
Abstract

Increasingly, the heterogeneity of devices and software that com-
prise the Internet of Things (IoT) is impeding innovation. IoT deploy-
ments amalgamate compute, storage, networking capabilities provi-
sioned at multiple resource scales, from low-cost, resource constrained
microcontollers to resource rich public cloud servers. To support these
different resource scales and capabilities, the operating systems (OSs)
that manage them have also diverged significantly. Because the OS
is the “API” for the hardware, this proliferation is causing a lack of
portability across devices and systems, complicating development, de-
ployment, management, and optimization of IoT applications.

To address these impediments, we investigate a new, “clean slate”
OS design and implementation that hides this heterogeneity via a new
set of abstractions specifically for supporting microservices as a uni-
versal application programming model in IoT contexts. The operating
system, called Ambience, supports IoT applications structured as mi-
croservices and facilitates their portability, isolation, and deployment
time optimization. We discuss the design and implementation of Am-
bience, evaluate its performance, and demonstrate its portability using
both microbenchmarks and end-to-end IoT deployments. Our results
shows that Ambience can scale down to 64MHz microcontrollers and
up to modern x86 64 servers, while providing similar or better per-
formance than comparable commodity operating systems on the same
range of hardware platforms.
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1 Introduction

Today, applications and systems that amalgamate heterogeneous, resource-
restricted, or embedded devices with traditional resource-rich compute re-
sources (e.g. cloud-hosted virtual servers) cannot use a single, “universal”
set of abstractions to execute on all hardware components. Specifically, in an
“Internet of Things” (IoT) context, resource-constrained, small scale devices
are programmed using special-purpose or embedded technologies [9, 33, 112,
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51, 97] that then must interoperate with services programmed using popu-
lar and productivity-enhancing cloud technologies [69, 73, 98]. Embedded
development often sacrifices the convenience and productivity enhancement
accruing to cloud development in favor of the ability to optimize comprehen-
sively throughout the software stack. Cloud technologies are too abstract
to support low-level system optimizations, and low-level and often bespoke
device programming technologies are too granular to support productive
and sustainable cloud applications. For IoT, this bifurcation of the system
software between high-level software stacks that enable rapid development
of scalable cloud services and highly-optimizable “bare bones” operating
systems targeting resource-constrained devices, creates reliability, maintain-
ability, security and scalability challenges.

Microservices are a popular architecture for building scalable, distributed
network services and applications [84]. The microservice architecture has
seen wide adoption, with numerous supporting infrastructure projects [3,
71, 87, 61]. Applications structured as microservices are composed of many
small and “simple” services (to promote code reuse and cohesion). Moreover,
separately developed services can interoperate successfully despite their in-
ternal use of widely varying software technologies when they interact via
well-defined, message-based interfaces. For these reasons, microservices are
typically hosted within separate isolation domains to improve fault isolation
and/or implement multi-layered trust and security policies. For uniformity,
service requests and responses between microservices are commonly imple-
mented using typed, Remote Procedure Call (RPC) interfaces [50, 8, 27]
and web-service frameworks or middleware [75, 90, 25].

Furthermore, since microservice design promotes the proliferation of
many different services in a single application, users and administrators
of these applications often employ container orchestration technologies to
implement and maintain application deployments [71, 41, 29]. Using these
frameworks, developers describe the end-state of a service-mesh deployment
using a declarative language, and the framework instantiates and maintains
it by creating new instances and decommissioning stale ones [22]. Thus,
while the microservice architecture depends upon the integration of het-
erogeneous software stacks, it also typically requires an additional runtime
framework for orchestrating isolation containers [35, 106, 28, 93, 31, 109] as
well.

Both the microservice software stacks associated with each individual
service, and the container management systems for orchestrating them, de-
pend on general purpose operating systems which are typically a Linux or
Windows variant. This dependence poses two challenges that are becoming
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increasingly difficult to overcome with respect to managing the proliferation
of technology heterogeneity in IoT settings. The first is that the plethora
of hardware platforms (e.g. embedded IoT devices, microcontrollers, spe-
cial purpose processors, edge computers, security co-processors, etc.) do not
support a common set of operating system abstractions, let alone a common
operating system, either among themselves or in common with commodity
servers. That is, while most commodity servers and virtualization environ-
ments support some form of Linux or Windows, neither of these general
purpose operating systems can be supported on all devices in a distributed
deployment that includes special purpose or embedded systems.

