ 6= S ⊆ V (G′i)∩V (G0), let VS
be the set of vertices in G′i\(V (G′i)∩V (G0)) reachable from any vertex in S with internal vertices
from V (G′i) \ V (G0) and not reachable from (V (G′i) ∩ V (G0)) \ S with internal vertices from
V (G′i)\V (G0). Then we replace G′i with G′i(S) = G′i[S∪VS]. Clearly for any S 6= S′, there are no
edges between vertices in VS and VS′ . Since G is connected

⋃
S⊆V (G′i)∩V (G0) VS = V (G′i)\V (G0).

Moreover, for each G′i(S), u ∈ V (G′i(S)) \ V (G0) and v ∈ V (G0) ∩ V (G′i(S)), there is a path
from u to v with all internal vertices from V (G′i(S)) \ V (G0). Therefore after doing the above
mentioned splitting operations, condition 6 will be satisfied. All required modifications can be
done in time O(n).

Condition 7 in Observation 3.7 implies that G̃ is edge minimal (that is, no edge can be
removed from G̃ such that all the above seven properties will still be satisfied). We are now
ready to present the definition of a flat wall.

Definition 3.10 (Flat wall). Let G be a graph, and let W be a wall in G with outer boundary
D. Suppose there is a separation (A,B) of G, such that V (A)∩ V (B) ⊆ V (D), V (W) ⊆ V (B),
and there is a choice of pegs of W , such that every peg belongs to A. If some (V (A) ∩ V (B))-
reduction J of B can be drawn in a disc with the vertices in V (A)∩V (B) drawn on the boundary
of the disc in the order determined by D, then we say that the wall W is flat in G.

Simple Lemmata and Known Propositions. We now state several results regarding flat
walls. We first relate Definitions 3.9 and 3.10. This observation will be encompassed by Propo-
sition 3.4, but we explicitly state it for the sake of clarity of the connections between the notions
introduced earlier.

Observation 3.8. Let G,W,D,A,B and J be defined as in Definition 3.10. Consider the disc
Q where J is drawn such that the vertices in V (A) ∩ V (B) are drawn on the boundary of Q in
the order determined by D. Let C be the cycle with vertex set V (A)∩V (B) and edge set defined
by the boundary Q, that is, every two consecutive vertices on the boundary of Q are connected
by an edge in E(C). Then, G? = B + E(C) is C-flat.

3That is, {u, v}, {u,w}, {v, w} ∈ E(G̃), and the curves corresponding to these edges form a face of G̃.

18

Proof. Note that J is a (V (A)∩ V (B))-reduction of B with the vertices in V (A)∩ V (B) drawn
on the boundary of Q in the order determined by D. Clearly, the definition of C directly implies
that J? = J+E(C) is a plane graph whose outer-face is bounded by C. By Definition 3.7, there
is a series of elementary (V (A) ∩ V (B))-reductions, denoted by (L1, R1), (L2, R2), . . . , (Lt, Rt),
that when applied to B eventually result in the graph J . Because V (C) = V (A) ∩ V (B), we
have that (L1, R1), (L2, R2), . . . , (Lt, Rt) is also a series of elementary V (C)-reductions, that
when applied to G? eventually result in the graph J?. By Definition 3.8, we conclude that G?

is C-flat.

In light of Observation 3.8 and Definition 3.9, we explicitly define a type of tuple as follows
for the sake of clarity of presentation.

Definition 3.11 (Flatness tuple). Let G be a graph, w, t ∈ N, A ⊆ V (G) be a set of at most
t vertices and W be a wall of size at least (w × w), such that V (W) ∩ A = ∅ and W is a flat
wall in G \A. Let D denote the outer boundary of W .

We say that (A′, B′, C, G̃,G0, G1, . . . , Gk) is a flatness tuple for (G,w, t, A,W) if (A′, B′) is a
separation of G\A such that V (A′)∩V (B′) ⊆ V (D) and V (W) ⊆ V (B′), and C,G0, G1, . . . , Gk
and G̃ witness that B′ + E(C) is C-flat as specified by Definition 3.9, where V (A′) ∩ V (B′) =
V (C) ⊆ V (D) and the order in which vertices appear on C is the same as the order in which
they appear on D.

In the above definition we have a subset A ⊆ V (G) and the flatness tuple is defined for
a flat wall in G \ A. The set A is part of the definition to align with the flat wall theorem
(Proposition 3.4). Specifically, the following proposition is the flat wall theorem as proved
in [53]. A theorem with better bounds regarding the relation between w, t,R is proved in [17].
However, the running time of the algorithm of the theorem in [17] is stated to be polynomial
(rather than linear) in (n+m) and therefore we cite the theorem of [53].

Proposition 3.4 ([53]). There exists an algorithm that given a graph G, integers w, t ≥ 1, and
an (R×R)-wall W in G where R = 49152t24(60t2 +w), outputs either a function φ witnessing
that Kt is a minor of G or a subset A ⊆ V (G) of at most 12288t24 vertices, and a sub-wall W ∗ of
W of size at least (w×w), such that V (W ∗)∩A = ∅ and W ∗ is a flat wall in G\A. In addition,
the algorithm outputs a flatness tuple (A′, B′, C, G̃,G0, G1, . . . , Gk) for (G,w, |A|, A,W ?). The
running time of the algorithm is bounded by O(t24m+ n).

Proposition 3.4 give us a clique minor or a flatness tuple if the treewidth of the input graph
is large. For our purpose we need a flatness tuple where the treewidth of Gi, i ∈ [k] is bounded.

Definition 3.12 (Nice Flat Wall). Let G be a graph, w, t ∈ N, A ⊆ V (G) be a set of at
most t vertices and W be a wall of size at least (w × w), such that V (W) ∩ A = ∅ and W
is a flat wall in G \ A. Let D denote the outer boundary of W . We say that the flatness
tuple (A′, B′, C, G̃,G0, G1, . . . , Gk) for (G,w, t, A,W) is an `-nice flatness tuple if for all i ∈ [k],
tw(Gi) ≤ `. Then, we also call W a `-nice flat wall in G \A.

We will use Proposition 3.4 to get a nice flat wall. As the algorithm of Proposition 3.4
requires a wall, to be able to exploit it algorithmically, we need the two following propositions
as well.

Proposition 3.5 ([13, 18]). There exists c ∈ N such that for every g ∈ N, every graph G either
contains a (g × g)-grid as a minor or has treewidth at most cg19 logc g.

The following proposition can be proved using Propositions 3.1 and 3.2.

19

Proposition 3.6. There exists c ∈ N and an algorithm that given a graph G and integer
g ∈ N, runs in time 2O(g58)n log n, and outputs either a g × g-wall in G or outputs a nice
tree-decomposition of G of width at most cg19 logc g.

Proof sketch. Let ĉ be the constant mentioned in Proposition 3.5. Let c be a constant such that
ĉ(2g)19 logĉ(2g) ≤ cg19 logc g. First we run the algorithm of Proposition 3.1 to test whether
tw(G) ≤ ĉ(2g)19 logĉ(2g). If the answer is yes, then it is a valid output and this step takes time

2g
57(log g)O(1)

n.
Otherwise, we use “binary search type” of arguments to output an induced subgraph of G

with treewidth at least ĉ(2g)19 logĉ(2g), but at most 2ĉ(2g)19 logĉ(2g). Let t = ĉ(2g)19 logĉ(2g).
At step i of the algorithm we will have two subsets of edges Fi and Ai with the following
invariant: tw(G[Fi]) ≤ 2t and G[Ai ∪ Fi] > t. The stopping condition of the algorithm is when
tw(G[Ai∪Fi]) ≤ 2t. Initially we set A0 = E(G) and F0 = ∅. Clearly the invariant holds initially.
Now we explain how to perform step i, if step i− 1 does not satisfy the stopping condition. Let
Si be an arbitrary subset of Ai−1 of size d |Ai|2 e. If tw(G[Fi−1∪Si]) ≤ t, then we set Fi = Fi−1∪Si
and Ai = Ai−1 \ Si. Clearly, Ai and Fi satisfy the invariant. If tw(G[Fi−1 ∪ Si]) > t, then we
set Fi = Fi−1 and Ai = Si. It is easy to see that in this case as well the invariant follows. We
stop at step i if tw(G[Ai ∪Fi]) ≤ 2t. Let A and F be the edge sets of the last step of the above
procedure. We have that tw(G[A ∪ F]) ≤ 2t and tw(G[A ∪ F]) > t. Then by Proposition 3.5,
there is a (2g× 2g)-grid minor in G[A∪F]. By Observations 3.4 and 3.6, there is a (g× g)-wall
as subgraph in G[A ∪ F]. Now we use Proposition 3.3 to output a (g × g)-wall in G[A ∪ F], in
time tO(t)n.

Notice that the number of steps in the above procedure to output A and F is logm. In
each step we run the algorithm of Proposition 3.1, which runs in time 2O(t3 log t)n. Therefore
the total running time of the algorithm follows.

A linear relationship between the size of a grid minor and treewidth is known for planar
graph, which is much better than the relationship in Proposition 3.5.

Proposition 3.7 ((6.2) [66]). Let g ≥ 1 be an integer. Any planar graph with treewidth larger
than 6g − 5 has a g × g grid minor.

The following proposition provides a constant-factor linear-time algorithm to compute the
treewidth of a planar graph, which also outputs a grid minor in case the treewidth is large.

Proposition 3.8 ([46]). There exists a constant c such that for any planar graph G and in-
teger r ∈ N, in time O(r2n) one can compute either an r × r-grid as a minor of G or a tree
decomposition of width at most cr.

The following proposition follows from Proposition 3.8 and Observation 3.6.

Proposition 3.9. There exists a constant c such that for any planar graph G and integer g ∈ N,
in time O(g2n) one can compute either a g × g-wall in G or a tree decomposition of width at
most cg.

Proposition 3.4 is linear in (n + m). Towards designing an O(n log n)-time algorithm to
output a clique minor or a nice flatness tuple in a large treewidth graph, we require the following
result.

Proposition 3.10 ([64]). There is an algorithm which given a graph G and t ∈ N with m ≥
2t−3 ·n, runs in time O(t(n+m)), and outputs a function φ witnessing that Kt is a minor of G.

Because of Proposition 3.10, by just considering arbitrary 2t−3 · n edges in a graph (if
m ≥ 2t−3 · n) we get a Kt minor model in time O(2tn).

20

Proposition 3.11. There is an algorithm that given a graph G and t ∈ N with m ≥ 2t−3 · n,
runs in time O(2tn), and outputs a function φ witnessing that Kt is a minor of G.

Now we are ready to prove a lemma similar to the flat wall theorem, but here we will output
a nice flat wall.

Lemma 3.1. There is a constant c ∈ N and an algorithm that given a graph G, and integers
g, w, t ≥ 1 such that g ≥ ct48(t2 + w), outputs one of the following.

• A nice tree decomposition of G of width at most cg19 logc g.

• A function φ witnessing that Kt is a minor of G.

• A subset A ⊆ V (G) of at most ct24 vertices and a wall W of size at least (w × w), such
that V (W)∩A = ∅ and W is a (cg19 logc g)-nice flat wall in G\A. In addition, it outputs
a (cg19 logc g)-nice flatness tuple (A′, B′, C, G̃,G0, G1, . . . , Gk) for (G,w, |A|, A,W).

The running time of the algorithm is upper bounded by 2O(g58)n log2 n.

Proof. Recall that n = |V (G)| and m = |E(G)|. We choose the value of c ≥ 12288, in such a way
that c is at least the constant mentioned in Proposition 3.6 and ct48(t2 +w) ≥ 49152t24(60t2 +
4(12288t24 +3)w) = 49152t24(60t2 +ŵ), where ŵ = 4(12288t24 +3)w. Let tw = cg19 logc g. First
we use the algorithm of Proposition 3.1 to test whether the treewidth of G is tw or not. If the
answer is yes, then the algorithm will output a nice tree decomposition of G of width at most
tw, which is a valid output for our algorithm. This step takes time 2O(g57(log g)O(1))n ≤ 2O(g58)n.
If m ≥ 2t−3n, then we run the algorithm of Proposition 3.11 and it will output a function φ
witnessing that Kt is a minor in G. The time to output φ, by the algorithm of Proposition 3.11,
is O(2tn). So, from now on we assume that m < 2t−3n and tw(G) > tw.

Now we design a recursive algorithm A as follows. At step i we output either a valid output
for our original task (i.e., either a function φ witnessing that Kt is a minor of G or a (tw)-
nice flat wall W of size at least (w × w) in G \ A for some A ⊆ V (G), |A| ≤ 12288t24) or
construct a separation (Hi, H

′
i) of G order at most 2(12288t24 + 3) and tw(Hi) > tw (these are

the invariants we maintain). Then, we will be searching for a Kt-minor or a nice flat wall in Hi

in the subsequent steps of the algorithm.
Initially w e set (H0, H

′
0) = (G, (∅, ∅)). Since tw(G) > tw, clearly the invariants hold initially.

At step i+ 1, we do the following. Notice that tw(Hi) > tw, because of the invariant. First we
use Proposition 3.6 to get a (g×g)-wall Wi in time 2O(g58)n log n. Since g ≥ 49152t24(60t2 + ŵ),
by using the algorithm of Proposition 3.4 in time 2O(t)n (because m < 2t−3n), we get either
a subset A ⊆ V (Hi) and a (ŵ × ŵ) flat wall W ?

i in Hi \ A, or a function φ witnessing that
Kt is a minor in Hi (and hence in G). In the latter case, the function φ is a valid output of
our algorithm. In the former case, consider the flatness tuple (A′, B′, C, G̃,G0, G1, . . . , Gk) for
(Hi, ŵ, |A|, A,W ?

i), outputted by the algorithm of Proposition 3.4. Now we use the algorithm
of Proposition 3.1 to test whether the treewidth Gi is at most tw or not, for all i ∈ [k]. These
computations of treewidth altogether take time 2O(g58)n. Let Si = V (Hi) ∩ V (H ′i). Now we
have two cases.

Case 1: There exist 1 ≤ j1 < j2 < j3 ≤ k such that tw(Gj1), tw(Gj2), tw(Gj3) > tw.
Notice that |Si| ≤ 2(12288t24 + 3). There exit two distinct i′, j′ ∈ {j1, j2, j3} such that

|V (Gi′)|, |V (Gj′)| ≤ |V (Hi)|
2 − |A|, because tw(Gj1), tw(Gj2), tw(Gj3) > tw and tw is much

larger than 2|A|. Then, since V (Gi′) ∩ V (Gj′) ⊆ V (G0), there exists r ∈ {i′, j′} such that
|(V (Gr) \ V (G0)) ∩ Si| ≤ 12288t24 + 3. In this case, we set Hi+1 = Gr ∪ G[A] and let H ′i+1

be the minimal subgraph of G such that G = Hi+1 ∪ H ′i+1. That is, H ′i+1 is a subgraph of
(G\ (V (Gr)\V (G0)))∪G[A]. Here, we have that V (Hi+1)∩V (H ′i+1) ⊆ (A∪ (V (Gr)∩V (G0))∪
((V (Gr)\V (G0))∩Si), because the only vertices in Hi+1 which have neighbours outside V (Hi+1)

21

are from A∪Si∪(V (G0)∩V (Gr)). Since |(V (Gr)\V (G0))∩Si| ≤ 12288t24+3, |A| ≤ 12288t24 and
|V (G0)∩V (Gr)| ≤ 3, the order of the separation (Hi+1, H

′
i+1) is at most 2(12288t24 + 3). Since

tw(Gr) > tw and Hi+1 = Gr + G[A], we have that tw(Hi+1) > tw. Therefore, the separation

(Hi+1, H
′
i+1) satisfies the invariants. Here, |V (Hi+1)| ≤ |V (Hi)|

2 , because |V (Gr)| ≤ |V (Hi)|
2 −|A|.

This completes the step i+ 1 of algorithm A.

Case 2: Case 1 is false. In this case, we directly output a (tw)-nice flat wall in G \ A. Let
j1, j2 ∈ [k] be such that tw(Gj1), tw(Gj2) > tw. That is, for all j ∈ [k] \ {i1, i2}, tw(Gj) ≤ tw.
Let T = (V (Gj1) ∪ V (Gj2)) ∩ V (G0). Notice that |T | ≤ 6. Since W ?

i is a flat wall of size
ŵ × ŵ, ŵ = 4(12288t24 + 3) · w and |Si ∪ T | ≤ 2(12288t24 + 3) + 6, there exist w distinct and
consecutive rows and w distinct and consecutive columns of W ?

i that are not hit by Si ∪ T .
Let W be the subwall of W ?

i formed by these rows and columns. We claim that W is a (tw)-
nice flat wall in G \ A. Let D′ be the boundary of W . Let X be the set of vertices in G̃
contained in the inner face of D′. Let G′0 = G0[X] and G̃′ = G̃[X]. Let I ⊆ [k] be such
that j ∈ I if and only if V (Gj) ∩ V (G0) ⊆ X. Since D′ is a cycle in the plane graph G̃
and for any j ∈ [k], V (Gi) ∩ V (G0) forms a clique in G̃, we have that there is no j ∈ [k]
such that V (Gj) ∩ V (G0) has a vertex in the interior face of D′ and another vertex in the
exterior face of D′. Let B? = G′0 ∪ (

⋃
j∈I Gj) and A? be a minimal subgraph of Hi such

that A? ∪ B? = Hi. Therefore, (A?, B?, D′, G̃′, G′0, Gi1 , . . . , Gi`), where I = {i1, . . . , i`}, is a
flatness tuple for (Hi, w, |A|, A,W). Since Si ∩ V (B?) = ∅, W is a flat wall in G \ A and
(A? ∪ H ′i, B?, D′, G̃′, G′0, Gi1 , . . . , Gi`) is a flatness tuple for (G,w, |A|, A,W). Moreover, since
tw(Gij) ≤ tw for all j ∈ [`], (A? ∪H ′i, B?, D′, G̃′, G′0, Gi1 , . . . , Gi`) is a (tw)-nice flatness tuple.

Now we analyze the running time of algorithm A. Since in step i + 1, either we output a
valid output or construct a separation (Hi+1, H

′
i+1), where |Hi+1| ≤ |V (Hi)|

2 , the number of
steps of the algorithm is upper bounded by O(log n). In each step, first we run the algorithm
of Proposition 3.6, which takes time 2O(g58)n log n. Then we run the algorithm of Proposi-
tion 3.4,which takes time 2O(t)n. Afterwards, we use Proposition 3.1 to test the treewidth of
each of the graphs G1, . . . , Gk and these computations together take time 2O(g58)n, because
any pair of these graphs intersect on at most three vertices. The execution of the above men-
tioned two cases takes time O(n). Therefore, the total running time of A is upper bounded by
2O(g58+t)n log2 n = 2O(g58)n log2 n. As the initial computation (before the execution of algorithm
A) takes time 2O(g58)n, the total running time of the algorithm follows.

Finally, we show that the plane graph G̃ in the flatness tuple, has a large grid as a minor.

Lemma 3.2. Let G be a graph, W be a (w×w)-wall in G, and C be a cycle in G such that there
is a choice of pegs of W where every peg belongs to V (C). In addition, let G0, G1, . . . , Gk be
subgraphs of G with a plane graph G̃ that witness that G is C-flat. Then, G̃ has a (w−2×w−2)-
grid as a minor.

Proof sketch. We first observe that Definition 3.9 directly implies the following claim.

Claim 3.1. Let P be a path in G. Define P̃ as the sequence of vertices in V (P) ∩ V (G̃) where
vertices appear in the same order in which they appear on P . Then, P̃ is a path in G̃.

We define a collection of sets that will exhibit the existence of a (w×w)-grid. LetR1, R2, . . . , Rw
denote the rows of the wall W . For all i, j ∈ {2, . . . , w − 1}, we define a set Si,j as follows:
Si,j is the set that contains the vertices of the subpath of Ri between the (2(j − 1) − 1)th and
(2(j − 1) + 1)th degree-3 vertices on Ri.

We now claim that for all i, j ∈ {2, . . . w − 1}, V (G̃) ∩ Si,j 6= ∅. Suppose, by way of
contradiction, that V (G̃)∩Si,j = ∅. This means that there exists Gp, p ∈ [k], such that Si,j ⊆ U
where we denote U = V (Gp) \ V (G̃). By Definition 3.9, we have that (Gp, G[V (G) \ U]) is a

22

separation of G of order at most 3. Recall that all the pegs of W belong to V (G) \U . Since the
flow between Si,j (which contains two vertices of degree-3 in W) and these pegs is at least 4, we
have reached a contradiction. For all i, j ∈ {2, . . . , w − 1}, denote Xi,j = V (G̃) ∩ Si,j . Observe
that for all i, j ∈ {2, . . . , w − 2}, G̃[Xi,j] is a connected graph. Indeed, by noting that for all
i, j ∈ {2, . . . , w− 1}, Si,j is a path, the correctness of this claim directly follows from Claim 3.1.

Finally, for all 2 ≤ i ≤ w − 2 and 2 ≤ j ≤ w − 1, we define the path Pi,j in G as follows.
Because W is a wall, there exists a subpath of Cj−1 from a vertex in Si,j to a vertex in Si+1,j ,
that uses only vertices of degree 2 in W (and these internal vertices are not from any Ri′). Let
P̃i,j be the path specified by Claim 3.1 for the path Pi,j . Similarly, we define the path P ′i,j in
G for any 2 ≤ j ≤ w − 2 and 2 ≤ i ≤ w − 1, where now we take a subpath of Ri rather than a
subpath of Cj−1. Let P̃ ′i,j be the path specified by Claim 3.1 for the path P ′i,j . Observe that the

paths P̃i,j and P̃ ′i,j are internally vertex-disjoint. Furthermore, the sets Xi,j , i, j ∈ {2, . . . , w−1},
are also pairwise disjoint. Then, because V (P̃i,j) ⊆ V (Pi,j), and as G̃[Xi,j] is a connected graph,

we have exhibited a (w − 2) × (w − 2)-grid in G̃ (which consists of the paths P̃i,j and the sets
Xi,j).

4 Statements of Main Theorems

In this section we state our main theorems and prove them in the subsequent sections. To state
the theorems, we first need to give several definitions and then define problems that are more
general than TMC and TM-Deletion.

4.1 Rooted Graph, Folio, and Extended Folio

We first present the definition of a rooted graph.

Definition 4.1 (Rooted graph [39]). A rooted graph is an undirected graph G with a set
R(G) ⊆ V (G) of vertices specified as roots and an injective mapping ρG : R(G)→ N assigning
a distinct positive integer label to each root vertex. We say that two rooted graphs G1 and G2

are compatible if ρG1(R(G1)) = ρG2(R(G2)). We also say that two graphs G1 and G2 have the
same set of roots when they are compatible.

Definition 4.2 (Replacement [39]). Let G be a rooted graph and (G1, G2) be a separation
such that S = V (G1) ∩ V (G2) ⊆ R(G). Let G′1 be a graph compatible with G1. Replacing G1

with G′1 in the separation (G1, G2) gives the following graph G′ (which is denoted by G′1 ∪G2).

• V (G′) = V (G′1) ∪ (V (G2) \ V (G1)), and

• E(G′) = E(G′1) ∪ E(G2 − S) ∪ {{u′, v} : {u, v} ∈ E(G2), u ∈ S, v /∈ S, ρG1(u) = ρG′1(u′)}.

That is, we replace G1 with G′1 in G such that the role of S is taken by ρ−1
G′1

(ρ(S)). We now

adapt the notion of topological minors to the presence of roots.

Definition 4.3 (Topological minor of rooted graph [39]). Let G and H be two undirected
rooted graphs. We say that H is a topological minor of G if there exist injective functions
φ : V (H)→ V (G) and ϕ : E(H)→ Paths(G) such that

• for all e = {h, h′} ∈ E(H), the endpoints of ϕ(e) are φ(h) and φ(h′),

• for all distinct e, e′ ∈ E(H), the paths ϕ(e) and ϕ(e′) are internally vertex-disjoint,

• there do not exist a vertex v in the image of φ and an edge e ∈ E(H) such that v is an
internal vertex on ϕ(e), and

23

• for all v ∈ R(H), ρH(v) = ρG(φ(v)).

Note that if R(G) = ∅, then the definition above coincides with the standard definition of a
topological minor. The folio of a rooted graph G is the collection of all topological minors of G.
We are only interested in topological minors of bounded size, which gives rise to the following
definition.

Definition 4.4 (δ-folio). Let δ ∈ N. The δ-folio of a rooted graph G is the collection of all
topological minors H of G such that |E(H)|+ is(H) ≤ δ.

Clearly, every graph in a δ-folio has at most 2δ vertices. We say that a vertex v is irrelevant
to the δ-folio of G (w.r.t roots R(G)), if the δ-folio of G is same as the δ-folio of G \ v.

Definition 4.5 (Extended δ-folio). Let δ ∈ N, and let G be a rooted graph. Given a graph
X such that V (X) = R(G), the (X, δ)-folio of G is the δ-folio of (G ∪X) with R(G) as the set
of roots. The extended δ-folio of G is the function f whose domain is AllGraphs(R(G)), and for
each graph X in AllGraphs(R(G)), f(X) is equal to the (X, δ)-folio of G.

We remark that an extended δ-folio can also be thought of as a tuple where each entry is
uniquely identified with a graph on R(G).

Definition 4.6. We say that a U ⊆ V (G) is irrelevant to the extended δ-folio of G (w.r.t. roots
R(G)), if the extended δ-folio of G is same as the extended δ-folio of G \ U . When U = {v},
we say that v is an irrelevant vertex to the extended δ-folio of G.

We use the following simple observation later in the paper (see Proposition 2.3 [39]).

Observation 4.1. Let G be a graph and δ ∈ N. Let Q ⊆ R ⊆ V (G).

(a) The extended δ-folio of G with respect to roots R can be computed from the (δ+|R|)-folio of
G w.r.t roots R. Moreover, if a vertex v is irrelevant to the (δ+ |R|)-folio of G w.r.t. roots
R, then v is irrelevant to the extended δ-folio of G w.r.t. roots R.

(b) The extended δ-folio of G with respect to roots Q can be obtained from the extended δ-folio
of G with respect to roots R. Moreover, if a vertex v is irrelevant to the extended δ-folio
of G w.r.t. roots R, then v is irrelevant to the extended δ-folio of G w.r.t. roots Q.

Definition 4.7. Let G be a rooted graph and δ, k ∈ N. We say that a vertex v ∈ V (G) is a
(δ, k)-irrelevant for G, if for a graph X on R(G) and a vertex subset S ⊆ V (G) of size at most
k, the δ-folio of G′ = (G∪X) \S (where R(G′) = R(G) \S), is equal to the the δ-folio of G′ \ v.
In other words, a vertex v is (δ, k)-irrelevant if for any vertex subset S ⊆ V (G) of size at most
k, the extended δ-folio of G \ S is same as the extended δ-folio of (G \ S) \ v.

In what follows, we define a generalization of TMC where the pattern H is not specified.

FindFolio Parameter: δ
Input: A rooted undirected graph G, and a non-negative integer δ.
Question: What is the extended δ-folio of G?

The special case of FindFolio where the input graphG is planar is called Planar FindFolio.
In addition, we define the problem FlatWall-FindFolio similarly to FindFolio, but where
the input, along with an instance (G, δ) of FindFolio, also consists of t, w, s ∈ N, a subset
A ⊆ V (G) of size at most t, a flat wall W of size (w×w) in G\A, a separation (A′, B′) of G\A
such that V (A′) ∩ V (B′) ⊆ V (D), and C,G0, G1, . . . , Gk and G̃ witnessing that B′ + E(C) is
C-flat as specified by Definition 3.9 and with the properties in Observation 3.7 and Lemma 3.2,
where V (C) ⊆ V (D) for the outer-boundary D of W , and the order in which vertices appear
on C is the same as the order in which they appear on D. Furthermore, we also demand that
for all i ∈ [k], tw(V (Gi)) ≤ s.

24

4.2 Main Theorems

Finally, let us state the main theorems proved in this paper, which will lead us to the proofs
of Theorems 1, 2, 3 and 4. Throughout the paper, we use h to denote the function mentioned
for Disjoint Paths [73, result (3.1)] (see Proposition 9.2). For planar graphs it is known that
h(k) = 2ck for a constant c (see Proposition 9.1). Moreover, we assume that h(k) ≥ k.

Results for TM-Deletion. As explained before, Theorem 1 first applies Lemma 2.1 and
obtains one of the following structure: (i) a tree decomposition of G of width bounded by a
function of k and h?, (ii) a large clique minor in the input graph, and (iii) a large flat wall in G.
As TM-Deletion is expressible in MSO (Monadic Second Order logic), Courcelle’s theorem,
we get the following theorem.

Theorem 5 ([2, 19, 38]). There is an algorithm for TM-Deletion running in time f(k, h?, tw)n,
where tw is the tree-width of the input graph.

When the input graph contains a large clique minor, we use the following theorem to find a
(δ, k)-irrelevant vertex, where δ ≤ (h?)2.

Theorem 6. There are two computable functions f, g : N× N× N → N and an algorithm that
given a rooted graph G, two integers δ, k ∈ N, and mutually vertex-disjoint connected subgraphs
G1, . . . , Gt such that for 1 ≤ i < j ≤ t there is an edge of G between Gi and Gj (i.e., (G1, . . . , Gt)
is a minor model of Kt in G), where t > f(|R(G)|, δ, k), runs in time g(|R(G)|, δ, k) · n3, and
outputs a (δ, k)-irrelevant vertex v in G.

When the input graph contains a large flat wall, the following theorem gives us a (δ, k)-
irrelevant vertex, where δ ≤ (h?)2.

Theorem 7. There is a computable function ĝ and an algorithm that, given k ∈ N and an in-
stance (G, δ, t, w′, s′) of FlatWall-FindFolio such that |R(G)| ≤ α(δ) and w′ ≥ (ĝ(δ?, t))k+2,

finds a (δ, k)-irrelevant vertex in time 22O(k((t+δ?)2+r) log(t+δ?+r))
(s′)O(s′)n where δ? = δ + α(δ),

ĝ(δ?, t) = (t+ δ? + r)O((t+δ?)2+r) and r = h(δ? + t).

Theorem 1 follows immediately from Lemma 2.1, Theorem 5, Theorem 6, and Theorem 7.
Next, using Theorem 7, we prove the following result for TM-Deletion on planar graphs.

Theorem 8. TM-Deletion is solvable in O(22k·2
poly(h?)

n2)-time on planar graphs.

Proof sketch. If the tree-width of G is “unbounded”, then we apply Theorem 7 to get a (δ, k)-
irrelevant vertex and delete it, and we apply the same procedure until we get a bounded tree-
width graph. For our problem, it is enough to find a (δ, k)-irrelevant vertex for G where δ = (h?)2

and R(G) = ∅. Notice that G is a plane graph and we set δ = (h?)2, t = 0, s′ = 0, and α(δ) = 0.
Therefore we have that ĝ(δ, t) = 2O(r2), where r = h((h?)2) = 2c(h

?)2 , because G is a plane

graph (see Proposition 9.1 later in the paper), and c is a constant. Hence, ĝ(δ, t) = 22p(h
?)

for
a polynomial function p in h?. Then, by Proposition 3.9, there is a constant c such that if

tw(G) ≥ c · (22·p(h
?)

)k+2, then the algorithm of Proposition 3.9 outputs (w′ × w′)-wall, where
w′ ≥ ĝ(δ, t)k+2. Now we apply Theorem 7 to find an irrelevant vertex. The running time of

finding one (δ, k)-irrelevant vertex is upper bounded by 22k·2
poly(h?)

n.

When tw(G) ≤ c · (22p(h
?)

)k+2 ≤ c · 2(k+2)·2p(h?) , by standard dynamic programming we solve

the problem in time 22k·2
poly(h?)

n. Thus, the overall running time follows.

To generlize Theorem 8 to graphs of bounded genus, we need to use the known single
exponential bound on h [61]. That is, the proof for graphs of bounded genus is identical to
Theorem 8, except that we need to use the known single exponential bound on h for graphs of
Euler genus g [61]. This leads to Theorem 2.

25

The Case of Planar Graphs for TMC. In the context of TMC (or Planar TMC), for an
instance (G,H, k), we say that a vertex v is irrelevant if (G,H, k) is a Yes-instance if and only
if (G \ v,H, k) is a Yes-instance. In order to prove Theorem 4 for g = 0 (i.e., planar graphs), it
is sufficient to prove the following theorem.

Theorem 9. There exist a constant c ∈ N and an algorithm that, given an instance (G,H, h?)

of Planar TMC such that tw(G) ≥ 22c(h
?)2

, finds an irrelevant vertex in time 222
O((h?)2)

n.

Indeed, having Theorem 9 at hand, it is straightforward to prove Theorem 4 as follows. First,

by Proposition 3.1, we can test whether tw(G) ≤ 22c(h
?)2

. If the answer is positive, we call the

algorithm given by Proposition 3.3 to solve the problem in time 222
O((h?)2)

n2. Otherwise, we call

the algorithm given by Theorem 9 to find an irrelevant vertex in time 222
O((h?)2)

n, remove the
outputted vertex from the graph, and return to the first step. As the first step can be applied
at most n times, the total running time is bounded as stated in Theorem 4. Thus, from now on,
we focus only on the proof of Theorem 9 for planar graph. A theorem for graphs of bounded
genus is identical to Theorem 9, except that we need to use the known single exponential bound
on h for graphs of Euler genus g [61]. This leads to Theorem 4.

The Case of General Graphs for TMC. The function α(δ) to which we refer in the
statements below is defined to be 16δ2 in the proof of Theorem 10 in Section 8. In the context of
FindFolio (or Planar FindFolio), for an instance (G, δ), we say that a vertex v is irrelevant
if the extended δ-folio of G is equal to the extended δ-folio of G \ v. Towards the proof of
Theorem 3, we will need to prove a stronger result as stated below.

Theorem 10. FindFolio is solvable in time f(δ) · n3 on instances (G, δ) such that |R(G)| ≤

α(δ), where f(δ) = 22O(r31)222
(r2·2

O(δ4))

, r2 = h(2c(δ)
4
) and r1 = h(22(c·δ

4)r2) for some constant c.
Moreover, the algorithm outputs the following: for each graph X on R(G) and H in the δ-folio
of G ∪X, a realization of H as the topological minor in G ∪X.

Clearly, Theorem 3 is a corollary of Theorem 10. The main component in our proof of
Theorem 10 is the following theorem.

Theorem 11. There is a computable function g and an algorithm that, given an instance
(G, δ, t, w′, s′) of FlatWall-FindFolio such that |R(G)| ≤ α(δ) and w′ ≥ g(δ?, t), and w′′ ∈ N,
finds a w′′×w′′ flat wall within the input w′×w′ flat wall such that the set of all vertices of the out-

put inner flat wall is irrelevant. The algorithm runs in 22O(((t+δ?)2+r) log(t+δ?+r))
(s′)O(s′)(w′′)O(w′′)n

time where δ? = δ + α(δ), g(δ?, t) = (t+ δ? + r)O((t+δ?)2+r)w′′ and r = h(δ? + t).

The following lemma says that the existence of a smaller flat wall is already good enough to
prove that there exists an irrelevant vertex.

Lemma 4.1. There is a computable function g such that for any instance (G, δ, t, w, s) of
FlatWall-FindFolio with |R(G)| ≤ α(δ) and w ≥ g(δ, t), there is an irrelevant vertex in G,
where g(δ, t) = 2O((δ+α(δ))2)t · r, and r = h(δ + α(δ) + t).

5 Finding a Smaller Representative and Auxiliary Lemmas

Our algorithms use the technique of irrelevant vertices as well as recursive understanding (for
FindFolio). That is, at each stage we will separate our graphs into two subgraphs, “under-
stand” the behavior of one of these subgraphs, and then replace it with a so called representative
that has the same “behavior” and is smaller. To this end, let us first formally define the notion
of a representative.

26

Definition 5.1 (Representative). Let G and F be two rooted graphs such that R(G) = R(F)
and δ ∈ N. We say that F is a δ-representative of G if F and G have the same extended δ-folio.

Proposition 5.1. Let G be a rooted graph and δ ∈ N. Then the number of distinct graphs (up
to isomorphism) in the δ-folio of G is upper bounded by 2O(δ2) · |R(G)|O(δ).

Proposition 5.2 (Lemma 2.4 [39]). Let (G1, G2) be a separation of a rooted graph G and let
V (G1) ∩ V (G2) ⊆ R(G). Let G′1 be a rooted graph compatible with G1 such that G1 and G′1
have the same extended δ-folio. Let G′ be the graph obtained by replacing G1 with G′1 in the
separation (G1, G2). Then both G and G′ have the same extended δ-folio.

By Proposition 5.2, we easily relate the irrelevancy of a vertex with respect to a subgraph
of the input graph to the input graph itself.

Corollary 5.1. Let (G, δ) be an instance of FindFolio. Let (G1, G2) be a separation of G
such that V (G1) ∩ V (G2) ⊆ R(G) and let v be a vertex irrelevant for (G1, δ). Then, v is also
irrelevant for (G, δ).

