
1

2-Approximating Feedback Vertex Set in Tournaments∗

DANIEL LOKSHTANOV, University of California, USA
PRANABENDU MISRA,Max-Planck Institute for Informatics, SIC, Germany
JOYDEEP MUKHERJEE, Ramakrishna Mission Vivekananda Educational and Research Institute, India
and Indian Statistical Institute, India
FAHAD PANOLAN, Department of Computer Science and Engineering, IIT Hyderabad, India
GEEVARGHESE PHILIP, Chennai Mathematical Institute, India and UMI ReLaX,
SAKET SAURABH, Institute of Mathematical Sciences, HBNI, India, University of Bergen, Norway, and UMI
ReLaX,

A tournament is a directed graph 𝑇 such that every pair of vertices is connected by an arc. A feedback vertex
set is a set 𝑆 of vertices in 𝑇 such that 𝑇 − 𝑆 is acyclic. We consider the Feedback Vertex Set problem in
tournaments. Here the input is a tournament 𝑇 and a weight function 𝑤 : 𝑉 (𝑇 ) → N and the task is to
find a feedback vertex set 𝑆 in 𝑇 minimizing𝑤 (𝑆) = ∑

𝑣∈𝑆 𝑤 (𝑣). Rounding optimal solutions to the natural
LP-relaxation of this problem yields a simple 3-approximation algorithm. This has been improved to 2.5 by
Cai et al. [SICOMP 2000], and subsequently to 7/3 by Mnich et al. [ESA 2016]. In this paper we give the first
polynomial time factor 2 approximation algorithm for this problem. Assuming the Unique Games Conjecture,
this is the best possible approximation ratio achievable in polynomial time.
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1 INTRODUCTION
A feedback vertex set (FVS) in a graph 𝐺 is a vertex subset 𝑆 such that 𝐺 − 𝑆 is acyclic. In the case
of directed graphs, it means 𝐺 − 𝑆 is a directed acyclic graph (DAG). In the (Directed) Feedback
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1:2 Lokshtanov et al.

Vertex Set ((D)FVS) problem we are given as input a (directed) graph 𝐺 and a weight function
𝑤 : 𝑉 (𝐺) → N. The objective is to find a minimum weight feedback vertex set 𝑆 . Both the directed
and undirected versions of the problem are NP-complete [14] and have been extensively studied
from the perspective of approximation algorithms [3, 13], parameterized algorithms [7, 9, 18], exact
exponential time algorithms [22, 26] as well as graph theory [12, 23].

In this paper we consider a restriction of DFVS, namely the Feedback Vertex Set in Tourna-
ments (TFVS) problem, from the perspective of approximation algorithms (we refer to the textbook
of Williamson and Shmoys [25] for an introduction to approximation algorithms). A tournament
is a directed graph 𝐺 such that every pair of vertices is connected by an arc, and TFVS is simply
DFVS when the input graph is required to be a tournament. Even this restricted variant of DFVS
has applications in voting systems and rank aggregation and is quite well-studied [6, 11, 15, 19–21].
It is formally defined as follows.

Feedback Vertex Set in Tournaments (TFVS)
Input: A tournament 𝐺 and a weight function𝑤 : 𝑉 (𝐺) → N.
Output: A minimum weight FVS of 𝐺 .

It is well known that a tournament has a directed cycle if and only if there is a directed triangle [11].
Thus the TFVS problem can be re-cast as a special case of the well-studied 3-Hitting Set problem
(also known as Vertex Cover in 3-uniform hypergraphs). Here the input is a universe𝑈 , a weight
function 𝑤 : 𝑈 → N and a family F of subsets of 𝑈 , each of size at most 3. The goal is to find
a minimum weight subset 𝑆 of the universe that intersects every set in F. 3-Hitting Set (and
therefore also TFVS) admits a simple 3-approximation algorithm: Taking the natural LP relaxation1
and selecting all elements whose variable is set to at least 1/3 leads to a 3-approximate solution. For
3-Hitting Set this simple approximation algorithm is likely the best possible: assuming the Unique
Games Conjecture (UGC) there is no 𝑐-approximation algorithm for 𝑐 < 3 [17]. A 𝑐-approximation
algorithm with 𝑐 < 2 would imply P = NP [10].
Since TFVS is a special case of 3-Hitting Set, algorithms for 3-Hitting Set translate to algo-

rithms for TFVS, but lower bounds for 3-Hitting Set do not translate to lower bounds for TFVS.
Indeed, TFVS does admit 𝑐-approximation algorithms with 𝑐 < 3. The first such algorithm was
given by Cai et al. [6], who gave a 5/2-approximation algorithm using the local ratio technique of
Bar-Yehuda and Even [5]. Recently, Mnich et al. [20] gave a 7/3-approximation algorithm using
the iterative rounding technique. They also observe that the approximation-preserving reduction
from Vertex Cover to TFVS of Speckenmeyer [24] implies that, assuming the Unique Games
Conjecture (UGC) [17], TFVS cannot have an approximation algorithm with factor smaller than
2. Mnich et al. [20] state that their algorithm “gives hope that a 2-approximation algorithm, that
would be optimal under the UGC, might be achievable (for TFVS)”. In this paper we show that this is
indeed the case, by giving a (randomized) 2-approximation algorithm for TFVS. More formally, we
prove the following theorem.

Theorem 1. There exists a randomized algorithm that, given a tournament 𝐺 on 𝑛 vertices and a
weight function𝑤 on𝐺 , runs in time O(𝑛17) and outputs a feedback vertex set 𝑆 of𝐺 . With probability
at least 7/10, 𝑆 is a 2-approximate solution of (𝐺,𝑤). When the instance is unweighted, the running
time can be improved to O(𝑛12).

This algorithm can be easily de-randomized in quasi-polynomial time.

1There is a variable 0 ≤ 𝑥𝑣 ≤ 1 for every element 𝑣 and a constraint 𝑥𝑢 + 𝑥𝑣 + 𝑥𝑤 ≥ 1 for every triple {𝑢, 𝑣, 𝑤 } ∈ F. The
objective is to minimize the sum of the variables.
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Overview of algorithm. We first give a high level overview of a 2-approximation algorithm for the
unweighted case (when every vertex has weight 1). Let OPT be an optimal solution, if |OPT| ≥ 𝑛/2
then every feasible solution (such as the entire vertex set!) is a 2-approximate solution. Assuming
that |OPT| < 𝑛/2, a randomly chosen vertex 𝑝 will be not in OPT with constant probability.
Further, with constant probability such a vertex 𝑝 will be “in the middle one-third" of the unique
topological ordering of 𝐺 − OPT. In other words, with constant probability 𝑝 will have at least
(𝐺 − |OPT|)/3 ≥ 𝑛/6 in-neighbors and at least (𝐺 − |OPT|)/3 ≥ 𝑛/6 out-neighbors. Crucially,
both the number of in-neighbors and the number of out-neighbors will be at most 5𝑛/6. The idea
is now to use 𝑝 as a pivot in a “quicksort-like" procedure. This idea has been previously used in
approximating Feedback Arc Set in Tournaments (FAST), and other related problems [1]. It is
also a key component of the PTAS for FAST [16].
If there exists an arc 𝑢𝑣 from 𝑁 + (𝑝) to 𝑁 − (𝑝) then 𝑝𝑢𝑣 forms a directed triangle and hence,

since 𝑝 ∉ OPT, OPT contains either 𝑢 or 𝑣 . We put both 𝑢 and 𝑣 into the solution, delete them from
𝐺 (and OPT), and repeat as long as there are arcs from 𝑁 + (𝑝) to 𝑁 − (𝑝). Each iteration adds two
vertices to the solution while decreasing |OPT| by at least one. When the procedure terminates
there are no arcs from 𝑁 + (𝑝) to 𝑁 − (𝑝). Hence, for the purposes of 2-approximation we can assume
without loss of generality that there are no arcs from 𝑁 + (𝑝) to 𝑁 − (𝑝).

