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Abstract. When programs are frequently updated, the cost of stati-
cally analyzing those programs is multiplied by the number of program
versions that must be analyzed. In cases such as analyzing JavaScript
programs, the baseline analysis is costy, exacerbating this cost. One ex-
ample of this is JavaScript-based browser addons which are continually
updated and the addons must be repeatedly vetted for each update be-
cause of known instances of malicious code injection during updates.
Incremental analysis reduces this cumulative cost by using a previous
version’s solution to accelerate analysis of the current version. Modern
incremental analyses are not applicable to dynamic programming lan-
guages because they assume an a priori control flow graph, which is not
available. In this paper, we propose the first incremental static analysis
for JavaScript. We do not require perfect precision, but we show empir-
ically that there is negligible precision loss in practice. A large part of
our technique is a method for matching code between JavaScript pro-
gram versions, a non-trivial problem for which existing techniques for
non-JavaScript languages do not apply. For our benchmarks, drawn from
real browser addons and node.js programs, our incremental analysis per-
formance is on average within a factor of two of an optimal incremental
analysis.

1 Introduction

JavaScript programs are an integral part of the internet ecosystem, from the
server to the client, and present a tempting target for malicious actors. For ex-
ample, JavaScript-based browser addons have complete access to the browser’s
state and can do anything they want with that information, including collecting
and disseminating users’ sensitive data; examples of such behavior have been
found in the wild [6,8]. Thus, JavaScript is an important target for static anal-
yses that attempt to ensure safety and security. Numerous such analyses have
been published, e.g., to ensure that browser addons do not leak sensitive infor-
mation [37,23,38].

However, a single-time static analysis is not sufficient when programs are con-
tinually updated with new versions. There are known instances where malicious
code has been snuck into existing JavaScript programs during such updates [3].
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To ensure safety and security, static analyses must be run on every version of
a program, not just the first one. However, JavaScript is a highly dynamic and
difficult language to analyze with precision, and the resource cost can be high.
If there is a central entity serving as the main gateway for these programs (e.g.,
browser addon repositories) that is responsible for running all of these analyses,
they must shoulder the bulk of this cost. Being forced to re-run the analyses
for every update and new program version only exacerbates these problems.
The contribution of this paper is a technique called fixpoint reuse
to mitigate the performance problems attendant on repeatedly stat-
ically analyzing the same JavaScript program over multiple updates
and versions.

Our technique falls under the general rubric of incremental static analysis, a
topic that has been extensively studied over the years. However, no existing work
deals with a dynamic language such as JavaScript. In particular, the existing
work generally relies on two major assumptions: (1) an a priori known flow-
graph model of the program; and (2) a known or (given the flow-graph model)
trivially computable syntax mapping between the old and new program versions.
Unfortunately, JavaScript programs do not have a simple flow-graph model, and
in fact require extensive and expensive static analysis to compute precise control-
flow and data-flow information. Thus, the existing works’ assumptions do not
hold and they are not immediately applicable to languages such as JavaScript.

We rely on two key insights to reposition incremental static analysis for Java-
Script: (1) the problem of matching between two program versions is similar to
the problem of clone-detection, and thus we can leverage existing clone-detection
techniques [13,22,34]; and (2) whereas modern incremental analyses are precise
(i.e., yield the same answer as a non-incremental analysis), we can relax the re-
quirement for precision while still getting useful results. That is, our incremental
analysis can yield additional false positives beyond what a from-scratch analysis
would yield, but we show empirically that this does not happen very often. To-
gether, these insights enable our technique to achieve speedups within 2× of an
optimal incremental analysis (which we define as an incremental analysis on a
program version that is identical to the earlier version, thus allowing maximum
reuse).

In the context of a central gateway such as a browser addon repository that
is analyzing third-party programs, another benefit of our technique is that it
does not rely on the gateway having to store past analysis results for every
program that it analyzes. Previous analysis summaries can safely be left to the
third-party developers to store and transmit with any program updates; our
technique guarantees that the results of the analysis will still be sound. The
most that a malicious developer could do is to degrade the performance and
precision of the incremental analysis up to some limit, after which we would
fall back to a normal from-scratch analysis. Our technique is flexible enough
to handle a variety of scenarios that distribute the analysis work between the
central authority and the app developer in different ways, while still allowing
the central authority to guarantee the soundness of the results.
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2 Related Work

In this section we review the work on incremental static analysis to put our
technique in context.

2.1 Incremental Analysis via Restarting Iteration

Perhaps the most closely related work to our technique is from the early ’80s.
There are three works that present a technique called restarting iteration [17,16,19].
Unlike our fixpoint-reuse work, restarting iteration assumes a known control-flow
graph and a provided mapping from old to new program version. Similarly to our
fixpoint-reuse technique, the technique does not guarantee a precise incremental
analysis, i.e., it could introduce additional false positives. The main contribu-
tions of our work in relation to this old work are (1) removing the assumption of
a known, simple flow-graph, thus making the technique applicable to dynamic
languages such as JavaScript; and (2) providing a method to compute a map-
ping between program versions rather than assuming one will be provided, thus
making the technique more practical.

