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Abstract

Intelligent Scheduling for IoT Applications at the Network Edge
UCSB Technical Report #2022-02

by

Michael Lebo Zhang

The convergence of real-time embedded systems, wireless sensor networks, and

machine learning, has fueled the rapid development of the Internet of Things

(IoT), engendering new computational workloads and generating unprecedented

amounts of streaming data. As a result, the computational infrastructure for IoT

is facing challenges imposed by scalability, varying availability and performance,

and heterogeneity. Highly concurrent event-driven architectures (EDAs) are one

potential technological approach to building large-scale IoT systems since they

naturally comprise concurrency, scheduling, and service decoupling and isolation.

Moreover, serverless computing is an example of an EDA that has emerged as the

next-generation event-driven system to address many of these challenges.

In addition, new tiered cloud architectures consisting of low-capability IoT

devices, computing and storage resources sited “at the network edge,” and public

cloud resources provide the opportunity to optimize placement of computation and

storage tasks to achieve the performance and reliability requirements of IoT appli-

cations. The “edge cloud” is a service-hosting technology (like a public cloud) but
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located at the network edge to enable IoT deployments to take advantage of the

spatial locality to optimize resource utilization, reduce required wide-area band-

width, reduce response latency, improve application fault resilience, and improve

security. To maximize its benefits, an efficient scheduling system that intelligently

places workloads across IoT, edge cloud, and private/public cloud resources is in-

dispensable. In this thesis, we report our research on building a scalable, event-

driven, geo-distributed intelligent scheduling system for heterogeneous IoT devices

and applications at the network edge.

To achieve the goal, we investigate the efficacy of using a serverless computing

platform for tuning machine learning applications in parallel. We also research

the usage of serverless computing across the edge and private/public cloud de-

ployments for intelligent scheduling. A third investigation focuses on controlling

the system temperature of edge cloud resources by dynamic voltage and frequency

scaling (DVFS) to prevent overheating in environments hostile to computational

infrastructure. Our work contributes to the corpus of computation offloading

research for cyber-physical systems (CPS) that pairs workloads and resources

among an available pool of heterogeneous IoT devices, edge cloud resources, and

private/public cloud resources.
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Chapter 1

Introduction

I want to stand as close to the edge as I can without going over. Out on the

edge, you see all the kinds of things you can’t see from the center.
—Kurt Vonnegut

Thanks to the availability of inexpensive, low-power, and relatively high-

performance processors and ubiquitous wireless networks, the Internet of Things

(IoT) is revolutionizing the generation, streaming, processing, storage, and ana-

lytics of large-scale and real-time data. The Internet of Things is a rapidly emerg-

ing set of technologies that enables ordinary objects to collect, analyze, and share

data across networks with digital intelligence. Connecting the physical and digital

worlds, IoT has the potential to improve environmental perception and proactive

decision-making without human intervention, to diagnose and remediate health

care, to assist with vertical and precision agriculture, to facilitate virtual learn-

ing and online education, and to optimize operational procedures throughout the
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Chapter 1. Introduction

economy. To realize this impact, IoT devices are being integrated into all aspects

of our daily lives, from offices and residences to automobiles and wearables, and

globally deployed across urban and rural areas, waters, and open spaces, where

they form a vast, geo-distributed, and heterogeneous IoT systems.

Further, as IoT devices increasingly leverage recent technological advances in

real-time data streaming, analytics, and machine learning (ML) applications, their

development and deployment are faced with unprecedented challenges. These

challenges result from

1. the large scale of concurrent requests and network I/O placing enormous

demands on underlying resources,

2. immense variations and seasonality in workload that must be processed and

analyzed in real time,

3. high latency and frequent unavailability caused by heterogeneous wide-area

networks and failures in globally distributed resource collections, and

4. the large heterogeneity of devices leading to programming, debugging, and

maintenance complexities across systems.

One promising approach to addressing these challenges focuses on highly concur-

rent event-driven architectures (EDAs) which combine aspects of asynchronous,
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Chapter 1. Introduction

multi-threading, and event-based programming models to manage underlying re-

sources through concurrency and careful scheduling. By decoupling interoperable

services (i.e. emitters, routers, and consumers), EDAs effectively manage the

underlying resources based on incoming event sourcing; they also enable the in-

dependent scaling and partition tolerance that are necessary to make distributed

systems reliable; they address the heterogeneity of devices on the system level by

the isolation of services, with messaging queues and well-understood REST APIs.

Serverless computing (a cloud service and execution model) has emerged as the

next generation of the event-driven system that readily addresses challenges IoT

systems are facing. Serverless computing, also known as Functions-as-a-Service

(FaaS) is a popular cloud service for hosting and autoscaling applications in a

simple and cost-efficient fashion. Originally designed to unload capacity planning,

configuration, and maintenance burden from developers, serverless computing pro-

vides an event-driven programming model and cloud platform, in which developers

write simple functions that are triggered by predefined incoming events, includ-

ing database transactions, detected anomalies, web requests, state changes, etc.

The advantages of serverless computing are reflected in automatically provisioning

isolated environments via containers and dynamically adjusting capacity during

execution (i.e. autoscaling), which greatly reduces the idle resources across the

system. Based on these features, serverless computing’s billing model, pay-as-you-
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go, only charges the application owner for the time and memory consumed during

execution, so that users never pay for over-provisioning and unused resources. In

light of its utility as a highly efficient execution model, public cloud providers and

open source communities have offered multiple FaaS platforms built upon this

paradigm shift (Apa (2021), Ope (2021), Fis (2021), Fn (2021)).

Moreover, serverless computing has been extended to work at the “edge” of

networks (Mic (2021), AWS (2021a))

1. to reduce latency between devices and the off-board processing and storage

resources that they require,

2. to optimize computing resources utilization, and

3. to reduce storage and bandwidth used by data-driven IoT applications.

During an execution cycle, the system rapidly scales up parallel containers, in re-

sponse to concurrent requests from on-site streaming sensors, at the “crests” of the

offered workload and scales down at the troughs. Edge-based serverless execution

also saves data transfer time between IoT and data centers that dramatically re-

duces the end-to-end latency, particularly in real-time data streaming settings.

All serverless functions communicate, persist, and access data only through their

inputs or via shared storage services (e.g. an external object store, database, etc.)

4
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As a result, serverless computing is inherently elastic and can implement highly

concurrent and parallel tasks for IoT applications.

Linking IoT devices and data centers is an intermediate level of resources at

the network “edge” (which we term an “edge cloud,”) takes advantage of the spa-

tial locality to boost performance, availability, robustness, and security of cloud

computing systems. Typically, the computing and storage resources are scarce

on terminal IoT devices, relative to resource-rich public and private clouds. This

disadvantage becomes aggravated as public/private clouds may offer specialized

hardware (e.g. GPUs, FPGAs) that can significantly speed up machine learning

applications, which makes the in-situ execution on the resource-restricted IoT de-

vices comparatively inefficient. On the other end of the spectrum, however, the

large volume of data transferred by the long-haul, intermittently available net-

works that connect the IoT device and public cloud causes high response latency

and non-trivial operational costs. Such a trade-off describes a need for an edge

cloud near IoT devices that offers powerful and cheap computing and storage

resources at a smaller scale than that supported by public clouds.

To maximize these advantages, an efficient scheduling system that intelli-

gently places and deploys serverless functions across devices, edge cloud, and

private/public cloud resources, aiming to reduce idle resources and total exe-

cution time latency, is indispensable. It should span heterogeneous IoT devices,
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Chapter 1. Introduction

edge, and public cloud systems, serving IoT requests and leveraging specialized

hardware acceleration; it needs to underpin extensible and scalable systems that

meet Service-Level Agreement (SLA) and Quality of Service (QoS); it should be

used to manage real-time data and be driven by event sourcing; and, it has to

support geo-distributed deployment without sacrificing performance. To achieve

these goals, to utilize the processing power and spatial locality in end-to-end IoT

systems with data-driven, large-scale applications, we propose and explore the

following thesis question:

Can we build a scalable, event-driven, geo-distributed intelligent scheduling

system for heterogeneous IoT devices and applications at the network edge?

To answer this question, we:

• Investigate the efficacy of using a serverless computing platform for tuning

machine learning applications in parallel. To date, identifying the “best”

configuration for advanced machine learning models is challenging given the

large number of configuration options (represented as “hyperparameters”)

that are typical for state-of-the-art learning models. This tuning activity is

embarrassingly parallel, and, as a result, we believe that it is a good fit for

the serverless computing model. We design and develop a new system and

toolset called Seneca. We investigate its efficiency and its ability to simplify

6



Chapter 1. Introduction

the use of serverless computing for the training, testing, and evaluation of

machine learning models.

• Research the usage of serverless computing across the edge and private/pub-

lic cloud deployments (e.g. hybrid cloud settings). We develop a scheduling

system, called the Serverless TeleOperable Hybrid Cloud (STOIC), which

automatically selects and places workloads across these systems in hope of

lowering the system-wide execution latency versus using either system in

isolation. We specifically target image-based, object recognition using Ten-

sorflow (Abadi et al. (2016)) for training and inference in this work. We also

enable STOIC to leverage specialized hardware (i.e. GPUs) to accelerate the

execution and gauge its overhead based on historical data.

• Study and characterize (using dynamic voltage and frequency scaling –

DVFS – to control system temperature) when the ambient temperature

might cause edge computing resources to exceed the acceptable operational

ranges. DVFS is a technique that has been widely studied in the context

of “power capping” (Kim et al. (2008), Von Laszewski et al. (2009), Roun-

tree et al. (2012)) - the implementation of a maximum power draw by the

system. Out system, called Sparta, automatically exploits the relationship

between system power consumption and generated heat. It does so by ad-
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justing processor frequency dynamically so that CPU temperatures do not

exceed a specified threshold as ambient temperature changes. Subject to

the threshold, the system attempts to minimize the application deceleration

that frequency adjustments might introduce.

Our research contributes a new computation offloading mechanism for cyber-

physical systems (CPS) that pairs workloads and applicable resources using het-

erogeneous IoT devices, edge cloud resources, and private/public cloud resources.

We show that the naive or random allocation of resources leads to poorly-tuned

machine learning models, high execution latency, and CPU overheating on edge

devices. Moreover, our work introduces a new feedback mechanism that dynami-

cally deploys streaming workloads between edge and public clouds, based on real-

time monitoring data and latency prediction. We also develop a novel algorithm

that combines Simulated Annealing (SA) and Additive Increase Multiplicative De-

crease (AIMD) to accurately control the CPU temperature under the threshold

and to accelerate the execution in the meantime. These developments in intelligent

scheduling enable the highly scalable execution of machine learning applications

on edge cloud and real-time analytics on heterogeneous and geo-distributed IoT

systems.

In the chapters that follow, we present and evaluate these contributions. In

Chapter 3, we describe Seneca which addresses the scalability of IoT systems us-
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ing an event-driven programming model and a serverless computing framework

for hyperparameter tuning. In Chapter 4, we present STOIC – our solution for

optimizing deployment in a multi-layer geo-distributed cloud that places server-

less functions across the edge and private/public cloud using predicted latency

to optimize system-wide efficiency. Chapter 5 presents Sparta – a system that

addresses robustness and efficiency challenges across heterogeneous IoT and edge

devices by implementing a heat-budget-based scheduling framework on edge cloud

for machine learning applications. Finally, in Chapter 6, we present our conclusion

and plans for future work.
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Chapter 2

Background

Don’t explain your philosophy. Embody it.

—Epictetus

The Internet of Things (IoT) is the communication infrastructure for inter-

related electronic devices, machines, physical objects in the world around us. A

thing in an IoT device or system such as a thermostat controlling the temperature

of a data center, a drone hovering over farmland to analyze soil quality, a grizzly

bear wearing a collar while hibernating in the cave, or a human wearing a glucose

monitor. IoT systems enable objects to transfer data over networks and extend

them with capabilities to collect, mine, store, analyze data in situ.

Because these devices are embedded in the environment, many are small,

resource-restricted, and run on battery power. Moreover, the networks that con-

nect them can support little bandwidth or are intermittently connected. As a re-

sult, IoT deployments require new system architectures, programming paradigms,

10



Chapter 2. Background

computing and storage support, and robust data distribution. Since the advent of

ubiquitous network connectivity and low-cost computing, the research community

has developed a wide range of innovative solutions to address such demand, which

includes Event-Driven Architectures (EDAs) for scaling and managing disparate

services, serverless computing for function-oriented and provision-free program-

ming and deployment, edge-based computing for low latency data management,

actuation, and control, and wide-area analytics for scalable and robust, distributed

data processing. In this chapter, we overview these research advances and discuss

their implications for IoT systems.

2.1 Event-driven Architectures

IoT systems have scale, cost, and performance requirements that are similar to

those of web and cloud systems. However, by 2023, the scale of interconnected IoT

devices is expected to reach 29.4 billion Cisco Annual Internet Report (2018–2023)

White Paper (2018), which in combination with web and cloud systems is likely

to generate billions of concurrent requests from to services which in turn will

consume massive CPU cycles, memory, energy, and storage. Such use translates

into high network I/O, long system latency, congestion, and high cost if deployed

using the established monolithic paradigm of cloud computing Welsh et al. (2001),

11
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Michelson (2006). Furthermore, the deployment of myriad sensors, detectors,

and actuators intensifies the pressure that computer systems need to shoulder.

These IoT devices demands require computational and bandwidth resources to

monitor physical infrastructures and provide real-time, data-driven actuation and

control Filipponi et al. (2010).

By leveraging efficient deployment and event-triggered computation, Event-

Driven Architectures ((EDAs) Michelson (2006)) attempt to facilitate such re-

sponse at scale. Events are data flows that carry changes in state and trigger

functions (i.e. event handlers) in response to web requests made via Applica-

tion Programming Interfaces (APIs). EDAs transform the computer systems into

decoupled state machines that use events for application functionality interoper-

ation. An event-driven system typically consists of event emitters (producers),

event sinks (consumers), and event routers (channels) Taylor et al. (2009). Emit-

ters detect, produce, and transfer events to downstream consumers without know-

ing if consumers are active or how they will process events. Sinks process events

by filtering, transforming, and applying the state change to corresponding do-

mains (e.g. database, file system, user interface, etc.) and forwarding events to

downstream sinks if necessary. Channels route messages from upstream emitters

to designated sinks. Multiple implementations of messaging queues or peer-to-

peer protocols can serve as channels in event-driven architecture (Magnoni (2015),

12
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Chun et al. (2018), Mossissa & Rajaravivarma (2003)). The loosely coupled design

of EDAs enables parallelism and concurrency for scalability and high throughput

in distributed setting Zeldovich et al. (2003), Rast et al. (2010), Dekate et al.

(2012). Moreover, it makes event-driven applications more resilient to partial

failures George-Williams & Patelli (2016), Wang et al. (2013), Sučić et al. (2011).

EDA systems also provide abstractions that hide the complexities of dis-

tributed computing that facilitate programmer productivity (Gerstlauer & Gajski

(2002), Kansal et al. (2013), Daleiden et al. (2020)). These abstractions allow

developers to focus on application development and innovation, instead of writing

custom, low-level operations code to poll, filter, and route events. Deriving from

these abstractions, microservice architectures (Thönes (2015)) encapsulate event

topics, code, and data in applications that provide fine-grained modularity and

scalability (Newman (2015), Dragoni et al. (2017)).

In an IoT context, this microservice-based approach requires workload schedul-

ing services for IoT devices at the network edge. In this dissertation, we discuss

how such architectures streamline the communications between IoT devices and

services, achieve scalability, and provide useful abstractions to programmers.

13
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2.2 Serverless Computing

Taking inspiration from physics and economics, elasticity in cloud comput-

ing (Herbst et al. (2013)) features the ability of a cloud system to load and unload

resources on demand in the execution process. This is realized by monitoring

one or more representative metrics (e.g. CPU/memory usage) and provisioning

resources correspondingly as workloads alter them (Galante & de Bona (2012),

Al-Dhuraibi et al. (2017), Lehrig et al. (2015)). Elasticity is useful in IoT settings

because IoT applications generate workloads that fluctuate substantially across

different execution phases.