When there are no arcs from 𝑁 + (𝑝) to 𝑁 − (𝑝) the problem breaks into two independent sub-
instances. Indeed, for every solution 𝑆− to 𝐺 [𝑁 − (𝑝)] and solution 𝑆+ to 𝐺 [𝑁 + (𝑝)] we have that
𝑆− ∪ 𝑆+ is a solution to 𝐺 . To see this, take the topological order of 𝐺 [𝑁 − (𝑝)] − 𝑆−, append
𝑝 , then append the topological order of 𝐺 [𝑁 + (𝑝)] − 𝑆+ and observe that this is a topological
order of 𝐺 − (𝑆− ∪ 𝑆+). The algorithm calls itself recursively on 𝐺 [𝑁 − (𝑝)] and 𝐺 [𝑁 + (𝑝)], obtains
2-approximate solutions 𝑆− and 𝑆+ and returns 𝑆− ∪ 𝑆+ as its 2-approximate solution.
The algorithm thus makes two recursive calls to instances of size at most 5𝑛/6, leading to the

recurrence 𝑇 (𝑛) ≤ 2𝑇 (5𝑛/6) which solves to 𝑇 (𝑛) = 𝑛O(1) by the Master Theorem. This is the
entire algorithm! Of course, when formulating the recurrence above we silently assumed that
the choice of 𝑝 always succeeds, instead of succeeding with constant probability. To correct for
this it is sufficient to repeat the experiment (pick a random 𝑝 and run the algorithm recursively
on 𝐺 [𝑁 − (𝑝)] and 𝐺 [𝑁 + (𝑝)]) a constant number of times in each recursive call, leading to the
recurrence 𝑇 (𝑛) ≤ O(1) ·𝑇 (5𝑛/6), which still solves to 𝑇 (𝑛) = 𝑛O(1) .
Derandomization. The only place where the algorithm uses randomness is the choice of the pivot
𝑝 . The only properties we need from 𝑝 is that it is not in OPT, and that its indegree and outdegree
is at least 𝑛/6. We know that at least 𝑛/6 vertices of 𝐺 have these properties. The deterministic
algorithm replaces the step when 𝑝 is selected at random with a loop that tries all the 𝑛 possible
choices for 𝑝 . This leads to the recurrence 𝑇 (𝑛) ≤ 𝑛 · 2𝑇 (5𝑛/6), which solves to 𝑇 (𝑛) ≤ 𝑛O(log𝑛) .
Dealing with weights. There are two steps of the algorithm for unweighted graphs that do not
work directly also for weighted graphs. The first problem is that we can no longer deal with the
|OPT| > 𝑛/2 case by picking all the vertices into the solution (since their total weight can be more
than twice the weight of OPT). The second problem is that when we pick a pivot vertex 𝑝 and
find an arc 𝑢𝑣 from 𝑁 + (𝑝) to 𝑁 − (𝑝) we can no longer pick both 𝑢 and 𝑣 into the approximate
solution. Both problems are quite easily handled by “local ratio” arguments (Lemma 3 handles the
first problem, while Lemma 4 handles the second).

2 PRELIMINARIES
In this paper we work with directed graphs (or digraphs) that do not contain any self loops or parallel
arcs. We use𝑉 (𝐺) to denote the vertex set of a digraph𝐺 and 𝐸 (𝐺) to denote the set of arcs of𝐺 . We
use the notation 𝑢𝑣 to denote an arc from vertex 𝑢 to vertex 𝑣 in a digraph. Vertices 𝑢, 𝑣 are incident
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with arc 𝑢𝑣 . A tournament is a digraph in which there is exactly one arc between any two vertices.
The set of out-neighbors of a vertex 𝑣 in a digraph 𝐺 is defined to be 𝑁 + (𝑣) := {𝑢 | 𝑣𝑢 ∈ 𝐸 (𝐺)},
and the set of in-neighbors of 𝑣 in 𝐺 is defined to be 𝑁 − (𝑣) := {𝑢 | 𝑢𝑣 ∈ 𝐸 (𝐺)}. For an integer
ℓ ≥ 3 a directed cycle of length ℓ in a digraph 𝐺 is an alternating sequence 𝐶 = 𝑣1𝑎1𝑣2𝑎2 . . . 𝑣ℓ𝑎ℓ
where {𝑣1 . . . , 𝑣ℓ } ⊆ 𝑉 (𝐺) is a set of ℓ distinct vertices of 𝐺 and {𝑎1 . . . , 𝑎ℓ } ⊆ 𝐸 (𝐺) is a subset
of arcs of 𝐺 where 𝑎𝑖 = 𝑣𝑖𝑣𝑖+1; 1 ≤ 𝑖 < ℓ and 𝑎ℓ = 𝑣ℓ𝑣1. A digraph is acyclic if it does not contain
a directed cycle. A triangle in a digraph is a directed cycle of length three. In this paper we use
the term “triangle” exclusively to denote directed triangles. A topological sort of a digraph 𝐺 with
𝑛 vertices is a permutation 𝜋 : 𝑉 (𝐺) ↦→ [𝑛] of the vertices of the digraph such that for all arcs
𝑢𝑣 ∈ 𝐸 (𝐺), it is the case that 𝜋 (𝑢) < 𝜋 (𝑣). Such a permutation exists for a digraph 𝐺 if and only if
𝐺 is acyclic [4]. For an acyclic tournament, the topological sort is unique [4]. Deleting a vertex 𝑣
from digraph 𝐺 involves removing, from 𝐺 , the vertex 𝑣 and all those arcs in 𝐺 with which 𝑣 is
incident in 𝐺 . We use 𝐺 − 𝑣 to denote the digraph obtained by deleting a vertex 𝑣 ∈ 𝑉 (𝐺) from
digraph 𝐺 . For a vertex set 𝑆 ⊆ 𝑉 (𝐺) we use 𝐺 − 𝑆 to denote the digraph obtained from digraph 𝐺
by deleting all the vertices of 𝑆 .

A feedback vertex set (FVS) of a digraph𝐺 is a vertex set 𝑆 such that𝐺 − 𝑆 is acyclic. A vertex set
is a feasible solution if and only if it is an FVS. Given a weight function𝑤 : 𝑉 (𝐺) → N the weight
of a vertex set 𝑆 is 𝑤 (𝑆) = ∑

𝑣∈𝑆 𝑤 (𝑣). An FVS 𝑆𝑂𝑃𝑇 of 𝐺 is an optimal solution of the instance
(𝐺,𝑤) if every other FVS 𝑆 of 𝐺 satisfies𝑤 (𝑆) ≥ 𝑤 (𝑆𝑂𝑃𝑇 ). An FVS 𝑆 of 𝐺 is called 2-approximate
solution of the instance (𝐺,𝑤) if𝑤 (𝑆) ≤ 2𝑤 (𝑆𝑂𝑃𝑇 ) for an optimal solution 𝑆𝑂𝑃𝑇 of (𝐺,𝑤). An FVS
𝑆 is called 𝑝-disjoint for a vertex 𝑝 if 𝑝 ∉ 𝑆 , and further, 𝑆 is said to be an optimal 𝑝-disjoint FVS of
(𝐺,𝑤) if, for every 𝑝-disjoint solution 𝑆 ′ we have𝑤 (𝑆 ′) ≥ 𝑤 (𝑆). Note that an optimal 𝑝-disjoint
solution of (𝐺,𝑤) is not necessarily an optimal solution of (𝐺,𝑤). On the other hand if an optimal
solution 𝑆𝑂𝑃𝑇 of (𝐺,𝑤) happens to be 𝑝-disjoint then 𝑆𝑂𝑃𝑇 is also an optimal p-disjoint solution
of 𝐺 . A 𝑝-disjoint FVS 𝑆 of 𝐺 is called 2-approximate 𝑝-disjoint solution of the instance (𝐺,𝑤) if
𝑤 (𝑆) ≤ 2𝑤 (𝑆 ′) for an optimal 𝑝-disjoint solution 𝑆 ′ of (𝐺,𝑤).

In the following we will assume that 𝐺 is a tournament on 𝑛 vertices, and 𝑤 : 𝑉 (𝐺) → N is
a weight function. Furthermore, for any induced subgraph 𝐻 of 𝐺 , we assume that 𝑤 defines a
weight function, when restricted to 𝑉 (𝐻 ). We will frequently make use of the following lemma
which directly follows from the fact that acyclic digraphs are closed under vertex deletions.

Lemma 1. Let 𝑆 be an FVS of a digraph 𝐺 and let 𝑋 be a subset of the vertex set of 𝐺 . Then 𝑆 \ 𝑋 is
an FVS of the digraph 𝐺 − 𝑋 . If 𝑆★ is an optimal solution of an instance (𝐺,𝑤) of TFVS and 𝑋 is a
subset of 𝑆★ then 𝑆★ \𝑋 is an optimal solution of the instance ((𝐺 −𝑋 ),𝑤), of weight𝑤 (𝑆★) −𝑤 (𝑋 ).

We use the following lemma to prove the correctness our algorithm in the later section.

Lemma 2. Let (𝐺,𝑤) be an instance of TFVS.

(𝑖) A vertex 𝑣 ∈ 𝐺 is not part of any triangle in𝐺 if and only if every arc between a vertex in 𝑁 − (𝑣)
and a vertex in 𝑁 + (𝑣) is of the form 𝑥𝑦 ; 𝑥 ∈ 𝑁 − (𝑣), 𝑦 ∈ 𝑁 + (𝑣).

