
Using Spot Instance SLAs for Reliable Cloud Federation
UCSB Technical Report Number 2015-02

Alexander Pucher, Rich Wolski, Chandra Krintz
University of California, Santa Barbara

Santa Barbara, CA 93106
{pucher, rich, ckrintz}@cs.ucsb.edu

ABSTRACT
Spot instances are a commonly offered by IaaS cloud providers
to opportunistically utilize spare capacity and meet tempo-
rary user demand for additional resources at low cost. Al-
though the availability of service SLAs is a core paradigm of
cloud computing, spot instances typically come without any
service quality guarantees. We aim to extend the spot in-
stance service to provide SLAs for eviction probability, based
on the user estimate of the maximum expected instance life-
time. In addition to providing users with better usability
and ahead-of-time quality of service guarantees, this statisti-
cal certainty also opens the door to cloud-to-cloud federation
of workloads. For this federation to be possible, however, the
statistical guarantees must be adhered to strictly, for a wide
range of real-world workloads, at cloud scale.

To this end, we propose a new approach to providing SLAs
on the time-until-eviction for spot instances. We employ
Monte-Carlo simulation to compute the quantiles of the con-
ditional distributions of future spot instances for different
available capacity levels. An IaaS cloud scheduler then uses
these quantiles to determine when to provision federated
requests in order to maintain an SLA at a specific target
eviction probability for spot instances. We investigate the
reliability of such SLA enforcement using synthetic and real-
world traces, test its viability for cloud-to-cloud workload
federation, and provide an in-depth analysis of trade-offs
and cost factors of such federation.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; D.4.1 [Operating Systems]: process manage-
ment—Scheduling

Keywords
Cloud Computing, Federation, Scheduling, Monte-Carlo sim-
ulation, Spot Instances, Quality-of-Service, Service-Level-
Agreement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC ’15 Portland, Oregon USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
Cloud computing, in the form of Infrastructure as a Ser-

vice (IaaS), has emerged as a new paradigm for Information
Technology (IT) management of data center infrastructure.
Under the IaaS cloud model, users request that data center
resources be provisioned for their exclusive use via network-
facing web service interfaces (APIs). “The Cloud” services
these requests in a way analogous to the way in which e-
commerce services operate: automatically and transaction-
ally. Users interact only with the automated cloud services
and requests are either fulfilled or denied immediately (pos-
sibly due to error) so that the user may retry if he or she
desires to do so.

Further, to promote scaling, cloud resources are commodi-
tized. Users cannot request specific machines, disks or net-
work switches. Instead, each resource is characterized by a
Service Level Agreement (SLA) that defines its performance,
reliability and (occasionally) privacy characteristics. Thus
cloud users transact with cloud web services for“levels of ser-
vice” from the resources they wish to provision. The cloud
either delivers these resources with at least the minimum
level of service described in the SLAs or it rejects the request
interactively in the same way an e-commerce site either ac-
cepts or rejects a purchase transaction – there is no queuing
for resources as in large-scale batch systems.

In this paper, we examine the feasibility of using two
classes of resources requests – on-demand requests and spot
requests – to implement the federation of cloud workloads [4,
26, 10] for greater resource utilization. We borrow this
terminology from Amazon’s AWS [1] where spot instances
are pre-emptable requests that may be terminated without
warning if the “spot market” conditions warrant, and on-
demand instances are never pre-empted, but incur a higher
per-minute occupancy cost than spot instances.

Our goal is to understand whether it is possible to use the
spot instance service in a cloud to accept workload (possibly
from another cloud) subject to a statistical guarantee on
minimum time until pre-emption. In particular we

• investigate and demonstrate that it is possible to pro-
vide statistical guarantees on minimum spot instance
lifetimes using production private cloud workload traces,
and

• we detail the effectiveness of co-scheduling“native”on-
demand workloads with “foreign” spot workloads as
a way of using cloud federation to utilize otherwise
unused resource capacity.

Our work focuses on private clouds because high quality,

scalable implementations are available [8, 22, 7]. Public
clouds such as Amazon AWS [1], Google Cloud Platform [11],
IBM SoftLayer [14] and Rackspace Cloud [24] hold both the
details of their respective implementations and the quanti-
tative characteristics of their respective workloads as trade
secrets. Thus it is difficult to understand what techniques
may ultimately be feasible.

In contrast, Eucalyptus [21] is a commercially successful
private cloud the source code for which is available freely
as open source [8]. Production Eucalyptus customers (as a
way of supporting the Eucalyptus community) have chosen
to make some of their internal enterprise workloads avail-
able in anonymized form [28, 30, 29, 23]. Thus, using Eu-
calyptus, it is possible to understand both the engineering
feasibility associated with federation using spot instances as
well as the effects on real-world production deployments. At
the same time we note that Eucalyptus shares many archi-
tectural characteristics with other open source private cloud
platforms such as Open Stack [22] and CloudStack [7]. Thus
we believe the results contained herein to be generally ap-
plicable to the federation of private clouds in production
computing settings.

This work complements previous investigations of federa-
tion by Grid and Supercomputing systems [9]. These previ-
ous efforts look at load sharing through federation as a way
of increasing utilization but they do not do so subject to
a verified SLA. Similarly, previous work studying the pub-
lic cloud spot markets has investigated techniques that help
users reason about spot instance lifetimes and pricing [2, 5,
19, 15]. Other work employs spot instances to facilitate fed-
eration but focuses on optimizing revenues (i.e. to tolerate
evictions) or on the complexities of spot prices [26, 15].

In contrast, our work focuses on production enterprise, re-
search, and high-performance computing environments where
a private cloud offers scalable, automated, SLA-governed
service to its users. In these settings, resource utilization
must be maximized, but resources are often over-provisioned
to ensure an acceptable user experience in terms of response
time and available capacity.

To this end, we investigate an approach based on the use
of a Monte-Carlo style [20] simulation to compute the quan-
tiles (i.e. percentiles) of the conditional distributions of fu-
ture spot instance lifetimes. This non-parametric approach
generates distributions that are empirical and conditioned
on the capacity occupied by both on-demand and previous
spot instance workload. These quantiles then serve as the
minimum future time-until-eviction guarantee provided to
the request as an SLA at a specific target probability.

For example, the 0.01 quantile on the distribution of spot
instance lifetimes represents the lifetime that is smaller than
99% of all lifetimes in the distribution. Thus, if that quan-
tile can be estimated accurately and the estimate is stable
for future requests, it can serve as a statistically guaranteed
lower bound (with probability 0.99) that the next spot in-
stance will experience. This estimate must be conditioned,
however, on the capacity occupied by previously accepted
workload at the time it is generated.

To be feasible, it must be possible to compute and re-
compute these distributions “on-the-fly” with sufficient reg-
ularity to compensate for changes in the underlying work-
loads. That is, we expect that cloud workloads are non-
stationary time series that experience change points. The
approach must produce distributions periodically from an

on-going history of workload measurements to account for
these change points. Also, the workload characteristics must
be stable for periods of time that are “long” relative to the
lifetimes of individual instances or the SLAs will not be met.

Our evaluation is based on trace-driven simulation with
synthetic and recorded traces from IaaS clusters deployed
in production [28]. We use the synthetic workload traces to
demonstrate the theoretical efficacy of our approach and give
an in-depth look at the steps required to produce accurate
time-to-eviction estimates via Monte-Carlo simulation. We
then apply these estimates in a cloud scheduler that is capa-
ble of maintaining an arbitrary SLA for maximum eviction
probability of spot instances in a local cloud.

Moving to a realistic setting with a federating remote
cloud and a local destination cloud, we extend our approach
to production cluster hardware configurations and real world
historic utilization traces. We discuss the modifications nec-
essary to address sparseness of information in historical uti-
lization data and challenging distributional properties of pro-
duction traces, such as varying auto-correlation and the di-
verse population of instance types in real-world settings.