Cloud-based elasticity has fueled remarkable innovations that facilitate com-

puting resource virtualization, isolation, scaling, and sharing. Cloud users “rent”

containerized resources while sharing the underlying physical resources on a pay-

per-use basis in exchange for availability guarantees specified via service level

agreements (SLAs). Uniquely, cloud systems can be configured to add and re-

move (i.e. auto-scale) resources and services automatically, based on the dynamic

resource requirements and service needs of executing applications (McGrath &

Brenner (2017), Anderson et al. (1995), Baldini et al. (2017)). Furthermore, such

elasticity can be useful for enabling workload placement and autoscaling across

IoT deployments to use their limited resources most efficiently.
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It is challenging, however, to configure complex IoT deployments for applica-

tion use, and to leverage the auto-scaling that clouds offer. This is the reason why

currently clouds are used more for enterprise services (object stores, databases, ap-

plication servers, etc.) than for IoT applications. To make clouds more amenable

to IoT use, cloud providers have started to offer programming and execution en-

vironments (e.g. AWS (n.d.a), Int (n.d.), Azu (n.d.b), Bos (n.d.), General Electric

(n.d.)) that obviate the need for server configuration and that connect clouds to

the network edge, under the serverless moniker (Jonas et al. (2017), Hellerstein

et al. (2018), Wang et al. (2018)).

Serverless platforms attempt to automate and simplify event-driven comput-

ing (AWS (n.d.b), Azu (n.d.a), Goo (n.d.), Apa (2021), Ope (2021), Fis (2021), Fn

(2021)). Serverless (also referred to as Functions-as-a-Service (FaaS)) was initially

developed by Amazon Web Services (AWS) (via a platform called Lambda AWS

(2021b)), to automatically configure, manage, and scale web and cloud applica-

tions to significantly simplify cloud use. Using the serverless model, application

developers upload arbitrary computations in high-level languages as stateless func-

tions to cloud-hosted, serverless platforms, where functions are triggered automat-

ically by the cloud in response to updates from other cloud services (e.g. stor-

age, queues, notification services, and API gateways, among others). Serverless

functions typically execute under a time-bound (e.g. 15 minutes) and allocated
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memory size (e.g. 3 GB) or else the platform will terminate the function. In

public clouds, users pay a small fee for the resources their functions use during

execution, resulting in very low-cost cloud use. Although now available from all

public cloud providers and as open-source for private cloud systems (Mic (n.d.),

GCP (2021), Apa (2021), Ope (2021), Fis (2021), Fn (2021)).

Leveraging event-driven architectures, serverless systems provide abstractions

for functions that are triggered by events from external network requests or the

use of internal cloud services. This programming model significantly improves

agility and productivity allowing the programmer to focus on application instead

of provisioning and operations. In our work, we leverage serverless computing for

IoT deployments and as an infrastructure to enable the scheduling and placement

of IoT applications across edge and cloud systems.

2.3 Edge Computing and Edge Clouds

The trend of pervasive computing led by wide IoT adoption has extended to

diverse areas, such as manufacturing, agriculture, automotive, retail, etc., that

make cloud-native applications more latency-sensitive depending on computing

workloads. The former requires powerful computing and memory resources, which

are normally not available in situ (“in the wild”) across deployments of resource-
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restricted IoT devices. Meanwhile, the latter requires high bandwidth and fast

networking that are often unavailable in IoT wireless settings. Both factors affect

IoT applications often leading to either skyrocketing operational cost for end-to-

end systems or the violation of service-level agreement (SLA) from users (Singh

& Viniotis (2016), Li et al. (2012)).

Since the centralized cloud computing architecture is unable to meet the la-

tency and connectivity requirements of many IoT applications, recent distributed

systems advances place computing and storage “near” IoT devices, at the “edge” of

the network. Edge systems or edge clouds embed increasingly capable (cloud-like)

services and application functionality within networks of resource-constrained de-

vices and sensors (Shi et al. (2016), Shi & Dustdar (2016), Satyanarayanan (2017),

Vaquero & Rodero-Merino (2014), Yi, Hao, Qin & Li (2015), Yi, Li & Li (2015).

Such co-location of processing infrastructure and IoT devices significantly reduces

the latency between data acquisition and device actuation, enables the extension of

device capability via local offloading, and alleviates the cost, power consumption,

and congestion of network use versus the centralized, cloud-directed model (Has-

san et al. (2018), Bonomi et al. (2012), Simanta et al. (2012), Verbelen et al.

(2012)).

One key challenge with building edge clouds is the efficient management of

dynamically changing resource demand by applications. Intelligent scheduling
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mechanisms are needed to construct and adapt deployments that can respond to

dynamically changing resource performance and application demand. Scheduler

monitor, store, and interpret key performance indicators (KPIs) from real-time

execution, including CPU usage, memory footprint, network I/O or server tem-

perature, etc. (Cao et al. (2019), Kumar et al. (2013)). Using this data, schedulers

adjust and adapt resource use and application placement across the heterogeneous

devices and tiers (sensors-edge-cloud) of IoT deployments, to reduce latency, en-

ergy use, and end-to-end application time. Examples of schedulers for multi-tier

deployments that operate in this way include Yang et al. (2019), Tuli et al. (2020),

Kaur et al. (2019).

Edge clouds also deliver numerous services and functionality to IoT applica-

tions, including those for data analysis and machine learning. Edge-based data

analytics and machine learning are prevalent in IoT systems, particularly in real-

time streaming environments, featuring facial recognition in surveillance (Muslim

& Islam (2017a)) and quality control in manufacturing (Feng et al. (2020)). These

computation-intensive data analytics applications are offloaded from IoT devices

to the edge cloud based on the workloads, network traffic, and server saturation.

The offloading brings more computing power from the edge cloud to expedite data

analytics and machine learning applications, which is critical to provide feedback

in real-time settings. Other uses include applications on mobile devices, VR/AR
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glasses, autonomous vehicles, and smart cities (Zhang et al. (2017), Liu et al.

(2019), Filipponi et al. (2010)). In these scenarios, the edge cloud reduces the

volumes of transfer data and, subsequently, the latency and transmission cost.

For complex applications that require massive computing power (e.g. Convolu-

tional Neural Network (CNN) training), the public cloud offers better comput-

ing resources that offset the latency caused by transfer time, so that an optimal

scheduling scheme depending on workload is the key to efficient edge cloud sys-

tems.

2.4 Wide Area Analytics

As the convergence of sensing and automation with physical objects becomes

ubiquitous, data is increasingly collected from and distributed across the globe

and requires efficient data composition and wide-area analytics to perform analy-

sis, actuation, and control at the edge of the network. In addition, the large-scale

datasets are replicated across different data centers to improve scalability, robust-

ness, and fault-tolerance. As a result, by spanning multiple tiers (sensors, edge,

cloud) and the wide-area, IoT deployments have become vastly heterogeneous and

challenging to manage.
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Generally, two approaches are used to simplify wide-area data analytics: batch

processing (e.g. MapReduce (Dean & Ghemawat (2008))) and streaming (e.g.

Apache Kafka (Kaf (2021))). Batch processing periodically groups dataset into

sizable batches and transfer them from storage on-site to data centers for ana-

lytics, in which the grouping of data reduces the total round-trip time compared

to streaming processing (Shahrivari (2014)). So that, it keeps IoT devices from

executing heavy-duty tasks, whereas the remote data centers execute the most

computing tasks in exchange for timeliness. Stream processing generates, ana-

lyzes, and stores real-time sensing data on the IoT devices and edge cloud for

timely delivery. One of the drawbacks of this scenario is that it requires abun-

dant computing and storage resources on embedded devices. A combination of

these two processing scenarios, taking both timeliness and resource efficiency into

account, presents a promising solution to this trade-off (Pfandzelter & Bermbach

(2021)).

The research on wide-area analytics in a geo-distributed network merges edge

computing, computational offloading, and application-aware network that balance

between responsiveness and accuracy in the system. Many algorithms and frame-

works are proposed for more efficient and energy-constrained computational of-

floading mechanism (Fahim et al. (2013), Flores et al. (2018), Shiraz et al. (2015)).

A variety of real-world applications, including distributed video analytics, Aug-
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mented Reality / Virtual Reality, smart grid, and appliances, can be optimized by

the advance in this field to improve availability and efficiency (Wang & Li (2017),

Zhang et al. (2018), Hung et al. (2018)).

This research lays the groundwork for building scalable, resilient, and geo-

distributed IoT systems with intelligent scheduling capability: Event-driven ar-

chitectures enable the system to elegantly scale and decouples different compo-

nents of complex IoT applications; serverless computing provides a modular and

provisioning-free programming model for programmers; edge clouds provide in

situ computing support for low latency data processing and analysis. In this dis-

sertation, we investigate how to combine these advances in novel ways to provide

intelligent scheduling for IoT applications at the network edge.
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Fast, Low-Cost Hyperparameter
Search for Machine Learning
Models

We are more often frightened than hurt, and we suffer more in imagination

than in reality.
—Seneca

In this chapter, we investigate tuning machine learning models efficiently using

the large-scale event-driven system. Since the training and inference of machine

learning models are typically computation-intensive, event-driven systems have

not been widely applied in this field with a concern that they come with high

cost and overhead. Meanwhile, hyperparameter tuning is central to the machine

learning process, where hyperparameters affect the speed of training and the qual-

ity of the model. Some examples of governing hyperparameters are learning rate,

Parts of this section are adapted, with permission, from IEEE CLOUD 2019 Zhang et al.
(2019)
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number of hidden layers, activation functions, etc. They are different depending

on the model structure and training datasets, and the space of applicable hy-

perparameter combinations is typically very large. Given the parameter sweeps

are embarrassingly parallel, we believe the event-driven serverless computing is

suitable for hyperparameter tuning ahead of model training. To realize this po-

tential and evaluate the overhead, we design and develop a hyperparameter tuning

system, called Seneca, based on serverless computing.

Seneca implements, packages, and deploys machine learning applications as

stateless functions to AWS Lambda. It then orchestrates exhaustive evaluation

of specified hyperparameter settings to identify the best performing model for

a given dataset by comparing error and accuracy across models. We consider

prediction accuracy (as opposed to explanatory power) as the scoring metric (mean

squared error for regression and accuracy percentage for classification), to avoid

overfitting. Users present Seneca with their application, a range of values for each

hyperparameter (or the default can be used), and a representative dataset. Seneca

produces, tests, and evaluates models for all combinations of hyperparameters and

returns to the user the set of parameters or the model itself that produces the

best cross-validation score. Users can employ this model for other datasets (with

Seneca if desired) without retraining the model to amortize the cost of Seneca

further.
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We deploy Seneca on AWS Lambda and evaluate its tuning performance, cost,

and memory use for five machine learning applications and datasets. We find that

Seneca is fast, inexpensive, and effective for model construction and comparison.

Seneca is also able to identify automatically the best memory configuration for

each application, further lowering its cost by 10-35%. Relative to execution in

AWS EC2, Seneca enables average speedups of 294x for each additional dollar

spent for the applications and datasets we consider. We intend to make Seneca,

its applications, and its datasets publicly available in foreseeable future. In the

following sections, we next overview our design and implementation of Seneca and

then present our empirical methodology and results.

3.1 Seneca

The Seneca pipeline consists of packaging, deployment, function optimization,

and hyperparameter tuning. Figure 3.1 shows the architecture of Seneca. In the

upper-right-front, we show the three inputs that Seneca expects from its users:

(A) a hyperparameter configuration file, (B) a dataset URL, and (C) the lambda

function of the machine learning application. The configuration file specifies a set

of values for each hyperparameter that the application expects. Seneca creates

the Cartesian product of all options in this configuration as the search space. The
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dataset URL refers to a valid dataset stored in the AWS Simple Storage Service

(S3).

Figure 3.1: The Seneca Architecture

Based on the specified machine learning application, Seneca automatically

builds and deploys an AWS Lambda application by launching a Docker container

that mirrors the AWS Lambda execution environment, checks and installs the

machine learning application and any libraries it requires compresses the applica-

tion and uploads it to S3 (a work-around for the 10MB AWS Lambda function

size restriction). Seneca constructs an AWS Lambda function from a template
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that, when executed, will download the dataset and split it into a training and

testing set, and construct, test, and evaluate a model using the application and

set of hyperparameter values passed in by Seneca as arguments. Users can specify

the train/test split ratio that should be used by Seneca; the default is 80%/20%

for classification tasks. The function returns a testing score. Upon completion of

this process, the container deploys the function to AWS Lambda using the AWS

Command Line Interface and the developers’ credentials.

3.1.1 Optimizing Memory Use

The cost of using AWS Lambda (i.e. compute charge) is the billed duration

(execution time rounded up to the nearest 100ms) multiplied by the allocated

memory of each invoked function. One goal of our work is to optimize the memory

use of these applications to reduce cost and to investigate the trade-offs of doing

so.

Currently, allocated memory for a Lambda function can be set from 128MB

to 3008MB in increments of 64MB. AWS documentation states that Lambda

allocates CPU to functions corresponding to allocated memory size, as is done for

general purpose AWS EC2 instance types.

To evaluate the relationship between memory, CPU, and cost, we analyze a

3-D matrix multiplication serverless benchmark using AWS Lambda. We config-
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Figure 3.2: The relationship between allocated memory and reciprocal of billed
duration, which represents compute power for a compute-bound Lambda function.

ure different functions to use each of the 46 possible allocated memory options.

Figure 3.2 shows the relationship between allocated memory (x-axis) and recipro-

cal of billed duration (y-axis). Figure 3.3 shows the relationship between memory

size (x-axis) and compute charge (y-axis). We observe that for this benchmark,

billed duration plateaus after 1600 MB, at which point compute charge increases.

That is, we achieve no further execution time benefit (only cost increase) after

this point.
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Figure 3.3: The relationship between allocated memory and compute charge for
a compute-bound Lambda function.

We use this relationship within Seneca to optimize its cost (compute charge)

via an extension that enables it to automatically identify the appropriate setting

for allocated memory for each application. However, instead of exhaustively test-

ing all 46 possible memory configurations as we did for the matrix benchmark,

which may be costly, Seneca employs the heuristic outlined in Algorithm 1.

The Seneca optimizer first configures and invokes the function using a user-

defined payload. From this run, Seneca obtains the maximum memory used by

the function as reported by AWS Cloudwatch, and uses it as the starting point
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in its search. Seneca then defines two double-ended queues (deque) of length N,

to store allocated memory and compute charge data of different invocations.

While the currently allocated memory is less than or equal to 3008 MB, the opti-

mizer reconfigures and invokes the function using the next increment for memory

allocation. It calculates the compute charge for each invocation using currently

allocated memory and billed duration.

We employ two exit conditions. The first is when the compute charge mono-

tonically increases across deque. The second is when the increase in slope is greater

than a threshold. When the optimizer finds that both conditions hold, it pops

the left-most value from deque and configures the function to use that value for

allocated memory for all future invocations. If these two conditions can not be

satisfied during the search, the allocated memory will be configured as the mem-

ory size that results in minimal compute charge within the deque. After extensive

experimentation, we find that N = 5 and a slope threshold of 1 works best, but

these values are configurable. In addition, this optimization can be turned on or

off via a command-line argument to Seneca.

3.1.2 Tuning Process

To facilitate parallel function invocation, Seneca integrates Celery. Celery is

an asynchronous task queue that uses distributed message passing. Celery workers
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Algorithm 1: Seneca Optimizer Heuristic
Data: Typical payload
Result: Optimal allocated memory

1 Find memory used by payload as starting point;
2 Define deque for allocated memory & compute charge;
3 while allocated memory ≤ 3008 MB do
4 if compute charge monotonically increases in deque & slope ≥

threshold then
5 popleft from deque;
6 configure allocated memory as optimum;
7 exit();
8 else
9 increase allocated memory by 64 MB;

10 probe lambda function;
11 append memory and compute charge to deque;
12 end
13 end

are processes that take tasks from the queue, execute the tasks with the arguments

specified, and store the result that is returned in a database (we use Redis in our

prototype).