2.2 Precise Incremental Analysis

Starting in the late ’80s the work on restarting iteration was abandoned in favor
of techniques that guarantee precise results—i.e., analyses that return the same
results as a non-incremental analysis. This flavor of incremental analysis has
dominated the field since that point [33,14,30,21,29,35,12,25,28,36,31,15,32,24,20].
Modern incremental analyses focus on pruning old results that might negatively
impact precision. There have been a number of advancements, but all are for
non-dynamic languages with simple flow-graph program models and assume that
either the version mapping is provided or can be simply computed from the re-
spective flow-graphs. None of the precise incrementalization methods is imme-
diately applicable to languages such as JavaScript.

“Incremental” Analysis of JavaScript

Livshits and Guarnieri [27] present Gulfstream for streaming JavaScript pro-
grams. The word “incremental” is used in a different context in that paper: the
analysis is incremental in the sense that it statically analyzes all JavaScript code
that it can, and then when dynamic processes load new JavaScript files, those
files are analyzed in an incremental fashion. The paper presents a points-to anal-
ysis of JavaScript that is unsound and makes use of analysis result invalidation;
whereas our work maintains soundness, is a general abstract interpretation, and
does not invalidate any previous information.
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3 Fixpoint Reuse

In this section we describe the problem that we are solving and the basic ideas
of our approach, called fixpoint reuse. We stay at a relatively high level in this
section in order to convey the central concepts; Section 4 will go into more
details within the context of our method’s instantiation to a specific JavaScript
analysis framework. We invite any reader without a background in program
analysis to consult Section 6 for more information on abstract interpretation
and taint analysis.

3.1 High-Level Summary

The three inputs are Pprior (the prior version of the program), FPprior (the
fixpoint analysis solution for Pprior ), and Pupd (the new, updated version of the
program). We assume FPprior is in the form of a map from program points to
abstract states. The goal is to compute FP

ûpd
, an over-approximation of FPupd

(the precise fixpoint analysis solution for Pupd).
Our approach is to (1) compute a partial mapping Pprior → Pupd from pro-

gram points in Pprior to program points in Pupd that correspond with high con-
fidence, then (2) use Pprior → Pupd to seed the initial analysis state for FP

ûpd
with the abstract states for corresponding program points as given in FPprior .
We then (3) analyze Pupd starting from the seeded initial analysis state and
ensuring that we visit every program point in Pupd at least once in order to
guarantee a sound analysis.

Algorithm 1 shows a high-level view of the entire matching and reuse process.
Section 4 describes exactly how we instantiate this generic algorithm in the case
of JavaScript and the SAFE analysis framework.

Algorithm 1 Generic Fixpoint Reuse

1: procedure Reuse(Pprior , Pupd ,FPprior )
2: Input: The two versions of the program, in some traversable form, and version

Pprior ’s fixpoint data structure
3: Output: FP ûpd , a prepopulated fixpoint for version Pupd

4: Match program points, call sites, abstract addresses, and variable names of
Pprior with those from Pupd using program similarity techniques

5: Populate Pprior → Pupd

6: Populate FP ûpd using FPprior and Pprior → Pupd .
7: Analyze Pupd starting from FP ûpd

8: end procedure

3.2 Example

To make this process more concrete, we provide a specific example based on
taint-tracking program analysis. Consider the two program excerpts in Figure 1.
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Version Pprior contains a function f, which is called with the argument secret,
and we do not want the value of this secret variable to leak to the outside world.
Assume that these snippets are part of a larger program.

1 function f(x) {

2 for (...) {

3 for (...) {

4 // expensive computation

5 }

6 }

7

8 return result;

9 }

10

11 var secret = 42;

12 var next = f(secret);

(a) Version Pprior

1 function f(x) {

2 for (...) {

3 for (...) {

4 // same expensive computation

5 }

6 }

7 output(x); // leak!

8 return result;

9 }

10

11 var secret = 42;

12 var next = f(secret);

(b) Version Pupd

Fig. 1: Two programs, unalike in dignity

After running the analysis on version Pprior , we have a fixpoint solution
FPprior that maps every (calling context, program point) pair in Pprior to some
abstract state. An abstract state will, for this analysis, map program variables
and abstract heap locations to either definitely tainted, definitely not tainted, or
possibly tainted. We can inspect the abstract state at the output statement to
see if the value being output is tainted in any calling context. Suppose that the
result is that there is no taint in this case.

Figure 1b shows an updated program version Pupd (which we can see by
inspection does leak tainted data). Our incremental analysis will first use a
program matching algorithm to find corresponding program points between the
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two versions. In this case, it finds that the definition of f in Pprior matches the
definition of f in Pupd , that a number of the basic blocks inside f match between
Pprior and Pupd , and finally that the last two lines in each version also match.

The incremental analysis will then use this matching to transfer abstract
states from FPprior to FP

ûpd
. As part of this matching and transfer, calling

contexts and abstract heap locations from FPprior will be renamed to the corre-
sponding calling contexts and abstract heap locations appropriate to Pupd . The
final analysis on Pupd will start from this seeded FP

ûpd
to compute the final

fixpoint solution for Pupd . The analysis must be certain to visit every program
point in Pupd at least once to guarantee a sound solution (e.g., by initializing
the worklist with every program point rather than just the entry point). This
requirement is due to the fact that otherwise the seeded FP

ûpd
may cause the

analysis to prematurely converge at a pre-fixpoint solution.
The incremental analysis correctly concludes that there is a leak in the up-

dated program. With reuse, the taint analysis on version Pupd could reuse the
analysis results for a vast majority of the program and thus converge much faster
than a from-scratch analysis. While this example is trivial, we have achieved good
results and significant speedups using this method on real-world JavaScript code
that runs in browsers and/or servers.

