
Probabilistic Guarantees of Execution Duration for Amazon Spot Instances
University of California Technical Report Number 2016-05 ∗

Rich Wolski
Computer Science Department

University of California, Santa Barbara

John Brevik
Department of Mathematics

California State University, Long Beach

Ryan Chard
Department of Computer Science
Victoria University of Wellington

Kyle Chard
Computation Institute
University of Chicago

1 Abstract

In this paper we propose a methodology for implement-
ing probabilistic guarantees of instance reliability in the
Amazon Spot tier. Amazon offers “unreliable” virtual
machine instances (ones, indeed, that may be terminated
by Amazon in response to changing demand for its other
cloud products) at a potentially large discount relative
to “reliable” on-demand and reserved instances. Our
method predicts the “bid values” that users can specify
to provision unreliable EC2 Spot Instances which ensure
at least a fixed duration of execution with a given proba-
bility.

We illustrate the method and test its validity using spot
pricing data from Amazon post facto, both randomly and
using real-world workload traces. We also test the effi-
cacy of the method experimentally by using it to launch
instances in the Spot tier, and then observing the instance
termination rate. Our results indicate that it is possible to
obtain the same level of reliability from unreliable in-
stances that the Amazon service level agreement guaran-
tees for reliable instances with a greatly reduced cost.

2 Introduction

One of the fundamental tenets of cloud computing is
that resources (e.g. machines, network connectivity, stor-
age, etc.) be characterized by their capacity and capa-
bility characteristics rather than their physical construc-
tion. Programmers and users reason about the use of
cloud resources in terms of these characteristics (in prin-
ciple) without regard to the physical infrastructure that is
used to deliver them. For example, instances (virtual ma-
chines) available from Amazon’s Elastic Compute Cloud
(EC2 [5]) are advertised as rough equivalents to various
models of physical processors (in terms of clock speed,

∗This work is supported in part by NSF grants CNS-0905237, CNS-
1218808, ACI-0751315

cache size, etc.), but Amazon provides no guarantee that
these specific processor models will be used to fulfill a
specific user’s request or are even available in their cloud.

Instead, users enter into a “Service Level Agreement”
(SLA), that quantifies the minimum capability that a par-
ticular request will receive. Typically, if the agreement is
violated (the user receives a lower “quality of service”),
he or she is entitled to some form of financial compen-
sation. Thus the cloud computing model is one in which
users can reason about the capabilities that their compu-
tations require, and will receive, in terms of SLAs and
not the physical capabilities of specific resources.

Cloud computing vendors may offer different SLAs at
different price points so that users can control the value
transaction at a fine level of granularity. In particular,
vendors such as Amazon and Google [9] offer a pre-
emptible tier of service where resources are offered (at a
cheaper price) without a reliability SLA. Amazon offers
these instances as “spot instances” [4], for which reliabil-
ity is based (in part) on the maximum amount of money
a user agrees to pay for them. When the user makes a
request for an instance having a specific set of character-
istics (termed an “instance type”), he or she includes a
“maximum bid price” indicating the maximum that the
user is willing to be charged for the instance. Amazon
creates a market for each instance type and satisfies the
requests of the highest bidders. Periodically, Amazon
recalculates the market price and terminates those in-
stances whose maximum bid is below the new market
price. The market-clearing mechanism is published, but
individual user bids (and some of the other market pa-
rameters) are not. Thus, each user must devise an indi-
vidual bidding strategy that meets his or her own relia-
bility needs [24, 13].

Amazon also offers the same instance types under a
fixed reliability SLA at a fixed price. Because the spot-
instance market mechanism does not provide a way to
guarantee how long an instance will run before it is ter-
minated as part of an SLA, market prices are often sig-

nificantly lower – by up to an order of magnitude – than
fixed prices for the same instances with a reliability SLA.
That is, because a user cannot determine a bid that will
ensure a specific level of reliability in the spot market,
this uncertainty generally leads to lower prices. How-
ever, users who wish to ensure that their instances will
be reliable must submit large maximum bids. Indeed,
in many cases, our results indicate that users must of-
ten bid higher in the Spot tier than they would pay for
a fixed price instance (which is covered by the Amazon
reliability SLA) in order to get the same level of relia-
bility. Moreover, while a large body of work has inves-
tigated bidding strategies for optimizing the use of the
Spot tier [26, 14, 21, 25, 11, 20, 22, 10], there is no pub-
lished strategy of which we are aware that gives users the
ability to determine at the time of a request “how high”
they must bid to prevent their instances from being ter-
minated by Amazon.

In this paper we present a methodology for determin-
ing a minimized bid price that will ensure a fixed level
of reliability in the Amazon Spot tier.1 The methodol-
ogy – called DRAFTS2 applies a non-parametric time-
series forecasting technique to the pricing history for a
specific instance type. From forecasts generated by the
technique, DRAFTS determines a minimized bid price
that will ensure a given level of durability (expressed as
the probability that an instance of this type will not be
terminated before a given deadline) in the Amazon Spot
tier. DRAFTS takes the probability and the deadline as
parameters. Thus, a user who knows the duration over
which an instance must persist can select a success prob-
ability that matches, or exceeds the reliability guarantee
offered by Amazon as part of its fixed-price SLA. In this
way, users of DRAFTS can get a functional equivalent
of the fixed-price reliability (guaranteed at least proba-
bilistically) while paying the lower price available from
the Spot tier.

It is possible for a user of the Amazon Spot tier to
achieve a high level of reliability by simply bidding a
large maximum value. However, the size of the bid de-
fines the possible cost (i.e., financial risk) associated with
the transaction.3 The goal of DRAFTS is to minimize
this risk while, at the same time, providing a probabilis-
tic guarantee of reliability.

This paper makes the following contributions:

1Amazon terms its cloud offering “Amazon Web Services,” com-
monly abbreviated as “AWS.” We will use the term “Amazon Spot tier”
or “Spot tier” to refer to the Amazon “EC2 Spot Instances” product –
cf. https://aws.amazon.com/ec2/spot/ for the remainder of this
paper.

2DRAFTS is an acronym for Durability Agreements from Time
Series.

3The financial risk in the Spot tier can be
quite substantial – https://moz.com/devblog/

amazon-ec2-spot-request-volatility-hits-1000hour/.

• It describes the DRAFTS methodology in terms of
the statistical forecasting techniques it employs and
the algorithm it uses to make probabilistic reliability
predictions.
• It verifies the probabilistic guarantees and quanti-

fies the risk mitigation provided by DRAFTS using
“backtesting” and archival Amazon Spot tier pric-
ing data.
• It demonstrates the effectiveness of DRAFTS by

detailing the execution of both synthetic and “real-
world” application workloads in the Amazon Spot
tier using DRAFTS-determined bids.

These contributions indicate that it is possible to make
effective predictions of bounds on future price fluctua-
tions in the Amazon Spot tier.

