
QPRED: Using Quantile Predictions to
Improve Power Usage for Private Clouds

UCSB Computer Science Technical Report 2014-06

Rich Wolski
Computer Science Department, University of

California, Santa Barbara
rich@cs.ucsb.edu

John Brevik
Department of Mathematics, California State

University, Long Beach
John.Brevik@csulb.edu

Abstract
In this paper we describe a new, efficient predictive schedul-
ing methodology for implementing computing infrastructure
power savings using private clouds. Our approach, termed
“QPRED,” estimates the quantiles on the distribution of fu-
ture machine usage so that unneeded machines may be pow-
ered down to save power. A cloud administrator sets a bound
on the probability that all available machines will be pow-
ered down when a cloud request arrives. This target prob-
ability is the basis of a Service Level Agreement between
the cloud administrator and all cloud users covering start-up
delay resulting from power savings. Our results, validated
using activity traces from several private clouds used in com-
mercial production, indicate that QPRED successfully re-
duces power consumption substantially while maintaining
the SLAs specified by the cloud administrator.

Categories and Subject Descriptors D.4.7 [Organization
and Design]: Distributed Systems

Keywords private cloud, load prediction, power optimiza-
tion

1. Introduction
Cloud computing, in the form of “Infrastructure as a Ser-
vice” (IaaS), has emerged as a new methodology for or-
ganizations to manage digital assets and the physical com-
puting infrastructure that hosts them. Public clouds, such as
Amazon’s AWS [17] and Google Cloud Platform [14], rent
virtual machines (VMs), network connectivity, and storage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Submission to SoCC ’14, October, 2014, Seattle, WA, USA.

via web services APIs over the Internet. Customers of pub-
lic clouds use an e-commerce-style interface to obtain these
rentals in a way that is fully automated and self-service.

On the other hand, private clouds built using technolo-
gies such as Eucalyptus [6, 21], OpenStack [22], and Cloud-
Stack [1] operate in private datacenters, each under the con-
trol of an organization’s Information Technology (IT) staff.
They offer the same automated self-service interfaces as
public clouds but to employees under a quota-controlled
charge-back accounting system rather than to billed cus-
tomers. Thus private clouds are a way of using e-commerce
technologies to automate and streamline IT management of
private datacenters through e-commerce-style self-service.

In this paper, we describe a scheduling methodology that
is designed to save electrical power in private cloud settings
using on-line, non-parametric predictions of future demand.
Private cloud operators must be able to offer Service Level
Agreements (SLAs) to their users so that these users can
reason about how applications will behave when they are
hosted, just as they do when these applications are run on
physical infrastructure. Our approach allows the cloud ad-
ministrator to make a probabilistic guarantee regarding the
impact that power saving will have on user experience.

Clouds, by their very nature, obscure the specific infras-
tructure characteristics from the infrastructure users in the
form of abstractions. Users reason about cloud use in terms
of SLAs associated with its abstractions and experience the
cloud in terms of delivered performance. Powering off idle
servers carries with it the potential for a user-perceived de-
lay during virtual machine (VM) start-up if a physical server
needs to be powered on before the VM can start. Deskside-
and laptop-class hardware can “hibernate,” thereby minimiz-
ing this delay, but full hibernation support is not available
for many commercial-grade servers. As a result, unused ma-
chines must be fully powered down to save power. With large
memories and disk subsystems, the power-up delay associ-
ated server class machines can be significant (tens of minutes
in some cases). Thus our methodology attempts to save as
much power as possible subject to a probabilistic SLA that

1



the cloud administrator sets with respect to the additional
power-up delay a user might experience which is advertised
to her or his users.

The key to our approach is the ability to make a conser-
vative prediction of an arbitrary quantile from the distribu-
tion of machines that will be needed a short time into the
future. Inspired by our earlier work with QBETS [19, 20]
to predict bounds on batch-queue delay, this work uses a
new fast, non-parametric prediction algorithm to estimate
quantile bounds from measurement samples over fixed time
epochs. Our methodology monitors cloud activity and uses
the quantile prediction to estimate how many “hot spares”
will be needed to host VMs that will be requested in the next
time epoch. All other machines in the cloud not in use are
then powered down.

The methodology is novel in that it does not rely on the
a priori assumption that the “random” quantities of interest
obey well-behaved and simple statistical distributions (e.g.,
that process lifetimes are exponentially distributed). Com-
parable approaches [8, 9] employ sophisticated statistical
models for queue wait times, workload, etc. based on distri-
butional assumptions that enable computational tractability.
In our experience [30, 31], in a sufficiently general private
cloud setting these simple models are insufficient to describe
the underlying distributions. As an alternative, our method
uses a computationally simple non-parametric technique to
estimate the statistical quantities that are necessary to make
a prediction of future demand with results that appear to be
comparable or better.

When a request to start a VM is initiated, the method-
ology first looks for a machine that is already powered up
to host the VM. If no such machine is available, the sched-
uler will delay the VM request pending the power up of a
dormant machine and the power-up time is experienced by
the user as additional start-up delay. The quantile estimate
allows the cloud administrator to set the maximum probabil-
ity that no machine will be powered up and ready when a
user request for service is initiated. The result is that the user
experience is perturbed by a predictable fraction of the to-
tal request population. That is, the probability of finding no
machine powered-up and available (defined by the quantile
the administrator chooses) determines the maximum frac-
tion of total user requests that will experience some form of
delay. We term these quantile-predicting schedulers QPRED
schedulers.

We validate the overall QPRED scheduling methodology
using Eucalyptus [6, 21], an open-source platform for im-
plementing private clouds in production datacenters. Euca-
lyptus allows the cloud administrator to partition the infras-
tructure resources into “Availability Zones” (AZs), each gov-
erned by a separate scheduler. The zones are then composed
into a scalable cloud using an eventually consistent [27]
data model that is shared among the schedulers. Our solu-
tion works at the AZ level (i.e., under the assumption that

each AZ is characterized by its own Service Level Agree-
ments) and is compatible with the performance and reliabil-
ity specifications for Eucalyptus zone schedulers. In well-
designed private clouds, AZs represent pools of equivalent
resources governed by a single set of Service Level Agree-
ments (SLAs). Thus while the cloud itself may be large, the
number of resources in a AZ is typically small to allow ad-
ministrators to configure a large number of different SLA
pools. In this study, the node counts are modest with respect
to overall cloud size but typical of production private cloud
deployments in terms of AZ size.

Eucalyptus is used commercially, and several of its com-
mercial customers have made traces of their respective work-
loads available (under the condition of anonymity) for the
purposes of evaluating our approach. Thus the results we
present herein depict effects that are observed from “real-
world” production private cloud settings. In addition to un-
derstanding the degree to which power management could
benefit this category of private cloud usage, we are also in-
terested in an algorithm that can be made to work “on-line”
as part of the resource scheduling implementation. QPRED
uses a short history of single-valued measurements (typi-
cally no more than 1000) that it must consult in sorted or-
der and an incrementally updated running calculation of the
average cloud request interarrival time. Thus its implemen-
tation can be made highly efficient with respect to computa-
tional and required memory state.

Our results indicate that the QPRED methodology can re-
sult in substantial power savings in the form of powered-off
node time while allowing the cloud administrator to ensure
that the impact on user experience is minimal. We explore
the boundaries of its capabilities, including the impact on
efficacy on variations in the time and power requirements
associated with powering on dormant machines.