3.3 On Program Matching

Computing the map Pprior → Pupd is an important part of the process that can
have extreme effects on the efficacy of the incremental analysis. When matching
there are three possibilities:

1. We correctly match,
2. We incorrectly match, or
3. We cannot match.

The first case is the best case; the more correct matches we compute the more
effective the incremental analysis will be in improving performance. The third
case, while not ideal, isn’t too harmful; the incremental analysis won’t benefit
from the prior analysis in this case, but it can simply compute the information
in the same way as a from-scratch analysis.

The second case, however, is by far the worst case and demonstrates the
non-triviality of the matching problem. An incorrect match means that the in-
cremental analysis will be seeded with incorrect information from the prior anal-
ysis. While this incorrect information doesn’t affect the soundness of the results,
it does mean that the incremental analysis must propagate this incorrect in-
formation to all reachable program points, reducing performance and polluting
precision. Thus, it is far better to fail to match a program point than it is to
incorrectly match a program point. This means that our matching algorithm
must carefully balance between matching often and matching well. Failing to
match often enough means that we get no performance improvement; failing to
match well means that we get both performance and precision reduction.
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4 Fixpoint Reuse for SAFE

Our prototype implementation is built on top of SAFE version 2.0. The SAFE
JavaScript analysis framework [26] does not perform its analysis at the level
of the original JavaScript source code. Instead, the source is translated to a
simpler intermediate representation (IR) that is more amenable to analysis—it
breaks complicated expressions into simpler ones, and makes explicit the im-
plicit operations of the JavaScript language (e.g., type coercion, argument array
construction before a function call, etc.).

In order to reuse analysis results, we must therefore create a correspondence
mapping between programs at the level of SAFE’s IR. In this section we de-
scribe its constituent pieces, along with the different matching methods we im-
plemented and evaluated against.

4.1 Functions, Blocks, and Instructions, Oh My!

SAFE programs are divided into three main categories: functions, blocks, and
instructions. We explain them via an example. Consider the JavaScript program
in Figure 2a, made up of two functions and a free-standing statement that calls
one of those functions. This program is translated into SAFE’s intermediate
program as Figure 2b.

At both the textual- and the data structure-level, the program is represented
as a hierarchy of three entities: functions, blocks, and instructions. Any state-
ments that occur outside of a function are gathered together in the top-level

function, which serves as the entry point to the translated IR version of the pro-
gram and its subsequent analysis. For example, there are eight separate blocks in
the top-level function—Entry[-1], Block[0], Call[1], AfterCall[2], AfterCatch[3],
Block[4], Exit[-2], and ExitExc[-3]. There are nine instructions inside Block[0],
which prepares for the call to isEven, and there is just one instruction in the
Call[1] block, which performs the actual call to the function.

When we match JavaScript programs at the SAFE IR level, we match func-
tions, blocks, and instructions, in that order. Once we are confident that two
functions correspond, we then match their blocks, and once we believe we have
chosen the best block correspondence we match individual instructions. Match-
ing instructions is necessary for two main reasons: (1) correctly translating calling
contexts from FPprior to FP

ûpd
requires accurate mapping of call instructions,

and (2) correctly translating abstract heap addresses (in the IR, anything that
begins with a “#”) from FPprior to FP

ûpd
requires accurate mapping of al-

location instructions. In both cases, failing to accurately match corresponding
program entities does not cause unsoundness but results in imprecision and will
cause the analysis to visit unnecessary program locations and heap addresses.
Thus it is important that we match with high confidence if we want any hope
of making our analysis reuse method efficient and accurate.
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function isEven(x) {

if (x == 0) {

return true;

} else {

return isOdd(x-1);

}

}

function isOdd(x) {

if (x == 0) {

return false;

} else {

return isEven(x-1);

}

}

var b = isEven(42);

(a) A JavaScript program (b) The same program converted to SAFE IR

Fig. 2: SAFE’s intermediate representation for JavaScript programs
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4.2 Function Matching

Our function matching algorithm is based on an edit-distance calculation, as
shown in Algorithm 2. The algorithm is parameterized by a function Criteria
that determines the distance between pairs of functions as a numerical score—we
consider two functions to “match” when the criteria is below a certain threshold.
We instantiated Criteria with different choices as shown in Table 1 in order to
evaluate which combination of distance criteria worked best. Given the distances,
the algorithm matches those functions with the best distance score that is under
our empirically-calculated threshold.

Algorithm 2 works under the assumption that functions between program
versions may be nested differently but generally still appear in the same order.
We took inspiration from Revolver, a work which found success using a longest
common subsequence algorithm to find similar pieces of malware among Java-
Script programs [22]. Longest common subsequence is a specific instantiation of
the more general problem of edit distance, and so we chose to design our match-
ing algorithms around edit distance calculations—it plays a part in our block
and instruction matching methods as well. Matches can be extracted from the
algorithm’s resulting table.