3 Amazon Spot Instances

To request an instance in the Amazon Spot tier, a user
submits what amounts to a 4-tuple consisting of

(Region, Availability zone, Instance type, Max bid price).
(1)

Amazon organizes its “Elastic Compute Cloud” (EC2)
service (from which virtual machines may be rented)
into independent Regions, each of which constitutes es-
sentially a separate instantiation of the service. Each
Region is further divided into Availability Zones (AZs),
which define collections of resources with independent
failure probabilities so that the joint probability of fail-
ure in multiple zones can be quantified. A virtual ma-
chine (termed an instance) launched by a user runs in a
specific Region and AZ. In the Spot tier, the user must
specify the Region and may specify the AZ, although if
the AZ is missing form the request, Amazon will choose
one (without regard for price).

Also, the Region name is carried in the AZ name.
For example, the us-east-1 Region comprises five AZs
named us-east-1a, us-east-1b, us-east-1c, us-east-1d,
and us-east-1e respectively.

The instance type determines the nominal capabilities
in terms of CPU, memory, and local storage capacity of
the virtual machine that will be instantiated. For example
an m3.medium instance type currently includes 1 “vir-
tual” CPU, 3.75 gigabytes of memory, and 4 gigabytes
of local disk storage. EC2 currently supports 48 differ-
ent instance types in the Spot tier, although not all types
are available in all Regions and AZs.

A request to launch an instance in the Spot tier must
include a maximum bid price, which determines the
maximum hourly rate that the user making the request
is willing to pay for the instance.4 This price is not re-

4Since the maximum bid is the only bid that a user submits, we will
use the term “bid” and “maximum bid” interchangeably.

2

vealed to the other users of the Spot tier. In addition,
Amazon does not reveal the number of resources that are
available. Instead, Amazon sets a market price for each
AZ that is advertised to all users [1]. Requests carrying
a maximum bid that is greater than the current market
price are accepted and the instances to which they refer
are initiated or are allowed to continue executing.

3.1 Pricing
Amazon computes the market price so that the (hidden)
supply is exhausted. It sorts the currently active max-
imum bids by value and allocates resources to maxi-
mum bids (taking into account request size) in descend-
ing order of bid value. The lowest maximum bid that
corresponds to a “taken” resource determines the mar-
ket price. It follows that, in principle, the market price
changes whenever a new request is presented, when an
active request is terminated by its user, or when the sup-
ply allocated to the resource pool by Amazon changes.
In practice, we observe that many price changes and/or
repeated price announcements occur with approximately
a 5-minute periodicity, perhaps indicating that prices are
adjusted according to more deterministic schedule.

Instances that are running in the Spot tier are charged
by the hour. When an instance is executing, its user is
charged the current market price that occurs at the begin-
ning of each hour of execution for that hour’s duration.
When the instance is terminated by its user, the user is
charged for the complete hour of execution in which the
termination occurs. That is, Amazon “rounds up” to the
nearest hour when a user terminates an instance.

If the market price exceeds the maximum bid price for
a running instance, the instance is terminated by Ama-
zon; if the market price becomes equal to the maximum
bid price, the instance may be terminated or may be left
running.5 Thus, the duration that an instance will run
before it is terminated is determined (assuming that the
probability of hardware failure is negligible) by the time
until the market price becomes greater than or equal to
the maximum bid price for the instance.

Further, the difference between the market price com-
puted at the beginning of each hour the instance runs (i.e.,
the price the user will be charged) and the maximum
bid price determines the financial risk associated with
the instance. That is, the user “risks” paying up to the
maximum bid price for each hour the instance executes.
Because typographical and human-understanding errors
have occasionally led to excessive costs, Amazon limits
maximum bids to be ten times the On-demand price (cf.
Section 5) for an instance type.

5Note that when the instance is terminated due to a market price
change, the user pays only for the hourly usage up to the start of the
hour in which the instance is terminated.

3.2 Spot Instance Price Histories

Amazon makes up to 90 days of market price history for
each instance type in each Region and AZ available for
programmatic access. In this study, we have accumu-
lated price histories for all AZs in the us-east-1, us-west-
1, and us-west-2 Regions spanning the period from Oc-
tober 2015 to April 2016. Specifically, we have gathered
2-hour histories every 15 minutes (to account for possi-
ble dropout) and removed duplicate entries. We further
restrict the DRAFTS predictions discussed in Section 5
to the Linux/UNIX images which carry no software li-
censing fee.

Note also that Amazon prevents “herding” behavior in
AZ selection by remapping AZ names on a user-by-user
basis. Thus, different users selecting us-east-1a, for ex-
ample, do not necessarily make requests from the same
pool of resources (they may if the mapping of the AZ
name to the resources happens to be the same for two
users). It is possible to compare market price histories
from different users to determine a globally consistent
AZ naming scheme. DRAFTS does not depend on this
deobfuscation for its function, but building DRAFTS to
run as a general service would. That is, to build a gen-
eral purpose DRAFTS service, it would be necessary to
map the AZ names used by the service to the AZ names
visible to each user.

4 Methodology

From the perspective of a user of the Amazon Spot tier,
DRAFTS attempts to find the lowest maximum bid price
that ensures an instance will run for the specified dura-
tion before being terminated with probability at least as
large as the probability associated with the user’s desired
reliability level. Note that DRAFTS bids provide statis-
tical guarantees that are slightly more restrictive than the
reliability SLAs currently provided by Amazon for its
other classes of service6 in that they are for continuous
availability durations.

That is, the Amazon SLA specifies a percentage of
availability time that is cumulative over a fixed time pe-
riod. As long as the instance appears available for a spec-
ified percentage of time within the time period (say, 99%
in a month) the SLA is fulfilled. For example, one sec-
ond of unavailability occurring in every non-overlapping
100-second period of time (technically) fulfills a 99% re-
liability guarantee. In contrast, the DRAFTS probability

6Amazon offers several classes of service with respect to in-
stances under the same SLA including “On-demand,” and “Reserved”
instances. Only instances in the Spot tier do not carry a relia-
bility SLA. See http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/instance-purchasing-options.html for a descrip-
tion of the current purchase options.

3

refers not to the cumulative availability but to the con-
tinuous availability of a specific instance request. To
make the distinction clear, we will henceforth use the
term “durability” to refer to the more restrictive form of
probabilistic guarantee.

Note that probabilistically, as the maximum bid price
approaches the current market price, the duration an in-
stance will execute decreases and any bid at market price
is immediately eligible for termination. Notice also that
any bid price above the DRAFTS-predicted bid price
will also meet the probability target (any probability
greater than the target is acceptable) but with added fi-
nancial risk. A DRAFTS-determined bid attempts to
guarantee at least the specified probability of completion
while, at the same time, minimizing the financial risk as-
sociated with each bid.

DRAFTS applies a non-parametric time-series fore-
casting technique (described in the next Subsection) to
the history of prices from the Spot tier to determine its
bid predictions. The methodology is a two-step process.
In the first step, DRAFTS computes a time series of up-
per bounds on market prices at each moment in a price
history. These bounds are probabilistic guarantees that
the next value in the market price series will be less than
the bounds and, thus, could have served as a maximum
bid at each point in time. That is, this upper bound se-
ries is the series of smallest maximum bids that would
have guaranteed an instance would “survive” until the
next market price update in the series. In the second step,
it repeatedly increments this maximum bid fractionally
and computes a series of time durations until the maxi-
mum bid would have been equaled or exceeded by mar-
ket price. It then computes a probabilistic lower bound
on this series of time durations. The process generates
pairs of bids and lower-bounds on durations where each
bid guarantees (at a minimum, probabilistically) the du-
ration with which it is paired. Note that as bids get larger,
the durations must increase monotonically for a fixed tar-
get probability according to the price-setting mechanism
described in the previous section.