Our experiments show that it is possible to maintain SLAs
on spot instance eviction probabilities in relatively adverse
production settings with large, infrequent load spikes and
varying workload patterns. We further demonstrate that
this effectively enables the execution of the entire workload
of one cloud on another using only spot instances, and that
SLA-enforcement remains robust even in heavily resource-
constrained environments. We conclude our investigation
with a discussion of cost factors and trade-offs made in of-
fering SLAs on minimum spot instance lifetimes.

The remainder of the paper is organized as follows. Sec-
tion 2 describes or Monte-Carlo simulation and evaluation
method in detail. Section 3 presents our results for fed-
erating synthetic and recorded production workloads be-
tween clouds, stress-tests the ability of our approach to make
accurate predictions in resource-constrained environments
and investigates the costs and trade-offs involved in offering
SLAs on minimum spot instance lifetimes. We then overview
related work in Section 4 and conclude with perspectives for
future work in Section 5.

2. METHODOLOGY
Our goal is to federate workloads between private IaaS

clouds using spot instances. In our view, a local IaaS cloud
that is available for federation, provisions “native” instances
on-demand and does not evict them (as is the case for most
public and private IaaS clouds today). Remote IaaS clouds
make federated requests to the local IaaS cloud, which either
accepts (provisions) or rejects the requests as spot instances
that can be evicted at any time.

To enable users and federation agents in remote IaaS clouds
to reason about their use of such functionality, we also define
a service level agreement (SLA) that provides a probabilistic
guarantee on the minimum duration that a spot instance is
likely to run before it is evicted, i.e. its minimum lifetime.
This methodology defines two new capabilities:

• a method for predicting minimum lifetime of spot in-
stances based on a target SLA, that uses historical
observations of previous instance behavior, and

• a cloud scheduler that uses this predicted time-to-eviction
for the specified SLA to perform admission control for

spot instances in a federated IaaS cloud.

To predict minimum lifetime, we have developed a pre-
diction utility that can be incorporated into any IaaS cloud.
The utility uses historical data from IaaS system logs of in-
stance types (core counts) and instance start/stop events, to
construct empirical distributions of instance lifetimes condi-
tioned on available cloud capacity via periodic Monte-Carlo
simulation. From these lifetime distributions, the utility ex-
tracts the quantile associated with the SLA offered by the
IaaS cloud for federated spot instances (e.g. there is a 95%
or 99% confidence bound on the likelihood that the instance
will not be evicted), to make a prediction of minimum life-
time for each level of available capacity.

We assume that all federated requests are accompanied
by user-specified lifetime (maximum) when submitted. Our
IaaS scheduler uses (i) the quantile estimates for the SLA
generated by the prediction utility, (ii) the instance type and
maximum lifetime submitted by the user, and (iii) the cur-
rently available capacity of the the system, to decide whether
to schedule a federated request as a spot instance. The
scheduler evicts spot instances if/when an on-demand in-
stance request is made and the IaaS cloud has insufficient
capacity to service the request

To evaluate our methodology (c.f. Section 3), we employ
validated, trace-based simulation [23] using the Eucalyptus
open source IaaS system [21] and synthetic and real-world
traces from production Eucalyptus deployments. We next
detail our scheduling and federation models, minimum life-
time prediction, eviction policy, and evaluation metrics in
the subsections that follow.

2.1 Scheduling Model
The core responsibilities of the scheduler in an IaaS cloud

are admission control, placement and pre-emption. Exten-
sive research has shown that schedulers and their placement
strategies play an important role for overall responsiveness
and utilization of the cloud [13, 27, 25]. In this work, how-
ever, we focus on admission control and pre-emption, i.e.
spot instance admission and eviction. To meet its time-to-
eviction probability (SLA), the scheduler’s admission control
in this setting must be conservative, i.e. to reject federated
requests that are likely to be evicted before they are termi-
nated by the user. However, if admission control is overly
conservative, unused capacity is wasted.

Instance requests (to either start or stop an instance) are
routed to a scheduler (as implemented by Eucalyptus [21],
Open Stack [22], and Cloud Stack [7]) which handles ad-
mission control and placement of instances on physical re-
sources in a cluster of “nodes.” IaaS clouds typically defines
“instance type” that describe the resources that an instance
will consume (CPU cores, memory, ephemeral disk storage,
etc.). In the Eucalyptus systems (production and research)
that we investigate in this work, we observe that the memory
footprint associated with each instance type is such that the
instance placement decision by the scheduler can be made
strictly on core count.

When an instance is admitted, the scheduler makes a
placement decision by selecting a node on which the instance
will run. Instances cannot be split across multiple physical
nodes. In this study, we use a simple first-fit placement
in our scheduler that attempts to assign instances to nodes
based on core count. If a on-demand instance is requested,
and the scheduler cannot find a node with sufficient space to

run the instance, the scheduler selects one or more spot in-
stances to terminate (evict) so that the on-demand instance
can be scheduled.

Further, our scheduler (like other Eucalyptus schedulers)
assumes that the instance type definitions nest with respect
to their core counts. For example, an empty 4-core node
node is seen by the scheduler as having 1x 4-core slot, 2x 2-
core slots, 4x 1-core slots, or 1x 2-core, 2x 1-core slots. Slots
do not span nodes, however, and 2 nodes with 1 core avail-
able each, do not translate to a 2-core slot. This distinction
between available cores and available slots becomes impor-
tant when generating time-to-eviction estimates for different
instance sizes and different cluster load levels.

We model a workload in our system as a continuous stream
of instance start and stop requests. Start requests come with
a slot size (core count) and are flagged either “on-demand”
or “spot” (federated). Federated requests also consist of
the maximum eviction probability (SLA) and the maximum
instance lifetime (execution duration) expectation as de-
scribed previously. If there is insufficient capacity or the
SLA of a federated request cannot be fulfilled, the scheduler
rejects the request and does not start the instance.

2.2 Federation Model
Our scheduler offers differentiated classes of service for

local workloads (on-demand instances) and federated work-
loads (evictable spot instances) for the cluster of nodes it
controls. Federated workloads originate from remote clouds
which can use this functionality to temporarily extend their
available capacity by federating work to another IaaS cloud.
Admitting federated requests as spot instances with SLA
guarantees on eviction probability enables an IaaS cloud
to utilize available capacity that would otherwise unused.
SLA guarantees provide the owners of the federated work-
load with a probabilistic guarantee on the minimum amount
of time an instance will run if admitted. If the SLA cannot
be fulfilled, the request will be rejected immediately. This
“fail-fast” approach allows users or remote clouds to decide
whether they wish to wait and resubmit if and when con-
ditions improve, or choose a different class of instance (e.g.
the on-demand class) at a possible additional cost.

2.3 Prediction
Accurate prediction of the time-to-eviction for spot in-

stances is the core prerequisite for concurrently meeting the
user’s SLA and maximizing cloud utilization. Past work
has shown that cloud workloads can be highly variable and
may not be easily described by single well-known distribu-
tions [29]. To address this problem we resort to Monte-Carlo
simulation to generate the empirical distribution of expected
spot instance lifetimes. However, we note that the time to
eviction is affected by the capacity of the cloud that is oc-
cupied by un-evictable on-demand workload and other spot
instances. Intuitively, if the cloud is relatively “empty” – a
spot-instance that is introduced will likely live longer than if
the cloud is close to “full” capacity. Thus, our Monte-Carlo
simulation produces a set of empirical distributions, one for
each level of possible occupancy level.

For example, a cloud with 100 cores has 101 different pos-
sible occupancy levels: from 0 cores occupied to 100 cores
occupied. In practice, not all levels occur. To deal with
this sparseness, we employ linear approximation between
the quantiles of the distributions from surrounding capac-

ity levels for any excluded by the simulation.
We use quantiles of these distributions to quote the ex-

pected lifetime to the scheduler during the admission control
phase based on the available capacity, i.e. capacity unoccu-
pied at the time the request is fielded. If the instance is
expected to be evicted with a higher probability than spec-
ified by its SLA, it is rejected (not admitted).

