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Abstract—Conflict-Free Replicated Data Types (CRDTs) are
highly available data types conforming to strong eventual con-
sistency. CRDTs do not need synchronization for concurrent
updates and can resolve conflicts locally without extra coor-
dination. In this paper, we introduce Log-Structured Conflict-
Free Replicated Data Types (LSCRDTs) that leverage the ad-
vantages of both CRDTs and append-only logs. We show that
a log-based approach addresses several well-known challenges
to using CRDTs. First, it facilitates a uniform approach to
reversing operations. Second, it removes constraints such as
exactly-once delivery and idempotence of operations which are
commonly associated with operation-based CRDTs. Third, it
provides robustness via efficient access to earlier versions of the
data types. We select three commonly used CRDTs for our study:
register, counter, and set. We show how each is implemented
using LSCRDT, demonstrate the benefits achieved, and present
an empirical evaluation of their performance.

Index Terms—CRDT, data structure, replication, strong even-
tual consistency

I. INTRODUCTION

Distributed systems often replicate data for low latency
and high availability. The shared state among the replicas
is maintained according to different system models. For ex-
ample, strong consistency requires a replica to coordinate
with other replicas to execute an operation. Coordination
increases latency and an operation may fail as a result of
a network partition, preventing the necessary communication
between replicas. Weaker consistency models such as eventual
consistency enable replicas to execute an operation locally and
asynchronously propagate the operation to other replicas. This
results in lower latency but with a temporary divergence in
replica views that must be eventually reconciled.

Conflict-Free Replicated Data Types (CRDTs) [1]–[3] are
abstract data types that provide a principled approach for this
asynchronous reconciliation. CRDTs support a weaker model
than strong consistency, namely, Strong Eventual Consistency
(SEC) [1]. SEC guarantees that whenever two replicas receive
the same set of updates, they reach the same state.

Broadly, there are two types of CRDTs: state-based and
operation-based (or op-based) [1]. In state-based CRDTs, an
operation is executed on the local replica state. A replica peri-
odically propagates its state to other replicas to achieve consis-
tency. A disadvantage of this approach is the communication
overhead associated with shipping the full state, which at times
can be large. In op-based CRDTs, an operation is executed on
the local replica and the operation is asynchronously prop-
agated to other replicas. Although operation-based CRDTs

do not communicate state, they require exactly-once causal
broadcast. Delta State Conflict-Free Replicated Data Types
(δ-CRDTs) [4] combine the advantages of state-based and
op-based CRDTs. Like the state-based, δ-CRDTs can tolerate
unreliable networks and, in particular, do not require exactly-
once causal broadcast as a communication network property.
However, like the operations-based approach, they do not
require that the full replica state be communicated, but rather,
they communicate only state changes or “deltas”.

In this work, we investigate Log-Structured Conflict-Free
Replicated Data Types (LSCRDTs), a new form of data
type aimed at combining the advantages of append-only logs
with CRDTs. LSCRDTs implement SEC, and like op-based
CRDTs, communicate only operations rather than replica state
or replica state deltas. However, like state-based and δ-based
CRDTs, LSCRDT does not rely on strong network reliability
properties (such as exactly-once causal broadcast).

Our choice of using logs to facilitate this functionality
is driven by the multiple benefits that logs inherently pro-
vide. First, logs facilitate a uniform approach to reversing
operations, which, to the best of our knowledge, is an open
problem for CRDTs [2]. As the execution of an operation
can be represented by appending entries to one or more logs,
reversing the operation is equivalent to trimming one or more
logs. This in turn enables us to implement arbitrary non-
commutative data types: if two operations do not commute we
can rollback log (i.e. reverse/undo an operation) and execute
them in the desired order. Therefore, we are not bound by the
strict requirement of using a commutative data type or using
a variant of a data type that is commutative (e.g. two-phase
variant of set) as in the case of CRDTs.

Second, although LSCRDT is op-based it is not bound by
the restrictions generally associated with op-based CRDTs
such as exactly-once causal delivery or operation idempotence.
In op-based CRDTs, when a replica executes an operation
it asynchronously sends a message denoting this execution
to all other replicas. In our approach, each replica logs
the executed operation along with a unique version stamp
in causal order. Each replica periodically reads from other
replicas’ logs following this log order (e.g. in the case of
Kafka [5] logs each replica reads monotonically increasing
offsets). Because log order reflects the causal order, LSCRDT
maintains causal order by ensuring log order is maintained
during reads. Moreover, each operation is version stamped
uniquely so duplicate operations can be easily identified and



ignored. As a result, our implementation of LSCRDT can be
deployed over unreliable networks.

Third, logs are append-only data structures – old data
is always retained and new data is appended to the log.
As such, updates are inherently coordination free and past
versions of the data structure are programmatically accessible.
Whenever an update operation is executed on a data type (e.g.
increment/decrement on a counter), a new version is created.
Versioned data types are useful for a variety of distributed
systems challenges including data repair [6].

While the choice of using logs provides us with the above
features, the choice of using op-based replication provides us
another added feature: generalization. State-based replication
generally requires type-specific join algorithms. On the other
hand, our approach relies on forming a consistent order of
operations, irrespective of the underlying data type. As we
will see in Section IV, agreeing upon a consistent order of
operation is not type-specific in LSCRDT. Thus, the LSCRDT
approach is more extensible than state-based approaches.

In this paper, we describe LSCRDT and an example im-
plementation that uses an open-source runtime system that
supports a distributed log abstraction. We use this implemen-
tation to compare the latency and throughput for multiple,
mixed operation, workloads for popular CRDT building blocks
(e.g., counter, register, set) between LSCRDT and δ-CRDT.
We find that LSCRDT introduces latency overhead by less
than 1.6x in the worst case over δ-CRDTs while providing
the additional advantages associated with a log-based approach
described previously. Further, the throughput overhead intro-
duced by LSCRDT is less than 1.3x in the worst case over
δ-CRDTs. Our results also show that LSCRDTs are scalable,
that accessing prior versions of data types such as counters
and registers is just as fast as accessing their latest versions,
and that replicas converge faster when updates are periodic
and infrequent.