4.1 Non-parametric Bounds Prediction

DRAFTS uses a non-parametric time series analysis
method that we developed in prior work [18]. We origi-
nally designed this method for predicting the bounds (up-
per and lower) on variable latencies occurring in large-
scale computing systems [19]. It is non-parametric and
it automatically adapts to changes in the underlying time
series dynamics (both change-points and autocorrela-
tions) making it useful in settings where forecasts are
required from arbitrary data with widely varying char-
acteristics.

A bounds forecast from this method requires three in-

puts:

1. A time series of data.

2. A quantile for which a confidence bound should be
predicted (q ∈ (0,1)).

3. The confidence level of the prediction (c ∈ (0,1)).

To estimate an upper bound on the qth quantile of the
time series, it treats each observation in the time series
as a Bernoulli trial with probability q of success. If there
are n observations, the probability of there being exactly
k successes is described by a Binomial distribution (as-
suming observation independence) having parameters n
and q. If Q is the qth quantile of the distribution from
which the observations have been drawn, the equation

k

∑
j=0

(
n
j

)
· (1−q) j ·qn− j (2)

gives the probability that no more than k observations
are greater than Q. As a result, the kth largest value in
a sorted list of n observations gives an upper c confi-
dence bound on Q when k is the smallest integer value
for which Equation 2 is larger than c. Taking k to be
the largest integer for which this formula is smaller than
1− c gives a lower confidence bound for Q.

The model described above assumes that the series
is stationary. As a result, the “current” bound on the
qth quantile is also a prediction of the bound for the
next observation. In practice, empirical time series taken
from systems often exhibit change points and other forms
of non-stationarity. The method attempts to correct for
these events automatically to improve the accuracy of its
forecasts.

Note that typical values of c for upper bounds are rel-
atively close to 1, which makes the bound estimates con-
servative: The value returned as a bound prediction is
larger than the true qth quantile with probability c under
the assumptions of the model. However, as a prediction
based on confidence bounds, the degree to which it is
larger is not estimated.

More succinctly, the implementation of the method
sorts observations in a history of observations, and com-
putes the value of k that constitutes an index into this
sorted list that is either the upper c or lower c (user
selectable) confidence bound on the qth quantile. The
methodology assumes that the time series of observations
is ergodic, so that in the long run the confidence bounds
are correct in a conservative sense. However, to improve
prediction performance, the method also attempts to de-
tect change points in the time series of observations so
that it can apply this inference technique to only the most
recent segment of the series that appears to be stationary.

Note also that the algorithm itself can be implemented
efficiently if the time series state needed to determine

4

change points is persistent so that it is suitable for on-
line use. Details of this implementation as well as a
fuller accounting of the statistical properties (including
correction for autocorrelation) and detailed assumptions
are available in [18, 19, 17].

4.2 DRAFTS Prediction Methodology

DRAFTS uses the time series method to predict an upper
bound on maximum bid price and a lower bound on the
time the bid will be sufficient to prevent a termination
due to market price. We term this time the “bid dura-
tion.” It uses the square root of the desired target prob-
ability as the qth quantile and, in the study, a value of
0.99 for the confidence level c. While other probability
combinations are possible to reach the target probability,
our experience indicates that using square roots strikes a
good balance between keeping a bid low (i.e. near the
current price) and yielding a usable duration.

For example, to compute the DRAFTS prediction
with probability 0.95 for an instance type at a particu-
lar moment in time, DRAFTS computes an upper bound
prediction of the q = 0.975 quantile for all elements of
the series up to that moment (roughly the square root of
0.95) and c = 0.99. The time series method returns an
upper confidence bound on the 0.975 quantile of the next
market price for each element of the time series. That is,
DRAFTS creates a history of upper bound predictions,
one for each point in the price history series where pric-
ing data is available.

It then generates a series of durations from the se-
ries of predictions in which each element of the series
is the duration over which the prediction would prevent a
market-price termination. That is, for each upper bound
prediction in the prediction history, DRAFTS computes
the duration until that prediction is no longer sufficient
to prevent Amazon from terminating an instance in the
Spot tier due to a change in market price if the prediction
were used as a maximum bid.

DRAFTS then uses the time series method again to
predict a lower confidence bound (again with c = 0.99)
on the 0.025 (= 1− .975) quantile of the new duration
series. Note here that this prediction is based on the con-
ditional probability that the price allows the instance to
run in the first place.

4.2.1 Correcting for Market Price Equality

The combination of the upper confidence bound on the
0.975 quantile of price and the lower confidence bound
on the 0.025 quantile of duration is almost, but not quite,
what is needed to create a statistical guarantee for the
Spot tier. Recall that Amazon may or may not terminate
an instance when its maximum bid is equal to the market

price. The time series method assumes that the bound on
the desired target quantile is contained in the observed
time series. That is, it returns a value from the series that
is statistically “guaranteed” (under the binomial assump-
tions described previously) to be greater than or equal to
the desired quantile. In each case, the value returned is
some previously occurring market price. Thus the initial
prediction method is correct for the time until the mar-
ket price exceeds the predicted maximum bid price. It
does not, however, account for the possibility that Ama-
zon could terminate an instance because the bid price is
equal to the market price.

Because the methodology is attempting to use only the
most recently relevant history, it is possible that the upper
bound on the market price is equal to the current mar-
ket price (exactly). To account for the possibility that
the current Spot price is equivalent to the upper bound
prediction, DRAFTS adds $0.0001 (the smallest cost in-
crement allowed by the Spot tier interface) to each up-
per bound prediction so that it must be larger than the
quoted market price returned in all cases. This premium
ensures that DRAFTS predicts the minimum time until
a Spot instance is eligible to be terminated because of
price rather than the time until the Spot price absolutely
exceeds the maximum bid. This estimate is a conserva-
tive lower bound on the time until the instance actually
will be terminated. We refer to this bound on the time
until an instance may be terminated as the durability of
the prediction.

4.3 Performance
For all experiments described in Section 5 except those
in Subsection 5.4 each DRAFTS maximum bid required
approximately 2 minutes to generate using server class
machines. This time-to-solution is acceptable for re-
search purposes and we believe it can be optimized sub-
stantially.

For the experiments described in Subsection 5.4 we
also wanted to experiment with DRAFTS’s operation as
a stand-alone web service. Our goal was to understand
how DRAFTS might function as a decision-support tool
or cloud-based service available to application schedul-
ing programs.

The resulting service implementation of DRAFTS op-
erates asynchronously. It periodically queries the Ama-
zon price-history API and computes a set of maximum-
bid predictions for each instance type and AZ.7 To ac-
cess the bids it generates, clients use a simple Represen-
tational State Transfer (REST) [8] API, via which they
can request a set of DRAFTS maximum bids for a spe-
cific instance type and AZ. The service computes dura-

7This service is currently operational in prototype form; however,
we have elided the URL for the purposes of blind submission.