The Monte-Carlo simulator produces the empirical dis-
tribution of the time-to-eviction from the start of a spot
instance. This distribution is further conditioned over the
number of available slots at the time of the start request and
the slot size of the instance. A single time-to-eviction sam-
ple is generated by re-running the recorded trace up until a
random time stamp, then injecting a virtual spot instance,
and continuing to process the remaining recorded requests.
When the virtual spot instance is evicted eventually by an
on-demand request, its lifetime is recorded. We repeat this
process 10000 times in this work and assign each sample to a
bucket based on the number of available instance slots at the
time of the virtual instance start. We then extract quantiles
from the samples in each bucket independently.

For example, assume the current number of available 2-
core instance slots equals 4 (i.e. 92 of 100 cores of the cloud
are occupied) and a spot instance request arrives with a
0.01 SLA and a maximum lifetime of 1000 seconds. This
maximum lifetime will be compared to the 0.01 quantile of
the samples for 2-core instances in the cases where 4 slots
were available (i.e. conditioned on 92 cores occupied). If the
0.01 quantile is greater than 1000 seconds, the spot instance
will be admitted and placed in the cluster and the number of
2-core slots will decrease to 3. Otherwise, the spot instance
request is rejected immediately. The request would also have
been rejected if the number of available slots for the spot
instance is exhausted. That is, if a 12-core spot instance
request arrives, but no node in the cloud has room for a
12-core instance, the request will be rejected.

2.4 Eviction Policy
The eviction policy affects the probabilistic bounds of the

predictions made via our simulation. With an arbitrary evic-
tion scheme, the eviction probability of a spot instance is
not necessarily fixed at admission, but may vary wildly as
new requests arrive at the cloud. In this paper we use a
“Youngest-Job-First” (YJF) eviction policy. Choosing the
“youngest” (i.e. the spot instance that has started most re-
cently) to evict among the candidate spot instances is an
attempt to minimize the “regret” associated with an evic-
tion in this online decision making problem [16]. That is,
the amount of work that is lost because of an eviction is
minimized, which improves the user experience.

This policy has the additional benefit of being conserva-
tive with respect to the quoted SLA. Specifically, as addi-
tional spot instances enter the system it becomes less and
less likely for an existing instance to be evicted as there is a
growing number of new, lower priority instances in the sys-
tem that can be evicted. Thus the SLA that is generated de-
scribes the probability that the spot instance will be evicted
before its maximum lifetime while it is the youngest job. As
time passes and other spot instances arrive, the probabil-
ity that an older spot instance will be selected for eviction
generally decreases (assuming the lifetime distributions are
stable). Thus the YJF eviction policy further ensures that
the quoted SLA will serve as a lower bound although the

tightness of that bound relaxes as the instance continues to
execute.

2.5 Evaluation Metrics
We evaluate the efficacy of our approach using validated,

trace-based simulation using synthetic and production traces
taken from private Eucalyptus IaaS clouds. We replay each
trace in its entirety and we log each individual state change
in the simulated system. We use one trace to simulate on-
demand workload and a second trace for the federated work-
load. We then generate summary statistics and evaluate our
solution using two metrics:

• eviction ratio of spot instances
evicted = evictions/admissions

• admission ratio of spot instances
admitted = admissions/requests

The enforcement of the target SLA has highest priority.
After the SLA is fulfilled, a high number of completed spot
instance requests is desirable to maximize utilization.

The admission ratio captures the decision making capa-
bility of the scheduler as well as the overall capacity of the
system. A spot instance will be admitted only if the sched-
uler predicts that it will be able to exceed the requested
lifetime associated with the spot instance with the probabil-
ity associated with the SLA.

The eviction ratio captures the degree to which the prob-
abilistic guarantees are being met among all spot instance
that the scheduler has admitted. If, for example, the sched-
uler is offering a 0.01 SLA, the fraction of admitted spot
instance that are evicted should be less than or equal to
0.01 over the entire population of spot instances.

3. RESULTS
Our experiments are run in simulation, based on our pre-

vious work on validated simulation of private IaaS clouds.
We use both, synthetic traces and anonymized production
traces obtained from Eucalyptus IaaS cloud installations.
For reproducibility we assume instant start and stop of in-
stances in the traces and rely on a publicly available set of
anonymized workload traces [28]. Our simulated clouds use
a simple first-fit placement policy, the baseline or prediction-
based admission control and a “youngest-job-first” eviction
policy for spot instances.

The system is set up to simulate a single cloud installation.
The local workload is modeled as consisting of two different
classes of instances:

• on-demand instances which must be accepted if there
is sufficient capacity in the cloud (potentially by evict-
ing spot instances) and which cannot be evicted them-
selves, and

• spot instances which are launched opportunistically
on unused cloud capacity, but which will be terminated
without warning (i.e. evicted) if doing so is necessary
to free enough capacity to accept the on-demand re-
quest.

Thus, the model is one in which spot instances“bottom feed’
the available capacity but can be pre-empted by on-demand
instances if the pre-emption makes accepting the on-demand
request possible. Note that in our model, a spot-instance

Table 1: Parameters of synthetic log-normal on-demand and
spot instance workloads

VM arrival VM duration mean util.
on-demand µ = 4, σ = 1 µ = 6, σ = 1.5 21.77
spot µ = 4, σ = 1 µ = 6, σ = 1.5 21.95

eviction is only triggered when an on-demand request would
otherwise be rejected due to a lack of capacity. This two-
level classification is designed to ensure that the cloud re-
sources remain as heavily utilized as possible while giving
priority to the on-demand class at all times.

We also assume that the users of spot instances request
them along with a maximum lifetime so that the scheduler
can determine whether an instance can be accepted without
violating the SLA. Thus when a spot instance is submitted,
the scheduler determines (by making a time-sensitive pre-
diction of the time-to-eviction for that instance) how long it
can guarantee the instance will be able to execute before it
is evicted with a probability determined by the SLA. If the
requested maximum lifetime is greater than that predicted
lifetime, the spot instance start is rejected by the scheduler
immediately.

Our goal is to determine the extent to which the users of
the spot-instance class can be given a statistical guarantee
of the lifetime that the instance will experience before it is
evicted. Note that because on-demand instances pre-empt
spot-instances but not vice versa, the SLA given to the on-
demand class (in terms of instance lifetime) is unaffected by
the presence of spot instances. We measure the performance
of the admission control in terms of admission and eviction
ratio of spot instances. In our model the SLA defines an
upper bound (maximum) on the eviction ratio of admitted
spot instances given their a-priori known maximum lifetime.

To understand the degree to which spot-instances (gov-
erned by a statistical guarantee of minimum lifetime offered
as an SLA) could be used to implement workload federation,
we use cloud workload traces to understand what happens
when the workload requested on one cloud is run using only
spot instances on another (while it runs its own on-demand
workload). The investigation begins with synthetic work-
loads using known parameters that have been set to ensure
that results could be obtain in a timely manner. It then con-
tinues with production workload traces garnered from com-
mercial cloud entities [23, 28]. Finally, because the commer-
cial clouds may have been over provisioned by their owners,
we investigate the impact of reducing the hardware capac-
ity. That is, to stress test the algorithm’s ability to make
predictions in resource-constrained environments while us-
ing production workload traces.