Based on the configuration file, Seneca creates and enqueues a list of pay-

loads (function arguments) for each combination of hyperparameter values. The

Seneca celery workers invoke the application’s Lambda function by each payload

for model construction. Upon function termination, the worker records a score for

the hyperparameter configuration in the database. When the queue is drained and

all workers have completed, Seneca extracts and reports the best score, configu-
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Application Description
Prophet Time series decomposition and prediction
Multi-Regression Multiple linear regression/prediction of time series
XGBoost Regression and classification by gradient boosting
SVC Classification based on support vector machine
Neural-Net Classification by layered artificial neural network

Table 3.1: Machine learning applications used to evaluate Seneca.

ration, and model from the database. Users can then use the model for inference

given other datasets without retraining to amortize the time/cost of Seneca.

We assume that the dataset supplied to Seneca by the user is representative of

datasets on which the resulting model will be used. In addition, we use prediction

error as the score (i.e., mean squared error for regression and accuracy percent-

age for classification) instead of R2, which describes explanatory power, to avoid

overfitting. As part of future work, we are considering using multiple datasets and

ranges of hyperparameter values to preclude the need for users to specify them

and to consider a wider range of values.

3.2 Evaluation

In this section, we empirically evaluate Seneca in terms of machine learning

(ML) model output quality, performance, and cost. We first overview the ML

applications that we consider and our experimental methodology. We then present

our results.
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Hyperparameter Default Tuning options
growth linear [linear, logistic]
changepoint prior scale 0.05 [0.05, 0.5]
holidays prior scale 10 [1, 5, 10]
seasonality prior scale 0.5 [0.1, 0.5]
fourier order 10 [5, 10, 15, 20]
seasonality mode additive [additive, multiplicative]
interval width 0.8 [0.5, 0.8]

Table 3.2: Hyperparameters Seneca considers for Prophet.

Hyperparameter Default Tuning options
max depth 3 [3, 4]
learning rate 0.1 [0.1, 0.01]
N estimators 100 [100, 400]
objective reg:linear [reg:linear, rank:pairwise]
booster gbtree [gbtree, gblinear, dart]
min child weight 1 [0.1, 1]
scale positive weight 1 [1, 2]
base score 0.5 [0.5, 10]

Table 3.3: Hyperparameters Seneca considers for XGBoost.

3.2.1 Benchmarks and Training/Testing Datasets

The ML applications that we use to evaluate Seneca are described in Table 3.1.

Prophet, Multi-Regression, and XGBoost are regression applications; XGBoost,

SVC, and NN are classification applications (XGBoost implements both regression

and classification tasks). The regression applications compute the mean square

error (MSE) as 1
n

∑n
i=1(Yi−Ŷi), where Ŷi is the ground truth, Yi is model prediction

and n is the number of data points. The applications return the average MSE

across cross validations. The classification applications compute and return a
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Hyperparameter Default Tuning options
C 1.0 [0.5, 1.0]
kernel rbf [rbf, linear, poly, sigmoid]
degree 3 [3, 4]
gamma auto [auto, scale]
coef0 init 0.0 [0.0, 1.0]
probability False [False, True]
tol 1e-3 [1e-3, 1e-4]
decision function shape ovr [ovo, ovr]

Table 3.4: Hyperparameters Seneca considers for SVC.

Hyperparameter Default Tuning options
activation relu [identity, tanh, relu]
solver adam [lbfgs, sgd, adam]
learning rate constant [constant, invscaling, adaptive]
learning rate init 0.001 [0.001, 0.0001]
power T 0.5 [0.1, 0.5]
tol 1-e4 [1e-4, 1-e5]
n iter no change 10 [10, 20]

Table 3.5: Hyperparameters Seneca considers for NN.

classification accuracy percentage, which is calculated as 1
n

∑n
i=1 1(Yi = Ŷi), where

Yi is the prediction class, Ŷi is the true class, n is the number of samples, and 1(x)

is the indicator function.

Prophet (Taylor & Letham (2017)) is an open-source time series analysis li-

brary developed by Facebook. The input dataset we consider is a time series of

view counts of Peyton Manning’s Wikipedia page (Dec. 2007–Jan. 2016). The

dataset exhibits both seasonality and a holiday effect (e.g. around super bowl

games). We use the first 6 years as the training set and the last 2 years as the
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testing set. We use a cross-validation horizon (sliding window) of 1-year and a

period (sliding pace) of 180 days. As such, Seneca performs three cross-validations

for a 2-year test range.

Prophet expects multiple hyperparameters: growth specifies linear or logistic

trend model growth and prior scale indicates the strength of the sparse prior prob-

ability. There are three prior scale hyperparameters for change point, holidays,

and seasonality. Since Prophet uses a Fourier sum to estimate seasonality, the

fourier order is the number of terms in the partial Fourier sum. Seasonality mode

indicates that the effect of seasonality is either multiplicative or additive. Finally,

the width of uncertainty intervals is set using interval width.

Each application has default hyperparameter settings (i.e. default values or

those recommended by the application maintainer). The hyperparameters, their

default, and optional values that we consider for Prophet are listed in Table 3.2.

Multi-Regression is a regression application developed by others as part of an

Internet-of-Things (IoT) project (Krintz et al. (2018)) (which has been extended

from linear regression described in the citation to multiple linear regression by

the authors of this prior work). The application uses multiple linear regression

models to predict outdoor temperature from the processor temperature of single

board computers (SBCs). The training dataset consists of eight input time series
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(one per SBC, each containing 5-minute measurements) from Apr. 5th to Dec.

10th, 2018.

Hyperparameter configuration for Multi-Regression is a subset of input SBC

time series. Seneca considers all 2N − 1 non-empty potential subsets (for N input

time series). For this application, the default parameterization is the full set

of input time series (8 in this case). The test dataset is a time series of the

outdoor temperature (ground truth) over the same period. The application makes

predictions for each of these outdoor temperatures using the regression coefficients

constructed from the training set for each new value in the test set.

XGBoost (sen (2021)), SVC (Hsu et al. (2003)), and NN (Haykin (1994))

are the classification applications that we consider. XGBoost (sen (2021)) is an

open source framework for gradient boosting, which performs both regression and

classification. The hyperparameters and their default values are listed in Table 3.3,

their definitions can be found in (xgb (2021)). SVC uses support vector machines

to implement classification as part of the libsvm (Chang & Lin (2011)) library.

The hyperparameters and their defaults that Seneca uses for SVC in this study

are listed in Table 3.4 with definitions in (svc (2021)). NN is a machine learning

application leveraging neural network to identify patterns from an input dataset.

Here we implement a feed-forward multi-layer perceptron model (Glorot & Bengio
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(2010)) for classification. The hyperparameters and their defaults for NN are listed

in Table 3.5 with definitions in (nnp (2021)).

For these classification applications, we use a labeled dataset for training,

testing, and evaluation from another IoT project collaborating with Lindcove Re-

search and Extension Center (LRE (2021)). The dataset contains measurements

of individual citrus fruit (e.g. oranges, mandarins, lemons, etc.) taken by a fruit

sorting and grading device using a large number of sensors. The measurements

(i.e. features) include size, shape, weight, color, diameter, flatness, among other

characteristics, for each fruit. The dataset has been filtered to remove correlated

features (those with an absolute value of the Pearson correlation coefficient greater

than 0.8). The dataset has been balanced by down-sampling and the resulting

dataset contains 33926 rows (individual fruit) distributed evenly across 5 targets.

Each row has 18 features. The label identifies the field from which the individual

fruit was harvested.

The applications train a model on a random subset (80%) of the data. Each

then uses this model to predict the field from which each fruit originates for the

remaining 20%. To study the impact of random data split, we consider multiple

80%/20% splits in our evaluation.
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3.2.2 Empirical Methodology

To evaluate Seneca, we measure model output quality, execution time, memory

use, and monetary cost. For output quality (prediction accuracy) our metrics are

mean squared error (MSE) for regression and percentage accuracy for classification

as described above. We score model prediction accuracy and no explanatory power

(R2) to avoid overfitting. Seneca can compare models for each type of application

using these scores because it uses the same total number of hyperparameters for

each model. Thus, the penalty function in terms of Bayesian Information Criteria

is the same. comments: BIC is based on parameters, not on hyperparameters.

We compare results for the default, best (Seneca’s recommendation), and

worst-performing hyperparameter configurations for each application type. Seneca

computes all possible combinations of the hyperparameter settings specified in the

configuration to extract each of these results. default represents results that a

novice or first-time user might experience when using these applications as a “black

box.” The worst shows how bad the results can be when parameters are poorly

tuned. Finally, the best is the upper bound on what is possible from tuning the

hyperparameters for the values and datasets specified (e.g. using expert knowledge

or Seneca).

Seneca deploys the applications automatically over AWS Lambda and extracts

execution time and memory use from AWS CloudWatch logs. We compute mon-

37



Chapter 3. Fast, Low-Cost Hyperparameter Search for Machine Learning Models

etary cost using the AWS Lambda pricing model. Each function downloads the

training/testing dataset of the application from AWS S3 upon function invoca-

tion. We do not consider the cost of dataset storage in our cost computations,

because it is very small. For XGBoost that makes most S3 requests among others,

the cost is 2.5 cents for storage and request combined in a month.

We also evaluate Seneca’s automatic memory optimization capabilities. To do

so we compare the execution performance and cost of the applications using the

maximum allocatable memory size to the performance and cost when run with

Seneca’s automatically determined memory size. Even though maximum memory

used reported by AWS CloudWatch can fluctuate, we have verified that the op-

timized allocated memory is sufficient for all hyperparameter configurations to

complete successfully. We have also verified that the memory requirements across

hyperparameter settings do not vary significantly. We plan to consider applica-

tions for which hyperparameter settings require different maximum memory sizes

as part of future work.

3.2.3 Application Efficacy

We first evaluate the quality of the output generated by each ML application

when Seneca determines the hyperparameter settings. We first show the results

for the regression applications in Table 3.6. The first row of data is the number
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Prophet Multi-Regression XGBoost
# of Combinations 384 255 768

Default MSE 0.284 11.446 0.118
Worst MSE 1.266 43.752 8.981

Best MSE (Seneca) 0.220 9.621 0.065

Table 3.6: Hyperparameter configuration count and MSE for the default, best
(Seneca’s recommendation), and worst configurations for the three regression ap-
plications. For the MSE values (rows 3-5), lower is better.

of hyperparameter configurations that Seneca considers for each. The last three

rows show the MSE for the default, worst, and best performing (Seneca’s recom-

mendation) hyperparameter configuration (lower is better). Seneca reduces MSE

by 22.56%, 15.94%, and 44.88%, for Prophet, Multi-Regression, and XGBoost,

respectively, for the datasets and training methodologies that we consider. Com-

pared to the worst case, Seneca reduces MSE by 82.62%, 78.01%, and 99.28%,

respectively.

Figure 3.4 shows the MSE box plot for the hyperparameter search space for

these applications (lower is better). The central rectangle covers the interquartile

range (IQR), which is defined as the range of data points from the first quartile

to the third quartile (Q3−Q1). The upper whisker extends to the last datum less

than (Q3+2∗IQR) and the lower whisker extends to the first datum greater than

(Q1− 2 ∗ IQR). The data points beyond the whiskers are considered outliers and

are plotted as colored diamonds. The red notch identifies the MSE that results

from training the model using the default settings of the hyperparameter. The
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Figure 3.4: Box plot of MSE from the three regression applications across the
hyperparameter tuning search space. The red notch shows the MSE from the de-
fault settings. The colored diamonds are outliers beyond two interquartile ranges.
Seneca selects the points indicated by blue triangle. Lower MSE values are better.

blue triangle identifies the MSE of Seneca. The difference between the red notch

and blue triangle is the improvement brought about by the use of Seneca, over

using the default parameter setting. The plot also shows that Prophet and Multi-
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80%-20% XGBoost SVC NN
# of Combinations 768 512 432
Default Accuracy 95.65% 21.77% 79.53%
Worst Accuracy 0.00% 14.08% 19.15%
Best Accuracy (Seneca) 98.11% 40.81% 83.32%

Table 3.7: Accuracy for the default, best (Seneca’s recommendation), and worst
hyperparameter configurations for the three classification applications using 80%
of the data to train and 20% of the data as a test set. Higher accuracy is better.

Exec Time (Secs) Memory Use (MB) Best Accuracy
XGBoost_1 1244.42 (32.58) 228.74 (15.92) 98.11%
XGBoost_2 1280.56 (38.47) 225.10 (19.67) 97.70%
SVC_1 116.73 (1.11) 224.44 (19.64) 40.81%
SVC_2 115.33 (3.96) 228.55 (16.20) 44.12%
NN_1 116.10 (6.05) 328.84 (16.40) 83.32%
NN_2 121.29 (2.18) 327.57 (16.44) 83.92%

Table 3.8: The mean and standard deviation (in parentheses) for execution time
and memory use (across 30 runs), and best accuracy score for the classification
applications using two different random splits.

Regression have a significant number of outliers, indicating that a comprehensive

search is critical to finding the best configurations.

We next empirically evaluate Seneca’s model output quality for the three clas-

sification applications: XGBoost (classification), SVC, and NN. Table 3.7 presents

the accuracy percentage (higher is better) for each application (3 right-most

columns) for the default, worst, and best (Seneca’s recommendation) hyperpa-

rameter tuning configurations (data rows 2-4). The first row reports the num-

ber of configurations that Seneca considers in its search space. Using a random

80/20 (train/test) percent split, Seneca increases accuracy by 2.46%, 19.04%, and

3.79%, for XGBoost (classification), SVC, and NN applications, respectively. Be-
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Figure 3.5: Box plot of accuracy reported for three classification applications
across the hyperparameter search space. The red notch indicates the accuracy that
results from default hyperparameter values. The diamonds are outliers beyond two
interquartile ranges. Seneca selects the points indicated by blue triangle. Higher
accuracy is better.

cause XGBoost and NN use a well-tuned default parameter set that works well

for most datasets, Seneca provides only modest improvements. Compared to the
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worst case, however, Seneca improves accuracy by 98.11%, 26.74%, and 64.17%,

respectively.

Figure 3.5 presents the accuracy box plot across the hyperparameter search

space for these applications (higher is better). The central rectangle covers the

first-third quartile (Q3 − Q1) and the whiskers span from (Q3 + 2 ∗ IQR) to

(Q1 − 2 ∗ IQR). The red notch indicates the accuracy metric from the model

trained using the default settings and colored diamonds show outliers beyond the

whiskers. The blue triangle at the top identifies the accuracy percentage reported

by Seneca.

The model output quality results across applications show that prediction

accuracy (for a given dataset) is dramatically affected by hyperparameter settings.

Predictably, the default settings are near the “good” end of the spectrum, however,

Seneca can find the parameterization that improves output quality over the default

settings in each case.

To investigate the potential impact of Seneca’s 80/20 percent data split for the

classification applications, we next evaluate the quality of the output generated

from each when we consider different 80/20 random splits. For that purpose, we

run Seneca 30 times to obtain execution time, memory use, and best accuracy

score. We report the mean and standard deviation (in parentheses) for execution

time and memory use across runs, and the best accuracy score in Table 3.8.
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Each pair of rows shows the results for two different random splits. Our earlier

results use input 1; this table adds results for a second, 80/20 random split of the

input (we also considered other random splits, which we omit for brevity, and the

results are similar). The performance and Seneca score are similar across splits.

This result indicates that for these applications, users can repeatedly employ the

recommended models for inference on other datasets or splits, to amortize the cost

of using Seneca.

3.2.4 Cost Analysis

We next analyze the monetary cost incurred by Seneca with and without

Seneca’s memory optimization. We consider the use of the maximum allocatable

memory (3GB) and Seneca’s automatic detection and configuration of allocated

memory. This optimization requires that Seneca intelligently probe to determine

the best memory size to use. We report the cost of these probes as Optimizer

Cost.