(𝑖𝑖) Let 𝑥 ∈ 𝑉 (𝐺) be a vertex which is not part of any triangle in 𝐺 . Let 𝐻𝑖𝑛 = 𝐺 [𝑁 − (𝑥)] and
𝐻𝑜𝑢𝑡 = 𝐺 [𝑁 + (𝑥)] be the subgraphs induced in 𝐺 by the in- and out-neighborhoods of vertex 𝑥 ,
respectively. A set 𝑆 is an FVS of digraph 𝐺 if and only if 𝑆 ∩𝑉 (𝐻𝑖𝑛) is an FVS of the subgraph
𝐻𝑖𝑛 and 𝑆 ∩𝑉 (𝐻𝑜𝑢𝑡 ) is an FVS of the subgraph 𝐻𝑜𝑢𝑡 .

Proof. Suppose vertex 𝑣 is not part of any triangle in𝐺 . If there is an arc 𝑠𝑡 in𝐺 where vertex 𝑠
is in the out-neighborhood 𝑁 + (𝑣) of vertex 𝑣 and vertex 𝑡 is in its in-neighborhood 𝑁 − (𝑣) then the
vertices {𝑠, 𝑣, 𝑡} form a triangle containing vertex 𝑣 , a contradiction. So every arc between vertices
𝑥 ∈ 𝑁 − (𝑣) and 𝑦 ∈ 𝑁 + (𝑣) is directed from 𝑥 to 𝑦. Conversely, if vertices {𝑣, 𝑠, 𝑡} form a triangle
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and—without loss of generality—𝑣𝑠 is an arc in 𝐺 then we have that both 𝑠𝑡 and 𝑡𝑣 are arcs in 𝐺 .
Thus 𝑠 ∈ 𝑁 + (𝑣), 𝑡 ∈ 𝑁 − (𝑣), and arc 𝑠𝑡 is not of the form 𝑥𝑦 ; 𝑥 ∈ 𝑁 − (𝑣), 𝑦 ∈ 𝑁 + (𝑣).

Now prove statement (𝑖𝑖) of the lemma. Let 𝑆 be an FVS of 𝐺 . As 𝐻𝑖𝑛 − (𝑆 ∩ 𝑉 (𝐻𝑖𝑛)) and
𝐻𝑜𝑢𝑡 − (𝑆 ∩𝑉 (𝐻𝑜𝑢𝑡 )) are subgraphs of 𝐺 − 𝑆 (which is a DAG), we have that 𝑆 ∩𝑉 (𝐻𝑖𝑛) is an FVS
of 𝐻𝑖𝑛 and 𝑆 ∩𝑉 (𝐻𝑜𝑢𝑡 ) is an FVS of 𝐻𝑜𝑢𝑡 . Now we prove the other direction. Let 𝑆 ⊆ 𝑉 (𝐺) be such
that 𝑆 ∩ 𝑉 (𝐻𝑖𝑛) is an FVS of 𝐻𝑖𝑛 and 𝑆 ∩ 𝑉 (𝐻𝑜𝑢𝑡 ) is an FVS of 𝐻𝑜𝑢𝑡 . Since 𝐻𝑖𝑛 − 𝑆 is an acyclic
tournament, there is a unique topological sort 𝑢1, . . . , 𝑢ℓ of 𝐻𝑖𝑛 − 𝑆 , where {𝑢1, . . . , 𝑢ℓ } = 𝑉 (𝐻𝑖𝑛) \ 𝑆 .
Also, since𝐻𝑜𝑢𝑡 −𝑆 is an acyclic tournament, there is a unique topological sort 𝑣1, . . . , 𝑣ℓ′ of𝐻𝑜𝑢𝑡 −𝑆 ,
where {𝑣1, . . . , 𝑣ℓ′} = 𝑉 (𝐻𝑜𝑢𝑡 ) \ 𝑆 . Since 𝑥 is not part of a triangle in 𝐺 , by statement (𝑖) of the
lemma, there is no arc from a vertex in {𝑣1, . . . , 𝑣ℓ′} to a vertex in {𝑢1, . . . , 𝑢ℓ }. This implies that
𝑢1, . . . , 𝑢ℓ , 𝑥, 𝑣1, . . . , 𝑣ℓ′ is a topological sort of 𝐺 − 𝑆 . Therefore 𝑆 is an FVS of 𝐺 . □

3 THE ALGORITHM
In this section we develop the required tools, and present an algorithm that illustrates our approach.
In the following section, we present an algorithmwith an improved running time, by fine-tuning our
approach. The algorithm will distinguish between two cases: either the optimal solution contains
many (more than some constant fraction of the) vertices, or it does not. The following lemma
handles the case when the optimal solution contains many vertices.

Lemma 3. Let (𝐺,𝑤) be an instance of TFVS where 𝐺 has 𝑛 vertices, and which has an optimal
solution 𝑆★ that contains at least 𝛼𝑛 vertices of𝐺 , where 𝛼 > 1/2 is a constant. Let 𝐷 ⊆ 𝑉 (𝐺) be a set
of 𝑛(𝛼 − 1

2 ) vertices of the smallest weight in 𝑉 (𝐺), ties broken arbitrarily, and let Δ = max𝑣∈𝐷 𝑤 (𝑣)
be the weight of the heaviest vertex in 𝐷 . Let𝑤 ′ : 𝑉 (𝐺) \𝐷 → N be the weight function which assigns
the weight 𝑤 (𝑣) − Δ to each vertex 𝑣 of 𝐺 − 𝐷 . If 𝑅𝑎𝑝𝑥 is a 2-approximate solution of the reduced
instance (𝐺 − 𝐷,𝑤 ′) then 𝑅𝑎𝑝𝑥 ∪ 𝐷 is a 2-approximate solution of the instance (𝐺,𝑤).

Proof. Let 𝑅★ be an optimum solution of the reduced instance (𝐺 − 𝐷,𝑤 ′). Then𝑤 ′(𝑅𝑎𝑝𝑥 ) ≤
2𝑤 ′(𝑅★). From Lemma 1 we get that 𝑆★ \ 𝐷 is a—not necessarily optimal—solution of the reduced
instance (𝐺 − 𝐷,𝑤 ′). Since 𝑅★ is an optimum solution of this instance we have that𝑤 ′(𝑆★ \ 𝐷) ≥
𝑤 ′(𝑅★). Since 𝑤 ′(𝑣) = (𝑤 (𝑣) − Δ) holds for each vertex 𝑣 ∈ (𝑆★ \ 𝐷) we get that 𝑤 ′(𝑆★ \ 𝐷) =
𝑤 (𝑆★ \ 𝐷) − |𝑆★ \ 𝐷 | · Δ ≤ 𝑤 (𝑆★) − |𝑆★ \ 𝐷 | · Δ. Since |𝑆★ \ 𝐷 | ≥ 𝛼𝑛 − (𝛼 − 1

2 )𝑛 = 𝑛
2 , we get that

𝑤 ′(𝑆★ \ 𝐷) ≤ 𝑤 (𝑆★) − Δ
2𝑛. Hence𝑤

′(𝑅★) ≤ 𝑤 ′(𝑆★ \ 𝐷) ≤ 𝑤 (𝑆★) − Δ
2𝑛.

Thus𝑤 ′(𝑅𝑎𝑝𝑥 ) ≤ 2𝑤 ′(𝑅★) ≤ 2𝑤 (𝑆★)−Δ𝑛. Since the set𝑅𝑎𝑝𝑥 is disjoint from the deleted set𝐷 we
have that𝑤 ′(𝑣) = 𝑤 (𝑣) −Δ holds for each vertex 𝑣 ∈ 𝑅𝑎𝑝𝑥 . Hence𝑤 (𝑅𝑎𝑝𝑥 ) = 𝑤 ′(𝑅𝑎𝑝𝑥 ) + |𝑅𝑎𝑝𝑥 | ·Δ ≤
(2𝑤 (𝑆★) − Δ𝑛) + |𝑅𝑎𝑝𝑥 | · Δ = 2𝑤 (𝑆★) − Δ(𝑛 − |𝑅𝑎𝑝𝑥 |). Since𝑤 (𝑣) ≤ Δ holds for each vertex 𝑣 ∈ 𝐷
we have that𝑤 (𝐷) ≤ |𝐷 | · Δ. Hence

𝑤 (𝑅𝑎𝑝𝑥 ∪ 𝐷) = 𝑤 (𝑅𝑎𝑝𝑥 ) +𝑤 (𝐷)
≤ 2𝑤 (𝑆★) − Δ(𝑛 − |𝑅𝑎𝑝𝑥 |) + |𝐷 | · Δ
= 2𝑤 (𝑆★) − Δ(𝑛 − |𝑅𝑎𝑝𝑥 | − |𝐷 |)
= 2𝑤 (𝑆★) − Δ(𝑛 − |𝑅𝑎𝑝𝑥 ∪ 𝐷 |)
≤ 2𝑤 (𝑆★).