3.1 Federation of synthetic traces
To show the theoretical efficacy of the approach we com-

pare a federation scenario with an SLA-unaware scheduler
and the SLA-aware scheduler using multiple different SLA
levels. The initial setup uses a single platform (IaaS clus-
ter configuration), an on-demand trace and a federated spot
instance trace. The platform contains 8 nodes with 4 cores
each, for a total of 32 cores. As a rough estimate based on
mean utilization the platform should be able to support the
on-demand trace plus half the federated spot instance trace.
We use a log-normal distribution to approximate the long

0.703	

0.605	

0.498	

0.429	

0.302	

0.391	

0.091	

0.027	
 0.012	
 0.002	

0.000	

0.250	

0.500	

0.750	

baseline	
 0.25	
 0.1	
 0.05	
 0.01	

Admi7ed	
 (spot)	
 Evicted	

Figure 1: Ratio of admitted and evicted spot instances with
synthetic log-normal traces.

tailed empirical distribution of instance life times. The pa-
rameters for generating the synthetic traces can be found in
Table 1.

For this first experiment, all instances have uniform ca-
pacity requirements of 1 core each. The Monte-Carlo simu-
lation is re-run every 6 hours of simulated time on the entire
trace observed by the scheduler so far. The spot trace starts
24 hours after the on-demand trace to allow for a warm-
up period and the experiment covers a total time period of
240 hours (10 days). The simulator takes approximately 30
seconds to compute the empirical distributions needed to
describe the 32 different occupancy levels.

We show the ratio of admitted spot instances, as well as
the eviction ratio of spot instances in Figure 1. The x-axis
shows different SLA levels, starting with the no-guarantees
baseline on the left and then increasingly stringent SLAs
of 0.25, 0.10, 0.05 and 0.01 maximum eviction ratio to the
right. The y-axis shows the fraction of admitted instances in
gray and the fraction of evicted spot instances in black. The
SLA-aware scheduler meets the SLA in all cases (the evic-
tion fraction is less than the guaranteed level), at the cost of
preemptively rejecting an higher fraction of spot instances
for stricter SLAs. The measured SLAs are in fact better
than the target SLAs, since the estimates of the time-to-
eviction made by the simulation are conservative (c.f. Sub-
section 3.2.1).

The most visible improvement is the step from the no-
guarantees baseline to the 0.25 eviction ratio SLA. While the
baseline admits 70% of all requested spot instances, 39% of
the admitted spot instances are evicted before completion.
The 0.25 SLA in contrast admits 60% of all requested spot
instances, but already produces a comparably low 9% evic-
tion rate. Subsequent decreases in the demanded maximum
eviction rate of spot instances decrease the number of ad-
mitted spot instances as well, but consistently achieve the
lower target rates.

The experiment demonstrates the potential of a simula-
tion driven approach to successfully enforce guaranteed lev-
els of eviction probabilities in a controlled environment. If
these results can be extended to production environments,
it could effective enable ahead-of-time eviction probability
guarantees for spot instances with well-defined lifetime lim-
its. Spot instances are either rejected at start-up with fail-
fast semantics or have statistical certainty about their com-
pletion ratio which simplifies users’ reasoning about the sys-
tem.

0	

2000	

4000	

6000	

8000	

10000	

12000	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	

Figure 2: Number of time-to-eviction samples per available-
slots bucket.

0	

2500	

5000	

7500	

10000	

0	
 5	
 10	
 15	
 20	
 25	

q	
 0.25	
 q	
 0.05	
 q	
 0.01	

Figure 3: Quantiles of time-to-eviction per available-slots
bucket.

3.2 Conditional Distributions and Sample Size
As described in Section 2.3, the prediction is generated

from an empirical distribution conditioned on the number
of available instance slots at the time of the request. The
scheduler computes conditional distributions for all possible
core counts on a fixed duty schedule (every 6 hours of trace
time in the previous experiments) based on the history of
on-demand and spot instance behavior it has observed so
far. Note that the sample sizes for “rarely” occurring condi-
tions may be small. For example, if the cloud is moderately
loaded, the number of examples where all but one of the
cores is busy might occur infrequently or not at all. Thus to
compute the conditional lifetime conditioned on 1 core being
available, the sample of cases where only 1 core is available
may be small.

To provide an in-depth insight in the behavior of the
Monte-Carlo simulation, we provide an exemplary interme-
diate results at the 9 day mark of our synthetic trace ex-
periment for single-core instance slots. Figure 2 shows the
number of samples generated on the y-axis for each con-
dition on the x-axis (available slot count). In our specific
example, 2 to 4 open slots are encountered the most fre-
quently, with about 10000 samples each. High open slot
counts, which correspond to low cluster utilization, are in-
creasingly uncommon. Based on the number of samples we
expect predictions for common cases to be highly accurate,
while infrequently occurring cases will be based on empirical
distributions estimated from small samples.

Figure 3 shows the quantiles of the conditional distribu-
tion of times-to-eviction. The x-axis again shows the condi-

tion, while the y-axis indicates the time-to-eviction as esti-
mated by a quantile. The estimates to the left correspond
to the buckets with high sample count in Figure 2, whereas
the estimates to the right decrease in sample count. The
0.25 quantile lies above the 0.10 quantile, followed by the
0.01 quantile. These quantiles estimate the minimum time
a spot instance is expected to survive with the corresponding
probability.

For example, from the figure, 0.01 of the instances that are
started when there are 15 free slots run for 900 seconds or
less before being evicted. In the same column of the graph
(for 15 free slots) 0.05 of the time-to-eviction samples are
1500 seconds or less, and 0.25 of them are 3200 seconds or
less.

A holistic look on the counts per bucket in Figure 2 and
the corresponding quantiles in Figure 3 also provides an in-
sight into the reliability of conditional estimates. Buckets 0
to 14 each have over 1000 samples each to determine quan-
tiles from. This is generally enough for high SLAs, such as
0.05 or 0.01. With increasing slot count (decreasing clus-
ter utilization) a smoothly changing, and mostly increasing
estimate of the time-to-eviction can be observed. Buckets
15 to 20 still have over 200 samples each, which is enough
for rough estimates, but a look back at the quantiles shows
that changes from bucket to bucket already become erratic.
Estimates for 21 available slots and over appear extremely
infrequently in our synthetic trace. Their samples are mostly
artifacts from the initial warm-up period and as such, their
estimated quantiles are not reliable (but also hardly used).

Since we are using a synthetic trace based on log-normal
distributions for arrival time and instance lifetime, this spe-
cific example could be described analytically as well. For
arbitrary traces, as found in production environments, this
is challenging to impossible depending on the typical usage
of the cluster. Monte-Carlo simulation offers a way to esti-
mate arbitrary empirical distributions and can be tailored
to achieve the desired degree of prediction accuracy.

3.2.1 Conservative estimates
We note that for many of the distributions, the quantile

estimate is conservative. That is, the observed fraction of
SLA violations is far lower than the SLA could permit and
still remain valid. The result of this conservativeness is that
fewer spot instances are admitted than could be if a more
accurate estimate were available, however, the SLA itself is
not violated.

We speculate that the effect is due to the long-tailed na-
ture of the log-normal distribution. Compared to a more
symmetric distribution, because a relatively few instances
have long lifetimes, a larger number of instances have rel-
atively short lifetimes. Thus, a small sample size for some
conditions in the Monte-Carlo simulation leads to a conser-
vative estimate of the quantile since fewer “long” jobs are
likely to have occurred.

3.3 Challenges of production traces
To study the utility of Monte-Carlo-based SLA enforce-

ment in a more realistic setting, we use four different traces
obtained from independent Eucalyptus IaaS production in-
stallations for our experiments. The origin of these traces is
documented in [30, 29, 23]. and the traces themselves are
available as part of a collection from [28]. Table 2 shows the
mapping of data sets from the collection to experiments in

Table 2: Mapping of production traces from the data set
collection [28] to experiments in this paper.

Name Source Organization Workload Nodes
A DS2 Medium bursts 7 x 8 cores
B DS3 Medium bursts 7 x 12 cores
C DS5 Large variable 31 x 32 cores
D DS6 Large constant 31 x 32 cores

this paper, together with a short description of their work-
load and platform properties. We chose this diverse set of
workloads and platform sizes to investigate the applicability
of the simulation-based approach to SLA enforcement.