Table 3.9 shows the results with and without the Seneca memory optimization

for each of the five applications. The first two rows show the results when we use

the maximum allocated memory for the Lambda functions. We present execution

time in minutes (row 1) and monetary cost in cents (row 2). Rows 3–6 show

the performance and cost when using Seneca’s memory optimization. Exec time
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Prophet MR XGBoost SVC NN
Exec time max (mins) 7.78 2.71 20.85 0.87 2.06
Cost max (cents) 22.16 7.58 59.92 2.21 5.92
Exec time opt (mins) 12.60 4.09 29.07 2.08 3.06
Optimizer Cost (cents) 2.02 1.27 0.05 0.04 0.04
Cost opt (cents) 17.81 4.47 39.76 1.38 4.39
Total Cost (cents) 19.83 5.74 39.81 1.43 4.44
Savings (cents) 2.33 1.84 20.11 0.78 1.48
Savings (%) 10.49% 24.23% 33.57% 35.42% 24.98%

Table 3.9: Seneca Memory Optimization: Rows 1–2 show the execution time
and monetary cost of using Seneca without its memory optimization (allocated
memory = 3G). Rows 3-6 is the execution time and cost, respectively, when using
the Seneca memory optimizer. Rows 7-8 show the savings in cents and percentage,
respectively.

opt is the execution time in minutes. Optimizer Cost is monetary cost in cents

of Seneca’s memory size detector. Cost opt is the monetary cost in cents of

using Seneca’s memory optimizer. Total cost is the overall cost of using Seneca

to perform hyperparameter tuning for these applications and datasets (sum of

Optimizer Cost and Cost opt). The last two rows show the monetary savings in

cents (row 7) and percent savings (row 8) of using Seneca’s memory optimization.

Seneca’s memory optimization reduces the monetary cost of its use from 10–35%

(25% on average).

Table 3.9 illustrates two important points. First, using AWS Lambda, full hy-

perparameter space exploration is inexpensive in absolute dollar-cost terms, and

Seneca’s automatic memory size optimization decreases this cost further. Sec-

ond, memory optimization reduces cost but can increase the total execution time
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Prophet Multi_Reg XGBoost SVC NN
EC2 exec time (mins) 73.79 21.99 359.87 7.74 15.92
EC2 total cost (cents) 8.30 4.20 25.00 4.20 4.20
yield 50.86 340.23 83.36 0.00 1875.56
ideal yield 25.43 170.12 41.68 0.00 937.78

Table 3.10: Seneca VS EC2 cost analysis. Execution time (mins) and cost (cents)
for executing the applications serially in EC2 (t2.medium). Rows 3–4 show yield –
the additional speedup that Seneca can achieve for each additional dollar spent for
these applications. The yield for SVC is 0 (infinite) because Seneca costs less than
EC2 in this case. Ideal yield shows the yield when we execute the applications in
parallel (assuming 2x perfect parallelism).

for parameter search since the functions must operate under additional memory

constraints (versus using the maximum allocated memory). In addition, this cost

fluctuates depending on the quality of the Lambda execution environment (num-

ber of CPUs, Linux container overhead, multitenancy, etc.). We omit this data

due to space constraints but analyze it here. The average absolute difference in

cost across the five applications (30 runs) is $0.05. Moreover, we have verified

that the highest cost of execution under optimized memory is still cheaper than

the lowest cost of execution under maximum memory for all five applications.

Finally, we compare the cost of Seneca to AWS Elastic Compute Cloud (EC2)

use. We measure the execution time of Seneca using the least expensive EC2

instance type in which the applications will run (t2.medium, which has 2 multi-

tenant cores and 4GB of memory). Note that EC2 instances are charged for by the

hour; Lambda charges are only imposed when functions execute. We execute the

applications serially using the instance. For this setting, Seneca enables a speedup
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over EC2 of 3.72x – 12.38x (6.51x on average). Doing so, however, imposes an

additional cost of $0.01–$0.15 over EC2 for all but SVC. Seneca costs $0.03 less

than EC2 for SVC (because SVC runs in significantly less than the next hour

boundary).

To further understand the relationship between Seneca speedup and cost when

Seneca is more expensive (but faster) than using EC2, we define yield as Y =

Tec

Tsc
/(Csc − Cec) | if Csc > Cec where Tec and Tsc are the execution time, Cec and Csc

are the total cost of EC2 instance and Seneca, respectively. For applications for

which Seneca is cheaper (e.g. SVC), we report yield as 0.00. This metric reveals

the amount of speed up that Senence can achieve for each additional dollar spent.

To understand the yield if we were to parallelize the EC2 deployment (perhaps a

more “fair” comparison), we also estimate yield for perfect parallelism (2x in our

case for the t2.medium).

We present results for this yield metric in Table 3.10 for each of the applica-

tions. Rows 1 and 2 show the average execution time (in minutes) and cost (in

cents) from using EC2 for each. Rows 3 and 4 show the Seneca yield (speedup/$).

Row 3 shows yield for serialized execution in EC2 (t2.medium instance) and row

4 shows estimated yield if we were to achieve perfect parallelism(i.e. 2x) using the

EC2 instance. On average across the four applications for which EC2 is cheaper,

Seneca achieves a yield of 294 (assuming perfect parallelism in EC2). That is,
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Seneca can provide a speedup of 294x on average, for each additional dollar spent

for these applications. We plan to compare Seneca’s cost and performance to other

EC2 instances and the AWS Elastic Container Service as part of future work.

Overall, given the AWS Lambda pricing model and its Lambda performance

variability, Seneca is still able to find the sweet spot between cost and execution

time. Thus Seneca can be used to trade-off time-to-solution for cost as desired

by users, to automatically evaluate the impact of hyperparameter settings for ML

models.

3.3 Related Work

As related work, we consider recent advances in evaluating serverless comput-

ing for different application domains, automatic deployment for serverless, and

machine learning (ML) model optimization. For the former, much work has in-

vestigated the efficacy and overhead of the serverless programming model and im-

plementations (Jonas et al. (2017), Hellerstein et al. (2018), Baldini et al. (2017),

Lin et al. (2018)). The authors identify challenges with using AWS Lambda to

train machine learning (ML) models. Our work, however, shows that it is possible

to leverage the concurrency and parallelism in AWS Lambda to perform a fast

grid search for the subset of ML applications that we consider.
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PyWren (Jonas et al. (2017)) uses serverless for different distributed computing

models. The technique abstracts away cluster management overhead and is ideal

for embarrassingly parallel jobs. ExCamera (Fouladi et al. (2017)) presents a

framework for running general-purpose parallel tasks (encoding 4K video) on a

commercial serverless platform using multithreading. Cirrus (Jonas et al. (2019))

attempts to train ML models using a parameter server and serverless functions.

The serverless framework (Ser (2021)) provides automated packaging and de-

ployment for serverless functions across clouds. GammaRay (Lin et al. (2018))

does so for AWS Lambda to insert profiling instrumentation. The serverless frame-

work uses CloudFormation (Clo (2021)) for deployment in AWS Lambda, which

introduces additional cost. The cloud infrastructure provisioning framework Ter-

raform (Ter (2021)) also provides automated deployment of functions to serverless

platforms. Seneca uses a local Docker container to avoid cost and overhead (vs

these related works), which guarantees execution compatibility for AWS Lambda.

Automated hyperparameter tuning is the focus of many projects. Google

Vizier (Golovin et al. (2017)) provides a service for black-box optimization. Op-

tunity (Claesen et al. (2014)) and Hyperopt (Hyp (2021b)) provide a Python

library for hyperparameter tuning. Hyperas (Hyp (2021a)) adds another abstrac-

tion layer to hyperopt to facilitate hyperparameter tuning for Keras. However,

49



Chapter 3. Fast, Low-Cost Hyperparameter Search for Machine Learning Models

we are not aware of any work that leverages serverless to perform hyperparameter

tuning and memory optimization in parallel for ML applications.

3.4 Conclusion

We present a new framework, called Seneca, for simplifying and expediting

the training and testing of machine learning models in AWS Lambda using low-

cost cloud services. Specifically, Seneca leverages the AWS Lambda for autoscaled

(elastic) and parallel execution of hyperparameter search and selection for machine

learning models. Users provide Seneca with the application code and libraries,

1+ datasets, and a list of possible hyperparameter settings. Seneca uses this

information to automatically configure and deploy these functions concurrently for

all possible combinations of hyperparameter values specified. Seneca returns the

best scoring model and configuration to the user for future use on other datasets.

We present the design, implementation, and cost optimization for Seneca. The

optimizer automatically optimizes function memory use to reduce the cost of AWS

Lambda use. Our empirical evaluation using multiple applications for regression

and classification shows that Seneca can quickly identify the best performing hy-

perparameter setting for the applications and datasets that we consider. We also

find that Seneca enables average speedups of 294x for each additional dollar spent
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and that its memory optimization reduces the cost of using Seneca by 10-35% for

the applications studied.
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Chapter 4

Edge-Adaptable Serverless
Acceleration for IoT Applications

It never ceases to amaze me: we all love ourselves more than other people, but

care more about their opinion than our own.
—Marcus Aurelius

In this chapter, we investigate the use of serverless computing across the edge

and public cloud deployments (i.e. in hybrid cloud settings). We develop a

scheduling system, called the Serverless TeleOperable Hybrid Cloud (STOIC),

which automatically places and deploys functions across these systems aiming to

reduce the total execution time latency (versus using either system in isolation).

We specifically target image-based, object recognition using Tensorflow (for train-

ing and inference) in this work.

Parts of this section are adapted, with permission, from IEEE PerCom 2020 Zhang et al.
(2020) and Software: Practice and Experience 2021 Zhang et al. (2021a)
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STOIC automatically places serverless functions at the edge (without GPUs)

or in public cloud instances (equipped with 1+ GPUs) using predicted solution

latency. We use the system to perform online training and inference for batches

of images from motion-triggered, camera traps that capture images of wildlife in

remote locations, with intermittent Internet connectivity.

STOIC has two placement scenarios: the first places functions only at the

runtime with the least predicted latency, whereas the second places functions

concurrently at both edge and public cloud, but then terminates public cloud

execution if/when it determines that the edge will finish sooner. The former

scenario is called Selector mode. The latter scenario, called Duplicator mode,

is useful when the cloud and/or network performance used for deployment is

intermittent or highly variable, or when executing at the edge incurs no cost or

other penalty – to ensure that progress is made. Our results show that STOIC

speeds up the total response time of the application by 3.3x versus a baseline

scenario. In selector mode, STOIC achieves a placement accuracy of 92% relative

to the optimal placement. In duplicator mode, STOIC accuracy is 95% for 2

GPUs and 97% (versus optimal) for 1 GPU cloud deployment over 24 hours.

In summary, with this research, we make the following contributions.
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• We design and implement a serverless framework that spans heterogeneous

edge and cloud systems, serving IoT requests, and leveraging GPU acceler-

ation;

• We investigate feedback control mechanisms and various analytical method-

ologies to precisely model the unstable edge and public cloud environments,

and

• We empirically evaluate the efficacy of using this extended serverless model

for machine learning applications and IoT deployments.

In the following sections, we first discuss the related work. We then present

the design and implementation of STOIC, following by our experimental method-

ology and empirical evaluation of the system and application workloads, using a

distributed serverless deployment. Finally, we present our conclusions and future

work plans.

4.1 Related Work

A significant body of work (Pu et al. (2015), Vulimiri et al. (2015), Cuervo

et al. (2010)) has explored low-latency geo-distributed data analytics and mobile-

cloud offloading – which we take as inspiration for the STOIC design. One relevant
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approach is federated learning (McMahan & Ramage (2017)), by which a com-

prehensive model is trained across heterogeneous edge devices or servers without

exchanging local data samples. Federated learning aims to address the security

and networking concerns by keeping the datasets local at devices, whereas STOIC

intelligently offloads jobs across multiple tiers of cloud infrastructure to further

reduce latency.

In addition, STOIC targets IoT systems and leverages serverless computing

and GPUs. As such, other related work includes recent advances in machine

learning infrastructure, serverless computing, GPU accelerators, and container-

based orchestration services. Hellerstein et al. (2018) and Jonas et al. (2019)

conduct a comprehensive survey on serverless computing including challenges and

research opportunities. We share the same viewpoint that the use of the serverless

execution model will grow for online training and inference applications. Ishakian

et al. (2018) provides a prototype for a deep learning model serving in a server-

less platform. Naranjo et al. (2021) provides another use case for accelerating

serverless functions by GPU virtualization in data centers. Unique in our work,

STOIC extends an existing serverless framework to support GPU acceleration and

distributed function placement across the edge and public clouds. Mohanty et al.

(2018) evaluates several serverless frameworks that use Kubernetes to manage

and orchestrate the use of Linux containers. STOIC also integrates Kubernetes
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for container orchestration, which is lightweight, flexible, and developer-friendly.

We concur that Kubernetes is a promising deployment infrastructure for serverless

computing.

Another relevant domain of related work is edge-to-cloud infrastructure en-

abling IoT device applications. Muslim & Islam (2017b) compares the processing

time of face recognition between the edge device and smartphones. It concludes

that edge devices perform comparably faster and scales better as the number of

images increases. We agree with this conclusion, and as such, we design STOIC to

offload image processing workloads to both edge clouds and public clouds. Teer-

apittayanon et al. (2017) proposes a distributed deep neural network that allows

fast and localized inference at the edge device using truncated layers of a neural

network. Lv et al. (2019) defines edge cloud offloading as a Markov decision pro-

cess (MDP) whose objective is to minimize the average processing time per job.

Based on this setting, it provides an approximate solution to MDP with a one-

step policy iteration. Similar to this approach, Paščinski et al. (2017) proposes

a Global Cluster Manager for orchestrating network-intensive programs within

Software-Defined Data Centers (SDDCs) targeting high Quality of Service (QoS)

and, further, Kochovski, Drobintsev & Stankovski (2019) classifies available cloud

deployment options by a stochastic Markov model, namely Formal QoS Assur-

ances Method (FoQoSAM), to optimize the automated offloading process. Due
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DECENTER HCL-BaFog STOIC
Node Selection FoQoSAM MultiChain Dynamic Feedback Loop
Orchestration Kubernetes Docker Swarm Kubeless

Quality of Service latency/throughput/availability latency/availability latency/availability
Trust Mgmt Smart Contracts Blockchain Nautilus
Application Video Streaming Sensor Data Sharing Image Recognition

Table 4.1: The comparison table of DECENTER, HCL-BaFog and STOIC.

to its practical utility, such a method can guarantee that QoS requirements are

satisfied. Kochovski, Gec, Stankovski, Bajec & Drobintsev (2019) proposes a fog

computing platform (DECENTER) and a trust management architecture based

on Smart Contracts. Related to this work, Cech et al. (2019) develops an architec-

ture (HCL-BaFog) by the blockchain functionality to share sensor data. Table 4.1

summarizes the properties of DECENTER, HCL-BaFog, and STOIC. These works

are complementary to STOIC and we are considering how to incorporate them

into the system as part of future work.

Also complimentary to STOIC, are tracing, testing, repair, and profiling tools

(which STOIC can leverage) for serverless systems. Multiple works track causal

dependencies across distributed serverless deployments for use in optimization,

placement, and data repair (Lin, Bakir, Krintz, Wolski & Mock (2019), Lin, Krintz

& Wolski (2019), Lin et al. (2018), AWS (n.d.c)). FaaSProfiler (Shahrad et al.

(2019)) integrates testing and profiling within a FaaS platform. Xiao et al. (2018)

proposes a security solution that applies reinforcement learning (RL) to provide

secure offloading to the edge nodes to prevent jamming attacks. These related
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Figure 4.1: The STOIC Architecture

systems can be combined with STOIC to provide a robust serverless ecosystem

for distributed IoT devices.

4.2 STOIC

To leverage hardware acceleration and distributed (multi-cloud) scheduling

within a serverless architecture, we have developed STOIC, a framework for dis-
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tributing and executing analytics applications across multi-tier IoT (sensing-edge-

cloud) settings. Specifically, STOIC optimizes the end-to-end process of pack-

aging, transferring, scheduling, executing, and the result retrieval for machine

learning applications in these settings.