5

tion predictions associated with increasing maximum bid
values in increments of 5% for both the 0.95 and 0.99
probability levels. It starts with the smallest predicted bid
that can guarantee any duration with the specified prob-
ability and computes bid predictions up to 4 times this
minimum value in increments of 5%. It is currently con-
figured to recompute all bid predictions every 15 min-
utes. Note the service does not yet deobfuscate AZs and
therefore must be preconfigured with the AZ mapping for
its clients. All application-driven experiments described
in Subsection 5.4 use this asynchronous on-line web ser-
vice to obtain bid values.

5 Results

We validate the effectiveness of the DRAFTS method
for determining maximum bids in the Spot tier using
three sets of experiments. In the first, we use back-
testing across all combinations of Region, AZ, and in-
stance types available from the AWS North American
regions (us-east-1, us-west-1, and us-west-2). For these
post facto experiments we examine both the extent to
which DRAFTS correctly ensures durability and the de-
gree to which it over bid the actual price (i.e. we com-
pare to the optimal bids that a prescient oracle would use)
in each case. The second experiment runs a series of
identical instances over a fixed time period in the same
Region and AZ using the DRAFTS-determined maxi-
mum bid. It records the fraction of those instances that
were terminated by Amazon because the market price
exceeded the maximum bid and compares this fraction
to the DRAFTS guarantee we configured in each ex-
periment. Finally, we incorporate DRAFTS bid predic-
tions into a production genetics analysis platform that
elastically provisions instances in the Spot tier to host
its computation. We compare the effectiveness of using
DRAFTS to compute a bid when applied to a workload
derived from production execution traces.

5.1 Correctness
We term a bid to be correct when it is sufficient to prevent
the instance for which it is made from being terminated
by Amazon due to a change in market price. We measure
the correctness of the overall methodology though back-
testing. To do so, we repeatedly choose a time stamp at
random in the market price history for each combination
of AZ and instance type and run the DRAFTS algorithm
with a specific target probability p using the data before
that time stamp in the history. We then choose a random
instance duration and compute the DRAFTS-predicted
maximum bid. Finally, we test whether this bid would
have prevented a termination by Amazon by computing
the time from that point in the history until the predicted

bid price is greater than or equal to the observed market
price. If the duration of the instance is longer than the
interval until the market price is greater than or equal to
the predicted maximum bid, the prediction succeeds in
preventing a termination. Otherwise, it fails. We record
the fraction of successes from a suitably large set of such
experiments and compare it to the success probability p
supplied to DRAFTS in the test. If the success fraction
is greater than or equal to p, DRAFTS would have ap-
peared to be functioning “correctly” in terms of its abil-
ity to provide a probabilistic guarantee to a fictitious user
who had submitted the random instances over the time
period that has been “backtested.”

We treat each combination of AZ and instance type as
a separate category of resource. This categorization is
necessary because users of the Spot tier must decide on
and specify which Region, AZ, and instance type to use.
Thus while it may be possible to achieve an overall suc-
cess fraction that meets the probability target across all
possible combinations, users require that DRAFTS meet
its probability target for each combination separately.

In Figure 1 we show the percentage of AZ-instance
type combinations that achieved < 0.99, 0.99, or 1.0
success fraction. In this experiment, we tested all in-

< 0.99

0.99

1

3%

67%

30%

Figure 1: Backtested DRAFTS correctness fractions for
all instance types in us-east-1, us-west-1, and us-west-
2 for the 0.99 quantile with c = 0.99, December 2015
through April 2016, using a sample size of 300 and a
random instance duration of 12 hours.

stance types available from the us-east-1, us-west-1, and
us-west-2 Regions.8 Amazon reported 9 total AZs were
available in these three Regions. There were 48 differ-
ent instance types at the time of the study, but not all in-
stance types are available from all AZs. The total number
of combinations of AZ and instance type we backtested
was 401.

For each combination we generated 300 Spot tier re-
quests beginning at random times between December

8We conducted the experiments with an ordinary Amazon user ac-
count. When this account queried AWS for the available AZs, it re-
ported that 4 were available in us-east-1, 2 were available in us-west-1,
and 3 were available in us-west-2.

6

2015 and April 2016. Each request had a duration drawn
from a uniform random distribution between 0 and 12
hours in length. For each request, we computed the
DRAFTS maximum bid and then determined whether
that bid would have been sufficient to prevent Amazon
from terminating the request if it had been made at the
time selected in the past. The DRAFTS target probabil-
ity was set to 0.99 with confidence bound c = 0.99.

From the figure, 3% of the combinations did not
achieve either a 0.99 or 1.0 success fraction. Those that
“failed” to achieve a success fraction of at least 0.99 all
had a fraction of 0.98 except one, which had a fraction
of 0.97. We believe that the methodology is in fact cor-
rect, despite our observation that not all of the experi-
ments were able to generate a success fraction of 0.99 or
higher (matching the target probability of 0.99 set for the
experiment). In running the same experiment a second
time, we observed that 5% of the combinations did not
meet the DRAFTS probability target (again with all of
the “failure” fractions 0.97 or 0.98). However (with four
exceptions), the combinations that “failed” the first time
and those that failed in the second set were different. We
believe that (due to autocorrelation in the price data) it is
possible for DRAFTS to fail to meet its probability goal
(but almost to meet it) for contiguous periods of time.
Thus, depending on the random time stamps chosen, it is
possible to see success fractions that are slightly below
the probability target.

For the purposes of comparison, in Figure 2 we show
the same statistics for the same sample when the On-
demand price was used as a maximum bid instead of the
DRAFTS-determined bid. The On-demand price is the
hourly price a user must pay for an instance to obtain the
Amazon reliability SLA. Currently, that SLA guarantees
$99.95% instance availability over the course of 1 month
or the user is entitled to a 10% refund [3]. If the avail-
ability is less than or equal to 99%, the refund is 30%.
Amazon sets On-demand prices by Region. That is, a
user pays the same On-demand price in each AZ within
a Region. This experiment shows that the On-demand
price, when used as a maximum bid, does not ensure a
correctness fraction of 0.99 for many of the possible AZ
and instance type combinations.

Further, many of the success fractions when the On-
demand price was used as a maximum bid are substan-
tially smaller than 0.99. Figure 3 shows the empirical cu-
mulative distribution function (CDF) of the correctness
fractions that were less than 0.99 generated by the back-
testing experiment with the On-demand price as the max-
imum bid. Indeed, some of the success fractions were
even zero. That is, the On-demand price for these com-
binations of AZ and instance type was never sufficient to
prevent a termination due to price.