Compared to synthetic traces there are a number of im-
portant differences. First, instance starts show temporal
auto-correlation. These “bursts” of instance starts are more
extreme than ones observed in synthetic log-normal traces.
Second, the behavior of users changes over time and causes
change points which the empirical distribution derived via
Monte-Carlo simulation only picks up over longer time frames.
Third, instance sizes are no longer uniform and traces con-
tain instances with slot sizes between 1 and 30 cores.

To facilitate the experiments with real world traces, two
modifications are made to the Monte-Carlo simulation. First,
we expect that our randomization approach may not gener-
ate starting points needed for all conditional core-utiliza-
tions needed, especially in the beginning of the experiment
where data samples are scarce. To avoid rejecting spot in-
stances unnecessarily due to a perceived lack of information,
we linearly approximate quantiles of unobserved conditional
distributions between observed “neighboring” distributions.

For example, if the empirical distributions conditioned
over 20 slots and 18 slots are available, while there are no
samples for 19 slots, the quantiles for 19 available slots are
generated by linear approximation between the the match-
ing quantiles of the neighbors. For example, the 0.01 quan-
tile for 19 slots would then be calculated as q(0.01|19) =
(q(0.01|18) + q(0.01|20))/2. In the case where multiple con-
ditions are missing, we fit a line to the two endpoints in
the range of missing values and use it to approximate the
quantiles between. Additionally, the extreme points of zero
and full utilization need to be populated with useful data.
We chose an impossible value for expected life time before
eviction if there are no slots available for a given capacity
and conservatively use the quantiles for the lowest known
cluster utilization as values for zero utilization as well.

Second, the real world traces start abruptly without a
ramp-up period. As with the synthetic traces we start the
spot instance trace with a delay of 24 hours to allow the
scheduler to warm up.

A visual inspection of the bursts in the real-world traces
shown in Figure 4, Figure 5 and Figure 6 (trace A similar
to B) shows significant spikes at irregular intervals. If an
on-demand spike in load appears in an environment already
loaded with spot instances, we expect to see a high number
of correlated evictions, possibly leading to a violation of the
SLA in the short-term. If these correlated evictions are not
compensated for in the long-term by conservatively main-
taining a capacity buffer, these short-term violations will
sum up to an SLA violation over the course of the whole
trace. We try to correctly capture this auto-correlation
via replaying the actual observed trace in our Monte-Carlo

0	

1	

0	
 50	
 100	
 150	
 200	
 250	
 300	

Ca
pa

ci
ty
	
 (%

)	

Time	
 (days)	

U(liza(on	

Figure 4: Production trace B as executed on its native plat-
form shows highly variable load and bursts of large requests
as well.

0	

1	

0	
 5	
 10	
 15	
 20	
 25	
 30	
 35	

Ca
pa

ci
ty
	
 (%

)	

Time	
 (days)	

U(liza(on	

Figure 5: Production trace C as executed on its native plat-
form shows a mixed pattern of load with constant plateaus
and periods with higher variability.

0	

1	

0	
 5	
 10	
 15	
 20	
 25	
 30	
 35	

Ca
pa

ci
ty
	
 (%

)	

Time	
 (days)	

U(liza(on	

Figure 6: Production trace D as executed on its native plat-
form shows a mostly constant load with a few spikes.

simulation rather than re-sampling the input distribution.
The fundamental assumption of our Monte-Carlo approach
is that the behavior of the trace can be modeled as a dis-
tribution between re-computation intervals. With this, we
expect unprecedented bursts or load-levels to cause SLA vi-
olations in the short run that are compensated for by more
conservative admission control in the long run.

We take the same approach to handling change points in
the production time series traces. The Monte-Carlo simu-
lation that computes the empirical conditional distributions
is re-run every 6 hours of trace time to capture changes
that may have occurred in the underlying dynamics. The

the Monte Carlo simulation with production traces takes no
more than 300 seconds (5 minutes) to generate the empir-
ical distributions. Thus, in a production implementation,
it would be possible to make these estimates every 6 hours
“on-the-fly” as part of the cloud’s typical operation.

The third difference of real-world traces over to our syn-
thetic ones are non-uniform instance capacities. This has
two major implications: first, Monte-Carlo simulation must
consider different instance sizes and second, placement deci-
sions for on-demand instances made at any time may have
consequences later in the trace. Because the scheduler at-
tempts to find space for an on-demand instance and only
evicts when there is insufficient capacity, the presence of
spot-instances can change where the scheduler places on-
demand instances. As a result, because an instance cannot
span nodes, it could be that the introduction of spot in-
stances increases the “fragmentation” of the available core
capacity and, hence, affects the ability to run on-demand
instances. However, while spot-instances might cause the
scheduler to reject an on-demand instance it would have oth-
erwise accepted (due to fragmentation effects) all of the on-
demand instances that are accepted receive the SLA guar-
antees that they would have without spot instances present.
This effect (detailed in Subsection 3.5) is small for the pro-
duction workloads we study but grows as the cloud runs
closer to capacity.

The conditional distribution of expected lifetimes there-
fore effectively becomes conditioned over instance capacity
(taking into account fragmentation effects) in addition to
available slot count. Fortunately, the conditioning over in-
stance capacity does not increase the amount of data re-
quired for accurate estimates as we can re-run the same
recorded trace with different virtual instance sizes. An in-
creasingly diverse population of instance types therefore leads
to a linear increase in computational effort for Monte-Carlo
simulations, but not to a relative reduction of estimation
accuracy. In practice, we do not expect this to be a se-
vere problem due to the embarrassingly parallel nature of
Monte-Carlo simulation.

3.4 Federation of production traces
We perform the evaluation with production traces in two

parts. The first part uses highly variable workloads, “A”
as on-demand trace and “B” as spot instance trace. The
specifications of the physical cloud platform are taken from
“A”, which contains 7 nodes with 12 cores each. We refer
to this configuration as “A-B”. We use the inverse notation
“B-A” to describe the federation of “A” as spot instances
onto “B” as on-demand trace and physical platform, which
contains 7 nodes with 8 cores each. In both cases, we set the
SLA to 0.01 eviction rate and we compare the results of the
SLA-aware scheduler (“sla”) with the SLA-unaware baseline
scheduler (“base”).

The second part of the evaluation investigates the fed-
eration of the more constant workloads “C” and “D”. The
experiments are defined analogously to the first part and we
refer to them as “C-D” and “D-C”.

An important side-note is that A contains a number of in-
stances requiring 12 cores each, while the platform of B only
provides a maximum of 8 cores per node. This practically
lowers the load impact of A as spot trace over its impact as
on-demand trace on its native platform, as high-core-count
instances are rejected by the scheduler due to the physical

Table 3: Results of workload federation with production
workloads without SLA enforcement. In all cases the evic-
tion ratio is greater than 0.01.

Baseline A-B B-A C-D D-C
admitted (on-demand) 0.977 1.000 1.000 0.997
admitted (spot) 1.000 0.850 0.943 0.963
evicted 0.013 0.024 0.016 0.013

Table 4: Results of workload federation with production
workloads with SLA-aware scheduler, fulfilling the 0.01 evic-
tion SLA (equivalent to a >= 0.99 survival ratio)

SLA-aware A-B B-A C-D D-C
admitted (on-demand) 0.977 1.000 1.000 0.999
admitted (spot) 0.884 0.757 0.491 0.278
evicted 0.009 0.000 0.002 0.006

limits of the platform.
The results are summarized in Table 3 for the baseline,

while the results for the SLA-aware scheduler are presented
in Table 4. The SLA-aware scheduler meets the threshold,
while the baseline scheduler, unsurprisingly, misses in all
cases. The modifications discussed in the previous section
allow the SLA-aware scheduler to successfully handle pro-
duction traces. The results are, however, close due to low
overall utilization of the underlying cluster hardware. In
fact, the mean utilization of on-demand and spot traces com-
bined is 26.62 cores. This compares to a platform capacity
of 84 cores for A and 56 cores for B. This degree of under-
utilization is typical for clouds over-provisioned to meet peak
demand. Reducing the under-utilization is a prime goal of
cloud-to-cloud federation. In order to demonstrate the effi-
cacy of our approach in more resource constrained scenarios,
we perform a platform down-scaling experiment in simula-
tion in the next section.