Here the last inequality follows from the fact that |𝑅𝑎𝑝𝑥 ∪ 𝐷 | ≤ 𝑛 = |𝑉 (𝐺) |. □

We remark that, in Lemma 3, the instance (𝐺 −𝐷,𝑤 ′) contains at most ( 32 − 𝛼)𝑛 vertices, where
𝑛 = |𝑉 (𝐺) |. This fact will be helpful in the analysis of our algorithm. The next lemma shows
that given {𝑝,𝑢, 𝑣}, we can safely pick a lighter weight vertex of the two vertices 𝑢 and 𝑣 into a
2-approximate 𝑝-disjoint solution.
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Lemma 4. Let (𝐺,𝑤) be an instance of TFVS and 𝑝 ∈ 𝑉 (𝐺). Let {𝑢, 𝑣} be two vertices such that
(i) {𝑝,𝑢, 𝑣} form a triangle in 𝐺 , and (ii)𝑤 (𝑣) ≤ 𝑤 (𝑢). Let𝑤 ′ be the weight function defined by: (𝑎)
𝑤 ′(𝑣) = 0 ,(𝑏) 𝑤 ′(𝑢) = 𝑤 (𝑢) −𝑤 (𝑣), and (𝑐) 𝑤 ′(𝑥) = 𝑤 (𝑥) for all vertices 𝑥 ∉ {𝑢, 𝑣}. Then for every
2-approximate 𝑝-disjoint solution 𝑅𝑎𝑝𝑥 of the reduced instance (𝐺 − 𝑣,𝑤 ′), we have 𝑅𝑎𝑝𝑥 ∪ {𝑣} is a
2-approximate 𝑝-disjoint solution of the original instance (𝐺,𝑤).

Proof. Since (𝐺 − 𝑣) −𝑅𝑎𝑝𝑥 = 𝐺 − (𝑅𝑎𝑝𝑥 ∪ {𝑣}) and the former digraph is acyclic by assumption,
we get that 𝑅𝑎𝑝𝑥 ∪ {𝑣} is a FVS in the digraph 𝐺 . We will show that 𝑅𝑎𝑝𝑥 ∪ {𝑣} is a 2-approximate
𝑝-disjoint solution of (𝐺,𝑤). Since 𝑝 ∉ 𝑅𝑎𝑝𝑥 , 𝑅𝑎𝑝𝑥 ∪ {𝑣} is a 𝑝-disjoint FVS of 𝐺 . Let 𝑆★ be an
optimal 𝑝-disjoint solution of (𝐺,𝑤). Notice that 𝑆★ ∩ {𝑢, 𝑣} ≠ ∅. Now to complete the proof, it
remains to show that𝑤 (𝑅𝑎𝑝𝑥 ∪ {𝑣}) ≤ 2𝑤 (𝑆★). Let Δ = min{𝑤 (𝑢),𝑤 (𝑣)}, that is𝑤 (𝑣) = Δ. Now
we have the following.

𝑤 (𝑅𝑎𝑝𝑥 ∪ {𝑣}) ≤ 𝑤 ′(𝑅𝑎𝑝𝑥 ∪ {𝑣}) + 2Δ (since𝑤 (𝑣) = Δ and𝑤 (𝑢) = Δ +𝑤 ′(𝑢))
= 𝑤 ′(𝑅𝑎𝑝𝑥 ) + 2Δ (since𝑤 ′(𝑣) = 0)
≤ 2𝑤 ′(𝑆★ \ {𝑣}) + 2Δ (since 𝑆★ \ {𝑣} is an FVS of 𝐺 − 𝑣)
= 2𝑤 ′(𝑆★) + 2Δ (since𝑤 ′(𝑣) = 0)
= 2

(
𝑤 (𝑆★) − Δ · |𝑆★ ∩ {𝑢, 𝑣}|

)
+ 2Δ

≤ 2𝑤 (𝑆★) (since 𝑆★ ∩ {𝑢, 𝑣} ≠ ∅)

This completes the proof. □

Suppose that we have picked a pivot vertex 𝑝 that is disjoint from an optimal solution. If there is
an arc 𝑥𝑦 ∈ 𝐸 (𝐺) such that 𝑥 ∈ 𝑁 + (𝑝) \ 𝐷𝑖 and 𝑦 ∈ 𝑁 − (𝑝) \ 𝐷𝑖 then the vertices {𝑥, 𝑝,𝑦} form a
triangle in𝐺 , and so at least one of the two vertices {𝑥,𝑦} must be present in the solution 𝑆★. Let 𝑣
be a vertex of the least weight among {𝑥,𝑦}, ties broken arbitrarily, and let 𝑢 be the other vertex.
Then Lemma 4 applies to the tuple {(𝐺,𝑤), 𝑝, {𝑢, 𝑣}}.

Procedure Reduce(𝐺,𝑤, 𝑝) of Algorithm 1 applies Lemma 4 exhaustively until there are no arcs
from 𝑁 + (𝑝) to 𝑁 − (𝑝): It starts by setting 𝐷0 = ∅, 𝑤0 = 𝑤 , and 𝑖 = 0. As long as there is an arc
𝑥𝑦 ∈ 𝐸 (𝐺) such that 𝑥 ∈ 𝑁 + (𝑝) \ 𝐷𝑖 and 𝑦 ∈ 𝑁 − (𝑝) \ 𝐷𝑖 it finds vertices {𝑢, 𝑣} as described in the
previous paragraph and computes a weight function𝑤 ′ as specified in Lemma 4 as applied to the
collection {(𝐺,𝑤), 𝑝, {𝑢, 𝑣}}. It sets 𝑤𝑖+1 = 𝑤 ′, 𝐷𝑖+1 = 𝐷𝑖 ∪ {𝑣}, increments 𝑖 by one, and repeats.
When no such arc 𝑥𝑦 exists the procedure outputs the set 𝐷 = 𝐷𝑖 and the weight function �̃� = 𝑤𝑖 .

Our next lemma states that procedure Reduce runs in polynomial time and correctly outputs a
reduced instance. Recall that for an instance (𝐺,𝑤) of TFVS and a vertex 𝑝 ∈ 𝑉 (𝐺), a 𝑝-disjoint
solution of (𝐺,𝑤) is an FVS of 𝐺 which does not contain vertex 𝑝 .

Lemma 5. Let (𝐺,𝑤) be an instance of TFVS and 𝑝 ∈ 𝑉 (𝐺). When given (𝐺,𝑤, 𝑝) as input, the
procedure Reduce runs in O(|𝑉 (𝐺) |2) time and outputs a vertex set 𝐷 ⊆ (𝑉 (𝐺) \ {𝑝}) and a weight
function �̃� with the following properties:

(𝑖) there are no arcs from 𝑁 + (𝑝) to 𝑁 − (𝑝) in digraph 𝐺 − 𝐷 , and
(𝑖𝑖) for every 2-approximate 𝑝-disjoint solution 𝑆 of (𝐺 − 𝐷, �̃�), the set 𝑆 ∪ 𝐷 is a 2-approximate

𝑝-disjoint solution of (𝐺,𝑤).

Proof. The check on line 3 of Algorithm 1 fails if and only if there are no arcs from 𝑁 + (𝑝)
to 𝑁 − (𝑝) in the digraph 𝐺 − 𝐷𝑖 for the value of 𝑖 at that point. Since the assignment of 𝐷𝑖 to 𝐷

on line 13 happens only if this check fails, we get that there are no arcs from 𝑁 + (𝑝) to 𝑁 − (𝑝) in
the digraph 𝐺 − 𝐷 . Let 𝑆 be a 2-approximate 𝑝-disjoint solution of (𝐺 − 𝐷, �̃�). Then by a simple
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Algorithm 1 The reduction procedure.
1: procedure Reduce(𝐺,𝑤, 𝑝 )
2: 𝐷0 ← ∅;𝑤0 ← 𝑤 ; 𝑖 ← 0
3: while 𝐺 has an arc 𝑥𝑦 ; 𝑥 ∈ (𝑁 + (𝑝) \ 𝐷𝑖 ), 𝑦 ∈ (𝑁 − (𝑝) \ 𝐷𝑖 ) do
4: if 𝑤𝑖 (𝑥) ≤ 𝑤𝑖 (𝑦) then ⊲ definition of the vertices 𝑢 and 𝑣
5: 𝑣 ← 𝑥 ; 𝑢 ← 𝑦

6: else
7: 𝑣 ← 𝑦; 𝑢 ← 𝑥

8: 𝑤𝑖 (𝑢) ← 𝑤𝑖 (𝑢) −𝑤𝑖 (𝑣)
9: 𝑤𝑖 (𝑣) ← 0
10: 𝑤𝑖+1 ← 𝑤𝑖 ⊲ 𝑤𝑖+1 is now the weight function𝑤 ′ from the discussion
11: 𝐷𝑖+1 ← 𝐷𝑖 ∪ {𝑣}
12: 𝑖 ← 𝑖 + 1
13: 𝐷 ← 𝐷𝑖 ; �̃� ← 𝑤𝑖

14: return (𝐷, �̃�)

induction on the number of iterations and Lemma 4, we obtain that 𝑆 ∪ 𝐷 is a 2-approximate
𝑝-disjoint solution of (𝐺,𝑤).
To complete the proof we show that procedure Reduce runs in O(𝑛2) time where 𝑛 = |𝑉 (𝐺) |.

