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Abstract—In this paper, we investigate the design and im-
plementation of Where’s The Bear (WTB), an end-to-end, dis-
tributed, IoT system for wildlife monitoring. WTB implements
a multi-tier (public/private cloud, edge, sensing) system that
integrates recent advances in machine learning based image
processing to automatically classify animals in images from re-
mote, motion-detection camera traps. We use non-local, resource-
rich, public/private cloud systems to train the machine learning
models, and “in-the-field,” resource-constrained edge systems to
perform classification near the IoT sensing devices (cameras).
WTB relieves scientists and citizen scientists of the burden of
manual image classification and saves time and bandwidth for
image transfer off-site by automatically filtering the images on-
site based on characteristics of interest.

We deploy this system at the UCSB Sedgwick Reserve, a
6000 acre site for environmental research and use it to aggregate,
manage, and analyze over 1.12M images. WTB integrates Google
TensorFlow and OpenCV applications to perform automatic
classification and tagging for a subset of these images. To avoid
transferring large numbers of training images for TensorFlow
over a low-bandwidth network linking Sedgwick to the pub-
lic/private clouds, we devise a technique that uses stock Google
Images to construct a training set using only a small number of
empty, background images from Sedgwick. Our system is able
to accurately identify bears, deer, and coyotes and significantly
reduces the time and bandwidth requirements for image transfer.

I. INTRODUCTION

Wildlife monitoring is essential to a wide range of scientific
activities and societal interests. Understanding animal behavior
and activity patterns [1] is useful for evaluating biodiversity
and changes in habitats and land use, avoiding dangerous
human-wildlife encounters [2] and destructive habitat over-
lap, monitoring species health and population dynamics, and
providing people with high impact educational experiences.
Digital photography provides an effective, non-intrusive way
to monitor wildlife for many of these applications. It is safe,
cost effective, and accessible to people with a wide range of
expertise and backgrounds. To scale the process of wildlife
monitoring in remote locations researchers are increasingly
turning to automatically activated, battery or solar powered
cameras equipped with motion detection sensors and network
connectivity (e.g. radios or WIFI), (i.e. camera traps or trail
cameras) [3], [4].

Despite the success of these technological approaches
there are still several challenges that scientists and citizen
scientists face in classifying images and identifying animals
in images. First, automatically activated cameras can generate

an enormous number of images (especially when motion-
triggered), making it time consuming if not infeasible to
perform classification and identification manually. Second, the
remote locations of the cameras (in the wild) can make it costly
(in terms of time and/or monetary cost) to upload images to
the Internet where they are increasingly stored, processed, and
shared. And finally, motion sensors commonly trigger events
due to non-animal activity (e.g. the wind or rain), for animals
of no interest to a particular study, or redundant pictures
of the same animal in slightly different poses, introducing
significant overhead (to copy, store, communicate, and analyze
unimportant images) in the classification process.

In this paper, we address these challenges with the design
and implementation of a new wildlife monitoring system
that leverages recent advances in the Internet-of-Things (IoT)
and in open source image processing and deep learning [5]
for image recognition, to automate image classification and
analysis. Our system, called Where’s The Bear (WTB), is
an end-to-end, distributed data acquisition and analytics sys-
tem that implements an IoT architecture consisting of of
sensors (cameras), “edge clouds,” and a back-end public or
private cloud. We describe a specialization of this architecture
for wildlife monitoring and a novel integration of image
processing software for scalable image classification (animal
identification). WTB is extensible in that different algorithms
for animal classification and image processing can be easily
integrated (i.e. “plugged” into the system) via application
programming interfaces (APIs) and wrapper scripts. The key
innovation is that WTB performs classification near where
the images are produced to avoid unnecessary image transfer
(unimportant, redundant, or empty images) over expensive,
long-haul, and/or low bandwidth network links.

We implement WTB using open source software and “off-
the-shelf” inexpensive equipment to ensure its accessibility to
a broad audience of users. For the experiments we describe,
we integrate Google TensorFlow [6] for image recognition and
OpenCV [7] for image analysis within WTB. We also present
a novel training technique for our TensorFlow animal image
classifier that leverages the WTB architecture by using freely
available, labeled images from Google Images [8] instead of a
training set from the camera traps. By doing so, this technique
avoids transferring a large training set to a private or public
cloud where there is sufficient computational capacity to train
a TensorFlow model. Instead our approach combines a small
number of empty images from our camera traps at different
times of the day with images of animals taken from Google
Images that might be photographed by a camera trap. That



is, we construct training images by creating a montage of
an empty background from the camera traps with Google
Image examples of different animals. We generate hundreds
of thousands of these “fake” images automatically overlaying
the animal images the camera trap background (empty image)
in many different orientations and illumination levels. This
process produces a very large training dataset that we use
to train TensorFlow with – without ever requiring an image
containing an animal from the camera traps be part of the
training set.

We implement our system at the UCSB Sedgwick Reserve,
an ecology and wildlife educational and research reserve [9].
The reserve consists of just under 6,000 acres of land that
comprises critical wildlife habitats, two watersheds at the
foot of Figueroa Mountain, and a 300 acre farm easement.
Sedgwick has 11 camera trap locations and high bandwidth,
wireless networking throughout much of the property, and its
meeting house is connected to the UCSB campus via a lower-
bandwidth microwave radio link. WTB at Sedgwick currently
integrates nine of cameras which have collected over 1 million
images (˜550GB of data).