For example, the cg1.4xlarge instance type, in the us-

< 0.99

0.99

1

12%

48%

40%

Figure 2: Backtested correctness fractions for all in-
stance types in us-east-1, us-west-1, and us-west-2 us-
ing the On-demand price as a maximum bid December
2015 through April 2016 with a sample size of 300 and a
random instance duration of 12 hours.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Success Fraction

Figure 3: CDF of Backtested DRAFTS correctness frac-
tions less than 0.99 for all instance types in us-east-1,
us-west-1, and us-west-2 using the On-demand price as
a maximum bid December 2015 through April 2016 with
a sample size of 300 and a random instance duration of
12 hours.

east-1 Region had a price of $2.1 at the time of the exper-
iment. The smallest price we observed when backtesting
cg1.4xlarge in what appeared to our test account as us-
east-1c was $2.10010. That is, the Spot tier market price
of a cg1.4xlarge in us-east-1c was at least one tenth of
a cent higher than the On-demand price for each of the
300 randomly generated instances. We cannot yet deter-
mine whether this phenomenon (which we observed for
several other combinations) is a natural consequence of
the Amazon Spot tier market-making mechanism or an
artifice designed to discourage the use of the Spot tier for
those specific combinations. However, the overall results
indicate that the On-demand price does not determine a
maximum bid that guarantees the same level of durabil-
ity for the instance durations and time period we tested.
Alternatively, the DRAFTS method does appear to pro-
vide a maximum bid that can ensure instance durability
of at least 0.99 in the North American Regions.

5.2 Tightness

While DRAFTS does appear to be able to obtain a
specific durability guarantee probabilistically, it does so

7

“conservatively” by using the upper confidence bound on
the quantile estimate from the price series and the lower
confidence bound from the quantile estimate from the du-
ration series. In addition to being correct in terms of
the probabilistic guarantee, the DRAFTS methodology
should also be “tight” in the sense that it should be as
close to the market price as possible to minimize the dif-
ference between the maximum bid and the price paid.
That is, because a user “risks” paying an hourly price
up to the maximum bid for each instance the best bid is
one that both assures the target durability probability and
minimizes the “cost uncertainty” which is the difference
between the actual cost and the maximum possible cost.
We term this cost uncertainty the uncertainty risk associ-
ated with the use of the Spot tier.

Table 1 shows the tightness of the DRAFTS bids rel-
ative to the actual cost that would have been paid had
we launched all instances of each instance type in each
AZ. In the table, the first column is the AZ name as it ap-
peared to our test account. The second column shows the
dollar cost that would have been paid in the AZ for the
successful instances (ones that outlived their bids) had
they been requested from the Spot tier. The third column
shows the total DRAFTS bid value for the AZ shown in
column one. This value represents the amount of uncer-
tainty risk a user would have taken on to complete the
workload in that AZ. The fourth column shows the ratio
of the total DRAFTS uncertainty risk to the total Spot
tier cost (ratio of column three to column two). The fifth
column shows the total On-demand price the user would
have paid had she decided to use an On-demand instance
to assure durability, and the last column shows the ratio
of the total On-demand cost to the total cost incurred in
the Spot tier.

The results in Table 1 illustrate the relationship be-
tween risk and cost for a 0.99 durability guarantee. For
all but two of the AZs, the ratio of DRAFTS total un-
certainty risk to the actual Spot tier cost is higher than
the ratio of the On-demand cost to the Spot tier cost.
Assuming DRAFTS is not behaving pathologically, this
comparison indicates that prices in the Spot tier can fluc-
tuate somewhat dramatically. For example, in us-west-
1b DRAFTS had to recommend a bid that was, on the
average, 7.5 times the Spot tier cost to account for the
possibility that the prices might “spike” to this degree.
However in us-east-1b and us-west-2a the DRAFTS bids
risk less than what a user would need to pay in the On-
demand tier to obtain the same durability level.

While it might appear that DRAFTS fails to obtain
tight bounds relative to the On-demand cost, recall from
Figure 2 that the On-demand price (when used as a max-
imum bid in the Spot tier) fails to ensure a 0.99 dura-
bility level in almost 40% of the AZ-instance type com-
binations. That is, in approximately 40% of the tested

combinations, a bid above the On-demand cost is neces-
sary to ensure a 0.99 success probability. In the Spot tier,
then, it seems that users must risk paying more than the
On-demand price to get an equivalent durability guaran-
tee while the expected cost should be less (except for us-
east-1b and us-west-2a where the DRAFTS uncertainty
risk is lower than the On-demand cost). This variability
suggests that it is possible to choose an AZ and instance
type pair to minimize cost subject to the guarantee that
DRAFTS can provide. We explore this possibility fur-
ther in the next two sections.

5.3 Instance Launch Experiments

To further test the efficacy of DRAFTS, we used its bid
predictions to launch instances in the Spot tier. To con-
trol expense, we chose inexpensive instance types and a
duration of 3300 seconds (5 minutes less than 1 hour).
This latter decision stems from early experimentation in
which the time between when our experimental appara-
tus decided to terminate an instance and the actual ter-
mination time recorded by Amazon could take up to 5
minutes. As a result, durations of close to an hour would
occasionally be charged for two hours as the recorded
termination “rolled over” the one hour mark.

In each experiment, a script computed the DRAFTS
maximum bid that would ensure a 3300 second duration
with probability p = 0.95. We chose 0.95 (instead of the
0.99 described in the previous subsections) so that we
could initiate approximately 100 instances and observe a
meaningful failure count. Rather than choosing a single
AZ, however, we allowed the experiment to choose the
AZ in a specified Region that currently had the lowest
predicted price upper bound. That is, we used the pre-
dicted price upper bound for each AZ in a given Region
as a “fitness function” so that financial risk associated
with each experiment would be minimized.

For a given Region the script repeatedly computed the
current price upper bound and DRAFTS bid in each AZ,
chose the AZ that had the lowest predicted price upper
bound, and requested an instance from that AZ with the
corresponding bid. Once Amazon reported the instance
as being in the “running” state, the script would then
pause for 3300 seconds and afterwards interrogate Ama-
zon to determine whether the instance was still running.
If not it recorded a failure, otherwise it recorded a suc-
cess.

Further, we designed each experiment to take place
over the course of a week and to run approximately 100
instances during that week. To prevent Amazon from
detecting a regular periodicity and performing some un-
seen optimization on our behalf, we varied the time be-
tween experiments by selecting an inter-experiment in-
terval from a normal distribution with a mean of 2748

8

AZ Spot tier Cost DRAFTS Risk Ratio On-demand Cost Ratio
us-east-1b $8007.4 $46070.4 5.8 $47804.5 6.0
us-east-1c $21722.5 $83483.8 3.8 $54240.9 2.5
us-east-1d $10747.2 $79800.1 7.4 $57188.1 5.3
us-east-1e $2038.4 $9815.0 4.8 $4161.2 2.0
us-west-1a $9488.3 $69297.7 7.3 $39295.7 4.1
us-west-1b $9495.9 $71441.0 7.5 $45145.4 4.8
us-west-2a $9656.2 $53974.6 5.6 $57353.5 5.9
us-west-2b $15168.3 $102984.0 6.8 $56986.2 3.8
us-west-2c $14772.9 $85521.3 5.8 $57579.0 3.9

Table 1: Comparison of DRAFTS Uncertainty Risk to the On-demand cost for all backtested instances.