Proof. Since v is irrelevant for (G1, δ), we have that G1 and G1\v have the same extended δ-folio.
By Proposition 5.2, G and (G1\v)∪G2 have the same extended δ-folio. Since G\v = (G1\v)∪G2,
the proof is complete.

We now define important separators, which have played an important role in resolving some
of the long standing open problems in the field of parameterized complexity.

Definition 5.2 (Important Separators, [60]). Let G be a graph. For subsets X,Y, S ⊆ V (G),
the set of vertices reachable from X \ S in G − S is denoted by RG(X,S). An X-Y -separator
S dominates an X-Y -separator S′ if |S| ≤ |S′| and RG(X,S′) ⊂ RG(X,S). A subset S is an
important X-Y -separator if it is minimal, and there is no X-Y -separator S′ that dominates S.

Proposition 5.3. Let G be a graph and X,Y ⊆ V (G). Let λ be the minimum size of an
X-Y -separator in G. Then there is exactly one important X-Y -separator of size λ in G.

Proposition 5.4 ([15, 60, 21]). Let G be a graph, X,Y ⊆ V (G), and k ∈ N. Let Sk be the set
of all important X-Y -separators of size at most k. Then |Sk| is upper bounded by 4k, and these
separators can be enumerated in time O(|Sk| · k2 · (n+m)).

Lemma 5.1. Let G be a graph and Z, V ′ ⊆ V (G) such that G[V ′] is connected. Let U =
NG(V ′). Let X and Y be two (inclusion) minimal Z-U -separators such that Y dominates X.
Let CX and CY be the unique components containing V ′ in G \X and G \ Y , respectively. Let
AX = G \ V (CX), BX = G[X ∪ V (CX)], AY = G \ V (CY), BY = G[Y ∪ V (CY)]. Then,
V (AX) ⊂ V (AY) (and hence X ⊆ V (AY)).

Proof. Notice that (AX , BX) and (AY , BY) are two separations of G such that AX ∩ BX = X
and AY ∩ BY = Y . Fix a vertex u ∈ V (AX). We need to show that u ∈ AY . Suppose not.
Then, u ∈ V (BY) \ V (AY) = V (CY). Since CY is connected there is a path P from u to V ′

in CY . Since (AX , BX) is a separation, u ∈ V (AX), V ′ ⊆ V (CX), path P contains a vertex
x ∈ X. Since X is a minimal separator there is a vertex y ∈ RG(Z,X) such that x is adjacent
to y. Since P is a path in CY and x ∈ V (P), y /∈ RG(Z, Y). This contradicts the assumption
that Y dominates X. Thus, we have proved that V (AX) ⊆ V (AY). If V (AX) = V (AY) then
X = Y , because X and Y are minimal separators. Therefore, since Y dominates X, we have
that V (AX) ⊂ (AY).

We also need a result (Proposition 5.5) by Robertson and Seymour [70]. Towards that we
first need to recall definitions related to minors in a rooted graph from [70].

27

Definition 5.3 ([70]). Let G and H be two rooted graphs. A minor model of H in G is function
φ : V (H) → 2V (G) such that (i) for all h ∈ V (H), G[φ(h)] is a connected graph, (ii) for all
distinct h, h′ ∈ V (H), φ(h) ∩ φ(h′) = ∅, (iii) for all {h, h′} ∈ E(H), there exist u ∈ φ(h) and
v ∈ φ(h′) such that {u, v} ∈ E(G) and (iv) for all u ∈ R(H), u′ ∈ φ(u), where u′ ∈ R(G) and
ρG(u′) = ρH(u). Then, we say that H is a minor of G, and we further say that H has detail
≤ δ (where δ ∈ N) if |E(H)| ≤ δ and |V (H) \ R(H)| ≤ δ. The δ-minor folio of G is the set of
all minors of G with detail ≤ δ.

We remark that in [70], the term δ-folio is used in place of δ-minor folio. We adopted this
term as we used δ-folio with respect to topological minors.

Definition 5.4. Let G be a graph and Z ⊆ V (G). We say that the δ-minor folio of G relative
to Z is generic if the δ-minor folio of the rooted graph G with R(G) = Z contains every graph
with |Z| roots and with detail at most δ.

We say that a vertex v in a rooted graph G is irrelevant with respect to the δ-minor folio of
G if the δ-minor folio of G is same as the δ-minor folio of G \ v.

Proposition 5.5 (6.1 [70]). Let G be a rooted graph and let Z = R(G) with |Z| ≤ ξ. Let δ′ ∈ N,
t = b5

2ξc+ 3δ′ + 1 and let G1, . . . , Gt be mutually vertex-disjoint connected subgraphs such that
for 1 ≤ i < j ≤ t there is an edge of G between Gi and Gj. Let (A,B) be a separation of G
such that

(i) V (A) ∩ V (Gi) = ∅ for some i ∈ [t],

(ii) Z ⊆ V (A),

(iii) subject to (i) and (ii), (A,B) has minimum order, and

(iv) subject to (i), (ii) and (iii), A is maximal.

Let v ∈ V (B) \ V (A). Then v is irrelevant to the δ′-minor folio of G. Moreover, the δ′-minor
folio of B \ v relative to V (A) ∩ V (B) is generic.

Lemma 5.1 and Proposition 5.3 imply the following observation.

Observation 5.1. Let G be a rooted graph and let Z = R(G) and t ∈ N. Let G1, . . . , Gt be
mutually vertex-disjoint connected subgraphs such that for 1 ≤ i < j ≤ t there is an edge of
G between Gi and Gj. Let (A,B) be a separation of G satisfying the conditions (i) − (iv) of
Proposition 5.5. Then, V (A) ∩ V (B) is the unique important Z-Ui-separator of minimum size,
where Ui = NG(V (Gi)).

Proposition 5.6. [70, 2.3] Let (A,B) be a separation of a graph G, Z ⊆ V (G), and δ ∈ N. If
v ∈ V (B) is irrelevant to the δ-minor folio of B relative to V (A) ∩ V (B), then v is irrelevant
to the δ-minor folio of G relative to Z.

Lemma 5.2. Let G be a rooted graph and let Z = R(G) with |Z| ≤ ξ. Let δ′ ∈ N, t =
b5

2ξc+ 3δ′ + 1 and let G1, . . . , Gt be mutually vertex-disjoint connected subgraphs such that for
1 ≤ i < j ≤ t there is an edge of G between Gi and Gj. For each i ∈ [t], let Vi = V (Gi),
Ui = NG(Vi), and Zi be the unique important Z-Ui-separator of minimum size. For each i ∈ [t],
let (Ai, Bi) be the separation of G such that Zi = Ai∩Bi, Ai = G\V (C), and Bi = G[Zi∪V (C)],
where C is the connected component containing Vi in G\Zi. Then, for any I ⊆ [t] of cardinality
at least ξ+ 1, at least one separation among {(Ar, Br) : r ∈ I} satisfies the conditions (i)− (iv)
of Proposition 5.5.

28

Proof. Let (A,B) be a separation of (G) satisfying conditions (i)− (iv) of Proposition 5.5. Let
i ∈ [t] be the index such that condition (i) is true. That is V (A) ∩ V (Gi) = ∅. Since (Z, V (G))
is a separation of G satisfying conditions (i) and (ii), we have that |V (A) ∩ V (B)| ≤ ξ. Let
S = V (A) ∩ V (B). Notice that S is a Z-Ui-separator, where Ui = NG(V (Gi)). Since t > |I|,
there exists j ∈ I such that S ∩V (Gj) = ∅. Also, since Gi and Gj are connected and there is an
edge between V (Gi) and V (Gj), S is a Z-Uj-separator as well. Moreover, S is a minimum size Z-
Uj-separator. Otherwise, we will contradict condition (iii) of Proposition 5.5 for the separation
(A,B). We claim that S is the unique important Z-Uj-separator of the minimum size. If S
is not an important Z-Uj-separator, then the unique Z-Uj-separator Zj of the minimum size
dominates S. Then,by Lemma 5.1, we get a contradiction to the fact that (A,B) satisfies
condition (iv) of Proposition 5.5. This implies that (Aj , Bj) satisfies the conditions (i)− (iv) of
Proposition 5.5. This completes the proof of the lemma.

Lemma 5.3. Let G be a rooted graph, (A,B) be a separation of G. Let H be a rooted graph in
the δ-folio of G and GH be a realization of H in G witnessed by a pair of functions (φ, ψ). Let
Z = NGH [φ(V (H))] and R(G)∪Z ⊆ V (A). Let S ⊆ V (B) \V (A) be such that δ′-minor folio of
B \S relative to V (A)∩V (B) is generic where δ′ = 4δ. Then, H belongs to the δ-folio of G\S.

Proof. We begin by constructing a new rooted graph G′. The underlying graph of G′ is same as
G, except that the set of roots will change. That is, the graph G′ is same as G, with R(G′) =
R(G)∪Z. Let ρG′ be an arbitrary injective map from R(G′) to N such that ρG′(v) = ρG(v) for
all v ∈ R(G). Now we prove that H belongs to the δ-folio of G′ \ S and this will imply that H
belongs the δ-folio of G \ S. Towards that we construct a new graph H ′ on the vertex set Z.
There is an edge {u, v} ∈ E(H ′) if and only if there is a path from u to v in GH , with internal
vertices from V (G) \Z. That is, H ′ is obtained by subdividing the edges e of H once, if ϕ(e) is
a path of length 2 and by subdividing the edges e of H twice, if ϕ(e) is a path of length strictly
more than 2. As a result we also consider that V (H) ⊆ V (H ′). Since |E(H)|+ is(H) ≤ δ, the
number of vertices as well as the number of edges in H ′ is at most 4δ = δ′. See Figure 4 for an
illustration. Notice that Z ⊆ R(G′). Moreover we set R(H ′) = V (H ′) with a natural map ρH′ ,
which is ρG′ restricted to the domain R(H ′). That is ρH′(v) = ρG′(v) for all v ∈ Z. For an ease
of presentation, for any u ∈ V (H ′) = R(H ′), we also use u to denote the vertex v in G′ ∪ X
such that ρG′(v) = ρH′(u). In other words, the graph H ′ is obtained from GH by contracting
edges of GH which are incident with at least one vertex in V (GH) \ Z. This implies that the
rooted graph H ′ is a minor of G′ and it has detail ≤ δ′. Since the δ′-minor folio of B \S relative
to V (A) ∩ V (B) is generic, by Proposition 5.6 we have that H ′ is a minor of G′ \ S. That
is, there is minor model φ′ of H ′ in the rooted graph G? = G′ \ S. Here R(G?) = R(G′) and
ρG? = ρG′ . That is, φ′ : V (H ′)→ 2V (G?) such that (i) for all y ∈ V (H ′), G?[φ′(y)] is a connected
graph, (ii) for all distinct y, y′ ∈ V (H ′), φ′(y) ∩ φ′(y′) = ∅, (iii) for all {y, y′} ∈ E(H ′), there
exist u ∈ φ′(y) and v ∈ φ′(y′) such that {u, v} ∈ E(G?) and (iv) for all u ∈ R(H ′) = V (H ′),
ρ−1
G?(ρH′(u)) ∈ φ′(u) (That is, the vertex u in Z will be in φ′(u)).

Since H is a topological minor in H ′, to prove that H is also a topological minor in G?,
it is enough to prove that H ′ is a topological minor in G?. Towards that we construct a pair
of functions (φH′ , ϕH′) as follows. For any u ∈ V (H ′), φH′(u) = ρ−1

G′ (ρH′(u)) = u. (Notice
that, here u also belongs to Z ⊆ V (G?)). For any {u, v} ∈ E(H ′) with u ∈ V (H), {u, v} is
also present in G?. So we set ϕH′({u, v}) = u − v whenever u ∈ V (H). Now consider an edge
of the form {u′, v′} ∈ E(H ′), where u′, v′ ∈ V (H ′) \ V (H). In this case both u′ and v′ have
degree exactly 2 in H ′ and there is a path u− u′ − v′ − v in H ′ with u, v ∈ V (H). Notice that
{u, u′}, {v, v′} ∈ E(G?) and there is an edge {w,w′} ∈ E(G?) where w ∈ φ′(u′) and w′ ∈ φ′(v′)
(because φ′ is a minor model of H ′ in G?). This implies that there a path Pu′v′ from u′ to v′

in G? using internal vertices from φ′(u′) ∪ φ′(v′). We set ϕH′({u′, v′}) = Pu′v′ . This completes
the definition (φH′ , ϕH′) and it witnesses that H ′ is a topological minor in G?. In turn, this

29

•

•

•

•

(a) Graph H

•

•

•

•• • •

• •

•

(b) Graph GH

•

•

•

•• •

• •

•

(c) Graph H ′

Figure 4: Illustration of the construction of H ′ from H and GH .

completes the proof of the lemma.

6 Graphs with Large Clique Minor

In this section we prove that if there is a large clique minor in the input graph of FindFolio,
then there is a small δ-representative. After that, we prove that if there is a large clique minor,
then we can actually find a (δ, k)-irrelevant vertex by employing Theorem 10. We remark that
the lemma about the (δ, k)-irrelevant vertex is not used for Theorem 10. To handle the case
considered in this section we need to define an additional variant of FindFolio. Specifically, we
define the problem Clique-FindFolio analogous to FindFolio. Here the input, along with an
instance (G, δ) of FindFolio, also consists of an integer t ∈ N and a function φ : V (Kt)→ 2V (G)

that witnesses that Kt is a clique minor of G.

Lemma 6.1. There exists a computable function h′ such that for any instance (G, δ, t, φ) of
Clique-FindFolio where |R(G)| ≤ α(δ) and t ≥ h′(δ), there is a vertex v ∈ V (G) such that
G \ v is a δ-representative of G (with the same set of roots), where h′(δ) = 2O((δ+α(δ))2).

Proof. We begin by constructing a new rooted graph G′. The graph G′ is same as the graph G,
with R(G′) ⊇ R(G). First, we add R(G) to R(G′). Then, for each graph X on R(G) and H in
the δ-folio of G ∪X, we add a set ZH,X to R(G′), which is defined as follows. Let GH,X be an
arbitrary realization of H in G ∪X and (φH , ϕH) be the corresponding pair of functions which
witnesses that H is a topological minor of G. The set ZH,X is equal to NGH [φH(V (H))]. Let
ρG′ be an arbitrary injective map from R(G′) to N such that ρG′(v) = ρG(v) for all v ∈ R(G).
By Proposition 5.1, and the fact that |V (X)| ≤ |R(G)| ≤ α(δ), we have that |R(G′)| is upper
bounded by 2O((δ+α(δ))2) · |R(G)|O(δ) = α′(δ), for some computable function α′. Let ξ = α′(δ),
δ′ = 4δ and k′ = b5

2ξc + 3δ′ + 1 = 2O((δ+α(δ))2) · (α(δ))O(δ) = 2O((δ+α(δ))2). We choose the
function h′ such that h′(δ) = k′. We are given a minor model φ of Kt in G. Notice that since
|R(G′)| < t, (G′[R(G′)], G′ \E(R(G′))) is a separation of G′ satisfying conditions (i) and (ii) of
Proposition 5.5. This implies that there exists a separation (A,B) of G′ such that conditions
(i)–(iv) of Proposition 5.5 hold. Moreover, (A ∪X,B) is a separation of G′ ∪X, for any graph
X on R(G) such that conditions (i)–(iv) of Proposition 5.5 hold (because R(G′) ⊆ A). Then
by Proposition 5.5, we know that there is a vertex v ∈ V (B) \ V (A) such that (a) the δ′-minor
folio of B \ v relative to V (A) ∩ V (B) is generic (for any graph X on R(G)).

We claim that G\v is a δ-representative of G (with the same set of roots). Clearly v /∈ R(G′)
and hence R(G) ⊆ V (G \ v). Towards proving that G \ v is a δ-representative of G, it is enough
to prove that for each graph X on R(G) and H in the δ-folio of G ∪X, H is also a topological
minor in (G∪X) \ v. Fix an arbitrary graph X and another arbitrary graph H in the δ-folio of
G∪X. Consider the function (φH , ϕH) and the subgraph GH,X which is the (above mentioned
fixed) realization of H in G ∪ X. We know that (b) ZH,X ⊆ R(G′) ⊆ V (A). Therefore, by
Lemma 5.3 and statements (a) and (b), we conclude that H belongs to the δ-folio of (G∪X)\v.
This completes the proof of the lemma.

30

Now we explain how to find a (δ, k)-irrelevant vertex in the presence of a large clique minor.
That is, we prove Theorem 6. For convenience, we restate the theorem.

Theorem 6. There are two computable functions f, g : N× N× N → N and an algorithm that
given a rooted graph G, two integers δ, k ∈ N, and mutually vertex-disjoint connected subgraphs
G1, . . . , Gt such that for 1 ≤ i < j ≤ t there is an edge of G between Gi and Gj (i.e., (G1, . . . , Gt)
is a minor model of Kt in G), where t > f(|R(G)|, δ, k), runs in time g(|R(G)|, δ, k) · n3, and
outputs a (δ, k)-irrelevant vertex v in G.

Proof. Let ξ = |R(G)|. Towards the proof of the lemma, we need to design an algorithm to find
a vertex v such that for any graph X on R(G) and a vertex subset S ⊆ V (G) of size at most k,
the δ-folio of G′ = (G ∪X) \ S (where R(G′) = R(G) \ S), is equal to the the δ-folio of G′ \ v.
Notice that the number of choices for X is bounded by 2ξ

2
, but the number of choices for S

is Ω(nk). Towards the proof of the lemma, we design a recursive algorithm A that marks at
most f(ξ, δ, k) “relevant” graphs from {G1, . . . , Gt}. Since t > f(ξ, δ, k), there will be at least
one graph Gi that is not marked by the algorithm. Then, we prove that any vertex in V (Gi) is
(δ, k)-irrelevant.

Our recursive algorithm A has the following specifications.

• Input is a rooted graph G?, two integers k, δ ∈ N and mutually vertex-disjoint connected
subgraphs G1, . . . , Gt such that for 1 ≤ i < j ≤ t there is an edge of G between Gi and
Gj (i.e., (G1, . . . , Gt) is a minor model of Kt in G), where t > f(ξ, δ, k) and ξ = |R(G?)|.

• Running time of A is g(ξ, δ, k) · n3 for some computable function g.

• It marks at most f(ξ, δ, k) graphs from {G1, . . . , Gt} with the following property: for any
vertex v in an unmarked graph Gi, for any graph X on R(G?), and for any vertex subset
S ⊆ V (G?) of size at most k, the δ-folio of G′ = (G? ∪X) \ S (where R(G′) = R(G?) \ S)
is same as the δ-folio of G′ \ v. That is, the extended δ-folio of G′ and G′ \ v are same.

Finally, we use algorithm A on (G, k, δ, (Gj)j∈[t]) to find a (δ, k)-irrelevant vertex.

Description of A: Let c be a non-negative integer constant such that the number of distinct
graphs in the δ-folio of G? is at most 2cδ

2 · |R(G?)|cδ (see Proposition 5.1). Let β : N× N 7→ N
be a function defined as β(δ, ξ) = 2ξ

2
(2cδ

2 · ξcδ)4δ. Let η = β(δ, ξ). We choose a monotonically
increasing function f satisfying the following recurrence relation.

f(ξ, δ, k) = η(2η + k + 2) + 2 · 4η+k(2η + k + 1)k+3f(η + k, δ, k − 1)

f(ξ, δ, 0) = η(2η + k + 2)

For each i ∈ [t], let Vi = V (Gi) and Ui = NG(Vi). The algorithm has following steps.

Step 1 Using Theorem 10 we computes the extended δ-folio of G?4. Using Theorem 10,
we also get the following: for each graph X on R(G?) and H in the δ-folio of G? ∪X, a
realization GH of H as a topological minor in G? ∪ X, witnessed by (φX,H , ψX,H). Let
Z0 =

⋃
X,H NGH [φX,H(V (H))] where the union is over over graphs X in AllGraphs(R(G?))

and H in the δ-folio of G?∪X. Observe that R(G?) ⊆ Z0. By Proposition 5.1 and the fact
that |AllGraphs(R(G?))| ≤ 2ξ

2
, we have that |Z0| is upper bounded by 2ξ

2
(2cδ

2 · ξcδ)4δ =
β(δ, ξ) = η.

Step 2 For each i ∈ [t], if Vi ∩ Z0 6= ∅, then we mark Gi.

4Even though in Theorem 10, |R(G?)| ≤ 16δ2, we can use it by choosing δ? ≥ δ such that |R(G)| ≤ 16(δ?)2

and get the extended δ?-folio which is a super set of the extended δ-folio of G?.

31

Step 3 For each i ∈ [2η + k + 1] do the following. Using Proposition 5.3 compute the
unique important Z0-Ui-separator Zi of minimum size in G. Since |Z0| ≤ η, |Zi| ≤ η for
all i ∈ [2η + k + 1]. For each j ∈ [t], if Vj ∩ Zi 6= ∅, then we mark Gj . Let Ii = {j ∈
[t] : Vj ∩ Zi = ∅}.

Step 4 If k = 0, we stop. Otherwise go to the next step.

Step 5 For each i ∈ [2η + k + 1], let (Ai, Bi) be the separation of G? such that Zi =
V (Ai) ∩ V (Bi), Ai = G? \ V (C), and Bi = G?[Zi ∪ V (C)], where C is the connected
component containing Vi in G? \ Zi. Now, for any i ∈ [2η + k + 1], any subset D ⊆ Zi
of size at most k, and any non-negative integer k′ < k, recursively run algorithm A on
(Bi \D, k′, δ, (Gj)j∈Ii), where R(Bi \D) = Zi \D.

Step 6 For each i, j ∈ [2η + k + 1], using Proposition 5.4, we compute the set Qi,j of all
important Zi-Uj-separators of size at most |Zi|+ k.

Step 7 For each i, j ∈ [2η + k + 1] and each Q ∈ Qi,j we do the following. Let (AQ, BQ)
be the separation of G? such that Q = V (AQ) ∩ V (BQ), AQ = G? \ V (C), and BQ =
G?[Q∪V (C)], where C is the connected component containing Vj in G?\Q. Let JQ = {q ∈
[t] : Vq ∩ Q = ∅}. For any subset D ⊆ Q of size at most k, and any non-negative integer
k′ < k, recursively run algorithm A on (BQ\D, k′, δ, (Gq)q∈JQ), where R(BQ\D) = Q\D.

Correctness of A: Let G = {G1, . . . , Gt}. Notice that when k = 0, algorithm A will not make
any recursive calls. Moreover, when k > 0, in each recursive call the value of k drops by at
least one. This implies that algorithm A will terminate. Next we prove that algorithm A make
recursive calls with valid inputs. That is, for each recursive call on input (G?1, k

′, δ, (G′j)j∈[t′]),
t′ > f(ξ′, δ, k′) where ξ′ = R(G?1). First, consider the recursive calls made in Step 5. Fix an
index i ∈ [2η + k + 1], a subset D ⊆ Zi, and a non-negative integer k′ < k. Since |Zi| ≤ η and
graphs in G are pairwise vertex-disjoint, |Ii| ≥ t − η. Since t > f(ξ, δ, k) = η(2η + k + 2) + 2 ·
4η+k(2η+ k+ 1)k+3f(η+ k, δ, k− 1), we have that |Ii| > f(η, δ, k′). Moreover, |R(Bi \D)| ≤ η.
Since G?[

⋃
j∈Ii V (Gj)] is a connected graph, i ∈ Ii, and V (Gj) ∩ Zi = ∅, Gj is a subgraph of

Bi \D for all j ∈ Ii. This implies that (Bi \D, k′, δ, (Gj)j∈Ii) is a valid input for algorithm A.
Hence, all recursive calls in Step 5 are on valid inputs.

Now consider the recursive calls in Step 7. Fix indices i, j ∈ [2η+k+1], a separator Q ∈ Qi,j ,
a subset D ⊆ Q, and a non-negative integer k′ < k. We know that |Q| ≤ |Zi| + k ≤ η + k.
This implies that |JQ| ≥ t − (η + k) > f(η + k, δ, k′). By arguments similar to that in the
above paragraph, we can show that Gq is a subgraph of BQ \ D for any q ∈ JQ. Moreover,
|R(BQ \D)| ≤ η + k. This implies that (BQ \D, k′, δ, (Gq)q∈JQ) is a valid input for algorithm
A. Hence, all recursive calls in Step 7 are on valid inputs.

Claim 6.1. Algorithm A marks at most f(ξ, δ, k) graphs from G.

Proof. We prove by induction on k that algorithm A marks at most f(ξ, δ, k) graphs from G.
The base case is when k = 0. Since |Z0| ≤ η and the graphs G1, . . . , Gt are vertex-disjoint, in
Step 2, we mark at most η graphs from G. Since |Zi| ≤ η for all i ∈ [2η+ k+ 1] and the graphs
G1, . . . , Gt are vertex-disjoint, in Step 3, we mark at most η(2η+ k+ 1) graphs from G. Thus,
when k = 0, the number of marked graphs is at most η(2η + k + 2) = f(ξ, δ, 0).

Now consider the inductive step. That is, when k > 0. By arguments similar to that in
the base case, we have that the number of graphs marked in Step 2 and Step 3 is at most
η(2η + k + 2). Since |Zi| ≤ η, the number of times we recursively call algorithm A in Step
5 is at most (2η + k + 1)ηkk. By induction hypothesis, each of these recursive calls marks at

32

most f(η, δ, k − 1) graphs in G. Thus in Step 5, the number of graphs marked is at most
(2η + k + 1)ηkk · f(η, δ, k − 1) which is upper bounded by (2η + k + 1)k+2f(η + k, δ, k − 1).
Next, we consider the number of graphs marked in Step 7. For each i, j ∈ [2η + k + 1] and
each Q ∈ Qi,j , |Q| ≤ |Zi| + k ≤ η + k. For any i, j ∈ [2η + k + 1], any Q ∈ Qi,j and any
non-negative integer k′ < k, we recursively call A, where the number of roots in the input graph
of the recursive call (which is an induced subgraph of G?) is at most η + k and the model sets
of clique minor is a subset of {V (G1), . . . , V (Gt)}. Since k′ < k, by induction hypothesis, the
number of graphs in G marked by each of these recursive calls is at most f(η + k, δ, k − 1). By
Proposition 5.4, we have that |Qi,j | ≤ 4η+k for all i, j ∈ [2η + k + 1]. This implies that the
number of recursive calls made in Step 7 is at most (2η + k + 1)2 · 4η+k · k · (η + k)k which is
upper bounded by 4η+k(2η + k + 1)k+3. Thus, the number of graphs marked in Step 7 is at
most 4η+k(2η + k + 1)k+3f(η + k, δ, k − 1). By summing the number of marked graphs in all
steps, we get that the total number of graphs marked in G is at most f(ξ, δ, k).

Next we prove that any vertex in an unmarked graph in G is (δ, k)-irrelevant. Towards that
it is enough to prove the following statement. For any unmarked graph Gr ∈ G, any vertex
v ∈ V (Gr), and any vertex subset S ⊆ V (G?) of size at most k, the extended δ-folio of G? \ S
is same as the extended δ-folio of (G? \ S) \ v. We prove this statement by induction on k.

Before proving the statement, we first prove some auxiliary claims. Recall the separators
Z1, . . . , Z2η+k+1 constructed in Step 3 of the algorithm. Here, Zi is the unique important Z0-
Ui-separator of minimum size for all i ∈ [2η+k+1] and |Z0| ≤ η. Also, consider the separations
(Ai, Bi), i ∈ [2η+ k+ 1], constructed in Step 5. Notice that Z0 ⊆ V (Ai), Zi = V (Ai)∩ V (Bi),
and V (Gi) ⊆ V (Bi) \ V (Ai) for all i ∈ [2η + k + 1].

Claim 6.2. Let I ⊆ [2η + k + 1] be subset of size at least η + 1. Then, there exists i ∈ I such
that (Ai, Bi) is a separation of G? satisfying the conditions (i)− (iv) of Proposition 5.5.

Proof. Notice that t ≥ b5
2cη + 3δ′ + 1, where δ′ = 4δ. Then, by Lemma 5.2, there exists i ∈ I

such that (Ai, Bi) is a separation of G? satisfying the conditions (i)−(iv) of Proposition 5.5.

Claim 6.3. Let i ∈ [2η+ k+ 1] and S be a subset of V (Bi) \V (Ai) such that the δ′-minor folio
of Bi \ S relative to V (Ai) ∩ V (Bi) is generic. Then, for any graph X on R(G?) and H in the
δ-folio of G′ = G? ∪X, H also belongs to the δ-folio of G′ \ S.

Proof. Fix a graph X on R(G?) and H in the δ-folio of G′ = G? ∪X. In Step 1 we computed
a pair of functions (φX,H , ψX,H) that witnesses the fact that H belongs to the δ-folio of G′ and
it is realized by the subgraph GH of G′. Moreover, by the construction of Z0, we have that
(i) NGH (φX,H(V (H))) ⊆ Z0. Let A′i = G′[V (Ai)] and B′i = G′[V (Bi)]. Since R(G?) ⊆ V (Ai),
(A′i, B

′
i) is a separation of G′. Since B′i \S is a supergraph of Bi \S, the δ′-minor folio of Bi \S

relative to V (Ai) ∩ V (Bi) is generic, and V (A′i) ∩ V (B′i) = V (Ai) ∩ V (Bi), we have that the
(ii) δ′-minor folio of B′i \ S relative to V (A′i)∩ V (B′i) is generic. Since S ⊆ V (Bi) \ V (Ai), (iii)
S ⊆ V (B′i) \ V (A′i). By statements (i) − (iii) and Lemma 5.3 we conclude that H belongs to
the δ-folio of G′ \ S.

Now, using induction on k we prove that for any unmarked graph Gr ∈ G and any vertex
v ∈ V (Gr) and any vertex subset S ⊆ V (G?) of size at most k, the extended δ-folio of G? \ S
is same as the extended δ-folio of (G? \ S) \ v. Let Ĝ be the set of all graphs from G that are
unmarked by A on input (G?, k, δ, (Gj)j∈[t]).

Consider the base case, i.e., when k = 0. As mentioned before, in this case algorithm A
will not make any recursive calls. That is, algorithm A will stop in Step 4. Here, we need
to show that for any unmarked graph Gr ∈ G and a vertex v ∈ V (Gr), the extended δ-folio
of G? is same as the extended δ-folio of G? \ v. By Claim 6.2, there exists i ∈ [η + 1] such

33

that (Ai, Bi) is a separation of G? satisfying the conditions (i) − (iv) of Proposition 5.5. Fix
an integer i ∈ [η + 1] such that (Ai, Bi) satisfies conditions (i)− (iv) of Proposition 5.5. Since
any graph Gr in Ĝ is not marked, V (Gr) ⊆ V (Bi) \ V (Ai). Then, by Proposition 5.5, for any
Gr ∈ Ĝ and v ∈ V (Gr) ⊆ V (Bi) \ V (Ai) the δ′-minor folio of Bi \ v relative to Zi is generic,
where δ′ = 4δ. Then, by Claim 6.3 the extended δ-folio of G? is same as the the extended δ-folio
of G? \ v for any unmarked Gr ∈ G and v ∈ V (Gr).

Next consider the induction step for k > 0. Fix an arbitrary vertex subset S ⊆ V (G?) of
size at most k. We have the following three cases.

Case 1: V (Ai) ∩ S 6= ∅ for some i ∈ [2η + k + 1]. Recall that Zi = V (Ai) ∩ V (Bi). Let
S0 = Zi ∩ S, S1 = S \ V (Bi), and S2 = S \ V (Ai). Since V (Ai) ∩ S 6= ∅, we have that
|S2| < k. Now consider the the recursive call made by the algorithm in Step 5 for D = S0 and
k′ = |S2|. Let G′ be the set of graphs from {Gj : j ∈ Ii} that are unmarked by the recursive

call (Bi \D, k′, δ, (Gj)j∈Ii). Notice that Ĝ ⊆ G′ because a graph is unmarked if it is unmarked
in every recursive calls. By induction hypothesis we know that for any graph Gr ∈ G′, any
vertex v ∈ V (Gr), and any vertex subset S′ ⊆ V (Bi \ S0) of size at most k′, the extended
δ-folio of Bi \ (S0 ∪ S′) is same as the extended δ-folio of (Bi \ (S0 ∪ S′)) \ v. This implies that
(i) for any graph Gr ∈ G′ and any vertex v ∈ V (Gr), the extended δ-folio of Bi \ (S0 ∪ S2) is
same as the extended δ-folio of (Bi \ (S0 ∪ S2)) \ v. Let A = Ai \ S and B = Bi \ S. Notice
that B = Bi \ (S0 ∪ S2) and (A,B) is a separation of G? \ S. Because of statement (i) and
Proposition 5.2, the extended δ-folio of G? \S is same as the the extended δ-folio of (G? \S) \ v
for any Gr ∈ G′ and any v ∈ V (Gr). Therefore, since Ĝ ⊆ G′, the extended δ-folio of (G? \S) \ v
for any Gr ∈ Ĝ and any v ∈ V (Gr) is same as the extended δ-folio of (G? \ S.

Case 2: There exist i, j ∈ [2η + k + 1] and Q ∈ Qi,j such that V (AQ) ∩ S 6= ∅. The
argument for this case is identical to the argument for Case 1 and hence we omit it.

Case 3: Case 1 and 2 are not applicable. Let I = {i ∈ [η + k + 1] : S ∩ Vi = ∅}. Since
|S| ≤ k, |I| ≥ 1 + η. By Claim 6.2 there exists i ∈ I such that (Ai, Bi) is a separation of G?

satisfying the conditions (i) − (iv) of Proposition 5.5. Fix an integer i ∈ I such that (Ai, Bi)
satisfies conditions (i) − (iv) of Proposition 5.5. Since Case 1 is not applicable we have that
S ⊆ V (Bi) \ V (Ai). Let J = {j ∈ [2η + k + 1] : Vj ∩ Zi = ∅ and Vj ∩ S = ∅}. Since |Zi| ≤ η,
|S| ≤ k and {V1, . . . , V2η+k+1} are pairwise disjoint, |J | ≥ [η+ 1]. Since G?[Vi ∪Vj] is connected
and (Vi ∪ Vj) ∩ Zi = ∅ for all j ∈ J , Zi is a Z0-Uj-separator in G?. In fact, (a) Zi is a Z0-
Uj-separator in G? of minimum cardinality for any j ∈ J , because (Ai, Bi) satisfies conditions
(i)− (iv) of Proposition 5.5. Since Zi is a Z0-Ui-separator in G? we have that Zi ∩ Vi = ∅, and
hence i ∈ J .

Now we have two subcases as follows. In the first subcase there exists j ∈ J such that the size
of a minimum Zi-Uj-separator is strictly less than |Zi| in G? \ S. Let Y be a minimum size Zi-
Uj-separator in G? \S. Then, (b) Y ′ = Y ∪S is a Zi-Uj-separator in G?. Since (Ai, Bi) satisfies
conditions (i) − (iv) of Proposition 5.5, (c) Y is a not a Zi-Uj-separator in G?. Statements
(b) and (c) implies that there is a inclusion minimal Zi-Uj-separator W ⊆ Y ′ in G? such that
S ∩W 6= ∅. Moreover |W | < |Zi| + k. Then, there is an important Zi-Uj-separator Q ∈ Qi,j
that dominates W . Thus, by Lemma 5.1, W ⊆ V (AQ) (recall the construction (AQ, BQ) in
Step 7). This implies that V (AQ)∩S 6= ∅. This contradicts the assumption that Case 2 is not
applicable.

Next we consider the subcase that for all j ∈ J , the size of a minimum Zi-Uj-separator in
G? \ S is |Zi|. Then, notice that Zi is a minimum size Zi-Uj-separator in G? \ S for all j ∈ J .
Consider the separation (Ai, Bi \S) of G? \S. Let L = {j′ ∈ [t] : Vj′ ∩S = ∅}. Notice that since
t is large enough, |L| ≥ b5

2ηc+ δ′+1 and (Gj′)j′∈L form a minor model of K|L| in G? \S. Notice

34

that J ⊆ L. In the following claim we prove that (Ai, Bi \ S) satisfies conditions (i) − (iv) of
Proposition 5.5.

Claim 6.4. Let G′ = G? \ S, R(G′) = Z0. Then, (Ai, Bi \ S) satisfies conditions (i) − (iv) of
Proposition 5.5.

Proof. First we prove that for any j ∈ J , there are |Zi| vertex-disjoint paths from Z0 to Uj in
G′. By the assumption of second subcase, there are |Zi| vertex-disjoint paths from Zi to Uj in
G′ for any j ∈ J . This follows from Menger’s theorem and the fact that the size of a minimum
Zi-Uj-separator in G′ is |Zi| for all j ∈ J . Thus, since (Ai, Bi \ S) is a separation of G′ with
V (Ai) ∩ V (Bi \ S) = Zi, and Uj ∈ Bi \ S, there are |Zi| vertex-disjoint paths from Zi to Uj in
Bi \S. Since Zi is a minimum Z0-Uj-separator in G? (because (Ai, Bi) is a separation satisfying
conditions (i)− (iv) of Proposition 5.5 and Vj ⊆ V (Bi) \ V (Ai)), and S ⊆ V (Bi \ V (Ai), there
are |Zi| vertex-disjoint paths from Z0 to Zi in Ai. Combining both the arguments, we get that
for any j ∈ J , there are |Zi| vertex-disjoint paths from Z0 to Uj in G′ for all j ∈ J .