We evaluate the performance of WTB and its accuracy in
classifying bears, deer, and coyotes for one of the Sedgwick
camera traps with over 600K images. Our results indicate that
by training a model in a public or private cloud and then using
it to classify images “at the edge” near where the images are
gathered drastically reduces the time and expense associated
with the classification process. Further, the automated image
classification method enables high accuracy with few false pos-
itives and false negatives, making it possible to replace what
had become a tedious, error prone, and ultimately infeasible
manual process. Finally, we investigate the extensibility of
WTB by using it to integrate image classification with optical
character recognition (OCR) to tag, automatically, each image
with additional metadata. For example, we find that we are
able to extract temperature values recorded by each camera
from the images with 100% accuracy. We plan to make all
of our software and systems designs available on GitHub [10]
upon publication.

In summary, with this paper, we contribute
• An integration of multiple disparate technologies (sen-

sor data aggregation and management with automatic
image processing using advanced machine learning
techniques as “black boxes”) into an end-to-end sys-
tem for wildlife monitoring,

• A distributed IoT architecture that is customized for
this application domain, which leverages edge cloud
systems to implement image and sensor data process-
ing and storage near where the data is generated, and

• An empirical evaluation of the benefits that this archi-
tecture enables.

In the sections that follow, we overview the challenges of
wildlife monitoring faced by Sedgwick scientists and present
the design and implementation of WTB. We then evaluate
WTB for a subset of the images collected by Sedgwick
camera traps. We measure accuracy of the machine learning
technologies that we integrate into WTB and our use of “fake”
images for training. We also report the amount of time and

bandwidth that WTB saves if we are able to filter the images
at the source. We then present related work and conclude.

II. WTB: END-TO-END IOT-CLOUD SYSTEM FOR
WILDLIFE TRACKING

The goal of our work is to simplify and expedite the
process of animal identification using images from motion-
triggered cameras deployed in the wild. Our experimental
setting is the UCSB Sedgwick Reserve located 40 miles from
the UCSB campus in Santa Ynez, CA. Sedgwick is a research
and educational reserve for study of environmental steward-
ship and protection, restoration of natural biological systems,
and technology-driven agriculture [11]. Scientists from fields
including ecology, biology, computer science, geography, and
others use parts of the over nine square miles of the Sedgwick
property to perform measurement, experimentation, demon-
stration, and hands-on and multi-disciplinary pedagogy. As
a research reserve, there are a small number of structures
with electricity and Internet connectivity, but they are clustered
together in one location on the property – the remainder of the
reserve is wild.

Many Sedgwick scientists and management personnel are
interested in monitoring the wildlife at Sedgwick for various
purposes including to estimate population size and health
for different locally occurring species, to identify changes
in animal behavior patterns due to external forces (drought,
human activity, invasive species), to identify/prosecute illegal
hunting activities, and to track and recover stray grazing
livestock. To facilitate these activities, Sedgwick manages 11
camera traps at watering holes and popular animal pathways
throughout the property. Some cameras have support for wire-
less communications, while others require manual download
of the images using storage cards. The Sedgwick staff plans
to convert all to WIFI for download over time.

Figure 1 shows the map of the property with the camera
traps and headquarters building identified (in green). The head-
quarters building is connected to the UCSB Campus network
via a long-distance microwave radio link and wireless connec-
tivity is available directionally between the headquarters and
each camera trap. The average bandwidth between the cameras
and headquarters is approximately 114 Megabits per second
(Mbps). The connectivity between headquarters and the UCSB
main campus (which must traverse several microwave links)
rarely exceeds 5 Mbps for file transfer (and is approximately
2 Mbps for simple transfers). We use one camera trap in this
study to evaluate our system. We mark this camera in red on
the map. The distance between the camera and headquarters is
3.05km. We store camera trap images on a computer system in
the headquarters building for on-site analysis; researchers copy
the images to campus or via Internet to other organizations
for sharing with others and for analysis and processing. The
cameras collect images continuously and to date they have
been in use intermittently over the past 3 years to collect over
1.12M images (˜716.3 GB).

This technology configuration and workflow presents mul-
tiple challenges for scientists and researchers attempting to
analyze these images. First, they must copy the images from
Sedgwick to UCSB or another Internet site where the necessary
software and sufficient computational resources are available.



Fig. 1. UCSB Sedgwick Reserve with Camera Traps and Headquarter
Building Icons. The reserve is approximately 9 square miles in size and the
distance between the camera (red camera icon) and headquarters (dark green
house icon) is 3.05km. There are 11 trail cameras on the property in total.
The northeast corner boarders Los Padres National Forest (light green).

Given Sedgwick’s remote location, connectivity between it and
the main campus or the Internet is intermittently available and
imposes high overhead on such copies.

For example, copying the 638,062 images from the main
camera alone, between Sedgwick headquarters and campus,
took researchers approximately 13 days when first attempted.
Given that public cloud services, including Amazon Web
Services (AWS) Simple Storage Service (S3) and Box.com
(which we have tested as part of this project), limit the transfer
speed and access frequency to and from their sites for stability
and fair sharing purposes, transfer of the Main camera images
to these services from Sedgwick headquarters took 14.92 days
and 13.09 days, respectively. Such delays are costly in terms
of time, result in many copies of the images (wasted storage),
and preclude the use of real time processing and actuation (e.g.
thwarting poachers, detecting escaped livestock) based on the
images at Sedgwick.