II. SYSTEM MODEL AND OVERVIEW

We consider a distributed system of N replicas. Each replica
is assigned a node ID from a set S. We represent a replica as
Xs, s ∈ S. The underlying network is asynchronous and unre-
liable; messages may be dropped, duplicated, or reordered. The
network may partition and eventually recover. Each replica
has local durable storage. We assume replicas may face non-
byzantine failures; a replica may crash but will have access to
the information recorded in durable storage up to the point of
failure once it recovers.

Over time replicas may diverge from each other due to
update requests from clients that are processes that can mutate
or query a data type by sending requests to any replica. To
reconcile this divergence each replica periodically performs a
round of merge steps with the other replicas. A merge step
is always between a pair of replicas. Therefore, in a round,
there are at most N − 1 merge steps. In a merge step, one
replica (known as the reader) reads entries in the log of
operation from another replica (known as the source). The goal
of the merge step is for the reader to identify and incorporate

operations unknown to it that the source has already executed.
The reader ensures that the causality relationship among
the operations is retained while creating this merged list of
operations and subsequently executing them. We present the
details of the merge step in Section IV. Note that in merge
steps readers at times may have to rollback some operations
and re-execute them along with new operations. As long as
the replicas execute operations in the same log order, replicas
will converge irrespective of operation commutativity, similar
to the replicated state machine concept used in consensus
algorithms such as Raft [7].

Although our approach requires log rollback to maintain the
order of operations, it does not require any locking mechanism
among replicas to agree upon a unique order of operation
execution. This order can be found just by observing the times-
tamped operations of the source as described in Section IV.
Any partial order formed during merge steps maintains the
causal order observed within the total order. Rollbacks provide
two capabilities to LSCRDTs: (i) implementing arbitrary non-
commutative data types and (ii) maintaining a global version
history consistent among all replicas. Note that as an optimiza-
tion (not explored in this paper) if the underlying data type
is commutative and a global version history is not needed
LSCRDT can store state deltas (like δ-CRDTs) and, thus,
remove rollbacks (and their performance impact) altogether.
We plan to investigate this optimization as part of our future
work.

Various algorithms have been proposed to maintain order
in list or sequence CRDTs such as Logoot [8], LSEQ [9],
RGA [10], Treedoc [11], and WOOT [12]. Our method to
maintain order among logs of operations is an adaptation
of [13], which is based on RGA [10]. This approach provides
us a uniform way to create a replicated data type irrespective of
the operations supported by it; once we establish a common
order of operations among all the replicas our system will
converge. Although RGA-based approach has been used in
other data types such as JSON [13], the use of logs introduces
a new performance challenge – avoiding log scans. We explain
how we can avoid full log scans in Section IV.

III. DATA TYPES USING LOGS

In this section, we explain how LSCRDTs are stored on
logs. We present the replication process in Section IV. We
choose three data types widely studied in CRDT literature for
this exposition: registers, counters, and sets [14]–[18]. Our
approach is agnostic of the underlying log storage system. We
assume entries in a log can be addressed by monotonically
increasing sequence numbers (e.g. offsets in the case of
Kafka [5], LSNs in the case of Facebook LogDevice [19], and
sequence numbers in the case of CSPOT [20]). We further
assume the log storage system exposes functionalities (i) to
create logs with a given name, (ii) to write to a specified
log and get the sequence number corresponding to the write
on success, (iii) to read from a specified log at a given
sequence number, (iv) to retrieve the latest sequence number
of a specified log, and (v) to trim the log up to a specified



sequence number i.e. all entries with greater sequence numbers
are removed. As long as these criteria are met, we can use any
log storage system.

LSCRDTs tag each operation performed on a data type with
a version stamp (Lamport timestamp), which is a concatena-
tion of a counter and a node ID drawn from S. We represent
the counter and node ID of a version stamp vs as vs.counter
and vs.nodeID, respectively. We say version stamp vsa is
less than version stamp vsb (vsa < vsb) if (i) the counter of
vsa is less than that of vsb, or (ii) both the counters are same
but node ID of vsa is less than that of vsb. When replica Xs

executes a new operation in response to a client request, it tags
it with version stamp vs (vs.nodeID = s), which is greater
than all other version stamps it has observed so far (operations
that happened before). Thus if operation opa happens before
opb, vsa < vsb where vsa and vsb are the version stamps of
operations opa and opb, respectively.

Version stamps of concurrent operations can be ordered
arbitrarily but deterministically. Throughout the rest of the
paper, we use version stamps to refer both to the version
stamp itself and to the operation it tags. The intended use will
be clear from the context. We say vs is an operation of Xs

(alternatively, Xs is the originator of vs) if vs.nodeID = s.

A. Register

The register data type maintains a single value (e.g. an
integer, an object, etc.). It supports two operations, assign to
set a value and retrieve to get a value. We introduce OpLog to
store all the update operations, in this case, assigns. There is
one OpLog per replica. We represent the OpLog of the replica
Xs as OpLog(Xs). As all the update operations are recorded
in the OpLog, a data type can be reconstructed up to a certain
version if required. Replicas can read each other’s OpLogs to
create a merged list of all the update operations. As the retrieve
operations do not update the register, we do not have to record
those. Each entry in an OpLog is the tuple (vs,op,val). vs is
the version stamp of the operation, op is the type of update
operation (in case of register there is only one, i.e., assign),
and val is the operand of op.

To execute an assign operation a replica writes the appropri-
ate entry to the OpLog. For example, suppose a request comes
to XA to assign the value 5 to a register. We further assume
the greatest counter value among all the version stamps XA

has seen so far is 2. Then XA writes the entry (3A, assign, 5)
to its OpLog to execute the operation. To respond to a retrieve
request, it simply reads the last entry of the OpLog and returns
the val field of that entry. If some previous version stamp vsi
is supplied as an argument of value, the replica can search the
OpLog to locate the entry with the vs field equal to vsi.