Algorithm 2 Edit Distance Function Matching

procedure Edit-Distance-Match-Functions(
−−−−−−→
funcscurr ,

−−−−−→
funcsupd ,Criteria)

Input: Functions from version Pprior , functions from version Pupd , and a function
Criteria that scores functions based on similarity
Output: A list of pairs of functions that have been deemed similar

matchingFunctions ← ∅
M ← Parameterized-Edit-Distance(

−−−−−−→
funcscurr ,

−−−−−→
funcsupd ,Criteria)

Inspect the score matrix M , and populate matchingFunctions with the function
pairs that were successfully matched
return matchingFunctions

end procedure

Function Similarity Scoring Criteria. Table 1 shows the different kinds
of function criteria that we evaluate against. These are different combinations
of differences based on function position and based on instructions contained
within the functions. We chose the two axes of position-based and instruction-
based matching after manually inspecting the version differences among our
benchmarks: quite often we discovered that the functions appeared in the same
order, and that the instructions for the most part were identical. We also noticed
that there were cases of the same function body appearing in multiple places,
so that led us to combine the two areas in different ways to determine which
combination was best. The criteria are in the form of distance functions, so
a higher number indicates a larger difference. We combine features using the
geomean.
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Table 1: Different function matching criteria

Name Criteria

Position-only Distance between function IDs, distance between function line
numbers

Instruction-only Difference between number of instructions, (Size of the larger
multiset of identifiers that occur in each function) – (Number of
common identifiers occurring in both the functions)

Combined Combination of Position-only and Instruction-only
Staged Instruction-only, with ties broken by Position-only

4.3 Block Matching

Our chosen block matching algorithm also uses an edit distance calculation. Edit
distance-based block matching is similar to Algorithm 2, and the blocks of two
functions are matched using edit distance in the order in which they appear
in the SAFE IR. This choice is based on the assumption that that changes to
functions will not drastically affect the analysis results, and so matching as many
blocks as we can will be helpful when we transfer old analysis computations. The
best scoring blocks that match under a threshold are returned.

Block Similarity Scoring Criteria. The block criteria we chose is a combi-
nation of the following:

– Block type (Normal, Call, etc.),
– Instruction count difference, and
– (Size of the larger multiset of identifiers that occur in each block) - (Number

of common identifiers occurring in both the blocks).

We save the corresponding blocks, because Call blocks are used in abstract
state calling contexts.

4.4 Instruction Matching

For each matched pair of blocks, we once again perform a distance calculation.
Instructions are matched based on the type of the instruction, the number of
allocation sites appearing in the instruction, and the names of the variables
involved (modulo the generated numerical suffixes). We save the corresponding
allocation sites and variables that appear as the left-hand side of assignment
instructions, as they will need to be remapped between abstract heaps.

4.5 Fixpoint Reuse

After a successful program matching effort we must use this information to
remap results from FPprior into the new FP

ûpd
before the incremental analysis
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begins its calculation. We keep this section high-level; the details are tedious but
straightforward.

Figure 3 shows a high-level version of the data structures we work with.
SAFE contains a map that keeps track of the saved abstract state for every
ControlPoint, which is a (Block, Context) pair. Contexts keep track of which
functions were called immediately preceding the current one, and can contain
zero or more call sites, which are themselves Blocks (specifically, the Call blocks
where the function call to the current function or one of its predecessors took
place). For example, if we start out from the top level of our program, and call
a function foo, the context will change from ∅ to the list [foo], assuming our
context sensitivity is greater than zero. So, we must remap each block using our
saved correspondence mapping generated during the matching phase; it is for
this purpose that we keep track of corresponding blocks.

ControlPoint

Block Context

...

CallSite (Block)

AbstractState

...

AbstractValue

Address ... Address

...

...

Variable ... Address

Fig. 3: Reuse occurs inside of the ControlPoint and AbstractState data struc-
tures. This figure shows the general layout of these structures, and the leaves
are things that we must map over between versions. For example, the abstract
Addresses will often change with program versions.

For the abstract states, we must traverse and find any addresses and local
variable names that we know how to map over. Local variables are held in a
specific part of the abstract state, while abstract addresses are spread everywhere
(though mainly exist in the heap and abstract JavaScript objects). It is for this
purpose that we keep track of corresponding instructions.
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5 Evaluation

In this section we evaluate the efficacy of fixpoint reuse in terms of performance
and precision. Because we’re guaranteeing the soundness of the incremental anal-
ysis, we must at a minimum visit every program point in the updated version at
least once. Thus, the potential for speedup lies in reducing the number of times
the analysis has to revisit a program point before convergence. The quality of
the program matching between versions will play a large role.

We want to study the efficacy of fixpoint reuse on actual programs from the
wild. We take four JavaScript-based browser addons and four Node.js programs
along with between 1–4 updates for each program taken from available public
repositories. These benchmarks are described in Table 2. These benchmarks were
chosen from a set of similar programs because SAFE can completely model their
code and analyze them using a reasonable amount of resources (we are limited
in our benchmark selection by SAFE’s capabilities). Following previous work on
analyzing browser add-ons [23], we edit the original code to provide stubs for
built-in browser functions, and we include some amount of driver code to ensure
that the analysis visits all interesting locations in the source file. We manually
selected sources and sinks for each file.