Cloud vendors have attempted to address part of this challenge by pro-
viding “serverless” computing support for IoT applications. Serverless, or
FaaS (Functions as a Service) microservices [13, 49, 32, 87] provide program-
ming environments which permit developers to write simple-event driven
service “handlers” that are then uploaded to a runtime service responsible
for deploying them automatically, dispatching service requests to them, and
scaling them up and down in response to offered service request load. FaaS
functionality was originally developed to support automatic scaling cloud-
hosted web services as a way of reducing hosting costs. For IoT, many of
the large cloud vendors have extended this FaaS functionality to include
service deployment “at the edge” – on a machine not part of the cloud, but
reachable from it via a network. AWS IoT Greengrass [12] for example,
allows developers to deploy transparently their AWS Lambda FaaS func-
tions to a Raspberry Pi or x86 single-board computer running outside of the
cloud. However, cloud providers have yet to extend the FaaS model to mi-
crocontrollers, possibly due to efficiency and security challenges associated
with doing so. Thus, even with FaaS technologies that require no direct
operating system interactions, the state-of-the-art is that the edge and the
cloud can be programmed with a uniform “Function-as-a-Service” model,
but microcontrollers must be programmed using different technologies (e.g.,
MQTT [82], FreeRTOS [43, 51], and IoT SDKs [14]). As a result, appli-
cations, even when adopting microservices in this context must correctly
compose an increasingly vast array of disparate protocols and separately-
developed technologies to achieve functionality.

The second challenge is that the cloud model of performance scaling
does not translate feasibly to an IoT context. While “scale out” – the ad-
dition of separate vitualized hosts to a cloud-hosted web service (e.g. via
a FaaS platform in response to increasing request load) – has proved eco-
nomical and effective in a cloud context [45, 81], it is less effective or infea-
sible for deployments that include heterogeneous collections of low-resource
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or resource-restricted devices and processors. When scale-out is infeasible,
the alternative is to “scale up” by migrating or co-hosting services within
larger, more resource-rich machines. For IoT, where geographic and siting
limitations make the resource deployment topology heterogeneous, it is of-
ten not possible to find or site a more resource-rich machine to effect scale
up. Further, even in relatively homogeneous cloud-hosted deployments, as
our results presented herein indicate, the generality of commodity oper-
ating systems introduces a per-node performance penalty when executing
microservices, thereby limiting the effectiveness of scaling up.

Our thesis is that for IoT applications to take advantage of cloud, edge
and device infrastructure and technologies, they require a new and unify-
ing software environment based on a common set of efficient abstractions
that can be implemented at all resource scales. Further, to take maximal
advantage of the technological success accruing to cloud computing, these
applications are best structured as microservices. We describe Ambience
– a new operating system specifically designed to support IoT applications
structured as microservices in heterogeneous distributed settings that include
device and resource capabilities spanning a range of resource scales 1. Am-
bience is not a general purpose operating system. Its single set of common
abstractions specifically supporting microservices across all resource scales,
providing event driven, scalable, efficient systems at cloud and edge scales,
while, at the same time satisfying the resource restrictions and requirements
of embedded IoT devices. Ambience is also not an amalgamation of pre-
existing technologies originally developed separately for cloud deployment
and embedded systems (respectively) and then adapted to support IoT. It
posits that the abstractions microservices require can be implemented as
“native” operating system abstractions and by doing so, can be made space
and performance efficient enough to be effective at all resource scales.

Thus, our research with Ambience postulates that it is possible to design
an operating system which is both efficient enough and high-level enough to
support microservices as a universal programming and deployment model.
It does so by defining optimizeable, high level collection of abstractions that
includes isolation groups, coroutine-based asynchrony, typed interfaces and
deployment specification, among others. These abstractions expose more
information that is specific to microservice implementation and deployment
than their general purpose operating system alternatives.

Ambience makes use of these abstractions not only to ease programming

1Ambience is available as open source from https://github.com/MAYHEM-Lab/

ambience
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across heterogeneous systems, but also to introspect and automatically spe-
cialize the microservices it hosts. Rather than a single kernel image shared
across all nodes of a deployment, Ambience generates individual kernel im-
ages, each specialized and optimized to run the microservices that are to
be hosted on a specific target node in a deployment. That is, Ambience
includes deployment information in the form of a “deployment manifest”
that it uses to generate optimized and customized operating system images
for each device or server targeted in a deployment.

We show that these optimization features allow Ambience to achieve
throughputs on the order of hundreds of thousands of requests per second
across isolation domains on a single x86 core. Furthermore, the same mi-
croservices can be transparently deployed on microcontrollers and single
board computers, x86 hypervisors (KVM [68], Firecracker [4] and Virtual-
Box [108]) with virtio [95] support, and embedded within Linux systems (to
facilitate incremental transition to Ambience), without modification.