To make this search efficient, LSCRDT maintains an in-
memory map from version stamps to sequence numbers in
OpLog. This approach has been used in other log-based
systems as well, such as Riak Bitcask [21]. Note that this
is an optimization and not necessary for the correctness of the
system. This in-memory map is populated at startup and can

be reconstructed at any time. Any update to the register is first
appended to the log and then a map entry is created.

B. Counter

The counter data type supports increment (inc), decrement
(dec), and retrieve operations. Like register, a counter also has
an OpLog. However, it maintains one additional field per entry
for the cumulative sum to avoid log scans while computing
the counter value corresponding to a version. For example,
assuming the initial value of a counter is 0, if replica A first
increments the counter by 5, next decrements the counter by
2, and finally increments it by 1, the entries of the OpLog will
be (1A, inc, 5, 5), (2A, dec, 2, 3), and (3A, inc, 1, 4). To find
the latest value of the counter, the replica can now return the
value in the last field of the last entry in the OpLog. Similar
to register, an in-memory map can expedite the response to a
retrieve request corresponding to an earlier version.

C. Set

Our set data type supports add and remove update opera-
tions and in and all read operations. Note that although CRDTs
resort to using some variant of sets such as two-phase set
(2P-set), grow-only set (G-set) etc; LSCRDT set works like
a conventional set due to its capability to find a consistent
ordering of non-commutative operations. The structure of
OpLog of set is similar to that of register. However, set is
different from register and counter in that each version is a
collection of elements rather than a single value. Note that
to reconstruct a set upto the latest version, we must scan the
OpLog from the top. To avoid such expensive operations, we
cache the elements in the set after every cp interval number
of operations using a second log. To make the search for the
latest version fast, we also keep a copy of the latest operations
that have not yet been checkpointed in memory. This in-
memory list of operations is purged everytime we checkpoint
our progress. Therefore, we have at most cp interval − 1
operations cached in memory at a time (which users can set).
Setting the cp interval to a low value makes queries faster but
uses more space. Doing so may also decrease write throughput
due to more frequent checkpointing.

Note that to query a previous version of the set, we might
need to access OpLog. For example, suppose cp interval is
set to 100, we have already executed 400 operations and we
want to query the 257th version of the set. In this case, we first
need to read the entry that was checkpointed after the 200th
operation and then read the 57 following operations from the
OpLog to reconstruct the desired version of the set. As we will
see later in Section IV, a version of a data type might change
due to updates from other replicas. In that case, the checkpoint
that contains that version and the following checkpoints must
be overwritten.

IV. MERGE STEP

Many data types have operations that do not commute (e.g.
add and remove of the same element in a set). To achieve a
consistent state for replicated data types, we must impose a
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Fig. 1: Change in OpLogs as replicas merge with each other.
We notice the two different sequence of merge steps results
in the same consistent state at the end.

total order on the execution of operations [22]. An alternative
to imposing a total order for arbitrary non-commutative data
types is to switch between stronger and weaker form of
consistency [23]–[26]. However, as discussed in Section II, a
total order also helps us maintain a consistent version history
among all replicas. In our work, we model the history of
operations (OpLog) as a list CRDT and use an adaptation
of the method used in [13] which is based on RGA [10] for
maintaining order in the list i.e. the OpLog.

When a replica XA executes an operation as a direct
request from a client, it appends the operation at the end of
OpLog(XA). Apart from direct client requests, replicas also
execute operations that are unknown to them from other repli-
cas’ OpLogs. Assume vsnew is an operation in OpLog(XB)
that XA has not yet executed. We denote the operation
immediately preceding vsnew in OpLog(XB) as vspred. As
the intention is to maintain a consistent order of operations,
XA tries to place vsnew in its own OpLog after vspred as well.
Therefore, to incorporate the unknown operation vsnew, XA

first locates vspred in OpLog(XA). Let us denote the operation
in OpLog(XA) immediately succeeding vspred as vssucc.
That is, vsnew and vssucc are concurrent operations. Now
XA inserts vsnew in OpLog(XA) immediately after vspred
if vsnew > vssucc. Otherwise, XA skips over all contiguous
version stamps that are greater than vsnew and then places
vsnew. Of course, it might happen that vspred is not present
in XA to begin with. In that case vspred must be inserted
first. This implies that XA should start reading OpLog(XB)
from the earliest sequence number that contains an operation
unknown to it. We express this whole procedure of inserting
operation vsnew after vspred as insert(vsnew, vspred).

To illustrate how insert works, we refer to the OpLogs in
Figure 1 (only the sequence numbers and version stamps are
shown for brevity). We consider two replicas in our system,
XA and XB . Let us assume XA executed operation 1A that
XB became aware of during the latter’s merge step. At this
point, both XA and XB executed one operation independently
but concurrently, operation 2A and 2B respectively. Now we

consider two different scenarios. (i) Figure 1a. XA (reader)
merges with XB (source). For now, we assume readers start
comparing the two OpLogs from the beginning (we show
in Section IV-B how full log scans can be avoided). Both
OpLogs have 1A as the first entry, so no action is needed.
However, XB has 2B in the second entry whereas XA has
2A. This is equivalent to the insert operation insert(2B, 1A)
i.e. insert 2B after 1A in OpLog(XA) (as 2B comes after
1A in OpLog(XB)). We note how the insertion operation is
implicitly embedded in the log order. As XA currently has 2A
after 1A and 2B > 2A, it can place 2B after 1A. “Placing
2B after 1A” is a multi-step process: XA trims its OpLog
up to sequence number 1, append the entry containing 2B,
and finally re-append the entry containing 1A. Additionally, it
trims/(re-)appends to any logs used by the underlying data
type. When XB (reader) merges with XA (source) after
this, XB can simply append 2A after 2B in its OpLog. (ii)
Figure 1b. XB (reader) merges with XA (source). Starting
comparison from the top of the OpLogs as before reveals
different entries in the second entry: OpLog(XA) has 2A as
the second entry whereas OpLog(XB) has 2B. This translates
to the operation insert(2A, 1A) to be executed in OpLog of
XB . As the version stamp after 1A at XB is 2B and 1A < 2B,
1A is placed after 2B. Merging the other way follows the steps
similar to the previous scenario. We see that in both scenarios
we end up with the same final state in both the replicas.