0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

1 10 19 28 37 46 55 64 73 82 91 100

$
U

S
/

h
o

u
r

Instance Invocation Number

Figure 4: DRAFTS Maximum Bids, p=0.95, 100 experi-
mental instance launches of type c4.large in the us-east-1
Region, November 15 through November 22, 2015.

seconds and a standard deviation of 687 seconds.
Figure 4 shows a time series of DRAFTS maximum

bids recorded for the week between November 15 and
November 22, 2015, for the c4.large instance type in the
us-east-1 Region. In the figure, the x-axis shows the in-
stance launch number and the y-axis depicts the value,
in U.S. dollars, of the DRAFTS-determined maximum
bid. We chose this Region and instance type believing
that the generally low hourly price in the Spot tier would
induce variability due to its popularity. However all 100
instances completed successfully (i.e. were not termi-
nated due to price). Backtesting this combination along
with the AZ selection methodology revealed that at the
0.95 target probability level, DRAFTS predictions often
exhibited a success fraction greater than 0.99 making it
plausible that a test consisting of 100 instance launches
would contain no failures.

In Figure 5 we show similar results for a second exper-
iment where backtesting showed that DRAFTS would
be less conservative at the 0.95 level. In this experi-
ment, we used the same scripted experimental methodol-
ogy to launch c3.2xlarge instances in the us-west-1 Re-
gion. This experiment recorded 4 failures over the course
of the week (instance invocation numbers 69 through 72
shown in dark red in the figure), which is consistent with
the target success probability of 0.95 we had chosen.
Further, the four failures occurred “back-to-back” further
lending credence to the assumption that the failure per-

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 10 19 28 37 46 55 64 73 82 91 100

$
U

S
/

h
o

u
r

Instance Invocation Number

Figure 5: DRAFTS Maximum Bids, p=0.95, 100 exper-
imental instance launches of type c3.2xlarge in the us-
west-1 Region, January 7 through January 14, 2016.

centage shown in Figure 1 is due to autocorrelation in
the price data. Finally, the third failure of the four was
not a price termination but rather a failure of the instance
to launch due to the bid being below the current market
price.

5.4 Application-Driven Experiments

As another test of DRAFTS efficacy we integrated it
with a for-fee “Software-as-a-Service” for genome anal-
ysis [16, 15]. This service is used by more than 300
researchers and has consumed more than half a million
Amazon instance hours over the past year. The service
enables users to define and execute workflows composed
of various genome analysis applications. Executed work-
flows are decomposed into individual jobs, which are
then queued for execution. The service implementation
includes a provisioner that monitors the job queue and
provisions instances in the Spot tier to execute individ-
ual applications [6]. While the service exploits compu-
tational profiles – descriptions of the requirements of a
particular application (e.g., CPU and memory require-
ments) – to select suitable instance types [7] this infor-
mation (which includes an execution time estimate) is
not used in the generation of a bid. Indeed, before the
work described herein, the developers of this service had
no reliable way to use the execution times to influence
their bid determinations.

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

M
ax

im
u

m
 S

p
o

t-
ti

e
r

B
id

 (
U

.S
. d

o
lla

rs
)

Instance Duration (hours)

Figure 6: Bid-duration relationship, in the us-east-1a AZ
for the c3.4xlarge instance type at 10:16 AM PDT on
April 18, 2016.

Instance Type Core Count (vCPU)
c3.2xlarge 8
c3.4xlarge 16
c3.8xlarge 32
g2.2xlarge 8
g2.8xlarge 32
m3.2xlarge 8
r3.2xlarge 8
r3.4xlarge 16
r3.8xlarge 32

Table 2: Instance types considered by the genomics pro-
visioner in the us-east-1 Region.

When the work that is assigned to an instance finishes,
the provisioner either terminates the instance or assigns
new work to it. However it makes this decision shortly
before the instance hour finishes. The instances used by
this service are “Linux/UNIX (Amazon VPC)” which are
priced separately from the standard “Linux/UNIX” vari-
ety we tested in the previous experiments. Because we
had not used the “Linux/UNIX (Amazon VPC)” product
type in the development of DRAFTS we believe it to be
a useful test of the method’s wider applicability.

To test DRAFTS with the genome analysis service, its
provisioner was altered to use the DRAFTS service (cf.
Section 4) to fetch the DRAFTS graph for each instance
type under consideration in the us-east-1 region. For
example, Figure 6 shows the relationship between pre-
dicted duration until an instance will be terminated due
to market price (on the x-axis) and DRAFTS-predicted
maximum bid cost in U.S. dollars (on the y-axis) for the
c3.4xlarge instance type in the us-east-1a AZ and the
“Linux/UNIX (Amazon VPC)” product. The units along
the x-axis are hours. Using this graph (which is also sup-
plied in a machine-readable format) a client of this ser-
vice can determine what maximum bid to use to ensure a
specific instance duration.

The genome analysis service is preconfigured to use
only a subset of instance types – those that are suitable
for executing a broad range of applications required by
its users. Table 2 shows the subset of instance types
used in the us-east-1 Region. Also, somewhat curiously,
Amazon reports five AZs in us-east-1 as being available

for instance launches when the product type is “Linux/U-
NIX (Amazon VPC)”. Recall that for not VPC instance
types, only four AZs are available (cf. Subsection 5.1).
Further, we mapped the AZ names visible to the software
service account responsible for making Spot tier requests
to the AZ names visible to the DRAFTS system.

The provisioning mechanism chooses which instance
type to use based on application requirements. All of the
instance types in the restricted set support 8, 16, or 32
cores (or “virtual CPUs” which is abbreviated as vCPU
in the Amazon documentation). When an application is
executed as part of a workflow, the application is mapped
to a specific core count necessary for execution. The
service chooses from among all instance types that can
support the request and selects the AZ and instance type
with the lowest current market price. Without DRAFTS
predictions the provisioner uses a static maximum bid
value (in this case 80% of the On-demand price for that
instance type) in its Spot tier request.

We employ a representative workload to evaluate the
use of DRAFTS in a real-world setting. The workload
is derived from recording execution traces of five sepa-
rate instances of the genome analysis service. To ensure
a diverse workload we selected the busiest day from each
instance of the service. Each job’s submission time, ex-
ecution time, and instance requirements (e.g., required
number of CPUs and estimated duration) are included in
the workload. The workload includes 8452 jobs over a
24-hour period. In order to reduce the execution time
and cost of running experiments on a commercial cloud
we have reduced the workload to include only the first
1000 jobs in this test. This represents a 3 hour and
20 minute period of submissions, for a total of approx-
imately 8 hours of execution. To enable the workload to
be “replayed” in the Spot tier at different times, we have
transformed the submission time of each job into a rela-
tive submission time offset by the time of the day the job
was submitted.

DRAFTS assumes that its users can specify the du-
ration for which the probabilistic guarantee is required.
Rather than changing the workflow scheduling algorithm
(which does not take into account execution time) to in-
clude estimated instance durations, we simply assumed
that the instance would be needed for no more than one
hour when it was launched. Indeed, observing previ-
ous executions of the service for different user work-
loads shows that many of the instances are terminated
after only a single hour by the provisioner. Technically,
the DRAFTS predictions should only be valid for these
one-hour instances; however, we also tested whether the
one-hour maximum bid would remain “good” for those
instances that exceeded one hour in duration (the longest
running job has a duration of approximately 8 hours).
The results of this test are not substantially different from

10

the results we present here. As part of our future work we
plan to consider how to make use of estimates of future
instance lifetime.