Second, transmitting all images wastes bandwidth (and
power), since many contain no animals (motion detectors
are triggered by wind and weather events), or they contain
repeated images of the same animal (time lapsed) in slightly
different poses, or they contain animals of no interest to a
particular study. Moreover, classifying images by hand is time
consuming (expensive), tedious, and ultimately infeasible. For
example, we found that 10 dedicated students can process
(label) 2500 of our images in approximately 2 hours. Some
techniques and online services are available for automatically
classifying images but are only available in “the cloud” and
as such, require upload over slow, long-haul networks. The
final issue is that although many new automated techniques
for image processing and classification have emerged and
are freely available, they require extensive technical expertise
and significant experience with machine learning to be used

Fig. 2. IoT-Edge Architecture for WTB. Adding an Edge Tier capable of
low-latency, high bandwidth, high availability, low cost communications and
fast response to/from the Sensing Tier. We define a new computing entity for
the Edge Tier called the edge cloud that mirrors the functionality of popular
public cloud systems at a smaller scale, to provide advanced data fusion and
complex analytics via a Cloud Service Distribution Network to the Sensing
Tier. The Private/Data Center Tier provides similar functionality as Public
Clouds for data and compute (software) but with privacy, security, and cost
control. The high latency, variable, intermittent, and costly connectivity to the
Public Cloud Tier is leveraged for long term data backup and latency-tolerant
batch processing only if/when needed (on-demand).

effectively.

To address these challenges, we pursue an IoT approach
to camera trap image classification that, using edge clouds,
“brings the cloud to the data” to avoid unnecessary data trans-
fer from the IoT sensors (cameras) to the point of analysis, and
that simplifies the classification process (no prior knowledge
of cloud computing or machine learning is needed). To enable
this, we build upon and extend existing approaches to IoT that
attempt to lower latency via in-network processing of data
(aggregation, filtering, caching) near where the IoT devices
generate data and where IoT applications consume it – at the
edge of the network as depicted in Figure 2. The use of an
edge tier as shown in the figure is referred to variously as
edge networking, fog computing, edge computing, or cloudlets
in the literature [12]–[16]. In addition, we encapsulate image
processing techniques into this system so that they can be
easily employed as “black boxes”, i.e. via automatic configura-
tion and deployment, enabling their use for customized image
classification by non-experts.

Our approach, called WTB, is a distributed system that
implements the multi-tier IoT architecture depicted in the
figure. We employ our campus cloud computing infrastructure
(UCSB Aristotle [17]) for the Private Cloud Tier. We use
AWS and Box.com for the Public Cloud Tier. The sensing tier
includes the Sedgwick camera traps and other sensors (weather
stations) located on the property. Unique to our approach is the
ability migrate cloud-based applications to an Edge Tier where
they are hosted by one or more “edge clouds.”. Instead of



Fig. 3. The WTB System.

performing only caching and simple filtering near the Sensing
Tier, we propose, develop, and deploy edge clouds that are
capable of implementing advanced computing and analytics as
an appliance – with little or no expert system administration
or programming skills required for operation.

Our edge cloud appliance is a scaled-down, open source,
highly available, version of the AWS public cloud infras-
tructure implemented using Eucalyptus [18]. That is, we
configure a small cluster of computers (currently six 4-core
computational “bricks” [19]) with this open source distributed
system that mirrors Amazon’s public Elastic Compute Cloud
(EC2) and Simple Storage Service (S3). The use of Eucalyptus
enables our edge cloud to run any software or services that
run on EC2 and/or use S3, without modification, so that we
are able to leverage the vast repositories of open source data
analysis, machine learning toolkits, and web services available
today with no porting effort.

Moreover, the high availability configuration of Eucalyptus
enables us to construct a self-managing, resource constrained
system without an IT staff to manage it (an appliance). If/when
components fail, the edge cloud automatically reconfigures
itself to operate using only the remaining nodes and disks
until insufficient resources cause total system failure. Users
of edge cloud services access the software and data (camera
trap images in this case) via their browsers as they would any
other Internet service or website. The edge cloud is located
in the Sedgwick headquarters building and IoT devices at
Sedgwick connect directly to it using the Sedgwick private
wireless network.

In this paper, we customize this multi-tier architecture for
remote camera trap image processing applications (the WTB
system). WTB implements a software stack that automates
image processing via advanced machine learning technologies
that classify images of animals. Thus WTB is able to extract
images with animals (or other characteristics) of interest and
transmit them to end users and cloud services for further
processing or sharing, significantly reducing bandwidth use,
transfer delay, and end user storage requirements. Doing so
also reduces the latency associated with classification (since
it is performed on-site), which enables WTB to use results
from its image processing for realtime control and actuation
of other IoT sensors and devices at Sedgwick (to control
sensor measurement frequency, remote release of water to the
watering holes, sending of alerts, etc.).

A. WTB Implementation

Our WTB for Sedwick Reserve is depicted in Figure 3.
WTB cameras connect to the Sedgwick private network via

Fig. 4. Example image from the Sedgwick watering hole understudy which
is surveiled via a Reconyx HC500 Hyperfire.

radio links where available. The cameras consist of different
makes and models. The one we target is this work is a
Reconyx HC500 Hyperfire. We currently have 638,062 images
(205.5GB) from this target camera trap and of these, we
consider only day images (due to time constraints), which we
consider to be between 9am and 4pm year round. The images
were taken for 897 days between July 13, 2013 and Aug 10,
2016 a. Of the 638,062 images, there are 260,159 day images
with an average of 290 day-images per day for this camera.
We show an example image from this camera trap in Figure 4.

Our WTB edge cloud implements Eucalyptus v4.1 and
is configured with high availability (HA). The edge cloud
comprises 6 4-core i7 Intel “Next Unit of Computation”
(NUCs [19]), an Uninterrupted Power Supply (UPS), a gigabit
Ethernet switch, 1 TB of storage (with 2x redundancy con-
figured), and a wireless access point (for communication with
IoT devices on the property). The switch is connected to the
main Sedgwick network linking the reserve to the main UCSB
campus networking infrastructure via a series of microwave
radio links that connects Sedgwick to UCSB via Santa Cruz
Island.