Let 𝑉 (𝐺) = {𝑣1, . . . , 𝑣𝑛}. We assume that graph 𝐺 is given as its 𝑛 × 𝑛 adjacency matrix𝑀𝐺 where
𝑀𝐺 [𝑖, 𝑗] = 1 if 𝑣𝑖𝑣 𝑗 is an arc in 𝐺 and 𝑀𝐺 [𝑖, 𝑗] = 0 otherwise. We assume also that the weight
function𝑤 is given as a 1 × 𝑛 array where𝑤 [𝑖] stores the weight of vertex 𝑣𝑖 .
We compute the two neighborhoods 𝑁 − (𝑝) and 𝑁 + (𝑝) of the pivot vertex 𝑝 by scanning the

entries of the row 𝑀𝐺 [𝑝]; vertex 𝑣𝑖 ∈ 𝑁 + (𝑝) if 𝑀𝐺 [𝑝, 𝑖] = 1, and 𝑣𝑖 ∈ 𝑁 − (𝑝) if 𝑣𝑖 ≠ 𝑝 and
𝑀𝐺 [𝑝, 𝑖] = 0. This takes O(𝑛) time. Let 𝑑𝑖𝑛 = |𝑁 − (𝑝) |, 𝑑𝑜𝑢𝑡 = |𝑁 + (𝑝) | be the in- and out-degrees of
vertex 𝑝 .We construct a𝑑𝑜𝑢𝑡×𝑑𝑖𝑛 arrayA to store the neighborhood relation between the sets𝑁 + (𝑝)
and 𝑁 − (𝑝), and a 1×𝑑𝑜𝑢𝑡 array𝑂𝐷 to store the out-degrees of vertices in 𝑁 + (𝑝) into the set 𝑁 − (𝑝).
We initialize all entries ofA and𝑂𝐷 to zeroes. Now for each pair of vertices 𝑣𝑖 ∈ 𝑁 + (𝑝), 𝑣 𝑗 ∈ 𝑁 − (𝑝)
we increment the entries A[𝑖, 𝑗] and 𝑂𝐷 [𝑖] by 1 each if and only if 𝑀𝐺 [𝑖, 𝑗] = 1. Once this is
done the cell 𝑂𝐷 [𝑖] holds the number of out-neighbors of vertex 𝑣𝑖 ∈ 𝑁 + (𝑝) in the set 𝑁 − (𝑝),
and A[𝑖, 𝑗] = 1 if and only if 𝑣𝑖𝑣 𝑗 is an arc in 𝐺 for vertices 𝑣𝑖 ∈ 𝑁 + (𝑝), 𝑣 𝑗 ∈ 𝑁 − (𝑝). Since
|𝑁 + (𝑝) | + |𝑁 − (𝑝) | = (𝑛 − 1) all this can be done in O(𝑛2) time.
To execute the test on line 3 of Algorithm 1 we scan the list 𝑂𝐷 for a non-zero entry. If all

entries of 𝑂𝐷 are zeros then there is no arc 𝑥𝑦 of the specified form and the test returns False. If
𝑂𝐷 [𝑖] > 0 for some 𝑖 then we scan the row A[𝑖] to find an index 𝑗 such that A[𝑖, 𝑗] = 1. Then
𝑥 = 𝑣𝑖 , 𝑦 = 𝑣 𝑗 is a pair of vertices which satisfy the test. We use these vertices to execute lines 4
to 10 of the procedure. We effect the addition of vertex 𝑣 to the set 𝐷𝑖+1 on line 11 as follows: If
𝑣 = 𝑥 = 𝑣𝑖 ∈ 𝑁 + (𝑝) then we set 𝑂𝐷 [𝑖] = 0 and A[𝑖, 𝑗] = 0 ; 1 ≤ 𝑗 ≤ 𝑑𝑖𝑛 . If 𝑣 = 𝑦 = 𝑣 𝑗 ∈ 𝑁 − (𝑝)
then for each 1 ≤ 𝑖 ≤ 𝑑𝑜𝑢𝑡 such that A[𝑖, 𝑗] = 1, we decrement the cells 𝑂𝐷 [𝑖] and A[𝑖, 𝑗] by 1.
Each line of Algorithm 1, except for line 11, takes constant time. Line 11—as described above—

takes O(𝑛) time. Each execution of line 11 takes either a row or a column ofA which has non-zero
entries and sets all these entries to zero. Since the algorithm does not increment these entries in the
loop, we get that the while loop of lines 3 to 12 is executed at most |𝑁 + (𝑝) | + |𝑁 − (𝑝) | = (𝑛 − 1)
times. Thus the entire procedure runs in O(𝑛2) time. □

Combining Lemma 1, Lemma 2, and Lemma 5 we get
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Corollary 1. On input (𝐺,𝑤, 𝑝) the procedure Reduce runs in O(𝑛2) time and outputs a vertex
set 𝐷 ⊆ 𝑉 (𝐺) \ {𝑝} and a weight function �̃� such that for every FVS 𝑆− of 𝐺 [𝑁 − (𝑝) \ 𝐷] and every
FVS 𝑆+ of 𝐺 [𝑁 + (𝑝) \ 𝐷], we have that 𝑆− ∪ 𝑆+ ∪ 𝐷 is a 𝑝-disjoint FVS of 𝐺 .
Further, if 𝑆− is a 2-approximate solution of (𝐺 [𝑁 − (𝑝) \ 𝐷], �̃�) and 𝑆+ is 2-approximate solution

of (𝐺 [𝑁 + (𝑝) \ 𝐷], �̃�) then 𝑆− ∪ 𝑆+ ∪ 𝐷 is a 2-approximate 𝑝-disjoint solution of (𝐺,𝑤).

Proof. The running time of procedure Reduce follows from Lemma 5. Let 𝑆− be an FVS of
𝐺 [𝑁 − (𝑝) \ 𝐷] and 𝑆+ be an FVS of 𝐺 [𝑁 + (𝑝) \ 𝐷]. By Lemma 5, there are no arcs from 𝑁 + (𝑝) to
𝑁 − (𝑝) in digraph 𝐺 − 𝐷 . Then by statement (𝑖) of Lemma 2, 𝑝 is not part of any triangle in 𝐺 − 𝐷 .
Thus, by statement (𝑖𝑖) of Lemma 2, 𝑆−∪𝑆+ is an FVS of𝐺 −𝐷 . Therefore, by Lemma 1, 𝑆−∪𝑆+∪𝐷
is an FVS of 𝐺 . Moreover, since 𝑝 ∉ 𝑆− ∪ 𝑆+ ∪ 𝐷 , it is a 𝑝-disjoint FVS of 𝐺 .