Thus, while the problem of power management in data
centers has been extensively studied [2, 3, 8, 26, 32] our
work is the first to detail the efficacy of an efficient on-line
statistical prediction strategy using production commercial
private cloud workloads. It is unique in its use of an algo-
rithm that can be implemented with minimal computational
and storage requirements.

While our validation uses Eucalyptus only, we note that
many of the popular private cloud platforms such as Open-
Stack, CloudStack, vCloud Director [13], Nimbus [11] and
OpenNebula [16] share architectural characteristics with Eu-
calyptus, particularly with respect to zone scheduling. Thus
we believe that these results generalize to other private cloud
platforms as they are implemented today.

The remainder of this paper details QPRED scheduling,
outlines the experimental methodology we have used to val-
idate it, and investigates both the power savings and user
impact QPRED would have had in several production cloud
settings had it been available.

2



2. VM Scheduling and Power Consumption
Because private clouds must be able to manage workloads
scalably, their scheduling algorithms must be efficient. Eu-
calyptus, for example, only includes schedulers (Greedy and
Round-robin) that assign a VM to a node at the time the re-
quest for the VM arrives at the cloud from the user. Further,
because VM migration can require substantial intra-cloud
bandwidth, each scheduler makes only a single placement
decision for a VM at the beginning of a VM’s lifetime.

Using only the ability to power machines on and off,
the problem of optimizing power usage in this scheduling
scenario without denying access (i.e., turning away VM re-
quests when machines are available but powered down) can
be solved trivially: All machines are powered down until
they are needed to run a VM. When a VM request arrives at
the scheduler, the scheduler attempts to assign it to a node 1

that is already powered up. If no node is located, the sched-
uler chooses a node that is powered down, sends it a power-
up signal, and launches the VM on the node once it has been
successfully powered on. If the scheduler uses a “greedy”
strategy – one that “fills” nodes with incoming VM requests
before selecting a new node – this methodology is optimal
with respect to power consumption under the constraints that

• each VM is considered once
• the scheduler makes only one placement decision for

each VM at the time the VM start request arrives, and
• no additional information beyond what is needed to de-

termine the capacity required for each VM is provided.

The scheduling complexity of such schedulers is O(n ∗m)
for n VMs and m machines (each of m machines might need
to be considered for each of n VMs worst case). Because
n >> m in most cloud settings, we consider this to be O(n)
complexity.

Because this strategy waits to power up nodes until they
are needed, VMs that cannot be started until a node has
been fully powered on must also wait; this added delay
is experienced by users until their VMs become available
for use. Machine power-up times, particularly for server-
class machines, can be lengthy: Depending on the machine’s
configuration, it may require as much as 30 minutes to go
from a powered-off state to one in which a VM can be
started. Moreover, Eucalyptus makes heavy use of caching
and copy-on-write techniques to reduce VM launch times. A
cached 10-gigabyte VM can be launched in under a minute
if the local disks are server class. Thus a scheduling strategy
that tries to optimize power usage may also introduce VM
start-up overhead that is dramatic and may be unacceptable
for some applications or users.

1 We will use the terms “machine” and “node” interchangeably to refer to a
machine configured into a cloud that is running a hypervisor and can host a
VM that is started and terminated by a user making requests to the cloud.

We formulate the problem of moderating power con-
sumption in terms of a tradeoff between the probability that
a VM (and its user) will experience a start-up delay and
the power saved by having machines powered down. Well-
written cloud applications are typically prepared for varia-
tion in VM start-up delay as long as the delays occur rela-
tively infrequently. Thus our approach is to allow the cloud
administrator to set a maximum target probability for any
given VM to experience a start-up delay because a ma-
chine needs to be powered up. The scheduler must then keep
enough “extra” machines (“hot spares”) powered on so that
the probability that a VM start request will arrive while no
powered-on machines are available is at or below the target.
At the same time, the scheduler must maintain O(n) com-
plexity to avoid introducing unacceptable or unpredictable
overhead if the load scales.

Notice that this formulation of the scheduling problem
prioritizes user experience in the form of minimized VM
start-up delay over power savings. That is, we investigate
schedulers that are designed to implement a Service Level
Agreement (SLA) in terms of VM start-up times between
the cloud’s users and the cloud’s operators while at the same
time minimizing power usage subject to the SLA. This user-
centric approach based on SLAs is typical for private cloud
deployments.

Notice also that simply keeping a single or a fixed number
of hot spares may not provide enough additional powered-
on capacity if VM arrivals fill and exceed the capacity of
the spares before a new spare can be fully powered on. As
an example, suppose that the scheduler attempts to keep a
single hot spare available, that each node in a cloud can
host 8 single-core VMs, and that the machine power-up
delay is 600 seconds. If 16 single-core requests arrive in
a 600-second interval and there is only one hot spare, at
least one VM will experience a start-up delay. Further, the
cloud administrator cannot predict nor control the rate at
which VMs (and users) experience start-up delay with this
approach, making it difficult to provide a reliable SLA.

Thus, we investigate O(n) scheduling methods that make
a prediction of the number of additional machines that must
be powered on at any moment so that the maximum target
probability specified by the cloud administrator (i.e., the
SLA) for VM start-up delay will not be exceeded.

Scheduler Operation
Eucalyptus (in a way that is similar to other private clouds)
divides machines that are capable of hosting VMs into pools
(called “Availability Zones” Each Availability Zone (AZ) in
a particular Eucalyptus installation has its own VM sched-
uler (a Eucalyptus cloud may be configured with multiple
AZs).

When a VM start request arrives the scheduler makes a
placement decision only that determines the specific node
within the AZ that should host the VM. Eucalyptus does sup-
port VM migration, but only under the control of the cloud

3



administrator to keep user-induced migrations from causing
inter-VM communication to degrade due to migration traffic.
Further, if the machine hosting the scheduler fails, and if the
cloud is configured for highly available operation, a backup
scheduler will detect the failure and take over scheduling re-
sponsibilities for the AZ.

For Eucalyptus (and other well-designed cloud deploy-
ments) scheduling at the AZ level is important for two rea-
sons. First, the scheduling methodologies we investigate
must have internal state that is small and easily transferred
or reconstructed in the event that a scheduler failure occurs
(i.e., to support “hot” fail over of the scheduler. The sched-
uler state must be replicated on the hot spare and the network
load induced by this replication must be low.

Second, for private clouds, the AZ corresponds to a pool
of equivalent resources described by a single set of SLAs.
The cloud administrators configure different AZs according
to the performance and reliability SLAs that they wish to
expose to their users. For this reason, scheduling is imple-
mented at the AZ level (so that different AZs can have dif-
ferent utilization profiles).

Note that for the purpose of this study we have been
given log data corresponding to a single AZ in each case.
While clouds may be large, AZs are often modest in size,
since they represent different SLA partitions to the cloud
users and there may be many such partitions in a private
cloud. Eucalyptus is designed to support larger AZs than the
ones for which we have trace data (hence the emphasis on
efficient scheduling in its implementation). However, for the
commercial production private clouds we have been able to
observe, the AZ size, at present, is modest.

The Prediction Method
The goal is to use the information provided by the history
of node occupancy to predict the number of nodes that will
be required going forward and therefore the number of hot
spares to keep on hand. To this end, we poll the system at
regular intervals. To be sure, over a particular time interval
there will likely be points in time when there are fewer or
more nodes occupied; the number with which we will be
concerned is the maximum number of nodes simultaneously
occupied during the time interval.