Because Ambience is a complete system we, refine its exposition to an
enumeration of the design choices and features that differentiate it from
other research and commodity operating systems. These differentiating
characteristics include the following.

• Deployment-time determination of isolation boundaries – Ambience
delays the decision of how to implement isolation between microser-
vices until the services are deployed. In particular, microservices can
be conjoined within the same isolation domain without recoding while
avoiding unnecessary messaging overhead (cf. Subsection 3.2).

• Asynchronous Computational Model – The default computational model
for Ambience is stackless coroutines [62], although fibers [66] are also
supported. This choice (described in Subsection 3.5) combined with
single, queue-based Application Binary Interface (or ABI – described
in Subsection 3.4) make Ambience space and time efficient enough to
comprise all resource scales in an IoT deployment.

• Typed System Calls and Compile-time Optimization – Ambience re-
quires that applications make requests for operating service using typed
interfaces. It uses this information both to ensure system integrity and
to perform compile-time optimizations (cf. Subsection 3.7). In this
way, Ambience can comingle application code and operating system
code into a single, optimized system image (cf. Section 4).

• Automatic Network Overlay Generation – Because Ambience gener-
ates a set of system images for a single deployment of a microservice
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mesh, it can also automatically generate application-level message for-
warding services (cf. Subsection 3.12) and (using the mechanisms de-
scribe in Subsection 3.3) include these services in the kernel of each
system image.

• Capability-based Access Control – To implement end-to-end access con-
trol across a deployed service mesh, Ambience uses an enhanced ver-
sion of CAPlets [16] – an efficient capability system designed for mul-
tiscale distributed systems (cf. Subsection 3.13).

In addition to these design features, Ambience includes a number of auto-
mated code synthesis capabilities (e.g. it autogenerates and inserts RPC
code from cross-node communication) and optimization techniques (e.g. it
makes heavy use of zero-copy communication whenever possible). While
many of these features are inspired by features implemented in previous
systems (cf. Section 2), Ambience uniquely aggregates them into a single
operating system to create a common set of abstractions that can be imple-
mented across resource scales in an IoT deployment. This unification, com-
bined with secure network transparency, make novel research contributions
in the operating systems, distributed systems, and IoT research domains.

We demonstrate Ambience’s flexibility and portability empirically using
a distributed IoT application that implements wildlife tracking in remote
geographic areas using a combination of remotely sited devices, edge single-
board computers, and the cloud. We evaluate its performance through de-
tailed microbenchmarks. We also compare Ambience’s key characteristics
qualitatively both to Linux and and to Azure’s IoT platform [83] with re-
spect to IoT application development and deployment. In the sections that
follow, we contextualize these contributions in terms of previous and related
work and through an exposition of the Ambience abstractions, automated
optimizations, and deployment support.

2 Related Work

Microservice frameworks are typically designed to use Linux containers to
provide both isolation between conflicting software dependencies that in-
dividual service stacks may have and also runtime isolation for security
purposes [65, 89, 6, 99]. The proliferation of container images, runtime
configurations, and operational lifecycles among separately developed mi-
croservices (often within the same application) created the need for runtime
and orchestration technologies that automate provisioning, scheduling, and

7



deployment of microservices [3, 71, 72, 29]. Kubernetes [71] has received
wide-spread adoption from users and service providers alike. Kubernetes
requires developers to specify their entire deployment in declarative files
instead of manual provisioning. This makes the creation and migration
of entire multi-node clusters a trivial operation. Ambience integrates these
mechanisms at the operating system level and leverages a similar declarative
approach for deployment specification.

Serverless computing and Functions-as-a-Service (FaaS) constitute an al-
terative to deploying and managing microservices using cloud platforms [58,
18, 56, 87, 13]. FaaS platforms are cloud-hosted service venues that ac-
cept service request handlers and trigger them when specific requests are
forwaded to them via either a network facing request dispatcher or some
other cloud-based service. Because users of FaaS platforms only provide
handler code (and do not provision servers or other resources necessary to
dispatch and execute the hander code), the term FaaS is often synonymous
with the terms “serverless” or “serverless computing.” These FaaS or server-
less systems provide high availability, fault tolerance, dynamic elasticity via
automated, event-driven provisioning, containerized execution, and manage-
ment of the underlying infrastructure. Philosophically, Ambience shares the
view of microservices (implemented using FaaS) as an “omniplatform” for
IoT with [110] but it goes on to illustrate that miniaturizable FaaS function-
ality, by itself, is not sufficiently performant in terms of memory footprint
and execution efficiency. Also, the authors of [110] specify no model for
device I/O – a key feature in an IoT development context. The authors of
[61] exploit locality across serverless microservices to replace RPC with IPC
primitives to increase throughput and lower latency. The authors conclude
that there remain many individual overheads. By co-designing the entire
stack for deployment and performance, Ambience eliminates a significant
number of these overheads.