Table 2: Open-Source Benchmarks. For every sequence of benchmark versions
(e.g., [A, B, C]), we compare the closest pairs (i.e., (A, B) and (B, C)).

Benchmark Name Version A Lines Version B Diff Distance

chess1 [2] 0.1.0.1 283 0.1.1.2 127+/116– 44
chess2 0.1.1.2 295 0.1.1.3 40+/10– 69
emoji-helper1 [5] 1.1.0 579 1.1.1 17+/3– 24
emoji-helper2 1.1.1 594 1.2.0 15+/1– 10
simple-translate [9] 2017.09.25 301 2017.10.14 2+/2– 0
k-cup-deals [7] 1.2 499 1.3 12+/0– 63
dateformat1 [4] 2011.03.13 166 2012.11.08 49+/7– 22
dateformat2 2012.11.08 208 2013.03.11 15+/8– 6
dateformat3 2013.03.11 216 2014.11.28 201+/55– 44
dateformat4 2014.11.28 261 2017.09.18 11+/6– 10
yallist1 [11] 2015.12.19 585 2017.03.11 24+/16– 8
yallist2 2017.03.11 594 2017.03.13 9+/0– 8
yallist3 2017.03.13 602 2017.04.25 2+/0– 0
balanced-match [1] 0.4.2 193 1.0.0 93+/102– 161
url-join1 [10] 2.0.0 149 2.0.1 1+/1– 0
url-join2 2.0.1 149 2.0.2 1+/1– 0

The actual analysis that we perform on these benchmarks is a taint analysis
implemented using the SAFE JavaScript analysis infrastructure, suitably mod-
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ified to implement fixpoint reuse. The implementation is available online1. We
use the taint results to measure the precision of the incremental analysis versus
a from-scratch analysis.

To help calibrate expectations, we start with a limits study to determine the
maximum speedup the incremental analysis could possibly get. We accomplish
this by running the incremental analysis on “updated” benchmark versions that
are exactly the same as the original, thus ensuring a perfect program match and
minimal revisiting of program points. The results are in Section 5.1.

Another factor that comes into play is how different the original and up-
dated programs are. In the extreme, the updated program could be completely
different from the original and not benefit from incremental analysis at all. To
help understand the effect of program “distance”, we have created a set of hand-
made benchmarks and a series of successively more “distant” updates for each
benchmark, allowing us to study the effects of program distance in a controlled
manner. The results are in Section 5.2.

Finally, we compare the speedups that we achieve on the actual updated
program versions to determine how close to the optimal results we are. These
results are in Section 5.3, and we study the sizes of the reused fixpoints in
Section 5.4.

5.1 Limits Study

For our limits study we take each program version of each benchmark and run an
incremental analysis on itself—in other words, we take the from-scratch analysis
and apply fixpoint reuse to exactly the same program. This is the ideal case for
reuse and provides the maximum benefit. Because we have a perfect program
match, the only cost in the incremental case is for visiting each program point
exactly once. We run three different experiments varying context-sensitivity from
0-CFA to 2-CFA; a “program point” for a context-sensitive analysis includes the
context. The results are shown in Table 3.

5.2 Controlled Distance Study

Table 4 contains information on our handmade benchmarks: they are versions
of the v8 Navier-Stokes (Table 4a) and the Richards (Table 4b) benchmarks
with statements deleted. We made random (but attempted to avoid program-
breaking) deletions—these files are then “played backwards” to appear as a
sequence of code additions. Thus, successive versions contain greater and greater
differences to the original version.

Our distance metric is derived from our program matching algorithm. Given
two programs A and B, we compute the set of matching function pairs and,
for each pair, we compute the block edit distance. The sum of the block edit
distances over all matching function pairs is our measure of distance between A

1 https://anonfile.com/6ek9W1gab0/fixpoint-reuse-artifact_zip

https://anonfile.com/6ek9W1gab0/fixpoint-reuse-artifact_zip
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Table 3: Best possible speedups. Exact times can be calculated using Table 6.

Benchmark 0CFA (×) 1CFA (×) 2CFA (×)

chess1 6.30 3.23 2.84
chess2 9.59 5.66 3.61

emoji-helper1 7.98 8.17 5.64
emoji-helper2 9.15 9.47 5.67

simple-translate 3.17 4.24 2.60
k-cup-deals 11.58 3.12 1.12

dateformat1 4.30 3.93 3.00
dateformat2 4.84 3.92 3.12
dateformat3 4.05 2.95 1.92
dateformat4 4.04 2.77 1.96

yallist1 9.85 13.05 11.93
yallist2 8.37 13.44 10.84
yallist3 9.44 13.36 11.55

balanced-match 7.92 12.58 14.46
url-join1 4.41 2.85 3.93
url-join2 4.68 2.93 4.30

Average 6.85 6.58 5.53

and B. We investigated several other possible distance metrics and found that
they all behaved similarly.

We chose this methodology because additions seem to be the most com-
mon updates to code: in our real-world, open-source benchmarks, each commit
contains over 4× the number of additions to deletions on average. Of the four
outliers, only one was a legitimate case of refactoring; others were superficial
changes regarding whitespace or test suite configuration, and so these diffs were
exaggerating the truth.