In principle, the time-series information used for this in-
ference will consist of an (N+1)-by-(N+1) matrix of tran-
sition probabilities (for a cloud with N nodes) between all
possible numbers, including 0, of occupied nodes. This for-
mulation defines a large number of transition probabilities,
even for a modest-sized cloud, to estimate from a sample
of any reasonable size. (On the other hand, the majority of
the transitions are vanishingly improbable, as the transitions
themselves will tend to be small, provided that the sampling
interval is short enough, so the number of useful probabili-
ties to be estimated, while still substantial, is not extremely
large.)

In the data sets we have studied, the transition probabil-
ities are almost completely captured by the probabilities of
differences from one interval to the next. That is, for exam-
ple, given that there are 4 occupied nodes in one interval, the
probability of going to 6 at the next interval is very nearly
identical to the probability of going from 1 to 3 or 5 to 7. This
behavior allows us to use a much simpler time series, namely
that of the difference in the number of occupied nodes from
one time step to the next. This simplification, in fact, re-
moves the time-series character from the problem entirely:
If we would like to be, say, 95% certain that we will have
enough hot spares to handle the incoming jobs for the next
time interval, we need only look at some estimate (in the sta-
tistical sense) for the 0.95 quantile of the set of differences.
(In this work, for quantile inference, we simply use the per-
centile from the current measurement history although it is
possible to use confidence upper bound, easily calculated
from the order statistic via binomial means [19, 20], as a
conservative estimate if necessary.) As a simple example, if
we have inferred that this quantile is less than +2, this re-
flects the belief that there is at least a 95% probability that
the number of nodes required at the next time step will be no
more than two greater than the number needed in the current
time step. Thus, keeping two hot spares on hand will supply
us with the desired confidence of having enough resources
ready to handle incoming work without delay.

We implement the QPRED prediction methodology using
a doubly linked list and a red-black tree, each holding the
maximum difference in busy machines recorded over an
epoch. Figure 1 depicts these data structures graphically. At

diff	
   diff	
   diff	
   diff	
   diff	
   diff	
   diff	
   diff	
  

Red-­‐Black	
  
Tree	
  

diff	
   diff	
   diff	
   diff	
   diff	
   diff	
   diff	
   diff	
  

History	
  size	
  

youngest	
  oldest	
  

smallest	
   largest	
  

Figure 1. Data structures implementing QPRED. Doubly
linked list holds fixed history of maximum differences. Red-
black tree sorts current history of maximum differences.

the end of each epoch, the latest (youngest) difference of
maxima (henceforth called simply the “difference”) is added
to one end of the linked list and the oldest difference is
removed. Similarly, the youngest difference is added to the
red-black tree (so that differences are kept sorted) and the
one that is removed is also deleted from the tree.

4



The history size (number of entries) is a fixed parameter
supplied during configuration of a predictor. The total time
covered by the history is the product of the number of entries
in the history size and the epoch length.

To compute a prediction of the qth quantile of the differ-
ences with a history size of H, the methodology extracts the
entry corresponding to the (1−q) ·H largest value in the red-
black tree. For example, if H = 100, and q = 0.95, then the
5th largest value in the red-black tree is the prediction of the
0.95 quantile of the current history of differences.

This implementation is simple and speed efficient. Each
addition and deletion to the linked list is constant time, the
addition and deletion of a value to the red-black tree is
O(log(H)), and the scan for the quantile takes (1− q) ·H
operations (if q < 0.5, and (1−q) ·H operations if q >= 0.5
since the sorted list can either be scanned from largest to
smallest or vice versa. The implementation is also space
efficient since only the current list of historical entries is
needed 2. Note that the original QBETS prediction method-
ology on which this method is based includes a change-point
detector that implements history trimming in the event that
conditions change suddenly. Such an enhancement is possi-
ble for QPRED at the cost of additional predictor state and
complexity. As our results indicate, however, for the current
state of the practice with production private clouds repre-
sented in the traces we have examined, the additional com-
plexity associated with change-point detection appears to be
unwarranted.

In addition, we wish to concern ourselves not with the
fraction of time intervals in which there is a delay but rather
the fraction of instances themselves that experience a time
delay at startup. Notice that if the VM interarrival times
are larger than the measurement time interval, there could
be many intervals in which the difference is zero. QPRED
would make correct quantile predictions for each interval,
but not necessarily for each VM start.

For example, consider a hypothetical situation in which
the interarrival time between VMs is five times larger than
the polling interval length. In four out of every five intervals,
the difference is zero because no VMs will attempt to start.
The SLA provided to the cloud user, however, describes the
probability that a VM will be delayed in each interval. Thus
we need to adjust the quantile to be a factor of five smaller
to account for the fraction of intervals that actually contain
VM starts.

In order to make this adjustment, we compare the mean
interarrival time between instances to the polling interval.
If the latter is greater, we reduce the targeted probability of
delay within a given time interval by the appropriate factor.
(We could certainly make an adjustment in the other direc-

2 The implementation actually maintains both the time-sorted linked list and
the value-sorted red-black tree to improve speed efficiency. However, for the
purposes of state exchange in the event of a fail-over, only the time-sorted
list is needed – the red-black tree is reconstructed.

tion if the polling time is greater than the interarrival time,
but we choose not to in order to keep our estimates conserva-
tive.) Returning to the example, suppose that the polling in-
terval is 1000 seconds but that the instance interarrival time
is 5000 seconds and that we want to maintain a probability
of less than 0.05 of startup delay. In this case, we only want
a delay once in every 20 · 5000 = 100000 seconds, so that
only a fraction of 0.01 of the intervals should see a delay.
Thus we infer for the 0.99 quantile on the difference set as
above.

In summary, suppose given a history of maximum occu-
pancy numbers, a historic mean interarrival time I, polling
interval t, and desired fraction α of jobs delayed at startup.
At the beginning of each time interval:

• Calculate the target fraction β = min
(
α, t

I ·α
)

of time
intervals experiencing a delay.

• Find a suitable upper bound M on the (1−β ) quantile for
the differences of the maximum occupancies.

• Adjust the number of hot spares so that there are a total
M machines powered on above the maximum number
occupied at any point in the previous time interval.

Note that the methodology adjusts the number of powered up
or down at the beginning of each time interval. If the number
of hot spares is inadequate during any interval, Eucalyptus
will immediately initiate the power-up of a machine, but the
VM requests that arrive before the machine is operational
will be delayed.

Scheduling Methodologies
In Section 3 we compare the performance of four differ-
ent scheduling methodologies. The performance of each
methodology is characterized by the fraction of total power
it uses, and the fraction of VMs that experience a start-up
delay. The methodologies are defined as follows.

• Power-greedy – This scheduler results in the optimal
power usage by a feasible implementation that considers
VMs in the order they arrive (an O(n) algorithm) without
regard for the number of VMs that will experience a
start-up delay. It uses a “greedy” selection strategy that
always chooses a node that is in use and has sufficient
capacity over one that is “empty” when making a VM
assignment decision. It also keep nodes powered off until
they are needed and powers them off immediately when
they become idle.

• QPRED-greedy – This scheduler makes greedy assign-
ment decisions like Power-greedy, but it uses the quantile
predictions to anticipate how many idle “hot spares” are
needed at any moment to ensure that the probability a
VM will be delayed falls below a target threshold.

• Power-RR – This algorithm is similar to Power-greedy
in that it considers VMs in arrival order and only makes a
single placement decision for each VM. However, instead

5



of attempting to keep nodes “empty” so that they can be
powered down, it uses a round-robin rule to assign VMs
to nodes that are powered up when each VM arrives.