Figure 4.1 shows the distributed components of STOIC. At the edge, STOIC

gathers application input data, determines whether the lower application latency

will be achieved by processing the data on the edge or in the cloud, and then

actuates the application’s computation (with the necessary data) using the “best”

choice. The public cloud component manages whatever cloud resources are needed

to receive the data from the edge, trigger the computation, and return the results

to the edge. The edge and cloud systems mirror each other, running Kubernetes

(2021), Burns et al. (2021)) overlaid with kubeless (kub (2021)), to provide a

uniform infrastructure for the framework.

Our system design is motivated by a need to classify wildlife images in a loca-

tion where it is possible to site a relatively powerful edge system but where network

connectivity is poor. In this paper, we report on the use of STOIC for process-

ing images from multiple, motion-triggered camera traps (sensors) deployed to a

wildlife reserve currently used to study ecological land use.
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4.2.1 Edge Controller

The STOIC edge controller is a server that runs in an out-building at the

reserve. It communicates wirelessly with the sensors and triggers analysis and

computation upon their arrival. The edge controller is connected to the UCSB

campus (which has full Internet connectivity) via a microwave link. When a cam-

era trap detects motion, it takes photos and persists the images in a flash storage

buffer, where human experts would label images for training tasks. Periodically,

sensors transfer saved photos to the edge controller. During a transfer cycle, the

edge controller compresses and packages all images generated and transfers the

package to the public cloud, if/when necessary. STOIC runs on the edge controller

and its executions are triggered by the arrival of image batches.

As an intermediate computational tier between the sensors and the public

cloud, the edge controller can be placed anywhere, preferably near the edge de-

vices, to lower the response latency for the data processing and analytics applica-

tions. It consists of three major components:

• The cloud scheduler predicts the total latency based on historical mea-

surements for each available runtime.

• The requester takes as input the runtime and cloud predicted by the sched-

uler to have the least latency. The requester stores the image package in
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an object storage service running in this cloud. It then triggers a serverless

function (running in a Kubernetes pod) via a RESTful HTTP request to

process the images.

• The inquisitor monitors public cloud deployment time. To enable this, it

periodically in the background deploys each runtime (using Kubernetes Pods

(2021)) and records the deployment times in a database. No task/process is

executed in this process (the runtime is simply deployed and taken down).

We use the inquisitor to establish the historical time series for predicting

the deployment latency of remote runtimes.

The edge cloud that we use in this study is deployed at a research reserve and

is connected via the Internet. It consists of a cluster of three Intel NUCs (nuc

(2021)) (6i7KYK), each with two Intel Core i7-6770HQ 4-core processors (6M

Cache, 2.60 GHz) and 32GB of DDR4-2133+ RAM connected via two channels.

The cluster is managed using the Eucalyptus cloud system (euc (2021)), which

mirrors the Amazon Web Services (AWS) interfaces for Elastic Compute Cloud

(EC2) to host Linux virtual machine (VM) instances and Simple Storage Service

(S3) to provide object storage. The STOIC edge runtime uses Kubernetes and

kubeless for serverless function execution and S3 (i.e. walrus) for object storage

on the edge cloud.
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4.2.2 Public/Private Cloud

To investigate the use of the serverless architecture with hardware acceleration,

we employ a shared, multi-university, GPU cloud, called Nautilus (nau (2021)),

as our remote cloud system. Nautilus is an Internet-connected, HyperCluster re-

search platform developed by researchers at UC San Diego, the National Science

Foundation, the Department of Energy, and multiple, participating universities

globally. Nautilus is designed for running data and computationally intensive

applications. It uses Kubernetes (Burns et al. (2021)) to manage and scale con-

tainerized applications. It also uses Rook (roo (2021)) to integrate Ceph (Weil

et al. (2006)) for object storage. As of May 2020, Nautilus consists of 176 com-

puting nodes across the US and a total of 543 GPUs in the cluster. All nodes are

connected via a multi-campus network. In this study, we consider Nautilus a pub-

lic cloud that enables us to leverage hardware acceleration (GPUs) in the serverless

architecture. The STOIC cloud/GPU runtimes use Kubernetes and kubeless for

serverless function execution and Ceph for object storage on the public cloud.

A major challenge that we face with such deployments is hardware hetero-

geneity and performance variability. On Nautilus, we have observed 44 different

types of CPU (e.g. Intel Xeon, AMD EPYC, among others) and 9 GPU types

(e.g. Nvidia 1080Ti, K40, etc.). Both CPUs and GPUs of different types have
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different performance characteristics. Moreover, the object storage service is run

on dedicated nodes that are distributed globally.

This heterogeneity impacts application execution time (which STOIC attempts

to predict) in three significant ways. First, different CPU clock rates affect the

transfer of datasets from the main memory to GPU memory. Second, there is

significant latency and performance variability between runtimes and the stor-

age service (which holds the datasets and models). Third, the multi-tenancy of

nodes (common in public cloud settings) allows other jobs to share computational

resources with our applications of interest at runtime.

These three factors negatively make it difficult for users to determine which

runtime to use (to reduce application turn-around time) and when to execute

locally (avoiding public cloud use altogether). With STOIC, we address these

challenges via a novel scheduling system that adapts to this variability. In our

results, we ensure reproducibility (avoiding network performance variability) by

confining nodes and GPUs (still heterogeneous) to a single Nautilus region.

4.2.3 Runtime Scenarios

To schedule machine learning tasks across hybrid cloud deployments, we de-

fine four runtime scenarios: (A) Edge - A VM instance on the edge cloud with

AVX2 (2021) support; (B) CPU - A Kubernetes pod on Nautilus containing a
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single CPU with AVX2 support AVX2 (2021); (C) GPU1 - A Kubernetes pod on

Nautilus containing a single GPU; (D) GPU2 - A Kubernetes pod on Nautilus

containing two GPUs. STOIC considers each of these deployment options as part

of its scheduling decisions. Users can parameterize STOIC with their choice of

deployment or allow STOIC to automatically schedule their applications.

4.2.4 Execution Time Estimation

As depicted in Figure 4.1, the STOIC’s edge controller listens for image batches

from the remote camera traps and makes machine learning job requests. After a

preset period (parameterizable but currently set to an hour), STOIC estimates to-

tal response time (Ts) of a requested batch, based on 4 different runtime scenarios.

The total response time (Ts) includes data transfer time (Tt), runtime deployment

time (Td), and the corresponding processing time (Tp). We define total response

time (Ts) as Ts = Tt + Td + Tp.

Transfer time (Tt)

Tt measures the time spent in transmitting a compressed batch of images from

the edge controller to the edge cloud and public cloud. We calculate transfer

time as Tt = Fb/Bc where Fb represents the file size of batch and Bc represents
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Figure 4.2: The Mean Absolute Error (MAE) of deployment time for the GPU1
runtime. The x-axis is the window (history) size. The left subplot is MAE when
STOIC uses the average sliding window, the right subplot is MAE when STOIC
uses the median sliding window.

the bandwidth at the moment provided by a bandwidth monitor at the edge

controller.

Runtime deployment time (Td)

Td measures the time Nautilus uses to deploy the requested kubeless function.

Since the scarcity of computation, it is common that multi-GPU runtime takes

longer to deploy than single-GPU and CPU runtimes. Note that, for edge runtime,

the deployment time zeroes out since STOIC executes the task locally in the edge

cloud.
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Optimal Minimum
Modeling Runtime Window Size MAE
AutoReg CPU 15 8.977
AutoReg GPU1 15 9.605
AutoReg GPU2 15 17.918
Avg. SW CPU 33 7.714
Avg. SW GPU1 31 8.006
Avg. SW GPU2 91 16.52
Med. SW CPU 13 5.96
Med. SW GPU1 31 5.668
Med. SW GPU2 27 14.48

Table 4.2: Mean Absolute Error of three time series modeling methods for run-
time deployment time: auto-regression (AutoReg), average sliding window (Avg.
SW), and median sliding window (Med. SW). The median sliding window achieves
the lowest minimum MAE at optimal window size (that with the lease MAE) for
all three runtimes.

Because Nautilus is a shared cloud system, we observe significant variation in

deployment time on Nautilus for different times of the day. To accurately predict

deployment time, we analyze deployment times as a time series using three meth-

ods: (1) auto-regression modeling, (2) average sliding window, and (3) median

sliding window. Auto-regression (Auto-Regression (2021)) is a time series model-

ing technique based on the auto-correlation between previous time steps and the

following ones. The average sliding window is the moving average (Moving Aver-

age (2021)) scanning through the time series by a fixed-length window. Similarly,

the median sliding window captures the moving median across the time series. All

window sizes used for three modeling processes are optimized based on historical
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data of deployment time (Td) in January 2020. We then compare the minimum

Mean Absolute Error (MAE) from each to select the best modeling methodology.

In this example, we consider a time series of 1244 data points for each run-

time. Figure (4.2) shows representative analytics for GPU1 deployment time, in

which MAE oscillates as window size varies. We observe that the median sliding

window reaches a lower minimum MAE than the average sliding window at opti-

mal window size. As listed in Table (4.2), all three runtimes achieve the lowest

minimum MAE using the median sliding window. Therefore, STOIC adopts this

methodology for deployment time prediction.

The inquisitor measures and records deployment time for each public cloud

runtime every minute (called the inquisitor period). After the inquisitor records

10 new measurements (called the calibration period), the scheduler recomputes

the window size over the previous 100 measurements that result in the minimum

MAE. It then uses this minimum MAE window size to estimate deployment time

when jobs arrive. The inquisitor period, calibration period, and maximum window

size are all modifiable.

Processing time (Tp)

Tp is the execution time of a specific machine learning task and the target of

task scheduling across the hybrid cloud. STOIC formulates a linear regression
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on execution time histories of STOIC jobs and uses it to predict processing time

relative to input (image batch) size. Specifically, we use Bayesian Ridge Regres-

sion (brr (2021)) due to its robustness to ill-posed problems (relative to ordinary

least squares regression (Ordinary Least Squares (2021))). STOIC queries the

database for the most recent processing time data (e.g. 10 data points) for each

regression. This ensures that the parameters of the regression line reflect the

current runtime performance.

As part of our investigations into this approach, we have found that this ap-

proach is highly susceptible to outliers. The root cause of these outliers is sporadic

congestion and maintenance (for nodes, networking, etc.) of the public cloud. De-

viating significantly from the average, outliers skew the regression line and overes-

timate the runtime latency for extended periods (due to the windowing approach).

We thus augment regression using a random sample consensus (RANSAC) tech-

nique (ran (2021)), which iteratively removes outliers from the regression. The

algorithm 2 illustrates our RANSAC approach in STOIC.

Adaptability

To verify that STOIC’s estimation of execution time captures the actual la-

tency of the public cloud, we execute the application 50 times with a 150-image

batch using the GPU1 runtime. Depicted in Figure 4.3, we observe that actual

68



Chapter 4. Edge-Adaptable Serverless Acceleration for IoT Applications

Algorithm 2: Random Sample Consensus
Data: (1) Observation set of Process time Tp
(2) Bayesian Ridge Regression model M
(3) Minimum sample size n
(4) Residual threshold t
(5) Maximum iteration k
(6) Required inlier size d
(7) Minimum Root Mean Square Error e
Result: A set of parameters that best fits the data

1 while iterations ≤ k do
2 curr_sample := n data points from observation;
3 curr_model := M regressed on curr_sample;
4 fit_data := empty set;
5 for every data point p in curr_sample do
6 if error of p ≤ t then
7 p → fit_data;
8 end
9 if fit_data size ≥ d then

10 curr_error := average error in fit_data;
11 if curr_error < e then
12 Update M and e
13 else
14 Increment iteration
15 end
16 end
17 return M
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Figure 4.3: The comparison of predicted and actual total latency on 50 GPU1
benchmark executions with 150-image batch size. The x-axis is the epoch time
and the y-axis is the total latency.

Deployment Td Processing Tp Total Ts

First Half 42.7% 11.2% 15.8%
Second Half 29.2% 5.3% 9.2%

Table 4.3: The percentage mean absolute error (PMAE) of deployment, process-
ing, and total latency. PMAE is a latency-normalized metric and calculated as
MAE divided by mean latency, which indicates the residual in a measured period.
The decline of three latency metrics in the second half demonstrates the adapt-
ability of STOIC.

total latency varies significantly, and predicted total latency has a non-negligible

difference from the actual total latency at the beginning of the experiment. How-

ever, over time, as STOIC learns the various latencies of the system, the difference

is significantly reduced. In Table 4.3, we report the percentage mean absolute error

(PMAE), which we compute as the MAE divided by mean latency. The decrease

in all three PMAE values in the second half of the execution trace also shows

STOIC’s adaptability.
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Figure 4.4: Wildlife Hourly Activity Level (left graph) and its Conditional Em-
pirical Cumulative Distribution Function (right graph). The left graph demon-
strates the mean activity level of wildlife throughout the daytime. Based on the
curve, 1 PM and 8 PM are two peak hours of animal activities. The right graph
shows the empirical CDF, which STOIC randomly samples for image batches to
drive our faster-than-real time empirical evaluation of the system.

4.2.5 Workload Generation

To drive our empirical evaluation in faster-than-real-time, we construct a work-

load generator from image batch histories (traces) collected by our camera traps.

We consider the set of images that occur together within an hour (i.e. due to

motion events) a batch. Our camera trap trace, starting on July 13th, 2013, and

ending on Jan. 15th, 2017, comes from a fixed camera located at a watering hole

in a remote area of our research reserve. The trace contains images of bears,

deer, coyotes, puma, and birds as well as wind-triggered empty images and other

animals.
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After excluding camera maintenance periods (gaps), we extract 1136 effective

days (27264 hours) of data. The maximum size of the hourly image batch is 2450,

whereas the minimum size is unsurprisingly zero, which constitutes 18139 hours

out of 27264 hours (66.53%). On average, an hourly image batch size contains 25

images. The left graph in Figure 4.4 illustrates the wildlife hourly activity level

based on the image batch size. We infer from the curve that 1 PM and 8 PM are

two peak hours of animal activity.

Specifically, we construct a conditional empirical cumulative distribution func-

tion (ECDF) based on the probability definition of Pr(x < K|x > 0), where x is

the image batch size and K is the cutoff value. This conditional ECDF effectively

represents the trajectory of the animal activity level and makes the evaluation

empirical. The right graph in Figure 4.4 plots the conditional ECDF. The x-axis

is the image batch size ranging from zero to 2450, whereas the y-axis is the cu-

mulative probability. The STOIC workload generator draws image batch sizes by

randomly sampling this ECDF. Using this process, we can evaluate and conclude

by replaying the image stream from the camera traps in faster-than-real-time for

comparative evaluation.
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4.2.6 Implementation

We implement STOIC using Golang (gol (2021)). Golang provides high-

performance execution (vs scripting languages) and a user-friendly interface (cli

(2021)) to Kubernetes and database technologies. STOIC currently supports ma-

chine learning applications developed using the TensorFlow framework (Abadi

et al. (2016)) and can be easily extended to permit other machine learning li-

braries.

As mentioned previously, the STOIC serverless architecture leverages kube-

less (kub (2021)). As a Kubernetes-native serverless framework, kubeless uses the

Custom Resource Definition (CRD) (crd (2021)) to dynamically create functions

as Kubernetes custom resources and launches runtimes on-demand. For specific

machine learning tasks that STOIC executes, we build custom Docker images that

we upload to Docker Hub (doc (2021)) in advance. When the function controller

receives a task request, it pulls the latest image from Docker Hub before launching

the function. This deployment pipeline makes the runtime flexible and extensible

for evolving applications.

To leverage the computational power of our CPU systems, we compile Tensor-

flow with AVX2, SSE4.2 (AVX2 (2021)), and FMA (fma (2021)) instruction set

support. We use this optimized version of Tensorflow on both the edge and public

clouds.

73



Chapter 4. Edge-Adaptable Serverless Acceleration for IoT Applications

Figure 4.5: The selector and duplicator modes of STOIC.

To enable GPU access by serverless functions (available in the public cloud),

we equip our Docker container with NVIDIA Container Toolkit (nvi (2021)). This

includes the NVIDIA runtime library and utilities, which link serverless functions

to NVIDIA GPUs. We also install CUDA 10.0 and cuDNN 7.0 to support the

machine learning libraries.