3.5 Federation with platform scaling
In this section we explore the limits of the Monte-Carlo

approach to computing the conditional lifetime quantiles for
spot-instance lifetimes and its robustness in increasingly re-
source constrained environments. In this experiment we ex-
ecute “A-B”, “B-A”, “C-D” and “D-C” again, but vary the
size of the underlying platform from N to N − 3 nodes for
“A-B” and “B-A”. For the larger platforms in “C-D” and “D-
C” where platform C and D each have 31 nodes, we vary the
numbers from N to N − 15 in steps of 5 nodes. The target
SLA remains at 0.01.

Figures 7 and 8 show the results for scaled-down platforms
of A-B and B-A, respectively. Figures 9 and 10 shows the
same for the C-D and D-C configurations. This experiment
demonstrates the robustness of the simulation in fulfilling
its target SLA. While the baseline scheduler does not meet
the SLA in any single case, the SLA-aware approach suc-
ceeds in all cases but one (“B-A N-1”) and in this case it
is close (the eviction fraction is 0.012 when the target frac-
tion should be no bigger than 0.01). An in-depth look a the
single miss of the SLA-aware scheduler shows a single digit
number of evictions. This is an artifact of our constrained
trace duration and is expected to even out over longer dura-
tion. That is, it is so close to the 0.01 target that we believe,
in a longer trace, it would eventually drop below the 0.01

0.977	
 0.977	
 0.931	
 0.914	

0.788	

1.000	

0.884	

0.819	

0.767	

0.708	

0.013	
 0.009	
 0.006	
 0.007	
 0.008	

0.000	

0.250	

0.500	

0.750	

1.000	

N	
 (base)	
 N	
 (sla)	
 N-­‐1	
 N-­‐2	
 N-­‐3	

Admi:ed	
 (on-­‐demand)	
 Admi:ed	
 (spot)	
 Evicted	

Figure 7: Admission and eviction ratios of on-demand and
spot instances for A-B down-scaled. Non-SLA base, marked
‘N(base)’ for N = 7 nodes in the first column compared with
0.01 SLA with full and reduced node counts N = [7, 6, 5, 4]
in the other columns.

0.024	
 0.000	
 0.003	
 0.012	
 0.007	

0.757	
 0.757	
 0.767	
 0.730	

0.661	

1.000	
 1.000	
 1.000	
 0.999	
 0.995	

0.000	

0.250	

0.500	

0.750	

1.000	

N	
 (base)	
 N	
 (sla)	
 N-­‐1	
 N-­‐2	
 N-­‐3	

Admi9ed	
 (on-­‐demand)	
 Admi9ed	
 (spot)	
 Evicted	

Figure 8: Admission and eviction ratios of on-demand and
spot instances for B-A down-scaled. Non-SLA base, marked
‘N(base)’ for N = 7 nodes in the first column compared with
0.01 SLA with full and reduced node counts N = [7, 6, 5, 4]
in the other columns.

target threshold.
Thus, while on-demand instance requests cannot com-

pletely be fulfilled, the on-demand rejection fractions for the
production traces is small. In each figure, the column labeled
N represents a replay of the production workload using the
number of nodes and cores that were present when the trace
was gathered (i.e. the production scenario). In the cases
where our methodology offers an SLA on spot-instance life-
time, the fraction of admitted on-demand instances that are
admitted is 0.997 or higher. Indeed, the fraction practically
is 1.0 in all cases except in Figure 7. Here, both the SLA-
aware scheduler (our methodology) and our reproduction of
the extant Eucalyptus scheduler (marked “N(base)”) reject
approximately 2.3% of the on-demand instances. The Eu-
calyptus scheduler, at the time these traces were generated,
had a bug due to a race condition that would cause it to
over-provision cores on occasion which our trace-driven sim-
ulator does not reproduce. Thus we are unable to determine
if this loss is due to fragmentation or due to our trace-driven
simulator’s rejection of on-demand instances that the in situ
scheduler would have accepted due to the bug.

As a result, we conclude that the success of the predic-
tions for the real-world production traces is not due to a
lack of utilization (i.e. “extra space”) in over provisioned

1.000	
 1.000	
 1.000	
 0.968	
 0.938	
 0.943	

0.491	

0.437	
 0.463	
 0.490	

0.016	
 0.002	
 0.002	
 0.004	
 0.002	

0.000	

0.250	

0.500	

0.750	

1.000	

N	
 (base)	
 N	
 (sla)	
 N-­‐1	
 N-­‐2	
 N-­‐3	

Admi:ed	
 (on-­‐demand)	
 Admi:ed	
 (spot)	
 Evicted	

Figure 9: Admission and eviction ratios of on-demand and
spot instances for C-D down-scaled. Non-SLA base, marked
‘N(base)’ for N = 31 nodes in the first column com-
pared with 0.01 SLA with full and reduced node counts
N = [31, 26, 21, 16] in the other columns.

0.997	
 0.999	
 0.998	
 0.981	
 0.935	
 0.963	

0.278	

0.191	

0.361	

0.300	

0.013	
 0.006	
 0.006	
 0.004	
 0.004	

0.000	

0.250	

0.500	

0.750	

1.000	

N	
 (base)	
 N	
 (sla)	
 N-­‐1	
 N-­‐2	
 N-­‐3	

Admi:ed	
 (on-­‐demand)	
 Admi:ed	
 (spot)	
 Evicted	

Figure 10: Admission and eviction ratios of on-demand
and spot instances for D-C down-scaled. Non-SLA base,
marked ‘N(base)’ for N = 31 nodes in the first column
compared with 0.01 SLA with full and reduced node counts
N = [31, 26, 21, 16] in the other columns.

production clouds. Shrinking these clouds does cause some
of the observed production workload to be rejected, but the
generated predictions of the time-to-eviction remain valid.

Another interesting observation is that for the down-scaling
experiments the ratio of admitted spot instances at times
increases as the cluster size decreases, for example “C-D
N−3âĂŹâĂŹ and “D-C N−2âĂŹâĂŹ. An in-depth look at
the simulation unveils that the rejected on-demand instances
came in batches and with high core counts per instance.
Their rejection opens up substantial capacity in the cluster.
Furthermore, the inopportune placement of a spot instance
can lead to a scattered placements of other, typically small,
on-demand instances, which block the placement of large
on-demand instances later on. While in our synthetic work-
loads the on-demand trace was completely unaffected by the
spot trace, real-world traces are measurably impacted by the
presence of spot instances.

3.6 Costs of SLA enforcement
Finally, we investigate the costs involved in providing prob-

abilistic SLAs for maximum spot instance eviction probabil-
ity. Obvious cost factors are the effort spent on collecting
utilization traces and the periodical execution of the Monte-
Carlo simulation. Historical traces are collected in the form

of log files already, and hence, do not generate additional ef-
fort. The Monte-Carlo simulation is light-weight and can be
tuned to trade off accuracy for computational cost. Consid-
ering the experiments in this paper executed on commod-
ity laptop hardware in reasonable time frames, we argue
that this overhead in insignificant compared to the scale and
compute-power available in IaaS clouds.