• QPRED-RR – Like Power-RR, this scheduling algo-
rithm chooses among powered-up nodes when a VM ar-
rives and must be assigned to a node. However, it uses the
quantile predictions to anticipate the number of idle “hot
spares” need to be available to meet a target VM delay
probability threshold.

Earlier versions of Eucalyptus included a version of
Power-greedy that used the Ubuntu Power Nap [25] facil-
ity to allow machines to “sleep” until they were needed.
This version of the Eucalyptus VM scheduler sends a mes-
sage to each node instructing it to put itself to sleep when
ever that machine becomes idle. When the scheduler needs
to start a VM, it consults an internal record of node state
and selects a node that currently has the capacity to run the
VM and is also currently powered on. If no node is found,
it then considers nodes that are in the process of “waking
up” and chooses one that will have sufficient capacity once
it is fully power on. Finally, if no “on” or “waking” nodes
are located, it selects a node that is powered off, sends that
node a wake-on-lan message [28] thereby putting it in the
“waking” state, assigns the VM to the node, and waits until
the node is fully powered up before starting it and any other
VMs that are waiting. To keep VMs “packed” onto powered-
up nodes, Power-greedy gives the nodes an arbitrary order
and then always considers nodes in this order when making
a placement decision. Power-RR is an alternative to Power-
greedy that goes through each class of node (“on,” “waking,”
and “off” in round-robin order (i.e. the scheduler starts with
the next node in order when a new placement decision is
needed).

The QPRED schedulers predict a bound on the maximum
number of machines that will be required to start all VMs
in a fixed time epoch such that the probability of a VM in-
curring a power-up delay is no greater than a fixed target
probability supplied to the algorithm. QPRED-greedy uses
the same greedy approach to making placement decisions as
does Power-greedy, but it also attempts to power on enough
hot spares (based on the quantile prediction) to control the
probability that a future VM start will experience a start-
up delay. Thus, compared to Power-greedy, QPRED-greedy
trades additional speculative power usage for the ability to
provide a statistically valid SLA. Alternatively, QPRED-RR
is comparable to Power-RR except that it too uses the quan-
tile prediction to forecast the number of additional nodes that
must be powered up to meet a specific target SLA.

The difference between the greedy and round-robin ver-
sions of these schedulers is the degree to which the exploit
multi-tenancy. The greedy schedulers will attempt to use a
few machines as possible, thereby increasing the degree to
which VMs will share nodes. As a result, they are more
power-efficient than their round-robin counterparts; how-

ever, because of the greater potential sharing, VMs under
a greedy schedule may experience greater I/O interference.
Eucalyptus does not currently provide a way for the sched-
ulers to access VM-specific performance information, nor do
the schedulers “trust” the users to provide metrics that would
allow the schedulers to determine VM affinity. Instead, ad-
ministrators can use the round-robin scheduling disciplines
to minimize inter-VM interference. These round-robin ver-
sions are necessarily less power efficient than their greedy
counterparts.

Data Sets
We present data from four separate commercial private
clouds implemented using Eucalyptus 3. The commercial
entities operating these private clouds have allowed us to
monitor their respective installations over an extended pe-
riod and have agreed to have these results data made publicly
available in an anonymized form. All four clouds support the
commercial activity of their operators (they are not operated
for, e.g., evaluation or investigative purposes). Each data
set contains start and stop time stamps for VMs that were
launched and terminated in a Eucalyptus cloud, the name or
IP address of the node to which each VM was assigned by
the scheduler (either the Eucalyptus Greedy or Round-Robin
scheduler) that was in use when the dataset was generated,
and the number of CPU cores that each VM was given.

The first data set (DS1) is taken from an organization
with several large-scale software development efforts. While
the private cloud is used for some company-wide service
hosting, its primary use is to support software testing and
development. DS1 captures private cloud VM activity that
combines software development with service hosting, with
an emphasis on development.

The second data set (DS2) is taken from an IT organiza-
tion that “sells” time on a re-charge basis to other organiza-
tional units in its umbrella company. The accounting charges
translate to operating budget for the following fiscal year,
making the economic incentives similar to those driving a
public cloud. Thus the usage of this cloud is not known (i.e.,
the cloud does not have a specific purpose other than to host
the workloads of its paying customers). The function of the
umbrella company, however, makes it likely that much of the
activity is generated by software development.

The third data set (DS3) is taken from a private cloud
used to allow business partners to integrate their respective
software products with the products made by the company
operating the cloud. It also supports user and customer trials
of the company’s software products. Finally, these partners
often use the cloud for demonstration or sales purposes.
Thus the workload is a mixture of software development
with on-demand hosting activities.

3 We will make the data sets we have used in this study, in anonymized
form, at the web address given in [29] once [30] appears in print or if this
submission is accepted for presentation at SOCC.

6



Finally, the fourth data set (DS4) comes from a cloud
used exclusively for software development and testing at a
software start-up company that uses an Agile [23] engineer-
ing process. The Agile process makes heavy use of testing
during development so the workload in this data set repre-
sents a mixture of user-controlled VMs and VMs that are
launched and terminated by an automatic testing system.

Table 1 provides summary descriptions of the cloud de-
ployments from which we have gathered these data sets.

Each data set measures the workload from a single Euca-
lyptus Availability Zone. Our goal in using these data sets is
to measure workload across a spectrum of commercial ac-
tivity. However, note that each zone is relatively small and
is operated by a small IT staff. Also, we do not have mea-
surements of the size of the user pool accessing each cloud.
Thus the zone scale does not necessarily reflect the size of
the user community that generated the workload captured in
each data set.

All four data sets span several months of continuous
usage. During the monitoring periods, each of the hosting
organizations upgraded their respective Eucalyptus clouds,
in one case multiple times.

Experimental Methodology
The results presented in the Section 3 are generated from
a faster-than-real time simulator that is able to “replay”
each data set described in Table 1 using different scheduling
methodologies. The simulator is able to replay each dataset
as it was gathered (i.e. using the scheduling information
in the data set). It also implements the different schedul-
ing policies (both based on QPRED and otherwise), reports
machine statistics such as node utilization, core utilization,
power consumption, and the fraction of VMs that were re-
quired to wait for a node to power-up (also termed the “miss
fraction” since the VM “missed” having an available node
powered-on to start it). Because the results are simulated us-
ing datasets from machines that were not instrumented for
power usage when the datasets were gathered, power con-
sumption is reported as a fraction of the total power that
was used. That is, the simulator records the ratio of time
each node is powered-up using power-saving scheduler to
the time that all node were powered up. We explain this
method of measuring power consumption in greater detail in
the next section.

3. Results
We begin by detailing the tradeoff between overall power
usage and the probability that a VM’s start will be delayed
while a machine is powering up to host it. We compare
Power-greedy, QPRED-greedy, Power-RR, and QPRED-RR
in terms of both power usage and VM delay fraction. In what
follows, we will use the term “miss fraction” interchange-
ably with the term “VM delay fraction” because from the
perspective of a scheduler (particularly the predictive sched-

ulers) a VM that experiences a VM start-up delay is a “miss”
with respect to finding a machine powered on and ready to
accept the VM.