Ambience integrates abstractions (lightweight isolation, asynchronous
interfaces between trust domains, queues, groups, etc.) and tooling (deploy-
ment IDL, compilation support, deployment/code specialization) that are
also found in other systems [71, 41, 57, 104]. The authors of [100, 101] in-
troduce the implementation of asynchronous system calls in Linux by desig-
nating pages of memory as a buffer that is polled by kernel threads. However,
to achieve adequate concurrency and performance, a large number of kernel
threads are required, which causes memory pressure. The io uring [11] effort
is a recent approach to implementing an alternative asynchronous (async)
system call for Linux [26]. However, at the time of this writing, it does not
support all system calls, and does not support kernel-to-user requests. A
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similar queue design is used in virtio’s [95] interface where a guest operating
system communicates with the host through virtqueues, similar to the ear-
lier Xen [19]. While they too do not support host-to-guest requests, unlike
io uring, they use a unified pool of queue elements, so the guest can issue
more work with the same amount of memory without VM-exits. Unlike these
approaches, Ambience supports bidirectional asynchronous communication
with low kernel resource consumption over its queue interface.

Kernel bypass systems [20, 91, 42, 60] try to eliminate kernel overheads
related to network processing and context switching. Ambience, alterna-
tively, attempts to eliminate these overheads by specializing the kernels it
generates to support the user space microservices they host.

In [54, 74], the authors explore the use of memory protection units on
microcontrollers to improve reliability and enable the execution of untrusted
code. However, these approaches do not support server or edge class ma-
chines. Authors of [17, 110, 46] show that a lightweight serverless archi-
tecture implementation running in both Linux user space and on microcon-
troller systems, even without memory protection, is a viable architecture
for building distributed IoT systems. Ambience is distinct from these ef-
forts in that it is a comprehensive operating system approach that supports
microservices running at all resource scales.

Unikernels [79, 24, 86] reduce operating system overheads by merging
the kernel and the application, and by eliminating kernel protection. The
motivation behind removing kernel protection is that because virtual ma-
chines implement isolation between applications, kernel corruption can only
affect the application using it. However, their lack of IPC primitives pre-
vents them from exploiting locality. Ambience supports multiple isolated
services running in the same VM with efficient communication among them
(including zero-copy IPC similar to that originally described in [94]). For de-
ployment settings in which isolation is not desired, Ambience also supports
transparent placement of services inside kernel space.

Using language typing to ensure operating system integrity is a feature
of [21] and, more recently, [59], both of which use strong types to enforce
isolation of user provided programs inside privileged domains. Through safe
user code inside the kernel, such systems allow the dynamic introduction
of efficient abstractions. However, for both systems, the type system is
only available in special programming languages, and does not extend to
untrusted programs written in arbitrary languages. Further, the type infor-
mation is not used for performance optimizations, and mainly exists to stat-
ically enforce safety. Alternatively, [92] embeds a JIT (Just-In-Time) com-
piler in the kernel to automatically and dynamically create optimized code-
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paths, facilitating specialization. However, performing this specialization
dynamically precludes [92] from running on resource constrained devices.
Ambience performs specialization using a variety of information available
statically, making it possible to run fully optimized images across resource
tiers.

3 Ambience

In this section, we overview our key design choices, their trade-offs, and
our implementation approach for Ambience. Note that because Ambience
is designed specifically for hosting microservices, it omits many abstrac-
tions found in general purpose operating systems. This specificity is not an
impediment to generality, however, since most microservices do not make
operating system calls directly. For example, an inspection of the Deathstar
microservice benchmarks [44, 34] shows that the microservice code makes
only the Linux exit and signal system call – all other system calls are
implemented by the high-level web service frameworks within which the
services operate.

3.1 Definitions & Abstractions

The primary abstraction of Ambience is a service. A service is a collection
of procedures, each with a strongly typed interface, operating on a common,
ephemeral state. The procedures act as entry points which can be concur-
rently executed. A service interface is a nominal abstract type consisting
of procedure interfaces, defined in an interface definition language (IDL).
Ambience includes its own IDL for generating service interfaces called lidl.