B. WTB Image Processing

WTB processes and filters the images automatically so that
only those of interest to the end user (scientist) require transfer
and remote storage. To enable this, we define a workflow
engine that runs over Eucalyptus (as a Linux virtual machine
instance), that is “pluggable”. That is, we store the images in
a disk volume that we make available for network attachment
to virtual machine instances (that process the images). Within
an instance, any machine learning or image processing toolkit
that can process JPEG encoded images can be used to process
and filter images.

To enable this, we provide a toolset written in the Python
programming language and deployed in the edge cloud that
automatically deploys virtual machine instances and disk
volumes, and that invokes the image processing application.
The disk volume stores the images using a POSIX-based
hierarchical directory structure based on the date of the image,

aDuring this period, the camera was down for 11 months (scattered across
this time period) for repairs and use at different locations and for other
purposes.



Fig. 5. WTB TensorFlow Training Workflow for Generating Model Used for Sedgwick Image Classification.

e.g. /imageSetID/YYYY/MM/DD, at the root of the mounted
file system in the instance, for easy, uniform access by appli-
cations. The toolset interface requires that image processing
applications read images from the directories and return a list
of image filenames that they deem “of interest”. The toolset
can make the resulting images of interest available via a web
service for browser-based viewing. Or it can perform a remote
copy of them to cloud storage on the UCSB campus or to an
Internet service. We currently support Internet services AWS
S3, Box, and DropBox.

As part of this experiment, we have investigated the inte-
gration of two applications into WTB: Google TensorFlow [6]
and OpenCV Optical Character Recognition (OCR) [20] with
JPEG processing [21], [22]. We “plug” these applications into
the WTB system via the WTB wrapper and use them to
process and filter Sedgwick images on-site using the WTB
edge cloud.

Google TensorFlow is an open source library for ma-
chine learning and deep neural networks [6]. It defines an
Application Programming Interface (API) that facilitates its
use for a wide variety of machine intelligence applications.
Many tools for working with TensorFlow on specific machine
learning problems have been developed and released as open
source by Google researchers and the community. In this work,
we leverage the tools for defining, training, and evaluating
models, for competitive networks in the field of image clas-
sification [23]–[28]. In particular, we use Inception-V3 [26] a
computer vision model for recognizing objects in images. The
model is trained using images from the 2012 ImageNet [29]
Large Visual Recognition Challenge. The model is one of
the most successfully developed to date, recognizing objects
ImageNet images with an error rate of around 4%.

Researchers such as ourselves, interested in using Tensor-
Flow and the Inception-v3 model for image classification, do
so by retraining the model for a particular class of images.
For example, one technically adept Japanese farmer used Ten-
sorFlow successfully for classifying cucumber quality using
images of cucumbers (to automate the manual process for
doing so that the farm had used to date). Retraining the model
required over 7000 images of cucumbers and 2-3 days using
very powerful, GPU-based computing systems [30].

Given the processing requirements for training the model
and the limited processing capability and storage capacity of
our edge cloud, we separate the training process from clas-
sification. Classification requires significantly less processing

power versus training and the representation of the resulting
trained model is small. Thus our approach is to train the model
on the campus or public cloud and then transmit the model to
the edge cloud where the images are being produced (at the
edge) to perform image classification locally. Note that it is
necessary to be able to run the same version of TensorFlow
during the training phase and the classification phase if the
process is to be automated. By ensuring that the edge cloud is
capable of running the same software as the private or public
AWS cloud, we ensure that the model produced by TensorFlow
during the training phase will work correctly at the edge for
classification, and that we can automate the process end-to-
end.

To keep training time and cost to a minimum in the pub-
lic/campus cloud, WTB uses transfer learning [31]. Transfer
learning is a technique that shortcuts the training process by
leveraging a fully-trained model for a set of categories such as
those in ImageNet (Inception-v3), and retrains using existing
weights for new classes. The problem with such an optimized
approach is that retraining of the model requires access to
images similar to the those we wish to classify (Sedgwick
camera trap images). A naive approach is to transmit a large
subset of images to the public/campus cloud to perform the
retraining, however doing so defeats the purpose of processing
the images and only communicating those of interest over
the long haul network between Sedgwick and UCSB and the
public cloud.

To address this challenge, we have developed a new
approach to training the model for Sedgwick cameras and
animals, that precludes the need for transmitting a large
number of Sedgwick images to the cloud. To enable this, we
generate a large number of “fake” Sedgwick images. We depict
our workflow in Figure 5. We manually identify and transmit a
small number of “empty” images from the camera to the cloud.
Empty images are those that are triggered by motion but that
do not contain animals in the image. We need multiple empty
images because of the feature changes (light, size of water
hole) throughout the 24 hour time period and at different times
of the year. We expedite the process of finding empty images
by using weather station data for Sedgwick (another IoT sensor
in WTB) and extracting windy days. We then use the date and
time of high wind events to target images that are likely to be
empty. We identified and transmitted 250 empty day images
totaling 0.1GB for this research.

On the cloud end (campus or public), WTB implements a
software system that accesses Google Images over the Internet



to obtain labeled images of each of the animals of interest
(or classes). In this study, we use bears, deer, and coyote,
the three most popular animals under study at Sedgwick. We
query for images of these animals with white or transparent
backgrounds (e.g. “bear on white background” or “bear on
transparent background”. These queries result in images of
bears of different species and, in particular, different from
those commonly occurring at Sedgwick. Thus it is possible that
the trained model (if effective) could recognize the first occur-
rence of a species that had not been previously photographed
at Sedgwick as well as to recognize those more familiar in
the area. We then automatically subtract the background of
the image from the animal by replacing all white pixels with
transparent pixels. We perform this step by using OpenCV, an
open source library of computer vision and image processing
tools and algorithms.

