
Real-time Object Recognition on the Microsoft
Hololens

Adam Ibrahim
ai@cs.ucsb.edu

John B. Lanier
johnblanier@gmail.com

Brandon Huynh
bhuynh@cs.ucsb.edu

John O’Donovan
jod@cs.ucsb.edu

Tobias Höllerer
holl@cs.ucsb.edu

Abstract—We investigate the possibility of running object
recognition tasks on the Microsoft HoloLens Augmented Reality
(AR) headset in real time. Two different approaches are imple-
mented: one using the Microsoft Project Oxford API, the other
using a pre-trained neural network (YOLO) running on a local
server. We find that while there are workarounds for the latency,
the main obstacle to real-time performance is the HoloLens itself.

Index Terms—Object Recognition, Convolutional Neural Net-
works, Microsoft HoloLens, Augmented Reality.

I. INTRODUCTION

Since the revival of interest in neural networks in 2012[1],
Convolutional Neural Networks (CNN) have become the state
of the art in object recognition tasks, even beating humans
on some datasets[2]. Their high accuracy has led them to
be used in a wide range of applications, such as self-
driving cars [3][4][5], healthcare[6], and e-commerce[7]. In
parallel, Augmented and Virtual reality (AR and VR) are
undergoing a fast expansion due to advances in technology.
Microsoft’s HoloLens, for example, is a fully portable, stand-
alone AR headset capable of tracking the environment in real-
time with centimeter accuracy. This opens up a myriad of
possibilities, such as the ongoing language learning project,
which leverages the HoloLens’s sensors to virtually annotate
physical objects in order to teach the user new vocabulary
words. Machine learning could play a key role by handling
the automatic identification and localisation of objects seen
by the HoloLens’s cameras, allowing users to use such a
system anywhere without having to manually assign the labels
beforehand. Furthermore, the use of machine learning could
enable new interaction techniques in AR[8].
In order to test whether the use of such algorithms with the
HoloLens is viable, we try two different approaches: using an
API, and using algorithms running on our own servers. We
limit ourselves to object recognition as a first step. Note that
running such algorithms directly on the HoloLens was also
attempted, but quickly discarded due to insufficient processing
power leading to abysmal framerate. For the API, we use
Microsoft’s Project Oxford, which comes with free credits.
On the servers, we use YOLO[9][10], due to the model’s very
competitive inference speed and portability. The questions we
aim to answer are:

1) Can object recognition as a service be used in real time
with the HoloLens ?

2) Can a custom neural network running on consumer com-
puters be used in real time with the HoloLens ?

II. PIPELINE

A. HoloLens client application

As of the end of 2016, the Microsoft HoloLens does not
expose an API to send a video feed at low latency. Therefore,
we instead use an asynchronous coroutine to take pictures at
regular intervals or as fast as possible, which allows us to
take up to 6 to 7 pictures per second. The pictures are then
turned into a byte array which is sent to the Microsoft Project
Oxford API using a JSON request, or the YOLO server. The
client is configured to wait for a reply from the server, and
display the information obtained from the server in the app for
the user to see. If bounding boxes and locations are provided
with the labels by the server, they are rendered at the relevant
location on the client application. One the application gets a
response for the server, it can take a new picture for the server
to process.

B. API

The Microsoft Project Oxford API consists in a computer
vision service, capable of performing different classification
tasks such as object recognition, face recognition or emotion
recognition. We solely focus on the object recognition service
in this project. The API accepts an image, and returns labels
for a few objects recognised in the scene. The API recognises
up to 2000 classes as of 2017. Note that the API does not
provide location or boundary information, only labels.

C. YOLO server

We set up YOLO on a computer connected to the same
network as the HoloLens to receive the images sent by the
HoloLens app. We are free to use one of the existing YOLO
weights pre-trained on different datasets and classes[9][10],
or train our own weights. YOLO then reports bounding boxes
and labels for detected objects in the input image, which are
sent back to the HoloLens client to display.