To use DRAFTS to select which instance type and
AZ, we experimented with two different approaches.
The first computed the DRAFTS bid required to assure a
duration of one hour with probability 0.99 for each can-
didate instance type and AZ and selected the one with
the smallest maximum bid. The second used the av-
erage price since the last observed change point in the
price series for each instance type and AZ combination.
It then selected the lowest average price (but used the
DRAFTS-determined maximum bid for that selection).

Table 3 compares the results of one replay experiment
to complete the workload which took place on Febru-
ary 28 and 29, 2016 using two different DRAFTS meth-
ods for selecting and pricing instances. The entire ap-

Method Cost Uncertainty Risk
Original $106.10 $70.88
DRAFTS Bid $91.78 $6.82
DRAFTS Avg. $92.37 $7.38

Table 3: Comparison of Original Spot tier usage to two
different DRAFTS methods for selecting and pricing in-
stances, February 28 and 29, 2016.

plication run consisted of 366 instance requests to the
Spot tier. Using the service’s original bid determina-
tion method (80% of the On-demand price) all 366 in-
stances would have completed without being terminated
by Amazon. The first row of the table shows the overall
cost for all instances that the original method incurred,
and the total uncertainty risk associated with its bidding
strategy. The risk is computed as the difference between
the maximum bid and the actual price paid for each in-
stance. In the second row, we show the values the exper-
iment generated when it used the lowest DRAFTS bid
to select each AZ-instance type combination (this exper-
iment used DRAFTS to determine the bid in for each in-
stance). Finally, the third row shows the result that would
have resulted from using the lowest average price instead
of the lowest DRAFTS bid as the selector.

This example further supports our belief that
DRAFTS is capable of implementing probabilistic guar-
antees of duration in the Spot tier. All instances launched
with a DRAFTS-determined maximum completed suc-
cessfully. With a success probability of 0.99 and the
conservative nature of DRAFTS predictions, these re-
sults are consistent with the previous experiments. Sec-
ondarily, in this example, DRAFTS would have both re-
duced the overall cost and the financial risk. Indeed, the
risk is so low that it indicates the DRAFTS bids for the
specific instance types and AZs in this experiment were
much tighter than for the overall population of Region,

AZ, and instance type combinations (cf. Table 1).

6 Related Work

In [11, 20, 22] the authors examine the question of using
“live migration” and checkpointing to avoid downtime
when a web service is hosted in the Spot tier. Using
nested hypervisors, they describe a scheduler that can
migrate a running web service between Spot instances
and to do so without incurring an outage, their scheduler
must predict when a Spot instance will be terminated in
the future. They suggest both a reactive strategy that sets
the maximum bid price to that of the On-demand price
and performs a migration when the Spot price nears the
bid. They also investigate a proactive strategy that uses a
constant factor (greater than 1.0) to set the maximum bid
price.

Our work complements this approach in that it at-
tempts to provide a way to determine the probability and
duration until a termination may happen. The authors
show that combining On-demand and Spot instances
lowers the cost associated with hosting a long-running
web service. Our work can be used to augment the proac-
tive approach they describe.

The work described in [10] postulates the use of Paxos
(a distributed consensus algorithm) to manage replicated
application state across Spot instances. It then attempts
to solve a cost minimization problem that is based on a
Markovian state model. The authors estimate transition
probabilities directly from the Spot price histories.

Our work differs from this work in several ways. First,
we focus exclusively on predicting the time until Spot
instance termination as a function of the probability tar-
get provided to the DRAFTS method. Using the time
series bound predictor our technique also takes into ac-
count the effects of autocorrelation in each Spot price
history. However, because it provides a bound on du-
ration, it may be possible to use DRAFTS as a method
of estimating the Spot instance failure probabilities that
their methodology requires.

The authors of [24] describe a neural-network based
approach to predicting prices in the Spot tier. Their ap-
proach (based on a mixture of Gaussians and a Box-
Jenkins time series methodology) generates one-step
ahead predictions (with a granularity of 1.3 hours) for the
spot market that are quite accurate. However they point
out that predicting the market for longer time frames
should be encouraged as future research. DRAFTS con-
stitutes such research in that it combines time series pre-
dictions of the bounds on price (for the next 5 minute
interval) with a duration prediction essentially providing
predictive bounds for arbitrary durations into the future.
The length of the prediction interval is determined by the
probability of the bounds being too high.

11

In [12] and [13] the authors hypothesize a paramet-
ric model for price histories (based on exponentials) that
they fit using Expectation-maximization (E-M). They
also restrict their investigation to a few of the popular
instance types available at the time. Our work is differ-
ent in that our method is non-parametric and adaptive.
Because DRAFTS does not require the complete distri-
bution for each price history, it does not require the so-
lution to a non-linear optimization problem (e.g. the use
of the E-M algorithm). It can also be implemented using
an incremental state update making it efficient enough
for use in an on-line forecasting context. Further, it in-
cludes both change-point detection and autocorrelation
compensation features that this previous work does not
include in their parametric approach.

In [23] Tang et al. propose an optimal bidding strat-
egy for instances in the Spot tier. Their approach uses a
Constrained Markov Decision Process to minimize the
expected cost of an instance, taking into account its
checkpointing and restart delays. Our work differs from
this work in several ways. First, DRAFTS is focused
on equivocating the reliability guarantees available from
Amazon instance services classes (e.g. On-demand) that
carry a reliability SLA with the durability that users can
obtain from the Spot tier. It is not a method for determin-
ing a bidding strategy that minimizes expected instance
cost. Also, the breadth of our study is wider in terms
of the time period we observe and the combinations of
Region, AZ, and instance type we test in our verification
process. Finally, DRAFTS generates a single maximum
bid prediction for a given instance. The Tang methodol-
ogy returns a probablistic strategy that is used to choose
(randomly) between competing deterministic strategies.

Finally, the authors of [2] investigate, at some length,
the market dynamics associated with the Amazon Spot
tier. Their hypothesis is that pricing in the Spot tier is
not driven solely by client demand (i.e. Amazon intro-
duces hidden externalities that affect pricing). We concur
with the analysis presented in [2], motivating us to turn
to the time series mechanism described previously as an
efficient adaptive technique. Again, DRAFTS is only
providing a statistical bound predicted price and, thus,
need not recover the “true”’ underlying market dynamic
completely. The efficiency of the method combined with
its non-parametric nature makes it possible to adapt to
any introduced externalities “fast enough” to make on-
line prediction possible.

7 Conclusions and Future Work

Our goal in developing DRAFTS has been to determine
the extent to which it is possible to use on-line statistical
forecasting to generate a probabilistic guarantee of in-
stance durability when a cloud offers dynamically priced

“spot” resources. To this end, we have developed an im-
plementation of a system for predicting the bid value that
will ensure a specified level of durability with a specified
probability.

To verify the overall methodology, which is based
on non-parametric forecasting of univariate time series
bounds, as well as to investigate the practical feasibil-
ity of our approach, we have conducted a number of ex-
periments with the Amazon Spot tier. Our results com-
bine extensive “backtesting” of previous price histories,
empirical tests that launch instances in the Spot tier and
record the outcomes, and an analysis of the “real world”
service usage of the Spot tier in terms of instance dura-
bility and costs. These results indicate that DRAFTS is
able to provide a probabilistic guarantee of durability in
the Amazon Spot tier for large probabilities up to 0.99.
This probabilistic guarantee compares favorably to the
guarantee offered by Amazon for its more expensive On-
demand tier of service where a durability SLA is avail-
able.