Suppose 𝑆− is a 2-approximate solution of (𝐺 [𝑁 − (𝑝) \𝐷], �̃�) and 𝑆+ is a 2-approximate solution
of (𝐺 [𝑁 + (𝑝) \𝐷], �̃�). Nowwe claim that 𝑆−∪𝑆+ is a 2-approximate 𝑝-disjoint solution of (𝐺−𝐷, �̃�).
Let 𝑅− and 𝑅+ be optimal solutions of (𝐺 [𝑁 − (𝑝) \ 𝐷], �̃�) and (𝐺 [𝑁 + (𝑝) \ 𝐷], �̃�), respectively.
Then we claim that 𝑅− ∪ 𝑅+ is an optimal 𝑝-disjoint solution of (𝐺 − 𝐷, �̃�). By statement (𝑖𝑖) of
Lemma 2, 𝑅− ∪ 𝑅+ is an FVS of 𝐺 − 𝐷 and clearly it does not contain 𝑝 . Suppose 𝑅− ∪ 𝑅+ is not an
optimal 𝑝-disjoint solution of (𝐺 −𝐷, �̃�). Let 𝑅★ be an optimal 𝑝-disjoint solution of (𝐺 −𝐷, �̃�) and
�̃� (𝑅★) < �̃� (𝑅−∪𝑅+). Then, either �̃� (𝑅★∩ (𝑁 − (𝑝) \𝐷)) < �̃� (𝑅−) or �̃� (𝑅★∩ (𝑁 + (𝑝) \𝐷)) < �̃� (𝑅+).
Consider the case when �̃� (𝑅★ ∩ (𝑁 − (𝑝) \ 𝐷)) < �̃� (𝑅−). By Lemma 2, 𝑅★ ∩ (𝑁 − (𝑝) \ 𝐷) is an
FVS of 𝐺 [𝑁 + (𝑝) \ 𝐷]. But this contradicts the assumption that 𝑅− is an optimal solution of
(𝐺 [𝑁 − (𝑝) \ 𝐷], �̃�). The same arguments apply to the case when �̃� (𝑅★ ∩ (𝑁 + (𝑝) \ 𝐷)) < �̃� (𝑅+).
Therefore 𝑅− ∪ 𝑅+ is an optimal 𝑝-disjoint solution of (𝐺 − 𝐷, �̃�). Since 𝑆− is a 2-approximate
solution of (𝐺 [𝑁 − (𝑝) \ 𝐷], �̃�) and 𝑆+ is a 2-approximate solution of (𝐺 [𝑁 + (𝑝) \ 𝐷], �̃�), we have
that �̃� (𝑆− ∪ 𝑆+) = �̃� (𝑆−) + �̃� (𝑆+) ≤ 2(�̃� (𝑅−) + �̃� (𝑅+)) ≤ 2�̃� (𝑅− ∪ 𝑅+). Hence, 𝑆− ∪ 𝑆+ is a
2-approximate 𝑝-disjoint solution of (𝐺 −𝐷, �̃�). Then by Lemma 5, 𝑆− ∪ 𝑆+ ∪𝐷 is a 2-approximate
𝑝-disjoint solution of (𝐺,𝑤). This completes the proof of the corollary. □

We are now ready to prove the following theorem.

Theorem 2. There exists a randomized algorithm that, given a tournament 𝐺 on 𝑛 vertices and a
weight function𝑤 on𝐺 , runs in time O(𝑛34) and outputs a feedback vertex set 𝑆 of𝐺 . With probability
at least 1/2, 𝑆 is a 2-approximate solution of (𝐺,𝑤).

Proof. We first describe the algorithm. On input (𝐺,𝑤), if𝐺 has at most 10 vertices the algorithm
finds an optimal solution by exhaustively enumerating and comparing all potential solutions.
Otherwise the algorithm iteratively computes at most 26 solutions of (𝐺,𝑤) by making recursive
calls. It then outputs the least weight FVS among them. We now describe the iterations and the
recursive calls. Let us index the iteration by 𝑖 ∈ {0, 1, . . . , 25}.
The first iteration is different from the other 25 iterations. In this iteration, the algorithm sets

𝐷 ⊆ 𝑉 (𝐺) to be the set of the 𝑛
6 vertices of smallest weight in 𝑉 (𝐺) and Δ = max𝑣∈𝐷 𝑤 (𝑣). Let

𝑤 ′ : 𝑉 (𝐺) \ 𝐷 → N be the weight function which assigns the weight𝑤 (𝑣) − Δ to each vertex 𝑣 of
𝐺 − 𝐷 . The algorithm calls itself recursively on (𝐺 − 𝐷,𝑤 ′). The recursive call returns an FVS 𝑆 of
𝐺 − 𝐷 , the algorithm constructs the FVS 𝑆0 = 𝑆 ∪ 𝐷 of 𝐺 .

We do the remaining 25 iterations only when the set {𝑣 : 𝑁 + (𝑣) ≤ 8𝑛/9, 𝑁 − (𝑣) ≤ 8𝑛/9} is
non-empty. For each of these 25 iterations (which we index by 𝑖 ∈ {1, 2, . . . , 25}), the algorithm
picks a vertex 𝑝𝑖 uniformly at random from the set of vertices {𝑣 : 𝑁 + (𝑣) ≤ 8𝑛/9, 𝑁 − (𝑣) ≤ 8𝑛/9};
𝑝𝑖 is the pivot vertex for the 𝑖-th iteration. For each 𝑝𝑖 the algorithm runs the procedure Reduce on
𝐺 , 𝑝𝑖 , and𝑤 and obtains a set 𝐷𝑖 and a weight function �̃�𝑖 . It then makes two recursive calls, one
on (𝐺 [𝑁 − (𝑝𝑖 ) \ 𝐷𝑖 ], �̃�𝑖 ), and the other on (𝐺 [𝑁 + (𝑝𝑖 ) \ 𝐷𝑖 ], �̃�𝑖 ). Let the sets returned by the two
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recursive calls be 𝑆−𝑖 and 𝑆+𝑖 respectively. The algorithm constructs the set 𝑆𝑖 = 𝑆−𝑖 ∪ 𝑆+𝑖 ∪ 𝐷𝑖 as the
FVS of G corresponding to 𝑖 .

Finally, the algorithm outputs the minimum weight 𝑆𝑖 , where the minimum is taken over 0 ≤ 𝑖 ≤
25 as the solution. The algorithm terminates within the claimed running time, since the running
time is governed by the recurrence 𝑇 (𝑛) ≤ 26 · 𝑇 (8𝑛/9) + 25 · 𝑇 (𝑛/2) + O(𝑛2) which solves to
𝑇 (𝑛) = O(𝑛38) by the Master theorem [8]. Here we rely on the fact that for each pivot-vertex 𝑣 , the
two recursive calls made on subgraphs induced by 𝑁 + (𝑣) and 𝑁 − (𝑣) which are disjoint, and hence
one of them has size at most 𝑛/2. We now prove that in each iteration, the constructed solution 𝑆𝑖
is indeed an FVS of𝐺 , and that the same holds for the solution returned by the algorithm. We apply
an induction on the number of vertices in 𝐺 . For 𝑛 ≤ 10 there are no recursive calls made, and the
returned solution is an optimal solution, since it is computed by brute force. For 𝑛 > 10 the returned
solution is one of the 𝑆𝑖 ’s and so it is sufficient to prove that all 𝑆𝑖 ’s are in fact feedback vertex sets of
𝐺 . For 𝑆𝑖 , 𝑖 ≥ 1 this follows from Corollary 1 and the induction hypothesis. And for 𝑖 = 0, we know
that 𝑆0 = 𝑆 ∪ 𝐷 and 𝑆 is a vertex subset returned by the recursive call for the instance (𝐺 − 𝐷,𝑤 ′),
which is also an FVS of 𝐺 − 𝐷 , by the induction hypothesis. Since 𝐺 − 𝑆0 = ((𝐺 − 𝐷) − 𝑆) and 𝑆 is
an FVS of (𝐺 − 𝐷), clearly 𝑆0 is an FVS of 𝐺 .
Finally, will show that with probability at least 1/2, the algorithm outputs a 2-approximate

solution of (𝐺,𝑤). We prove this by induction on 𝑛, the number of vertices in 𝐺 . Suppose that 𝑆𝑖 is
of the least weight among 𝑆0, 𝑆1, . . . , 𝑆25, for some 𝑖 ∈ {0, 2, . . . 25}, which is output by the algorithm.
For 𝑛 ≤ 10 the returned solution is optimal, so assume 𝑛 > 10. Let 𝑆𝑂𝑃𝑇 be an optimal solution for
(𝐺,𝑤). We distinguish between two cases, either |𝑆𝑂𝑃𝑇 | ≥ 2𝑛/3 or |𝑆𝑂𝑃𝑇 | < 2𝑛/3. By the induction
hypothesis the first iteration, the recursive call on (𝐺 − 𝐷,𝑤 ′) returns a 2-approximate solution 𝑆

for (𝐺 − 𝐷,𝑤 ′) with probability at least 1/2. If |𝑆𝑂𝑃𝑇 | ≥ 2𝑛/3 then it follows from Lemma 3 (with
𝛼 = 2/3) that 𝑆𝑖 for 𝑖 = 0, is a 2-approximate solution for (𝐺,𝑤).