4.2.7 Workflow

STOIC considers two workflows upon receiving an image batch: selector mode

and duplicator mode. Both are depicted in Figure 4.5. In selector mode, STOIC

predicts the total response times (Ts) of the four deployment options: Edge, CPU,
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GPU1, and GPU2. It then selects the runtime with the shortest estimated re-

sponse time and deploys it locally (Edge) or remotely (non-Edge). Once deployed,

the pod notifies the STOIC requester at the edge which then triggers the serverless

function via an HTTP request. When the task completes, the pod notifies the

requester, which retrieves the results and runtime metrics from the deployment

and stores them in the database for use by the scheduler.

To handle deployment failure, STOIC implements a retry mechanism using

exponential back-off. Starting at 100 milliseconds, STOIC waits 2X the length of

time for retrying the deployment on Nautilus. After 10 failed attempts, STOIC

claims timeout and returns an error.

STOIC also attempts to reduce startup time (i.e. cold starts) at both the

edge and public cloud. On the edge cloud, STOIC creates a standby pod to serve

the incoming request upon application invocation. On the public cloud, STOIC

triggers a function with a single image to retrieve and cache the base model in

memory at each pod.

We observe from Table 4.3 that there are significant variations in the deploy-

ment time of the runtimes on the shared public cloud. To enable STOIC to adapt

to this variability, we consider a second workflow called duplicator mode. Using

this mode, when the scheduler selects a public cloud runtime (i.e. CPU, GPU1,

GPU2), the requester also deploys the job on the edge cloud. It then termi-
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nates edge cloud execution if the remaining time at edge cloud is longer than

the expected processing time (Tp) at the GPU runtime once deployment com-

pletes. This “lagging decision” mechanism reduces the variability of deployment

time in the prediction. As a result, STOIC must only consider processing time,

which is more accurately predicted, to deploy tasks. Note that duplicator mode

is less energy-efficient because it runs tasks regardless of latency prediction and

may waste cloud resources by killing the function in the middle. However, if such

waste can be tolerated, significant prediction accuracy and latency reduction are

possible.

In addition, the inquisitor running in the background deploys the public cloud

runtimes periodically and stores the deployment time duration in the database for

use in the prediction. We set a timeout (i.e. 10 minutes) to terminate this pro-

cess for any unresponsive deployment. That is, the inquisitor marks the runtime

unavailable (from the point of view of the requester) when the deployment hits

the set timeout. The inquisitor continues to attempt deployment of this runtime

periodically and makes it available to the requester once a deployment attempt is

successful.

To bootstrap the system, STOIC executes two representative tasks for an

application for each runtime in both the edge and public cloud. It uses these data

points as a basis for its processing time estimation by linear regression. STOIC
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performs this bootstrapping each time a new version of the application is uploaded

by the developer.

4.3 Evaluation

In this section, we empirically evaluate STOIC’s performance on image pro-

cessing tasks. We implement the application as a serverless function for STOIC

to schedule and execute.

In each experiment, STOIC determines which resource to use for function

execution (among a small set of feasible choices). We then run the function on all

resources and compare the choice made by STOIC to the best (shortest duration)

execution across all possible choices.

4.3.1 Experimental Setup

The image processing application that we use as a benchmark classifies animal

images from a wildlife monitoring system called “Where’s The Bear" (WTB (Elias

et al. (2017))). “Where’s The Bear" is an end-to-end distributed data acquisition

and analytics system that automatically analyzes camera trap images collected

by cameras sited at the Sedgwick Natural Reserve (sed (2021)) in Santa Bar-

bara County, California. Our deployment includes an edge cloud located near
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the cameras where it acquires the image data. The edge cloud is connected via

a slow (microwave) link to a private cloud located at a research facility located

approximately 50 miles from the site. In this work, we explore using the Nau-

tilus distributed GPU cloud (nau (2021)) as the public cloud, in conjunction with

the edge cloud to optimize image classification on a convolutional neural network

(CNN) (LeCun et al. (1995)) implemented by Tensorflow and Scikit-learn (Pe-

dregosa et al. (2011)).

In total, there are five classes that we consider: Bird, Fox, Rodent, Human,

and Empty, by which we label images for training tasks and evaluate the model

by inference. Since class size is unbalanced due to the frequency of animal occur-

rences, we up-sample minority classes (e.g. fox) using the Keras ImageDataGen-

erator (Ker (2021a)). Doing so ensures that the classification model is not biased.

We resize every image in the image dataset to 1920×1080, and for each class, the

dataset contains 251 images used to train the CNN model. Once model training

is complete, the application stores this model in hdf5 format in object storage at

both edge cloud and Nautilus.

As described previously, STOIC moves images from the wildlife refuge to the

public cloud in batches. To better harness the multiple GPU runtime of the

public cloud, the application spawns a process (worker) for each GPU and adds

all images in a batch to a shared asynchronous queue. Upon the execution, workers
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Figure 4.6: The distribution of three components in total response time (Ts) of
150 executions on GPU1 runtime: Processing time (Tp), Deployment time (Td),
and Transfer time (Tt). The x-axis represents the time range, while the y-axis is
the frequency of executions. The deployment time, which is depicted in the red
histogram, is volatile and error-prone to prediction.

remove images (one at a time) from the shared queue until it is exhausted. This

mechanism ensures multiple GPU runtimes evenly divide the workloads among

GPUs and achieve quasi-linear acceleration at the application level, where the

perfect linear speed-up is unattainable because of model loading and memory

transfer overhead (Campos et al. (2017)).

To drive this experiment, we use the workload generator described in Sec-

tion 4.2.5 to facilitate a faster-than-real-time evaluation of STOIC. The generator

uses an image series and their inter-arrival patterns from a camera trap image

corpus ranging from 2013 to 2017. Figure 4.6 shows example histograms for pro-

cessing time, transfer time, and deployment time on Nautilus for GPU1 runtime

using 150 batches drawn from the workload generator. On the x-axis, we show

the elapsed time for processing time, transfer time, and deployment time respec-
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tively. Note that processing time and transfer time are relatively stable compared

to deployment time.

4.3.2 Selector Evaluation

We first evaluate STOIC selector mode for 24 hours consisting of 162 image

batches, the sizes of which are drawn randomly from the workload generator. Each

batch is executed on the edge cloud, on the Nautilus CPU, on one Nautilus GPU,

and on two Nautilus GPUs. Over the test period, the STOIC Selector chooses

the fastest (lowest total response time) from among these four options 149 times

out of the 162 runs or 92% of the time. That is, STOIC correctly identifies the

fastest option with a success rate of 92%.

Further, we define MIN-LAT (minimum latency scheduler), which is an oracle

scheduler that is 100% correct on selections of runtime. Such scheduler would

have resulted in an aggregate total latency of 10022 seconds, whereas the worst

case, in which the scheduler selects the highest-latency runtime for every run, has

an aggregate latency of 35940 seconds, compared to a STOIC aggregate latency

of 10770 seconds. Thus STOIC achieves an aggregate latency that is 7.4% slower

than MIN-LAT, but 70% (3.33x) faster than the worst case.

We further analyze the data points where STOIC made erroneous selections

and found two sources of error. First, the most error occurs around two batch sizes
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where the total response times of runtime have approximately the same latency.

To be specific, the edge and GPU runtimes cross over at 35-image batch size and

90-image batch size for the GPU1 and GPU2 runtimes. At these cross-points,

the close predictions of latency lead to incorrect selection (Zhang et al. (2020)).

Second, the deployment times for GPU runtime are volatile and error-prone to

prediction. As a representative instance, Figure 4.6 demonstrates the distribution

of processing time (Tp), transfer time (Tt), and deployment time (Td) of GPU1

runtime. We observe geometric distribution from the histogram of processing time

and transfer time, whereas deployment time varies irregularly with many outliers.

These two phenomenons lead to mistaken selections in the experiment.

4.3.3 Duplicator Evaluation

Note that the edge cloud node is not a shared resource – it is dedicated to

the application. It is implemented using inexpensive hardware that is connected

to standard 120 VAC power (in a closet in a management building located at the

refuge). As a result, it is possible to use the edge cloud for every batch even when

it is not the fastest.

Put another way, there is no cost to running the edge cloud speculatively

while data is transferring to Nautilus and the application waits for Nautilus to

deploy pods for the CPU and GPU runtimes. If STOIC (using Selector) predicts
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that Nautilus will be faster, and STOIC is correct, the work on the edge cloud

is “duplicate work” which is unnecessary. However, because of the deployment

variability, it may be that the edge cloud speculative execution finishes ahead of

that runtime scheduled to Nautilus.

However, unlike the edge cloud node, Nautilus is a shared resource. Thus we

do not wish to “waste” execution time on Nautilus unnecessarily. Thus, in this

setting, the cost of duplicate work on the edge is minimal compared to the cost

of potentially duplicate work on Nautilus. If this were not true, we would simply

launch the job both at the edge and on Nautilus and use whichever finished first.

Thus we explore a second scheduling strategy that attempts to minimize total

response time in light of the following assumptions:

• Duplicating unneeded work on the edge carries no penalty.

• Duplicating unneeded work in Nautilus is expensive.

• The STOIC predictions (initial and after transfer and deployment) will be

used to choose the resource that yields the fastest response time while using

the Nautilus resources parsimoniously.

We call the STOIC scheduler that attempts to minimize response times under

these assumptions – the Duplicator.
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Further, we noticed that the Nautilus CPU is seldom a good choice in practice.

The application must “pay” for the transfer and incur the deployment time vari-

ability to acquire a CPU that is almost equivalent to the edge node CPU. Thus,

in the “real world” version of the STOIC scheduler for the application, we use the

Duplicator with Nautilus GPUs only.

The scheduling algorithm starts the task on the edge cloud node and also

begins the transfer to Nautilus. It then waits for the Nautilus deployment time

and, when the pod is fully deployed, it predicts whether to use the freshly acquired

GPU or GPUs (i.e. to “switch” to the GPU(s)) or to abandon the request and to

complete the job on the edge. To do so, STOIC must predict the remaining edge

time at the moment the GPU pod is deployed, and compare this remaining time

to the predicted GPU processing time.

The Duplicator prediction is conditional upon the amount of time that has

elapsed during transfer and deployment to Nautilus. If STOIC predicts that the

GPU pod will start and complete its processing before the edge completes what

remains of the job, it allows the Nautilus and the edge cloud executions to execute

concurrently. If the Nautilus job completes first, the edge cloud execution is

terminated. Otherwise, if the edge cloud execution finishes first (i.e. the prediction

was incorrect) then the Nautilus job is terminated (and the time between the start

of the Nautilus job and the end of the cloud job is “wasted” Nautilus time).
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Success Rate versus MIN-LAT versus Worst Case
Selector 92% 105% 30%

Duplicator Edge vs GPU1 97% 102% 30%
Duplicator Edge vs GPU2 95% 101% 30%

Table 4.4: The comparison of Selector and Duplicators. The table demonstrates
that the duplicator(GPU1) achieves the highest success rate in predicting optimal
runtime, whereas the duplicator(GPU2) obtains the lowest total latency.

Alternatively, when STOIC predicts that the edge cloud will finish first, it

returns the GPU resources to Nautilus and runs only the edge cloud job. If the

Nautilus job would have been completed first (i.e. the conditional prediction in

favor of the edge is incorrect) then the time between when the Nautilus job would

have finished and the time that the edge cloud job completes is an additional delay

(compared to having made a correct prediction).

Thus, choosing incorrectly (i.e. a failure) occurs when the actual completion

time exceeds the time of the runtime corresponding to the minimum prediction (in

either edge or GPU case) made by STOIC. That is, a “failure” for the Duplicator

occurs when STOIC makes a conditional choice (i.e. continue on edge or to include

Nautilus) and the choice results in a longer actual response time than the one not

chosen. Table 4.4 shows the performance of the Duplicator using the edge and

one GPU and, separately, the edge and two GPUs from Nautilus.

These results are both expected and surprising. As expected, restricting the

choice to the edge and a single Nautilus request and using a conditional predic-
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tion at deployment time (as opposed to a ranking at the beginning) as a success

criterion improves the success rate dramatically. We do not claim that Duplicator

is better than Selector in terms of success rate. Instead, Duplicator enables a

more dependable scheduling strategy for the classification application based on

conditional predictions rather than resource ranking. Surprisingly, however, re-

questing 2 GPUs improves both success rate and aggregate response time relative

to choosing one.

This result surprised us for two reasons. First, because there was greater

deployment variance and a larger mean deployment time for two GPUs, we expect

that the edge (which is more predictable) would generate a greater success rate,

but a larger aggregate response time. Put another way, we expected that STOIC

would make safer predictions favoring the edge in the GPU2 case, but the cost of

this safety would be greater aggregate response time. Empirically, however, we

observe that STOIC “risks” predicting the GPU2 deployment more frequently, but

that it amortizes this risk effectively because the two GPU execution is faster.

Note that the cost is not large. In practice, the application will use the one

GPU case to get a better success rate at the cost of 2% in aggregate response

time. However, it is interesting that STOIC can make this risk-reward trade-off

explicit. Note also that the worst case is unchanged. This result indicates that
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STOIC Choice Nautilus Savings (+) or Loss (-)
Edge +1393s
GPU1 −440s
GPU2 −257s

Table 4.5: Nautilus savings (positive values) and loss (negative values) for
STOIC Duplicator. Savings are the time returned to Nautilus due to edge exe-
cution. Loss is the “wasted” time on Nautilus when the GPU runtimes are ter-
minated because of faster edge execution. All units are in seconds. In the GPU2
case, the time is for both GPUs.

there is unusually bad response time, but that all STOIC scheduling methods can

mitigate them to approximately the same degree.

We conclude our analysis with quantification of the savings and unnecessary

loss of Nautilus time that STOIC Duplicator can achieve. Table 4.5 shows the

savings and loss of Nautilus time that are realized by the Duplicator heuristic.

Recall that the total MIN-LAT time (the time associated with the minimum

execution of each batch) is 10022 seconds. The positive values in the table indicate

the total time returned to Nautilus (that would have otherwise been used) by

selecting the edge for execution. Note that these savings correspond to the results

shown in Table 4.4 for the Duplicator. That is, they are the savings that STOIC

was able to achieve while implementing a schedule within either 1% or 2% of

MIN-LAT. The loss (negative values) shows the amount of Nautilus time that

was used unnecessarily. That is when STOIC Duplicator chose conditionally to

use the GPU or GPUs and the edge finishes first, the elapsed time on Nautilus is

unnecessarily “lost.” Clearly from the table, Duplicator saves more Nautilus time
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than it loses. Thus, we infer that STOIC in duplicator mode optimizes the time

to solution (Table 4.4) while utilizing the expensive Nautilus resource efficiently

(Table 4.5) by using the edge cloud node speculatively.

4.4 Conclusion

In this work, we propose a framework, called STOIC, for executing machine

learning applications in IoT-cloud settings using the serverless architecture. STO-

IC integrates an edge controller and a public cloud with GPU acceleration. When

the scheduler at the edge controller receives a batch of images from open field

camera traps, it predicts the total response time for processing the batch based

on batch size and historical log data. In the selector mode, STOIC schedules the

task to the runtime with the least predicted latency. In the duplicator mode,

STOIC co-schedules the task on the edge cloud and GPU runtime in the public

cloud. If the latter is deployed and predicted to be faster, the edge cloud job is

terminated. Otherwise, STOIC terminates the public cloud job and completes

the task on the edge cloud. This mode further optimizes the selection process by

avoiding volatile deployment times.

We present the design principles, implementation details, the feedback control

mechanism, and different modeling methodologies to address the variability in
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the edge and public cloud deployments. Our empirical evaluation demonstrates

STOIC can schedule tasks on local and remote deployments to achieve a speedup

of 3.3x versus our baseline scenario. STOIC’s success rate for prediction placement

ranges from 92% to 97% for the application and datasets that we study.