Suppose there is a separation (A,B) of G′ such that |A ∩ B| < |Zi| and satisfies conditions
(i) − (iv) of Proposition 5.5. Then, by Lemma 5.2, there is a separation (A′j , B

′
j) of G′ such

that V (A′j)∩V (B′j) is the unique important Z0-Uj-separator in G′ for some j ∈ J and |V (A′j)∩
V (B′j)| < |Zi|. This contradicts the fact that there are |Zi| vertex-disjoint paths from Z0 to Uj
in G′. Therefore (Ai, Bi \S) satisfies conditions (i)−(iii) of Proposition 5.5. Now we prove that
(Ai, Bi \ S) satisfies condition (iv) as well. For the sake of contradiction suppose (Ai, Bi \ S)
does not satisfy condition (iv). This implies that there is a Z0-U`-separator Z that dominates
Zi = V (Ai)∩V (Bi \S) and |Z| = |Zi| for some ` ∈ L. Also, since |Z| ≤ η and |J | ≥ 1 +η, there
exists j ∈ J such that Z is also a Zi-Uj-separator in G′. This implies that Z ′ = Z∪S is a Zi-Uj-
separator in G?. We claim that Z is not a Zi-Uj-separator in G?. For the sake of contradiction,
suppose Z is a Zi-Uj-separator in G?. Let AZ = G? \ V (C) and BZ = G?[Z ∪ V (C)], where C
is the connected component in G? \Z containing Vj . Notice that (AZ , BZ) is a Z0-Uj-separator
in G? and V (Ai) ⊂ V (AZ), because Z dominates Zi (see Lemma 5.1). Thus, if Z is a Zi-
Uj-separator in G?, then it contradicts the assumption that (Ai, Bi) satisfies condition (iv) of
Proposition 5.5. Therefore, there is an inclusion minimal Zi-Uj-separator W such that W ⊆ Z ′
and W ∩ S 6= ∅. This implies that there is a separator Q ∈ Qi,j such that S ∩ V (AQ) 6= ∅. This
is a contradiction to the assumption that Case 2 is not applicable. This completes the proof of
the claim.

For any graph Gr ∈ G, if Vr ∩ V (Ai) 6= ∅, then Vr ∩ Zi 6= ∅ (because G[Vi ∪ Vr] is connected
and Vi ⊆ V (Bi) \ V (Ai)), and we mark Gr in Step 3. That is, for any unmarked graph Gr,
Vr ⊆ V (Bi) \ V (Ai). Therefore, by Claim 6.4 and Proposition 5.5, for any unmarked graph
Gr ∈ G and any vertex v ∈ V (Gr), the δ′-minor folio of (Bi \ S) \ v relative to Zi is generic.
Then, by Claim 6.3 the extended δ-folio of G?\S is same as the the extended δ-folio of (G?\S)\v
for any unmarked Gr ∈ G and v ∈ V (Gr).

Running time analysis. Let T (n, ξ, δ, k) be the running time of algorithm A, where n =
|V (G?)| and ξ = |R(G?)|. By Theorem 10, Step 1 takes f1(ξ, δ)n3 time for some computable
function f1. Step 2 takes O(n) time. By Proposition 5.3, the time required to execute Step
3 is f2(ξ, δ, k)n2 for some computable function f2. Step 5 takes time f3(ξ, δ, k)T (n, η, δ, k −
1) for some computable function f3, where η = β(δ, ξ) (mentioned in the algorithm). By
Proposition 5.4, Step 6 takes time f4(ξ, δ, k)n2 for some computable function f4. Step 7 takes
f5(ξ, δ, k)T (n, η + k, δ, k − 1) time for some computable function f3. Therefore, there exist
computable functions g1 and g2 such that T (n, ξ, δ, k) satisfies the following recurrence relation.

T (n, ξ, δ, k) = g1(ξ, δ, k)T (n, β(ξ, δ) + k, δ, k − 1) + g2(ξ, δ, k)n3

T (n, ξ, δ, 0) = g2(ξ, δ, k)n3

35

Above recurrence relation implies that there is a computable function g such that T (n, ξ, δ, k)
is at most g(ξ, δ, k)n3. This completes the proof of the lemma.

7 Graphs with small treewidth

Recall the definition of δ-representative (see Definition 5.1). We prove that in the case of a
graph of small treewidth, we can find a small δ-representative.

Lemma 7.1. There exists a computable function g and an algorithm that, given a rooted graph
G, a nice tree decomposition of G of width tw, and δ ∈ N such that |R(G)| ≤ α(δ), computes
a δ-representative F of G (with the same set of roots) such that |V (F)| ≤ g(δ, tw) in time

2O((δ+α(δ))2) · (|R(G)|+ tw)O(δ+|R(G)|+tw) · n2, where g(δ, tw) = 22O((δ+α(δ))2)·(α(δ)+tw)O(δ+α(δ))
.

Proof sketch of Lemma 7.1. Let δ? = δ+ |R(G)|. We present an algorithm Alg that will output
a small graph with the same δ?-folio as G. Then by Observation 4.1(a) the correctness follows.

The input of Alg is a rooted graph G, a nice tree decomposition (T ′, β′) of width tw and
δ ∈ N such that |R(G)| ≤ α(δ). First we add R(G) to each bag of the decomposition (T ′, β′).
Let (T, β) be the resulting tree decomposition of G of width tw + |R(G)|. Notice that for any
v ∈ V (T), R(G) ⊆ β(v) and the number of children of v is at most 2. Without loss of generality
assume that ρG(R(G)) = [|R(G)|]. For any v ∈ V (T) define a rooted graph Gv as follows:
Gv = G[γ(v)] and R(Gv) = β(v). The function ρGv is an arbitrary injective map from R(Gv)
to {1, . . . , |R(G)| + tw + 1} such that ρGv(x) = ρG(x) for all x ∈ R(G) and ρGv(x) /∈ [|R(G)|]
for all x ∈ β(v) \R(G).

Next Alg compute the δ?-folio of Gv for all v ∈ V (T) as follows. For each rooted graph H
where |E(H)| + is(H) ≤ δ? with roots mapped to ρGv(R(Gv)), Alg computes whether H is a
topological minor in Gv or not using Proposition 3.2. This step of the algorithm takes time
(|R(G)| + tw)O(|R(G)|+tw)n. By Proposition 5.1, (i) number of graphs in the δ?-folio of Gv, for
any v ∈ V (T), is upper bounded by 2O((δ?)2) · (|R(G)| + tw)O(δ?). Therefore the δ?-folio of Gv
for all v ∈ V (T) together can be computed in time 2O((δ?)2) · (|R(G)|+ tw)O(δ+|R(G)|+tw) · n2.

Because of (i), the number of distinct δ?-folios of Gv, v ∈ V (T), is upper bounded by
2O((δ?)2) · (|R(G)| + tw)O(δ?) = q(δ, tw) (for some function q). Now if the depth of the tree-
decomposition (T, β) is strictly more than q(δ, tw), then there exist two nodes u, v ∈ V (T), u
is an ancestor of v and the δ?-folios of Gu and Gv are same. Thus the graph G′ obtained by
replacing Gu with Gv in the separation (Gu, (G\ (γ(u)\β(u)))\E(β(u))), has the same δ?-folio
of G with respect to roots R(G) (by Proposition 5.2 and Observation 4.1(b)). Moreover, a
tree decomposition (T ?, β?) of G′ of width tw + |R(G)| and with the number of nodes strictly
less than that of (T, β) can be derived from (T, β) as follows. Let Tu and Tv be the subtrees
of T , rooted at u and v, respectively. Then T ? is obtained by replacing Tu with Tv in the
separation (Tu, T \ (V (Tu) \ {u})). There is a natural injective mapping fT ? from V (T ?) to
V (T). Then β?(w) = β(fT ?(w)) for any w ∈ V (T ?). For any w ∈ V (T ?), the number of
children of w in T ? is at most 2 and R(G) ⊆ β?(w). Also the δ?-folios of G?w for all w ∈ V (T ?)
together can be obtained from the previously computed δ?-folios of Gv (for all v ∈ V (T)) in
time O(n) as follows. For any w ∈ V (T ?) (a) the δ?-folio of G?w is equal to the δ?-folio of
GfT? (w). When G?w = GfT? (w), statement (a) is clearly true. Otherwise the correctness follows
from Proposition 5.2 and Observation 4.1(b).

So, Alg continues to execute this procedure until the depth of the tree is bounded by q(δ, tw).
Since the degree of each node in the tree decompositions constructed in each step is at most 3,
when the procedure stops we will have a graph F that is a δ-representative of G and |V (F)| ≤
2q(δ,tw). The computations of the δ?-folio of Gv for all v ∈ V (T) altogether take time 2O((δ?)2) ·
(|R(G)|+ tw)O(δ+|R(G)|+tw) · n2. The subsequent computations of the δ?-folios in each step take

36

time O(n). Thus, the overall running time of the algorithm is upper bounded by 2O((δ?)2) ·
(|R(G)|+ tw)O(δ+|R(G)|+tw) · n2.

We would like to mention that we did not optimize the running time of the algorithm for
Lemma 7.1 as the the running time of our main algorithm is Ω(n2). As a corollary to Lemma 7.1,
we have the following result.

Corollary 7.1. There exists an algorithm that, given a rooted graph G of treewidth at most tw
and δ ∈ N such that |R(G)| ≤ α(δ), solves the instance (G, δ) of FindFolio in time f(δ, tw)n2

where f(δ, tw) = 2O((δ+α(δ))2) · (|R(G)|+ tw)O(δ+|R(G)|+tw).

8 Recursive Understanding for Topological Minor Containment

In this section, we prove Theorem 10 under the assumption that Theorem 11 holds. The proof
of Theorem 11 is the crux of this paper, and it is given in the following sections. For our
current purpose, we apply the method of recursive understanding, which means that at each
stage (besides basis cases, among which is Theorem 11) we will separate our graphs into two
subgraphs, “understand” the behavior of one of these subgraphs, and then replace it with a so
called representative that has the same “behavior” and is smaller. Combining Lemmata 4.1, 7.1
and 6.1, we have the following lemma, which says that a δ-representative of small size exists.

Lemma 8.1. There exists a computable function g such that for any instance (G, δ) of FindFolio
where |R(G)| ≤ α(δ), there is a δ-representative F of G (with the same set of roots) such that

|V (F)| ≤ g(δ), where g(δ) = 22c
′(δ+α(δ))2r and r = h(2c(δ+α(δ))2) for some constants c and c′.

Proof. Let F be a rooted graph with minimum number of vertices such that F is a δ-representative
of G and R(F) = R(G). Let h′ be the function defined in Lemma 6.1 and t = h′(δ) ∈
2O((δ+α(δ))2). Let g0 be the function g defined in Lemma 7.1 and g1 be the function g de-
fined in Lemma 4.1. Let c be the constant mentioned in Lemma 3.1 and let t1 = ct24. Let
w = g1(δ, t1) ∈ 2O((δ+α(δ))2)t1 · r = 2O((δ+α(δ))2) · r, where r = h(δ + α(δ) + t1). Let g2 be the
constant ct48(t2 + w). That is, g2 = 2c1(δ+α(δ))2r, where c1 is a constant.

Now we define the function g to be as follows: g(δ) = g0(δ, tw), where tw = cg19
2 logc g2.

That is, g(δ) = g0(δ, tw) = 22c
′(δ+α(δ))2r, for some constant c′. We claim that |V (F)| ≤ g(δ). By

applying Lemma 3.1 on F and integers g2, w and t, we know that one of the following is true.

(i) The treewidth of F is at most tw = cg19
2 logc g2.

(ii) Kt is a minor of F .

(iii) There is a subset A ⊆ V (G) of size at most t1 = ct24 and a w × w flat wall W in G \A.

First notice that because of the minimality of V (F) and by Lemmata 4.1 and 6.1, the statements
(ii) and (iii) above are false. So statement (i) above is true. That is, the treewidth of F is
at most t?. Then, by the minimality of V (F) and by Lemma 7.1, we conclude that |V (F)| ≤
g0(δ, t?) = g(δ).

From Lemma 8.1 we further have the following corollary that is more useful for our purposes.

Corollary 8.1. There are constants c and c′, and an algorithm that, given the extended δ-folio
of some graph G where |R(G)| ≤ α(δ), outputs a graph F with the same extended δ-folio (and the

same set of roots) such that |V (F)| ≤ 22c
′(δ+α(δ))2r in time 222

c′(δ+α(δ))2r
, where r = h(2c(δ+α(δ))2).

37

Proof. By Lemma 8.1, there is a δ-representative F of G (with the same set of roots) such

that |V (F)| ≤ 22c
′′(δ+α(δ))2r. Thus, to compute such a representative, we can simply consider all

rooted graphs on at most 22c
′′(δ+α(δ))2r vertices, compute the extended δ-folio of each of them,

and output one of the graphs among them that will have the same extended δ-folio as G.

Now, we state a lemma which we will invoke to resolve our problem once we discover a large
clique minor in a graph. The correctness of the lemma is proved in [39] and it uses the algorithm
of Theorem 10 for finding the (δ − 1)-folio in a graph.

Lemma 8.2. Let δ ∈ N and δ′ = δ − 1. Suppose there is an algorithm A for FindFolio
(for finding the extended δ′-folio of a graph) running in time T (n, δ′), on n-vertex graphs with
|R(G)| ≤ α(δ′), where α(δ′) = 16(δ′)2. Then, there exists an algorithm that, given an instance
(G, δ, t, φ) of Clique-FindFolio where |R(G)| ≤ α(δ) and L ∈ N such that t ≥ max{10δ, L}+
|R(G)|, uses algorithm A and does one of the following.

• Runs in time 22(L+δ+α(δ))O(1)

n2 + 2O(α(δ))T (n, δ − 1) and solves (G, δ).

• Runs in time 22(L+δ+α(δ))O(1)

n2 and outputs a separation (G1, G2) of G of order ≤ 4δ2 such
that min{|V (G1)|, |V (G2)|} ≥ L.

Now we are ready to prove Theorem 10 assuming Theorem 11.

Proof of Theorem 10. Suppose that Theorem 11 is correct. Accordingly, let gwall and Alg-Wall
be the function and algorithm as specified by Theorem 11. Let δ? = δ + α(δ). Let fwall be a

function such that the running time of Alg-Wall is fwall(δ, t, s)n = 22O(((t+δ?)2+r1) log(t+δ
?+r1))sO(s)n

where r1 = h(δ + α(δ) + t). Also, gwall(δ, t) = 2O(((t+δ?)2+r1) log(t+δ?+r1)). Let Alg-Rep be the
algorithm as specified by Corollary 8.1 and frep, grep be the functions such that frep(δ) =

222
c2(δ

?)2r2 and grep(δ) = 22c2(δ
?)2r2 , where r2 = h(2c2(δ?)2) for some constant c2. (Here, c2 is the

maximum of c′ and c in Corollary 8.1). Let ftw and Alg-TW be the function and algorithm as
specified by Corollary 7.1. That is, ftw(δ, tw) = 2O((δ+α(δ))2)·(α(δ)+tw)O(δ+α(δ)+tw). In addition,
let c′ and Alg-Decomp be the constant and algorithm, respectively, specified by Lemma 3.1.
Moreover, let fdec be the function such that the running time of the algorithm of Lemma 3.1 is
f(g)n log2 n = 2O(g58)n log2 n.

The proof is by induction on δ. Clearly, if δ = 1, then the lemma is correct as the extended
δ-folio simply consists of a collection of isolated vertices and edges. Now, for some δ′ ≥ 2, let us
suppose that the lemma is correct for all instances where δ ≤ δ′− 1, and let us now prove it for
instances where δ = δ′. Let Alg-Clique be the algorithm specified by Lemma 8.2 when restricted
to instances where δ ≤ δ′.

Algorithm. We now describe a recursive algorithm Alg-Main that, given an instance (G, δ)
of FindFolio where |R(G)| ≤ α(δ) and δ ≤ δ′ solves it in time f(δ)n3, where f is the function
defined in the statement of the theorem. We use T (n, δ) to denote the running time of Alg-Main.
Later we will prove that T (n, δ) ≤ f(δ)n3. We fix some constants as follows.

α(δ) = 16δ2

L = max{16δ2 + 1, grep(δ) + 1}
t̂ = max{10δ, L}+ |R(G)|
t = c′t̂24

ŵ = gwall(δ, t)

ĝ = c′t̂48(t̂2 + ŵ)

tw = c′ĝ19 logc
′
ĝ

38

First, if n ≤ grep + 2, then by Alg-TW of Corollary 7.1, Alg-Main solves (G, δ) in time
ftw(δ, grep + 2)n2. Now suppose that n > grep + 2. By algorithm Alg-Decomp of Lemma 3.1

on (G, ĝ, ŵ, t̂), in time fdec(ĝ)n log2 n = 2O(ĝ58)n log2 n, Alg-Main obtains one of the following
objects:

1. A nice tree decomposition of G of width at most tw.

2. A function φ witnessing that Kt̂ is a minor of G.

3. A subset A ⊆ V (G) of at most t vertices and a (tw)-nice flat wall W of size at least
(ŵ× ŵ) in G \A. In addition, it obtains a flatness tuple (A′, B′, C, G̃,G0, G1, . . . , Gk) for
(G, ŵ, t, A,W).

Besed on the outcome above we have three cases.

Case 1: Alg-Main uses Corollary 7.1 to solve (G, δ) in time ftw(δ, tw)n2.

Case 2: In this case, Alg-Main calls the algorithm Alg-Clique with the instance (G, δ, t̂, φ) of
Clique-FindFolio and L. Alg-Clique does one of the following.

• Runs in time 22(L+δ+α(δ))O(1)

n2 + 2O(α(δ))T (n, δ − 1) and solves (G, δ).

• Runs in time 22(L+δ+α(δ))O(1)

n2 and outputs a separation (G′1, G
′
2) of G of order ≤ 4δ2 such

that min{|V (G′1)|, |V (G′2)|} ≥ L.

Case 2(a): In the first subcase, the execution is already complete.

Case 2(b): We now describe how the execution proceeds when the second subcase occurs. Let
S = V (G′1) ∩ V (G′2). Since |R(G)| ≤ α(δ), there exists i ∈ [2] such that |V (G′i) ∩ R(G)| ≤
|R(G)|/2 ≤ (α(δ))/2. Without loss of generality, suppose that i = 1. Now we set R(G′1) =
(V (G′1)∩R(G))∪S. Then, since |S| ≤ 4δ2 and α(δ) = 16δ2, we have that |R(G′1)| ≤ (α(δ))/2 +
4δ2 ≤ α(δ). Notice that R(G′1) ⊆ R(G) ∪ S. Furthermore, since |V (G′2)| ≥ L ≥ 16δ2 + 1 and
|S| ≤ 4δ2, we have that |V (G′1)| ≤ n − 1. Now, Alg-Main calls itself recursively with (G′1, δ)
as input. The output of this recursive call is the extended δ-folio of G′1. Next, by algorithm
Alg-Rep of Corollary 8.1, Alg-Main obtains in time frep(δ) a δ-representative G′′1 of G′1 such that
|V (G′′1)| ≤ grep(δ). Let G′ be the graph obtained by replacing G′1 with G′′1 in the separation
(G′1, G

′
2). By Proposition 5.2, we know that the extended δ-folio of G with respect to roots

R(G) ∪ S is same as the extended δ-folio of G′ with respect to roots R(G) ∪ S. Therefore, by
Observation 4.1(b), the extended δ-folio of G with respect to roots R(G) is the same as the
extended δ-folio of G′ with respect to roots R(G). So now we set R(G′) = R(G). That is,
(G, δ) and (G′, δ) are equivalent instances of FindFolio. Since |V (G′′1)| < |V (G′1)|, we have
that |V (G′)| ≤ n − 1. Next, Alg-Main calls itself recursively with (G′, δ) as input. The output
of this recursive call is the extended δ-folio of G′ as well as G.

Case 3: Finally, consider Case 3. Here, Alg-Main has an instance of FlatWall-FindFolio
with arguments w = ŵ and s = tw. Then, since |A| ≤ t and ŵ ≥ gwall(δ, t), Alg-Main can simply
call algorithm Alg-Wall of Theorem 11 to find an irrelevant vertex v in time fwall(δ, t, s)n. Then,
the algorithm further performs a recursive call with (G \ v, δ) as input, and returns the output
of this call.

Analysis. We prove that the execution of Alg-Main, given an instance (G, δ) of FindFolio
where |R(G)| ≤ α(δ) and δ ≤ δ′, is correct and that Alg-Main runs in time f(δ)n3. The
proof is done by induction on n. It is clear that when n ≤ grep(δ) + 2, the correctness of
the execution is guaranteed, and also if we assume that the correctness of the execution is

39

satisfied for all n′ ≤ n− 1, then the correctness of the execution is also guaranteed for n. Thus,

in what follows, we only analyze running time. Let f(δ) = 22(β·r
3
1)222

(r2·2
β·δ4)

, where β is a
large constant we choose to satify the runing time bound in all the cases of the analysis. We
prove by induction on the number of vertices that Alg-Main on instance (G, δ) runs in time
T (n, δ) ≤ f(δ)(n− grep(δ)− 2)n2, where n = |V (G)|.

Before moving to the analysis, let us simplify fwall(δ, t, tw) and gwall(δ, t), and prove a claim

which we will use later. Recall that r1 = h(δ+α(δ) + t), which is equal to h(22(c1·δ
4)r2) for some

constant c1 and r2 = h(2c2(δ?)2). We know that

gwall(δ, t) = 2O(((t+δ?)2+r1) log(t+δ?+r1)) = 2O(r31) Because h(k) ≥ k

fwall(δ, t, tw) = 22O(((t+δ?)2+r1) log(t+δ
?+r1))

twO(tw)

= 22O(r31)2O((ĝ)20) Because h(k) ≥ k

= 22O(r31)2(t·ŵ)O(1)

= 22O(r31)2(gwall(δ,t))
O(1)

Because gwall(δ, t) ≥ t

= 22O(r31)

That is, there is a constant c such that gwall(δ, t) ≤ 2cr
3
1 and fwall(δ, t, tw) ≤ 22cr

3
1 . Similarly,

there is a constant β1 such that fdec(ĝ) ≤ 22β1·r
3
1 . Now we upper bound ftw(δ, tw).

ftw(δ, tw) = 2O((δ?)2)(α(δ) + tw)O(δ?+tw)

= 2O((δ?)2)(tw)O(tw)

= (tw)O(tw)

= 22O(r31)

Therefore, there is a constant β2 such that ftw(δ, tw) ≤ 22β2·r
3
1 . There is a constant β3 such

that grep(δ) ≤ 22β3(δ)
4
r2 and frep(δ) ≤ 222

β3(δ)
4
r2 . The following claim follows from the above

simplification.

Claim 8.1. There is a constant γ such that

fdec(ĝ) + ftw(δ, tw) + frep(δ) + fwall(δ, t, tw) ≤ 22(γ·r
3
1)22(r2·2

(γ·δ4))
.

Now we are ready to analyse the running time. When n ≤ grep + 2, the running time is
upper bounded by ftw(δ, grep + 2)n2 ≤ ftw(δ, tw)n2. Because of Claim 8.1, we choose β ≥ γ
(where γ is the constant mentioned in Claim 8.1) and the running time will be upper bounded
by f(δ)n2. We n > grep + 2, we upper bound the running time for each of the above cases.

Case 1: In this case the running time is fdec(ĝ)n log2 n+ ftw(δ, tw)n2, which is upper bounded
by f(δ)n2, by Claim 8.1, when β ≥ γ (where γ is the constant mentioned in Claim 8.1).

Case 2: Since L = grep(δ) + 1 and grep(δ) ≤ 22β3(δ)
4
r2 , there is a constant β4 such that the

running time of Alg-Clique is bounded as follows.

• Runs in time 222
(r2·2

(β4(δ)
4))

n2 + 2(β4·α(δ))T (n− 1, δ − 1) and solves (G, δ).

• Runs in time 222
(r2·2

(β4(δ)
4))

n2 and outputs a separation (G′1, G
′
2) of G of order ≤ 4δ2 such

that min{|V (G′1)|, |V (G′2)|} ≥ L.

40

Case 2(a): There is a constant β? such that if β > β?, then 2β4α(δ)f(δ − 1) ≤ f(δ). In this
case the running time is upper bounded as follows (where we will choose β > β4, β

?, γ).

fdec(ĝ)n log2 n + 222
(r2·2

(β4(δ)
4))

n2 + 2(β4·α(δ))f(δ − 1)(n− 1− grep(δ − 1)− 2)(n− 1)2

≤ f(δ)n log2 n+ f(δ)n2 + 2(β4α(δ))f(δ − 1)(n− 1− grep(δ − 1)− 2)(n− 1)2

≤ 2f(δ)n2 + f(δ)(n− 1− grep(δ − 1)− 2)(n− 1)2

≤ f(δ)(n− 1− grep(δ − 1))n2

≤ f(δ)(n− grep(δ)− 2)n2 (Because grep(δ − 1) ≤ grep(δ)− 1)

Case 2(b): We know that (G′1, G
′
2) is a separation ofG of order p ≤ 4δ2 and L ≤ |V (G′1)|, |V (G′2)|

≤ n − 1. Let n1 = |V (G′1)| and n2 = |V (G′2)|. That is n1 + n2 − p = n. Also notice that
|V (G′′1)| ≤ grep(δ). Then n′ = |V (G′)| ≤ n2 + |V (G′′1)| − p ≤ n2 − p+ grep(δ). Therefore, in this
case the running time can be upper bounded as follows (where β′ is a constant).

fdec(δ)n log2 n + 222
(r2·2

(β4(δ)
4))

n2 + frep(δ) + f(δ)(n1 − grep − 2)n2
1 + f(δ)(n2 − p− 2)(n′)2

≤ 2f(δ)n2 + f(δ)(n1 − grep − 2)n2
1 + f(δ)(n2 − p− 2)(n′)2

≤ f(δ)(n1 − grep + n2 − p− 2)n2

≤ f(δ)(n− grep − 2)n2

The first inequality follows from Claim 8.1 and by choosing β > γ, β4.

Case 3: In this case the running time is upper bounded as follows.

fdec(δ)n log2 n + fwall(δ, t, tw)n+ f(δ)(n− 1− grep − 2)(n− 1)2

≤ f(δ)n log2 n+ f(δ)(n− 1− grep − 2)n2

≤ f(δ)(n− grep − 2)n2

Here the first inequality follows from Claim 8.1. This completes the proof of the theorem.

A schematic diagram of how each procedure calls others in the proof of Theorem 10 is given
in Figure 5. Next we prove Theorem 9 assuming Theorem 11.

Proof of Theorem 9. Towards the proof it is enough to find an irrelevant vertex to the δ-folio
of G, with R(G) = ∅ where δ = (h?)2. We will use Theorem 11 to find an irrelevant vertex.
Notice that G is a plane graph and we set δ = (h?)2, t = 0, s = 0, and α(δ) = 0. Therefore
we have that gwall(δ, t) = 2O(r2), where r = h(k) = 2ck, because G is a plane graph (see

Proposition 9.1 later in the paper), where c is a constant. Hence, gwall(δ, t) = 22c1k for some

constant c1. Then, by Proposition 3.9, there is a constant c such that if tw(G) ≥ 22ck , then the

algorithm of Proposition 3.9 outputs (w×w)-wall, where w ≥ 22c1k . Now we apply Theorem 11
(where w′′ = 1) to find an irrelevant vertex. The running time of the algorithm follows by

substituting δ = (h?)2, t = 0, s = 0, g = 22ck and α(δ) = 0 in the runtime of Theorem 11 and
Proposition 3.9.

Now the only thing left is the proof of Theorem 11. Let (G, δ, t, w′, s′) be an instance of
FlatWall-FindFolio. Recall that a vertex v ∈ V (G) is irrelevant if the extended δ-folios of
G and G\v are same. Because of Observation 4.1, we define FlatWall-FindFolio? where the
input instance is same as FlatWall-FindFolio, but the objective is to find the (δ+ |R(G)|)-
folio of G. Theorem 11 follows from the following theorem and in the rest of the paper mainly
focuses on its proof.

41

FindFolio (G, δ, α(δ))

Solves (G, δ)

Clique-FindFolio (G, δ, k)Good separation Solves (G, δ)

2O(α(δ)) times

(n, δ − 1, α(δ − 1))

(n1, δ, α(δ))

(n′, δ, α(δ))

(where n1 + n′ ≤ n+ grep(δ))

(n, δ, t̂)

FlatWall-FindFolio (G, δ, t, w, s)

Finds an irrelevant vertex

(n, δ, t, gwall(δ, t), tw)

tw-FindFolio (G, δ, tw)

Solves (G, δ)

(n, δ, tw)

Figure 5: A schematic diagram of how different algorithms are used to solve FindFolio. Output
of each algorithm is specified in the respective box except for Clique-FindFolio. There are
two kinds of output for Clique-FindFolio: it either solves (G, δ) or outputs a good separation.
Clique-FindFolio calls FindFolio (2O(α(δ)) times) with parameter δ−1 only when it outputs
the extended δ-folio of the given input. The dependence of each value in the arguments on δ is
mentioned in the proof of Theorem 10.

Theorem 12. There is a computable function g and an algorithm that, given an instance
(G, δ, t, w′, s′) of FlatWall-FindFolio? such that |R(G)| ≤ α(δ) and w′ ≥ g(δ?, t), and w′′ ∈
N, finds a w′′×w′′ flat wall within the input w′×w′ flat wall such that the set of all vertices of the

output inner flat wall is irrelevant. The algorithm runs in 22O(((t+δ?)2+r) log(t+δ?+r))
(s′)O(s′)(w′′)O(w′′)n

time where g(δ?, t) = (t+ δ? + r)O((t+δ?)2+r)w′′ and r = h(δ? + t).

Also, to prove Lemma 4.1, it is enough to prove the following lemma.

Lemma 8.3. There is a computable function g such that for any instance (G, δ, t, w, s) of
FlatWall-FindFolio? with |R(G)| ≤ α(δ) and w ≥ g(δ, t), there is an irrelevant vertex in G,
where g(δ, t) = 2O((δ?)2)t · r, and r = h(δ + α(δ) + t).

Now the instance (G, δ, t, w′, s′) of FlatWall-FindFolio? is given along with a subset A ⊆
V (G), a separation (A′, B′) and a flat wall W in G\A. We are also given subgraphs G0, . . . , Gk
of B′, a cycle C (not necessarily in G) containing all the pegs of W in the order determined by

42

the boundary of W and an edge minimal supergraph G̃ of G0 satisfying all the seven conditions
mentioned in Definition 3.9 and Observation 3.7 for B′+E(C) being a C-flat. That is, we have
an embedding of G̃ in a disc with C being the boundary of the plane graph G̃. Without loss of
generality we assume that G̃ is a nicely drawn plane graph. That is, if G0 has many components,
then we prune G0 to be the component containing W . We fix δ? to denote the number δ+|R(G)|.
We refer to a set S = {(H,φH , ϕH) : H in the δ?-folio of G and (φH , ϕH) is a witness for it} as
a solution of (G, δ, t, w′, s′). We would like to mention that for any H in the δ?-folio of G, there
is only one tuple (H,φ, ϕ) in S. We call T =

⋃
(H,φH ,ϕH)∈S φH(V (H)) the set of terminals (with

respect to S).
Whenever we refer to an instance (G, δ, t, w′, s′), we assume that we are given

A ⊆ V (G), a separator (A′, B′) of G \A, a cycle C, subgraphs G0, G1, . . . , Gk of B′ and
a nicely drawn plane graph G̃. Moreover, these notations are fixed and we will not
state it explicitly in the statement of results, but will use in their proofs.

9 Irrelevant Vertices for Disjoint Paths

In this section we state the results about finding an irrelevant vertex for Disjoint Paths on
planar graphs as well as on general graphs. Then we use these results to show the existence of
a region of irrelevant vertices in the plane graph G̃ for FlatWall-FindFolio?.

Disjoint Paths (Dis-Paths) Parameter: |T | = k
Input: An undirected graph G, and a set T = {{s, t} : s, t ∈ V (G)}.
Question: Does G contain a set of internally vertex disjoint paths that for every {s, t} ∈ T ,
contain one path whose endpoints are s and t?

The special case of Dis-Paths where the input graph G is a planar graph is known as
Planar Dis-Paths. Moreover, a vertex v ∈ V (G) such that there exists a pair P ∈ T and
v ∈ P , is called a terminal. Let (G,H, k) be an instance of Dis-Paths. We say that a vertex
v ∈ V (G) is irrelevant if (G,T, k) is a Yes-instance, then it holds that (G \ v, T, k) is a Yes-
instance. Notice that if (G\v, T, k) is a Yes-instance, then (G,T, k) is a Yes-instance. The main
ingredient of the known algorithms for Dis-Paths both on planar as well as general graphs
is the proof that a vertex which is sufficiently insulated in planar region having no terminals
is irrelevant. Towards that we first start with the definition of concentric cycles in a planar
graph and state a result about irrelevant vertices for Dis-Paths on planar graphs, and then we
consider a similar result for general graphs.

Definition 9.1 (Concentric Cycles, [1]). Let G be a plane graph, and let C = (C0, C1, . . . , Cs)
be a sequence in G. We say that C is concentric if the cycles in C are pairwise vertex-disjoint
and for all i ∈ [s − 1]0, Ci is contained in the inner face of Ci+1. Furthermore, we say that C
is tight if it is concentric and the following conditions are satisfied.

• There does not exist a path between two vertices in V (C0) that is contained in the interior
face of C0.

• For all i ∈ [s], there does not exist a cycle C that is contained in the inner face of Ci but is
not equal to Ci, such that Ci−1 is contained in the inner face of C and does not intersect
Ci−1.

Proposition 9.1 ([1]). There exists c ∈ N such that for every instance (G,T, k) of Planar
Dis-Paths and tight sequence C = (C0, C1, . . . , C2ck) of cycles in G with T being in the exterior
face of C2ck , any vertex contained in inner face of C0 is irrelevant.

Because of the work of Robertson and Seymour [73], in fact if there is a planar portion in a
general graph with a large sequence of concentric cycles C = (C0, . . . , Ch) with T being in the

43

exterior face of Ch, then any vertex contained in the inner face of C0 is irrelevant for Dis-Paths
on general graphs. Next, we explain the result (Proposition 9.2) of Robertson and Seymour and
deduce a corollary for general graphs similar to the one in Proposition 9.1, which is a special
case of Proposition 9.2. Then we will prove a similar result when the graph has a large flat wall.

We start with some definitions and notations needed to state the result of Robertson and
Seymour [73]. A surface is a connected compact 2-manifold with boundary. For a surface Σ,
bd(Σ) denotes the boundary of Σ. A drawing in Σ is a pair (U, V), where U ⊆ Σ is closed,
V ⊆ U is finite, U ∩ bd(Σ) ⊆ V , U \ V has only finitely many arc-wise connected components
called edges, and for each edge e, either e is homeomorphic to a circle and |e ∩ V | = 1, or e is
homeomorphic to the unit interval [0, 1] and e ∩ V is the set of ends of e, where e denotes the
topological closure of e. For a drawing Γ = (U, V) in Σ, we write U(Γ) = U and V (Γ) = V . For
a plane graph Γ, we also use Γ to represent its drawing in a surface Σ. For a subgraph L of a
graph G and Z ⊆ V (G), the effect of L on Z is the partition of V (L)∩Z in which two vertices
belonging to the same block of the partition if and only if they belong to the same component
of L.

Definition 9.2 ([73]). Let h be a positive integer, Γ be a drawing on a surface Σ and Y ⊆ Σ.
We say that a point x ∈ Σ is h-insulated (in Σ) from Y (by Γ) if there are h disjoint circuits
of Γ, all bounding discs (of circuits) in Σ disjoint from Y and containing x in their interiors.
More formally, there are h closed discs ∆1, . . . ,∆h ⊆ Σ with the following properties.

• x ∈ ∆1 \ bd(∆1) and Y ∩∆h = ∅,

• for i ∈ [h− 1], ∆i ⊆ ∆i+1 \ bd(∆i+1),

• for i ∈ [h], bd(∆i) ⊆ U(Γ).

In the above definition, we have that ∆1 ⊆ ∆2 ⊆ . . . ⊆ ∆h unlike the definition in [73].
In the definition given in [73], ∆h ⊆ ∆h−1 ⊆ . . . ⊆ ∆1. This reversal of order is to match our
notations for the planar case.

Our proof is based on the following variant of the unique linkage theorem of Robertson and
Seymour from [73].