Power Usage and VM Delay Fraction
Table 2 compares the performance of these four schedulers
using the data set described in Subsection 2. Each bold-
faced number in the table denotes the fraction of maximal
power that the scheduling methodology used. That is, the
simulations compute the the total number of node-seconds
used for each data set as a hardware-independent measure
of the power that would have been consumed in the ab-
sence of power-aware scheduling. The boldfaced numbers
are the fraction of this maximal usage number for each data
set (thus, e.g., a lower fraction represents greater power sav-
ings).

The italicized numbers show the fraction of VMs that
incurred a delay as a result of having to wait for a machine
to reach a fully powered on state. For this experiment, we
used a power-on interval of 600 seconds, taken to represent
a typical amount of time it takes a server-class machine to
start up, and a target delay probability of 0.05 for the SLA
given to the user. Thus, when the predictor is accurate, the
total fraction of VMs experiencing a delay for either QPRED
method should be less than or equal to 0.05.

As an example, consider the results for DS3 in Table 2.
The boldfaced number in the second column (0.22) indi-
cates the fraction of total power used with all of the ma-
chines powered up for the duration of the trace that Power-
greedy scheduler would have used to complete the workload.
Put another way, Power-greedy (which is the most power-
efficient of the schedulers we examine) would use 22% of
the power that was used by the system when it executed the
workload originally, with all of its machines on and fully
powered. At the same time, Power-greedy for DS3 gener-
ates a miss fraction of 0.27 (italicized number in column 2),
indicating that 27% of the VMs would experience a start-up
delay. In sum, Power-greedy for DS3 would use just 22% of
the power that was used for the work load, but 27% of the
user requests would incur a delay while waiting for a ma-
chine to power up.

In the third column for DS3, we show the power fraction
(boldfaced) and VM delay fraction (italics) for QPRED-
greedy. These data indicate that QPRED-greedy would have
used 37% of the total power used originally, but only 2%
of the VMs would have been delayed waiting for a machine
to power up. Thus, QPRED-greedy would have used 15%
more power (relative to the maximum) than Power-greedy
while maintaining the 0.05 target probability (since 0.02 is
less than 0.05) specified in the SLA.

Finally, in the fourth and fifth columns of the row for
DS3, we show the results for Power-RR and QPRED-RR
respectively. Power-RR uses 41% of the original power, but
60% of the VMs experience a start-up delay. Meanwhile,
QPRED-RR uses 59% of the original power (18% more

7



Data Set Nodes Cores/Node Time Period Description
DS1 13 24 Aug. 2012 to Oct. 2012 Large company with

50,000 to 100,000 employees
DS2 7 12 Aug. 2012 to Apr. 2013 Medium sized company with

2,000 to 5,000 employees
DS3 7 8 Aug. 2012 to May 2013 Small company with

50 to 100 employees
DS4 12 8 May 2013 to Sep. 2013 Start-up company with

5 to 10 employees

Table 1. Summary of Private Cloud Dataset Characteristics

Data Set Power-greedy QPRED-greedy Power-RR QPRED-RR
DS1 0.56 0.08 0.62 0.02 0.92 0.06 0.87 0.00
DS2 0.33 0.45 0.51 0.05 0.76 0.20 0.83 0.01
DS3 0.22 0.27 0.37 0.02 0.41 0.60 0.59 0.02
DS4 0.35 0.46 0.56 0.04 0.43 0.67 0.67 0.01

Table 2. Comparison of Scheduler performance. Boldfaced numbers are fraction of maximal power. Italicized numbers are
fraction of VM’s delayed. QPRED target delay fraction is 0.05

that Power-RR relatively speaking) while respecting the 0.05
miss fraction specified in the SLA (0.02 < 0.05).

Predictor Efficacy
The data in Table 2 used an SLA with a target VM de-
lay probability of 0.05 for all experiments. As described in
Section 2, the predictor used in both QPRED schedulers at-
tempts to estimate the quantile of the distribution of the max-
imum number of nodes occupied during each time epoch
corresponding to this target probability. Thus for a target
probability of 0.05, the quantile estimator attempts to choose
the number of nodes that correspond to the 0.95 quantile of
the distribution of the maximum node occupancies across
epochs. From the table, the predictor is correct for a 0.05
VM delay probability since all of the observed delay frac-
tions are less than or equal to 0.05.

In Table 3 we show the VM delay fraction for QPRED-
greedy that results from parameterizing the predictor with
different target quantiles corresponding to different SLAs. In
each experiment, we use an epoch interval of 1000 seconds
and a power-up delay of 600 seconds (the same as for the
results in Table 2). In each column except the first we show
the fraction of original power usage in boldfaced type and
the miss fraction in italics for the target quantile q shown in
the first row. We underline the entries where the observed
VM delay fraction is greater than the target quantile (i.e. an
SLA violation) indicating that the predictor failed to achieve
a conservative bound.

As expected, the fraction of maximal power increases as
the target quantile decreases. That is, smaller the fraction of
VMs that can miss according to the SLA, the more power the
cloud must use to ensure that the SLA is met. For example,

for DS4, an SLA of 0.01 uses 65% of the original power. If
an SLA of 0.25 is chosen, the true miss fraction rises to 0.11
but the cloud uses only 45% of the original power. Thus the
price of a 0.01 SLA guarantee versus a 0.25 SLA guarantee
is 20% in terms of power usage for DS4.

For all target quantiles except q = 0.01 for DS2 the pre-
dictor’s bound on VM delay fraction holds, although it ap-
pears quite conservative in many cases (e.g. the VM delay
fraction for DS1 is 0.07 for a target of 0.25). The predictor
misses outright with a miss fraction of 0.03 for DS2 with a
target quantile of q = 0.01, however. This failure illustrates
the effect that autocorrelation in the interarrival time series
can have on our methodology. Specifically, the DS2 data set
contains periods of time when few VM starts occur and also
short intervals when a large number of VMs arrive. The pre-
diction methodology does not take this “burstiness” into ac-
count. Thus, when a burst of VMs occurs in the DS2 data
set, QPRED-greedy does not have enough machines ready
and idle to absorb the burst such that at most only 1% of the
VMs will experience a delay per the terms of the SLA.

Note that this effect increases with the length of the
machine spin-up delay. QPRED-greedy initiates a machine
spin-up whenever there is no powered-up machine capable
of starting the VM and there is no machine in the process of
powering-up that could start it once the power-up sequence
has completed. Thus, there are two types of “misses” with
respect to VM start-up delay.

• A Full Miss occurs when a VM start request arrives and
only machines that are fully powered off are available to
host it.

8



Data Set q=0.01 q=0.05 q=0.10 q=0.15 q=0.20 q=0.25
DS1 0.68 0.01 0.62 0.02 0.58 0.03 0.57 0.04 0.55 0.07 0.55 0.07
DS2 0.53 0.03 0.51 0.05 0.52 0.05 0.47 0.08 0.46 0.11 0.45 0.15
DS3 0.45 0.01 0.37 0.02 0.36 0.03 0.35 0.03 0.34 0.04 0.32 0.05
DS4 0.65 0.01 0.56 0.04 0.52 0.04 0.49 0.06 0.47 0.07 0.45 0.11

Table 3. Power usage fraction in boldface and VM delay fraction in italics for different target quantiles using QPRED-greedy.
Underlined fraction exceeds the target SLA.

• A Partial Miss occurs when a VM start request arrives,
there are no powered-up machines available to start the
VM, but a machine that is in its powering-up phase has
sufficient capacity to host the VM once it has completed
its start-up.