To understand how this replication method converges, we
note a few points. First, the order of an operation in an
OpLog either remains unchanged or is pushed down, but
never pulled up. This is due to how insert works: it either
appends a new operation at the end, in which case there is no
change in the order of operations; or it inserts an operation
in between existing operations, effectively pushing all the
operations that follow down by one. This also implies that
the relative order of two operations in a log once set remains
the same. Second, insert breaks tie between two concurrent
operations arbitrarily but deterministically (the two concurrent
operations are the new operation from the source and the
current successor of the intended predecessor in the reader).

To see this, let us consider two concurrent operations vsa
and vsb. Without the loss of generality, let us assume vsa >
vsb. Now if vsa has already been executed (i.e. vsa is the
successor of the intended predecessor in reader), vsb skips
over vsa. Therefore vsa comes before vsb. On the other hand,
if vsb has already been executed (i.e. vsb is the successor of
the intended predecessor in reader), vsa can be placed in its
place, effectively pushing down vsb. Therefore, vsa comes
before vsb in this case as well. Finally, a reader always reads
the operations unknown to it from the source in monotonically
increasing sequence numbers. This means even when a reader
has not observed all the operations executed by the different
replicas in the system, its OpLog contains a partial order of
the total order formed by all the operations (due to the first
and the second points). Hence once the replicas observe all
the operations, the system achieves consistency.

In a merge step between a reader Xi and a source Xj , the



reader performs two tasks: (i) Conflict detection: The reader
detects whether it is in conflict with the source, i.e. whether
the source has operations that the reader does not know of.
Note that we are concerned with unidirectional conflict, i.e. if
the reader has operations that are unknown to the source no
extra steps are taken (this is resolved during some other merge
step when the current source becomes a reader). (ii) Conflict
resolution: In case of conflict, the reader resolves this conflict,
possibly by reordering the operations which require rollback
and replay of some operations. The conflict detection stage
finds the sequence numbers of the two OpLogs from where the
comparison should be started (readerstart and sourcestart for
OpLog of the reader and the source respectively) to guarantee
that the reader encounters all the operations it has not seen that
have been already executed by the source. These two sequence
numbers are used by the conflict resolution stage to incorporate
all the unknown operations in the reader’s OpLog and thus the
underlying data type.

We next introduce a new log that helps us to avoid full
log scan (Section IV-A). We show how the conflict detection
stage uses this log to detect the presence and point of conflict
(Section IV-B). Section IV-C then describes how the conflict
resolution stage takes this point of conflict information and
uses insert operations to execute a list of ordered operations.

A. KnowledgeLogs

OpLogs grow over time and the merge steps become costly
if we must scan from the top. To avoid a full scan of the OpLog
of the source by the reader, a replica maintains a map of the
last observed version stamp from each replica to a sequence
number in its OpLog using one KnowledgeLog for each
replica. Each entry in a KnowledgeLog contains the tuple (vs,
op seq). vs denotes the version stamp of the operation. op seq
denotes the sequence number of OpLog where the operation
with vs was first appended. More precisely, each entry of
KnowledgeLog Kj

i on host Xi contains tuples that map each
version stamp vs whose node ID is j to a sequence number in
OpLog(Xi). Although the position of a version stamp might
change due to later merge steps, note that a version stamp can
only be pushed down in order but never pulled up due to the
way insert works. Therefore, the sequence numbers stored
in KnowledgeLogs provide us a starting point to search for a
version stamp. The version stamp might be at that sequence
number, or at a later one, but never at an earlier one.

We refer to Figure 2 as an example of interactions among
OpLogs and KnowledgeLogs. Operation 1A is inserted in
OpLog(XA) at sequence number 1. To record the mapping
from version stamp 1A to sequence number 1, XA appends
(1A, 1) to KA

A . Similarly, XA appends (2A, 2) to KA
A to

record that the operation with version stamp 2A was inserted
in OpLog(XA) at sequence number 2. A merge step with XB

results in the operation with version stamp 2A to be pushed
down in order i.e., at sequence number 3. As we have already
recorded 2A in KA

A and we can reach 2A in OpLog(XA)
even if we start scanning from the recorded op seq value (in
this case 2), we can keep it unchanged. We only append the
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Fig. 2: Mapping from version stamps to sequence number of
OpLog in KnowledgeLogs.

entry (2B, 2) to KB
A . Now if XA (reader) performs a merge

step with an arbitrary replica Xs (source) and wants to know
whether Xs has any operation originating from replica XB

that the reader does not know of, it can simply compare the
tails of KB

A and KB
s . If the last entry of KB

A contains a version
stamp that is less than that of the version stamp contained in
the last entry of KB

s , then Xs has operation originating from
XB that XA does not know of (as two version stamps with
same node ID follow happens-before relationship and version
stamps are written to the KnowledgeLog in increasing order).
This process is explained in detail in the next section.

B. Conflict Detection

In the conflict detection stage during a merge step between
reader Xi and source Xj , the reader Xi compares the last
entries of Km

i and Km
j , ∀m ∈ S. We represent the last

entry of a log L by tail(L) and a field f in entry e by
e.f . If tail(Km

i ).vs < tail(Km
j ).vs, this means Xj (source)

has executed operations that Xi has not. This holds as the
operations in a KnowledgeLog have the same node ID and
are executed in increasing order of their counter. The counter
captures the happens-before relationship between two version
stamps with the same node ID. We say Xi lags behind Xj

with respect to Xm when tail(Km
i ).vs < tail(Km

j ).vs. Xi

might lag behind Xj with respect to more than one replica.
Let us represent the set of all replicas with respect to which
Xi lags behind Xj as Xlag.

We represent the set of node IDs of the replicas in
Xlag as Slag. We find the replica Xp in Xlag such that
tail(Kp

j ).op seq < tail(Kl
j).op seq,∀l ∈ Slag ∧ l 6= p.