Proposition 9.2 ((3.1) [73]). For every non-negative integer p, there exists h(p) ≥ 1 with the
following property. Let Γ,K be subgraphs of a graph G with G = Γ∪K, and let Γ be a drawing
in a surface Σ. Let v ∈ V (Γ) (v is a vertex in Γ) be h(p)-insulated from V (Γ ∩ K) by Γ, let
Z ⊆ V (K) with |Z| ≤ p, and let L be a subgraph of G. Then there is a subgraph L′ of G \ v
with the same effect on Z as L and L′ ∩K is a subgraph of L.

Now we are ready to restate this result for our need.

Corollary 9.1. Let (G,T, k) be an instance of Dis-Paths. Let Γ,K be subgraphs of a graph G
with G = Γ∪K, Γ is a plane graph, and V (K)∩ V (Γ) is on the exterior face of Γ. Then, there
exists an integer h(k) ≥ 1 with the following property. If there is a sequence C = (C0, . . . , Ch(k))
of concentric cycles in Γ such that no terminal vertex in T is contained in the inner face of
Ch(k), then any vertex contained in the inner face of C0 is irrelevant.

Proof. Γ is a plane graph and hence we also denote Γ as drawing in a surface Σ. We define
disks ∆1, . . . ,∆h as follows. For any i ∈ [h], ∆i is the inner face of Ci. Let v ∈ V (C0). Since
V (K ∩ Γ) is on the exterior face of Γ, by Definition 9.2, we have that v is h-insulated from
V (Γ ∩ K). Suppose (G,T, k) be an Yes-instance of Dis-Paths and P be a subgraph of G,
which realizes that (G,T, k) is an Yes-instance. That is, P is a collection of internally vertex
disjoint paths such that for each {s, t} ∈ T , there is a path from s to t in P. Without loss
of generality we assume that for any {u, v} ∈ T , e = {u, v} /∈ E(G). Otherwise, we modify

44

our instance to (G \ e, T \ {{u, v}}, k − 1) and apply the corollary. Now we substitute p = k,
Z =

⋃
S∈T NP(S) and L = P \ (

⋃
S∈T S) in Proposition 9.2. That is, L is a collection of k

vertex disjoint paths in G. Since no vertex in T is contained in the inner face of Ch, no vertex
in Z is contained in the inner face of Ch−1. By Proposition 9.2 (where h′ = h − 1), there is a
subgraph L′ of G \ v with the same effect on Z as L and no terminal vertex in T belongs to L′.
That is, L′ is a collection of vertex disjoint paths such that there is a path P with end vertices
u and v in L′ if and only if there is a paths P ′ in L′ with end vertices u and v. Moreover,
V (L′) ∩ (

⋃
S∈T S) = ∅. Let L? be the graph obtained from L′ by adding vertices

⋃
S∈T S and

edges {{u, v} : {u, v} ∈ P, u ∈ (
⋃
S∈T S)}. This implies that for each {s, t} = S ∈ T , there is

a path PS from s to t in L? and these paths are internally vertex disjoint. This implies that
(G \ v, T, k) is a Yes-instance of Dis-Paths.

Now we are ready to use Corollary 9.1, to prove a result similar to Proposition 9.1, for
general graphs in the presence of a large flat wall.

Lemma 9.1. Let (G,T, k) be an instance of Dis-Paths. Let W be a flat wall in G, witnessed
by ((A′, B′), C, (G0, G1, . . . , Gt), G̃) Then, there exists h(k) ≥ 1 with the following property.
Suppose there is a sequence C = (C0, . . . , Ch(k)) of concentric cycles in G̃. Let U be the vertices

of G̃ in the inner face of Ch(k). Let T ? =
⋃
S∈T S. Suppose U ∩ T ? = ∅, and for any i ∈ [t],

V (Gi) ∩ T ? = ∅ if V (Gi) ∩ U 6= ∅. Then any vertex of G̃ contained in the inner face of C0 is
irrelevant.

Proof. We first prove the following claim.

Claim 9.1. Let i ∈ [t] be such that V (Gi) ∩ T ? = ∅. Let Hi be the graph obtained from G,
by deleting V (Gi) \ V (G0) and adding edges between every pair of vertices in V (G0) ∩ V (Gi).
Then, (G,T, k) is a Yes-instance if and only if (Hi, T, k) is a Yes-instance.

Proof. Suppose (G,T, k) is Yes-instance. Let P = {P1, . . . , Pk} be a solution for the instance
(G,T, k). Because of Conditions 4 and 5 of Definition 3.9, and V (Gi)∩T ? = ∅, at most one path
in P can intersect with the vertices in V (Gi) \ V (G0). If V (P)∩ (V (Gi) \ V (G0)) = ∅, then the
set of paths P is present in Hi and hence (Hi, T, k) is a Yes-instance. Otherwise let P ∈ P be
the path such that V (P) ∩ (V (Gi) \ V (G0)) 6= ∅. Let P ′ be a maximal subpath of P such that
V (P) ⊆ V (Gi). This implies that the end vertices u and v of P ′ are in V (Gi)∩ V (G0), because
T ? ∩ V (Gi) = ∅. Because of Conditions 4, and 5 of Definition 3.9, and V (Gi)∩ T ? = ∅, we have
that V (P)\V (P ′) does not intersect with V (Gi)\V (G0). Now by replacing the subpath P ′, with
u− v (notice that {u, v} ∈ E(Hi)), we get a path P ? in Hi. This implies that (P \ {P})∪ {P ?}
is a solution for (Hi, T, k).

Now we prove the reverse direction. Suppose (Hi, T, k) is a Yes-instance. Let P ′ = {P ′1, . . . , P ′k}
be a solution to (Hi, T, k). Since E(Hi) \E(G) forms a clique on at most 3 vertices at most one
edge in E(Hi) \ E(G) is used by any path in P ′. Suppose no edge in E(Hi) \ E(G) is used by
any path in P ′, then P ′ is a solution to (G,T, k) as well. Otherwise, let P be the path P ′ such
that P has exactly one edge {u, v} from E(Hi) \E(G). Then by replacing the edge {u, v} of P
with a path P ′ from u to v in Gi using internal vertices from V (Gi) \ V (G0) (see Condition 6
of Observation 3.7), we get a path P ? in G connecting the same end vertices of P . This implies
that (P ′ \ {P}) ∪ {P ?} is a solution for (G,T, k).

Suppose for all i ∈ [t], V (Gi) ∩ V (G̃) is in the exterior face of Ch(k). Then, let Γ be the
subgraph of G induced by the vertices in the inner face of Ch(k). Let K be the minimal subgraph

of G such that G = Γ ∪K. Then, by Corollary 9.1, any vertex of G̃ contained in the inner face
of C0 is irrelevant. Otherwise, without loss of generality assume that there exists j ∈ [t] such
that for each i ∈ [j], V (Gi) ∩ V (G̃) contains a vertex from the inner face of Ch and for each

45

i ∈ [t]\[j], V (Gi)∩V (G̃) does not contain a vertex from the inner face of Ch. By our assumption
we know that for any i ∈ [j], V (Gi) ∩ T ? = ∅. Let H0 = G and for any i ∈ [j], Hi is obtained
from Hi−1 by deleting V (Gi) \ V (G0) (which is equal to V (Gi) \ V (Hi−1)) and adding edges
between every pair of vertices in V (G0) ∩ V (Gi) (which is equal to V (Hi−1) ∩ V (Gi)). Then,
by repeatedly applying Claim 9.1 on (H0, T, k), . . . , (Hj , T, k) we have that these instances are
equivalent. That is, (a) for any 0 ≤ i < i′ ≤ j, (Hi, T, k) is a Yes-instance if and only if (Hi′ , T, k)
is a Yes-instance. Now consider the instance (Hj , T, k). Let Γ′ be the subgraph of Hj induced by
the vertices in the inner face of Ch and this graph is a plane graph with Ch being the boundary.
Let K ′ be the subgraph of Hj such that Hj = Γ′∪K ′. Then, by Corollary 9.1, any vertex of Hj

contained in the inner face of C0 is irrelevant for the instance (Hj , T, k). Hence, by statement
(a), any vertex of G̃ contained in the inner face of C0 is irrelevant for (H0, T, k) = (G,T, k).
This completes the proof of the lemma.

Now we would like to discuss a scenario where we will be able to say that many elements in
a graph are irrelevant, first for Dis-Paths and then for FlatWall-FindFolio?, by being able
to find many long sequences of terminal free concentric cycles. Towards that, we first define the
notion of a wrapped noose.

Definition 9.3 (Wrapped Noose). Let G be a graph and W be a flat wall in G witnessed
by ((A′, B′), C, (G0, G1, . . . , Gt), G̃) where G̃ is a plane graph with C being the boundary (if G
is planar, then G = B′ = G0 = G̃). We say that a noose F is wrapped in G̃ if there exists a
sequence C = (C0, C1, . . . , Cr) of cycles in G̃, called a wrap, such that inG̃(F) is contained in
the inner face of C0. (Here, r = 2ck with c being the constant in Proposition 9.1 if G is planar,
and otherwise, r = h(k), the constant mentioned in Lemma 9.1.)

Furthermore, we say that a sequence of noose-element pairs F = ((F1, Z1), . . . , (Fs, Zs)) for
some s ∈ N, where Fi is a noose and Zi ⊆ in?G(Fi) is a set of vertices for all i ∈ [s], is wrapped
if for all i ∈ [s], Fi is wrapped in G \ (

⋃
j∈[i−1] Zj).

Throughout the section, the constant r is fixed and it is the one mentioned in Definition 9.3.

Lemma 9.2. Let (G,T, k) be an instance of Dis-Paths. Let W be a flat wall in G witnessed
by ((A′, B′), C, (G0, G1, . . . , Gt), G̃) where G̃ is a plane graph with C being the boundary (if G is
planar, then G = B′ = G0 = G̃). Let F = ((F1, Z1), . . . , (Fs, Zs)) for some s ∈ N be a wrapped
sequence of nooses-element pairs in G̃, and for all i ∈ [s], let Ci = (Ci0, C

i
1, . . . , C

i
r) be a wrap

of Fi in G \ (
⋃
j∈[i−1] Zj). Let U be the union of vertices of G̃ in the inner face of Cir, i ∈ [s].

Let T ? =
⋃
S∈T S. Suppose U ∩ T ? = ∅ and for any i ∈ [t], V (Gi) ∩ T ? = ∅ if V (Gi) ∩ U 6= ∅.

Then, (G,T, k) is a Yes-instance if and only if (G \
⋃
i∈[s] Zi, T, k) is a Yes-instance.

Proof sketch. Let G′ = G \
⋃
i∈[s] Zi. First consider the reverse direction of the proof. Suppose

(G,T, k) is a No-instance. Then, since G′ is a subgraph of G, (G′, T, k) is a No-instance.
Now we consider the forward direction of the proof. That is, we assume that (G,T, k) is a

Yes-instance. To prove (G′, T, k) is a Yes-instance, we first prove the following claim.

Claim 9.2. Let F be a wrapped noose in G̃ and Z ⊆ in?
G̃

(F). Let C = (C0, C1, . . . , Cr) be a wrap

of F in G and U ′ be the set of vetices of G̃ in the inner face of Cr. Suppose U ′∩T ? = ∅ and for
any i ∈ [t], V (Gi) ∩ T ? = ∅ if V (Gi) ∩ U ′ 6= ∅. If (G,T, k) is a Yes-instance, then (G \ Z, T, k)
is a Yes-instance.

Proof. Suppose (G,T, k) is a Yes-instance. Notice that C = (C0, C1, . . . , Cr) is a set of concentric
cycles in G \ Z. Since F is contained in the inner face of C0 and Z is strictly contained in the
interior of F , the sequence of cycles C = (C0, C1, . . . , Cr) is present in G \ Z. This implies that
for any subset Z ′ ⊆ Z, there is a sequence of tight concentric cycles (C ′0, . . . , C

′
r) in G \Z ′ such

that at least one element from Z \ Z ′ is in the inner face of C ′0. Hence, there is a permutation

46

z1, . . . , z` of elements in Z such that by repeatedly applying Lemma 9.1 (Proposition 9.1 if G
is planar) on (G,T, k), (G \ {z1}, T, k), . . . , (G \ {z1, . . . , z`}, T, k), we get that (G \ Z, T, k) is a
Yes-instance, because (G,T, k) is a Yes-instance by assumption.

Notice that (a) for any i ∈ [s], Fi is wrapped in G \ (
⋃
j∈[i−1] Zj). By using statement (a)

and Claim 9.2, with the method of induction on i, one can show the following statement: For
any i ∈ [s], (G \

⋃
j∈[i−1] Zj , T, k) is a Yes-instance. This completes the proof of the lemma.

Now we prove the main corollary of the subsection which we will be using in the later
sections.

Corollary 9.2. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Recall that δ? =
δ + |R(G)|. Let k′ = δ? + t. Let F = ((F1, Z1), . . . , (Fs, Zs)) for some s ∈ N be a wrapped
sequence of nooses-element pairs in G̃, and for all i ∈ [s], let Ci = (Ci0, C

i
1, . . . , C

i
r) be a wrap of

Fi in G\
⋃
j∈[i−1] Zj (recall that r = h(k′)). Let U be the union of vertices of G̃ in the inner face

of Cir, i ∈ [s]. Let S = {(H,φH , ϕH) : H in the δ?-folio of G} be a solution with the following
properties.

• There does not exist a terminal (with respect to S) in U ,

• there does not exist a terminal (with respect to S) in V (Gi), where V (Gi) ∩ U 6= ∅, and

• there is no edge {u, v} in the image of ϕH for any H in the δ?-folio of G such that u ∈ A
and v ∈ U ∪ {V (Gi) : i ∈ [k], V (Gi) ∩ U 6= ∅}.

Then the δ?-folios for G and G\(
⋃
i∈[s] Zi) are the same. Moreover, (G, δ, t, w′, s′) has a solution

S? = {(H,φ′H , ϕ′H) : H in the δ?-folio of G} with the following properties.

(i) No element from
⋃
i∈[s] Zi is in the image of ϕ′H for any H in the δ?-folio of G, and

(ii) the set of terminals with respect to S and S? are same.

Proof. Let G? = G \A. Recall that |A| ≤ t. Let H be a graph in the δ?-folio of G and consider
the tuple (H,φH , ϕH) in S. Let J be the realization of H in G obtained through (φH , ϕH). Let
J? = J \A. Since |A| ≤ t and H is a δ?-folio of G. The graph J? can be decomposed into a set P
of at most δ?+t internally vertex disjoint paths with end vertices being in φH(H)∪NJ(A∩V (J)).
That is, there exists a set T of terminal pairs such that P is a solution of the instance (G?, T, |T |)
of Dis-Paths such that |T | ≤ δ? + t = k and (

⋃
S∈T S) ⊆ φH(H) ∪NJ(A ∩ V (J)).

Observation 9.1. Let Q be the minimal subgraph of J such that J = P∪Q. Let P ′ be a solution
to the instance (G?, T, |T |) of Dis-Paths. Then P ′ ∪Q is a realization of the topological minor
H in G.

Let Z =
⋃
i∈[s] Zi and T ? =

⋃
S∈T S. By the assumption any terminal of (φH , ϕH) and

any vertex in NJ(A ∩ V (J)), does not belong to U ∪ {V (Gi) : i ∈ [k], V (Gi) ∩ U 6= ∅}. This
implies that U ∩ T ? = ∅ and for any i ∈ [t], V (Gi) ∩ T ? = ∅ if V (Gi) ∩ U 6= ∅. Hence, by
Lemma 9.2, (G? \ Z, T, |T |) is a Yes-instance of Dis-Paths, and let P ′ be a solution. Then by
Observation 9.1, J ′ = P ′ ∪ Q is a realization of the topological minor H in G (and hence in
G \ Z, because Z ∩ V (J ′) = ∅). This completes the proof of the corollary.

47

10 Workspace

We want to find an irrelevant vertex for the given instance of FlatWall-FindFolio?. Towards
that, we have to use Corollary 9.2. To apply this corollary, we need to prune down to a large
“terminal free portion” of G̃, which is a plane graph. The difficulty to get such a terminal free
portion is because of the fact that we do not know which are the terminal vertices. As a first
step towards that, we seek a noose-enclosed “workspace” that would contain an irrelevant vertex
in the planar portion G̃, but which would also have low treewidth. We define the treewidth of a
noose N as the treewidth of the graph G̃[in(N)]. In addition, we need the following definition.

Definition 10.1 (Noose Grid). Let G be a plane graph, and let N be a set of a · b nooses
ordered as Ni,j for all i ∈ [a] and j ∈ [b]. We say that N is an a× b-noose grid with respect to
G if the following properties are satisfied.

(a) For all N,N ′ ∈ N , in(N) ∩ in(N ′) = ∅.

(b)
⋃
N∈N in(N) ∩ V (G) = V (G).

(c) For all N ∈ N , G[in(N)∩ V (G)] is a connected graph such that N is the minimum noose
that encloses it.

(d) For all i, i′ ∈ [a] and j, j′ ∈ [b] such that |i−i′|+ |j−j′| = 1, there exist u ∈ in(Ni,j)∩V (G)
and v ∈ in(Ni′,j′) ∩ V (G) such that {u, v} ∈ E(G).

When the graph G is clear from context, we omit the reference “with respect to G” in the
definition above. We now formally define our notion of a workspace.

Definition 10.2 (Workspace). Let G be a nicely drawn plane graph. A pair (M,N) is a
q-workspace if G[in(M) ∩ V (G)] is a connected graph, M is the minimum noose that encloses
G[in(M) ∩ V (G)] and N is a q × q-noose grid with respect to G[in(M) ∩ V (G)]. If in addition
the treewidth of M is a most p, then (M,N) is a (p, q)-workspace.

Notice that if (M,N) is a q-workspace, then all the nooses in N are enclosed by M . Let
us explicitly state the following observation concerning workspaces, which follows directly from
their definition.

Observation 10.1. Let G be a plane graph with a q-workspace (M,N). For every edge {u, v} ∈
E(G) such that u ∈ in(Ni,j) for some i, j ∈ [q], one of the following conditions holds:

• v ∈ Ni′,j′ for some i′ ∈ {i− 1, i, i+ 1} and j′ ∈ {j − 1, j, j + 1}.
• i ∈ {1, q} or j ∈ {1, q}, and v /∈ in(M).

The rest of the section is devoted to prove the following lemma.

Lemma 10.1. There exists a constant c such that for every nicely drawn plane graph G and
integers p, q such that 2 < q ≤ p

2c , in time pO(1)n one can either compute a (p, q)-workspace or
a tree decomposition of G of width at most cp.

Using Proposition 3.8, we derive the following lemma.

Lemma 10.2. There exists a constant c such that for any connected plane graph G and integer
r ∈ N, in time O(r2n) one can compute either an r-workspace with respect to G or a tree
decomposition of G of width at most cr.

48

Proof. Let M be the minimum noose that encloses G. Moreover, fix c to be equal to 2ĉ, where ĉ
denotes the constant in Proposition 3.8. First, we apply the algorithm given by Proposition 3.8
to obtain in time O(r2n) either a 2r× 2r grid as a minor of G or a tree decomposition of width
at most ĉ(2r) = cr. In the latter case, we are done. Thus, we next suppose that we have a
2r × 2r grid H whose vertex set is accordingly denoted as {hi,j : i ∈ [a], j ∈ [b]}, where φ is a
function witnessing that H is a minor of G.

Initialize Vh = φ(h) for all h ∈ V (H). Now, since G is a connected graph, as long as⋃
h∈V (H) Vh 6= V (G), there exist vertices u /∈

⋃
h∈V (H) Vh and v ∈ Vh for some h ∈ V (H) such

that {u, v} ∈ E(G). Then, insert u into Vh. Clearly, this process terminates in less than n
iterations. At the end of this process, the following properties are satisfied.

1. For all h, h′ ∈ V (H), Vh ∩ Vh′ = ∅.

2.
⋃
h∈V (H) Vh = V (G).

3. For all h ∈ V (H), G[Vh] is a connected graph.

4. For all i, i′, j, j′ ∈ [r′] such that |i − i′| + |j − j′| = 1, there exist u ∈ Vhi,j and v ∈ Vhi′,j′
such that {u, v} ∈ E(G).

For all i, j ∈ [2r], we define N?
i,j as the minimum noose that enclosesG[Vhi,j]. We thus defined

a set N ? of (2r)2 nooses ordered as N?
i,j for all i, j ∈ [2r]. If for all i, j ∈ [2r], in(N?

i,j)∩ V (G) =

Vhi,j ,
5 then the proof is complete as by properties 1 to 4 above, we have that (M,N ?) is an

2r-workspace (from which we can clearly derive an r-workspace). In what follows, we therefore
suppose that there exist i, j ∈ [2r] such that in(N?

i,j) ∩ V (G) 6= Vhi,j . Clearly, this means that
in(N?

i,j) ∩ V (G) ⊃ Vhi,j . We assume w.l.o.g. that i, j ∈ [r]. Let U be the union of all sets Vhi,j
such that i, j > r.

For the next argument, recall that G is a plane graph, and observe that for all i′, j′ ∈ [2r],
both G[Vhi′,j′] and G \ Vhi′,j′ are connected graphs. We thus have that for all i′, j′ ∈ [2r],
G[Vhi′,j′] is contained in a face (possibly the outer face) of G \ Vhi′,j′ as well as G \ Vhi′,j′ is

contained in a face of G[Vhi′,j′]. In particular, for all i′, j′, î, ĵ ∈ [2r] such that (i′, j′) 6= (̂i, ĵ),
the areas enclosed by N?

i′,j′ and N?
î,̂j

are either disjoint or one of them is contained in the other.

However, as in(N?
i,j) ∩ V (G) 6= Vhi,j and N?

i,j is the minimum noose that encloses G[Vhi,j], we
have that G\Vhi,j is contained in an interior face of G[Vhi,j]. This implies that for all i′, j′ ∈ [2r]
such that (i′, j′) 6= (i, j), G[Vhi′,j′] is contained in an interior face of G \ Vhi′,j′ . Indeed, if for

some i′, j′ ∈ [2r], G[Vhi′,j′] were contained in the outer face of G \Vhi′,j′ , then it would not have
been possible for G \ Vhi,j to be contained in an interior face of G[Vhi,j] (because G[Vhi′,j′] is a

subgraph of G \ Vhi,j). In particular, we have that for all i′, j′, î, ĵ ∈ [2r] such that (i′, j′), (̂i, ĵ)
and (i, j) are three distinct pairs, it holds that the areas enclosed by N?

i′,j′ and N?
î,̂j

are disjoint.

Indeed, if for some such i′, j′, î, ĵ ∈ [2r], it were true that, say, the area enclosed by N?
i′,j′ is

contained in the area enclosed by N?
î,̂j

, then G[Vhî,ĵ] would have not been contained in an interior

face of G \ Vhî,ĵ (because G[Vhi′,j′] is a subgraph of G \ Vhî,ĵ).
Now, observe that G[U] and G \U are connected graphs. Thus, since for all i′, j′ ∈ [2r] such

that (i′, j′) 6= (i, j), G[Vhi′,j′] is contained in an interior face of G \ Vhi′,j′ , we have that G[U] is
contained in a face of G \ U . Therefore, the minimum noose M? that encloses G \ U satisfies
in(M?) = U . Thus, the desired r-workspace is (M?, {N?

i,j : i, j > r}).

As a corollary of Lemma 10.2, we have the following result.

5We remark that this condition may be false as given an arbitrarily noose N , it is not necessarily true that N
encloses G[in(N)].

49

Corollary 10.1. There exists a constant c such that for any plane graph G, connected subgraph
G′ of G such that the minimum noose M enclosing G′ satisfies in(M) = V (G′), and integer
r ∈ N, in time O(r2n) one can compute either an r-workspace with respect to G′ or a tree
decomposition of G′ of width at most cr.

Having Corollary 10.1 at hand, we can now prove Lemma 10.1.

Proof of Lemma 10.1. Let ĉ denote the constant in Corollary 10.1. Let us fix c = 2ĉ. Let
C1, C2, . . . , Ct denote the connected components of G. Since G is nicely drawn, for every com-
ponent Ci of G, the minimum noose M enclosing Ci satisfies in(M) = V (Ci). Hence, we can
apply Corollary 10.1 to every connected component of G, and thus either find a connected com-
ponent Ci of G with a 2q-workspace (Mi,Ni), or find a tree decomposition (Ti, βi) for every
connected component Ci of G of width at most 2ĉq. In the latter case, for all i ∈ [t− 1], we add
an edge between some vertex of Ti and some vertex of Ti+1 to obtain a tree decomposition of
G of width at most 2ĉq = cq ≤ cp, which completes the proof. Thus, we next suppose that we
face the former case. The total time spent so far is O(q2n).

We initialize G? to be the connected component Ci, and denote (M?,N ?) = (Mi,Ni). Since
G is nicely drawn, the minimum noose M enclosing G? satisfies in(M)∩V (G) = V (G?). Denote
N 1 = {N?

i,j ∈ N ? : i, j ≤ q} and U1 = V (G) ∩
⋃
N1
i,j∈N 1 in(N1

i,j), N 2 = {N?
i,j ∈ N ? : i ≤

q, j > q} and U2 = V (G) ∩
⋃
N2
i,j∈N 2 in(N2

i,j), N 3 = {N?
i,j ∈ N ? : i > q, j ≤ q} and U3 =

V (G) ∩
⋃
N3
i,j∈N 3 in(N3

i,j), and N 4 = {N?
i,j ∈ N ? : i, j > q} and U4 = V (G) ∩

⋃
N4
i,j∈N 4 in(N4

i,j).

Observe that for all distinct i, j ∈ [4], U i ∩ U j = ∅. Thus, there exists i ∈ [4] such that
|U i| ≤ |V (G?)|/4. We arbitrarily pick such i ∈ [4], and denote (N , U) = (N i, U i). Let M be the
minimum noose enclosing G[U]. We now argue that M satisfies in(M) ∩ V (G) = U . First, the
condition in(M) ∩ (V (G) \ V (G?)) = ∅ follows from the fact that M? encloses G? and satisfies
in(M?)∩V (G) = V (G?). Now, consider the condition in(M)∩ (V (G?)\U) = ∅. Since G[U] and
G? \ U are connected graphs, each one of these two subgraphs is contained in a face (possibly
the outer face) of the other. However, due to the grid structure of these two subgraphs, each
of their inner faces contains on its boundary vertices that belong to in(N?

i,j) for at most four
nooses N?

i,j ∈ N ?. In addition, as q > 2, each of these two subgraphs contains a set of vertices
W such that the set of vertices in NG(W) that belong to the other subgraph cannot be enclosed
by at most four nooses in N ?. Thus, each subgraph among G[U] and G? \U is contained in the
outer face of the other subgraph. Hence, we derive that in(M) ∩ (V (G?) \ U) = ∅.

We have thus shown that (M,N) is a q-workspace with respect to G[U]. By using the
algorithm provided by Corollary 10.1, since p/c ≥ 2q, in time O(p2|U |) we compute either a
p/c-workspace (M ′,N ′) with respect to G[U] or a tree decomposition of G[U] of width at most
p. In the latter case, we are done, as then it holds that (M,N) is a (p, q)-workspace with respect
to G. In addition, if |U | ≤ p+ 1, we are also done as then again tw(G) ≤ p. In the former case,
supposing |U | > p+ 1, we update G? to G[U] and N ? to N , and then repeat the computation
starting with the identification of (N i, U i) for all i ∈ [4]. Clearly, the process terminates, at the
latest once |U | ≤ p+ 1.

Finally, let us analyze the running time of our algorithm. At each iteration, the size of
the current set U is at most 1/4 of the size of the former set U , and the running time to
execute the iteration is O(p2|U |). Thus, the running time of all the iterations together is
O(p2n/40 + p2n/41 + p2n/42 + · · · + p2n/4x) = O(p2n), where x is smallest integer such that
n/4x ≤ p + 1. Thus, the total running time is O(q2n + p2n) = O(p2n). This completes the
proof.

50

11 Fitting Solutions into Frames

In this section we define the frames of a 2q-workspace of the plane graph G̃ and prove that some
solutions behave nicely in some frames. That is, we prove that there are “(`, η)-untangled”
solutions in any large terminal free region. The main result used towards proving the existence
of such nice solutions is Corollary 9.2 (derived from the unique linkage theorem). In the later
sections these nice solutions allow us to define nice partial solutions and thereby find an irrelevant
vertex.

11.1 Frames, Terminal Free Frames, Vacant Frames and Few Crossings Frames

In this subsection we start with the definition of frames and various properties of it with respect
to a solution of FlatWall-FindFolio?. Solution satisfying these properties will be very useful,
because the partial solutions arising from these solutions are small.

Definition 11.1 (Frame). Let G̃ be a plane graph with a 2q-workspace (M,N), and ` ∈ [q−1]0.
The `-frame of (M,N) is the set of nooses Frame[N , `] , {Ni,q−` ∈ N : i ∈ {q−`, . . . , q+`+1}}∪
{Ni,q+`+1 ∈ N : i ∈ {q−`, . . . , q+`+1}}∪{Nq−`,j ∈ N : j ∈ {q−`, . . . , q+`+1}}∪{Nq+`+1,j ∈
N : j ∈ {q − `, . . . , q + `+ 1}}. When N is clear from context, denote Frame[`] = Frame[N , `].
(See Figure 2.)

Next we define and classify the nooses in a frame into four groups and define an order among
these nooses.

Definition 11.2 (Ordered Frame). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?.
Let (M,N) be a 2q-workspace in G̃ and ` ∈ [q − 1]0. The order < on Frame[`] is defined as
follows. First, a noose Ni,j ∈ Frame[`] is categorized as (i) up-noose if i = q−`, (ii) right-noose
if q − ` < i < q + `+ 1 and j = q + `+ 1, (iii) down-noose if i = q + `+ 1, and (iv) left-noose
if q − ` < i < q + `+ 1 and j = q − `. For any two nooses Ni,j , Ni′,j′ ∈ Frame[`], Ni,j < Ni′,j′ if
and only if one of the following conditions hold.

• The number of the type of Ni,j is strictly smaller than the number of the type of Ni′,j′.

• Ni,j and Ni′,j′ are up-nooses such that j < j′.

• Ni,j and Ni′,j′ are right-nooses such that i < i′.

• Ni,j and Ni′,j′ are down-nooses such that j > j′.

• Ni,j and Ni′,j′ are left-nooses such that i > i′.

We would like to have small representations for solutions induced on the vertices of nooses
in
⋃
i≤` Frame[i], for some `, which we could use algorithmically. To achieve this goal, some

property which we would like to have is as follows: if there is a solution, then there is a
solution whose “interaction” with Frame[`] (which in some sense act as a separator) is bounded
and moreover this interaction behaves “nicely” with respect to Frame[`]. This will allow us to
get small representations for solutions. As we have seen in Section 9, one of the important
requirements for finding an irrelevant vertex is to have a region free from terminals.

Definition 11.3 (Terminal-Free Frame). Let (G, δ, t, w′, s′) be an instance of FlatWall-
FindFolio?. Let (M,N) be a 2q-workspace in G̃, ` ∈ [q − 1]0 and d ∈ [`] where `+ d ≤ q − 1.
A solution S = {(H,φH , ϕH) : H in the δ?-folio of G} is (`, d)-terminal free if the following
conditions hold, where Q =

⋃
`−d≤i≤`+d Frame[i] and U =

⋃
N∈Q inG̃(N) ∩ V (G̃).

• There does not exist a terminal (with respect to S) in U ,

• there does not exist a terminal (with respect to S) in V (Gi), where V (Gi)∩U 6= ∅, i ∈ [k],
and

51

• there is no edge {u, v} in the image of ϕH for any H in the δ?-folio of G such that u ∈ A
and v ∈ U ∪ {V (Gi) : i ∈ [k], V (Gi) ∩ U 6= ∅}.

If we are given a flat wall W in G\A, witnessed by (A′, B′, C, G̃,G0, G1, . . . , Gk) and if there
is a Gi for some i ∈ [k] and a subpath of ϕH(e) (for some edge e of a graph H in the δ?-folio
of G) between two vertices in V (Gi) ∩ V (G0) with internal vertices in V (Gi) \ V (G0), then in
fact we could use the path u − v in G̃ to encode it. Consequently, we define a representation
of a solution of FlatWall-FindFolio?, which is simply the replacement of paths in Gi with
edges in G̃.

Definition 11.4. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio? and let H be a
δ?-folio of G witnessed by (φ, ϕ). The representation of (H,φ, ϕ) in G̃∪G is the tuple (H, φ̃, ϕ̃),
which is defined as follows. For each e ∈ E(H) and {u, v} ∈ E(G̃) \E(G), if there is a subpath
P of ϕ(e), from u to v with internal vertices from V (Gi) \ V (G0) for some i ∈ [k], then replace
P with u− v. The resulting graph is a subgraph of G̃ ∪G which witnesses that H is topological
minor of G̃ ∪G and (φ̃, ϕ̃) denotes this witness.

Definition 11.5. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio? and let S =
{(H,φH , ϕH) : H in the δ?-folio of G} be a solution. The representation of S is defined as S̃ =
{(H, φ̃H , ϕ̃H) : (H, φ̃H , ϕ̃H) is the representation of (H,φH , ϕH) in G̃ ∪G and (H,φH , ϕH) ∈
S}.

The following easy observation can be proved from the definitions of an (`, d)-terminal free
solution and its representation, and Observation 3.7.

Observation 11.1. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let (M,N)
be a 2q-workspace in G̃, ` ∈ [q− 1]0 and d ∈ [`] where `+ d ≤ q− 1. Let S be an (`, d)-terminal
free solution to (G, δ, t, w′, s′) and S̃ be its representation. Let Q =

⋃
`−d≤i≤`+d Frame[i] and

U =
⋃
N∈Q inG̃(N) ∩ V (G̃). Let G′ = G̃ ∪G and U ′ = U ∪ {V (Gi) : i ∈ [k], V (Gi) ∩ U 6= ∅}.

Then, no edge in E(G[U ′])\E(G̃) and EG(U ′, A) is used by S̃. That is, if an edge e ∈ E(G[U ′])
is used by S̃, then e ∈ E(G̃).

Now we define the notion of vacant frames, which, intuitively, says that a solution will not
use large portions from frames. Later, we prove the existence of a solution with this property
using Corollary 9.2. Afterwards, we will modify such solutions using large unused portions to
make solutions that cross frames “nicely”.

Definition 11.6 (Vacant Frame). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?.
Let S be a solution and {(H, φ̃H , ϕ̃H) : H in the δ?-folio of G} be the representation of it. Let
(M,N) be a 2q-workspace in G̃, ` ∈ [q − 1]0, d, α ∈ [`] where ` + d < q and d + α < `. Then,
S is (`, d, α)-vacant if for any vertex v in the image of ϕ̃H , H in the δ?-folio of G, belonging to
in(Ni,j) for some Ni,j ∈

⋃
`−d≤t≤`+d Frame[t], it holds that i ∈ {q− `+d+ 1, . . . , q− `+d+α}∪

{q + 1 + `− d− α, . . . , q + `− d}.

See Figure 6 for an illustration of (`, d)-terminal free and (`, d, α)-vacant solutions. The
following observation follows from Definition 11.6.

Observation 11.2. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let (M,N)
be a 2q-workspace in G̃, ` ∈ [q − 1]0, d, α ∈ [`] where ` + d < q and d + α < `. If there is an
(`, d, α)-vacant solution, then the vertices in

⋃
q−`≤j≤q+1+` in(Nq−`,j) ∩ V (G̃) are irrelevant.

Even for solutions which are (`, d)-terminal free and (`, d, α)-vacant, there are solutions
which will interact with Frame[`] many times. To overcome this, we define the notion of few
crossings by solutions on Frame[`]. Towards that we need to classify the segments of paths in
the solution.

52

Frame[q − 1]

Frame[`− d]

Frame[`+ d]

Frame[`]

Frame[`+ d2]

d

d
d2

α

• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• •

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

P1

P2 P3

Figure 6: The frames between two blue colored frames is the union of
⋃
`−d≤j≤`+d Frame[j]. If

a solution S is (`, d)-terminal free then any vertex in this region is not a terminal w.r.t. S. If
S is (`, d, α)-vacant, then vertices used by S from this region are only from the green colored
portion of it. In a solution S, (i) P1 is an example of an (`, d)-up left segment which is both
interior and exterior, (ii) P2 is an example of an (`, d)-exterior down left segment, and (iii) P3

is an example of an (`, d)-interior down right segment. Here, P1 is (`, d, d2)-crossing because P1

hits Frame[`+ d1]. However, P2 is not an (`, d, d2)-crossing segment.

Definition 11.7 (Annulus Segment). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?.
Let S be a solution and S̃ = {(H, φ̃H , ϕ̃H) : H in the δ?-folio of G} be the representation of it.
Let (M,N) be a 2q-workspace of G̃, ` ∈ [q − 1]0 and d ∈ [`] where ` + d < q. A path P in G
is an (`, d)-exterior segment (resp. (`, d)-interior segment) of S if the following conditions are
satisfied.