We next overlay the animal objects on the empty back-
ground images from Sedgwick. We size, rotate, and place the
objects on the empty images in many different ways randomly.
We also use the time of day and brightness on the empty
images to adjust the color contrast of the objects to match the
background. In total, we have produced 5000 fake images for
each animal. We use the 15000 fake images and 250 empty
images to retrain the TensorFlow Inception-v3 model in the
cloud. We then evaluate how well using this type of training
performs in identifying animals at Sedgwick (cf Section III).

The second analytics technology we plug into the WTB
edge cloud, is OpenCV Optical Character Recognition (OCR)
and JPEG processing. We do so to investigate the generality of
our application-integration approach. We use OCR to extract
the air temperature that is embedded within the image itself.
Our application is a Python program that processes each image
in the directory structure (volume storage mounted as a Linux
file system). The application crops each image (using fixed
coordinates that we identified manually) and passes it to the
OCR library.

We train the OCR library for each camera manually.
To enable this training, we use temperature values (cropped
images) between 0 and 9 (and the minus sign), which we
extract from images after performing edge detection (a built
in function in the OpenCV toolkit). We generate a training
set of labeled digits by manually entering the value of each
of the digits. We store the trained model on the edge cloud
and use it with the OCR library which uses it to recognize
any unlabeled character value in a previously unseen, cropped
image, by selecting the object in the labeled set that is most
similar to the digit being analyzed. The OCR tool combines
the digits into a temperature value and reports the value back
to the caller. We have implemented the OCR tool as a library
call and as a cloud service in the WTB edge cloud so that
we can compare the performance of the two implementation
alternatives.

The Sedgwick camera that we employ for this study stores
the temperature that it embeds in each image as part of
the JPEG metadata of the image. Not all cameras do so
and, indeed, none of the other Sedgwick cameras have this
capability. Thus, for the camera under study, we are able to
not only perform OCR on the images, but also to validate
automatically our OCR technique to determine the accuracy
of the analysis application. For this camera, the application, as

Camera Tot. Size Avg. Img Day Images
ID Count (GB) Size (KB) Days Count Size (GB)

Blue 72900 43.39 624 324 54486 33.59
BoneH 153215 334.88 2291 350 153215 136.01
BoneT 5886 5.49 977 32 2277 2.12

Fig 24449 10.05 431 239 9919 5.61
Lisque 88183 24.41 290 219 14031 4.93
Main 638062 204.26 335 897 238489 93.81
NE 86645 39.77 481 324 43897 22.85

URes 5311 8.31 1641 24 4765 7.50
Vulture 17028 14.76 908 123 12468 12.01
WMill1 27332 27.87 1069 385 8396 9.82
WMillG 2310 0.93 421 32 1107 0.53

Total 1121321 714.12 9468 2949 543050 328.78

TABLE I. SEDGWICK CAMERA TRAP STATISTICS. WE USE CAMERA
MAIN FOR THE EMPIRICAL EVALUATION OF WTB IN THIS PAPER.

part of image processing, also extracts the JPEG metadata from
the image using the JPEG library. The program then compares
each pair of temperature values (OCR and JPEG) and reports
the overall accuracy that the OCR technique achieves.

III. EVALUATION

We use the WTB deployment at the UCSB Sedgwick
Reserve to evaluate empirically different components that
comprise its design. In this section, we first overview the
details of the deployment. We then evaluate the accuracy
and performance of the machine learning technologies that
WTB integrates (TensorFlow and OpenCV OCR). We use
this evaluation to investigate the costs associated with image
transfer using different cloud technologies and measure the
savings of performing image classification and filtering in the
edge tier.

We present the details of the Sedgwick camera traps in
Table I. The table shows for each camera name (column 1),
the total number of images and their size in GB that each has
produced between July 13, 2013 and Aug 10, 2016. Count
is the total number of images for each camera during this
period, column 3 is the total size of these images in gigabytes
(GB), and column 4 is the average size of each image in
kilobytes (KB). The final three columns show statistics for
when we consider only images taken during daylight hours
(between 9am and 4pm inclusively). Column 5 is the total
number of days for which we have images, column 6 is the
number of images, and column 7 is the size of these day
images in GB. Each camera uses motion detection to trigger
taking a photograph. Most triggers are caused by animals
(birds, bears, deer, coyotes, squirrels, mountain lions, bobcats,
etc.). However, the cameras are also triggered by movement
of vegetation (caused by the wind). We refer to these images
as empty.

We use the WTB on-reserve edge cloud to store and
automatically analyze the images from the Main camera and
consider bears, deer, and coyotes animals of interest for our
analysis and machine learning study. The edge cloud also
enables access to the images by researchers over the Internet
and campus-to-reserve network. As of August 10, we have
1.12M total images totaling over 714GB. We have 630062
images totaling 204GB for the Main camera. The bandwidth
between the Main camera and the edge cloud is 114Mbps on
average. The bandwidth between the edge cloud and campus is



Fig. 6. Examples of Student-Misclassified Images. The images contain a
small bird and squirrel but were classified as Empty (when they should have
been classified as Other). We believe that the number of such misclassifications
is small.

1.93Mbps for single image transfer and 4.63Mbps for parallel
file transfer on average.

We trained a TensorFlow model using four categories
of synthetically generated images: Bear, Deer, Coyote, and
Empty. The fifth category – Other – contained a sufficient
diversity of wildlife to make training for it difficult. Thus our
approach attempts to classify bear, deer, coyote, and empty
images from the image set but does not attempt to completely
identify all of the images.