Notice that the longer the machine spin-up delay, the more
probable a VM will experience a partial miss. Indeed, in the
extreme, if the start-up delay were equal to the length of
time each data set covers, all VMs except the first to start
on each node would experience a partial miss and the VM
delay fraction would necessarily be 1.0 no matter what the
target quantile.

To investigate this effect further, Table 4 shows the VM
delay fractions using QPRED-greedy with a target quantile
of 0.05 and different machine spin-up delays. For this exper-
iment, we show the results for Power-greedy and vary the
spin-up delay from 60 seconds to 1800 seconds while keep-
ing the length of the time epoch and the history length both
at 1000 (as they were in the previous experiments) and the
target VM delay probability set at 0.05. The miss fractions
are shown in italics and fractions that exceed the target SLA
probability of 0.05 are underlined.

From this information, it is clear that miss fraction in-
creases with spin-up delay; however, the rate of increase is
slow. For example, the miss fraction goes from 0.02 when
the spin-up delay is 60 seconds to 0.04 when it is 1800 sec-
onds. Moreover, Power-greedy is able to meet the require-
ments of an SLA specifying 0.05 as the maximum fraction
of VMs to experience a spin-up delay in all but two cases.
For DS2, when the spin-up delay is either 900 seconds or
1800 seconds, Power-greedy generates a miss fraction of
0.06, which exceeds the target of 0.05 set for the SLA. It
is unclear whether this small violation is a result of time-
series effects or a mismatch between the time epoch of 1000
seconds and the spin-up delay.

Table 5 compares the average delay (measured in sec-
onds) experienced by those VMs that are delayed for Power-
greedy with those for QPRED-greedy. Note that these values
are not estimates of the expected value of the delay over the
entire data set. That is, they measure the average delay for
only those VMs that were delayed by each method. For ex-
ample, for DS4, Power-greedy resulted in 46% of the VMs
experiencing a delay (c.f. Table 2) and among those the av-
erage delay is 578 seconds. By contrast, QPRED-greedy de-

Data Set Power-greedy delay QPRED-greedy delay
DS1 541 563
DS2 557 417
DS3 556 516
DS4 578 571

Table 5. Average VM start-up delay generated by Power-
greedy and QPRED-greedy for target probability 0.05. The
units are seconds
layed only 3% of the VMs, and the average delay among
those was 571 seconds.

These results seem somewhat counterintuitive. Our ex-
pectation was that because QPRED-greedy was keeping ad-
ditional machines powered up, most of the misses would be
“full” misses and thus the average for QPRED-greedy would
be higher. Instead, a careful examination of the trace data
indicate that when QPRED-greedy experiences a full miss,
(i.e., it does not have enough hot spares provisioned) it is
more likely to be followed by a number of partial misses in
rapid succession.

In [3] and [9], the authors report that the savings ben-
efits gained by powering down machines when they are not
needed can be overshadowed by the use of additional “peak”
power during the spin up phase. When a machine is powered
on, it may use more power (e.g., to accelerate disks to oper-
ational speed) relative to its steady-state or idle-state usage.
The ratio of peak usage during start-up to steady-state us-
age varies by machine manufacturer and model as well as by
configuration (e.g., the number and type of disks attached).
The authors of both works note that the additional usage dur-
ing power-up can be as much as 60% more than steady-state.

In Table 6 we show the power savings for QPRED-greedy
over a range of peak-to-steady state ratios. For these exper-
iments, we use a target quantile of 0.05 and a spin-up delay
of 600 seconds. A ratio of 1.0 shows the case when there
is no difference between power consumption during spin-up
and steady-state. Thus column 2 of Table 6 (marked as 1.0)
corresponds to column 3 (marked as q= 0.05) of Table 3 dis-
cussed previously. Even if the spin-up cost were five times
steady-state, the additional power usage is no more than 1%
with a spin-up time of 600 seconds.

In Table 7 we repeat the same experiment with a spin-up
delay of 1800 seconds to determine the effect that a signifi-
cantly longer delay might have. These data indicate that with
a start-up delay as long as 1800 seconds, the additional over-

9



Data Set 60s 90s 120s 300s 600s 900s 1200s 1800s
DS1 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02
DS2 0.02 0.02 0.02 0.04 0.05 0.06 0.05 0.06
DS3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
DS4 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04

Table 4. VM miss fraction only QPRED-greedy and target quantile of 0.05 as a function of increasing VM spin-up delays
(first row, units are seconds). Underlined fractions exceed the target SLA probability.

Data Set 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
DS1 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62
DS2 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.52
DS3 0.37 0.37 0.37 0.38 0.38 0.38 0.38 0.38 0.38
DS4 0.55 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56

Table 6. VM power usage fraction for QPRED-greedy, target quantile of 0.05, and spin-up delay of 600 seconds as a function
of increasing peak power ratio during spin-up.

Data Set 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
DS1 0.62 0.62 0.62 0.62 0.63 0.63 0.63 0.63 0.64
DS2 0.51 0.51 0.51 0.51 0.51 0.52 0.52 0.52 0.52
DS3 0.39 0.39 0.39 0.40 0.40 0.40 0.41 0.41 0.41
DS4 0.57 0.57 0.58 0.58 0.58 0.59 0.59 0.60 0.60

Table 7. VM power usage fraction for QPRED-greedy, target quantile of 0.05, and spin-up delay of 1800 seconds as a function
of increasing peak power ratio during spin-up.

all usage caused by peak consumption during spin-up will be
no more than 3% compared to the theoretical case (i.e., a ra-
tio of 1.0) in which there is no difference between spin-up
and steady-state usage.

These results do not contradict the previously published
work in [3] and [9]. Rather, they indicate that with a tar-
get SLA quantile of 0.05 and production cloud workloads,
QPRED-greedy does not generate enough spin-up events for
a large peak-to-steady state ratio to have a substantial ef-
fect on power savings. For example, QPRED-greedy gen-
erates 252 power-up events for DS1 over the course of the
roughly 8 million seconds that the trace covers. With 13
nodes, if each power-up event corresponds to a 600 second
delay, the total time spent in power-up is 0.1% of the total
13∗8000000 = 104000000 node-seconds.

Finally, we show two different examples of the predic-
tions made by QPRED-greedy over the course of each trace.
Figure 2 shows the time series of predictions for DS1 using
QPRED-greedy and a target quantile of 0.05 for the SLA.
In this experiment, the spin-up delay was 600 seconds the
length of the time epoch was 1000 seconds, and the predictor
used a history length of 100 (as in the previous experiments).
The y-axis depicts the number of hot spares that the predic-
tor determined were required to meet the target VM delay
fraction of 0.05 specified in the SLA and the x-axis shows
the number of seconds since the beginning of the trace. This

0	
  

1	
  

2	
  

3	
  

4	
  

0.E+00	
  

1.E+06	
  

2.E+06	
  

3.E+06	
  

4.E+06	
  

5.E+06	
  

6.E+06	
  

7.E+06	
  

Predicted	
  Addi5onal	
  Nodes	
  for	
  DS1	
  

Time	
  (sec)	
  

N
od

e	
  
Co

un
t	
  

Figure 2. Time series of predictions made by QPRED-
greedy for DS1 with a target quantile of 0.05 for the SLA.
y-axis are predicted hot spares and x-axis is time from the
start of the trace in seconds.

figure indicates that for DS1 a simple strategy of maintaining
a single hot spare would likely have met the 0.05 SLA but
would have been even more conservative (i.e., would have
used more power) than QPRED-greedy: Note the periods of
time during which QPRED-greedy chose not to power up
a hot spare while achieving an overall miss fraction (from
Table 2) of 0.02.