• P is a subpath of ϕ̃H(e) for some H in the δ?-folio of G and e ∈ E(H).

• V (P) ⊆ V (G̃).

• Each endpoint of P belongs to inG̃(N) for some N ∈ Frame[`−d]∪Frame[`+d], and at least
one endpoint of P belongs to inG̃(N) for some N ∈ Frame[`+ d] (resp. N ∈ Frame[`− d]).

• Each internal vertex on P belongs to inG̃(N) for some N ∈ Frame[i] where i ∈ {` − d +
1, . . . , `+ d− 1}.6

6Different vertices may be enclosed by different nooses.

53

We also say that P is an (`, d)-exterior segment (resp. (`, d)-interior segment) of (H, φ̃, ϕ̃).
Furthermore,

1. Up-Left. P is called up-left segment if V (P) ⊆
⋃
i,j≤q inG̃(Ni,j),

2. Up-Right. P is called up-right segment if V (P) ⊆
⋃
i≤q,j>q inG̃(Ni,j),

3. Down-Left. P is called down-left segment if V (P) ⊆
⋃
i>q,j≤q inG̃(Ni,j), and

4. Down-Right. P is called down-right segment if V (P) ⊆
⋃
i,j>q inG̃(Ni,j).

See Figure 6, for an illustration of (`, d)-segments. Clearly in an (`, d, α)-vacant solution, any
(`, d)-x segment, where x ∈ {interior, exterior}, is up-left or up-right or down-left or down-right
segment, as formalized in the following observation.

Observation 11.3. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let (M,N)
be a 2q-workspace in G̃, ` ∈ [q − 1]0, d, α ∈ [`] where ` + d < q and d + α < `. Let S be an
(`, d, α)-vacant solution and P be an (`, d)-x segment, where x ∈ {interior, exterior}. Then P
is either up-left or up-right or down-left or down-right segment.

Proof. Let U = {q − ` + d + 1, . . . , q − ` + d + α} and L = {q + 1 + ` − d − α, . . . , q + ` − d}.
Let P be an (`, d)-x segment, where x ∈ {exterior, interior}. We know that for any vertex
v ∈ V (P), v belongs to inG̃(Ni,j) for some Ni,j ∈ Frame[i′] where i′ ∈ {` − d, . . . , ` + d} and
i ∈ U ∪ L (because S is (`, d, α)-vacant). Since d + α < ` (by assumption), we have that the
largest index z in U is strictly less than q, the smallest index z′ in L is strictly more than q.
Also, since P is a path, which is connected, we get that (a) either V (P) ⊆

⋃
i<q,j∈[2q] inG̃(Nij)

or V (P) ⊆
⋃
i>q,j∈[2q] inG̃(Nij). Consider the set J = {q − ` + d + 1, . . . , q + ` − d}, where

the smallest index is strictly less than q (because d < ` − α ≤ ` − 1, by assumption) and the
largest index is strictly more than q (because ` − d > α ≥ 1, by assumption). Also, since P is
connected, we get that (b) either V (P) ⊆

⋃
i∈[2q],j<q inG̃(Nij) or V (P) ⊆

⋃
i∈[2q],j>q inG̃(Nij).

Now the observation follows from statements (a) and (b).

In order to define solutions behaving nicely on some frames we want to have the number of
segments that cross some frames to be as few as possible.

Definition 11.8 (Crossing Segment). Let (G, δ, t, w′, s′) be an instance of FlatWall-
FindFolio?, and let S be a solution. Let (M,N) be a 2q-workspace of G̃, ` ∈ [q − 1]0 and
d1, d2 ∈ [`] where ` + d1 < q and d2 < d1. An (`, d1)-exterior y segment (resp. (`, d1)-interior
y segment) P of S, where y ∈ {up-left, up-right, down-left, down-right}, is called an (`, d1, d2)-
exterior y crossing (resp. (`, d1, d2)-interior y crossing), if P contains at least one vertex from
inG̃(N) for some N ∈ Frame[`+ d2] (resp. N ∈ Frame[`− d2]). For all x ∈ {interior, exterior}
and y ∈ {up-left, up-right, down-left, down-right}, an (`, d1, d2)-x y crossing P is also called an
(`, d1, d2)-crossing. We also call P an (`, d1, d2)-crossing of (H, φ̃, ϕ̃) (where (H, φ̃, ϕ̃) is a tuple
in the representation of S) if P is a subpath of ϕ̃(e) for some e ∈ E(H).

Definition 11.9 (Few-Crossings Frame). Let (G, δ, t, w′, s′) be an instance of FlatWall-
FindFolio? and let S be a solution. Let (M,N) be a 2q-workspace of G̃, ` ∈ [q−1]0, d1, d2 ∈ [`]
where ` + d1 < q and d2 < d1 and β ∈ N. The solution S has (`, d1, d2, β)-few crossings if for
any (H, φ̃, ϕ̃) in the representation of S, it does not have more than β (`, d1, d2)-x y crossings
of (H, φ̃, ϕ̃) for every x ∈ {exterior,interior} and y ∈ {up-left, up-right, down-left, down-right}
(individually).

Now we define oriented rows and columns in a workspace, which we use shortly in a proof;
this definition will be useful later throughout the paper.

54

Definition 11.10 (Oriented Column/Row). Let (M,N) be a [2q]-workspace of a plane
graph G̃. For all j ∈ [2q], a path P in G̃ is a j-column of (M,N) if the following conditions are
satisfied.

• For every vertex v ∈ V (P), there exists Ni,j ∈ N for some i ∈ [2q] such that v ∈ inG̃(Ni,j).

• For every i ∈ [2q− 1], there exists exactly one edge {u, v} ∈ E(P) such that u ∈ inG̃(Ni,j)
and v ∈ inG̃(Ni+1,j).

Furthermore, we call P a j-oriented column to imply that the start-vertex of P is in inG̃(N1,j)
and the end-vertex is in inG̃(N2q,j).

A j-row and a j-oriented row, for any j ∈ [2q], are defined analogously.

Lemma 11.1. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let (M,N) be
a 2q-workspace of G̃, ` ∈ [q − 1]0, d1, d2, α ∈ [`] where ` + d1 < q, d2 < d1 and d1 + α < `.
Let S be a (`, d1, α)-vacant solution and let P be an (`, d1, d2)-x y crossing of S, where x ∈
{exterior,interior} and y ∈ {up-left, up-right, down-left, down-right}. For all j ∈ [2q], let Pj be
a j-oriented column. Then,

(a) if x =exterior and y ∈ {up-left,down-left}, then P intersects with Pq−`−d1+1, . . . , Pq−`−d2−1,

(b) if x =interior and y ∈ {up-left,down-left}, then P intersects with Pq−`+d2+1, . . . , Pq−`+d1−1,

(c) if x =exterior and y ∈ {up-right,down-right}, then P intersects with Pq+`+d2+2, . . . , Pq+`+d1,
and

(d) if x =interior and y ∈ {up-right,down-right}, then P intersects with Pq+`−d1+2, . . . , Pq+`−d2.

Proof. Here, we prove condition (a). The proofs of all other cases are using arguments similar
to the proof of condition (a) and hence omitted. Let A = {Ni,j ∈ N : i ∈ {q − ` + d1 +
1, . . . , q−`+d1 +α}, j ∈ {q−`−d1, . . . , q−`+d2}} and U =

⋃
N∈A inG̃(N)∩V (G̃). For any i ∈

{q−`−d1+1, . . . , q−`−d2−1}, V (Pi) is an (s, t)-separator for any s ∈
⋃
i∈[2q],j=q−`−d1 inG̃(N) and

t ∈
⋃
i∈[2q],j=q−`−d2 inG̃(N). Any (`, d1, d2)-exterior y crossing P of S, where y ∈ {up-left,down-

left}, is a path (which is connected subgraph) with at least one vertex in
⋃
i∈[2q],j=q−`−d1 inG̃(N)

and at least one vertex in
⋃
i∈[2q],j=q−`−d2 inG̃(N). Hence, condition (a) follows.

We require the following auxiliary result to prove the main lemma (Lemma 11.3) of the
subsection.

Lemma 11.2. Let G be a graph and t ∈ N. Let {P1, . . . , P6t} and {P ′1, . . . , P ′6t} be two sets of
vertex disjoint paths such that for any i, j ∈ [6t], V (Pi)∩V (P ′j) 6= ∅ and H = P1 ∪ . . . P6t ∪P ′1 ∪
. . . ∪ P ′6t be a planar graph. Then there is a t× t grid minor in H.

Proof. The proof is based on the relation between the treewidth and the bramble number of
a graph. A bramble in a graph G′ is a set of connected subgraphs of G′ such that any two of
these subgraphs have a nonempty intersection or are joined by an edge. The order of a bramble
is the least number of vertices required to hit all the subgraphs in the bramble. The bramble
number of a graph G′ is the maximum of the orders of all the brambles of G′. Seymour and
Thomas [75] proved that (a) the bramble number of a graph G′ is equal to tw(G′) + 1.

Consider the graph H. and the set of (6t)2 subgraphs H = {Pi ∪ P ′j : i, j ∈ [6t]}. Since
V (Pi)∩ V (P ′j) 6= ∅ for any i, j ∈ [6t], we have that all the graphs in H are connected subgraphs
and they are pairwise intersecting. This implies that H forms a bramble. Now we claim that at
least 6t vertices are required to hit all the graphs in H. Suppose not. Let S be a set of vertices
such that |S| < 6t and S is a hitting set for H. Since |S| < 6t, there exist i, j ∈ [6t] such that
V (Pi) ∩ S = ∅ and V (P ′i) ∩ S = ∅. This contradicts the assumption that S is a hitting set for
H. Hence, by statement (a), we conclude that tw(H) ≥ 6t − 1. Thus, by Proposition 3.7, H
has a t× t grid minor.

55

Now we are ready to prove the main lemma of the subsection. We prove that if there is an
(`, d)-terminal free solution, then there is an (`, d1)-terminal free solution that is also (`, d1, α)-
vacant and has (`, d1, d2, β)-few crossings, for appropriate values d, d1, d2, α and β.

Lemma 11.3. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let r be the con-
stant mentioned in Corollary 9.2. Let (M,N) be a 2q-workspace, ` ∈ [q − 1]0, d, d1, d2, α ∈ [`]
where ` + d < q, d2 < d1 < d1 + α < d < `, α > r, d − d1 > r and β ∈ N, such that
d1 − d2 − 1 > 2β > 24(r + 1). If there is an (`, d)-terminal free solution S to (G, δ, t, w′, s′),
then (G, δ, t, w′, s′) has an (`, d1)-terminal free solution that is also (`, d1, α)-vacant and has
(`, d1, d2, β)-few crossings.

Proof. The basic idea of the proof is to define a sequence of noose-element pairs F which is
fully contained in the terminal free region

⋃
`−d≤i≤`+d Frame[i] and then using Corollary 9.2, we

prove the required conclusion of the lemma. First of all, we fix a j-oriented column Pj for all
j ∈ [2q]. Next we define some sets of indices.

UI = {q − `− d, . . . , q − `+ d} (∅ 6= UI ⊂ N, because `+ d < q)

UI1 = LJ = {q − `− d1, . . . , q − `+ d1} (∅ 6= LJ ⊂ N, because `+ d1 < q)

BI = {q + 1 + `− d, . . . , q + 1 + `+ d} (∅ 6= BI ⊂ N, because d < `)

BI1 = RJ = {q + 1 + `− d1, . . . , q + 1 + `+ d1} (∅ 6= RJ ⊂ N, because d1 < `)

MI = {q − `+ d1 + 1, . . . , q + `− d1} (∅ 6= MI ⊂ N, because d1 < `− 1)

Iα = {q − `+ d1 + α+ 1, . . . , q + `− d1 − α} (∅ 6= Iα ⊂ N, because d1 + α < `)

J = {q − `− d, . . . , q + 1 + `+ d} (∅ 6= J ⊂ N, because `+ d < q)

J1 = {q − `− d1, . . . , q + 1 + `+ d1} (∅ 6= J1 ⊂ N, because `+ d1 < q)

Notice that, since d1 < d1 + α < d, we have that (a) UI1 ⊆ UI,BI1 ⊆ BI, Iα ⊆ MI and
LJ,RJ ⊆ J1 ⊆ J . Since d1 < `, we have that (b) LJ ∩ RJ = UI1 ∩ BI1 = ∅ , UI1 ∩ Iα = ∅,
BI1 ∩ Iα = ∅ and UI1 ∩BI1 = ∅. Now, we define eight sets of nooses in N as follows.

A1 = {Ni,j ∈ N : i ∈ UI1, j ∈ J1}
A2 = {Ni,j ∈ N : i ∈ BI1, j ∈ J1}
A3 = {Ni,j ∈ N : i ∈ Iα, j ∈ LJ}
A4 = {Ni,j ∈ N : i ∈ Iα, j ∈ RJ}
B1 = {Ni,j ∈ N : i ∈ UI, j ∈ J}
B2 = {Ni,j ∈ N : i ∈ BI, j ∈ J}
B3 = {Ni,j ∈ N : i ∈MI, j ∈ LJ}
B4 = {Ni,j ∈ N : i ∈MI, j ∈ RJ}

Statement (a) implies that Ai ⊆ Bi for all i ∈ [4]. Statement (b) implies that {Ai : i ∈
[4]} is pairwise disjoint. By Observation 11.1, we have that for any (`, d)-x segment P of S,
x ∈ {interior,exterior}, E(P) ⊆ E(G̃). For any i ∈ [4], let Ui =

⋃
N∈Ai(inG̃(N) ∩ V (G̃)). Since

{Ai : i ∈ [4]} is a family of pairwise disjoint set of nooses, we have that the family of sets
{Ui : i ∈ [4]} is pairwise disjoint. Moreover, by the properties (c) and (d) of Definition 10.1,
we have that G̃[Ui] is a connected subgraph for all i ∈ [4]. Hence, by Observation 3.3, we have
that for any i ∈ [4], there is a noose Fi such that Ui ∪ E(G̃[Ui]) = in?

G̃
(Fi).

Now, for each Fi, we define its wrap such that {(F1, Ui), . . . , (F4, U4)} forms a wrapped
sequence of noose-element pairs. For any i ∈ [4], consider the graph G̃′i induced by the union of
vertices in the nooses from Bi \Ai. Since d−d1 > r and α > r, there is a sequence of concentric
cycles Ci = Ci0, . . . , C

i
r in G̃′i, such that Fi is in the inner face of Ci0 and the inner face of Cir.

56

Since d1 + α > d and d < ` (by assumption), we have that for any i, j ∈ [4], i 6= j, Bi is disjoint
from Aj . This implies that for any i, j ∈ [4], i 6= j, V (G̃′i) is disjoint from Uj . Hence, we have
that {(F1, U1), . . . , (F4, U4)} is a wrapped sequence of noose-element pairs. Now we would like
to extend the sequence {(F1, U1), . . . , (F4, U4)} by appending as many noose-element pairs as
possible from G̃?, a graph induced by the vertices from the nooses in B3 ∪B4. For any j ∈ [2q],
let Pj be a j-oriented column. Let ((N1, Z1), . . . , (Nq′ , Zq′)) be a maximal sequence of wrapped
noose-element pairs in G̃? with the property that

F = ((F1, U1), (F2, U2), (F3, U3), (F4, U4), (N1, Z1), . . . , (Nq′ , Zq′))

is a sequence of noose-element pairs and Zi ⊆ V (G̃) \
⋃
j∈X V (Pj) for any i ∈ [q′], where

X = {q−`−d1+1, q−`−d1+3, . . . , q−`−d2−1} (assume that both d1 and d2 are even numbers).
By Corollary 9.2, we know that there is a solution S? = {(φ′H , ϕ′H) : H in δ?-folio of G} such
that

(i) No element from
⋃
i∈[4] Ui ∪

⋃
i∈[q′] Zi is in the image of ϕ′H for any H in δ?-folio of G,

and

(ii) the sets of terminals with respect to S and S? are same.

Because of property (ii), d1 < d, and the fact that S is (`, d)-terminal free, we conclude
that S? is an (`, d1)-terminal free solution. Now we show that S? is an (`, d1, α)-vacant solu-
tion. From the definition of

⋃
i∈[4] Ui, we have that any vertex v in inG̃(Ni,j) for some Ni,j ∈⋃

`−d1≤t≤`+d1 Frame[t], with i /∈ {q−`+d1+1, . . . , q−`+d1+α}∪{q+1+`−d1−α, . . . , q+`−d1},
also belongs to

⋃
i∈[4] Ui. Hence, by property (i), we conclude that S? is an (`, d1, α)-vacant

solution.
Now we prove that S? has (`, d1, d2, β)-few crossings. Since S? is an (`, d1, α)-vacant solution,

by Observation 11.3, we know that for any (`, d)-x segment P , where x ∈ {interior, exterior}, P is
either up-left or up-right or down-left or down-right segment. Now, suppose S? is not a solution
with (`, d1, d2, β)-few crossings. Then, there exist a tuple (H,φ, ϕ) in the representation of S?,
x ∈ {exterior,interior} and y ∈ {up-left, up-right, down-left, down-right}, such that (H,φ, ϕ) has
more than β (`, d1, d2)-x y crossing. Here, we assume that x =exterior and y =up-left. For all
other cases, arguments in the proof are similar to those of the case when x =exterior and y =up-
left and hence omitted. Let H3 be the subgraph of G̃ induced on the vertices of the nooses in
B3. Let {Q1, . . . , Qβ+1} be a set of (`, d1, d2)-exterior up-left crossings of (H,φ, ϕ). Notice that
{Q1, . . . , Qβ+1} are vertex disjoint paths in H3. For any j ∈ X, let P ′j be the maximal subpath
of Pj which is a path in H3. Notice that V (H3)∩V (Pj) = V (P ′j) for all j ∈ X. By Lemma 11.1,
we know that each Qi, i ∈ [β + 1], intersects with Pq−`−d1+1, Pq−`−d1+3, . . . , Pq−`−d2−1, and
hence intersect with P ′q−`−d1+1, P

′
q−`−d1+3, . . . , P

′
q−`−d2−1. Recall the definition of G̃?. Since

d1 − d2 − 1 > 2β, by Lemma 11.2, we know that there is a bβ6 c × b
β
6 c grid in the subgraph

H? = Q1 ∪ . . . ∪ Qβ ∪ P ′q−`−d1+1 ∪ P ′q−`−d1+3 . . . ∪ P ′q−`−d2−1 of G̃?. This implies that, since
β > 12(r + 1), there is a (2r + 2) × (2r + 2) grid in H?. Intuitively, this implies that there
is a sequence of concentric cycles C0, . . . , Cr such that the strict interior face of C0 contains a
cycle O. Also, since P ′q−`−d1+1, P

′
q−`−d1+3, . . . , P

′
q−`−d2−1 are pairwise disjoint paths, and any

two vertices in two distinct paths are at distance at least 2 in G̃ (because these paths are
from “alternate” oriented columns) at least one vertex v from O is not a vertex in the paths
P ′q−`−d1+1, P

′
q−`−d1+3, . . . , P

′
q−`−d2−1 and hence v is vertex in V (Q1)∪. . .∪V (Qβ+1). This implies

that there is a wrapped noose-element pair (F, {v}) in G̃? such that v ∈ V (G̃) \
⋃
j∈X V (Pj).

Moreover, no vertex of H? belongs to U1∪ . . .∪U4∪Z1, . . . Zq′ . This contradicts the maximality
of F . This completes the proof of the lemma.

Next, by using Lemma 11.3, we can prove a crucial lemma, namely, Lemma 8.3, which
asserts the existence of an irrelevant vertex in the case of a large flat wall.

57

Proof of Lemma 8.3. Let k′ = δ? + t and r = h(k′) be the constant mentioned in Corollary 9.2.
That is, r depends on δ and t. Fix d = 27(r+2), β = 12(r+1)+1, d1 = 25(r+2) and α = r+1.
Let q be an integer such that q > 2c

′(δ?)2td, for some constant c′ (to be fixed later in the proof).
Let S be a solution. By Proposition 5.1, the number of distinct graphs (up to isomorphism)

in the δ?-folio of G is upper bounded by 2O((δ?)2) · |R(G)|O(δ?) = 2O((δ?)2). This implies that
the number of terminal vertices in S is upper bounded by 2c

′′(δ?)2 , where c′′ is a constant.
Moreover, for each (H,φ, ϕ) ∈ S, the number of edges with one end point in A and other in
G0 ∪ G1 ∪ . . . ∪ Gk is at most δ?t. Therefore, there is a constant c′ such that if q > 2c

′(δ?)2td
and there is ` ∈ [q] such that no terminal from S belongs U and no edge in ϕH (for any
(H,φH , ϕH) ∈ S) with one endpoint in U and other in A, where U is the union of vertices in the
nooses in

⋃
`−d≤j<`+d Frame[j] and the union of vertices of V (Gi), with V (Gi)∩V (G0) contains

a vertex in a noose in
⋃
`−d≤j<`+d Frame[j]. This implies S is (`, d)-terminal free. Therefore,

by Lemma 11.3, there is an (`, d1, α)-vacant solution. Then, by Observation 11.2, there is an
irrelevant vertex in G.

Let ĉ be the constant mentioned in Lemma 10.1. Let p = 2ĉq + 1 and w = 2ĉp. We are a
given a w × w flat fall in G \ A. Thus by Observation 3.5, there is a w × w-grid as a minor in
G̃. This implies that the treewidth of G̃ strictly more than ĉp. So by Lemma 10.1, there is a
(p, q)-workspace of G̃. This completes the proof of the lemma.

11.2 Regret-Free Frames

Even though we proved the existence of solutions with few (`, d1, d2)-crossings, these crossing
segments may not be both interior and exterior segments (for example, see segment P3 in
Figure 6). Intuitively, if d1 − d2 is large, then in a minimal solution we may not have such
crossing segments. Towards formalizing it, we define when does such crossing segments are
called regret, regret cost associated with a solution and then solutions satisfying “(`, d1, d2, d3)-
regret free”.

Definition 11.11 (Regret). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio? and
let S be a solution. Let (M,N) be a 2q-workspace of G̃, ` ∈ [q − 1]0 and d1, d2 ∈ [`] where
` + d1 < q and d2 < d1. An (`, d1)-x y segment P of S, where x ∈ {exterior,interior} and
y ∈ {up-left, up-right, down-left, down-right}, is an (`, d1, d2)-x y regret if P is an (`, d1, d2)-x
y crossing and it does not have one endpoint in inG̃(N) for some N ∈ Frame[` + d1] and the
other endpoint in inG̃(N ′) for some N ′ ∈ Frame[`− d1].

Definition 11.12 (Regret Cost). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?,
and S be a solution. Let (M,N) be a 2q-workspace of G̃, ` ∈ [q − 1]0 and d1, d2 ∈ [`]
where ` + d1 < q and d2 < d1. The regret cost of an (`, d1, d2)-x y regret P of S, where
x ∈ {exterior,interior} and y ∈ {up-left, up-right, down-left, down-right}, is a pair (h, t)
defined as follows. If x =exterior (resp. x =interior), then h is the smallest (resp. largest)
h′ ∈ {`−d2, . . . , `+d2} for which there exist v ∈ V (P) and N ∈ Frame[h′] such that v ∈ inG̃(N),
and t is the number of vertices v ∈ V (P) for which there exists N ∈ Frame[h′] such that
v ∈ inG̃(N).

Let (H,φ, ϕ) be a tuple in the representation of S. The (`, d1, d2)-exterior y regret cost
((`, d1, d2)-interior y regret cost) of (H,φ, ϕ), for y ∈ {up-left, up-right, down-left, down-right},
is the tuple (t`−d2 , t`−d2+1, . . . , t`+d2) (resp. (t`+d2 , t`+d2−1, . . . , t`−d2)) where for every i ∈ {` −
d2, . . . , ` + d2}, ti is the sum of the second argument t in the regret cost of every (`, d1, d2)-
exterior y regret ((`, d1, d2)-interior y regret) P of (H,φ, ϕ), whose first argument is h = i.
The (`, d1, d2)-regret cost of (H,φ, ϕ) is the entry-wise sum of the (`, d1, d2)-x y regret cost of
(H,φ, ϕ), where the summation varies over x ∈ {exterior, interior} and y ∈ {up-left, up-right,
down-left, down-right}.

58

The following definition explains how to compare regret costs of two solutions.

Definition 11.13. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio? and let H be a
graph in δ?-folio of G. Let (φ1, ϕ1) and (φ2, ϕ2) be two witnesses for H being a topological minor
in G. Let (H,φ′1, ϕ

′
1) and (H,φ′2, ϕ

′
2) be the representations of (H,φ1, ϕ1) and (H,φ2, ϕ2). Let

(M,N) be a 2q-workspace of G̃, ` ∈ [q − 1]0 and d1, d2 ∈ [`] where ` + d1 < q and d2 < d1.
We say that the (`, d1, d2)-regret cost η1 of (H,φ′1, ϕ

′
1) is smaller than (`, d1, d2)-regret cost η2

of (H,φ′2, ϕ
′
2), if η1 is lexicographically smaller than η2.

Next we define (`, d1, d2, d3)-regret free solutions and prove that such a solution exists if
there is an (`, d)-terminal free solution for appropriate values of d, d1, d2 and d3.

Definition 11.14 (Regret-Free Frame). Let (G, δ, t, w′, s′) be an instance of FlatWall-
FindFolio?. Let (M,N) be a 2q-workspace of G̃, ` ∈ [q − 1]0, d1, d2, d3 ∈ [`] where `+ d1 < q
and d3 < d2 < d1. A solution S is (`, d1, d2, d3)-regret free if it does not have an (`, d1, d2)-x y
regret P for any x ∈ {exterior,interior} and y ∈ {up-left, up-right, down-left, down-right} such
that there is a vertex v ∈ V (P) ∩ inG̃(N) for some N ∈

⋃
`−d3≤t≤`+d3 Frame[t].

Lemma 11.4. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio? and r be the con-
stant mentioned in Corollary 9.2. Let (M,N) be a 2q-workspace of G̃, ` ∈ [q−1]0, d, d1, d2, d3, α ∈
[`] where `+d1 < q and d3 < d2 < d1 < d, α, d−d1 > r and β ∈ N, such that d1−d2−1 > 2β >
24(r + 1) and d2 − d3 − 1 > β. Let S be an (`, d)-terminal free solution. Then, (G, δ, t, w′, s′)
has an (`, d1)-terminal free solution that is also (`, d1, α)-vacant, has (`, d1, d2, β)-few crossings
and is (`, d1, d2, d3)-regret free.

Proof. By Lemma 11.3, we know that (G, δ, t, w′, s′) has an (`, d1)-terminal free solution which
is (`, d1, α)-vacant, and has (`, d1, d2, β)-few crossings. Among all such solutions let S ′′ be a
solution such that (a) the maximum (`, d1, d2)-regret cost η of any (H,φ, ϕ) in the representa-
tion of S ′ is minimized. Among the solutions which are (`, d1)-terminal free, (`, d1, α)-vacant,
with (`, d1, d2, β)-few crossings and satisfying statement (a), choose a solution S ′ such that the
number of tuples (H,φ, ϕ) in the representation of S ′ with (`, d1, d2)-regret cost η, is minimized.
Now fix a tuple (H,φ, ϕ) in the representation of S ′ with (`, d1, d2)-regret cost η.

If S ′ is (`, d1, d2, d3)-regret free, then we are done. Otherwise, there is an (`, d1, d2)-x y
regret P (where P is an (`, d1, d2)-x y crossing of (H,φ, ϕ)) for some x ∈ {exterior,interior} and
y ∈ {up-left, up-right, down-left, down-right} such that there is a vertex v ∈ V (P) ∩ inG̃(N)
for some N ∈

⋃
`−d3≤t≤`+d3 Frame[t]. Here, we assume that x = exterior and y = up-left. The

proofs for all other cases are similar in arguments that of the case when x = exterior and y =
up-left, and hence omitted. Notice that the first argument in the regret cost of P is less than
or equal to `+ d3 because P is an (`, d1, d2)-exterior crossing.

Let us fix j-oriented columns Pj for all j ∈ {q−`−d1, . . . , q−`+d2}. Let Q = {Q1, . . . , Qβ′}
be the set of (`, d1, d2)-exterior up-left crossings which are (`, d1, d2)-exterior up-left regrets of
(H,φ, ϕ). Since S ′ has (`, d1, d2, β)-few crossings, we have that β′ ≤ β. Notice that P ∈
{Q1, . . . , Qβ′} and hence q ≥ 1. Since there is a vertex v ∈ V (P) ∩ inG̃N for some N ∈⋃
`−d3≤t≤`+d3 Frame[t], P is an (`, d1, d3)-crossing as well. Hence, Lemma 11.1, P intersects

with Pj for any j ∈ {q − ` − d1 + 1, . . . , q − ` + d3}. For each path Qi ∈ Q, let ui and u′i the
end points of Qi. Since each Qi is an (`, d1, d2)-exterior up-left regret, both ui and u′i belong to⋃
i∈[2q] in(Ni,q−`−d1) and no internal vertex of Qi is in

⋃
i∈[2q] in(Ni,q−`−d1). By properties (c) and

(d) of Definition 10.1, we know that the subgraph J of G̃ induced on
⋃
i∈[2q] inG̃(Ni,q−`−d1)∩V (G̃)

is a connected graph. Let J ′ be a spanning tree of J . Since each Qi ∈ Q is an (`, d1)-exterior
up-left segment, Qi hits on J ′ only on ui and u′i. So there is a unique cycle formed by J ′ and
Qi and let Ci be that cycle.

Claim 11.1. The inner faces of {C1, . . . , Cβ′} form a laminar family.

59

Proof. Since for any i ∈ [β′], Qi does not contain a terminal with respect to S ′, Q is a set of
vertex disjoint paths. This implies that for i 6= j, either Ci is contained in the interior face of
Cj or Cj is contained in the interior face of Cj or their inner faces are disjoint. Thus, we have
that the inner faces of {C1, . . . , Cβ′} form a laminar family.

Claim 11.2. Any (`, d1, d2)-exterior up-left crossing Y , which is not in Q, does not hit the
inner face of C for any C ∈ {C1, . . . , Cβ′}.

Claim 11.3. For any C ∈ {C1, . . . , Cβ′}, if C hits Pq−`−d2+i for any i ∈ N, then the inner face
of C contains at least i cycles from {C1, . . . , Cβ′}.

Proof. Recall that Q1, . . . , Qβ′ are the (`, d1, d2)-exterior up-left crossings of (H,φ, ϕ), which
are (`, d1, d2)-exterior up-left regrets of (H,φ, ϕ). We prove the claim using induction on i.
The base case is when i = 1. The inner face of C contains C itself and hence the statement
follows. Now consider the induction step, where i > 1. The cycle C hits the path Pq−`−d2+i.
This implies that there is a subpath R of Pq−`−d2+i−1, of length at least one, such that R is
contained in the interior face of C, with end vertices being (say u and v) on C, and the path
PC from u to v in C intersects Pq−`−d2+i. Suppose the path R does not intersects with any
C ′ ∈ {C1, . . . , Cr} \ {C}. Then by Claim 11.2, we conclude that R does not have any (`, d1, d2)-
exterior up-left crossing. This implies that the internal vertices of R are not in the image of
ϕ. Then by replacing the path PC with R, we get a new solution with smaller (`, d1, d2)-regret
cost, which is a contradiction to the choice of S ′. Suppose C ′ ∈ {C1, . . . , Cβ′} \ {C} be a cycle
such that C ′ is contained in the interior face of C, and intersects with R. Since C ′ intersects
with R, a subpath of Pq−`−d2+i−1, by induction hypothesis, we get that the inner face of C ′

contains i− 1 cycles C from {C1, . . . , Cβ′}. These cycles are contained in the interior face of C,
and by Claim 11.1, we have that C /∈ C. Thus, C ∪ {C} is the required set of i cycles in the
interior face of C. This completes the proof of the claim.

Since P ∈ {Q1, . . . , Qβ′} and P intersects with Pq−`−d3−1, there is a cycle C ∈ {C1, . . . , Cq}
such that C intersects with Pq−`−d3−1 = Pq−`−d2+(d2−d3−1). Thus, by Claim 11.3, we have that
the interior face of C contains at least d2−d3−1 cycles from {C1, . . . , Cβ′}. This contradicts the
assumption that β′ ≤ β, because d2 − d3 − 1 > β. This completes the proof of the lemma.

The proof of the following lemma is similar in arguments to that of Lemma 11.1.

Lemma 11.5. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let (M,N) be a
2q-workspace of G̃, ` ∈ [q − 1]0 and d1, d2 ∈ [`] where ` + d1 ≤ q − 1 and d3 < d2 < d1. Let S
be a solution that is (`, d1, d2, d3)-regret free. Let P be an (`, d1, d3)-y crossing of S. Then,

(a) if y ∈ {up-left,down-left}, then P intersects with Pq−`−d1+1, . . . , Pq−`+d1−1, and

(b) if y ∈ {up-right,down-right}, then P intersects with Pq+`−d1+1, . . . , Pq+`+d1−1.

11.3 Untangled Frames

In this subsection we define (`, η)-untangled solutions; such a solution behaves nicely on frame
`, and its restriction to the frames numbered {0, . . . , `} has small size. These properties will
make the computation of partial solution feasible in the later section. In this subsection we
prove that if there is an (`, d)-terminal free solution, then there is an (`, η)-untangled solution.
Let us start with two definitions of special subgraphs in G̃ and G.

Definition 11.15. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let (M,N)
be a 2q-workspace of G̃ and ` ∈ [q − 1]0. Let U` be the union of the vertices from the nooses in⋃
i∈[`]0

Frame[i]. Let G ⊆ {G1, . . . , Gk} be the graphs such that for any i ∈ [k], V (Gi)∩V (G0) ⊆
60

U` if and only if Gi ∈ G. Then, the graph G̃` and G?` are defined as the induced subgraphs of
G̃ ∪G1 ∪ . . . ∪Gk and G ∪G1 ∪ . . . ∪Gk, respectively, induced by the vertices U` ∪

⋃
J∈G V (J).

Next, we define disk segments and disk dangling segments, which are required to define what
is an (`, η)-untangled solution.

Definition 11.16 (Disk Segment). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?.
Let S be a solution and S ′ be the representation of it. Let (H,φ′H , ϕ

′
H) ∈ S ′. Let (M,N) be a

2q-workspace of G̃ and ` ∈ [q − 1]0. A path P (with endpoints u and v) in G̃` is an `-interior
segment (or simply an `-segment) of (H,φ′H , ϕ

′
H) if there exists e ∈ E(H) such that P is a

subpath of P ′ = ϕ′H(e) with the following properties.

1. There exist distinct nooses Nu, Nv ∈ Frame[`] such that u ∈ inG̃(Nu) and v ∈ inG̃(Nv).

2. P can be partitioned into three subpaths, Pu, Pm and Pv, such that every vertex on Pu
belongs to inG̃(Nu), every vertex in Pv belongs to inG̃(Nv), and Pm contains at least one

vertex and every vertex on Pm belongs to V (G̃`−1).

3. P ′ contains a vertex that is (i) adjacent to u, (ii) does not belong to P , and (iii) does not
belong to V (G̃`).

4. P ′ contains a vertex that is (i) adjacent to v, (ii) does not belong to P , and (iii) does not
belong to V (G̃`).

Definition 11.17 (Dangling Disk Segment). Let (G, δ, t, w′, s′) be an instance of FlatWall-
FindFolio?. Let S be a solution and S ′ be the representation of it. Let (H,φ′H , ϕ

′
H) ∈ S ′. Let

(M,N) be a 2q-workspace of G̃ and ` ∈ [q − 1]0. A path P (with endpoints u and v) in G̃`
is an `-dangling segment of (H,φ′H , ϕ

′
H) if there exists e ∈ E(H) such that P is a subpath of

P ′ = ϕ′H(e) with the following properties.

1. There exists a noose Nu ∈ Frame[`] such that u ∈ inG̃(Nu).

2. P can be partitioned into two subpaths, Pu and P r, such that every vertex in Pu belongs
to inG̃(Nu), P r contains at least one vertex and every vertex on P r belongs to V (G̃`−1).

3. P ′ contains a vertex that is (i) adjacent to u, (ii) does not belong to P , and (iii) does not
belong to V (G̃`).

Definition 11.18 (Used Noose). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?.
Let (M,N) be a 2q-workspace in G̃. Let S be a solution and S ′ = {(H,φ′H , ϕ′H) : H in the δ?-folio of G}
be the representation of it. A noose N ∈ N is used by (H,φ′H , ϕ

′
H) ∈ S ′ if there exists a vertex

in the image of ϕ′H that belongs to inG̃(N).

Now we are ready to define what is an (`, η)-untangled solution and a lemma about its
existence if there is an (`, d)-terminal free solution.