Figure 4 shows the results of our handmade benchmarks. We ran every com-
bination of version pairs that respected the order, e.g., v1∼v2, v1∼v3, v1∼v4,
v2∼v3, v2∼v4, v3∼v4, etc. We grouped each pair of programs based on their
distance score. These 1CFA analysis results paint a picture of how program
additions impact reuse.

Figure 4a shows the results for the Richards benchmarks. This benchmark
consists of several small functions. For the original benchmark, the fixpoint took
9,081 iterations to converge, there were 494 unique program points visited, and
there were 3 loops. Figure 4b shows the results for the Navier-Stokes bench-
marks. This benchmark consists of a small number of large functions. The origi-
nal benchmark’s fixpoint took 7,060 iterations to converge, there were 562 unique
program points visited, and there were 26 loops. For both benchmarks, the cho-
sen taints were calculated precisely for all version pairs.

Both sets of benchmarks tend to degrade in performance as the difference
between version pairs increases, but the Richards benchmark appears to be more
amenable to reuse and therefore has more to lose as the distance increases. Given
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Table 4: Handmade Benchmarks

(a) Navier-Stokes (v8 lines of code:
398)

Versions (A–B) Diff Distance

v0–v8 35+/4– 68
v1–v8 32+/4– 62
v2–v8 27+/3– 53
v3–v8 20+/3– 43
v4–v8 17+/2– 39
v5–v8 11+/2– 22
v6–v8 8+/2– 11
v7–v8 2+/0– 1

(b) Richards (v8 lines of code: 546)

Versions (A–B) Diff Distance

v0–v8 30+/2– 64
v1–v8 28+/2– 60
v2–v8 23+/2– 51
v3–v8 21+/2– 43
v4–v8 19+/1– 38
v5–v8 13+/0– 33
v6–v8 11+/0– 27
v7–v8 8+/0– 16
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the statistics in the previous paragraph, compared with the Navier-Stokes bench-
mark set, the Richards benchmark set has more iterations to save by reusing
information, fewer program points to visit at least once, and significantly fewer
loops through which any updated information must be propagated. This ex-
periment helps to give insight into which kinds of programs see better fixpoint
reuse performance, while also highlighting that some amount of improvement is
usually possible as long as the changes are not too drastic. Even in the face of
unrecoverable program differences (see the line of dots hovering above the 1×
speedup in Figure 4b), for these benchmarks our method does not do worse than
a from-scratch analysis.

Unmatched instructions Figure 5 provides insight into the abilities of our
matching algorithm by showing the total number of instructions that could not
be matched across all the different versions of the Richards handmade bench-
marks. The Navier-Stokes results are similar.

As the textual difference between programs increases, it becomes more diffi-
cult to match functions and blocks—this difficulty culminates in the algorithm’s
inability to match individual instructions inside of blocks. The larger the gap
between handmade benchmark versions, the more changes exist in the code, and
the number of unmatched instructions reflects this. Matching is not exact, and
so there is one outlier in the v0–v2 version pair, but the results show that our
matching method keeps unmatched instructions to a minimum and performs
well in the vast majority of cases.

For the instructions that could be matched, there is still a possibility that
they were matched incorrectly—discovering errors in instruction matching would
require manual effort, but we believe the lack of extra taints demonstrates that
our edit distance-based matching is precise.

5.3 Real-World Evaluation

We run the real-world version updates at three context-sensitivity levels. The
time it takes to perform the program matching process on a given version pair
is the same for every context sensitivity level. Table 5 shows the times, and they
are all quite small. For the longer-running analyses this number is completely
negligible.

Baseline results Table 6 shows the results for running the static analysis on
the updated version of each benchmark from scratch (i.e., with fixpoint reuse
turned off). The number of taints output is the sum of all tainted sources for a
given tainted sink state—note that states can become duplicated when context
sensitivity increases, and that is why the number increases.

Incremental Results Table 7 shows the results of reuse for each different
context sensitivity level. We find that all taints are carried over with very little
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Table 5: Correspondence map creation times.

Benchmark Time (s)

chess1 1.03
chess2 1.07

emoji-helper1 4.70
emoji-helper2 4.82

simple-translate 1.18
k-cup-deals 2.24

dateformat1 0.82
dateformat2 0.75
dateformat3 0.77
dateformat4 0.84

yallist1 3.92
yallist2 4.27
yallist3 4.33

balanced-match 0.42
url-join1 0.55
url-join2 0.55

Table 6: Baseline results.

Benchmark
0CFA 1CFA 2CFA

Time (s) Taints Time (s) Taints Time (s) Taints

chess1 39.46 3 22.20 3 24.28 5
chess2 71.77 3 39.05 3 39.01 4

emoji-helper1 213.90 1 135.78 1 84.55 1
emoji-helper2 251.39 1 150.80 1 95.04 1

simple-translate 13.60 1 17.34 1 14.29 2
k-cup-deals 86.89 1 30.58 1 20.45 1

dateformat1 52.28 4 56.71 8 50.92 8
dateformat2 67.06 4 60.39 8 55.52 8
dateformat3 66.60 4 42.74 7 34.34 7
dateformat4 68.92 4 44.25 7 35.76 7

yallist1 843.39 7 1443.23 60 2084.17 60
yallist2 857.51 7 1432.67 60 2033.51 60
yallist3 823.98 7 1429.20 60 2107.08 60

balanced-match 249.31 20 523.17 420 2397.87 420
url-join1 41.11 2 29.83 17 112.95 17
url-join2 41.60 2 30.42 17 114.35 17
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imprecision. The dateformat benchmark is the only case with imprecise taints,
and this is due to the modeling of a JavaScript built-in object that causes the
analysis to return the >addr address (i.e., the abstract address corresponding to
all concrete addresses). Because the heap is prepopulated with extra information,
there are more locations to point to than in the from-scratch case.