10



Figure 3 shows the time series of predictions made by
QPRED-greedy for DS4 under the same experimental con-
ditions. Again, The y-axis depicts the number of hot spares

0	
  

1	
  

2	
  

3	
  

4	
  

0.E+00	
  

1.E+06	
  

2.E+06	
  

3.E+06	
  

4.E+06	
  

5.E+06	
  

6.E+06	
  

7.E+06	
  

8.E+06	
  

Predicted	
  Addi6onal	
  Nodes	
  for	
  DS4	
  

Time	
  (sec)	
  

N
od

e	
  
Co

un
t	
  

Figure 3. Time series of predictions made by QPRED-
greedy for DS4 with a target quantile of 0.05 for the SLA.
y-axis are predicted hot spares and x-axis is time from the
start of the trace in seconds.
that the predictor determined were required to meet the tar-
get VM delay fraction of 0.05 specified in the SLA and the
x-axis shows the number of seconds since the beginning of
the trace. In this example, a single hot spare over the lifetime
of the trace would not have met the 0.05 target probability
for the SLA: Note the substantial time periods during which
more than one additional machine was needed to achieve the
desired miss fraction.

4. Discussion
From the results we are able to make two assertions. First,
for real enterprise private cloud workloads, substantial power
savings are possible using simple scheduling algorithms and
the ability to power machines up and down dynamically.
Second, using an efficient non-parametric method for pre-
dicting quantiles on the distribution of future machine usage,
it is possible to achieve power savings while at the same time
meeting the requirements of a probabilistic SLA on the ad-
ditional delay user’s will experience when machines must be
powered up.

From an engineering perspective, these results are en-
couraging. The prediction methodology maintains relatively
little state (a sorted list of 1000 numbers in these experi-
ments) and the time necessary to make a prediction is con-
stant. Most Linux systems support some form of power-
down or hibernation through the ACPI interface [15] and an
automatic power-up capability via “wake-on-lan.” Thus im-
plementing this methodology should be straight-forward and
non-invasive for most private cloud platforms.

Also, the quantile provides a single tuning parameter that
can be used to control the tradeoff between power usage
and induced delay. Cloud administrators can set and revise

the target quantile to control observed miss fraction dynam-
ically. Even in the cases when the value of the quantile does
not match the observed miss fraction (say at a particular
point in time due to autocorrelation) a lower quantile will
correspond to a lower miss fraction and vice versa. We be-
lieve that this new type of control parameter will prove use-
ful to private cloud administrators.

From a user-experience perspective, the addition of power
savings via the QPRED schedulers is also relatively non-
invasive. For example, a 0.02 miss fraction achieved by
QPRED-greedy for DS3 (the fraction obtained for the 0.05
target quantile) corresponds to an average 7 delayed VMs
per month across all users. Thus, because the methodol-
ogy is not complex, uses ubiquitous Linux functionality, is
private-cloud neutral, and has little impact on user experi-
ence while at the same time saving power, we believe these
results should influence future cloud scheduler designs.

Finally, our results support the trend toward higher core
densities per machine as one that can reduce power con-
sumption in data centers substantially. In particular, the ef-
fects of any autocorrelation in the VM interarrival time series
is mitigated by higher core densities by a greedy scheduler.
When a number of VM requests arrive in a burst, more cores
allow a powered-on machine to absorb the burst more often,
thereby lowering the miss fraction. Indeed, for the only ex-
ample of where QPRED-greedy failed to achieve the SLA
terms in Table 3 (the 0.01 target probability for DS2) in-
creasing the core count to 32 in this cloud would have re-
sulted in a successful miss fraction of 0.01.

5. Related Work
Both because clouds aggregate usage and also because they
commoditize compute and storage capabilities, they are es-
pecially well-suited for the implementation of automatic
power optimization. In [9], [10], and [8] the authors discuss
the efficacy of various “sleep state’ formulations’ for data-
center-hosted processors. This work, like ours, involves the
application of Markov/time-series methods to the problem
of power management. In these papers the Markovian ap-
proach appears in service of an M/M/k queuing model. Our
work, which focuses on clouds rather than data centers, also
uses a Markov-based approach to workload but in a much
more direct way: we use a fast algorithm to make sample-
based estimates of confidence bounds on transition proba-
bilities (indeed with some further simplifying hypotheses).
While their use of time series is in some sense more so-
phisticated than ours, we have found that for our purposes
nonparametric and model-agnostic methods yield better re-
sults. For example, their work models arrivals as a Poisson
process (which has the advantage of making the solution of
an M/M/k queuing system computationally feasible) and
job lengths as exponetially distributed. In the production
workload data sets available to our study, however, arrivals
are not well modeled as a Poisson process so the use of an

11



M/M/k queuing model is not warranted; nor are job lengths
typically exponentially distributed [30, 31]. Additionally,
our work examines the SLA that a cloud must provide with
respect to VM start-up delay; their work (perhaps because
it focuses on workloads in data centers, where start-up de-
lay is not typically subject to an SLA) does not consider
start-up delay guarantees. Judging from the results reported
for the reactive scheduler (which appears to be similar to
Power-greedy described herein) our methodology is at least
competetive if not more efficient in some cases.

In [4] the authors formulate the problem in terms of multi-
dimensional optimization and then explore a set of heuristics
for improving power usage. Our work differs in several re-
spects. First, their approach uses measurements of VM ac-
tivity to determine migration policies. They then explore the
efficacy of their techniques using both a simulated workload
and simulated cloud environments. Our efforts focus on pre-
dictive enhancements that augment cloud schedulers used
in production today. Further, our investigation assumes no
knowledge of VM behavior, making the results applicable to
a wide range of private cloud settings.

In [18] the authors use a strategy for virtualizing the CPU
power states supported by most server-class CPUs to imple-
ment power scaling on a per VM basis. Our work shares the
goal of power optimization under the constraints of user-
facing SLAs with this approach and also the use of mea-
surement data gathered from engineered systems. However
it complements this approach by relying strictly on the cloud
scheduler and not the VMs themselves to implement power
management cloud wide. Our work is substantially less com-
plex in terms of apparatus necessary for implementation but
significantly less rich in the spectrum of SLAs that can be
supported.

The question of the effect that multiple VMs have on CPU
power consumption is investigated in [24]. Again, our work
is best construed as a complement to this work. Rather than
looking at power consumption in terms of the level of draw
that a CPU or machine requires, we view machines as either
“on” drawing some variable amount of power or “off” draw-
ing no power. It is certainly possible to optimize the power
utilization from the “on” machines that our methodology re-
quires.

The work in [32] investigates the power efficiency of
the same scheduling strategy that has been implemented
by Eucalyptus as the Power-greedy scheduler. In addition,
they explore the effects of additional “hot spares” (called
a “pool”) in this work. As described, our work prioritizes
user experience in the form of an SLA and uses an on-line
predictive methodology to predict how many hot spares are
needed. Because of the similarity in base-line schedulers
between OpenNebula [7] (the test platform for this work)
and Eucalyptus, however, our approach should be directly
applicable to their test environment.