D. Addressing latency

Taking a picture and sending it through the network takes up
to several dozen milliseconds on the HoloLens. The processing
time for the local YOLO server and the APIs is comparable,
ranging from 100-300 ms when YOLO’s weights are trained
on the VOC or COCO datasets. As the HoloLens may have



Fig. 1: YOLO interfaced with the HoloLens, as seen from the latter.

moved in the meanwhile, and inference being run on a 2D
image, we must be careful to account for the latency for
the labels and bounding boxes to be accurately placed. More
specifically, labels and bounding boxes coordinates are given
in a camera’s 2D image space. As can be seen on Fig.2, if the
camera moves between the moment the picture is taken and
the moment when the server’s answer is received, rendering
the bounding boxes and labels at the position predicted from
the input image in the camera’s image plane will lead to
erroneously placements. In order to solve that problem, we
store the camera-to-world’s matrix in memory at the moment
a picture is taken. This allows us to have a copy of the main
camera’s (MC) configuration at that time, which we denote
on Fig.2 by TC (temporary camera). The query is sent to the
remote server, which processes it, and returns labels and a
bounding box if applicable. Those are then rendered in the
temporary camera’s image plane instead of the main camera’s,
allowing us to place the labels and bounding boxes where the
objects are in 3D space, even if they are out of the main
camera’s field of view, as long as only the HoloLens has
moved with respect to the mapped room in the meanwhile.
Note that if the objects move too with respect to the mapped
room, this fix will not work.

III. LIMITATIONS AND FUTURE WORK

A. HoloLens

While trying to perform processing directly on the HoloLens
using OpenCV, we quickly ran into an issue with the available
resources on the HoloLens: the frame rate would drop dramat-
ically, affecting negatively the whole performance of the app,
including tracking. Moreover, the use of the camera in an app
prevents us from using the mixed reality capture functionality

Fig. 2: Illustration of a solution for the misplacement of
labels and bounding boxes due to latency: the camera is in
configuration TC when taking a picture, and configuration MC
when receiving the server’s answer. The labels and boxes are
placed in the coordinate system defined by camera TC instead
of the current camera’s.

to see what the user sees when using the app. These issues
might not be present with other AR devices or future versions
of the HoloLens.

B. Server

The server was able to handle extremely well the VOC and
COCO weights, but struggled with the YOLO9000 weights.
As inference using the YOLO9000 weights (and 9000 classes)
takes 2-3 seconds on an NVIDIA GTX 980 Ti, we had to
limit ourselves to the weights trained on the VOC and COCO
datasets, which respectively have 20 and 80 classes. This limits
our ability to compare the API and YOLO as the API handles
significantly more classes than VOC and COCO. Note that this
could be addressed by using more powerful GPUs in parallel



with the YOLO9000 weights. Another core problem with the
server is that latency affected the system’s performance in
ways that could not be fixed by solutions as simple as the
temporary camera trick. For example, the processing time
prevents the labels and bounding boxes from moving smoothly
with the labelled objects in the field of view when the user
is walking or looking around. Moreover, labels sometimes
change (mislabelling) due to changes in illumination and pose
as the user moves. A workaround could be to keep track
of assigned labels in the room’s 3D mesh instead of simply
rendering them in the 2D image plane and discarding them at
the next query. This may work as long as there are not too
many classes, as otherwise some labels will stack if the system
recognises objects at different resolutions in the same scene.
Segmentation could help getting 3D boundaries of objects
from the initial 2D prediction, with predicted classes for a
given object being tracked in time to stabilise the classification
by displaying the label that has the most votes.

IV. CONCLUSION

The success of the YOLO server in providing a framework
that could be used in real-time to perform machine learning
in conjunction with the HoloLens opens the way for more
customised processing. Both the API and YOLO, even when
the in-house server was not accessed locally, were found to be
viable for real-time performance. However, the API’s inability
to localise the objects and provide bounding boxes limits its
potential for AR. The successful interfacing of the HoloLens
and a server running machine learning algorithms allows us to
focus our efforts on building our own models and algorithms,
or attempt to use available models on our servers. This could
allow us to address some of the problems encountered while
using YOLO and enable new applications such as the ongoing
language learning and hybrid server modelling projects.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
pp. 1026–1034, 2015.

[3] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil,
M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, et al., “An em-
pirical evaluation of deep learning on highway driving,” arXiv preprint
arXiv:1504.01716, 2015.

[4] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[5] J. Li, X. Liang, S. Shen, T. Xu, J. Feng, and S. Yan, “Scale-aware fast
r-cnn for pedestrian detection,” IEEE Transactions on Multimedia, 2017.

[6] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep
learning for healthcare: review, opportunities and challenges,” Briefings
in Bioinformatics, p. bbx044, 2017.

[7] D. Etherington, “Amazon puts image recognition into its main ios app
prepare to be even more showroomed, retailers,” Techcrunch, 2014.

[8] N. Xu, B. Price, S. Cohen, J. Yang, and T. S. Huang, “Deep interactive
object selection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 373–381, 2016.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 779–788,
2016.

[10] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” arXiv
preprint arXiv:1612.08242, 2016.