Our future work will examine the degree to which
DRAFTS can be applied to other public cloud platforms
(e.g. Preemptable Virtual Machines in Google Compute
Engine). We also plan to analyze the degree to which the
availability of DRAFTS predictions may affect the mar-
ket they are serving. It is clear that widespread use of
DRAFTS (if it were to occur) would change the pricing
dynamics of the Amazon Spot tier. We wish to under-
stand both whether the predictive capability is degraded
if many market participants were to use DRAFTS to
determine their bids and also whether the market, as a
whole, will appear more or less stable than it is cur-
rently. Finally, we plan an on-line service for implement-
ing DRAFTS as a free service offering. We have experi-
mented with several implementation strategies that could
turn our current prototype into a generally applicable ser-
vice and believe that it is now possible to do so.

12

References
[1] AGMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER,

A., AND TSAFRIR, D. Deconstructing Amazon EC2 spot in-
stance pricing. ACM Transactions on Economics and Computa-
tion 1, 3 (2013), 16.

[2] AGMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER,
A., AND TSAFRIR, D. Deconstructing amazon ec2 spot instance
pricing. ACM Transactions on Economics and Computation 1, 3
(2013), 16.

[3] AMAZON WEB SERVICES. Amazon ec2 service level agreement,
2016. https://aws.amazon.com/ec2/sla/ accessed August
2016.

[4] AMAZON WEB SERVICES. Amazon ec2 spot instances, 2016.
http://aws.amazon.com/ec2/purchasing-options/

spot-instances/ accessed April 2016.

[5] AMAZON WEB SERVICES. Elastic compute cloud, 2016.
https://aws.amazon.com/ec2/ accessed April 2016.

[6] CHARD, R., CHARD, K., BUBENDORFER, K., LACINSKI, L.,
MADDURI, R., AND FOSTER, I. Cost-aware cloud provisioning.
In Proceedings of the 11th IEEE International Conference on e-
Science (Aug 2015), pp. 136–144.

[7] CHARD, R., CHARD, K., NG, B., BUBENDORFER, K., RO-
DRIGUEZ, A., MADDURI, R., AND FOSTER, I. An automated
tool profiling service for the cloud. In Proceedings of the 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid) (May 2016), pp. 223–232.

[8] FIELDING, R. T., AND TAYLOR, R. N. Principled design of the
modern web architecture. ACM Transactions on Internet Tech-
nology (TOIT) 2, 2 (2002), 115–150.

[9] GOOGLE CLOUD PLATFORM. Google preemptable vir-
tual machines, 2016. https://cloud.google.com/

preemptible-vms/ accessed April 2016.

[10] GUO, W., CHEN, K., WU, Y., AND ZHENG, W. Bidding for
highly available services with low price in spot instance market.
In Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing (2015), ACM,
pp. 191–202.

[11] HE, X., SHENOY, P., SITARAMAN, R., AND IRWIN, D. Cut-
ting the cost of hosting online services using cloud spot markets.
In Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing (2015), ACM.

[12] JAVADI, B., THULASIRAM, R. K., AND BUYYA, R. Statistical
modeling of spot instance prices in public cloud environments. In
Utility and Cloud Computing (UCC), 2011 Fourth IEEE Interna-
tional Conference on (2011), IEEE, pp. 219–228.

[13] JAVADI, B., THULASIRAM, R. K., AND BUYYA, R. Character-
izing spot price dynamics in public cloud environments. Future
Generation Computer Systems 29, 4 (2013), 988–999.

[14] KAMIŃSKI, B., AND SZUFEL, P. On optimization of simula-
tion execution on amazon ec2 spot market. Simulation Modelling
Practice and Theory 58 (2015), 172–187.

[15] MADDURI, R., CHARD, K., CHARD, R., LACINSKI, L., RO-
DRIGUEZ, A., SULAKHE, D., KELLY, D., DAVE, U., AND FOS-
TER, I. The globus galaxies platform: delivering science gate-
ways as a service. Concurrency and Computation: Practice and
Experience 27, 16 (2015), 4344–4360. CPE-15-0040.

[16] MADDURI, R. K., SULAKHE, D., LACINSKI, L., LIU, B., RO-
DRIGUEZ, A., CHARD, K., DAVE, U. J., AND FOSTER, I. T.
Experiences building globus genomics: a next-generation se-
quencing analysis service using galaxy, globus, and amazon web
services. Concurrency and Computation: Practice and Experi-
ence 26, 13 (2014), 2266–2279. CPE-13-0338.R2.

[17] NURMI, D., BREVIK, J., AND WOLSKI, R. Modeling Machine
Availability in Enterprise and Wide-area Distributed Computing
Environments. In Proceedings of Europar 2005 (2005).

[18] NURMI, D., BREVIK, J., AND WOLSKI, R. Qbets: Queue
bounds estimation from time series. In Job Scheduling Strate-
gies for Parallel Processing (2008), Springer, pp. 76–101.

[19] NURMI, D., WOLSKI, R., AND BREVIK, J. Probabilistic ad-
vanced reservations for batch-scheduled parallel machines. In
Proceedings of the 13th ACM SIGPLAN symposium on principles
and practice of parallel programming (2008), ACM, pp. 289–
290.

[20] SHARMA, P., LEE, S., GUO, T., IRWIN, D., AND SHENOY, P.
Spotcheck: Designing a derivative iaas cloud on the spot market.
In Proceedings of the Tenth European Conference on Computer
Systems (2015), ACM, p. 16.

[21] SONG, Y., ZAFER, M., AND LEE, K.-W. Optimal bidding in
spot instance market. In INFOCOM, 2012 Proceedings IEEE
(2012), IEEE, pp. 190–198.

[22] SUBRAMANYA, S., GUO, T., SHARMA, P., IRWIN, D., AND
SHENOY, P. Spoton: a batch computing service for the spot mar-
ket. In Proceedings of the Sixth ACM Symposium on Cloud Com-
puting (2015), ACM, pp. 329–341.

[23] TANG, S., YUAN, J., AND LI, X.-Y. Towards optimal bidding
strategy for amazon ec2 cloud spot instance. In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on (2012),
IEEE, pp. 91–98.

[24] WALLACE, R. M., TURCHENKO, V., SHEIKHALISHAHI, M.,
TURCHENKO, I., SHULTS, V., VAZQUEZ-POLETTI, J. L., AND
GRANDINETTI, L. Applications of neural-based spot market pre-
diction for cloud computing. In Intelligent Data Acquisition and
Advanced Computing Systems (IDAACS), 2013 IEEE 7th Inter-
national Conference on (2013), vol. 2, IEEE, pp. 710–716.

[25] ZAFER, M., SONG, Y., AND LEE, K.-W. Optimal bids for spot
vms in a cloud for deadline constrained jobs. In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on (2012),
IEEE, pp. 75–82.

[26] ZHENG, L., JOE-WONG, C., TAN, C. W., CHIANG, M., AND
WANG, X. How to bid the cloud. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communi-
cation (2015), ACM, pp. 71–84.

13