In [12] and [5] the authors use a variety of statistical tech-
niques including time series analysis and clustering to pre-
dict VM workloads from a virtualized data center that is in-
tended to be used as a private cloud. Their study uses CPU
utilization data gathered from each VM across a history of
time intervals to predict aggregate load in the next time in-
terval. Our work is similar in that we too discretize time
into epochs and use time series of measurements to make
a prediction for each epoch immediately before it begins.
However, our methods uses measurements of overall cloud
load rather than an aggregation of VM CPU utilization. Fur-
ther, our approach predicts quantiles as a way of implement-
ing user-facing SLAs whereas their method generates point-
value predictions.

Finally, in [2] the authors propose to use economic char-
acteristics of popular private cloud infrastructures (Eucalyp-
tus and others). While private clouds may reach a scale for
which our approach is inappropriate, it is sufficient to sup-
port production cloud computing as it is practiced today in
the enterprise.

6. Conclusion and Future Work
This work shows that it is possible to use a simple, computa-
tionally efficient prediction methodology based on quantile
estimation to improve cloud power usage while also imple-
menting an SLA governing machine virtual machine start-
up delay. The methodology predicts a conservative bound
on the number of machines that must be powered on at any
moment to ensure that the probability of having to power
up a machine (i.e., a miss) is at or below the target set by
the cloud administrator. We illustrate the efficacy of the ap-
proach using VM activity traces gathered from four enter-
prise private clouds that were in production use at the time of
their instrumentation. Our results show that QPRED (which
is non-parametric and both computationally and space ef-
ficient) generates substantial power savings under settable
probabilistic constraints on the tradeoff between power sav-
ings and degraded user experience.

We plan to carry this work forward in two ways. First,
we will investigate ways in which the bounds (particularly
on miss fraction for higher quantiles) can be improved. The
current methodology, while correct, is quite conservative.
It should be possible to improve the power savings while
maintaining the accuracy of the predictions. Second, we
developed this methodology to work in conjunction with
Eucalyptus and other similar private cloud infrastructures
that make a single placement decision for each VM when
the VM starts. The current release of Eucalyptus includes
a VM migration facility that allows the administrator to
“evacuate” a target node so that it may be taken out of service
without a disruption experienced by the users. We plan to
investigate how quantile predictions can be used to optimize
this process.

12



References
[1] Apache Cloudstack. http://cloudstack.apache.org, 2013.

[2] R. Bahsoon. A framework for dynamic self-optimization of
power and dependability requirements in green cloud archi-
tectures. In Software Architecture, pages 510–514. Springer,
2010.

[3] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing. IEEE computer, 40(12):33–37, 2007.

[4] A. Beloglazov and R. Buyya. Energy efficient resource man-
agement in virtualized cloud data centers. In Proceedings of
the 2010 10th IEEE/ACM International Conference on Clus-
ter, Cloud and Grid Computing, pages 826–831. IEEE Com-
puter Society, 2010.

[5] R. Birke, L. Y. Chen, and E. Smirni. Data centers in the
cloud: A large scale performance study. In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, pages
336–343. IEEE, 2012.

[6] Eucalyptus Systems Inc. http://www.eucalyptus.com, 2013.

[7] J. Fontán, T. Vázquez, L. Gonzalez, R. S. Montero, and
I. Llorente. Opennebula: The open source virtual machine
manager for cluster computing. In Open Source Grid and
Cluster Software Conference, volume 86, 2008.

[8] A. Gandhi. Dynamic Server Provisioning for Data Center
Power Management. PhD thesis, Intel, 2013.

[9] A. Gandhi, M. Harchol-Balter, and I. Adan. Server farms
with setup costs. Performance Evaluation, 67(11):1123–1138,
2010.

[10] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A.
Kozuch. Distributed, robust auto-scaling policies for power
management in compute intensive server farms. In Open
Cirrus Summit (OCS), 2011 Sixth, pages 1–5. IEEE, 2011.

[11] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes. Sky
computing. Internet Computing, IEEE, 13(5):43–51, 2009.

[12] A. Khan, X. Yan, S. Tao, and N. Anerousis. Workload charac-
terization and prediction in the cloud: A multiple time series
approach. In Network Operations and Management Sympo-
sium (NOMS), 2012 IEEE, pages 1287–1294. IEEE, 2012.

[13] O. Krieger, P. McGachey, and A. Kanevsky. Enabling a mar-
ketplace of clouds: Vmware’s vcloud director. ACM SIGOPS
Operating Systems Review, 44(4):103–114, 2010.

[14] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm. What’s
inside the cloud? an architectural map of the cloud landscape.
In Proceedings of the 2009 ICSE Workshop on Software Engi-
neering Challenges of Cloud Computing, pages 23–31. IEEE
Computer Society, 2009.

[15] Linux ACPI. http://acpi.sourceforge.net/

documentation/, 2013.

[16] D. Milojičić, I. M. Llorente, and R. S. Montero. Opennebula:
A cloud management tool. Internet Computing, IEEE, 15(2):
11–14, 2011.

[17] J. Murty. Programming Amazon Web Services: S3, EC2, SQS,
FPS, and SimpleDB. O’Reilly Media, Inc., 2009.

[18] R. Nathuji and K. Schwan. Virtualpower: coordinated power
management in virtualized enterprise systems. ACM SIGOPS
Operating Systems Review, 41(6):265–278, 2007.

[19] D. Nurmi, J. Brevik, and R. Wolski. Qbets: Queue bounds
estimation from time series. In Job Scheduling Strategies for
Parallel Processing, pages 76–101. Springer, 2008.

[20] D. Nurmi, R. Wolski, and J. Brevik. Probabilistic advanced
reservations for batch-scheduled parallel machines. In Pro-
ceedings of the 13th ACM SIGPLAN symposium on principles
and practice of parallel programming, pages 289–290. ACM,
2008.

[21] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov. The eucalyptus open-source
cloud-computing system. In Cluster Computing and the Grid,
2009. CCGRID’09. 9th IEEE/ACM International Symposium
on, pages 124–131. IEEE, 2009.

[22] K. Pepple. Deploying OpenStack. O’Reilly, 2011.

[23] A. Software Development. http://en.wikipedia.org/

wiki/Agile_software_development, 2013.

[24] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consol-
idation for cloud computing. In Proceedings of the 2008 con-
ference on Power aware computing and systems, volume 10.
USENIX Association, 2008.

[25] Ubuntu power nap. http://manpages.ubuntu.com/

manpages/lucid/man8/powernap.8.html, 2013.

[26] H. N. Van, F. D. Tran, and J.-M. Menaud. Performance and
power management for cloud infrastructures. In Cloud Com-
puting (CLOUD), 2010 IEEE 3rd International Conference
on, pages 329–336. IEEE, 2010.

[27] W. Vogels. Eventually consistent. Communications of the
ACM, 52(1):40–44, 2009.

[28] wake-on lan. http://en.wikipedia.org/wiki/

Wake-on-LAN, 2013.

[29] R. Wolski and J. Brevik.
http://www.cs.ucsb.edu/ rich/workload, 2013.

[30] R. Wolski and J. Brevik. Using parametric models to repre-
sent private cloud workloads. IEEE Transactions on Service
Computing (to appear), PP(99), October 2013.

[31] R. Wolski and J. Brevik. Using parametric models
to represent private cloud workloads. Technical Re-
port 2013-05, University of California, Santa Barbara, Au-
gust 2013. http://128.111.41.26/research/tech_

reports/reports/2013-05.pdf.

[32] A. J. Younge, G. Von Laszewski, L. Wang, S. Lopez-Alarcon,
and W. Carithers. Efficient resource management for cloud
computing environments. In Green Computing Conference,
2010 International, pages 357–364. IEEE, 2010.

13