A node is an abstract entity that can host Ambience services. They
can be physical machines (e.g. servers, single board computers or microcon-
trollers) or they can be virtual (e.g. cloud virtual machines, Linux processes,
a webpage running webassembly [53], etc.). Ambience provides different lev-
els of service on different host types since it does not have the same level
of control in all physical and virtual devices. A cluster consists of a set of
nodes and networks that connect those nodes.

All Ambience runtime abstractions are deployed via declarative mani-
fests. Manifests direct the Ambience to “compile” images (one for each node
in a deployment) that instantiate services (including their dependencies), de-
scribe network topologies, define security isolation groups, etc. Ambience
manifests are written in a Domain Specific Language (DSL) embedded in
Python. Ambience manifests encapsulate more information than existing

10



declarative approaches [71, 41]. Specifically, they include service interface
types and dependencies, which Ambience uses to synthesize efficient code
for communication, and security isolation. Listing 1 shows a deployment
manifest excerpt.

Listing 1: A sample Ambience deployment manifest

%\begin {minted}{python}
# Serv i c e s f i l e
i n s t anc e (name=” d e t e c t i o n ” ,

s e r v i c e=t f l i t e d e t e c t i o n )
i n s t anc e (name=”camera” ,

s e r v i c e=dcmi camera ,
dependenc ies={” f rame handler ” : ” d e t e c t i o n ” })

export ( s e r v i c e=”camera” ,
networks={”udp−i n t e r n e t ” : 4898})

# Deployment f i l e
group (name=” camera group ” ,

s e r v i c e s =[” d e t e c t i o n ” , ”camera” ] )
deploy ( node=” camera mic rocont ro l l e r ” ,

groups =[” camera group ” ] )
}

Ambience injects service dependencies using information within mani-
fests during image construction, thereby precluding the need by each service
to perform service discovery. That is, the service mesh topology associated
with a specific deployment is “compiled into” the images that make up the
topology. Ambience enforces type-safety in the manifests and synthesizes
code that brings up all services in the correct order and passes dependencies
to each service.

3.2 Service Groups

Microservice design advocates for the proliferation of small, simple, isolated
services. In existing systems, the decision about whether to execute two or
more services in the same isolation domain is often binary and irreversible
– two services are either separate entities deployed in isolation, or they are
part of the same service. The need to decide whether two services will be
isolated or comingled poses an early design challenge in the service devel-
opment engineering cycle. Developers must make design decisions about
service isolation that are difficult and costly to reverse or change once de-
velopment begins, and becomes more difficult to change as development
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matures. Further, the performance of the resulting service mesh is not typ-
ically known until relatively late in the development lifecycle and, often,
isolation design decisions must be revisited, and implementations recoded,
to enhance performance.

Microservice design can also pose a deployment challenge in resource
restricted settings. Each isolated runtime entity (e.g. a process) consumes
system resources: page tables, thread structures, kernel entries, communica-
tion costs etc. Tying the allocation of these resources to each service reduces
deployment flexibility and portability. For instance, deploying two related
services in different address spaces may be desirable on a cloud server but
not on a microcontroller, especially when the microcontroller logically consti-
tutes a single protection domain (i.e. it has one owner or one user). Further,
a developer may simply wish to improve performance when all services can
run in the same trust domain, by removing the isolation boundaries.

Existing commodity operating systems do not support such flexibility
directly: a program becomes a process when executed and a process is not
meant to be occupied by multiple distinct, separately developed programs.
Moreover, each process has global state associated with it (file descriptors,
signal handlers, file system root, quotas, etc.) that are space-expensive to
replicate in resource-restricted execution environments.

To overcome these challenges, Ambience eliminates all global state as-
sociated with a “process.” Instead, it defines protected regions of address
space that can be occupied by separate microservices. To enable this lighter-
weight form of isolation we introduce groups as the unit of runtime execution
and deployment.

Microservices assigned to the same group share address space and are not
isolated from one another. Microservices assigned to separate groups, but
hosted on the same node, are isolated and must communicate using fast Am-
bience local interprocess communication (IPC) as described in Section 3.3.
Microservices executing on separate nodes must be in separate groups and
communicate using RPC. Importantly, assignment of services to groups is
not a design-time or development-time decision with Ambience, but rather
a deployment-time decision. That is, the developer or operational manager
(in a “DevOps” [36] context) can decide what assignment of services to
groups is most appropriate for each deployment, based on site-specific trust
policies, security policies, performance requirements, etc., without design or
code modifications to the services or duplication.