That is, Xp is the replica whose operation is at the earliest
point of conflict between Xi and Xj . However, Xi might
not know about operations of Xp that have version stamps
less than tail(Kp

j ).vs. To ensure Xi can detect all unknown
operations, it scans backward from the tail of Kp

j until it finds
the entry e such that the entry before it has a version stamp
equal to tail(Kp

i ).vs. Then e.op seq is the sequence number
from which the reader start scanning the source’s OpLog (i.e.



sourcestart = e.op seq). In other words, e.vs is the earliest
operation in OpLog(XB) that XA has not yet executed.

We can prove that there can be no operation that is unknown
to Xi in OpLog(Xj) before sourcestart by contradiction. Let
us assume there is indeed a version stamp vs in OpLog(Xj)
at sequence number source

′

start such that source
′

start <
sourcestart and vs.nodeID = q. That would mean one of the
following: (i) p 6= q. That is, the tail of Kq

j contains an entry
with op seq value that is smaller than all other op seq values
of knowledge logs with respect to which Xi lags Xj . However,
this is not possible, as we are taking the minimum of op seq
values of the tails of the relevant knowledge logs to find p.
(ii) p = q. In that case, there must be an entry in Kp

j with vs
greater than tail(Kp

i ).vs and op seq less than sourcestart.
However, this is not possible either, as we scan back to make
sure we find the earliest version stamp in Kp

j that Xi has not
seen. Hence we arrive at a contradiction and sourcestart must
be the earliest sequence number in OpLog(Xj) where there
might be an operation that Xi has not executed yet.

Assume the version stamp of the entry at sequence number
(sourcestart − 1) in OpLog(Xj) is vsprev . To incorporate
e.vs, Xi executes insert(e.vs, vsprev) in OpLog(Xi). To do
this, Xi first finds the sequence number of e.vs in OpLog(Xi)
– the value of readerstart is this sequence number plus
one. Note that all operations in OpLog(Xj) from sequence
number 1 to sourcestart − 1 must be present in OpLog(Xi),
otherwise there is some operation between these two sequence
numbers in OpLog(XB) that XA has not seen, and the
value of sourcestart found by the previous steps would have
been different. Therefore, readerstart must be greater than
or equal to sourcestart. To find the value of readerstart,
Xi starts scanning OpLog(XA) from the sequence number
sourcestart − 1. It stops scanning if the currently scanned
entry has a version stamp equal to vsprev . The required value
of readerstart is the sequence number where we stop scanning
plus one.

To illustrate the conflict detection stage, we consider the
scenario in Figure 3. Let us assume there are three replicas
in our system, XA, XB , and XC . The OpLog of XA has 1A
and 2A, whereas the OpLog of XB has 1A, 2B, 3B, 4C,
and 2A. One possible sequence of actions that might lead
to this state: XA executed operation 1A. XB merged with
XA, and then executed two operations 2B and 3B. XC (not
shown in the figure) merged with XB and executed 4C. XB

merged with XC . XA executed operation 2A. Finally, XB

merged with XA again. Now let us consider XA performs
a merge step with XB . Comparing the tails of Km

A and
Km
B , m ∈ {A,B,C}, we see that XA lags behind XB with

respect to XB and XC , i.e., Xlag = {XB , XC} (we assume
the absence of entry in a KnowledgeLog to be equivalent to
having a placeholder entry with a version stamp with minimum
possible invalid counter value, in this case, 0). As the op seq
value of tail(KB

B ) (i.e. 3) is smaller than that of tail(KC
B ) (i.e.

5), Xp = XB . However, XA is not yet certain tail(KB
B ).vs is

the earliest unknown version stamp. XA scans KB
B backwards

to find the earliest unknown version stamp, which in this

OpLog(XA)

seq vs

1 1A

2 2A

OpLog(XB)

seq vs

1 1A

2 2B

3 3B

4 4C

5 2A

KA
A

seq vs op seq

1 1A 1

1 2A 2

KA
B

seq vs op seq

1 1A 1

2 2A 5

kB
A

seq vs op seq

- 0B 0

kB
B

seq vs op seq

1 2B 2

2 3B 3

kC
A

seq vs op seq

- 0C 0

kC
B

seq vs op seq

1 4C 4

Fig. 3: OpLogs and KLogs of replicas XA and XB in a system
with three replicas. Dashed entries represent placeholder en-
tries used during computation when a knowledge log is empty.
During conflict detection, the reader XA compares the same
colored entries with each other to find the earliest possible
point of conflict. The arrow from the second entry to the
first entry of KB

B , represents XA’s backward scan to find the
earliest version stamp with node ID B that it does not know
of.

case is 2B. The corresponding op seq value is 2, therefore
sourcestart = 2. The entry immediately preceding 2B in
OpLog(XB) has the version stamp 1A. XA reads the entry at
sequence number source start− 1 = 1 in OpLog(XA) and
finds that the entry contains 1A. Therefore reader start is
equal to 1 + 1 = 2 as well. The conflict detection algorithm
is presented in Algorithm 1.

C. Conflict Resolution

Conflict resolution is triggered when a conflict is detected,
to find and execute a merged order of operations between the
reader and the source. When there are one or more conflicts be-
tween the reader and the source, it rolls back the OpLog of the
reader to the earliest point where the reader does not lag behind
the source with respect to the version stamps before it and then
replays the operations at the reader (adjusting the OpLog of
the reader) to reflect the merged order. At the start of conflict
resolution, Xi knows both sourcestart and readerstart, i.e.,
the sequence number of OpLog(Xi) and the sequence number
of OpLog(Xj) at which Xi should start comparing the two
OpLogs. Xi creates an ordered list, Ri, of the operations in
OrdLog(Xi) starting from the sequence number readerstart
up to its latest sequence number. Xi creates a second ordered
list, Rj , of the operations in OrdLog(Xj) starting from the
sequence number sourcestart up to its latest sequence number.