Table 7: Results, relative to from-scratch analysis. Exact times can be calculated
using Table 6.

Benchmark
0CFA 1CFA 2CFA

Speedup Taints Speedup Taints Speedup Taints

chess1 1.28 3 1.01 3 0.97 5
chess2 1.61 3 1.08 3 0.97 4

emoji-helper1 4.70 1 4.35 1 3.40 1
emoji-helper2 7.07 1 7.37 1 4.87 1

simple-translate 3.14 1 4.15 1 2.63 2
k-cup-deals 4.32 1 1.46 1 0.93 1

dateformat1 1.47 4 1.02 8 0.90 8
dateformat2 2.59 4 1.60 8 1.44 8
dateformat3 2.19 4 0.90 8 0.91 8
dateformat4 4.13 4 2.26 8 1.48 8

yallist1 1.18 7 1.03 60 1.07 60
yallist2 1.23 7 1.42 60 1.48 60
yallist3 9.36 7 14.41 60 13.16 60

balanced-match 0.88 20 0.97 420 1.02 420
url-join1 4.23 2 2.56 17 3.93 17
url-join2 4.27 2 2.60 17 3.99 17

Average: 3.35 3.01 2.70

All in all, while maintaining soundness and high precision in a proof-of-
concept taint analysis, our fixpoint reuse method allows us to more than double
the speed of an analysis on average for real-world programs.

For another perspective, Table 8 shows our speedup relative to our best
possible incremental analysis results (i.e., the observed speedup divided by the
optimal speedup). These results provide another means of observing program
difference: the version pairs with the fewest differences have either an optimal
or close-to-optimal speedup. Due to natural variation in analysis times, some
results were slightly above 1.0—we capped those results at 1.0 to paint a more
accurate picture. On average, our reuse method is within a factor of two of the
optimal speedup for these benchmarks, and we believe this is representative of
the general case.
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Table 8: Speedup results, relative to a perfect incremental analysis. Exact times
can be calculated using Table 6.

Benchmark 0CFA 1CFA 2CFA

chess1 0.20 0.31 0.34
chess2 0.17 0.19 0.27

emoji-helper1 0.59 0.53 0.60
emoji-helper2 0.77 0.78 0.86

simple-translate 0.99 0.98 1.00
k-cup-deals 0.37 0.47 0.83

dateformat1 0.34 0.26 0.30
dateformat2 0.54 0.41 0.46
dateformat3 0.54 0.31 0.48
dateformat4 1.00 0.82 0.76

yallist1 0.12 0.08 0.09
yallist2 0.15 0.11 0.14
yallist3 0.99 1.00 1.00

balanced-match 0.11 0.08 0.07
url-join1 0.96 0.90 1.00
url-join2 0.91 0.89 0.93

Average: 0.55 0.51 0.57

5.4 Size of Saved Fixpoints

Figure 6 shows the sizes of each fixpoint after compressing with the gzip com-
pression utility. The longer-running benchmarks compute more information dur-
ing the analysis, and are therefore larger. An increase in context sensitivity also
causes more information to be saved, and this increases the size of each fixpoint
as well. As these files can get large, an interesting area of future investigation
could be investigating how to take advantage of the semantic struture of fixpoints
to aid further compression.

6 Background

In this section we provide some background on abstract interpretation and taint
analysis.

6.1 Abstract Interpretation

Abstract interpretation [18] discovers invariants about a program by running
it in an abstract way. For example, assume that the computation of 2 + 3 was
too difficult to compute—one way of making this easier computationally is to
get rid of the numbers, and instead calculate positive + positive—a table lookup
would provide the final answer of positive. We can capture this process with
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a function α : Z → PosNegZero, where PosNegZero is the powerset of the set
{positive,negative, 0}; it is an example of an abstract domain.

positive, however, is not the same as 5—it is an abstraction. Information
is clearly yet deliberately lost when we move to an abstraction, and there is
much work on the fine line between giving up too much information and just
enough to solve the original problem. Information is ordered in the logical way:
{positive} is clearly more precise than {positive, 0}, so we write this fact as
{positive} v {positive, 0} in this new abstract sense, so less precise things are
abstractly bigger than more precise things—intuitively, such imprecise values
“believe” that they are more things.

Programming languages are more complicated than simple arithmetic ex-
pressions: we must figure out how to “abstractly” run the computations involved
during function calls and complicated loops and numerical operations. And, we
must do all this while preserving the key property that all program analyses
must have: the analysis must halt, even if the program does not. We want some
information about a program, and we accept that we must settle for some infor-
mation loss, but we don’t want to wait a lifetime to get the final answer. A more
complicated analysis that is essential for JavaScript analysis is called control-
flow analysis: instead of generating values of variables, it creates a control flow
graph for the analyzed program.