Suppose now that |𝑆𝑂𝑃𝑇 | < 2𝑛/3. We will argue that in each of the 25 remaining iterations the
probability that 𝑝𝑖 ∉ 𝑆𝑂𝑃𝑇 is at least 1/9. Indeed, 𝐺 − 𝑆𝑂𝑃𝑇 is an acyclic tournament on at least
𝑛/3 vertices. Let 𝑅 be the set of vertices in 𝑉 (𝐺) \ 𝑆𝑂𝑃𝑇 excluding the first ⌊𝑛/9⌋ vertices and
the last ⌊𝑛/9⌋ vertices in the unique topological order of the acyclic tournament 𝐺 − 𝑆𝑂𝑃𝑇 . For
each vertex 𝑣 in 𝑅 it holds that |𝑁 + (𝑣) | ≤ 𝑛 − ⌊𝑛/9⌋ − 1 ≤ 8𝑛/9 and similarly |𝑁 − (𝑣) | ≤ 8𝑛/9, i.e.
𝑅 ⊆ {𝑣 : |𝑁 + (𝑣) | ≤ 8𝑛/9, |𝑁 − (𝑣) | ≤ 8𝑛/9}. Furthermore, |𝑅 | ≥ 𝑛/9 since |𝑉 (𝐺) \ 𝑆𝑂𝑃𝑇 | ≥ 𝑛/3.
Hence, when we pick a random vertex 𝑝𝑖 among all vertices with in-degree and out-degree at most
8𝑛/9 we have that with probability at least 1/9 the vertex 𝑝𝑖 is in 𝑅, and therefore not in 𝑆𝑂𝑃𝑇 .
We shall say that an iteration 𝑖 with 𝑖 ≥ 1 is good if 𝑝𝑖 ∉ 𝑆𝑂𝑃𝑇 and the two solutions 𝑆−𝑖

and 𝑆+𝑖 returned from the recursive calls on (𝐺 [𝑁 − (𝑝𝑖 ) \ 𝐷𝑖 ], �̃�𝑖 ) and (𝐺 [𝑁 + (𝑝𝑖 ) \ 𝐷𝑖 ], �̃�𝑖 ), are
2-approximate for their respective instances. Since 𝑝𝑖 ∉ 𝑆𝑂𝑃𝑇 with probability at least 1/9, and
each of 𝑆−𝑖 and 𝑆+𝑖 are 2-approximate with probability at least 1/2 (by the induction hypothesis), it
follows that this iteration is good with probability at least 1/9 · 1/2 · 1/2 ≥ 1/36. Therefore, with
probability at least

1 − (1 − 1/36)25 ≥ 1/2

there is at least one iteration 𝑖 which is good. For this iteration it follows from Corollary 1 that
𝑆𝑖 = 𝐷𝑖 ∪ 𝑆+𝑖 ∪ 𝑆−𝑖 is 2-approximate 𝑝𝑖 -disjoint solution of (𝐺,𝑤). Moreover, since 𝑝𝑖 ∉ 𝑆𝑂𝑃𝑇 , 𝑆𝑂𝑃𝑇

is also an optimal 𝑝𝑖 -disjoint solution of (𝐺,𝑤). Hence𝑤 (𝑆𝑖 ) ≤ 2𝑤 (𝑆𝑂𝑃𝑇 ). Therefore the solution
output by the algorithm is a 2-approximate solution with probability at least 1/2. This concludes
the proof. □
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3.1 Deterministic 2-approximation in quasi-polynomial time.
We can easily derandomize the above algorithm in quasi-polynomial time. Instead of randomly
selecting the pivots 𝑝𝑖 , we iterate over all the candidates in {𝑣 : 𝑁 + (𝑣) ≤ 8𝑛/9, 𝑁 − (𝑣) ≤ 8𝑛/9}.
The correctness of this algorithm follows from the same arguments as above, and we obtain a
deterministic 2-approximation algorithm for TFVS. To bound the running time, observe that the
number of recursive calls will be at most 2𝑛 + 1. Thus the running time of the algorithm will be
governed by the recurrence 𝑇 (𝑛) ≤ (2𝑛 + 1) · 𝑇 (8𝑛/9) + O(𝑛2) which solves to 𝑇 (𝑛) = 𝑛O(log𝑛) .
Thus we get the following theorem.

Theorem 1. There exists an algorithm that given an instance (𝐺,𝑤) of TFVS on 𝑛 vertices, runs in
time 𝑛O(log𝑛) and outputs a 2-approximate solution of (𝐺,𝑤).

4 IMPROVING THE RUNNING TIME
In this section, we present an improved implementation of the approximation algorithm in Theo-
rem 2, that attains a running time of O(𝑛17) for general weighted instances. This running time can
be further improved to O(𝑛12) for unweighted instances.

Theorem 3. There exists a randomized algorithm that, given a tournament 𝐺 on 𝑛 vertices and
a weight function 𝑣 on 𝑉 (𝐺), runs in time O(𝑛17) and outputs a feedback vertex set 𝑆 of 𝐺 . With
probability at least 7/10, 𝑆 is a 2-approximate solution of (𝐺,𝑤).

Proof. Our algorithm is identical to the one presented in the proof of Theorem 2 with a few
updated parameters and an improved running time analysis. Let us fix an optimum solution 𝑆★ to
(𝐺,𝑤). In particular, the following parameters of the algorithm are carefully chosen.
• Let 𝑟 ≥ 1/2 denote the minimum probability of the event where our algorithm finds a 2-
approximate solution. Observe that 𝑟 is a lower-bound on the probability of success for any
recursive calls made by the algorithm. Note that in Theorem 2, we set 𝑟 = 1/2.
• Let 𝛼 ∈ (1/2, 1) denote the threshold on the cardinality of 𝑆★ beyond which it is considered
large. That is, if |𝑆★ | ≥ 𝛼𝑛, then we apply Lemma 3, and then recursively solve an instance
on ( 32 − 𝛼)𝑛 vertices in the (special) first iteration of the algorithm. Recall that in Theorem 2,
we set 𝛼 = 2/3, and then recursively solved an instance on 5𝑛/6 vertices in the first iteration.
• Let 𝛽 ∈ (0, 1) denote the fraction of vertices in 𝐺 − 𝑆★ that are suitable candidates for
the pivot vertex (from the second iteration onward), where 𝑆★ is an optimum solution
of (𝐺,𝑤). Let 𝑅★ ⊆ 𝑉 (𝐺) \ 𝑆★ denote this subset of vertices. Note that, if |𝑆★ | < 𝛼𝑛, then
|𝑉 (𝐺)\𝑆★ | ≥ (1−𝛼)𝑛 and |𝑅★ | ≥ 𝛽 (1−𝛼)𝑛. Now,𝐺−𝑆★ is an acyclic tournamentwith a unique
topological order, and let us define 𝑅★ to be the subset of vertices of𝐺 − 𝑆★ containing all but
the first (1−𝛼) (1−𝛽)2 𝑛 and last (1−𝛼) (1−𝛽)2 𝑛 vertices in this topological order. Therefore, for any
𝑣 ∈ 𝑅, |𝑁 + (𝑣) |, |𝑁 − (𝑣) | ≥ (1−𝛼) (1−𝛽)2 𝑛, which implies that |𝑁 + (𝑣) |, |𝑁 − (𝑣) | ≤ (1− (1−𝛼) (1−𝛽)2 )𝑛
for any vertex 𝑣 ∈ 𝑅. Recall that we set 𝛽 = 1/3 in Theorem 2.
• Finally, let 𝑘 denote the number of iterations in our algorithm, and it will be chosen to ensure
that we compute a 2-approximate solution to (𝐺,𝑤) with probability at least 𝑟 . In Theorem 2,
this was set to 26, which includes the special first iteration where only one recursive call is
made, and the remaining 25 iterations where two recursive calls are made.

Let us now describe howwe arrive at our choice of 𝑘 , given 𝑟 , 𝛼 and 𝛽 . The first iteration considers
the case when |𝑆★ | ≥ 𝛼𝑛. In the remaining 𝑘 − 1 iterations we assume that |𝑆★ | ≤ 𝛼𝑛. Recall that in
each of the last 𝑘 −1 iterations we attempt to obtain a vertex 𝑣 ∈ 𝑅★ as the pivot vertex, by sampling
a vertex uniformly at random. The probability of success is at least |𝑅★ |/𝑛 ≥ (1 − 𝛼)𝛽 .2 We can
2In Theorem 2 for 𝛼 = 2/3, 𝛽 = 1/3 and 𝑟 = 1/2, this probability is at least 1/9.
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improve this probability by slightly adjusting the sampling process and its analysis as follows.
First, observe that we only require the following two properties of a pivot vertex 𝑣 : (𝑖) 𝑣 ∉ 𝑆★

and (𝑖𝑖) |𝑁 + (𝑣) |, |𝑁 − (𝑣) | ≤ (1 − (1−𝛼) (1−𝛽)2 )𝑛. Therefore, let 𝑅𝛼,𝛽 denote the subset of vertices in
𝐺 with |𝑁 + (𝑣) |, |𝑁 − (𝑣) | ≤ (1 − (1−𝛼) (1−𝛽)2 )𝑛, and let 𝑅 = 𝑅𝛼,𝛽 \ 𝑆★. Observe that any vertex in 𝑅 is
a suitable pivot vertex. Further note that 𝑅★ ⊆ 𝑅 ⊆ 𝑅𝛼,𝛽 . Let 𝑣 be a vertex sampled uniformly at
random from 𝑅𝛼,𝛽 . We claim that 𝑣 ∈ 𝑅 with probability at least (1−𝛼)𝛽