To determine the effectiveness of our training and clas-
sification approach, we selected a random sample of 4890
images from the full corpus of Main day images, and classified
them manually into the five categories: Bear, Deer, Coyote,
Empty, and Other. Figure 7 shows the accuracy of the resulting
model with respect to identifying bears, deer, and coyote,
when applied to the random sample of 4890 images. For the
classification step, we used a 90% confidence threshold from
TensorFlow to categorize each image. The error percentages
in the figure comprise both false positive errors and false
negative errors with respect to the manually labeled images.
False positive errors are those that TensorFlow says contains
one type of animal, but the image does not contain that
animal. False negative errors are those that are identified during
manual labeling as containing a particular type of animal, but
TensorFlow fails to categorize the image as containing that
animal with a 90% or greater confidence threshold.

A. Classification Performance

Table II shows the number of each type of image that
we manually identified in the random sample. There is likely

Classifica(on	  Accuracy,	  4890	  Images,	  >=	  90%	  
Confidence	  

87%	  Correct	  

0.2%	  Coyote	  Err	  
12%	  Deer	  Err	  

1%	  Bear	  Err	  

Fig. 7. Common Animal Classification Accuracy with TensorFlow Confi-
dence ≥ 90%, 4890 Randomly Selected Images.

Image Type Count
Bear 227
Deer 1795
Coyote 22
Empty 1028
Other 1818

TABLE II. MANUALLY CLASSIFIED IMAGES FROM RANDOM SAMPLE
OF SIZE 4890

some error differentiating the Empty category from the Other
category. Occasionally, small birds or rodents (which are
difficult to see unless one looks closely) trigger the camera
traps. Each image was viewed only once by a student volunteer
who subsequently classified it as part of a larger set. We
suspect that some of the Empty images may actually contain
birds (and thus should have been classified as Other) and
images classified as Other may, in fact, be empty. We show two
examples of such misclassifications in Figure 6. Both contain
a small animal or bird but were classified by the students as
Empty (when they should have been classified Other). However
we believe this discrepancy is small. Further, with respect
to identifying bears, deer, and coyotes, images classified as
Empty and Other are equivalent as long as they do not contain
bear, deer, or coyote images.

Overall, from the perspective or identifying bears, deer, and
coyote, the results are promising. The overall “miss rate” is
13%, almost all of which is accounted for by misclassification
of deer images. These error rates (which include false positives
and false negatives) are quite low for bear and coyote images,
and while the error rate for the Deer category (12%) may
seem large, it is consistent with the 90% confidence threshold.
Thus we believe that the methodology is working correctly.
We show examples of false positives in Figure 8 and examples
of false negatives in Figure 9. We plan to investigate how to
improve the accuracy of our approach to reduce the number of
false positives and negatives as part of our future research. For
example, TensorFlow misclassifies animals in some cases that
are looking at or away from the camera directly. For these, we
believe that we can improve our training process to include
similar animal positioning using images from Google Images.



Image Type Correct False Pos. False Neg.
Bear 200 16 27
Deer 1187 22 608
Coyote 12 36 10

TABLE III. CORRECT, FALSE POSITIVE, AND FALSE NEGATIVE IMAGE
COUNTS, BEAR, DEER, AND COYOTE, RANDOM SAMPLE 4890 IMAGES

To determine the effect of these error rates on the band-
width usage, we detail the correct count, false positive counts,
and false negative counts for each category in Table III. These
error rates indicate that the bandwidth savings resulting from
the use of an edge cloud are substantial. If the system were
attempting only to transfer images of bear, deer and coyote,
only the false positive counts for the each would “waste”
bandwidth. Put another way, WTB would have transferred a
total of 1473 images (the sum of columns 2 and 3 in the table).
Of these images, 1399 are correctly classified in terms of their
animal type and 74 are misclassifications of each animal type.
If the 74 images were strictly images of Empty or Other, they
would be completely unnecessary transfers. However many
of them are misclassifications within the categories of Bear,
Dear, and Coyote. Transferring these images is necessary but
they would then need to be manually reclassified. The worst-
case overhead is 74 images out of 1473 total transferred
or approximately 5% and, if manual inspection of the false
positives were implemented, the true overhead is substantially
less.

From Table III, it is evident that the bulk of the Deer
category errors are false negatives. That is, the system appears
to be successful at identifying bear, coyote, and deer images,
but it also fails to classify correctly approximately 12% of
the images as deer. However it does not incur a similar miss
rate for bear or coyote images. Thus the system is successful
at answering a query of the form “What type of animal is
in this image?” but is less successful fulfilling a query of the
form “How many deer images were taken at the Main camera.”
Improving this latter capability is also the subject of our on-
going work.

Finally, while the purpose of the experiment is to identify
images of commonly occurring species, the image corpus
contains a number of images that either contain no animals
(the Empty category) or small birds, rodents, or other fauna.
Figure 10 details the the accuracy of the model with respect
to differentiating bears, deer, and coyote, from empty images
and images containing other species. Note that the error
rates for bear, deer, and coyote images are the same as in
Figure 7. However in Figure 10 it is clear that the model incurs
more error when attempting to differentiate an empty image
from one that may contain other features. We mentioned,
many of these images appear similar so this type of error is
expected. Indeed, our initial expectations were that it would
be higher, given the possibility for human misclassification.
This figure does indicate, however, that our technique is better
at identifying animal species for which it has been explicitly
trained. We believe better error rates for the Empty and Other
categories would be generated if we had trained the model
for different scenes that break down the Other category into
different image types.

Fig. 8. Examples of of False Positive Classifications. TensorFlow classified
these images as coyote (top) and bear (bottom) when both contain deer.

B. Network Transfer Time Savings

From the data from Table I for the Main camera daytime
images, it is possible to compute the time savings that WTB
would have enabled for the random sample of images. Table IV
summarizes this comparison.