As part of future work, we plan to investigate substituting RANSAC with

Gradient Boosting Regression Trees (GBRT) to capture the non-linearity in the

processing time due to heterogeneous hardware across deployment options (run-

times). We also plan to investigate model check-pointing in duplicator mode to

better utilize computational resources on edge cloud and to improve the overall

performance of the STOIC system.
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Chapter 5

Heat-Budget-based Scheduling on
IoT Edge Systems

There is no use for bravery unless justice is present, and no need for bravery if

all men are just.
—Agesilaus

Edge processing introduces new challenges for IoT deployments. Unlike the

devices themselves, edge computing elements are often designed for office or home

use – environments in which the ambient environmental conditions are controlled

and kept within a narrow operational range. However for many IoT applica-

tions, the operational settings in which these edge systems (in our work we deploy

miniaturized “edge clouds” using clusters of commodity small-board computers to

support IoT analytics) must function can be harsh, hard, or costly to access, and

exposed to harmful environmental elements (heat, moisture, dust, animals, other

objects, humans, weather, etc.). For example, we currently support an IoT de-

Parts of this section are adapted, with permission, from EDGE 2021 Zhang et al. (2021b)
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ployment for image processing and deep learning for the automatic, real-time iden-

tification of animals using camera traps deployed across UCSB Sedgwick Reserve,

an ecology and wildlife education and research reserve in California sed (2021).

The reserve is 6,000 acres that comprise critical wildlife habitats, two watersheds

at the foot of Figueroa Mountain in Santa Ynez, California, and a 300-acre farm

easement. Our edge clouds fuse and analyze images from within out-buildings

on the property. Sedgwick yearly outdoor temperatures range between 30◦ and

116◦ Fahrenheit; within enclosures (e.g. shelters for electrical pumping equipment

where grid electricity is available) our cloud systems are subjected to much higher

ambient operating temperatures.

Excessive heat can degrade the performance and reliability of devices and neg-

atively impact their longevity (requiring more human intervention and frequent

replacement). Commodity computers are particularly sensitive to high tempera-

tures and extended exposure can cause these machines to break down, degrade

in functionality, and fail prematurely – even they are protected using operational

safeguards such as throttling and automatic shutdown int (2021). For this reason,

most manufacturers include an onboard thermal CPU temperature sensor and the

ability to set a “shut-down” temperature if the CPU exceeds the manufacturer’s

maximum supported temperature. Figure5.1 shows a time series of CPU tem-

perature in degrees Fahrenheit gathered from one of our edge clouds deployed at
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Figure 5.1: The time series of CPU temperature in the edge cloud deployed at
Sedgwick Natural Reserve from Feb. 28th, 2018 to Jun. 3rd, 2020. The x-axis is
the epoch time and the y-axis is the CPU temperature in Fahrenheit.

Sedgwick between February 2018 and June 2020. The cut-off temperature was

set to 200◦ F and the temperature drop early in the trace records the system’s

automatic shutdown.

In this work, we investigate the use of dynamic voltage and frequency scaling

(DVFS) Liu et al. (2007), Wang et al. (2010), Wu et al. (2014) to control system

temperature when the ambient temperature might cause it to exceed the accept-

able operational range. DVFS is a technique that has been widely studied in the

context of “power capping” – the implementation of a maximum power draw by

the system. Our system – called Sparta – automatically exploits the relationship

between system power consumption and generated heat. It does so by adjust-

ing processor frequency dynamically so that CPU temperatures do not exceed a

specified threshold as ambient temperature changes. Subject to the threshold, the

system attempts to minimize the application “slow down” (relative to maximum

CPU frequency) that frequency adjustments might introduce. We use Sparta to
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study the relationships between CPU frequency, temperature, power dissipation,

and execution behavior. Moreover, we consider IoT workloads that employ a

wide range of machine learning algorithms, including image recognition, natural

language processing, decision forest, and time series prediction.

We consider three modes for the Sparta frequency scheduler: Annealing,

AIMD, and Hybrid. Annealing employs an epsilon-greedy strategy to extrap-

olate an appropriate CPU frequency in real time. AIMD uses the linear growth

of CPU frequency when the temperature is under the threshold and exponential

reduction when it detects temperature anomalies to determine its CPU frequency.

With Hybrid, we combine the best features of the two modes to overcome their

drawbacks. Our results show that Sparta in Hybrid mode speeds up the execution

of our applications by 1.16x and 1.14x on average in three thermal environments

compared to Annealing and AIMD. Moreover, Sparta in Hybrid mode maintains

CPU temperature below threshold 94.4% of the time (as measured via tempera-

ture sampling), on average across all benchmarks.

In summary, with this paper, we make the following contributions:

• We investigate the relationship between CPU frequency and sampling tem-

perature to precisely model and manage processor power dissipation during

execution;
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• We design and implement a heat-budget-based scheduling framework that

protects edge systems from overheating and potential damage;

• We empirically evaluate the efficacy of using Sparta to control CPU temper-

ature and accelerate machine learning applications on six real-world bench-

marks in three thermal deployment environments.

In the following sections, we first present the design and implementation of

Sparta. We then describe our experimental methodology and empirical evaluation

of the system using multiple machine learning applications in different thermal

environments. In the next section, we discuss related work. Finally, we present

our conclusions and future work plans.

5.1 Sparta

5.1.1 Architecture

To address the processor overheating challenge and accelerate the execution

of applications under a CPU temperature threshold, we develop Sparta, a heat-

budget-based scheduling framework for edge devices and machine learning appli-

cations. The architecture of Sparta is shown in Figure 5.2. The scheduler consists

of three components: a control plane, a data plane, and a decision plane. Sparta
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Figure 5.2: The Architecture of Sparta

takes a machine learning application, datasets, and a CPU temperature threshold

as input. During the execution, the scheduler utilizes a feedback control mecha-

nism that controls the CPU temperature by dynamically adjusting CPU frequency

via system-level dynamic voltage and frequency scaling (DVFS). Sparta returns

the trained model and inference results at the end of the execution.

The data plane monitors, samples, and records the CPU real-time tempera-

ture via the lm-sensors interface lm- (2021) and selects the maximum temperature

within a sliding time window. Both the sampling rate and window size are config-

urable. (1/second and 5 seconds by default) To signify the authentic temperature

of multi-core processors, the data plane records the temperature samples of the

entire CPU package instead of any specific ones. Being accessible by the decision
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plane, all structured temperature data helps determine the proper CPU frequency

in real time to keep the CPU temperature under a threshold.

The control plane manages the CPU power and temperature. In the design

phase, we consider two methods: Sleep injection and DVFS. The first method

injects sleep time in the iteration loop that lowers the CPU usage, whereas the

second method adjusts the CPU frequency by tuning the CPU voltage. We exper-

iment with these two methods on a multi-threaded matrix multiplication bench-

mark and monitor the CPU temperature. Figure 5.3 shows the CPU temperature

time series using these two methods. We observe the latter method generates a

controllable and stable temperature curve, and thus choose DVFS as the control

plane interface. Upon the execution of the scheduler, the control plane receives

the determined CPU frequency and sets the max clock speed of all cores in the

CPU package on the fly. This way the control plane effectively manages the power

consumption and heat generation of the processor.

The decision plane determines the CPU frequency based on historical and

real-time temperature data throughout the execution. To provide the historical

dataset, on which the decision plane decides the initial CPU frequency, we collect

CPU temperature and frequency data from a multi-threaded matrix multiplica-

tion (MATMUL) benchmark that simulates the underlying operations in machine

learning applications.
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Figure 5.3: The CPU temperature time series by sleep injection (left) vs DVFS
(right). The x-axis is the time frame and the y-axis is the CPU temperature
ranging from 48◦ C to 100◦ C.

We gather the data in the ambient temperature ranging from 2.6◦ C to 43.8◦ C

to cover different thermal environments. In the experiment, we found the sequence

of CPU frequency and maximum temperature in a time window demonstrate a

better linear relationship than the sequence of all temperatures, because of its

inherent oscillating feature. To verify the correlation between MATMUL and ma-

chine learning applications, we collect the same data from an image recognition

application written in Tensorflow Abadi et al. (2016). As depicted in Figure 5.4,

we found the correlated linear relationship between the CPU frequency and loga-

rithmic delta temperature defined as log(Tmax− Ti), where Tmax is the maximum

temperature sample in the time window and Ti is the starting CPU temperature

in idle state.
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Depending on this correlation, the decision plane extrapolates the appropriate

CPU frequency by linear regression from the MATMUL dataset and assigns the

initial CPU frequency before the execution starts. During the process, the decision

plane starts to extrapolate CPU frequency from real-time data that accurately

reflects the ambient temperature and the execution pattern of ML applications.

The extrapolation frequency is 12/minute by default and configurable by users.

Figure 5.4: The linear relationship between CPU frequency and logarithmic
delta temperature of two benchmarks. The blue curve represents MATMUL and
the orange curve represents the image recognition application. The plateaus at
the right side of curves are caused by CPU hardware temperature throttling.
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5.1.2 Operating Modes

In the testing phase of Sparta, we identified two major problems in the decision

plane. First, the extrapolation from linear regression oftentimes gets stuck at a

local minimum. Thus, the determined CPU frequency is frequently lower than the

ideal one, which leaves computational resources idle during execution. Second,

the response time to correct the CPU from overheating is longer than expected

when CPU temperature surpasses the threshold. To solve these two problems, we

construct three operating modes for Sparta: Annealing, AIMD, and Hybrid.

Annealing is a probabilistic algorithm that leverages the epsilon-greedy strat-

egy that balances exploration and exploitation by choosing randomly. In this

mode, Sparta scheduler picks a value(P) in the range [0, 1] uniformly at random

and compares it with ε/K, where ε is a probability of taking random actions (0.5

by default) and K is the number of extrapolation decision plane has made. The

scheduler assigns a random CPU frequency when P is greater, whereas it keeps the

extrapolated frequency when P is less than ε/K. With a decreasing probability

of ε/K as the application proceeds, the scheduler stabilizes and chooses to exploit

what it has learned so far. When the ambient temperature or the execution pat-

tern shifts dramatically, the scheduler resets the ε/K that allows more random

exploration. This mode effectively addresses the problem of CPU frequency stuck
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at a local minimum and expedites the execution of machine learning applications

under the temperature threshold.

AIMD is a feedback control mechanism that responds to CPU temperature

anomaly faster. The scheduler configures the CPU frequency according to the

historical data extrapolation at the start of execution. During the execution, it

decreases the CPU frequency by a multiplicative factor (0.5 by default) when CPU

temperature surpasses the threshold. Subsequently, it increases the frequency by

a fixed amount (0.07 GHz by default) every iteration until the CPU temperature

stabilizes right below the threshold. The decision plane turns into hibernation at

this point to prevent redundant tuning on CPU frequency that leads to inefficient

execution. Meanwhile, the data plane keeps monitoring the CPU temperature and

wakes up the decision plane if any anomalies caused by ambient temperature or

execution patterns are detected. AIMD reduces the response time to temperature

deviation and keeps most samples under the threshold.

Hybrid combines Annealing and AIMD modes to address each other’s disad-

vantage: if the probabilistic actions in Annealing drive CPU temperature above

threshold, AIMD brings the anomaly back to normal fast; when AIMD settles at

a local minimum of CPU frequency and leaves resources idle, Annealing boosts

the execution by assigning a random CPU frequency. This way, Hybrid mode pro-
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vides a complement to accelerate the machine learning execution while keeping

the CPU temperature under the threshold.

5.2 Evaluation

In this section, we empirically evaluate Sparta’s performance in a series of

experiments on six benchmarks, ranging from image recognition, natural language

processing to random forest and time series prediction, which are implemented

based on Tensorflow and executed through Sparta’s actuator interface. We first

overview the machine learning benchmarks that we consider and our experimental

methodology. We then present our results.

5.2.1 Machine Learning Benchmarks

To comprehensively evaluate the efficacy and efficiency of Sparta, we imple-

mented 6 machine learning benchmarks, which consist of four categories: image

recognition, natural language processing, ensemble learning, and time series anal-

ysis. We aim to test Sparta on a variety of machine learning applications that

represent different execution patterns.

WTB_Train is an image recognition application that we use as a benchmark

to train a convolutional neural network (CNN) LeCun et al. (1995) based on
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ResNet50 He et al. (2016). The training dataset contains animal images from a

wildlife monitoring system called "Where’s The Bear" (WTB) Elias et al. (2017).

"Where’s The Bear" is an end-to-end distributed data acquisition and analytical

system that automatically analyzes camera trap images collected by cameras sited

at the Sedgwick Natural Reserve sed (2021) in Santa Barbara County, California.

In total, there are five classes that we consider: Bear, Coyote, Deer, Bird, and

Empty, by which we label images for training tasks. We also up-sampled minority

classes using the Keras Image Data Generator ker (2021b) since the class size is

unbalanced due to the frequency of animal occurrences. Doing so ensures that

the classification model is not biased. We resized every image in the dataset to

1920× 1080, and for each class, the dataset contains 60 images used to train the

CNN model. Once the training is complete, the application stores this model in

hdf5 format in object storage.

The WTB_Train application has a cold start at the beginning of the execution

since it loads a pre-trained neural network model and a large dataset. Once it

completes loading, the entire training process has relatively consistent CPU usage

and temperature.

WTB_Inf inferences the type of wildlife in camera trap pictures based on

the model trained by WTB_Train. It loads the trained hdf5 model at the be-

ginning and, for each picture, it assigns probabilities to five classes we consider
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in the training dataset by Softmax function. In each experiment, we assign 20

pictures for WTB_Inf to inference. In terms of the execution pattern, WTB_Inf

runs in short bursts as opposed to WTB_Train. Therefore, the CPU usage and

temperature fluctuate dramatically throughout the execution of this benchmark.

MNIST is a dataset containing grayscale pictures of handwritten digits, in

which it has 60,000 examples as the training set and 10,000 examples as the test-

ing set. Based on the dataset, we train a 2-layer convolutional neural network mni

(2021) and test its accuracy in the third application. In contrast to WTB bench-

marks, the size of pictures is smaller (28 × 28) and the model is simplified in

MNIST.

BiLSTM is a sentiment analysis application based on a dataset of the Internet

Movie Database (IMDB) movie reviews. It consists of 25,000 sequences each for

training and testing. The model is constructed as a bidirectional LSTM with a

classification layer using the sigmoid activation function. We train the model by

the training dataset and validate its performance in classifying sentiment by the

testing dataset. Since it has a large dataset and a complex model, the execution

pattern is long-running and consistent in CPU usage and temperature.

Decision_Forest is an implementation of deep neural decision forests Kontschieder

et al. (2015) that classifies high-earning individuals from the pool. The bench-

mark leverages the United States Census Income Dataset cen (2021) that has
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48,843 instances with 14 features, including age, education, occupation, etc. The

dataset is split up that the training part has 32,561 instances and the testing

part has 16,282 instances. The application has three phases: it firstly processes

the dataset by encoding input features. Then, it trains a deep neural decision

tree model. Based on that, the application trains a neural decision forest model

consists of a set of neural decision trees. Therefore, the usage and temperature of

the CPU increasingly grow throughout the process.

Time_Series is a time series prediction application built on the climate data

recorded by the Max Planck Institute for Biogeochemistry jen (2021). The dataset

has 14 features such as temperature, pressure, humidity, etc. and the sampling

frequency is 10 minutes. The time frame of the dataset ranges from Jan. 10th,

2009 to Dec. 31st, 2016. The application uses 300,693 rows to train a single-

layer LSTM model, by which we can predict the outdoor temperature in the next

72 timestamps (12 hours) given the samples in the past 720 timestamps (120

hours). By this benchmark, we intend to evaluate Sparta on an application with

a lightweight model and a large dataset.

5.2.2 Experimental Setup

Each edge cloud node used in the experiments is an Intel NUC nuc (2021)

(6i7KYK) with two Intel Core i7-6770HQ 4-core processors (6M Cache, 2.60 GHz)
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Figure 5.5: Three thermal environments in the experiment

and 32GB of DDR4-2133+ RAM connected via two channels. We use dynamic

voltage and frequency scaling (DVFS) to control the frequency of the CPU from

0.8GHz to 3.5GHz.