𝛼+(1−𝛼)𝛽 . Indeed, let 𝑍 = 𝑅 \ 𝑅★
and let |𝑅★ | = ((1 − 𝛼)𝛽 + 𝛾)𝑛 for some 𝛾 ≥ 0, and then we have,

𝑃𝑟𝑣∼𝑅𝛼,𝛽
[𝑣 ∈ 𝑅] = |𝑅 |/|𝑅𝛼,𝛽 |

≥ |𝑅 |/|𝑆★ ∪ 𝑅𝛼,𝛽 |

=
|𝑅★ | + |𝑍 |

|𝑆★ | + |𝑅★ | + |𝑍 |

≥ |𝑅★ |
|𝑆★ | + |𝑅★ |

=
(1 − 𝛼)𝛽 + 𝛾

𝛼 + (1 − 𝛼)𝛽 + 𝛾

≥ (1 − 𝛼)𝛽
𝛼 + (1 − 𝛼)𝛽

In the above, we have used the fact 𝑎+𝑐
𝑏+𝑐 ≥

𝑎
𝑏
whenever 𝑎 ≤ 𝑏 and 𝑎, 𝑏, 𝑐 ≥ 0.

Recall that in our algorithm, from the second iteration onward, we first sample a pivot vertex
𝑣 . Then we apply procedure Reduce to 𝐺, 𝑣, 𝑝 to obtain 𝐷 ⊆ 𝑉 (𝐺) and a weight function𝑤 ′. We
then recursively solve two sub-instances (𝐺1,𝑤

′) and (𝐺2,𝑤
′), where 𝑉 (𝐺1) = 𝑁 + (𝑣) \ 𝐷 and

𝑉 (𝐺2) = 𝑁 − (𝑣)\𝐷 . These recursive calls produce solutions 𝑆1 and 𝑆2, and we produce 𝑆 = 𝐷∪𝑆1∪𝑆2
as an approximate solution to (𝐺,𝑤), in this iteration. Let us compute the probability that this
iteration succeeds, i.e., the probability that 𝑆 a 2-approximate solution. This is equal to the probability
that 𝑣 ∈ 𝑅 and then the two recursive calls also compute 2-approximate solutions to (𝐺1,𝑤

′) and
(𝐺2,𝑤

′), respectively. Hence the probability that one iteration succeeds is at least 𝑟 2 (1−𝛼)𝛽
𝛼+(1−𝛼)𝛽 . We

need to boost this probability to at least 𝑟 , and for this we have 𝑘 − 1 such iterations. We choose
the smallest value of 𝑘 which satisfies the following inequality:(

1 − 𝑟 2 (1 − 𝛼)𝛽
𝛼 + (1 − 𝛼)𝛽

)𝑘−1
≤ 1 − 𝑟

Given 𝑟, 𝛼 and 𝛽 we solve the above equation to compute the number of iterations 𝑘 ; which ensures
that we compute a 2-approximate solution to (𝐺,𝑤) with probability at least 𝑟 .
Next, let us compute the running time. Observe that in the first iteration, which considers the

case when |𝑆★ | ≥ 𝛼𝑛, we apply Lemma 3 and recursively solve an instance with at most ( 32 − 𝛼)𝑛
vertices. In the remaining 𝑘 − 1 instances, we make two recursive calls, on graphs with at most
(1 − (1−𝛼) (1−𝛽)2 )𝑛 vertices. Further, note that the two instances have no common vertices. Hence,
we can say that the recursive calls are made on two instance with 𝛿𝑛 and (1− 𝛿)𝑛 vertices for some
1/2 ≤ 𝛿 ≤ 2−(1−𝛼) (1−𝛽)

2 . Observe that 𝛿 ≥ 1/2 and 1 − 𝛿 ≤ 1/2, and hence we make two recursive
calls on instances with at most 2−(1−𝛼) (1−𝛽)

2 𝑛 vertices, and 𝑛
2 vertices respectively. Therefore the

running time of our algorithm is:

𝑇 (𝑛) ≤ 𝑇 (( 32 − 𝛼)𝑛) + (𝑘 − 1)𝑇 (
2 − (1 − 𝛼) (1 − 𝛽)

2 𝑛) + (𝑘 − 1)𝑇 (𝑛2 ) + O(𝑛
2)
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Here, the term O(𝑛2) denotes the time spent by the algorithm in processing the current instance and
preparing the sub-instances for the recursive calls (i.e in Lemma 3 and Corollary 1). In Theorem 2,
we simplified and solved the above recurrence using the Master Theorem, which yielded a running
time of O(𝑛34). Here, we apply the Akra-Bazzi method [2] to solve the above equation, which yields
the following bound:

𝑇 (𝑛) ≤ Θ(𝑛𝑝
(
1 +

∫ 𝑛

1

𝑥2

𝑥𝑝+1
𝑑𝑥

)
)

where 𝑝 satisfies

( 32 − 𝛼)
𝑝 + (𝑘 − 1)

( (1 − 𝛼) (1 − 𝛽)
2

)𝑝 + (𝑘 − 1) ( 12 )𝑝 = 1

This leads to a running time of O(𝑛𝑝 ), assuming 𝑝 ≥ 3.
It can be determined that when we set 𝛼 = 0.55, 𝛽 = 0.1855 and 𝑟 = 0.715, we have 𝑘 = 19

iterations and 𝑝 ∼ 16.9. Hence the running time of the algorithm is O(𝑛17).3 Since the probability
of finding a 2-approximate solution to (𝐺,𝑤), denoted by 𝑟 , is more than 7/10, we have the claimed
result. □

Next, we present an improved running time for unweighted instances.

Theorem 4. There exists a randomized algorithm that, given a tournament 𝐺 on 𝑛 vertices, runs
in time O(𝑛12) and outputs a feedback vertex set 𝑆 of 𝐺 . With probability at least 8/10, 𝑆 is a 2-
approximate solution of 𝐺 .

Proof. Our algorithm and analysis is nearly the same as in Theorem 3. The main change is
in the choice of the parameter 𝛼 , which denotes the threshold at which 𝑆★ is considered large.
In particular, we set 𝛼 = 1

2 . This corresponds to the case where there is an optimum solution 𝑆★

that contains at least half of the vertices of𝐺 , and hence 𝑉 (𝐺) itself is a 2-approximate solution.
Therefore, for 𝛼 = 1

2 , the first iteration of our algorithm doesn’t lead to a recursive call. In the
remaining iterations, our algorithm is the same as in Theorem 4; here it is helpful to assume that
there is a weight function𝑤 that gives weight 1 to every vertex. From 𝛼 , 𝛽 and 𝑟 we determine the
number of iterations 𝑘 , and then bound the running time of our algorithm as:

𝑇 (𝑛) ≤ (𝑘 − 1)𝑇 ( 2 − (1 − 𝛼) (1 − 𝛽)2 𝑛) + (𝑘 − 1)𝑇 (𝑛2 ) + O(𝑛
2)

When we set 𝛼 = 0.5, 𝛽 = 0.223 and 𝑟 = 0.8, we get that the number of iterations is 𝑘 = 14 (including
the first iteration where no recursive calls are made), and 𝑝 ∼ 11.9. Hence, the running time of the
algorithm is O(𝑛12). Since 𝑟 = 8/10, we obtain the claimed result. □

Theorem 3 and Theorem 4 together give us Theorem 1.

5 CONCLUSIONS
We presented a simple randomized 2-approximation algorithm for Feedback Vertex Set in
Tournaments. Assuming the Unique Games conjecture, the approximation ratio is optimal. It runs
in time O(𝑛34). We then presented an improved algorithm, with a more sophisticated running time
analysis that runs in time O(𝑛17). This running time can be improved to O(𝑛12) for unweighted
instances. We also present a de-randomization of our algorithm that runs in quasi-polynomial time.
It would be interesting to see whether one can achieve the same approximation ratio can be

obtained by an algorithm with a running time of O(𝑛2) (i.e. linear in input size) or something

3These values were obtained by solving the above equations on a computer.
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close to it. Another interesting open problems is to design a deterministic polynomial time 2-
approximation algorithm. Finally it would be interesting to see whether ideas from this paper can
be used to obtain improved approximation algorithms for other “structured hitting-set” problems.
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