A comparison between SLA-aware scheduling and the SLA-
unaware baseline also gives an indication of the costs of
providing a spot instance SLAs over a no-guarantees ap-
proach. While the SLA-unaware approach does not meet
the 0.01 threshold, it still achieves a respectable 0.05 to 0.02
with our specific workloads. It admits and completes a sub-
stantially higher absolute number of spot instance requests,
which would have lead to better utilization than using the
SLA-aware approach. Hence, with the benefit of hindsight,
the provider could have offered a 0.05 SLA without SLA-
aware scheduling and QoS-driven rejections. At no point
this SLA is guaranteed however – the 0.05 value is simply
the number observed from the trace. Alternatively, in the
SLA-aware approach the Monte-Carlo simulation is run re-
peatedly to allow the system to adapt to changing condi-
tions.

To provide the benefits of usability and statistical cer-
tainty of an SLA the scheduler must forego opportunities for
additional spot instance starts, making the rejections due to
conservative estimates an opportunity cost. The most dras-
tic example is the down-scaling experiment “D-C” shown in
Figure 10. The baseline scheduler admits 0.96 of all spot
instances and merely evicts a 0.02 fraction of these, whereas
the SLA-aware scheduler meets the 0.01 SLA but at the
cost of only admitting a mere 0.28 of all spot instances. Al-
though the difference seems substantial, it shrinks when the
actual amount of work done is considered. In this specific
case, the SLA-aware scheduler still completes a 0.54 frac-
tion of the total spot work (defined as the completed spot
instances’ lifetime ∗ cores). The “C-D” experiment shows
similar properties.

We argue that this cost is acceptable in an economic con-
text, as spot instance SLAs and federation offer streams
for additional utility that would not be accessible without
guarantees. Even more so, as the provider can still offer
no-guarantees spot instances in addition to on-demand and
SLA-spot instances to maximize utilization.

4. RELATED WORK
Spot instances were first employed in 2009, by the “de

facto” standard IaaS system Elastic Compute Cloud (EC2)
as part of Amazon Web Services (AWS) [3]. Spot instances
allow IaaS users to rent virtual machines at a variable hourly
rate that is dictated by a spot market (VM supply and de-
mand) and that is bounded by a user’s upper bound (bid).
Spot instance prices are typically significantly lower than
on-demand instances but do not provide a guarantee (SLA)
on their lifetime: spot instances can be terminated (evicted)
at any time. On-demand instances provide a 99.95% SLA
on their availability once started. Due to their unreliability
but low cost they are typically used as opportunistic accel-
erators [6]. Spot instances enable IaaS providers to utilize
temporarily available resource capacity.

Another technique for better utilizing IaaS cloud capacity
is cloud federation. Cloud federation has been the focus of
much research in the literature [4, 26, 10]. Inter-cloud fed-

eration [4] proposes an architectural framework and defines
the mechanisms and policies for distributing load across mul-
tiple clouds using dynamic coordination to achieve locality
and high QoS levels. The idea of federating computer re-
sources is not new and is successfully employed in many
Computational Grid systems [9]

Goiri et al. [10] develop theoretical models for cloud providers
to maximize revenue via opportunistic in- or outsourcing of
requests based on price and utilization. In [26] the authors
specifically leverage spot instances to facilitate federation.
In particular, they investigate optimal policies for workload
federation among providers based on the proportions of spot
instances in the user workload and relative scarcity of re-
sources within the federation. Their investigation, however,
relies purely on synthetic workloads to explore properties
of cloud federations. Our work is similar in that it studies
cloud federation via spot instances, but uses production-
grade workload traces to evaluate the real-world efficacy of
the federation approach.

Other researchers have studied pricing models and user
experience (QoS) for spot instances. The authors in [15]
model pricing as a mixture of multiple Gaussian distribu-
tions. This work reveals the challenges with modeling ana-
lytically, empirically observed phenomena in the cloud and
shows how significantly complexity grows with the addition
of cloud attributes. Our work circumvents the necessity for
fitting a model to the cloud workload by using Monte-Carlo
replay of recorded historical traces. Andrzejak et al. [2]
model the trade-offs between spot instance bids and real-
ized execution time to achieve probabilistic deadline guar-
antees for long-running jobs with check-pointing. While the
approach applies to generic batch jobs, the it relies on the
ability to checkpoint progress periodically. Our approach
similarly starts out by providing probabilistic bounds on
spot instance lifetimes based on empirical traces, but di-
verges by providing guarantees for an entire population of
instances rather than for meeting job deadlines. Addition-
ally, our work does not require check-pointing abilities, and
hence, applies to arbitrary jobs that can be described with
an a-priori known maximum duration.

In [19] the authors investigate a hypothetical service prov-
ider running a QoS-sensitive web service purely on spot in-
stances. The work is similar to ours with respect to exe-
cuting an entire service workload as spot instances only and
guaranteeing an SLA to end-users. The primary focus of
this prior work however, is revenue maximization. As such
SLA-violations are acceptable in resource-constrained situa-
tions and readily traded off for additional income. Similarly,
[5] investigates a service running purely over spot instances.
The authors show that existing SLAs capture only part of
the observed variation typical in cloud environments, and
propose a new utility-based approach to SLAs – user sat-
isfaction. In our work, we also address servicing an entire
workload with spot instances, but provide a new type of
SLA on spot instance eviction probability. While user satis-
faction depends on the specific end-application, guarantees
on eviction probability improve usability for cloud users as it
simplifies reasoning about the system for arbitrary applica-
tions and, as a consequence, allows remote clouds to reliably
federate workloads with statistical guarantees.

HPC applications can be executed in the cloud using spot
instances, but doing so can significantly complicate appli-
cation and system design and performance due to preemp-

tion. In [18] the authors compare the performance of tradi-
tional HPC clusters and the recently introduced EC2 high-
performance clusters in terms of turnaround time and cost.
Although dedicated HPC hardware is still superior in terms
of performance, the queue wait times are found to substan-
tially increase turnaround time, which may make offloading
to the cloud a user’s preferred choice. The work in [17] fur-
ther explores the potential of running HPC workloads in the
cloud, by using redundancy and check-pointing to decrease
costs and mitigate spot instance eviction. There have been
numerous case studies that explore the cloud as cost-effective
replacement for dedicated HPC resources. An example for
this is [12] which profiles HPC applications suitable for fed-
eration into cloud.

Our approach to cloud federation via spot instances is
different from existing work as we provide an SLA on the
maximum spot instance eviction probability which simplifies
reasoning about the system as whole – it does not impose
a fixed revenue or QoS model, but rather provides a foun-
dation for custom probabilistic utility models. Our SLA
enforcement is based on estimates of the time-to-eviction of
spot instances, which are generated via Monte-Carlo sim-
ulation from historical traces directly, rather than from an
analytical model that is fit to the workload first. Finally,
our approach to estimation and SLA enforcement is demon-
strably robust in an evaluation against a broad variety of
real-world workload traces obtained from private IaaS clouds
deployed in production.

5. CONCLUSIONS AND FUTURE WORK
Core economic drivers of cloud computing are the sim-

plification of infrastructure management for clients, and in-
creased utilization of hardware for providers by consolida-
tion of different workloads. For small and medium-size clouds,
workload consolidation has its limitations due to smaller and
more specialized customer bases. Cloud federation has been
proposed to improve the efficiency of these smaller clouds by
offloading peak demand within a federation and increasing
mean utilization. The use of spot instances for this purpose
seems economically promising, but comes with the challenge
of reasoning about the implications of using evictable in-
stances.

In this paper, we present a novel approach to providing
spot instances with probabilistic SLAs on their minimum
lifetime, which offers a generic solution to estimating costs
and availability guarantees. We base the SLAs on estimating
the time-to-eviction of spot instances from historical work-
load traces via Monte-Carlo simulation. This effectively en-
ables cloud providers to offer an a-priori SLA on the eviction
probability of spot instances. A user or remote cloud can
request spot instances for a fixed lifetime with quantitative
bounds on eviction probability and receive an immediate re-
sponse from the destination cloud of whether it can provide
the desired quality of service, or not. Given the availability
of these SLAs we demonstrate that production workloads of
an entire cloud could be executed on another cloud using
only spot instances, while maintaining the target SLA.