Definition 11.19 (Untangled Frame). Let (G, δ, t, w′, s′) be an instance of FlatWall-
FindFolio?. Let (M,N) be a 2q-workspace in G̃, ` ∈ [q − 1]0 and η ∈ N. Let S be a solution
and S ′ = {(H,φ′H , ϕ′H) : H in the δ?-folio of G} be the representation of it. The solution S is
(`, η)-untangled if it is (`, 3)-terminal free and the three following conditions are satisfied for
any (H,φ′H , ϕ

′
H) ∈ S ′.

1. At most η nooses in Frame[`] are used by (H,φ′H , ϕ
′
H). Each noose in Frame[`] used by

(H,φ′H , ϕ
′
H) is either a right-noose or a left-noose.

2. Every vertex v in the image of ϕ′H , belonging to a noose N ∈ Frame[`], is also a vertex of
an `-segment or an `-dangling segment of (H,φ′H , ϕ

′
H).

61

3. There do not exist a noose N ∈ Frame[`] and two distinct `-(dangling) segments of
(H,φ′H , ϕ

′
H), P and P ′, such that both P and P ′ intersect inG̃(N).

Lemma 11.6. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let r be the con-
stant mentioned in Corollary 9.2. Let (M,N) be a 2q-workspace in G̃, ` ∈ [q− 1]0, d, d1, β ∈ [`]
such that 4β + 6 < d1 < d < `, `+ d1 + r < q, β > 12(r + 1), and d− d1 > r. If (G, δ, t, w′, s′)
has an (`, d)-terminal free solution, then it has an (`, d1)-terminal free solution that is also
(`, η)-untangled, where η = 4β.

Proof. First, we fix three integers d2, d3, α ∈ N as follows: d3 = β+3, α = r+1 and d2 = 2β+5.
Notice that d3 < d2 < d1 < d, α > r, d2−d3−1 > β > 12(r+1), d1−d2−1 > 2β > 24(r+1) and
`+ d1 < q. Therefore, since (G, δ, t, w′, s′) has an (`, d)-terminal free solution, by Lemma 11.4,
we know that there is a solution S which is (`, d1)-terminal free, (`, d1, α)-vacant, (`, d1, d2, β)-
few crossings and (`, d1, d2, d3)-regret free. Let S ′ = {(H,φH , ϕH) : H in the δ?-folio of G} be
a representation of S. Let Q =

⋃
`−d1≤i≤`+d1 Frame[i] and U =

⋃
N∈Q inG̃(N) ∩ V (G̃). Let

G′ = G̃ ∪ G and U ′ = U ∪ {V (Gi) : i ∈ [k], V (Gi) ∩ U 6= ∅}. By Observation 11.1, we know
that there is no edge in E(G[U ′]) \E(G̃) and EG(U ′, A) which is used by S ′. This implies that
the edges used by S ′ in G′[U] are only from the “planar portion” of G̃[U]. Now we modify S ′,
to get a representation of a solution which is (`, η)-untangled.

Since S is (`, d1, α)-vacant, for any vertex v in the image of ϕH belonging to inG̃(Ni,j) for
some Ni,j ∈

⋃
`−d1≤i′≤`+d1 Frame[i′], it holds that i ∈ {q − `+ d1 + 1, . . . , q − `+ d1 + α} ∪ {q +

1 + `− d1 − α, . . . , q + `− d1}. Moreover, since S is (`, d1, d2, d3)-regret free, we have that any
(`, d1, d3)-crossing segment has one end point in a noose in Frame[` + d1] (we call it starting
vertex) and other in a noose in Frame[` − d1] (we call it ending vertex) and these are the only
(`, d1)-segments that intersect with Frame[`]. Since S is (`, d1, d2, β)-few crossings and (`, d1, α)-
vacant, for any (H,φH , ϕH) ∈ S ′, number of (`, d1, d2)-crossing segments of (H,φH , ϕH), and
hence the number of (`, d1, d3)-crossing segments of (H,φH , ϕH) are upper bounded by 4β = η.
Even though the number of (`, d1, d3)-crossing segments are bounded, they may intersect with
Frame[`] many times and as a result, the solution may not be (`, η)-untangled.

In what follows we show how to construct a representation Z ′ of a solution Z from S ′,
such that Z is (`, η)-untangled. Towards that we fix a tuple (H,φH , ϕH) ∈ S ′ and reroute
the (`, d1, d3)-crossing segments (H,φH , ϕH) such that we can get the required properties. No-
tice that (`, d1, d3)-crossing segments can be partitioned into (`, d1, d3)-up-left crossing segments,
(`, d1, d3)-down-left crossing segments, (`, d1, d3)-up-right crossing segments and (`, d1, d3)-down-
right crossing segments. Let

UL =
⋃

q−`+d1+1≤i≤q−`+α
q−`−d1≤j≤q−`+d1

inG̃(Ni,j)

DL =
⋃

q+1+`−d1−α≤i≤q+1+`−d1
q−`−d1≤j≤q−`+d1

inG̃(Ni,j)

UR =
⋃

q−`+d1+1≤i≤q−`+d1+α
q+1+`−d1≤j≤q+1+`+d1

inG̃(Ni,j)

DR =
⋃

q+1+`−d1−α≤i≤q+1+`−d1
q+1+`−d1≤j≤q+1+`+d1

inG̃(Ni,j)

While re-routing (`, d1, d3)-up-left crossing segments, (`, d1, d3)-down-left crossing segments,
(`, d1, d3)-up-right crossing segments and (`, d1, d3)-down-right crossing segments, the new paths

62

will use only vertices from UL,DL,UR and DR, respectively. Since the sets UL,DL,UR and
DR are pairwise disjoint, these re-routing will not intersect each other. Here, we explain how to
re-route (`, d1, d3)-up-left crossing segments towards satisfying the properties of (`, η)-untangled.
Other cases are symmetric to the case of (`, d1, d3)-up-left crossing segments and hence omitted.

Let us fix four integers w = q−`−d1, e = q−`+d1, n = q−`+d1 +1 and s = q−`+d1 +α.
We know that the number of (`, d1, d3)-up-left crossing segments is at most β and any such
segment S will have its starting vertex in a noose Ni,w and ending vertex in a noose Ni′,e,
where i, i′ ∈ {n, . . . , s}. Moreover, each internal vertex of V (S) will be in a noose Ni,j where
i ∈ {n, . . . , s} and j ∈ {w + 1, . . . , e − 1}. Let S1, . . . , Sβ′ be all the (`, d1, d3)-up-left crossing
segments, where β′ ≤ β. For any i ∈ [β′], let ui be the start-vertex of Si and u′i be the
end-vertex of Si. Now we fix a j-oriented column Pj for all j ∈ {w, . . . , e}. Now fix four
vertices a ∈ in(Nn−1,w−1), a′ ∈ in(Nn−1,e+1), b ∈ in(Ns+1,w−1) and b′ ∈ in(Ns+1,e+1). Let
QA be a a-a′ path in

⋃
w−1≤j≤e+1 in(Nn−1,j) such that for any j ∈ {w, . . . , e}, V (Pj) ∩ V (QA)

appears consecutively in the path QA and forms a subpath of Pj . Let QB be a b-b′ path in⋃
w−1≤j≤e+1 in(Ns+1,j) such that for any j ∈ {w, . . . , e}, V (Pj) ∩ V (QB) appears consecutively

in the path QB and forms a subpath of Pj . Let C be the unique cycle formed Pw, QB, Pe and
QA. Let pj be the last vertex of Pj which intersects QA for any j ∈ {w, . . . , e}.

Now we claim that for any i ∈ [β′], V (Si) is contained in the inner face of C. Notice that all
the internal vertices of V (Si) is strictly contained in the interior face of C. Hence for any i ∈ [β′],
V (Si) is contained in the interior face of C. Also, for any i ∈ [β′], Si intersects neither with
QA nor with QB. This implies that ui is either in the interior face of C or intersects with Pw
and u′i is either in the interior face of C or intersects with Pe. Since S is an (`, d1)-terminal free
solution, the set of paths {S1, . . . , Sβ′} is pairwise vertex disjoint. For each i ∈ [β′], let Ri, R

′
i be

shortest paths from ui to Pw in G̃[
⋃
i in(Ni,w)] and u′i to Pe in G̃[

⋃
i in(Ni,e)], respectively, such

that |
⋃
i∈[β′]E(Ri) ∪ E(R′i)| is minimized among all such potential choices. Let Xi = RiSiR

′
i.

Let xi and x′i be the start-vertex and end-vertex of Xi, respectively.
For any i ∈ [β′], let Ci be the cycle formed by Xi, Pe, QA and Pw. Notice that (a) any point

close to Xi and at the left side of the curve corresponding to the path Xi from xi to x′i, and (b)
any point close to QA and at the right side of the curve corresponding to the path QA from a
to a′ are in the strict interior face of Ci.

Observation 11.4. For any i, j ∈ [β′], i 6= j, interior face of Ci is contained in the interior
face of Cj or vice versa.

Proof. We first prove that either Ri and Rj are disjoint or Ri = RAi and Rj = RAj such that Ai
and Aj intersects only at the starting vertex. Suppose not, then there exist a cycle containing
Ri and Rj . This will contradict the minimality assumption of |

⋃
i∈[β′]E(Ri) ∪ E(R′i)|. By

similar arguments we can show that either R′i and R′j are disjoint or R′i = R′A′i and R′j = R′A′j
such that A′i and A′j intersects only at the starting vertex. Moreover, we know that Si and Sj
are vertex disjoint. As a result the paths Xi = RiSiR

′
i and Xj = RjSjR

′
j will have one of the

following forms.

• Xi and Xj are vertex disjoint, or

• Xi = WiZ, Xj = WjZ such that Wi and Wj intersects only at the end-vertex, or

• Xi = ZWi, Xj = ZWj such that Wi and Wj intersects only at the start-vertex, or

• Xi = Z1WiZ2, Xj = Z1WjZ2 such that Wi and Wj intersects only at the start-vertex and
end-vertex.

Notice that any point to the right side of the curve QA and close to QA is part of both Ci and
Cj . Also, since Xi and Xj have the above mentioned properties, the claim follows.

63

Due to Observation 11.4, there is a linear order ⊂ over {C1, . . . , Cβ′}. Without loss of
generality assume that

C1 ⊂ C2 ⊂ . . . ⊂ Cβ′ .

Let P be a path. Recall that Pj is a j-oriented column for some j ∈ {w, . . . , e}. Then, if P
intersects with Pj , then top(P, Pj) is defined as the first vertex on Pj that belongs to P .

Claim 11.4. Let j ∈ {w, . . . , e}. For any i, i′ ∈ [β′] and i < i′, top(Si, Pj) precedes top(Si′ , Pj).

Proof. Notice that Ci ⊂ Ci′ and point close to pj , but after pj in the curve corresponding to Pj
is contained in Ci. Now follow the curve corresponding to the oriented column Pj from pj and
since Ci ⊂ Ci′ and Si is vertex disjoint from Sj , this curve first hits the boundary of Ci strictly
before the boundary of Ci′ .

Since Xi = RiSiR
′
i and Ri and R′i are paths G̃[

⋃
j in(Nj,w)] and G̃[

⋃
j in(Nj,e)], respectively,

we have that if v is a vertex in Xi which intersect with Pq−`−d3+i, then v ∈ V (Si). Let
ti = top(Si, Pq−`−d3+i) = top(Xi, Pq−`−d3+i) and let P ′i be the subpath of Pq−`−d3+i from
pq−`−d3+i to ti for all i ∈ [β′]. (Recall that pq−`−d3+i is the last vertex of Pq−`−d3+i which
intersects QA.) Let S′i be the subpath of Si from ui to ti.

Claim 11.5. There is a set of vertex disjoint paths {W1, . . . ,Wβ′} with the following conditions.

1. For all i ∈ [β′], Wi is a path from ui to ti, top(Wi, Pq−`−d3+i) = ti and E(Wi) ⊆ E(Si) ∪(⋃
w≤j≤eE(Pj)

)
.

2. For all i ∈ [β′] \ {1}, Wi does not intersect with P ′j for any j < i.

3. For all i ∈ [β′] \ {1}, Wi is in the outer face of the cycle formed by Pw, Ri−1,Wi−1, P
′
i−1

and QA.

4. For all i ∈ [β′], Wi is a path in the graph G̃[
⋃
n≤i≤s
w≤j≤e

inG̃(Ni,j)].

5. For all i ∈ [β′], Wi does not intersects with Pq−`−d3+j for any j > i.

Proof. First we show that there exists a set of paths satisfying conditions (1)−(4). Consider the
set of paths {S′1, . . . , S′β′}. From the definition of ti and S′i for all i ∈ [β′], condition (1) follows.
Condition (2) follows from Claim 11.4 and the definition of P ′j for all j ∈ [β′]. Condition (3)
follows from Observation 11.4. Since {S1, . . . , Sβ′} is the set of (`, d1, d3)-crossing segments of
a (`, d1, α)-vacant solution, the condition (4) follows for the paths S′1, . . . , S

′
β′ .

Among the set of paths satisfying properties (1) − (4), let W = {W1, . . . ,Wβ′} be a set of

paths which minimizes the edges on these paths from E(G̃) \
(⋃

w≤j≤eE(Pj)
)

. We claim that

condition (5) holds for the paths W1, . . . ,Wβ′ . For the sake of contradiction, suppose condition
(5) is false for the paths W1, . . . ,Wβ′ . Let i be the least integer such that Wi intersects with
Pq−`−d3+j for some j > i. Let CR be the cycle formed by Pq−`−d3+i, Pe, QA and QB and C ′

be the cycle formed by Ri,Wi, P
′
i , QA and Pw. Since ti = top(Wi, Pq−`−d3+i) and Wi intersects

with Pq−`−d3+j for some j > i, there is a vertex x of Wi which belongs to Pq−`−d3+i, and the
second edge e incident to x on the oriented path Wi from ui to ti is in the interior face of the
cycle CR (notice that e /∈ E(Pq−`−d3+i)). Let x? be the first such vertex on Wi and e?2 be the
second edge incident on x? in Wi. Let e? be the first edge incident on x? in the oriented path
Pq−`−d3+i.

Case 1: e? /∈ E(Wi). Then e? is in the left side of the curve corresponding to the path Wi

from ui to ti and hence, e? is in the inner face of C ′. Since ti = top(Wi, Pq−`−d3+i) appears
before x? on Pq−`−d3+i and ti is the last vertex of Wi, there is a subapth P ? of Pq−`−d3+i

64

with one endpoint x?, other endpoint on V (Wi) ∩ V (Pq−`−d3+i), which is either ti or after
ti on oriented path Pq−`−d3+i (call it y?) such that V (P ?) is contained in the interior face
of C ′. Moreover the subpath W ? of Wi from x? to y? contains the edge e?2. That is, (a)

E(W ?) ∩ (E(G̃) \
(⋃

w≤j≤eE(Pj)
)

) 6= ∅. Let W f be the subpath of Wi from ui to x? and let

W l is the subpath of Wi from y? to ti. Now consider the path W ′i = W fP ?W l. For any i′ < i,
Wi does not intersect with W ′i , because condition (4) holds for all i′ < i (by the choice of i).
Since P ? is in the interior face of C ′, by condition (3), Wj is internally vertex disjoint from
W ′i for any j > i. This implies that W ′ = {W1, . . . ,Wi−1,W

′
i ,Wi+1,Wβ′} is a set of vertex

disjoint paths. Moreover, since V (P ?) are after the vertex ti on the oriented path Pq−`−d3+i

and E(P ?) ⊆ E(Pq−`−d3+i), we have that conditions (1) and (2) hold for W ′. Since P ? is
in the interior face of C ′, W ′ satisfies condition (3). It is easy to see that W ′i is a path in
G̃[
⋃
n≤i≤s
w≤j≤e

in(Ni,j)]. This implies that W ′ satisfies condition (4). Finally, because of statement

(a), the number edges in
(
E(G̃) \

(⋃
w≤j≤eE(Pj)

))
∩ E(W ′) is strictly less than the number

of edges in
(
E(G̃) \

(⋃
w≤j≤eE(Pj)

))
∩ E(W). This is a contradiction to our assumption.

Case 2: e? ∈ E(Wi). Let P ?e be the maximal subpath of Pq−`−d3+i such that Pe? ends at e? and
P ?e is a subpath of Wi. Let z? be the first vertex in the path P ?e . Notice that P ?e is a path from
z? to x? and z? appears before x? in the oriented path Pq−`−d3+i. In this case, the first edge e?z
in Pq−`−d3+i, incident on z?, is in the inner face of C ′ and e?z /∈ E(Wi). Similar to Case 1, there
is a subapth P ? of Pq−`−d3+i with one endpoint z?, other endpoint on V (Wi) ∩ V (Pq−`−d3+i),
which is either ti or after ti on oriented pathPq−`−d3+i (call it y?) such that V (P ?) is contained
in the interior face of C ′. Moreover the subpath of Wi from z? to y? contains the edge e?2.
Here we replace this subpath with P ?. The correctness proof in this case is similar to that of
Case 1.

Let t′i = top(Si, Pq−`+d3−i) = top(Xi, Pq−`+d3−i) and let P ′′i be the subpath of Pq−`+d3−i

from pq−`+d3−i to t′i for all i ∈ [β′]. Let S′′i be the subpath of
←−
Si from u′i to t′i. The proof of the

following claim is by using arguments similar to that of Claim 11.5 and hence omitted.

Claim 11.6. There is a set of vertex disjoint paths {Z1, . . . , Zβ′} with the following properties.

1. For all i ∈ [β′], Zi is a path from u′i to t′i, top(Zi, Pq−`+d3−i) = t′i and E(Zi) ⊆ E(Si) ∪(⋃
w≤j≤eE(Pj)

)
.

2. For all i ∈ [β′] \ {1}, Zi does not intersect with P ′′j for any j < i.

3. For all i ∈ [β′]\{1}, Zi is in the outer face of the cycle formed by Pe, R
′
i−1, Zi−1, P

′′
i−1 and

QA.

4. For all i ∈ [β′], Zi is path in the graph induced on G̃[
⋃
n≤i≤s
w≤j≤e

inG̃(Ni,j)]

5. For all i ∈ [β′], Zi does not intersects with Pq−`+d3−j for any j > i.

Using Claim 11.5 and Claim 11.6, we reroute the segments Si as follows. Let {W1, . . . ,W
′
β}

and {Z1, . . . , Z
′
β} be the set of paths specified by Claims 11.5 and 11.6, respectively. These paths

are disjoint because d3 > β+2. Let Ji be an i-oriented row for i ∈ {q− `+1, . . . , q− `+β′} and
these paths will not intersect with Wis and Zis because β′ < d1. For any i ∈ [β′], let Ii be the
unique path from ti to t′i in the tree P ′i ∪P ′′i ∪Jq−`+i. The set of paths {I1, . . . , Iβ′} are pairwise

vertex disjoint. Let Yi be the path WiIi
←−
Z i. That is, Yi is a path from ui to u′i. The set of paths

{Y1, . . . , Yβ′} are pairwise vertex disjoint because of Claims 11.5 and 11.6. Thus, we replace
each (`, d1, d3)-up-left crossing segment Si with a path Yi. In a similar manner we replace each

65

of the (`, d1, d3)-crossings in S. This implies that for each H in the δ?-folio of G, we get a new
witness for H being a topological minor in G̃. Let R′ = {(H,φ′H , ϕ′H) : H in the δ?-folio of G}
be the set constructed from S ′.

Now we prove that indeed R′ is a representation of a solution to (G, δ, t, w′, s′), which is
(`, d1)-terminal free and (`, η)-untangled. Towards that we first prove that R′ is a representation
of a solution R. Notice that R′ is obtained from a representation S ′ of a (`, d1)-terminal free
solution S by replacing some subpaths of paths specified by S ′. Moreover these subpaths as well
as its replacement fully lie inside the graph induced by the nooses in frames

⋃
i≤d1 Frame[`− i]∪

Frame[` + i]. This implies that if an edge e′ = {u, v} ∈ E(G̃) \ E(G) is used in a replacement
subpath, then there is a graph Gi, i ∈ [k] such that no vertex from V (Gi) \ V (G0) is used by
S ′ and hence by R′ (see Observation 11.1). This implies that we can reroute the path u − v
with a path from u to v in Gi with internal vertices being in V (Gi) \ V (G0) (see Condition 6
of Observation 3.7). Hence, we have that indeed R′ is the representation of a solution R to
(G, δ, t, w′, s′). Moreover in the subpath replacement process no terminal vertex is modified and
since S is (`, d1)-terminal free solution, R is also a (`, d1)-terminal free solution.

Now we show that R is (`, 4β)-untangled. Since R is (`, d1)-terminal free and d1 ≥ 3, it
is also (`, 3)-terminal free. Notice that, by the above construction for (H,φ′H , ϕ

′
H) ∈ R′, the

set of (`, d1, d3)-up-left crossing segments are {Y1, . . . , Yβ′}. Each of these segment intersect on
one noose in Frame[`], and moreover, these segments intersect different nooses from Frame[`],
because the vertices from any noose in Frame[`], which belongs to Yi is from the path Jq−`+i.
This implies that nooses in Frame[`] used by R′ are from the right-nooses and/or from the
left-nooses of Frame[`]. Also, notice that the number of (`, d1, d3)-up-left crossing segments of
(H,φ′H , ϕ

′
H) ∈ R′ is β′ ≤ β, and R is a (`, d1, d2, d3)-regret free solution (this follows from the

fact that S is (`, d1, d2, d3)-regret free). Since R is an (`, d1, d2, d3)-regret free, the only (`, d1)-
segments which contains a vertex from a noose in Frame[`] are (`, d1, d3)-crossing segments and
the total number of such segments for (H,φ′H , ϕ

′
H) ∈ R′ is upper bounded by 4β (from all the

four corners). Moreover, any (`, d1, d3)-crossing segment in R uses only one noose from Frame[`].
As a result, condition (1) of Definition 11.19 is satisfied.

Now we prove that condition (2) of Definition 11.19 holds for R. Let v be a vertex in
the image of ϕ′H , such that v ∈ inG̃(N) for some Frame[`]. Since R is (`, 3)-terminal free
solution v 6= φ′H(h) for any h ∈ V (H). Thus v is an internal vertex in P = ϕ′H(e) for some
e = {h1, h2} ∈ E(H). Since R is (`, d1, d2, d3)-regret free, there is a subpath P ′ of P containing
v, whose endpoints are in N and N ′, where N ∈ Frame[` + d1] and N ′ ∈ Frame[` − d1]. Let
u ∈ in(N ′) be one of the endpoint of P ′. Let P1 be the subpath of P ′ with one endpoint v, the
other endpoint in {φ′H(h1), φ′H(h2)} and u is an internal vertex in P1. Either an internal vertex
of P1, is a noose in Frame[`], or no internal vertex of P1 is in a noose N ′′ for any N ′′ ∈ Frame[`].
In the former case we have that v is a vertex of an `-segement and in the later case we have
that v is a vertex of an `-dangling segment. This implies that R satisfies condition (2) of
Definition 11.19.

Now we show that R satisfies condition (3) of Definition 11.19. From the construction of
R, we know that any noose N ∈ Frame[`] is hit by at most one (`, d1, d3)-crossing segment Y of
(H,φ′H , ϕ

′
H) and we also know that R is a (`, 3)-terminal free. The segment Y is a path from

a vertex from Frame[`+ d1] to Frame[`− d1]. Moreover, the vertices from Frame[`] in Y form a
subpath Z of Y . This path Z will be part of a `-(dangling) segment. The arguments about its
proof is similar to the one in the above paragraph. This completes the proof of the lemma.

12 Taking Snapshots

We have proved the existence of an (`, η)-untangled solution. However, to find an irrelevant
vertex, we have to consider the computational aspect of our arguments. In the next two sections,

66

we exhibit an integer `? < ` that can be used to prove that partial solutions realizable in G?`? are
the same as the those realizable in G?` . Moreover, a partial solution in G?`? can be extended to a
solution without using vertices from the up-nooses of Frame[`?] (and some outermore frames).
As a result, any vertex in any up-noose of Frame[`?] is irrelevant.

Without loss of generality we assume that in an instance (G, δ, t, w′, s′) of FlatWall-
FindFolio?, ρG(R(G)) = [|R(G)|]. Recall that δ? and α(δ) are fixed constants depending
only on δ. The set A is a set of at most t vertices which may have neighbours anywhere,
including G0, . . . , Gk. Because of this we consider 3(δ? + t)-folios of G instead of δ?-folios
while constructing partial solutions, whenever we use a vertex from A, all its neighbors will
be considered as terminals. Below we define the notion of a snapshot, which is the sufficient
information needed for restriction of a tuple in a solution to G?` .

Definition 12.1 (Snapshot). A snapshot is a tuple (C, T, T ′, ρ,P, f, out), where T is a set of
size at most 6(δ? + t), T ′ ⊆ T , ρ : T ′ → [α(δ)], out : T \ T ′ → 2A, C is a cycle (i.e, a graph
which is a cycle), P is a subset of pairs of T and f is function from V (C) to T ∪ [V (C)] such
that for all w ∈ [V (C)], |f−1(w)| ∈ {0, 1} and |T |+ |P| ≤ 3(δ? + t). Furthermore, given η ∈ N,
an η-snapshot is a snapshot (C, T, T ′, ρ,P, f, out) where |V (C)| ≤ η. Finally, SNP[η] denotes
the set of all η-snapshots.

Definition 12.2 (Snapshot Equivalence). Let (C, T, T ′, ρ,P, f, out) and (Ĉ, T̂ , T̂ ′, ρ̂, P̂, f̂ , ôut)
be two snapshots. These snapshots are equivalent, denoted by (C, T, T ′, ρ,P, f, out) ≡ (Ĉ, T̂ , T̂ ′,
ρ̂, P̂, f̂ , ôut), if T = T̂ , P = P̂, ρ(t) = ρ̂(t) for any t ∈ T ′ = T̂ ′, out(t) = ôut(t) for any t ∈ T \T ′,
and there exists an isomorphism g : V (C)→ V (Ĉ) such that for all v ∈ V (C), f(v) = f̂(g(v)).

Observation 12.1. The number of distinct η-snapshots is upper bounded by (t+ δ?)O(t2+tδ?) ·
ηO(η).

Proof. The number of choices for T, T ′, and ρ in snapshots is bounded by (α(δ) + 2)O(t+δ?).
The number of choices of C in η-snapshots is at most η. The number of choices for f in η-
snapshots is bounded by (6t + 6δ? + η)η. The quantity (6t + 6δ? + η)η is upper bounded by
ηO(η), when t+δ? ≤ η, and otherwise it is upper bounded (t+δ?)O(t+δ?). The number of choices
for out is at most 2t(6t+6δ?). Therefore the number of distinct η-snapshots is upper bounded by
(t+ δ?)O(t2+tδ?) · ηO(·η)

The following definition is required to define partial solution.

Definition 12.3. Let H be a rooted graph. First, subd(H) denotes the set of rooted graphs that
can be obtained from a subgraphs of H by adding at most dH(v) pendant vertices on each vertex
v of H. For simplicity, the vertices in a graph in subd(H) originating from vertices in H are
assumed to have the identities of the corresponding vertices in H. Second, subdη(H) denotes
the set of rooted graphs that can be obtained from a graph in subd(H) by adding to it at most
η new connected components that are each a path on two vertices. Moreover, the roots of the
graphs in subd(H) and subdη(H) are the roots of H present in these graphs.

Recall the definition of G?` and G̃` from Definition 11.15.

Definition 12.4 (Partial Solution). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?.
Let (M,N) be a 2q-workspace in G̃, ` ∈ [q− 1]0 and η ∈ N. An (`, η)-partial solution is a tuple
(H,H ′, φ, ϕ, out) with the following properties.

1. H is a rooted graph with |E(H)|+ is(H) ≤ 3(δ? + t) and H ′ is a graph in subdη(H).

2. H ′ is a topological minor in G?` witnessed by some (φH′ , ϕH′), (H ′, φ, ϕ) is the representa-
tion of (H ′, φH′ , ϕH′) in G̃` and out : V (H ′) \R(H ′)→ 2A with the following conditions.

67

(a) Every vertex in ima(ϕ) \ (φ(V (H ′) \ V (H)) belongs to V (G̃`−1).

(b) Every vertex in φ(V (H ′) \ V (H)) belongs to inG̃(N) for some N ∈ Frame[`] and N
is either a left-noose or a right noose in Frame[`].

(c) For any N ∈ Frame[`], |inG̃(N) ∩ φ(V (H ′))| ≤ 1.

(d) For any v ∈ (V (H ′) ∩ V (H)) \R(H ′), out(v) ⊆ A ∩ (NG(φ(v))).

The validity of the definition below implicitly relies on the properties of an (`, η)-partial
solution.

Definition 12.5 (Camera). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let
(M,N) be a 2q-workspace in G̃, ` ∈ [q−1]0 and η ∈ N. The (`, η)-camera is the function cam`,η

whose domain is the set of all (`, η)-partial solutions, whose codomain is SNP[η], and which maps
an (`, η)-partial solution (H,H ′, φ, ϕ, out′) to an η-snapshot (C, T, T ′, ρ,P, f, out) as follows.

• T = V (H ′) ∩ V (H) and T ′ = T ∩R(H).

• out = out′.

• P = E(H ′) ∩ E(H).

• C is a cycle on s = |V (H ′) \ V (H)| vertices.

• Denote C = v1 − v2 − · · · − vs − v1. Moreover, let N1, N2, . . . , Ns denote that nooses in
Frame[`] that enclose vertices in φ(V (H ′) \V (H)), ordered according to <. For all i ∈ [s],
uGi denotes the (unique) vertex in φ(V (H ′) \ V (H)) enclosed by Ni, u

H
i = φ−1(uGi), and

wHi denotes the other endpoint of the (unique) edge in H ′ incident to uHi . Then, for all
i ∈ [s], f is defined as follows.

– If wHi ∈ T , then f(vi) = wHi
– Else, let j ∈ [s] be the (unique) index such that φ(wHi) = uGj . Then f(vi) = vj.

Observation 12.2. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let (M,N)
be a 2q-workspace in G̃, ` ∈ [q−1]0 and η ∈ N. Let (H,H ′, φ, ϕ, out) be an (`, η)-partial solution
and (C, T, T ′, ρ,P, f, out) = cam`,η(H,H

′, φ, ϕ, out). Let J be a rooted graph on the vertex set
T ∪ V (C), with roots R(J) = T ′ and the edges set

E(J) = P ∪ {{w1, w2, } : w1, w2 ∈ V (C), f(w1) = w2} ∪ {{w, z} : w ∈ V (C), z ∈ T, f(w) = z}.

Then there is an isomorphism iso from J to H ′ such that iso restricted on T is the identity map.

Proof. As V (H ′) ∩ V (H) = T , we set iso restricted on T to be the identity map. Now we
explain how to map vertices in V (C). Let C1 = v1 − v2 − . . . − vs − v1 and let N1, N2, . . . , Ns

denote the nooses in Frame[`] that enclose vertices in φ′(V (H ′) \ V (H)), ordered according to
< and the function f is defined as mentioned in Definition 12.5. Let u′i be the (unique) vertex
in V (H ′) \ V (H), such that φ(u′i) ∈ Ni for all i ∈ [s]. Then iso(vi) = u′i.

Now we prove that iso is indeed an isomorphism from J to H ′. Let x, y ∈ V (J), x′ = iso(x),
and y′ = iso(y). Suppose x, y ∈ T . Then {x, y} ∈ E(J) if and only if {x′, y′} ∈ E(H ′), because
P = E(H ′)∩E(H). Suppose x, y ∈ V (C). Let Ni and Nj be the two nooses such that φ(x) ∈ Ni

and φ(y) ∈ Nj , respectively. There is an edge between x and y in J if and only if f(vi) = vj .
From the last condition in Definition 12.5, we conclude that there is an edge between φ(x) and
φ(y) in H ′ if and only if f(vi) = vj . Suppose x ∈ V (C) and y ∈ T and let Ni be the noose in
Frame[`] such that φ(x) ∈ Ni. There is an edge between x and y in J if and only if f(x) = y.
From the last condition in Definition 12.5, we conclude that there is an edge between φ(x) and
φ(y) = y in H ′ if and only if f(vi) = y. This completes the proof of the observation.

As mentioned before, whenever a tuple in a solution uses a vertex in A, we consider its
closed neighborhood are terminal. This fact is formalized in the below definition.

68

Definition 12.6 (Apex-Addition). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?.
Let (M,N) be a 2q-workspace in G̃, ` ∈ [q − 1]0 and η ∈ N. Let S ′ be the representation of
a solution of (G, δ, t, w′, s′). Let (H,φ, ϕ) ∈ S ′. The apex-addition of (H,φ, ϕ), denoted by
apex-addition(H,φ, ϕ), is a tuple (H?, φ?, ϕ?) defined as follows.

• Let G′ be the realization of topological minor H in G∪G̃, witnessed by (φ, ϕ). Let NG′ [A∩
V (G′)] \ φ(V (H)) = Z = {z1, . . . , zb}.
• H? is a graph on vertex set V (H)∪ {z′1, . . . , z′b} (edge set will be defined later), which is a

topological minor in G, witnessed by (φ?, ϕ?) and realized by G′.

• φ?(v) = φ(v) for all v ∈ V (H) and φ?(z′i) = zi for all i ∈ [b].

• For each e ∈ E(H), if φ(e) = P1 . . . Ps with end-vertices of Pjs in φ?(H?) and internal
vertices not in φ?(H?), we have {u, v} ∈ E(H?) and ϕ?({u, v}) = Pj where Pj is a path
between u and v.

In an (`, η)-partial solution, vertices in V (H ′) \ V (H) are mapped to a vertices in nooses
in Frame[`], and these vertices are not actual terminal vertices, but internal vertices of paths
mapped by the edges of H. To identify these vertices for each tuple in a solution, we have the
following definition.

Definition 12.7 (Extension). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?.
Let (M,N) be a 2q-workspace in G̃, ` ∈ [q − 1]0 and η ∈ N. Let S ′ be the representation of an
(`, η)-untangled solution of (G, δ, t, w′, s′). Let (H,φ, ϕ) ∈ S ′. The (`, η)-extension of (H,φ, ϕ),
denoted by extend`,η(H,φ, ϕ), is defined as follows.

• Let (H?, φ?, ϕ?) = apex-addition(H,φ, ϕ).

• Initialize Ĥ = H?, φ̂ = φ? and ϕ̂ = ϕ?. For every edge e = {u, v} ∈ E(H):

– Denote ϕ?(e) = P = w1 − w2 − · · · − wr. Let I denote the set of all indices i ∈ [r]
such that there exists N ∈ Frame[`] that encloses wi, and there exists N ∈ Frame[`′]
for some `′ < `, that encloses either wi−1 or wi+1.

– Subdivide e |I| times, update Ĥ accordingly, and denote the new path in Ĥ by x0 =
u− x1 − x2 − . . .− x|I| − v = x|I|+1. Let I = {j1, . . . , js}.

– Extend φ̂ so that for all i ∈ [|I|] = [s], φ̂(xi) = wji. Moreover, remove {u, v} from
dom(ϕ̂), and then extend ϕ̂ so that for all i ∈ [|I| + 1], ϕ̂ equals the subpath of P
between φ?(xi−1) and φ?(xi).

• The resulting (Ĥ, φ̂, ϕ̂) is extend`,η(H,φ, ϕ).

Next we define restriction of a tuple in an (`, η)-untangled solution to G?` .

Definition 12.8 (Restriction). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?.
Let (M,N) be a 2q-workspace in G̃, ` ∈ [q − 1]0 and η ∈ N. Let S ′ be the representation of an
(`, η)-untangled solution of (G, δ, t, w′, s′). Let (H,φ, ϕ) ∈ S ′. The (`, η)-restriction of (H,φ, ϕ),
denoted by restrict`,η(H,φ, ϕ), is defined as follows. Let (H?, φ?, ϕ?) = apex-addition(H,φ, ϕ)

and extend`,η(H,φ, ϕ) = (Ĥ, φ̂, ϕ̂), and define restrict`,η(H,φ, ϕ) = (H?, H ′, φ′, ϕ′, out′) as fol-

lows. Remove from Ĥ the vertices v ∈ V (Ĥ), if there is a noose N in Frame[`′] for some `′ > `
that either encloses φ̂(v) (when φ̂(v) ∈ V (G0)) or encloses a vertex of Gi (when φ̂(v) ∈ V (Gi)
for some i ∈ [k]). Discard all of the vertices and edges removed from the domains of φ̂ and ϕ̂, re-
spectively. Let H ′ be the resulting graph φ′, ϕ′ be the resulting functions. Let G′ be the realization
obtained through (φ?, ϕ?). For any v ∈ (V (H ′)∩V (H?))\R(H?), out′(v) = A∩NG′(φ

?(NH?(v))).
This completes the definition of (H?, H ′, φ′, ϕ′, out′).

69

Now we prove that our notion of (`, η)-partial solution is indeed a correct notion of partial
solution.

Lemma 12.1. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let (M,N) be a
2q-workspace in G̃, ` ∈ [q − 1]0 and η ∈ N. Let S be an (`, η)-untangled solution and let S ′
be the representation of S. Then, for any (H,φ, ϕ) ∈ S ′, restrict`,η(H,φ, ϕ) is an (`, η)-partial
solution.