Fortunately, we are not forced to reinvent the wheel to implement a program
analysis. One piece of machinery that gets us most of the way there is an inter-
preter for a programming language—it has most of the features that we desire,
but it is too precise. We can implement an abstract interpreter on top of a regu-
lar (the technical term is concrete) interpreter fairly easily (see, e.g., [39]) after
one has chosen the abstract domains to use.

Interpreters (and therefore abstract interpreters) often have a lot of moving
parts—especially for a language like JavaScript, where values can be of many
different types all at once, functions are first-class objects, inheritance is modeled
with prototypes, etc. Abstract heaps are often used to keep track of data that
has been allocated, and there is also a stack of functions that have been called
and pointers to where they should return to. None of this information goes away
during the transition to an abstract interpreter.

Nondeterminism often plays a large role in abstract interpretation, due to lost
precision—this can cause loops to arise where they would not appear otherwise.
As an example of lost precision and nondeterminism, consider the following
program statement:

if (1 <= 2)

X();

else

Y();
A concrete interpreter would immediately conclude that only the true branch
will ever be executed, but consider the abstract interpreter with the PosNegZero
numerical abstract domain from above: it would instead ask itself about the truth
or falsity of the expression positive ≤ positive, and the correct answer is “I don’t
know”, since 4 <= 3 looks exactly the same as 1 <= 2 from its viewpoint. Thus
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the abstract interpreter returns true and false for this expression, runs both
branches, and must find a way to combine the information that it calculates for
each branch to use as the result of the entire if/else expression.

This combination of imprecise values is key to our analysis reuse: maybe the
program changes, and X() does something completely different while Y() remains
the same—could we use our old information about the abstract result of Y()

again? Our method revolves around populating abstract states with previously-
computed values.

A term that appears often in this paper is context sensitivity, which describes
how an analysis keeps track of where functions that are called should return. It is
infeasible (and in programs with call stacks of indeterminate depth, impossible)
to keep track of the entire call stack in an abstract interpreter, and so many
analyses settle for saving only the very top of the stack. Saving one function
on the top of the call stack is abbreviated as 1CFA, two is 2CFA, and saving
nothing is called either 0CFA or context insensitive. These different context
sensitivities make a difference in the precision and performance of an analysis,
and this difference translates into the realm of reuse that we explore.

Abstract interpreters often run what is called a worklist algorithm, which
keeps track of which locations in the program to visit and calculate abstract
results for—initially, the first line of the program is inserted as the initial state,
because the analysis has not yet saved any information about its execution.
The analysis halts when the information it knows about each state does not
change. When the analysis stops and the information converges, we say that it
has reached a fixpoint. We refer to this conglomerate of saved information about
each abstract state as the “fixpoint” of the entire analysis.

If we give an analysis some starting information from a previous program
version, it has the potential to terminate more quickly, though there is the risk
of having too much imprecision. That is the challenge we overcome in this paper.

One important property that a analysis should have is soundness: a sound
analysis overapproximates the results of any concrete run of a program and does
not leave out a possible behavior—we ensure that our analysis reuse method
retains the soundness of the underlying analysis.

6.2 Taint Analysis

As the name indicates, a program taint is something that is undesirable. Taints
have to do with data dependence, i.e., which values get where. For example,
consider the following code:

var x = 5;

var y = x + 7;

var z = y * 8 + 42;

We say that x flows to z (and also y). If the number 5 was a confidential value
that we did not wish to pass around to too many places, we would say that
it is a tainted source and try to track where this information flows. Instead
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of propagating actual numbers or positivity information, this analysis tracks
information about the taintedness of a given expression.

Taint tracking is a common program analysis, and the goal is to find whether
any tainted sources reach any undesirable program locations, or sinks. A more
high-level example of a source and a sink is that of a system password and a
network request.

To evaluate our analysis reuse method, we implement taint analysis on top of
an existing JavaScript abstract interpreter, and we use this analysis to evaluate
the precision of our worklist reuse algorithm. We want the reused analysis to not
return too many extra sinks that an analysis that started from scratch would
not return, for some definition of “too many”.

This may sound too good to be true, so we briefly provide some insight on
why this goal of precise reuse without any pruning is attainable. Consider once
more the example of the imprecise if statement from the previous subsection,
and imagine again that X() is changed drastically while Y() remains the same.
We will carry over the taints from Y() in the reused analysis, since it has an
exact correspondence in the new program, but we will also remember any taints
that occurred inside X(), and at first glance this may be interpreted as a bad
thing. But, the key point is that we assume that the old program was “accepted”
or already considered safe, so any “incorrect” taints will in fact not pollute the
output. Our evaluation confirms this.

7 Conclusion and Future Work

We have presented fixpoint reuse, a method for incremental program analysis
that reuses fixpoint analysis solutions from one version of a program to accelerate
the analysis of an updated version of the same program. A major aspect of
this technique is how to match program points between two program versions,
for which we have leveraged techniques from clone detection. We have applied
fixpoint reuse to JavaScript analysis and shown that we get good results on
real-world JavaScript programs.

The maximum performance improvement that our technique can provide
is limited by the necessity to visit every program point at least once during
the incremental analysis. As future work, it would be interesting to investigate
techniques to skip visiting program points that are unlikely to have changed while
still guaranteeing a high probability of soundness; doing so could potentially
increase the performance improvement of incremental analysis even further.
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