When microservices are assigned to separate groups in a deployment,
Ambience automatically incorporates IPC to facilitate communication be-
tween groups. It emits direct function calls to optimize communication
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within a group. Note that it is not possible to make a similar decision of
whether to include two service components in the same Linux process or
different Linux processes at deployment time without having two separate
versions of the code: one for conjoined deployment and the other for separate
deployment.

Services within a group share runtime resources: the queues as explained
in Section 3.3, an event loop and associated system threads, heap and page
tables. By default, Ambience allocates a group per service. A developer
is allowed to create explicit groups and include the services they wish to
couple.

Note that under the Ambience group resource abstraction, services do
not receive implicit resources and ambient privileges. For example, there is
no global file system inherited by each group in Ambience: if a microservice
requires file system access, the developer can explicitly assign a dedicated
file system service to it or if two services are meant to share a file system, the
developer can assign both of them to use a single file system service explicitly
(either within the same group, separate groups, or in any combination.)

This flexibility is designed to support severely resource restricted devices
as well as more resource-rich servers. For example, on microcontrollers with
a few kB of memory, all services in a node can be placed in a single group,
eliminating most of the Ambience runtime isolation memory footprint. Key
to this approach, is that services need no changes when they are assigned to
the same or different groups and the ability of Ambience automatically to
insert appropriate communication primitive based on how the services are
to be deployed.

3.3 User Space Design

Microservices (particularly those that employ a FaaS design structure) make
use of event driven and asynchronous programming, whereas traditional
systems mainly provide a synchronous programming environment, and the
user space code is expected to implement asynchrony [78, 10] on top of syn-
chronous abstractions provided by a kernel. Most kernels are themselves
designed to implement these synchronous abstractions for user space pro-
grams using an event-driven and asynchronous model to interact with the
hardware. For microservices, this translation from an asynchronous hard-
ware interface, to a synchronous system call interface, and then back to an
asynchronous model within the microservices themselves creates inefficien-
cies that Ambience attempts to avoid.

To do so, Ambience exposes the asynchronous abstractions used by the
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List head

Host to guestGuest to host

User Memory

Figure 1: Isolated services communicate with the kernel via an asyn-
chronous, bidirectional queue interface. The user space never performs
serialization and merely sets up pointers. These rings form the exclusive
interface to the kernel and other services, allowing Ambience to reconfigure
deployment topologies without recompilation. For instance, a service binary
can be placed inside the kernel space or a separate user space, since Ambi-
ence programs do not use system calls. The List head pointer is the head of
the atomic free list.

kernel to microservice components running in user space. Ambience provides
and manages an event loop at the kernel level for each user space. This event
loop shares code with, and is almost identical to, the one used inside the
kernel to handle hardware events. The kernel issues user-space procedure
calls directly, instead of having the user space poll and route requests. This
optimization reduces the workload on each service, and provides centralized,
dynamic configuration parameters such as concurrency limits and a unified
tracing and observability infrastructure.

Computations executing in separate groups use bidirectional asynchronous
queues for communication with the kernel. Specifically, groups implement
dedicated lock-free queues for both the kernel-to-user and user-to-kernel
communication. Both queues index into a per-group, shared array of queue
elements. The allocation of these elements is lock-free. Lock freedom here
is necessary since multiple user or kernel threads may attempt to allocate
an element concurrently. Unlike existing ring or queue based interfaces [95],
Ambience allows both ends of the interface to make and serve requests.

3.4 Kernel “Styles”

As such, Ambience’s kernel does not feature an ABI (Application Binary
Interface) that includes a fixed set of system calls. Instead, its ABI is an
interface that permits communication via the asynchronous ring data struc-
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tures. Further, all core operating system functionality is exposed and de-
ployed as services that are accessed just like user provided services, meaning
such services can be individually omitted or deployed inside the kernel or
a user space. Such flexibility is unique to Ambience and allows individual
deployments (not service implementations) to be configured using different
operating system kernel “styles” such as a unikernel [79], where every service
is deployed inside the kernel group; a monolithic kernel [107, 5] where device
services are deployed inside the kernel whereas user services are deployed in
user space groups, a microkernel [48, 64] where supported device services as
well as user services are deployed in user space groups, or an entirely new
class, with no changes to the base system.