To incorporate the operations unknown to itself, Xi first
includes those operations from Rj to Ri by invoking insert
procedures: for each entry e in Rj , Xi first finds the entry
epred in Ri which contains the version stamp immediately
preceding e in Rj . If the version stamp of the entry following
epred in Ri is smaller than e.vs, Xi inserts e immediately after
epred (provided e is not already present there). Otherwise, it
skips over all contiguous entries where the version stamp is
greater than e.vs, and then inserts e (provided that e is not



Algorithm 1 Conflict Detection
Require: reader replica Xi, source replica Xj , and set of node IDs

S
Ensure: earliest point of conflicts sourcestart and readerstart

1: Xlag ← φ
2: for m ∈ S do
3: if tail(Km

i ).vs < tail(Km
j ).vs then

4: Xlag ← Xlag ∪ {Xm}
5: end if
6: end for
7: if Xlag = φ then
8: return
9: end if

10: Slag ← φ
11: for Xm ∈ Xlag do
12: Slag ← Slag ∪ {m}
13: end for
14: p← argmin

m
(tail(Xm

j ).op seq),m ∈ Slag
15: idx← latest seq(Xp

j )
16: while idx > 0 do
17: if tail(Kp

i ).vs < Kp
j [idx].vs then

18: sourcestart ← Kp
j [idx].op seq

19: idx← idx− 1
20: else
21: break
22: end if
23: end while
24: vsprev ← OpLog(Xj)[sourcestart − 1].vs
25: idx← sourcestart − 1
26: while idx ≤ latest seq(OpLog(Xi)) do
27: if OpLog(Xi)[idx].vs = vsprev then
28: readerstart ← idx+ 1
29: break
30: else
31: idx← idx+ 1
32: end if
33: end while
34: RESOLVECONFLICT(readerstart, sourcestart)

already present there). Once Xi has all the operations in Ri, it
rolls back, i.e., prunes, OpLog(Xi) starting from readerstart
and then replays all operations in Ri at OpLog(Xi). The
conflict resolution algorithm is presented in Algorithm 2.

V. HANDLING BOUNDED LOG SIZES

Logically, logs are append-only storages to which we can
continuously append. Practically, we are bounded by the
physical storage of our devices. Therefore, we can not record
an unbounded number of versions of our data types. In this
section, we describe how we can safely retain at least the
last K versions of our data type by removing old entries from
OpLog. We make two underlying assumptions: (i) our physical
storage has the capacity to store more than K versions and
(ii) the replicas merge among themselves at a rate such that
there is at least one version common at the top of the OpLogs
among all replicas before any replica runs out of space.

The major challenge in keeping a history of at least the
last K versions is that this set of last K versions is constantly
changing. The order of operations in the global history changes
with updates from different replicas. So instead, we identify

Algorithm 2 Conflict Resolution
Require: reader replica Xi, source replica Xj , sourcestart and

readerstart value obtained from Conflict Detection stage
Ensure: Xi is not lagging behind Xj

1: procedure RESOLVECONFLICT(sourcestart, readerstart)
2: Ri ← {OpLog(Xi)[readerstart], . . . , tail(OpLog(Xi))}
3: Rj ← {OpLog(Xj)[sourcestart], . . . , tail(OpLog(Xj))}
4: for all e ∈ Rj do
5: epred ← the entry before e in Rj . fixed dummy value

assumed for first element
6: insert(e.vs, epred.vs) in Ri
7: end for
8: Prune OpLog(Xi) starting from sequence number
readerstart

9: for all e ∈ Ri do
10: Replay/Execute e.op and append e to OpLog(Xi)
11: q ← sequence number of e in OpLog(Xi)
12: k ← e.vs.nodeID
13: if e.vs > tail(Kk

i ).vs then
14: append (e.vs, q) to Kk

i

15: end if
16: end for
17: end procedure

versions that we know for certain are not in the set of last K
versions.

Consider an arbitrary version vs. Referring back to how
our insert operation of Section IV works, we know vs in the
OpLog of a reader can be pushed down in order due to a merge
step involving an unknown operation that the reader has not
seen before. This essentially means that even if vs was not in
the set of last K versions, it may become so. However, if all
replicas in our system have observed all the same operations
from the start up to vs, we know the positions of those versions
will not change.

This means that a replica Xi can safely remove n number of
operations from the top of its OpLog while preserving at least
the last K versions if: (i) all the other replicas in the system
have those n operations in the top n entries of their respective
OpLogs and (ii) the replica has already seen at least K more
new operations after those n operations. Note that Xi need not
check whether the other replicas have received K more new
operations to trim its own OpLog. It just has to make sure there
is a set of operations from the top that all the replicas have
executed in the same order. This trimming operation can be
triggered after a certain number (> K) of versions have been
recorded (which users can define). However, if this number is
near K, trimming will be frequent and may adversely affect
system performance.

A replica Xi need not scan the top of each replica’s
OpLog to find the set of entries that can be trimmed. Instead,
it consults the tails of KnowledgeLogs to find such a set.
For each node ID s ∈ S, Xi reads the tails of the N
KnowledgeLogs Ks

u(u ∈ S) and identifies the smallest version
stamp. We denote this set of N versions as C. Then C contains
one version vs for each originator Xs such that vs is the
greatest version with node ID s that all the replicas have seen.

Next, Xi locates the earliest sequence number in its log



where such a version is present. Let this sequence number be
seq. Note that any version in an entry preceding the entry at
seq in OpLog(Xi) must be present in all the other replicas.
Therefore, Xi can trim all the entries up to seq provided
that there are at least K versions following it. If not, it can
backtrack the required number of entries to meet this condition
and then proceed with trimming.

There are some caveats to this approach that we must
overcome. First, although the earliest n versions trimmed in
this approach are not part of the latest K versions, we may still
need the last version of the earliest n versions as an anchor
point for future insert operations. This can happen if there is
at least one replica such that it had exactly n versions at the
time Xi trimmed its OpLog. Hence, we must record the last
version in the set of trimmed versions every time we perform
this operation. We can safely overwrite this record every time
we trim the log.