In our experiments, we used an unoptimized file transfer
protocol to move data from the Sedgwick edge cloud to the
Aristotle campus private cloud [17] located on the UCSB main
campus. To provide a more realistic estimate of production
usage, however, we compute the time savings assuming that
a parallel file transfer capability (i.e. once that uses multiple
network streams) is available. Using an optimistic estimate
of 5 megabits per second (Mb/s) from Sedgwick to Aristotle
(for parallel file transfer), moving all 4890 images would have
required approximately 319 seconds. Alternatively, including
false positives, transferring only the classified 1473 classified
images would have require 96 seconds – approximately one
third of the time.

If the accuracy data shown in Figure 7 and Table III are
representative for the entire set of 238,489 daytime images
from the Main camera, WTB would cut down the transfer
time from 19,212 seconds (5.3 hours) to 5,763 seconds (ap-
proximately 1.6 hours) as shown in the third row of Table IV.
Note also that the trained model, which 490MB in size must
be moved from UCSB to the Sedgwick edge cloud. Assuming
that the bandwidth is symmetric in both directions, using 5
MB/s as the transfer rate, the time to move the model is a
constant 98 seconds which is insignificant in the context of
the full image corpus. Clearly, with respect to the edge cloud
to private cloud network connectivity, it is more advantageous
to move the code to the data than it is to move the data to the



Fig. 9. Examples of of False Negative Classifications. TensorFlow classified
these images as low confidence (top) and empty (bottom) when the top
contains a bear (or part of one) and the bottom contains a deer running off in
the distance.

Classification	Accuracy,	4890	Images,	>=	90%	
Confidence

66%	Correct

14%	Other	Err

7%	Empty	Err

0.2%	Coyote	Err

12%	Deer Err

1%	Bear	Err

Fig. 10. Classification Accuracy with TensorFlow Confidence ≥ 90%, 4890
Randomly Selected Images.

code.

However, the advantage could be overshadowed by the time
necessary to move the images from the cameras themselves to
the edge cloud. That is, if the throughput from the cameras
to the edge is less than or equal to the throughput from the
edge to the private cloud or the public cloud, the advantage
is lost. In our examples, the cameras communicate with
the edge cloud in the Sedgwick headquarters building using
high-performance directional 802.11 wireless networking that
delivers approximately 114 Mb/s. That is, the bandwidth to

Destination Full Image Set Edge Classified Images Only
UCSB Aristotle (rand. sample) 319 sec. 96 sec.
UCSB Aristotle (all Main) 19,212 sec. 5,763 sec.
Box (all Main) 70,633 sec. 17,889 sec.
AWS S3 (all Main) 59,665 sec. 21,190 sec.
TABLE IV. DATA TRANSFER TIME COMPARISON FOR DIFFERENT

CLOUD DESTINATIONS.

the edge cloud from the cameras is more than a factor of 20
larger than from the edge cloud to the Aristotle campus private
cloud at UCSB.

Moreover, the 5 Mb/s rate from the edge cloud to the
campus cloud is significantly higher than the rate from the
edge cloud at Sedgwick to either the Box or AWS public
clouds. Because these services provide free data ingress, the
transfer rates they offer to our project (without a premium
fee) are 1.36 Mb/s and 1.61 Mb/s respectively. The fourth
and fifth rows of Table IV show the transfer times for the
full corpus of daytime images from the Main camera. Thus
the WTB edge cloud architecture offers even greater network
transfer time savings (by almost a factor of 3) if the data is
moved to the UCSB private cloud rather than the public cloud.
Most strikingly, however, the savings resulting from the use of
an edge cloud at Sedgwick and the Aristotle private cloud at
UCSB versus directly sending the images to Box or AWS S3 is
more than a factor of 10 (5,763 seconds versus 70,633 seconds
and 59,665 seconds respectively).

C. OCR Analysis

To evaluate generality of WTB, we next plug in an
OpenCV image analysis tool for optical character recognition
(OCR) and a utility for processing JPEG images (pyexinfo and
exiftool). We use OCR to extract the air temperature that each
camera prints on each picture. The Main camera (unlike all
others in our set) also records this information in the image
metadata. We use the JPEG processing tool to extract the
temperature from the metadata. This enables us to evaluate
the accuracy of the OCR tool since we can compare its output
with that of the JPEG processing tool.

We train the OCR tool as described previously. We identify
images with temperature values that cover all digits (0-9).
We expedite this search using the WTB weather sensor data
which enables us to pinpoints dates and times with different
temperature values. In this study, we consider all images (day
and night) from the Main camera (638062 images).

On average, JPEG processing requires 0.01 seconds per
image. OCR when implemented as a library (wrapped via the
WTB wrapper) requires 0.33 seconds on average per image
with a standard deviation of 0.05 seconds. We also investigated
implementing OCR as a simple web service (instead of a
library). The service processes each image in 0.41 seconds
on average with a standard deviation of 0.02 seconds. The
difference between the performance of the service and the
library is that the service implements the call and return as a
request/response pair via HTTP, and transmits arguments and
return values via JSON, which adds communication overhead.

Without training the OCR algorithm, the tool is able to
achieve 91% accuracy (55190 errors) across these images.



With training the OCR algorithm, WTB achieves 100% accu-
racy in temperature extraction. Thus it is possible to quickly
extract the temperature encoded in our images (including those
without temperature values in the JPEG metadata) and to
transmit or export via HTTP, a subset of images within queried
temperature ranges by scientists and citizen scientists using
WTB.

IV. RELATED

WTB integrates technologies from a number of different
research areas. These areas include animal monitoring, image
classification and object detection, and IoT-based remote sens-
ing via integration with edge tier systems.