For example, an Ambience file system service exposes a file system inter-
face and depends on a block device service. Since Ambience’s ABI does not
include system calls, the file system can be transparently deployed inside or
outside the kernel, with different security, performance and reliability trade-
offs, and accessed via typed interface like any other Ambience microservice.

Because user-space microservices use the same ring interface to commu-
nicate with each other as they do to request service from the kernel, user-level
microservices can be “moved” into the kernel transparently (say for perfor-
mance reasons). This design feature also allows Ambience programs to be
potentially portable to other operating systems, provided the ring interface
and necessary core services are re-implemented. Ambience makes use of this
feature for debugging Ambience services using gdb on Linux, albeit with
reduced performance, since it does not yet have such a sophisticated native
debugger.

3.5 Asynchronous Programming Model

One common design pattern for asynchronous runtime systems requires the
programmer to use “callbacks.” [78, 77, 85, 10]. Callbacks add program
complexity and programmer burden as they require the creation of multiple
related functions to implement a single request handler. In addition, in
languages which lack garbage collection, the lifetimes of the shared variables
among callbacks must be carefully managed by the programmer at the risk
of memory corruption.

User-mode threads such as fibers [66] provide a compromise between
callbacks and system threads. However, fibers have sub-optimal memory
requirements: each fiber must allocate and retain enough stack memory for
the worst case memory usage and/or call depth. Practically, the worst case
stack size use is not statically known, and each fiber almost assuredly over
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allocates its stack. This lack of memory efficiency can cause significant mem-
ory pressure in highly concurrent settings. For example, the authors of [62]
report stackful coroutines are up to 93% slower than stackless coroutines on
Windows.

Stackless coroutines provide the efficiency characteristics of callbacks
while providing the benefits of synchronous programming abstractions. At
any time, a coroutine retains only enough memory to store its working set of
local variables. The disadvantage is they require compiler support to trans-
form the coroutines into resumable functions. However, most programming
languages now support coroutines. Indeed, 11 out of the 13 most popular
programming languages support them [102], with the exceptions being C
and Java.

Listing 2: Ambience’s concurrency design allows the API for writing data
to be decoupled from the model of asynchronous concurrency used by the
microservice using the API. In this code, the write() creates a job that can
be bound and completed by a coroutine, a thread, a fiber resumer, or a
callback.

struct w r i t e j o b {
bytes data ;

} ;
// Takes a by t e s o b j e c t and con s t r u c t s an asynchronous job f o r wr i t i n g them .
w r i t e j o b wr i t e ( bytes ) ;

bytes some data = . . . ;
// Construct a job from some data . Note t ha t the job did not s t a r t yet , and w i l l
// s t a r t once i t i s bound .
auto job = wr i t e ( some data ) ;

co awai t job ; // Use corou t ine s
sync wai t ( job ) ; // Use threads
f i b e r w a i t ( job , t h i s f i b e r ) ; // Use f i b e r s
auto s t a t e = bind ( job , [ ] ( auto r e s ) {} ) ; // Use c a l l b a c k s
}
Due to their superior efficiencies, wide spread availability, and ease of

programming, Ambience uses coroutines as its default computational model.
It also supports fibers for compatibility with existing libraries expecting to
be able to block in a deep call stack. Ambience’s low level ring interface
facilitates callback-style programming as well. We compare the performance
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fibers and coroutines in Ambience in Subsection 5.5.
Implemented naively, support for multiple concurrency models together

requires the the implementation of some functionality to be duplicated. To
avoid this duplication, Ambience defines work units, called jobs that can
then be bound to a particular completion handler associated with one of
several different concurrency models. That is, the completion handler can
be a callback, coroutine, fiber resumer, or a thread. This decoupling of the
computational work specification from the concurrency model allows a sin-
gle asynchronous API (for example, a network packet transmission API), to
be used with different concurrency models employed by individual microser-
vices. Listing 2 shows the developer facing API for writing a byte object,
and Listing 3 shows the implementation of sync wait which is used to com-
plete the write job using a thread stack. Note that only sync wait is coded
to use threading, and the implementation of write can be used with any of
the other concurrency models efficiently. Switching to this decoupled design
from the naive version reduced Ambience’s driver sizes by a factor of 3 in
the current version.