Second, the mappings of version stamps to sequence num-
bers of OpLogs stored in KnowledgeLogs will be off by
n whenever n operations are trimmed. To counter this, we
introduce the concept of Virtual Sequence Numbers (VSN).
VSN of an entry in a log represents the sequence number the
entry would have if the log was never trimmed. Therefore, we
must track an offset (initially zero) that is updated everytime
we trim an OpLog from the top (incremented by the number
of entries trimmed). Then to get the VSN of an entry, we can
simply add its sequence number to the offset. KnowledgeLogs
now store VSNs instead of sequence numbers. While trimming
the OpLog, we can trim the corresponding KnowledgeLog
entries as well. Just like OpLogs, we track the last entry
removed from a KnowledgeLog to indicate the readers the
operations that have been trimmed.

Third, if a new replica joins the cluster with an initially
empty state, it can force a change in the order of operations.
This can be overcome in two ways: we can copy the initial
state of the new replica from an arbitrary existing replica, or
we can assign an ID to the new replica that is smaller than all
the existing replicas. A smaller ID will force the new replica
to put its entries at the end of all the existing versions and
thus, not alter the current order of operations.

VI. EVALUATION

In this section, we empirically evaluate the performance
of LSCRDT. We build LSCRDT on top of CSPOT [20], an
open-source, distributed runtime system that uses memory-
mapped files for its log abstraction. As LSCRDTs combine
the advantages of both op-based and state-based CRDTs much
like δ-CRDTs [4], we compare the performance of LSCRDTs
with that of δ-CRDTs. Note that our goal is not to outperform
δ-CRDTs, but to explore the feasibility of LSCRDT while
providing all the advantages associated with using logs.

We conduct our experiments using the foundational data
types register, counter, and set widely studied in CRDT litera-
ture. We use the last-writer-wins (LWW) variant of register and
positive-negative (PN) variant of counter for both δ-CRDT and
LSCRDT. We use two-phase (2P) variant of set for δ-CRDT
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Fig. 4: Comparison of latency between LSCRDTs and δ-
CRDTs on operations executed at a single replica.

(an element cannot be added again once removed) whereas
LSCRDT set works in the conventional way. We follow the
δ-CRDT implementation of [27] for the above-mentioned data
types and extend it by adding persistent storage and methods
to communicate among devices. we implement δ-CRDT in C
and use memory-mapped files for persistent storage.

We focus on four questions in our results: (i) how much
extra time is introduced for a single operation to execute due
to the introduction of logs to store the data types, (ii) what is
the effect of logs on scalability, (iii) how quickly do the merge
steps converge, and (iv) how time consuming is versioned read
compared to reading the latest value. We run each experiment
ten times and show the average result. We reset each data
type to its initial state (registers initialized to null, counters
initialized to zero, sets initialized to empty set) before each
run.

We perform the replication experiments with a cluster of
three replicas and one client. Each replica maintains a pool of
five worker threads, one among them assuming the role of a
writer at a time. All of the machines are running the CentOS 7
Linux operating system each with two dedicated 2GHz vCPUs
and 2GB of memory. The machines communicate among
themselves using 1Gb/second Ethernet. The average latency
among the replicas is observed to be 0.35ms whereas the
average latency between any replica and the client is observed
to be 0.45ms. In the case of LSCRDTs, each replica executes a
merge step with another replica in round-robin fashion at one
second intervals. In case if δ-CRDTs, deltas are propagated
immediately after local execution of an update operation.

A. Single Node Latency

To evaluate latency, we send 10000 randomly generated
operations sequentially from the client to a replica and measure
the average latency. The workload contains half reads and half
updates. The arguments of the update operations are randomly
generated integers between 1 and 10000. In cases where there
can be more than one type of update operation, the type is
selected randomly. Read operations read the latest versions of
respective data types in the case of LSCRDT. All other replicas
are inactive for this experiment (i.e. there is no merge step).

Figure 4 shows the read and update latencies for the
three data types. In the case of register, the read latency of
LSCRDT is 1.3 times that of δ-CRDT. This is expected, as
LSCRDT requires two log operations to retrieve the latest



value: one for finding the latest sequence number and one
for retrieving the entry at the latest sequence number. On the
other hand, δ-CRDT requires a single file read. The write
latency of LSCRDT register is 1.6 times that of δ-CRDT
register. LSCRDT requires two writes on two different logs
for updating a register: one on the OpLog and another one on
a KnowledegLog. In the case of counter, the read and update
latencies for LSCRDT are 1.3 times and 1.6 times that of δ-
CRDT respectively as well. This is expected, as counter and
register involve a similar number of log read/write. The current
state of a set is the composition of its elements, whereas the
current state of a register or counter is a single value. This
inherent structural difference results in a higher read latency
in the case of sets when compared to the other two data types.
Due to the caching of the latest operations in LSCRDT set and
checkpointing of elements in the set, the difference between
the read/update latencies of δ-CRDT and LSCRDT is small,
LSCRDT being 1.1 times slower for reads and 1.15 times
slower for writes.

B. Scalability

To evaluate the scalability of LSCRDT, we randomly gen-
erate workloads of 10000 operations. As updates are more
expensive than reads in general, we vary the percentage of
update (read counts shown in parentheses) operations among
1(99), 25(75), and 50(50) to observe the impact of workloads
with different update/read composition on scalability. We also
vary the number of replicas the client sends requests to among
1, 2, and 3. All 3 replicas are live and perform merge step
(LSCRDT) or join (δ-CRDT) even if the client sends requests
to fewer than 3 replicas. A client evenly distributes operations
across replicas using round-robin without delay.

Figure 5a shows the throughput of the system in operations
per second. For LSCRDT registers, throughput increases more
than 1.6 times as the number of replicas increases for all
workloads. This increase is more than 2.6 times when the
number of replicas is increased from 1 to 3 for workloads with
25% and 50% updates. The increase is lower for 1% updates.
The increase in throughput with the increase in the number of
replicas indicates that LSCRDT registers are scalable, although
this increase is not strictly linear. This is due to the processing
required for background merge steps. Figure 5b and Figure 5c
reveal a similar increase in throughput for counter and set,
respectively, as the number of replicas increases.