Proof. Fix an arbitrary tuple (H,φ, ϕ) ∈ S ′. Let (H?, φ?, ϕ?) = apex-addition(H,φ, ϕ), (Ĥ, φ̂, ϕ̂)
= extend`,η(H,φ, ϕ) and restrict`,η(H,φ, ϕ) = (H?, H ′, φ′, ϕ′, out′). We want to show that
(H?, H ′, φ′, ϕ′) is an (`, η)-partial solution. Since S is an (`, η)-untangled solution and (H,φ, ϕ) ∈
S ′, we have the following.

(a) S is (`, 3)-terminal free.

(b) At most η nooses in Frame[`] are used by (H,φ, ϕ). Moreover, each noose in Frame[`] used
by (H,φ, ϕ) is either a left-noose or a right-noose in Frame[`].

(c) Every vertex v in the image of ϕ, belonging to a noose N ∈ Frame[`], is also a vertex of
an `-segment or an `-dangling segment of (H,φ, ϕ).

(d) There do not exist a noose N ∈ Frame[`] and two distinct `-(dangling) segments P and
P ′ of (H,φ, ϕ), such that both P and P ′ intersect inG̃(N).

Let Q =
⋃
`−3≤i≤`+3 Frame[i] and U =

⋃
N∈Q inG̃(N)∩ V (G̃). Since S is (`, 3)-terminal free,

the following conditions hold.

• There does not exist a terminal (with respect to S) in U .

• There is no terminal (with respect to S) in V (Gi), where V (Gi) ∩ U 6= ∅.

• There is no edge {u, v} in the image of ϕ such that u ∈ A and v ∈ U ∪ {V (Gi) : i ∈
[k], V (Gi) ∩ U 6= ∅}.

Consider the tuple (H?, φ?, ϕ?). Let Pe = ϕ?(e), for all e ∈ E(H?). Since S is (`, 3)-terminal
free (by statement (a)), any end-vertex of Pe, e ∈ E(H?), does not belong to U . That is,

(1) There does not exist a terminal with respect to (H?, φ?, ϕ?) in U ,

(2) There is no terminal with respect to (H?, φ?, ϕ?) in V (Gi), where V (Gi) ∩ U 6= ∅.

(3) There is no edge {u, v} in the image of ϕ? such that u ∈ A and v ∈ U ∪ {V (Gi) : i ∈
[k], V (Gi) ∩ U 6= ∅}.

Because of statement (b), the total number of times all these paths cross Frame[`] is at most
η as explained below. For each φ?(e) = Pe = we1, . . . , w

e
r, let Ie denote the set of indices in

[r], such that there exists N ∈ Frame[`] that encloses wei , and there exists N ∈ Frame[`′] for
some `′ < `, that encloses either wei−1 or wei+1. Then, because of statement (b),

⋃
e |Ie| ≤ η.

Therefore, Ĥ is obtained by subdividing each edge e of H?, |Ie| times and hence the total
number of newly added vertices is at most η. Let u = xe0 − xe1 − . . .− xe|Ie| − x

e
|Ie|+1 = v be the

path in Ĥ which is the result of subdividing e = {u, v} in H?, |Ie| times. Let Ie = {j1, . . . , js}.
Recall the definition of (φ̂, ϕ̂). For all i ∈ [|Ie|], φ̂(xei) = weji and ϕ̂({xei−1, x

e
i}) is mapped to

the subpath of Pe between φ?(xei−1) and φ?(xei). Because of statement (1) above, (i) for any

N ∈ Frame[`], inG̃(N) ∩ φ̂(V (H?)) = ∅. Because of statement (d), (ii) for any N ∈ Frame[`],

|inG̃(N) ∩ φ̂(V (Ĥ))| ≤ 1. By the definition of φ̂, (iii) any vertex in φ̂(V (Ĥ) \ V (H?)) belongs
to inG̃(N) for some N ∈ Frame[`].

70

Claim 12.1. For any edge ê ∈ E(Ĥ), either all the internal vertices of ϕ̂(ê) belong to V (G̃`−1)
or at least one internal vertex in ϕ̂(ê) belongs to V (G) \ V (G̃`).

Proof. For the sake of contradiction assume that there is an edge ê ∈ E(Ĥ) such that no internal
vertex of ϕ̂(ê) belongs to V (G) \ V (G̃`) and there is an internal vertex v in V (G̃`) \ V (G̃`−1).
Then either there is a noose N ∈ Frame[`] such that v ∈ inG̃(N) or v ∈ V (Gi) \ V (G0) for some
Gi such that V (Gi) ∩ U 6= ∅. The latter case is not possible because of statements (2) and (3)
as explained below. No terminal with respect to (H?, φ?, ϕ?) is present in V (Gi), for any Gi
with V (Gi) ∩ U 6= ∅ and any edge between V (Gi) and A is not used by ϕ?. This implies that
any vertex used by ϕ? are not from V (Gi) \ V (G0), where V (Gi)∩U 6= ∅ (because (H?, φ?, ϕ?)
is derived from a representation (H,φ, ϕ) of tuple in a solution). Therefore any vertex used by
ϕ̂ are not from V (Gi) \ V (G0). Now suppose that v ∈ inG̃(N) for some N ∈ Frame[`].

By our assumption, v is an internal vertex in ϕ̂(ê). Let x and y be the vertices adjacent to v
in ϕ̂(ê). Since v is an internal vertex of ϕ̂(ê), by the construct of Ĥ, both the adjacent vertices
x and y of v in ϕ̂(e) belong to inG̃(Nx) and inG̃(Ny) for some Nx, Ny ∈ Frame[`] (otherwise

v ∈ V (Ĥ) and it will lead to a contradiction to the assumption that v is an internal vertex
in ϕ̂(ê)). Let e ∈ E(H) such that v ∈ ϕ(e). Because of statement (c) above, Nx = Ny = N .
Again because of statement (c), there is subpath P in ϕ(e) which is of the form of either
x− v − y −w1 − . . .−wr − z or y − v − x−w1 − . . .−wr − z where all vertices except z are in
inG̃(N) and z does not belongs to V (G̃`) (see last two condition in Definitions 11.16 and 11.17).
Moreover P is a subpath of ϕ̂(ê) and z is not a terminal vertex because of statement (1). This
implies that z is an internal vertex in ê and belong to V (G) \ V (G̃`), a contradiction to our
assumption.

Recall that (H?, H ′, φ′, ϕ′, out′) = restrict`,η(H,φ, ϕ). Notice that H ′ is obtained from Ĥ by
deleting all the vertices v such that ϕ̂(v) either belongs to a noose in Frame[`′] for some `′ > `
or belongs to V (Gi), where some noose in Frame[`′] for some `′ > ` encloses a vertex in V (Gi),
and edges incident on these vertices. The functions φ′ and ϕ′ are the restrictions of functions
φ̂ and ϕ̂ to the domains V (H ′) and E(H ′), respectively. To prove that (H?, H ′, φ′, ϕ′, out′)
is an (`, η)-partial solution we need to prove the conditions in Definition 12.4. Clearly, since
(H,φ, ϕ) ∈ S ′ (a representation of an (`, η)-solution), we have that |E(H)|+ is(H) ≤ δ?. Also,
since |A| ≤ t, we have that |E(H?)|+ is(H?) ≤ 3(δ? + t).

Now we prove that H ′ is a graph in subdη(H?). Towards that we first prove that if there is an
edge e′ = {u, v} ∈ H ′ such that u, v ∈ V (H ′) \ V (H?), then e′ is a connected component in H ′.
For the sake of contradiction assume that w−u−v is a path in H ′ and u, v ∈ V (H ′)\V (H?). Let
Nu and Nv be the nooses N such that φ′(u) ∈ Nu and φ′(v) ∈ Nv. By statements (ii) and (iii)
above, we have thatNu 6= Nv andNu, Nv ∈ Frame[`]. Moreover, the paths ϕ′({u, v}) = ϕ̂({u, v})
and ϕ′({w, u}) = ϕ̂({w, u}) are subpaths of ϕ?(e) for some e ∈ E(H?). By Claim 12.1, all the
internal vertices of the paths ϕ′({u, v}) and ϕ′({w, u}) are in V (G̃`−1).

Claim 12.2. ϕ′({u, v}) contains at least one internal vertex.

Proof. Notice that since S is (`, η)-untangled, φ′(u) is a vertex of an `-(dangling) segment of
(H,φ, ϕ). But since φ′(u) is an internal vertex in ϕ?(e), if ϕ?(e) contains a subpath φ′(u)−φ′(v)
(i.e., a path on two vertices, one in Nu and other in Nv), then φ′(u) is not part of any `-(dangling)
segment of (H,φ, ϕ) which is a contradiction.

The proof of the following claim is similar in arguments to the proof of Claim 12.2

Claim 12.3. If w ∈ V (H ′) \ V (H?), then ϕ′({u, v}) contains at least one internal vertex.

71

By Claim 12.2, the subpath P of ϕ?(e) (which is a subpath of ϕ(e1) for some e1 ∈ E(H)),
between φ′(u) and φ′(v) contains at least one internal vertex and by Claim 12.1, all the internal
vertices of P are in V (G̃`−1). If w ∈ V (H?) then ϕ′({w, u}) is a subpath of ϕ?(e) with all
vertices except φ′(u) is in V (G̃`−1). That is, there is subpath P ? of ϕ?(e) (which is a subpath
of ϕ(e1) for some e1 ∈ E(H)), where all the vertices except φ′(u) are in V (G̃`−1). This implies
that φ′(u) is not part any `-(dangling) segment of (H,φ, ϕ), which is a contradiction. Now
consider the case w ∈ V (H ′) \ V (H?). Let Nw be the noose in N such that φ′(w) ∈ Nw. By
statements (ii) and (iii) above, we have that Nu, Nv, Nw ∈ Frame[`] and they all are distinct.
By Claim 12.3, ϕ′({w, u}) contains at least one internal vertex. Therefore, we have that the
subpaths P and P ′ of ϕ(e), between φ′(u) and φ′(v), and between φ′(w) and φ′(u), contain at
least one internal vertices each, and by Claim 12.1, all the internal vertices of P and P ′ are
in V (G̃`−1). This implies that φ′(u) is not part any `-(dangling) segment of (H,φ, ϕ), which
is a contradiction. That is, now we proved that if there is an edge e′ = {u, v} ∈ H ′ such that
u, v ∈ V (H ′) \ V (H), then e′ is a connected component in H ′. Since any vertex x in the image
ϕ, belonging to a noose N ∈ Frame[`], is also a vertex of `-(dangling) segment, no vertex in
V (H ′) \ V (H) is an isolated vertex in H ′. Also, since |V (H ′) \ V (H)| ≤ η, we conclude that
H ′ ∈ subdη(H). Therefore, condition (1) of Definition 12.4 is satisfied.

Now we prove that H ′ is a topological minor in G?` and (φ′, ϕ′) is a representation of it in

G̃`. Notice that the realization of (φ̂, ϕ̂) is the same as the realization of (φ, ϕ). Moreover, since
(φ, ϕ) is a representation of a pair of functions witnessing that H is a topological minor in G,
for all the edges used by the realization of (φ, ϕ) (an hence in the (φ̂, ϕ̂)), can be replaced with
paths in G whose vertices are not used by (φ̂, ϕ̂). Therefore H ′ is a topological minor in G?` and
(φ′, ϕ′) is a representation of it in G̃`. The condition 2(a) of (φ′, ϕ′) follows from Claim 12.1, and
from the construction of (φ′, ϕ′) from (φ̂, ϕ̂). Condition 2(b) of (φ′, ϕ′) follows from statements
(iii) and (b). Condition 2(c) follows from statement (ii) and condition 2(d) follows from the
definition of out′ (see Definition 12.8). This completes the proof of the lemma.

Next we define realizable snapshots and prove a lemma about their computation.

Definition 12.9 (Realizable Snapshot). Let (G, δ, t, w′, s′) be an instance of FlatWall-
FindFolio?. Let (M,N) be a 2q-workspace in G̃, ` ∈ [q − 1]0 and η ∈ N. An η-snapshot
(C, T, T ′, ρ,P, f, out) is (`, η)-realizable if there is an (`, η)-partial solution (H,H ′, φ, ϕ, out)
such that (C, T, T ′, ρ,P, f, out) = cam`,η(H,H

′, φ, ϕ, out).

Observation 12.3. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let (M,N)
be a 2q-workspace in G̃, ` ∈ [q−1]0 and η ∈ N. Given an η-snapshot (C, T, T ′, ρ,P, f, out), there
is a unique H ′ such that if (C, T, T ′, ρ,P, f, out) is (`, η)-realizable, then there is an (`, η)-partial
solution (H,H ′, φ, ϕ, out) such that cam`,η(H,H

′, φ, ϕ, out) = (C, T, T ′, ρ,P, f, out). Moreover,
the graph H ′ can be constructed in time (η+δ?+t)O(1) and to test whether (C, T, T ′, ρ,P, f, out)
is (`, η)-realizable, it is enough to test whether H ′ satisfies condition (2) of Definition 12.4.

Lemma 12.2. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let (M,N) be a
(p, 2q)-workspace in G̃, ` ∈ [q−1]0 and η ∈ N. Given an η-snapshot (C, T, T ′, ρ,P, f, out), it can
be determined whether (C, T, T ′, ρ,P, f, out) is (`, η)-realizable in time ∆O(∆)n+(η+δ?+ t)O(1),
where ∆ = max{p, s′ + 3}.

Proof sketch. Let G̃? = G̃[[inG̃(M)∩V (G̃)]]. Since (M,N) be a (p, 2q)-workspace, we have that

the treewidth of G̃? is at most p. Let G ⊆ {G1, . . . , Gk} be the collection of graphs such that
for any i ∈ [k], V (Gi) ∩ V (G0) ⊆ V (G̃?) if and only if Gi ∈ G. Without loss of generality
assume that G = {G1, . . . , Gs} for some s ∈ [k]. Let G? = G̃? ∪

⋃
i∈[s]Gi. We claim that the

treewidth of G? is max{p, s′ + 3}. Let (T, β) be a tree decomposition of G̃? of width at most p.
For each i ∈ [s], let (Ti, βi) be a tree decomposition of Gi of width at most s′. For any i ∈ [s],

72

V (Gi) ∩ V (G̃?) is a clique (see condition (4) in Definition 3.9). Therefore for any i ∈ [s], there
is a node ti ∈ T such that β(ti) contains V (Gi) ∩ V (G̃?). So to get a tree decomposition of G?

we add an edge between the root of Ti and ti. Moreover for all i ∈ [s], we add V (Gi)∩ V (GG̃?)
to all the bags corresponding to the nodes in Ti. One can show the constructed pair is indeed
a tree decomposition of G? of width at most max{p, s′ + 3}. Let ∆ = max{p, s′ + 3}. Since G̃`
is a subgarph of G?, the treewidth of G̃` is at most ∆ for any ` ∈ [q − 1]0.

Given an η-snapshot (C, T, T ′, ρ,P, f, out), we construct (the unique) H ′ using Observa-
tion 12.3. To test whether (C, T, T ′, ρ,P, f, out) is (`, η)-realizable, one can test whether H ′

satisfies condition (2) of Definition 12.4 in time ∆O(∆)n along the lines of Proposition 3.2.

13 Creating Photo Albums

In this section we will point to an irrelevant vertex and a sufficient condition for being an
irrelevant vertex. In the next section we combine several of the lemmas proved so far to find an
irrelevant vertex.

13.1 Redundant Albums

An (`, η)-snapshot collection is the set of all η-snapshots that are (`, η)-realizable, defined as
follows.

Definition 13.1 (Snapshot Collection). Let (G, δ, t, w′, s′) be an instance of FlatWall-
FindFolio?. Let (M,N) be a 2q-workspace in G̃, ` ∈ [q − 1]0 and η ∈ N. The (`, η)-snapshot
collection, denoted by COL`,η, is the set of all η-snapshots that are (`, η)-realizable.

Clearly, there is a total ordering among COLi,η, i ∈ [q − 1]0.

Lemma 13.1. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let (M,N) be a
2q-workspace in G̃ and η ∈ N. For all i ∈ [q − 2]0, COLi,η ⊆ COLi+1,η. Moreover, for any η-
snapshot (C, T, T ′, ρ,P, f, out) ∈ COLi,η and an (`, η)-partial solution (H,H ′, φ, ϕ, out) such that
cami,η(H,H

′, φ, ϕ, out) = (C, T, T ′, ρ,P, f, out), there is an (i+ 1, η)-partial solution (H,H ′, φ′,
ϕ′, out) such that cami+1,η(H,H

′, φ′, ϕ′, out) = (C, T, T ′, ρ,P, f, out) and φ′(V (H) ∩ V (H ′)) ⊆
V (G̃i−1).

Proof. Fix an arbitrary i ∈ [q − 2]0 and an η-snapshot (C, T, T ′, ρ,P, f, out) ∈ COLi,η. We
need to prove that (C, T, T ′, ρ,P, f, out) ∈ COLi+1,η. Let (H,H ′, φ, ϕ, out) be an (i, η)-partial
solution such that cami,η(H,H

′, φ, ϕ, out) = (C, T, T ′, ρ,P, f, out). Since (H,H ′, φ, ϕ, out) is an
(i, η)-partial solution, we know that H ′ is a topological minor in G?i witnessed by (φH′ , ϕH′)
and (H ′, φ, ϕ) is a representation of (H ′, φH′ , ϕH′) in G̃i with the following properties.

(a) Every vertex in ima(ϕ) \ (φ(V (H ′) \ V (H)) belongs to V (G̃i−1).

(b) Every vertex in φ(V (H ′)\V (H)) belongs to inG̃(N) for some N ∈ Frame[`] and N is either
a left-noose or a right noose in Frame[`].

(c) For any N ∈ Frame[`], |inG̃(N) ∩ φ(V (H ′))| ≤ 1.

(d) For any v ∈ (V (H ′) ∩ V (H)) \R(H ′), out(v) ⊆ A ∩ (NG(φ(v))).

Now we construct (φ′, ϕ′) from (φ, ϕ) and then prove that cami+1,η(H,H
′, φ′, ϕ′, out) =

(C, T, T ′, ρ,P, f, out). Towards that let {v1, . . . , vs} = V (H ′) \ V (H) and uj = φ(vj) for all
j ∈ [s]. Let Nj be the noose in Frame[i] such that uj ∈ inG̃(Nj). By property (c), we have that
these nooses N1, . . . , Ns are distinct and by property (b), each of these nooses is either a left
noose or a right noose in Frame[i]. There exist distinct nooses N ′1, . . . , N

′
s in Frame[i + 1] such

73

that Nj is adjacent to N ′j for all j ∈ [s], in the noose grid N and these nooses are from the
union of the right-nooses and left-nooses of Frame[i+ 1]. Let Pj be a shortest path from uj to
a vertex in the noose N ′j in G̃[inG̃(Nj) ∪ inG̃(N ′j)]. Notice that all the vertices in Pj , except the
ending vertex are in inG̃(Nj) and the ending vertex wj of Pj , belong to inG̃(N ′j).

For any ` ∈ [q − 1]0, let U` be the union of the vertices from the nooses in
⋃
i∈[`]0

Frame[i].
Let G` ⊆ {G1, . . . , Gk} be the graphs such that for any i ∈ [k], V (Gi) ∩ V (G0) ⊆ U` if and only
if Gi ∈ G. Let F be the set of edges in the paths P1, . . . , Ps such that no edge in F is in G?i+1.
This implies that for any edge {w,w′} ∈ F , there is a graph Gj such that Gj ∈ Gi+1 \ Gi−1

and w,w′ ∈ V (Gj). Because of property (a), no vertex in V (Gj) \ V (G0) is used by ϕ and
ϕH′ . Therefore using condition 6 of Observation 3.7, we can reroute the edges in F with vertex
disjoint paths from G?i+1 and these new vertices are not used by ϕ and ϕH′ . Let P ?1 , . . . , P

?
s be

paths obtained from P1, . . . , Ps as explained above.
Now we define (φ′, ϕ′) and (φ′H′ , ϕ

′
H′) such that (φ′, ϕ′) is a representation of (φ′H′ , ϕ

′
H′)

and (H,H ′, φ′H′ , ϕ
′
H′ , out) ∈ COLi+1,η. For each v ∈ V (H ′) ∩ V (H), φ′(v) = φ(v). For any

vj ∈ V (H ′) \ V (H), φ′(vj) = wj . We set φ′H′ = φ′. Now we define ϕ′ and ϕ′H′ as follows. Fix
an edge e = {x, y} ∈ E(H ′). If x, y ∈ V (H ′) ∩ V (H), then ϕ′(e) = ϕ(e) and ϕ′H′(e) = ϕH′(e).
If x ∈ V (H ′)∩ V (H) and y = vj ∈ V (H ′) \ V (H), then ϕ′(e) is the concatenation of paths ϕ(e)
and Pj and ϕ′H′(e) is the concatenation of paths ϕH(e) and P ?j . If x, y ∈ V (H ′) \ V (H), then
let x = vj and y = vj′ . Then ϕ′(e) is a concatenation of paths Pj , ϕ(e), and Pj′ and ϕ′H′(e) is
a concatenation of paths P ?j , ϕH(e), and P ?j′ .

From the construction, we have that (H ′, φ′, ϕ′) is a representation of (H ′, φH′ , ϕH′) in G?i+1.
Now we prove that (H ′, φ′, ϕ′) satisfies condition (2) of Definition 12.4. Condition 2(a) follows
from the fact that the only vertices in Frame[i+ 1] used by ϕ′ is {w1, . . . , wb}. Condition 2(b),
follows from the definition φ′ and the fact that N ′1, . . . , N

′
s are nooses from the union of right-

nooses and left-nooses of Frame[i + 1]. Condition 3(b) follows from the fact that w1, . . . , wb
belong to distinct nooses in Frame[i+1]. Since φ(v) = φ′(v) for all v ∈ V (H ′)∩V (H), condition
2(d) is satisfied for the function out. Therefore (H,H ′, φ′, ϕ′, out) is an (i+1, η)-partial solution.

Now we prove that cami+1,η(H,H
′, φ′, ϕ′, out) = (C, T, T ′, ρ,P, f, out). By assumption we

have that cami,η(H,H
′, φ, ϕ, out) = (C, T, T ′, ρ,P, f, out) and therefore the first four conditions

in Definition 12.5 clearly follows. By replacing N1, . . . , Ns with N1, . . . , Ns and uGj with wj , one
can verify the fifth condition is also satisfied.

From the construction of φ′, we have that φ′(V (H)∩V (H ′)) = φ(V (H)∩V (H ′)) ⊆ V (G̃i−1)
(by property (a)). This completes the proof of the lemma.

Intuitively, an album is defined to be the series of snapshot collections at regular intervals.

Definition 13.2 (Album). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let
(M,N) be a 2q-workspace in G̃ and η, λ ∈ N where λ divides q. The (η, λ)-album is the function

albumη,λ : [q/λ]→ 2SNP[η] where for all i ∈ [q/λ], albumη,λ(i) = COL(iλ−1),η.

As a corollary to Lemma 13.1, we have the following statement.

Corollary 13.1. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?, (M,N) be a
2q-workspace in G̃ and η, λ ∈ N where λ divides q. For all i ∈ [q/λ − 1], albumη,λ(i) ⊆
albumη,λ(i+ 1).

If snapshot collections are the same for a large consecutive sequence in an album, then we
we say that it is a redundant album.

Definition 13.3 (Redundant Album). Let (G, δ, t, w′, s′) be an instance of FlatWall-
FindFolio?. Let (M,N) be a 2q-workspace in G̃ and η, λ, µ ∈ N where λ divides q. The
(η, λ)-album is µ-redundant if there exists s ∈ [q/λ−µ+ 1], called a µ-redundancy stamp, such
that albumη,λ(s) = albumη,λ(s+ 1) = · · · = albumη,λ(s+ µ− 1).

74

In the following lemma, we prove that there is an efficient algorithm to compute a µ-
redundancy stamp.

Lemma 13.2. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let (M,N) be a
(p, 2q)-workspace in G̃ and η, λ, µ ∈ N where λ divides q. There is a constant c such that if
q/λ−µ+1 > (t+ δ?)c(t

2+tδ?) ·ηcη ·2µ, then the (η, λ)-album is µ-redundant and a µ-redundancy
stamp for the (η, λ)-album can be found in time ((t + δ?)O(t2+tδ?) · ηO(η) · µ)∆O(∆)n where
∆ = max{p, s′ + 3}.

Proof. By Observation 12.1, we know that the number of distinct η-snapshots is upper bounded
by (t+ δ?)c(t

2+tδ?) · ηcη, where c is a constant. By Corollary 13.1, albumη,λ(i) ⊆ albumη,λ(i+ 1).

Therefore if q/λ−µ+ 1 > (t+ δ?)c(t
2+tδ?) · ηcη · 2µ, then there exists s ∈ [q/λ−µ+ 1] such that

albumη,λ(s) = albumη,λ(s+ 1) = · · · = albumη,λ(s+ µ− 1).
To compute a µ-redundancy stamp s ∈ [q/λ − µ + 1], it is enough to compute albumη,λ(i)

for all i ∈ [q/λ− µ+ 1]. Towards that we need to use Lemma 12.2 (t+ δ?)c(t
2+tδ?) · ηcη · 2µ+ 1

times. This implies that the running time to compute a µ-redundancy stamp is (t+ δ?)c(t
2+tδ?) ·

ηcη · 2µ · ∆O(∆)(η + δ? + t)O(1)n, which is equal to ((t + δ?)O(t2+tδ?) · ηO(η) · µ)∆O(∆)n, where
∆ = max{p, s′ + 3}.

If there is a µ-redundancy stamp s for a large µ, then there is a (`, λ − 1)-terminal free
solution, where ` ≥ (s+ 1)λ.

Observation 13.1. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio? and S be a
solution. Let (M,N) be a 2q-workspace in G̃ and η, λ, µ ∈ N where λ divides q such that
q/λ − µ + 1 > (t + δ?)c(t

2+tδ?) · ηcη · 2µ, where c is the constant mentioned in Lemma 13.2.
Let s be a µ-redundancy stamp for the (η, λ)-album. Then, there is a constant c′ such that if
µ > 2c

′(δ?)2t, then there exists j ∈ {s+ 1, . . . , s+µ− 1} such that S is (jλ, λ− 1)-terminal free.

Proof. By Proposition 5.1, the number of distinct graphs (upto isomorphism) in the δ?-folio
of G is upper bounded by 2O((δ?)2) · |R(G)|O(δ?) = 2O((δ?)2). This implies that the number of
terminal vertices in S is upper bounded by 2c

′′(δ?)2 , where c′′ is a constant. Moreover, for each
(H,φ, ϕ) ∈ S, the number of edges with one end point in A and other in G0 ∪G1 ∪ . . . ∪Gk is
at most δ?t. Therefore, there is a constant c′ such that if µ > 2c

′(δ?)2t and s be a µ-redundancy
stamp for the (η, λ)-album, there is i ≥ s such that no terminal from S belongs U and no
edge in ϕH (for any (H,φH , ϕH) ∈ S) with one endpoint in U and other in A, where U is
the union of vertices in the nooses in

⋃
iλ≤j<(i+2)λ Frame[j] and the union of vertices of V (Gi),

with V (Gi) ∩ V (G0) contains a vertex in a noose in
⋃
iλ≤j<(i+2)λ Frame[j]. This implies S is

((i+ 1)λ, λ− 1)-terminal free.

13.2 Patching Snapshots

In this subsection we prove that if there is a µ-redundancy stamp s for a large µ, then any vertex
in any up-noose of Frame[sλ− 1] is irrelevant. Recall that in the last subsection we proved that
there is an (`, λ − 1)-terminal free solution for some ` ≥ (s + 1)λ. We prove that there is
a “patch” between an (sλ − 1, η)-partial solution and the “future part” of the corresponding
(`, η)-partial solution without using any up-noose of Frame[sλ− 1].

Definition 13.4 (Zoom). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let
(M,N) be a 2q-workspace in G̃, ` ∈ [q−1]0 and η ∈ N. Let S ′ be the representation of an (`, η)-
untangled solution of (G, δ, t, w′, s′). Let (H,φ, ϕ) ∈ S ′. The (`, η)-zoom of (H,φ, ϕ), denoted
by zoom`,η(H,φ, ϕ), is cam`,η(restrict`,η(H,φ, ϕ)).

75

Definition 13.5 (Miniature). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?.
Let (M,N) be a 2q-workspace in G̃ and η, λ, µ ∈ N where λ divides q. Let s be a µ-redundancy
stamp for the (η, λ)-album and ` ≥ (s + 1)λ. Let S ′ be a representation of an (`, η)-untangled
solution and (H,φ, ϕ) ∈ S ′. An (sλ − 1, η)-partial solution (H?, H ′, φ′, ϕ′, out) is an (`, s)-
miniature of (H,φ, ϕ) if zoom`,η(H,φ, ϕ) = camsλ−1,η(H

?, H ′, φ′, ϕ′, out).

The following observation follows from Observation 12.2.

Observation 13.2. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?. Let (M,N)
be a 2q-workspace in G̃ and η, λ, µ ∈ N where λ divides q. Let s be a µ-redundancy stamp
for the (η, λ)-album and ` ≥ (s + 1)λ. Let S ′ be the representation of an (`, η)-untangled
solution, and (H,φ, ϕ) ∈ S ′. Let (H?, H ′, φ′, ϕ′, out) be an (`, s)-miniature of (H,φ, ϕ). Let
(H?

1 , H
′
1, φ
′
1, ϕ
′
1, out1) = restrict`,η(H,φ, ϕ). Then, out = out1, there exists an isomorphism iso′

from H ′ to H ′1 such that iso′ maps V (H ′) \ V (H?) to V (H ′1) \ V (H?
1) and iso′ restricted to

V (H) ∩ V (H ′) is an identity map (Here V (H?) ∩ V (H ′) = V (H?
1) ∩ V (H ′1)).

Proof sketch. By assumption we have that camsλ−1,η(H
?, H ′, φ′, ϕ′, out′) = cam`,η(H

?
1 , H

′
1, φ
′
1,

ϕ′1, out
′
1). That is, there exist two equivalent η-snapshot (C1, T1, T

′
1, ρ1,P1, f1, out1) and (C, T, T ′,

ρ,P, f, out) such that

(C, T, T ′, ρ,P, f, out) = camsλ−1,η(H
?, H ′, φ′, ϕ′, out′)

(C1, T1, T
′
1, ρ1,P1, f1, out1) = cam`,η(H

?
1 , H

′
1, φ
′
1, ϕ
′
1, out

′
1)

Since (C1, T1, T
′
1, ρ1,P1, f1, out1) and (C, T, T ′, ρ,P, f, out), we have that out = out1 = out′ =

out′1. Let J and J1 be the two graphs defined from (C, T, T ′, ρ,P, f, out) and (C1, T1, T
′
1, ρ1,P1, f1,

out1), respectively, as mentioned in Observation 12.2. Let iso and iso1 be the two isomorphisms
from J to H ′ and J1 to H ′1, respectively, as mentioned in Observation 12.2.

Since (C, T, T ′, ρ,P, f, out) and (C1, T1, T
′
1, ρ1,P1, f1, out1) are equivalent, there is an iso-

morphism g from C to C1 such that for all v ∈ V (C), f(v) = f1(g(v)). The function g can be
extended to an isomorphism from J1 to J2 as follows. For any t ∈ T = T1, we set g(t) = t. To
get the required isomorphism iso from H ′ to H ′1, we apply iso−1, then g, and then iso2. That
is, for any v ∈ V (H ′), iso′(v) = iso1(g(iso−1(v))).

Because of Observation 13.2, whenever we say that (H?, H ′, φ′, ϕ′, out) is an (`, s)-miniature
of (H,φ, ϕ), we assume that (H?

1 , H
′, φ′1, ϕ

′
1, out) = restrict`,η(H,φ, ϕ), for some witness (φ′1, ϕ

′
1)

of H ′. Next we formally define a patch and prove that indeed it exists.

Definition 13.6 (Patch). Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?, S be a
solution and S ′ be its representation. Let (M,N) be a 2q-workspace in G̃ and η, λ, µ ∈ N where
λ divides q. Let s be a µ-redundancy stamp for the (η, λ)-album. Let ` ≥ (s+1)λ be such that S
is (`, η)-untangled. Let (H,φ, ϕ) ∈ S ′ and (H?, H ′, φ′, ϕ′, out) be an (`, s)-miniature of (H,φ, ϕ).
Denote (H?

1 , H
′, φ′1, ϕ

′
1, out) = restrict`,η(H,φ, ϕ). A patch from (H?, H ′, φ′, ϕ′, out) to (H,φ, ϕ)

is a set P of |V (H ′)\V (H?)| vertex-disjoint paths where for all v ∈ V (H ′)\V (H?), there exists
P ∈ P between φ′(v) and φ′1(v) such that every internal vertex on P is enclosed either by the
noose in N that encloses φ′(v) or by a noose N ∈ Frame[i] for some i ∈ {sλ, sλ+ 1, . . . , `− 1}.

For any integer f ∈ N, we say that a patch P is f -empty if for every vertex v of every path
in P and for every up-noose Ni′,j′ ∈ Frame[i] for all i ∈ {λs− 1, λs, . . . , λs+ f − 2}, v does not
belong to inG̃(Ni′,j′).

Observe that by the definition of a miniature and a partial solution, any patch in the
definition above must be 1-empty.

76

•

•

•

•

•

•

•

Frame[`?]

Frame[`]

ΓRΓL

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •

Figure 7: Illustration of a patch which avoid all up-nooses of intermediate frames.

Lemma 13.3. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio?, S be a solution
and S ′ be its representation. Let (M,N) be a 2q-workspace in G̃ and η, λ, µ ∈ N where λ divides
q and λ ≥ 2η+ 1. Let s be a µ-redundancy stamp for the (η, λ)-album. Let ` ≥ (s+ 1)λ be such
that S is (`, η)-untangled. Let (H,φ, ϕ) ∈ S ′ and (H?, H ′, φ′, ϕ′, out) be an (`, s)-miniature of
(H,φ, ϕ). Then, there exists a patch from (H?, H ′, φ′, ϕ′, out) to (H,φ, ϕ) that is f -empty for
f = λ− 2η.

The correctness of Lemma 13.3 directly following from the following simple observation and
the definitions of (`, η)-untangled and miniature.

Observation 13.3. Let a, r, t ∈ N such that t ≤ 2r < 2a and 2t < a− r. Let G be a (2a)× (2a)
grid with V (G) = {vi,j : i, j ∈ {1, 2, . . . , 2a}}, and H be a 2r × 2r subgrid of G where V (H) =
{vi,j : i, j ∈ {a − (r − 1), . . . , a, a + 1, . . . , a + r}}. Denote CG and CH denote the outermost
cycles of G and H, i.e., the cycles induced by their set of vertices of degree smaller than 4. Let
M = {(p`, q`) : ` ∈ {1, 2, . . . , t}, p` ∈ {vi,j ∈ V (CG) : i 6= 2a}, q` ∈ {vi,j ∈ V (CH) : i 6= a + r}}
be a collection of vertex pairs such that when we traverse CG and CH in cyclic order starting
at p1 and q1, we encounter p1, p2, . . . , pt and q1, q2, . . . , qt in this order, respectively. Then,
there exists t vertex disjoint paths P1, P2, . . . , Pt} in G such that for every i ∈ {1, 2, . . . , t}, the
endpoints of Pi are pi and qi, and its internal vertices belong to V (G) \ (V (H) ∪ V (CG) ∪X)
where X = {vi,j : i ∈ {a+ r, a+ r + 1, . . . , 2a− 2t}, j ∈ {2t+ 1, 2t+ 2, . . . , 2a− 2t+ 1}}.

Lemma 13.4. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio? and r = h(3δ?+3t)
be the constant mentioned in Corollary 9.2. Let µ > 2c

′(δ?)2t, where c′ is the constant mentioned
in Observation 13.1. Let (M,N) be a 2q-workspace in G̃ and η, λ ∈ N, such that q/λ− µ+ 1 >
(t + δ?)c(t

2+tδ?) · ηcη · 2µ, λ divides q and λ ≥ 50(r + 5), where c is the constant mentioned in
Lemma 13.2, η = 48(r + 2). Let s be a µ-redundancy stamp for the (η, λ)-album. Then, if S1

77

is a representation for a solution, then there also exists a representation S such that S1 and S
are identical outside the given workspace, and S does not consist of any vertex that belongs to
any up-noose of Frame[i] for i ∈ {λs − 1, λs, . . . , λs + (λ − 2η) − 2}. (In particular, the set of
all vertices in these up-nooses is irrelevant.)