As part of future work, we are focused on addressing the
limitations of our approach and enabling its effective use in
production IaaS deployments. First, our method generates
conservative estimates of the time-to-eviction for both syn-
thetic and production traces, which translates into unused
capacity and lost potential revenues (an opportunity cost).

We are interested in identifying ways of reducing this con-
servativeness while still maintaining the SLA. With reduced
conservativeness the impact of inaccuracies in corner cases
and after change-points may increase as short-term eviction
bursts take longer to compensate for. To alleviate this is-
sue, we can extend our method to provide bounds on the
estimated time-to-eviction quantiles as well. Such bounds
can be used to dynamically adjust the degree of conserva-
tiveness to the degree of uncertainty under the current load
conditions. Second, although we employ production traces
and IaaS platforms for our evaluation, the implementation
of this approach in a physical test bed poses interesting re-
search challenges such as automatic selection of instances
for federation, shepherding of spot instances with unknown
duration via dynamic extension and migration, managing of
spot instance populations with mixed SLAs, and supporting
hybrid (public-private) cloud settings.

6. ACKNOWLEDGMENTS
This work was funded in part by NSF (CNS-0905237,

CNS-1218808, and ACI-0751315) and NIH (1R01EB014877-
01).

7. REFERENCES
[1] Amazon Web Services home page.

http://aws.amazon.com/.

[2] A. Andrzejak, D. Kondo, and S. Yi. Decision model
for cloud computing under sla constraints. In
Modeling, Analysis Simulation of Computer and
Telecommunication Systems (MASCOTS), 2010 IEEE
International Symposium on, pages 257–266, Aug
2010.

[3] Announcing Amazon EC2 Spot Instances. [Online;
accessed Aug-2014] http:
//aws.amazon.com/about-aws/whats-new/2009/12/

14/announcing-amazon-ec2-spot-instances/.

[4] R. Buyya, R. Ranjan, and R. N. Calheiros. Intercloud:
Utility-oriented federation of cloud computing
environments for scaling of application services. In
Proceedings of the 10th International Conference on
Algorithms and Architectures for Parallel Processing -
Volume Part I, ICA3PP’10, pages 13–31, Berlin,
Heidelberg, 2010. Springer-Verlag.

[5] J. Chen, C. Wang, B. B. Zhou, L. Sun, Y. C. Lee, and
A. Y. Zomaya. Tradeoffs between profit and customer
satisfaction for service provisioning in the cloud. In
Proceedings of the 20th International Symposium on
High Performance Distributed Computing, HPDC ’11,
pages 229–238, New York, NY, USA, 2011. ACM.

[6] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder,
A. Tantawi, and C. Krintz. See spot run: Using spot
instances for mapreduce workflows. In Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10, pages 7–7, Berkeley, CA,
USA, 2010. USENIX Association.

[7] CloudStack. [Online; accessed Aug-2014]
http://cloudstack.apache.org/.

[8] Eucalyptus Systems Inc.
http://www.eucalyptus.com, June 2013.

[9] I. Foster. Globus toolkit version 4: Software for
service-oriented systems. In H. Jin, D. Reed, and

W. Jiang, editors, Network and Parallel Computing,
volume 3779 of Lecture Notes in Computer Science,
pages 2–13. Springer Berlin Heidelberg, 2005.

[10] I. Goiri, J. Guitart, and J. Torres. Characterizing
cloud federation for enhancing providers’ profit. In
Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, pages 123–130, July
2010.

[11] Google Cloud Platform. [Online; accessed Aug-2014]
https://cloud.google.com/.

[12] A. Gupta, L. V. Kalé, D. S. Milojicic, P. Faraboschi,
R. Kaufmann, V. March, F. Gioachin, C. H. Suen, and
B.-S. Lee. Exploring the performance and mapping of
hpc applications to platforms in the cloud. In
Proceedings of the 21st International Symposium on
High-Performance Parallel and Distributed
Computing, HPDC ’12, pages 121–122, New York,
NY, USA, 2012. ACM.

[13] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’11, pages 295–308, Berkeley,
CA, USA, 2011. USENIX Association.

[14] IBM SoftLayer. [Online; accessed Aug-2014]
http://www.softlayer.com/.

[15] B. Javadi, R. Thulasiram, and R. Buyya. Statistical
modeling of spot instance prices in public cloud
environments. In Utility and Cloud Computing (UCC),
2011 Fourth IEEE International Conference on, pages
219–228, Dec 2011.

[16] Y. Mansour. Regret minimization and job scheduling.
In J. van Leeuwen, A. Muscholl, D. Peleg,
J. PokornÃ¡, and B. Rumpe, editors, SOFSEM 2010:
Theory and Practice of Computer Science, volume
5901 of Lecture Notes in Computer Science, pages
71–76. Springer Berlin Heidelberg, 2010.

[17] A. Marathe, R. Harris, D. Lowenthal, B. R.
de Supinski, B. Rountree, and M. Schulz. Exploiting
redundancy for cost-effective, time-constrained
execution of hpc applications on amazon ec2. In
Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing,
HPDC ’14, pages 279–290, New York, NY, USA, 2014.
ACM.

[18] A. Marathe, R. Harris, D. K. Lowenthal, B. R.
de Supinski, B. Rountree, M. Schulz, and X. Yuan. A
comparative study of high-performance computing on
the cloud. In Proceedings of the 22Nd International
Symposium on High-performance Parallel and
Distributed Computing, HPDC ’13, pages 239–250,
New York, NY, USA, 2013. ACM.

[19] M. Mazzucco and M. Dumas. Achieving performance
and availability guarantees with spot instances. In
High Performance Computing and Communications
(HPCC), 2011 IEEE 13th International Conference
on, pages 296–303, Sept 2011.

[20] Monte Carlo Method. http:
//en.wikipedia.org/wiki/Monte_Carlo_method.

[21] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,
S. Soman, L. Youseff, and D. Zagorodnov. The

eucalyptus open-source cloud-computing system. In
Cluster Computing and the Grid, 2009. CCGRID’09.
9th IEEE/ACM International Symposium on, pages
124–131. IEEE, 2009.

[22] OpenStack. [Online; accessed Aug-2014]
http://www.openstack.org/.

[23] A. Pucher, E. Gul, C. Krintz, and R. Wolski. Using
Trustworthy Simulation to Engineer Cloud Schedulers.
In Cloud Engineering (IC2E), 2015 IEEE
International Conference on, March 2015.

[24] Rackspace Cloud. [Online; accessed Aug-2014]
http://www.rackspace.com/cloud/.

[25] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: Flexible, scalable schedulers for
large compute clusters. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys
’13, pages 351–364, New York, NY, USA, 2013. ACM.

[26] A. Toosi, R. Calheiros, R. Thulasiram, and R. Buyya.
Resource provisioning policies to increase iaas
provider’s profit in a federated cloud environment. In
High Performance Computing and Communications
(HPCC), 2011 IEEE 13th International Conference
on, pages 279–287, Sept 2011.

[27] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley,
S. Radia, B. Reed, and E. Baldeschwieler. Apache
hadoop yarn: Yet another resource negotiator. In
Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, pages 5:1–5:16, New York, NY,
USA, 2013. ACM.

[28] R. Wolski and J. Brevik.
http://www.cs.ucsb.edu/~rich/workload, June
2013.

[29] R. Wolski and J. Brevik. Using parametric models to
represent private cloud workloads. Technical Report
UCSB-CS-2013-05, University of California, Santa
Barbara, August 2013. http://128.111.41.26/
research/tech_reports/reports/2013-05.pdf.

[30] R. Wolski and J. Brevik. Using Parametric Models to
Represent Private Cloud Workloads. IEEE
Transcations on Services Computing, 4(7):714–725,
October 2014.