To simulate the natural temperature in Sedgwick natural reserve, we create

three thermal environments in an isolated cooler that represent cold, neutral, and

hot ambient temperature. In the cold scenario, the ambient temperature is 2.6◦

C and the CPU of NUC runs under 40◦ C in idle status. In the neutral scenario,

the CPU of NUC starts at 51◦ C under the ambient temperature of 23.9◦ C. The

hot scenario increases the ambient and CPU temperature to 43.8◦ C and 68◦ C

respectively.

There are two goals of the Sparta scheduler: the first is to limit the CPU tem-

perature under the threshold; the second is to accelerate tasks without overheating

the edge cloud. To evaluate these two objectives, we execute 6 machine learning

benchmarks under 3 modes of Sparta scheduler. In each experiment, Sparta takes

104



Chapter 5. Heat-Budget-based Scheduling on IoT Edge Systems

inputs of the task program, corresponding workload dataset, and a threshold tem-

perature. To keep the comparison consistent across 3 thermal environments, we

use 75◦ C as the threshold temperature for all experiments.

In 3 modes of Sparta, we execute each machine learning benchmark repeatedly

100 times under 3 thermal environments (totally 3×3×6×100 = 5400 executions)

and report relevant metrics, both mean and standard deviation, to compare the

efficacy and efficiency among Annealing, AIMD, and Hybrid modes.

5.2.3 Application Efficacy

We first measure the stabilization time for six benchmarks. We define stabi-

lization time as the elapsed time from the start to the point all CPU temperatures

in the sampling time window are within [Ts−Td, Ts], where Ts is the threshold and

Td is a slack variable (3 ◦ C by default). During each of the 10 consecutive execu-

tions (1 epoch) of benchmarks, we record the duration when the Sparta scheduler

stabilizes the CPU temperature according to the threshold. As shown in the first

part of Table 5.1, we report the mean and stdev of stabilization time for each

benchmark in 3 modes. Hybrid mode uses less time to stabilize CPU temperature

than Annealing and AIMD in all six benchmarks. It performs even better in the

WTB_Inf benchmark that has a short burst execution pattern and volatile CPU

temperature.
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WTB
Train WTB Inf MNIST BiLSTM Decision

Forest
Time
Series

Annealing 53.79
(30.1) 50.7 (21.1) 62.02

(32.2)
69.02
(33.8)

59.13
(31.9)

72.31
(28.8)

AIMD 61.73
(24.9)

63.26
(25.0)

58.91
(14.0) 59.9 (11.2) 78.17

(30.7)
73.41
(28.9)

Hybrid 38.59
(26.11)

23.24
(17.33)

38.66
(22.17)

52.83
(20.6)

55.46
(25.5)

52.91
(29.8)

Neutral Cold Hot Average
Annealing 68.15 67.27 48.07 61.16
AIMD 63.10 77.40 57.20 65.90
Hybrid 43.03 52.43 35.39 43.61

Table 5.1: The mean and stdev of stabilization time in seconds for 6 machine
learning benchmarks in 3 Sparta modes. Compared to Annealing and AIMD,
Hybrid mode uses less time to stabilize CPU temperature across all benchmarks
and all thermal scenarios.

As the second part of Table 5.1 presents the result in the thermal dimension,

the Hybrid mode also uses less time to stabilize CPU temperature across all 3

thermal environments, comparing to Annealing and AIMD. Averagely, Hybrid

mode uses 43.61 seconds in the stabilization phase, in contrast to 61.16 seconds in

Annealing and 65.9 seconds in AIMD. Hybrid mode’s performance is even better in

the hot scenario, which is the key use case for edge devices to prevent overheating

in Sedgwick natural reserve.

We next empirically evaluate the execution time of six benchmarks by the

Sparta scheduler. In the first part of Table 5.2, we report the mean and stdev of

execution time for each benchmark under 3 modes. On average, the Hybrid mode
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WTB
Train WTB Inf MNIST BiLSTM Decision

Forest
Time
Series

Annealing 374.67
(9.8) 60.94 (3.9) 39.85 (2.9) 222.34

(3.5) 48.21 (3.6) 130.65
(7.6)

Speedup 1.17x 1.10x 1.21x 1.04x 1.15x 1.32x

AIMD 393.55
(5.8) 64.32 (3.9) 36.51 (4.3) 234.92

(5.2) 45.38 (2.2) 110.06
(6.2)

Speedup 1.22x 1.16x 1.13x 1.10x 1.09x 1.11x

Hybrid 318.55
(4.2) 55.31 (3.2) 32.53 (2.3) 212.91

(2.6) 41.56 (4.4) 98.78 (7.2)

Neutral Cold Hot Average
Annealing 145.72 116.14 176.42 146.09
Speedup 1.17x 1.06x 1.26x 1.16x
AIMD 134.67 122.28 185.42 147.46
Speedup 1.07x 1.15x 1.18x 1.14x
Hybrid 124.86 107.68 147.28 126.61

Table 5.2: The mean and stdev of execution time in seconds for 6 machine
learning benchmarks in 3 modes of Sparta. Compared to Annealing and AIMD,
Hybrid mode uses less time to complete tasks across all benchmarks and all ther-
mal scenarios.

completes the task of each benchmark faster than Annealing and AIMD. Given

the stdev and degree of freedom, we also run a student t-test among 3 modes for

each benchmark and confirm that the execution time by Hybrid is smaller than

Annealing and AIMD with a statistical significance level of 5%. Table 5.2 also

indicates the speedup of Hybrid over Annealing and AIMD, ranging from 1.04x

to 1.32x.

The second part of Table 5.2 demonstrates the average execution time in 3 ther-

mal scenarios. On average, Hybrid mode completes the task in 126.61 seconds,
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WTB
Train WTB Inf MNIST BiLSTM Decision

Forest
Time
Series

Annealing 5.04 (1.0) 7.88 (1.7) 9.22 (0.8) 5.07 (1.3) 9.91 (1.5) 9.63 (2.4)
AIMD 4.39 (0.6) 6.24 (0.9) 8.35 (1.0) 5.81 (2.1) 9.95 (1.6) 8.67 (3.1)
Hybrid 4.32 (0.6) 5.79 (1.2) 6.11 (1.8) 4.90 (1.2) 9.48 (2.4) 7.25 (3.0)

Neutral Cold Hot Average
Annealing 7.12 9.59 6.67 7.79
AIMD 5.69 9.39 5.79 6.96
Hybrid 4.92 9.10 4.99 6.34

Table 5.3: The mean and stdev of RMSE of all temperature samples for 6
benchmarks in 3 modes of Sparta. Compared to Annealing and AIMD, Hybrid
mode has less RSME to threshold temperature across all benchmarks and all
thermal scenarios.

in comparison with 146.09 seconds by Annealing and 147.46 seconds by AIMD.

Hybrid mode provides 1.16x and 1.14x speedup respectively over Annealing and

AIMD. These results show that Sparta in Hybrid mode efficiently executes more

workloads than Annealing and AIMD mode under the same temperature thresh-

old.

To investigate the error from the sampling temperature and threshold, we next

evaluate the Root Mean Square Error (RMSE) of all temperature samples in the

executions. We define RMSE =
√

1
n

∑n
i=1(Ti − T̂ )2, where Ti is a sample of CPU

temperature, T̂ is the temperature threshold and n is the number of temperature

samples. In Table 5.3, we display the mean and stdev of RMSE of all CPU

temperature samples. The RMSE of the Hybrid mode is the least across all six

benchmarks among the other two modes. The Hybrid mode also has the lowest
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WTB
Train WTB Inf MNIST BiLSTM Decision

Forest
Time
Series

Annealing 71.8%
(0.05)

83.0%
(0.14)

83.4%
(0.09)

72.6%
(0.10)

84.3%
(0.07)

91.0%
(0.13)

AIMD 97.2%
(0.07)

99.7%
(0.01)

98.0%
(0.08)

99.6%
(0.09)

98.7%
(0.04)

99.5%
(0.25)

Hybrid 93.0%
(0.11)

95.2%
(0.14)

92.7%
(0.07)

97.2%
(0.23)

91.1%
(0.10)

96.9%
(0.17)

Neutral Cold Hot Average
Annealing 88.3% 79.7% 75.1% 81.1%
AIMD 99.7% 98.6% 98.2% 98.8%
Hybrid 98.1% 92.29% 92.7% 94.4%

Table 5.4: The mean and stdev of PTBT (Percentage of Temperature Below
Threshold) for 6 benchmarks in 3 modes of Sparta. Due to their inherent algo-
rithm, Annealing has the lowest PTBT value and AIMD has the highest, whereas
the Hybrid mode has the PTBT value in-between across all benchmarks and all
thermal scenarios.

RMSE in all three thermal scenarios. On average, Hybrid has 6.34 as RMSE for

all temperature samples from the threshold.

Lastly, we report the percentage of samples below threshold temperature in

six benchmarks. The first part of Table 5.4 manifests the mean and stdev of

PTBT (Percentage of Temperature Below Threshold) for six benchmarks. Because

Annealing mode uses a probabilistic algorithm, it results in the lowest PTBT

metric among the three modes. Since AIMD mode multiplicatively decreases the

CPU frequency whenever a temperature over the threshold is detected, it has

the highest PTBT metrics in all six benchmarks. Combined with Annealing and

AIMD, the PTBT of the Hybrid mode is between the other two modes. This
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relationship holds for all three thermal scenarios, as depicted in the second part

of Table 5.4. Hybrid mode maintains 94.4% of all temperature samples below

the threshold. Thus, we consider the above results as strong proof of Sparta’s

efficacy in preventing overheating of edge devices and executing a variety of tasks

as efficiently as possible.

5.3 Related Work

As related work, we consider recent advances in edge cloud’s energy consump-

tion and power management. Zahedi et al. (2017) proposes computational sprint-

ing which is a class of mechanisms that supply additional power on processors

for a short duration to improve performance. It also introduces phase change

materials onto processors to absorb additional heat primarily concerning the per-

formance. ThriftyEdge Chen et al. (2018) presents a resource-efficient edge com-

puting paradigm that consists of an offloading mechanism based on delay-aware

task graph partition and a virtual machine selection method. To augment exist-

ing resources, Hossain et al. (2021) manifests a dynamic fog computing framework

that schedules computing tasks to Citizen Fog (CF) with the highest computa-

tional ability. Different from the above systems, Sparta focuses on preventing CPU
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overheating caused by ambient temperature and program execution patterns on

edge clouds deployed in natural conditions.

By offering distributed, reliable, and low-latency machine learning services,

edge-based ML as a fast-growing area has a great appeal both for AI and the sys-

tem research community. Thus, we also consider the cutting-edge development in

machine learning based on the edge cloud. Park et al. (2019) explores the building

blocks and principles of wireless intelligence at edge networks concerning latency

reduction, reliability guarantees, scalability enhancement, and privacy constraints.

Murshed et al. (2019) provides a comprehensive survey of techniques in the scope

of machine learning systems at the network edge, including distributed training

and inference, real-time video analytics and speech recognition, autonomous ve-

hicles and smart cities, etc. Cruz et al. (2021) presents an approach to estimate

the performance of ML application on edge cloud and to load appropriate com-

puting resources for an edge-based application. The above work provides guiding

principles and examples for Sparta and serves as one of the key motivations for

our work.
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5.4 Conclusion

In this work, we propose a heat budget-based scheduling framework, called

Sparta, aiming to prevent edge cloud CPU overheating in executing machine learn-

ing applications. Sparta’s scheduler integrates three components – data plane,

decision plane, and control plane: Decision plane extrapolates the initial CPU

frequency from historical benchmark data and dynamically adjusts it based on

real-time data monitored by the data plane, while the control plane modified the

CPU frequency via DVFS throughout the execution. Sparta strives to accelerate

the execution of applications without sacrificing CPU overheating protection.

We present the design principles and implementation details of Sparta’s com-

ponents and operating modes that address the drawback we encounter in the

testing phase. Our empirical evaluation demonstrates Sparta effectively protects

CPU from overheating, putting 94.4% temperature samples under the thresh-

old in Hybrid mode. In the meantime, it speeds six benchmarks’ execution up

to 1.04x - 1.32x in all three thermal environments compared to Annealing and

AIMD.

As part of future work, we plan to investigate using non-uniform distributions

in generating random values for exploration in Annealing mode that potentially

improves the PTBT metrics. We also plan to extend the deployment of Sparta at
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edge cloud clusters and investigate its performance in the distributed execution

of the training and inference process.
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Chapter 6

Conclusions, Impact, and Future
Work

The great tragedy of science - the slaying of a beautiful hypothesis by an ugly

fact.
—Thomas Huxley

The introduction of edge computing creates new demands on the way comput-

ing resources are allocated and managed across computing infrastructure. It accel-

erates wide-area data analytics in a geographically distributed system compared

to a stand-alone private/public cloud. Enabling edge clouds in a heterogeneous

IoT system, however, requires multiple technology pillars to underpin scalability,

robustness, and energy efficiency.

In this thesis, we present three pillars supporting the implementation and

management of intelligent scheduling for IoT applications on the network edge,

bridging the gap in the computational offloading research in IoT systems: the
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scalability achieved by event-driven programming model, the optimal deployment

in multi-layer geo-distributed cloud, and energy efficiency across heterogeneous

IoT devices. We are inspired by existing work in event-driven architecture, mobile

computational offloading mechanism, and dynamic voltage and frequency scaling,

aiming to construct scheduling systems for real-world environments.

Seneca is our effort to simplify and accelerate the hyperparameter tuning in

the machine learning training process using a scalable, event-driven architecture,

specifically serverless computing systems. The framework can be deployed at the

edge, private or public cloud depending on demand from users. Seneca auto-

matically configures possible combinations of hyperparameter settings and swipes

concurrently to find the best scoring model for future use. It envisions a promising

field for large-scale distributed machine learning.

We demonstrate a new scheduling mechanism in STOIC that integrates a mon-

itoring and extrapolation system. STOIC deploys and executes machine learning

applications in hybrid IoT-cloud settings using serverless architecture, providing

specialized hardware (e.g. GPUs) accelerations. The central feedback control

mechanism makes STOIC highly adaptive to varying workloads and runtime de-

ployment time in the public cloud. Two execution modes, selector and duplicator,

further optimize the selection process by suppressing the residuals between volatile

deployment time and predictions.
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Consisting of a data plane, decision plane, and control plane and leveraging

DVFS, Sparta implements a heat-budget-based scheduler aiming to prevent edge

cloud CPU overheating in executing machine learning applications. We create the

hybrid temperature prediction model, combining simulated annealing and AIMD,

which achieves the most acceleration without sacrificing the CPU overheating

protection. Effectively addressing the energy efficiency issue, this framework runs

smoothly on heterogeneous edge cloud devices in the open field settings. It be-

comes the third pillar that supports a scalable, event-driven, and heterogeneous

edge cloud system executing IoT applications.

In future work, we expect to extend the scalability of edge cloud and IoT

systems using master-replica architecture. We also plan to optimize the data

structures used to represent events to not only accelerates event sourcing but also

to ensure the integrity of the end-to-end system given the malicious requests are

presented.

More prediction modeling techniques, including LSTM and neural network,

will be investigated to make the feedback loop more resilient and adaptive, as

we consider it as the key to a more optimized intelligent scheduling system. The

consensus algorithm is another area that we want to explore due to the nature

of geo-distribution of edge cloud and IoT systems in wide-area data analytics.

Besides PAXOS-based consensus algorithms (Pease et al. (1980), Lamport et al.
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(2001), Lamport (2006)), blockchain and smart contracts (Christidis & Devet-

sikiotis (2016), Zheng et al. (2018), Pan et al. (2018), Wüst & Gervais (2018),

Suliman et al. (2019)) have developed various interesting mechanisms for reach-

ing consensus. The positive and negative impacts, in terms of security, latency,

and resource consumption, are essential to building an efficient scheduling system

on edge cloud and IoT clusters.

To more effectively and accurately manage devices’ temperature in the edge

cloud, we will investigate other controlling mechanisms for CPU and specialized

hardware. We also plan to extend the deployment of intelligent scheduling systems

to large-sale cloud clusters and empirically evaluate different modes, prediction

models, and execution latency.
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