Proof. Let `? = λs−1 and S1 be an arbitrary solution. By Observation 13.1, we know that there
exists j ∈ {s+1, . . . , s+µ−1} such that S1 is (jλ, λ−1)-terminal free. We fix ` ≥ (s+1)λ such
that S1 is (`, λ−1)-terminal free. Let β = 12(r+2) and d1 = 4β+7. Let d = λ−1 > 50(r+5)−2.
Then by Lemma 11.6, there is an (`, η)-untangled solution S2. Let S ′2 be the representation of
S2. From S ′2 we construct a representation S ′ of a solution S, which will not use any vertex from
the up-nooses of Frame[i] for all i ∈ {λs − 1, λs, . . . , λs + (λ − 2η) − 2} and that will conclude
the proof. Towards that for each (H,φ2, ϕ2) ∈ S ′2, we construct a tuple (H,φ, ϕ) which is a
representation of a tuple (H,φ′, ϕ′), where (φ′, ϕ′) witnesses that H is topological minor in G
and no vertex from any up-noose of Frame[i] for i ∈ {λs− 1, λs, . . . , λs+ (λ− 2η)− 2} is in the
image of ϕ′.

Fix a tuple (H,φ2, ϕ2) in S ′2. Let (H?, H ′, φ?2, ϕ
?
2, out) be an (`, s)-miniature of (H,φ2, ϕ2).

Let extend`,η(H,φ2, ϕ2) = (Ĥ, φ̂2, ϕ̂2), and define restrict`,η(H,φ2, ϕ2) = (H?
2 , H

′, φ′2, ϕ
′
2, out)

(Recall that because of Observation 13.2, the second and fifth arguments of restrict`,η(H,φ2, ϕ2)

and an (`, s)-miniature of (H,φ2, ϕ2) are same). Notice that V (Ĥ) = V (H?
2) ∪ V (H ′). Let

s = |V (H ′) \ V (H?
2)| = |V (H ′) \ V (H?)| (see Observation 13.2). By Lemma 13.3, there exists a

patch P from (H?, H ′, φ?2, ϕ
?
2, out) to (H,φ2, ϕ2). Here, P is a set of vertex-disjoint paths where

for all v ∈ V (H ′) \ V (H?), there is a path Pv between φ?2(v) and φ′2(v) = φ̂2(v) such that every
internal vertex on Pv is enclosed either by the noose in N that encloses φ?2(v) or by a noose
N ∈ Frame[j] for some j ∈ {sλ, sλ+ 1, . . . , `}. Further, no vertex from any up-noose of Frame[i]
for i ∈ {λs− 1, λs, . . . , λs+ (λ− 2η)− 2} belongs to any path in the patch.

Now we define a pair (φ
Ĥ
, ϕ

Ĥ
) which witnesses that Ĥ is a topological minor in G̃ ∪G and

the set of vertices and edges used by (φ
Ĥ
, ϕ

Ĥ
) in G̃?`−1 is a subset of the set of vertices and

edges used by (φ?2, ϕ
?
2) and P. This will imply the correctness of the lemma.

Since extend`,η(H,φ2, ϕ2) = (Ĥ, φ̂2, ϕ̂2) and restrict`,η(H,φ2, ϕ2) = (H?
2 , H

′, φ′2, ϕ
′
2, out) we

know that Ĥ is obtained by subdividing the edges in H?
2 and H ′ is an induced subgraph of Ĥ.

For any v ∈ V (H ′) ⊆ V (Ĥ), we set φ
Ĥ

(v) = φ?2(v). For any v ∈ V (Ĥ) \ V (H ′), φ
Ĥ

(v) = φ̂2(v).

Now we define ϕ
Ĥ

. Fix an edge {u, v} ∈ E(Ĥ). Notice that either {u, v} ∈ E(H ′) or

{u, v} ∈ E(Ĥ) \ E(H ′). We have the following cases.

Case 1: {φ
Ĥ

(u), φ
Ĥ

(v)} ∩ A 6= ∅. We claim that {φ
Ĥ

(u), φ
Ĥ

(v)} ∈ E(G). Recall that

(Ĥ, φ̂2, ϕ̂2) is constructed from apex-addition`,η(H,φ2, ϕ2) (see Definition 12.7). This implies that

u and v are terminal vertices in Ĥ and {φ̂2(u), φ̂2(v)} ∈ E(G). Since {φ
Ĥ

(u), φ
Ĥ

(v)}∩A 6= ∅, at

least one of φ
Ĥ

(u) or φ
Ĥ

(v) is in A. Say φ
Ĥ

(u) ∈ A. Then u /∈ V (H ′). That is, φ
Ĥ

(u) = φ̂2(u).

Suppose v also does not belong to V (H ′). Then φ
Ĥ

(v) = φ̂2(v) and hence {φ
Ĥ

(u), φ
Ĥ

(v)} =

{φ̂2(u), φ̂2(v)} ∈ E(G). Suppose v belongs to V (H ′). Since S2 is (`, η)-untangled, {φ̂2(u), φ̂2(v)}
is an edge used by ϕ2 and φ̂2(u) ∈ A, we have that v ∈ V (H?

2) ∩ V (H ′). If v ∈ R(H ′), then

φ
Ĥ

(v) = φ?2(v) = φ′2(v) and hence {φ
Ĥ

(u), φ
Ĥ

(v)} ∈ E(G). Otherwise φ̂2(u) ∈ out(v). Also,

since (H?, H ′, φ?2, ϕ
?
2, out) is an (`, s)-miniature of (H,φ2, ϕ2), we have that φ̂2(u) = φ?2(u) ∈

NG(φ?2(v)). Hence {φ
Ĥ

(u), φ
Ĥ

(v)} ∈ E(G). So we set ϕ
Ĥ

({u, v}) = φ
Ĥ

(u)− φ
Ĥ

(v).

Case 2: {u, v} ∈ E(H ′). In this case {φ
Ĥ

(u), φ
Ĥ

(v)} ∩ A = ∅. Here we set ϕ
Ĥ

({u, v}) =
ϕ?2({u, v}).

Case 3: u, v ∈ V (H ′) and {u, v} /∈ E(H ′). In this case {φ
Ĥ

(u), φ
Ĥ

(v)}∩A = ∅. Since {u, v} /∈
E(H ′) and u, v ∈ V (H ′), φ̂2(v) = φ′2(v) is a vertex present in a noose Nv in Frame[`] and φ̂2(u)

78

is a vertex in a noose Nu in Frame[`]. Moreover, all the vertices in the path ϕ̂2({u, v}) belong
to nooses in

⋃
`′≥` Frame[`′], because (H,φ2, ϕ2) is in S′2, the representation (`, η)-untangled

solution S2. Let Ju,v the graph Pu ∪ Pv ∪ ϕ̂2({u, v}), which is connected graph. Choose a path
Pu,v from Ju,v between φ?2(u) and φ?2(v). Then we set ϕ

Ĥ
({u, v}) = Pu,v.

Case 4: u, v ∈ V (Ĥ)\V (H ′) and {φ
Ĥ

(u), φ
Ĥ

(v)}∩A = ∅. In this case {u, v} ∈ E(Ĥ)\E(H ′).

The vertices φ̂2(u) and φ̂2(v) belong to nooses in
⋃
`′>` Frame[`′]. Moreover all the vertices

in the path ϕ̂2({u, v}) belong to nooses in
⋃
`′>` Frame[`′], because (H,φ2, ϕ2) is in S′2, the

representation (`, η)-untangled solution S2. So we set ϕ
Ĥ

({u, v}) = ϕ̂2({u, v}).

Case 5: u ∈ V (Ĥ)\V (H ′), v ∈ V (H ′), and {φ
Ĥ

(u), φ
Ĥ

(v)}∩A = ∅. Since u ∈ V (Ĥ)\V (H ′),

extend`,η(H,φ2, ϕ2) = (Ĥ, φ̂2, ϕ̂2), restrict`,η(H,φ2, ϕ2) = (H?
2 , H

′, φ′2, ϕ
′
2, out), and {u, v} ∈

E(Ĥ), we have that v /∈ H?
2 . That is φ̂2(v) = φ′2(v) is a vertex present in a noose Nv in

Frame[`] and φ̂2(u) is a vertex in a noose Nu in
⋃
`′>` Frame[`′]. Moreover all the vertices in the

path ϕ̂2({u, v}) belong to nooses in
⋃
`′≥` Frame[`′], because S2 is an (`, η)-untangled solution.

Let Ju,v be the (connected) graph ϕ̂2({u, v}) ∪ Pv. Choose a path Pu,v from Ju,v between

φ
Ĥ

(u) = φ̂2(u) and φ
Ĥ

(v) = φ?2(v). Then we set ϕ
Ĥ

({u, v}) = Pu,v.
This completes the definition ϕ

Ĥ
. Notice that in the above construction we used “the portion

of ϕ̂2 which belong to
⋃
`′≥` Frame[`′]”, the edges used by ϕ′2 from

⋃
`′≤`? Frame[`′] and a subset

of edges from the patch P. That is, any vertex in any up-noose in Frame[`?] does not belong to
the image of ϕ

Ĥ
. Thus, if we prove that (Ĥ, φ

Ĥ
, ϕ

Ĥ
) is a representation of (Ĥ, f

Ĥ
, g
Ĥ

), where

(f
Ĥ
, g
Ĥ

) is a witness for Ĥ being a topological minor in G, then we are done, because Ĥ is
subdivision of H. Towards that, we first prove the following claim.

Claim 13.1. (φ
Ĥ
, ϕ

Ĥ
) witnesses that Ĥ is a topological minor in G̃ ∪G.

Proof sketch. Clearly for any {u, v} ∈ E(Ĥ), the end-vertices of ϕ
Ĥ

({u, v}) are φ
Ĥ

(u) and

φ
Ĥ

(v). Now we prove that the paths in ϕ
Ĥ

(E(Ĥ)) are internally vertex disjoint. This follows
from the following facts.

• The set of paths P are vertex disjoint and all the vertices in V (P) are from the nooses in⋃
`?≤j≤` Frame[j].

• (H?, H ′, φ?2, ϕ
?
2, out) is an (`?, η)-partial solution and hence condition (2) in Definition 12.4

is satisfied. That is, the paths in ϕ?2(E(H ′)) are internally vertex disjoint and the internal
vertices are from V (G̃`?−1).

• The set of paths ϕ̂2(E(Ĥ)) \ ϕ̂2(E(H ′)) are internally vertex disjoint and the internal
vertices in these paths ϕ̂2(E(Ĥ)) \ ϕ̂2(E(H?)) are from V (G) \ (V (G̃`−1) ∪A).

• If an end-vertex of a path P in ϕ
Ĥ

(E(Ĥ)) is a vertex in A, then its length is one and
hence P has no internal vertex (see Case 1 above).

The paths in the first two items together are internally vertex disjoint. The vertices in paths in
third item is disjoint from the the vertices of paths in the second item. The vertices in paths in
the first item may not be internally vertex disjoint from the paths in third item. But, because
S2 is (`, η)-untangled, if any two paths intersect, then one of the endpoints of those paths are
same and this endpoint is an internal vertex only in one path in ϕ

Ĥ
(E(Ĥ)).

From (φ
Ĥ
, ϕ

Ĥ
), we construct a pair (f

Ĥ
, g
Ĥ

) such that it is a witness for Ĥ being a topo-
logical minor in G and that will complete the proof. We set f

Ĥ
= φ

Ĥ
. By Claim 13.1, we know

that (φ
Ĥ
, ϕ

Ĥ
) is witness for the topological minor Ĥ in G̃ ∪ G. If no edge of E(G̃) \ E(G) is

used by ϕ
Ĥ

, then g
Ĥ

= ϕ
Ĥ

. Otherwise we modify ϕ
Ĥ

to get g
Ĥ

. Let F ⊆ E(G̃) \ E(G) be the

79

set of edges outside E(G), used by ϕ
Ĥ

. Notice that the edge used by ϕ
Ĥ

can be partitioned

into E1]E2]E3 such that (i) E3 used by ϕ̂2 and disjoint from E(G̃`−1), (ii) E2 is used by P
and disjoint from E(G̃`?−1) and (iii) E1 is used by ϕ?2.

Claim 13.2. Let Q` =
⋃
i≤` Frame[i] and U` =

⋃
N∈Q` inG̃(N) ∩ V (G̃). There is no Gi, i ∈ [k],

such that V (Gi) ∩ U` 6= ∅ and V (Gi) contain a terminal with respect to S2.

Proof. The proof follows from the fact that S2 is (`, 3)-terminal free (because S is (`, η)-
untangled).

We partition the edges F into F1] F2] F3 such that Fi = F ∩ Ei for all i ∈ [3]. For all
edges in F1, (a) there exist internally vertex disjoint paths where the internal vertices are from
V (Gi) \ V (G0) some Gi with V (Gi) ∩ V (G0) ⊆ V (G̃`?−1) (see condition (2) in Definition 12.4).
For all edges in F2, (b) there exist internal vertex disjoint paths where the internal vertices
are from V (Gi) \ V (G0) for some Gi with V (Gi) contains the endpoints of the corresponding
edges. Moreover the paths are internally vertex disjoint from the vertices used by the paths
mentioned in statement (a). For all edges in F3, there exit internal vertex disjoint paths where
the internal vertices are from V (Gi) \ V (G0) some Gi with V (Gi) contains the the endpoints of
the corresponding edges (because ϕ̂2 is derived from a representation of a solution). Moreover,
because of Claim 13.2, the internal vertices in these paths are disjoint from the paths mentioned
in statements (a) and (b). This completes the construction of g

Ĥ
. Therefore Ĥ is a topological

minor in G, witnessed by (f
Ĥ
, g
Ĥ

) and (Ĥ, φ
Ĥ
, ϕ

Ĥ
) is the representation of (Ĥ, f

Ĥ
, g
Ĥ

). As
vertices in the up-nooses of Frame[i] for all i ∈ {λs− 1, λs, . . . , λs+ (λ− 2η)− 2} are not used
by ϕ

Ĥ
, those vertices are also not used by g

Ĥ
. This completes the proof of the lemma.

Notice that in Lemma 13.4, the graph induced by the specified irrelevant set of vertices has
a (λ− 2η)× (λ− 2η) grid as a minor. Thus, we derive the following corollary to Lemma 13.4.

Corollary 13.2. Let (G, δ, t, w′, s′) be an instance of FlatWall-FindFolio? and r = h(3δ?+
3t) be the constant mentioned in Corollary 9.2. Let µ > 2c

′(δ?)2t, where c′ is the constant
mentioned in Observation 13.1. Let (M,N) be a 2q-workspace in G̃ and η, λ ∈ N, such that
q/λ− µ+ 1 > (t+ δ?)c(t

2+tδ?) · ηcη · 2µ, λ divides q and λ ≥ 50(r + 5), where c is the constant
mentioned in Lemma 13.2, η = 48(r + 2). Let s be a µ-redundancy stamp for the (η, λ)-album.
Then, there exists a w′′×w′′ flat wall within the input flat wall that is computable in polynomial
time such that if S1 is a representation of a solution, then there also exists a representation S
that is identical to S1 outside the input flat wall and which does not consist of any vertex of the
output w′′ × w′′ flat wall, where w′′ = λ

2 − η.

14 Proof of Theorem 12

We are now ready to prove Theorem 12. For the sake of clarity, let us recall its statement in
more detail.

Theorem 13. There is a computable function g and an algorithm that, given an instance
(G, δ, t, w′, s′) of FlatWall-FindFolio? such that |R(G)| ≤ α(δ) and w′ ≥ g(δ?, t), and w′′ ∈
N, finds a w′′×w′′ flat wall within the input w′×w′ flat wall such that if S ′ is a representation
of the solution, then there also exists a representation S that is identical to S ′ outside the
input flat wall and does not use any vertex of the output inner flat wall, which runs in time

22O(((t+δ?)2+r) log(t+δ?+r))
(s′)O(s′)(w′′)O(w′′)n where g(δ?, t) = (t + δ? + r)O((t+δ?)2+r)w′′ and r =

h(δ? + t). (In particular, the set of all vertices of the output inner flat wall is irrelevant.)

80

Proof. Let k′ = 3(δ? + t) and r = h(k′) be the constant mentioned in Corollary 9.2. That is,
r depends on δ and t. Fix λ = max{50(r + 5), 2w′′ + 2η}, η = 48(r + 2), and µ = 2c

′(δ?)2t,
where c′ is the constant mentioned in Observation 13.1. Let q be the least integer such that
q/λ − µ + 1 > (t + δ?)c(t

2+tδ?) · ηcη · 2µ and λ divides q, where c is the constant mentioned
in Lemma 13.2. That is, q ≥ g(δ?, t) for some computable function g such that g(δ?, t) =
(t+ δ?)O((t+δ?)2)rO(r) = (t+ δ? + r)O((t+δ?)2+r).

Let ĉ be the constant mentioned in Lemma 10.1. Let p = 2ĉq + 1 and w′ = 2ĉp. We
are given a w′ × w′ flat wall in G \ A. Thus by Observation 3.5, there is a w′ × w′-grid
as a minor in G̃. This implies that the treewidth of G̃ strictly more than ĉp. So we apply
Lemma 10.1 and get a (p, q)-workspace of G̃ in time pO(1)n. Next we apply Lemma 13.2,
and compute a µ-redundancy stamp s in time ((t + δ?)O(t2+tδ?) · ηO(η) · µ)∆O(∆)n where ∆ =
max{p, s′+3}. Then because of Lemma 13.4, we output a vertex in an up-noose of Frame[sλ−1].
Therefore, the total running time of the algorithm is ((t+δ?)O(t2+tδ?) ·ηO(η) ·µ)pO(p)(s′)O(s′)n =

22O(((t+δ?)2+r) log(t+δ?+r))
(s′)O(s′)(w′′)O(w′′)n. This completes the proof of the theorem.

15 Final Argument for Flat Walls: Proof of Theorem 7

Finally, based on Theorem 13, we are ready to prove Theorem 7. For the sake of clarity, let us
recall its statement.

Theorem 7. There is a computable function ĝ and an algorithm that, given k ∈ N and an in-
stance (G, δ, t, w′, s′) of FlatWall-FindFolio such that |R(G)| ≤ α(δ) and w′ ≥ (ĝ(δ?, t))k+2,

finds a (δ, k)-irrelevant vertex in time 22O(k((t+δ?)2+r) log(t+δ?+r))
(s′)O(s′)n where δ? = δ + α(δ),

ĝ(δ?, t) = (t+ δ? + r)O((t+δ?)2+r) and r = h(δ? + t).

Proof. Let ĝ be the computable function in Theorem 13 where w′′ = 1. We first describe the
algorithm. Given k ∈ N and an instance (G, δ, t, w′, s′) of FlatWall-FindFolio such that
|R(G)| ≤ α(δ) and w′ ≥ (ĝ(δ?, t))k+2, it works as follows. For every i ∈ {1, 2, . . . , k + 2},
let wi = (ĝ(δ?, t))k+3−i. Define the first flat wall as the input flat wall. Then, for every
i ∈ {1, 2, . . . , k+ 1}, execute the following: Apply the algorithm in Theorem 13 with w′ (in that
statement) being wi, the i-th flat wall, and w′′ = wi+1, and call the output the (i+ 1)-flat wall.
(Here, the first call is valid because w′ ≥ w1.) Eventually, output any vertex v in the (k+2)-flat
wall as the (δ, k)-irrelevant vertex. Notice that wk+2 ≥ 1, thus such a vertex exists.

The running time is upper bounded by the running time to perform (k + 1) calls to the
algorithm in Theorem 13 with w′′ being upper bounded by w1. As the time to perform one such

call is bounded by 22O(k((t+δ?)2+r) log(t+δ?+r))
(s′)O(s′)n, the running time stated in the theorem

follows (the factor k + 1 is subsumed by the O notation in the exponent).
We now argue that the algorithm is correct, that is, v is a (δ, k)-irrelevant vertex. Targeting

towards a contradiction, suppose that v is not a (δ, k)-irrelevant vertex. Then, there exists a set
S ⊆ V (G) of size at most k such that v is not an irrelevant vertex to the extended δ-folios of
G \ S. Thus, by Observation 4.1, the δ?-folio of G \ S and G \ (S ∪ {v}) are different (clearly,
the first is a superset of the second). Let S be the solution for the instance (G \ S, δ, t, w′, s′)
of FlatWall-FindFolio?, and let S ′ be a representation of it. By the pigeon-hole principle,
there exists i ∈ {1, 2, . . . , k} such that S does not contain any vertex in the difference between
the i-th flat wall and the (i + 1)-th flat wall. Then, by the correctness of the ith call to the
algorithm in Theorem 13, there exists a representation S? of S with respect to (G, δ, t, w′, s′)
that is the same as S ′ outside the i-th flat wall and does not use any vertex of the (i + 1)-th
flat wall. Because S? is the same as S ′ outside the i-th flat wall, it does not use any vertex of S
that is outside the i-flat wall. Further, because S does not contain any vertex in the difference
between the i-th flat wall and the (i + 1)-th flat wall, it is trivial that S? does not use any

81

vertex of S that belongs to this difference (there is no such vertex), and because S? does not
use use any vertex of the (i+ 1)-th flat wall, it is also trivial that is does not use any vertex of
S, as well as v, that belongs to the (i + 1)-th flat wall. Overall, S? does not use any vertex of
S ∪ {v}. Thus, S? is a representation of S with respect to (G \ (S ∪ {v}, δ, t, w′, s′), which is a
contradiction.

16 Conclusion and Future Directions

In this paper we established fixed-parameter tractability of TM-Deletion. The immersion
relation [72] is another well-studied graph containment relation with strong ties to graph minors.
For the immersion relation, an FPT algorithm for Π-Edge Deletion (deleting k edges instead
of k vertices) for all �im-closed properties follows from the fact that graphs are well-quasi
ordered by immersion [72] and that there exists an f(H) · nO(1) time algorithm for deciding
whether a given graph H is a immersion of G [39]. We believe that our methods could be
useful in designing an FPT algorithm for Π-Deletion for all �im-closed properties. However,
for now this is just speculation, and we leave this as an interesting open problem.

The running time dependence f(h?, k) of our algorithm for TM-Deletion is humongous.
This should not come as a surprise—TM-Deletion is a generalization of Minor Deletion,
thus our algorithm also solves Π-Deletion for every minor-closed property Π. On the other
hand, for some special but still interesting cases of Minor Deletion, such as when the family
of forbidden minors contains a planar graph, Minor Deletion is solvable in time bounded by
a single-exponential function of k [31, 54]. It would be interesting if such type of results could
be obtained for TM-Deletion when some constraints are imposed on the graphs in the family
of forbidden topological minors.

References

[1] I. Adler, S. G. Kolliopoulos, P. K. Krause, D. Lokshtanov, S. Saurabh, and
D. M. Thilikos, Irrelevant vertices for the planar disjoint paths problem, J. Comb. Theory,
Ser. B, 122 (2017), pp. 815–843. 13, 43

[2] S. Arnborg, J. Lagergren, and D. Seese, Easy problems for tree-decomposable graphs,
J. Algorithms, 12 (1991), pp. 308–340. 1, 4, 6, 25

[3] V. Bafna, P. Berman, and T. Fujito, A 2-approximation algorithm for the undirected
feedback vertex set problem, SIAM Journal on Discrete Mathematics, 12 (1999), pp. 289–
297. 1

[4] R. Bar-Yehuda and S. Even, A linear-time approximation algorithm for the weighted
vertex cover problem, J. Algorithms, 2 (1981), pp. 198–203. 1

[5] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth, Approximation algorithms
for the feedback vertex set problem with applications to constraint satisfaction and Bayesian
inference, SIAM Journal on Computing, 27 (1998), pp. 942–959. 1

[6] A. Becker, R. Bar-Yehuda, and D. Geiger, Randomized algorithms for the loop
cutset problem, J. Artificial Intelligence Res., 12 (2000), pp. 219–234. 3

[7] I. Bliznets, F. V. Fomin, M. Pilipczuk, and Y. Villanger, Largest chordal and
interval subgraphs faster than 2n, Algorithmica, 76 (2016), pp. 569–594. 1

82

[8] H. Bodlaender, Treewidth: Algorithmic techniques and results, in MFCS’97: Mathe-
matical Foundations of Computer Science 1997, 22nd International Symposium (MFCS),
vol. 1295 of Lecture Notes in Computer Science, Springer, 1997, pp. 19–36. 3

[9] H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small
treewidth, SIAM J. Comput., 25 (1996), pp. 1305–1317. 16

[10] L. Cai, Fixed-parameter tractability of graph modification problems for hereditary proper-
ties, Information Processing Letters, 58 (1996), pp. 171–176. 1, 3

[11] M. Cai, X. Deng, and W. Zang, An approximation algorithm for feedback vertex sets
in tournaments, SIAM J. Comput., 30 (2000), pp. 1993–2007. 1

[12] Y. Cao and D. Marx, Interval deletion is fixed-parameter tractable, ACM Transactions
on Algorithms, 11 (2015), pp. 21:1–21:35. 1, 3

[13] C. Chekuri and J. Chuzhoy, Polynomial bounds for the grid-minor theorem, J. ACM,
63 (2016), pp. 40:1–40:65. 19

[14] J. Chen, I. A. Kanj, and G. Xia, Improved upper bounds for vertex cover, Theor.
Comput. Sci., 411 (2010), pp. 3736–3756. 3

[15] J. Chen, Y. Liu, and S. Lu, An improved parameterized algorithm for the minimum node
multiway cut problem, Algorithmica, 55 (2009), pp. 1–13. 9, 27

[16] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon, A fixed-parameter algorithm
for the directed feedback vertex set problem, J. ACM, 55 (2008). 1, 3

[17] J. Chuzhoy, Improved bounds for the flat wall theorem, in Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, 2015, pp. 256–275. 16, 17, 19

[18] , Excluded grid theorem: Improved and simplified (invited talk), in 15th Scandinavian
Symposium and Workshops on Algorithm Theory, SWAT 2016, June 22-24, 2016, Reyk-
javik, Iceland, 2016, pp. 31:1–31:1. 19

[19] B. Courcelle, The monadic second-order logic of graphs. i. recognizable sets of finite
graphs, Inf. Comput., 85 (1990), pp. 12–75. 1, 4, 6, 25

[20] B. Courcelle, J. A. Makowsky, and U. Rotics, On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic, Discrete Applied
Mathematics, 108 (2001), pp. 23–52. 1

[21] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer-Verlag, 2015. 1, 4,
27

[22] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos, Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs, J. ACM, 52
(2005), pp. 866–893. 1

[23] E. D. Demaine and M. Hajiaghayi, Bidimensionality: new connections between fpt al-
gorithms and ptass, in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2005), New York, 2005, ACM-SIAM, pp. 590–601. 1

83

[24] R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity, Texts
in Computer Science, Springer, 2013. 1

[25] G. Even, J. Naor, B. Schieber, and M. Sudan, Approximating minimum feedback
sets and multicuts in directed graphs, Algorithmica, 20 (1998), pp. 151–174. 1

[26] M. R. Fellows and M. A. Langston, Nonconstructive tools for proving polynomial-time
decidability, J. ACM, 35 (1988), pp. 727–739. 1, 3

[27] J. Flum and M. Grohe, Parameterized Complexity Theory, Texts in Theoretical Com-
puter Science. An EATCS Series, Springer-Verlag, Berlin, 2006. 1

[28] F. V. Fomin, S. Gaspers, D. Lokshtanov, and S. Saurabh, Exact algorithms via
monotone local search, J. ACM, 66 (2019), pp. 8:1–8:23. 1

[29] F. V. Fomin, F. Grandoni, and D. Kratsch, A measure & conquer approach for the
analysis of exact algorithms, J. ACM, 56 (2009), pp. 25:1–25:32. 1

[30] F. V. Fomin and D. Kratsch, Exact Exponential Algorithms, Texts in Theoretical Com-
puter Science. An EATCS Series, Springer, 2010. 1

[31] F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh, Planar F-deletion: Ap-
proximation, kernelization and optimal FPT algorithms, in FOCS, 2012. 1, 3, 82

[32] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos, Bidimensionality and
kernels, in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2010), 2010, pp. 503–510. 1

[33] F. V. Fomin, I. Todinca, and Y. Villanger, Large induced subgraphs via triangulations
and CMSO, SIAM J. Comput., 44 (2015), pp. 54–87. 1

[34] M. Frick and M. Grohe, Deciding first-order properties of locally tree-decomposable
structures, J. ACM, 48 (2001), pp. 1184–1206. 1

[35] T. Fujito, A unified approximation algorithm for node-deletion problems, Discrete Appl.
Math., 86 (1998), pp. 213–231. 1

[36] J. Gajarský, P. Hlinený, D. Lokshtanov, J. Obdrzálek, S. Ordyniak, M. S.
Ramanujan, and S. Saurabh, FO model checking on posets of bounded width, in IEEE
56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, IEEE Computer Society, 2015, pp. 963–974. 1

[37] A. C. Giannopoulou, M. Pilipczuk, J. Raymond, D. M. Thilikos, and
M. Wrochna, Linear kernels for edge deletion problems to immersion-closed graph classes,
in 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland, vol. 80 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017, pp. 57:1–57:15. 3

[38] P. A. Golovach, G. Stamoulis, and D. M. Thilikos, Hitting topological minor mod-
els in planar graphs is fixed parameter tractable, CoRR., abs/1907.02919 (SODA 2020 to
appear) (2019). 2, 3, 25

[39] M. Grohe, K. Kawarabayashi, D. Marx, and P. Wollan, Finding topological sub-
graphs is fixed-parameter tractable, in Proceedings of the 43rd ACM Symposium on Theory
of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, 2011, pp. 479–488. 1, 3, 4,
5, 6, 7, 23, 24, 27, 38, 82

84

[40] M. Grohe, K. Kawarabayashi, and B. A. Reed, A simple algorithm for the graph
minor decomposition - logic meets structural graph theory, in Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans,
Louisiana, USA, January 6-8, 2013, SIAM, 2013, pp. 414–431. 1, 3

[41] M. Grohe, S. Kreutzer, and S. Siebertz, Deciding first-order properties of nowhere
dense graphs, J. ACM, 64 (2017), pp. 17:1–17:32. 1

[42] A. Gupta, E. Lee, J. Li, P. Manurangsi, and M. Wlodarczyk, Losing treewidth
by separating subsets, in Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, SIAM,
pp. 1731–1749. 1

[43] Y. Iwata and Y. Kobayashi, Improved analysis of highest-degree branching for feedback
vertex set, CoRR, abs/1905.12233 (to appear in IPEC 2019). 3

[44] B. M. P. Jansen, D. Lokshtanov, and S. Saurabh, A near-optimal planarization
algorithm, in Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, 2014, pp. 1802–1811.
1, 3

[45] N. Kakimura and K. Kawarabayashi, Fixed-parameter tractability for subset feedback
set problems with parity constraints, Theor. Comput. Sci., 576 (2015), pp. 61–76. 1, 3

[46] F. Kammer and T. Tholey, Approximate tree decompositions of planar graphs in linear
time, Theor. Comput. Sci., 645 (2016), pp. 60–90. 20

[47] K. Kawarabayashi, Planarity allowing few error vertices in linear time, in 50th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009,
Atlanta, Georgia, USA, IEEE Computer Society, 2009, pp. 639–648. 1, 3

[48] K. Kawarabayashi and Y. Kobayashi, Fixed-parameter tractability for the subset feed-
back set problem and the s-cycle packing problem, J. Comb. Theory, Ser. B, 102 (2012),
pp. 1020–1034. 1, 3

[49] K. Kawarabayashi, Y. Kobayashi, and B. A. Reed, The disjoint paths problem in
quadratic time, J. Comb. Theory, Ser. B, 102 (2012), pp. 424–435. 1, 3

[50] K. Kawarabayashi and B. A. Reed, An (almost) linear time algorithm for odd cyles
transversal, in Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, SIAM, 2010, pp. 365–
378. 1, 3

[51] K. Kawarabayashi, B. A. Reed, and P. Wollan, The graph minor algorithm with
parity conditions, in IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, IEEE Computer Society, 2011,
pp. 27–36. 1, 3

[52] K. Kawarabayashi and A. Sidiropoulos, Polylogarithmic approximation for minimum
planarization (almost), in 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, IEEE Computer Society,
2017, pp. 779–788. 1

[53] K. Kawarabayashi, R. Thomas, and P. Wollan, A new proof of the flat wall theorem,
J. Comb. Theory, Ser. B, 129 (2018), pp. 204–238. 8, 9, 16, 17, 19

85

[54] E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, and S. Sik-
dar, Linear kernels and single-exponential algorithms via protrusion decompositions, ACM
Trans. Algorithms, 12 (2016), pp. 21:1–21:41. 1, 3, 82

[55] A. S. LaPaugh and R. L. Rivest, The subgraph homeomorphism problem, in Proceedings
of the 10th Annual ACM Symposium on Theory of Computing (STOC), ACM, 1978,
pp. 40–50. 3

[56] J. M. Lewis and M. Yannakakis, The node-deletion problem for hereditary properties
is np-complete, J. Comput. Syst. Sci., 20 (1980), pp. 219–230. 1

[57] J. Li and J. Nederlof, Detecting feedback vertex sets of size k in O?(2.7k) time, CoRR,
abs/1906.12298 (to appear in SODA 2020). 1, 3

[58] D. Lokshtanov, P. Misra, J. Mukherjee, G. Philip, F. Panolan, and S. Saurabh,
A 2-approximation algorithm for feedback vertex set in tournaments, CoRR, abs/1809.08437
(to appear in SODA 2020). 1

[59] C. Lund and M. Yannakakis, The approximation of maximum subgraph problems, in
Proceedings of the 20nd International Colloquium on Automata, Languages and Program-
ming (ICALP 1993), vol. 700 of Lecture Notes in Comput. Sci., 1993, pp. 40–51. 1

[60] D. Marx, Parameterized graph separation problems, Theor. Comput. Sci., 351 (2006),
pp. 394–406. 9, 27

[61] F. Mazoit, A single exponential bound for the redundant vertex theorem on surfaces, arXiv
preprint arXiv:1309.7820, (2013). 5, 13, 25, 26

[62] G. L. Nemhauser and L. E. Trotter, Jr., Properties of vertex packing and indepen-
dence system polyhedra, Math. Programming, 6 (1974), pp. 48–61. 1

[63] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, vol. 31 of Oxford Lecture
Series in Mathematics and its Applications, Oxford University Press, Oxford, 2006. 1, 3

[64] B. Reed and D. R. Wood, A linear-time algorithm to find a separator in a graph ex-
cluding a minor, ACM Trans. Algorithms, 5 (2009), pp. 39:1–39:16. 9, 20

[65] B. A. Reed, K. Smith, and A. Vetta, Finding odd cycle transversals, Oper. Res. Lett.,
32 (2004), pp. 299–301. 1, 3

[66] N. Robertson, P. Seymour, and R. Thomas, Quickly excluding a planar graph, Journal
of Combinatorial Theory, Series B, 62 (1994), pp. 323 – 348. 20

[67] N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width,
Journal of Algorithms, 7 (1986), pp. 309–322. 1

[68] , Graph minors. V. Excluding a planar graph, J. Combin. Theory Ser. B, 41 (1986),
pp. 92–114. 1

[69] , Graph minors. X. Obstructions to tree-decomposition, J. Combin. Theory Ser. B, 52
(1991), pp. 153–190. 1

[70] N. Robertson and P. D. Seymour, Graph minors. XIII. the disjoint paths problem, J.
Comb. Theory, Ser. B, 63 (1995), pp. 65–110. 1, 3, 5, 6, 9, 27, 28

[71] N. Robertson and P. D. Seymour, Graph minors. XVI. Excluding a non-planar graph,
J. Combin. Theory Ser. B, 89 (2003), pp. 43–76. 1

86

[72] N. Robertson and P. D. Seymour, Graph minors. XX. wagner’s conjecture, J. Comb.
Theory, Ser. B, 92 (2004), pp. 325–357. 1, 82

[73] , Graph minors. XXII. irrelevant vertices in linkage problems, J. Comb. Theory, Ser.
B, 102 (2012), pp. 530–563. 5, 6, 11, 25, 43, 44

[74] P. Scheffler, A Practical Linear Time Algorithm for Disjoint Paths in Graphs with
Bounded Tree Width, Fachbereich Mathematik: Preprint-Reihe Mathematik, Techn. Univ.,
1994. 16

[75] P. Seymour and R. Thomas, Graph searching and a min-max theorem for tree-width,
Journal of Combinatorial Theory, Series B, 58 (1993), pp. 22 – 33. 55

[76] V. V. Vazirani, Approximation algorithms, Springer Science & Business Media, 2013. 1

[77] D. P. Williamson and D. B. Shmoys, The design of approximation algorithms, Cam-
bridge university press, 2011. 1

[78] M. Xiao and H. Nagamochi, Exact algorithms for maximum independent set, Inf. Com-
put., 255 (2017), pp. 126–146. 1

[79] M. Yannakakis, The effect of a connectivity requirement on the complexity of maximum
subgraph problems, J. ACM, 26 (1979), pp. 618–630. 1

[80] , Some open problems in approximation, in Proceedings of the 2nd Italian Conference
on Algorithms and Complexity (CIAC 1994), vol. 778 of Lecture Notes in Comput. Sci.,
1994, pp. 33–39. 1

87