In the area of animal monitoring and wild life tracking,
some early work includes usage of wearable tracking devices
with GPS, memory, and computing capabilities and can be
deployed in the wild and operate as a peer-to-peer network.
[32]. A more recent work by Huang et al [33] uses collars as
well to track animal interactions. Authors demonstrate how
the cost of the devices needed to deploy animal tracking
systems decreased over time. An ongoing project, Crane-
Tracker [1], uses a leg band tracker with multiple sensors,
including GPS and multi-modal radio, to track migration of
Cranes over 4000km from north-central Canada to southern
Texas. Mainwaring et al [34] provide an in depth overview
of the system design requirements for tracking wild animals
with the focus on sensor networks, efficient sampling, and
communication. Their setup includes sensors deployment in
the natural habitat, data sampling, and data display through
an online web interface. OzTrack [35] is another, more recent,
example of an end-to-end system that can store, analyze, and
visualize data coming from wild life trackers.

In the area of image classification for animal detection and
tracking, Burghardt et al [4] use human face detection to detect
and track lion faces to achieve a temporally coherent detection
and tracing. They further use information generated by tracker
to boost the priors. Zeppelzauer [36] presents a method that
can identify elephants in wildlife videos by first dynamically
learning their color model. The authors of this work use this
model to detect elephants while also considering spatially and
temporally consistent detections that appear in sequences. With
this approach most elephants can be detected with greater than
90 percent of accuracy. Tillett et al [37] describe a use of a
point model distribution to detect and track pigs in videos. The
authors fit a model through sequences of data that provide
information on the animals’ position and posture. They use
the same model to capture the interaction and activities of
multiple pigs in the same frame and follow animals through
the sequence of frames. Finally, Xiaoyuan et al [3] propose a
framework that automatically identifies wildlife species from
the pictures taken by remote camera traps. In the process of
species identification they manually crop out the animal images
from the background and then perform multiple algorithms for
image classification including Sparse Coding Spatial Pyramid
Matching (ScSPM) and Support Vector Machines. They report
82% accuracy on average from 7000 images and 18 species.

Our work differs from this prior work in that we use
the convolutional neural networks to classify our images. In
addition, we do not require learning using pictures of the

animals we are attempting to classify. To avoid transfer of
thousands of images for the learning phase from the sensing
tier to the private/public cloud tiers where computationally and
data intensive can be performed, we instead transmit a very
small number of empty images for each camera trap at different
times of the day. We then automatically generate “fake” images
of for training the neural network (TensorFlow with Inception-
v3 in our case) by randomly placing images of the animals of
interest (bears, deer, coyotes in our case) from Google Images
on the empty background.

Extant investigations into IoT have identified the need for
latency reduction for sensor driven, cloud-backed applications,
but promote and pursue only content/data caching [13], [38],
aggregation, compression, and filtering in the edge tier [15],
[16], or data processing using very resource restricted and
mobile devices (e.g. smart phones) [39]. WTB is unique in
that it places a self-managing distributed system in the edge
tier at fixed, well known locations, and uses them to mirror
the functionality available from public cloud vendors but at a
smaller scale. As such, we are able to leverage edge clouds
to perform complex analytics, machine learning, and provide
robust decision support for IoT applications at or near the data
source (with very low latency), unlike any system or service
available today.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we design, implement, and empirically eval-
uate an end-to-end, IoT edge-cloud system for the image pro-
cessing and analytics that enable automatic wildlife monitoring
in remote locations. We customize and deploy our system at
the UCSB Sedgwick Research Reserve and use it to categorize
bears, deer, and coyotes. Our multi-tier IoT system, called
WTB, connects motion-triggered cameras via WIFI to an on-
reserve cloud system, and a private campus cloud (UCSB
Aristotle) and the Internet. The cameras capture images of
wildlife, the edge cloud filters and classifies them using a
deep learning system and a model trained remotely (using the
campus or public cloud).

We use WTB to develop a new approach to training
the models used for image classification that precludes the
transfer of example images containing the animals of interest at
Sedgwick. Instead, we train by splicing together stock images
of the animals from Google Images onto a small number
of empty Sedgwick images with random position, brightness,
and color contrast. We use this artificial training set to train
machine learning models and move the resulting model (which
is very small) to an edge cloud located at Sedgwick. That
is, we move the code/model to the data instead of moving
the data to the code to avoid the costly, high latency, and
time consuming network transfer of images. Our deep learning
system (deployed on the campus and public cloud (for training)
as well as the edge cloud (for classification) is based on
the open source TensorFlow system from Google. We also
integrate OpenCV optical character recognition in the edge
cloud to evaluate the generality of WTB analytics support.

We find that our TensorFlow training approach achieves
0.2% error for coyote, 1% error for bear, and 12% error for
deer. Our OCR approach achieves 100% accuracy for tem-
perature extraction. We show that this software architecture is



able to perform complex and advanced filtering and automatic
classification of images of wildlife, and enables significant
savings in transfer and turn-around time. In particular, we
reduce network transfer over the slow, long-haul network by
70% and our use of the campus cloud (UCSB Aristotle)
outperforms using Internet services (Box.com and AWS S3)
by an order of magnitude.

As part of future work, we are investigating how to
reduce our error rates further, and applying this approach to
other animals of interest. To do so, we are investigating the
incorporation of specific ecological details at particular sensor
sites (fauna, habitat, time of year, water availability etc.) and
employing additional animal positioning (e.g. facing toward
and away from the camera) in our image construction and
training process. We also plan to develop a notification system
that uses real-time feedback from image analysis to alert
authorities of poachers and to alert visitors (hikers, students,
and researchers) to potential animal presence. Finally, we are
also investigating how to implement different types of queries
via image classification and combining image analysis with
other types of IoT sensor and Internet data. In particular,
we are interested in using this approach to provide data-
driven decision support for sustainable agriculture processes
and ranching at Sedgwick [11].
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