Figure 6 compares LSCRDT throughput with that of δ-
CRDT for the data types using three replicas. The throughput
of δ-CRDT data types are slightly better, ranging from 1 to
1.3 times that of LSCRDT data types. As merge steps are
expected to be expensive in LSCRDT due to log rollbacks
and our system does not support concurrent writes at the same
replica, we would expect the throughput to take a hit. We
are able to limit this overhead by minimizing the duration
during which updates cannot take place to only when the new
order of operations is recorded. Specifically, we continue to
service update requests during the conflict detection stage of
the merge step. To allow reads to be serviced even during

conflict resolution, we create the ordered list of operations on
a backup log and replace the active log with the backup at
the end of ordering all the operations. This design helps in
maintaining a high throughput, although the time to converge
might still be high as we investigate next.

C. Time to Achieve Stability

To evaluate the impact of the merge step on execution time,
we measure the time for the system to reach stability when
no new updates are performed. We say a system is stable
after a collection of update operations if reads from all the
replicas return the same value reflecting the last executed
update operation.

For this experiment, the client evenly distributes 300, 900,
and 1500 update requests to replicas using round-robin without
delay. Each replica starts a merge step/join after executing
all its update operations: 100, 300, and 500 operations for
the workloads containing 300, 900, and 1500 operations,
respectively. We define T to be the delay between the time
the client received the last response of the executed update
commands and the time it received a consistent final result for
read requests from all replicas.

We denote T values for δ-CRDTs and LSCRDTs by Tδ and
TLS , respectively. Table I shows the results. TLS values are
around 8 to 12 times the corresponding Tδ values. Deltas can
be propagated as soon as an operation is executed locally. The
corresponding joins are simple and do not involve rollbacks.
On the other hand, merge steps in LSCRDTs possibly involve
rollback of logs and re-execution of operations. This is the
cost we incur for maintaining a consistent version history and
supporting arbitrary non-commutative data types. Note that
the reason we do log rollbacks is to support arbitrary non-
commutative data type and to maintain a consistent global
version history of a data type. If the underlying data type is
commutative and we only wish to preserve a local version
history, we can avoid rollbacks altogether.

The data from Table I also shows that as the number of total
operations increases 3 times and 5 times, the time to reach
stability increases proportionally to that. This suggests that
LSCRDTs would converge faster in systems with lower update
frequencies as the number of updates between consecutive
merge steps will be lower. If update requests come in bursts
of n operations, T would roughly remain similar. The lower
the value of n, the faster the time to reach stability. As
LSCRDT allows reads during updates but does not allow
multiple updates (and merge is a form of update), making
the merge frequencies arbitrarily small would have an adverse
effect: it would make the system unavailable for update for
more frequent bursts of time.

D. Versioned Reads

Maintaining version history is a unique feature of LSCRDT
s not available in CRDTs. To understand the overhead asso-
ciated with querying earlier versions, we send 1000 update
requests to a data type. At the end of the update requests, we
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Fig. 5: Scalability of LSCRDTs.
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Fig. 6: Comparison of throughput between LSCRDTs and δ-CRDTs using three replicas.

TABLE I: Delay between the last response of a set of update
requests and a consistent read from all three replicas.

Data Type #Updates T (milliseconds)
TLS/TδTδ TLS

Register
300 44.522 548.823 12.327
900 146.559 1665.450 11.364
1500 248.129 2849.163 11.483

Counter
300 49.266 636.418 12.918
900 162.972 1748.149 10.727
1500 243.693 3098.375 12.714

Set
300 78.649 654.255 8.319
900 238.207 1792.298 7.524
1500 389.821 3048.765 7.821

send two sets of 1000 read requests: the first set contains non-
versioned reads (i.e. reads to the latest version) whereas the
second set contains versioned reads, one read per version.

We show the average latency of the non-versioned and
versioned reads in Figure 7. The latencies for versioned and
non-versioned reads for both counters and registers are similar.
This is expected, as irrespective of the type of read LSCRDT
requires the same number of log access.

However, set presents us with a different scenario. Check-
point logs are accessed for both versioned and non-versioned
reads for set. The latest operations are cached in memory
whereas non-versioned reads require reading the OpLog as
described in Section III-C. The average read latency of non-
versioned read on set is 0.7ms whereas that of versioned read
on set is 4.5ms, i.e., versioned read is more than six times
expensive on average for a cp interval value of 100 and the
input workload.
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Fig. 7: Comparison of average latency in milliseconds between
1000 non-versioned read (i.e. reads to the latest version) and
1000 versioned read (one read per version) at the end of the
execution of 1000 update operations.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we introduce LSCRDTs to integrate the ben-
efits of distributed causal logging into replicated, operation-
based CRDTs. By doing so, LSCRDT is the first CRDT system
to provide a robust and uniform way to reverse operations
for arbitrary data types. In addition, LSCRDT overcomes the
restrictions of commutative data types, exactly-once causal
delivery, operation idempotence, and data type specific join
operations (a side effect of state-based CRDTs). Finally,
LSCRDT is the first CRDT system to track version histories
of data structures and provide programmatic access to them,
while bounding log size.

We design these features and implement them for an open
source distributed runtime system that exports an efficient
distributed log abstraction. We define a combination of logs



that together provide these features and show how their use
can be optimized in various ways to keep their overhead low.
We empirically evaluate and analyze this overhead by com-
paring operation latency and throughput of LSCRDT to that
of δ-CRDT. Our results show that LSCRDT introduces 1.1-
1.6x operation latency, 1.3x throughput overhead, and similar
scalability and stability characteristics across workloads and
data types. Moreover, our results show that the latency of
versioned read and non-versioned reads for simple data types
is similar, but higher for complex data types (e.g. sets). In
future work, we will investigate additional optimizations and
caching strategies, as well as log-augmentation for state-based
CRDTs.
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