Listing 3: The Ambience code for implementing job completion as a thread.

template <AsyncJob JobType>
auto sync wai t ( JobType&& job ) {

// A l l o ca t e s t a c k space to s t o r e the async r e s u l t .
l a t e i n i t i a l i z e d <r e s u l t t y p e <JobType>> r e s u l t ;
// sync wa i t uses a semaphore to b l o c k the curren t thread
semaphore sem {0} ;
// bind launches an async job wi th a c a l l b a c k
// bind re turns an o b j e c t t h a t must remain a l i v e u n t i l
// the c a l l b a c k i s invoked , which i s t r i v i a l l y done in sync wa i t
auto s t a t e = bind ( job , [& ] ( auto&& r e s ) {

r e s u l t . emplace ( std : : move( r e s ) ) ;
sem . up ( ) ;

} ) ;
// Block u n t i l the semaphore i s s i g na l e d by the c a l l b a c k
// As we are b l o c k i n g here u n t i l the c a l l b a c k i s invoked , the semaphore
// and the temporary s t o rage f o r the r e s u l t and bind s t a t e w i l l remain
// v a l i d as long as the async job i s a l i v e .
sem . down ( ) ;
return std : : move( r e s u l t ) . get ( ) ;

}
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3.6 Immutability and Specialization

Microservice deployment orchestration frameworks [71, 41] often employ im-
mutable and declarative languages to describe a deployment (i.e. how ser-
vices are mapped to machines and their network interconnection topology).
These frameworks use this specification to install, start, and maintain ser-
vices across the nodes in a deployment. In practice, microservice orchestra-
tion frameworks deploy services in Linux containers, where each container is
assigned to a node in a deployment. When a change is made to a service, the
framework stops the container or containers running the service and starts
one or more replacements with the updated image. Thus, the containers are
immutable.

Ambience also uses a declarative language model to describe each deploy-
ment, but in a different way. Instead of instantiating a deployment strictly
at runtime (as most container orchestration frameworks do) it builds a po-
tentially unique kernel image for each node in a deployment, optimized for
the microservice workload the node will run. Specifically, it carries relevant
type and deployment information specified in an IDL and manifest files that
are used by an image builder to create optimized images for each node in a
deployment.

Ambience also can, opportunistically, preallocate some resources for ser-
vices at build time, to reduce cold start times and to detect insufficient
resources ahead of time. Currently, Ambience can preallocate the following
for each group: isolation structures, system thread stacks and control blocks,
queues, in-kernel group descriptors. It also preallocates networking struc-
tures, for instance UDP control blocks, for services that communicate across
nodes. When possible, these resources are initialized at compile time using
constexpr [30] data structures and algorithms. constexpr allows some
stateless C++ code to execute at compile time. Ambience also supports
dynamic provisioning of these resources at runtime. For example, pages can
still be allocated and mapped dynamically, threads can be created and de-
stroyed, and sockets can be created at runtime, only with higher runtime
cost and the possibility of runtime failure.

3.7 Use of User-defined Types in the Kernel

Microservices in Ambience communicate over statically typed interfaces de-
fined in an IDL which also conveys type information to the kernel. Further,
because the microservice code and the kernel are “compiled” together when
each node image is constructed, this information is used to optimize the

18



user-space kernel interactions. Ambience also uses this type information to
auto-generate any serialization code that is needed to facilitate message-
based communication (e.g. when services deployed to separate nodes com-
municate).

Note that by contrast, commodity general purpose operating systems
typically implement “typeless” system call interfaces. That is, when a write

or read system call is invoked, any data passed to or from them is an untyped
collection of bytes. Communicating clients and servers recover the type in-
formation via serialization and deserialization. For example, a client-server
application using a modern IDL such as gRPC [50] contains type informa-
tion which is used by the user-space code implementing the microservice
interaction for correctness, and as a programming aid. However, once a re-
quest or a response needs to be sent between the client and the server, the
microservice stack will eventually make a call to the POSIX write system
call, or a socket send call on the sending side and, conversely, a read or
recv system call on the receiving side. These system calls only view the
information as untyped collections of bytes.

In contrast, Ambience maintains interface type information for as long
as possible. Service interfaces are typed at deployment time and this type
information is available and used when the kernel is constructed. Type
erasure is only performed when an Ambience invocation crosses a network
boundary.

Ambience makes extensive use of this information to implement efficient
communication, enable compiler optimizations, gain observability, and to
introduce additional functionality. Ambience queues are strongly typed:
when a user space microservice component makes a request, it does not per-
form serialization. Instead, it packs pointers to its arguments in a typed
data structure designed to facilitate a zero-copy transfer that is generated
by the IDL. If the request is to a service running in the the local kernel
(recall that Ambience can support in-kernel microservices as described in
Subsection 3.3) it is handled via this zero-copy mechanism. If the request
is to a component running in another Ambience group on the node, Am-
bience synthesizes specialized code using the static type information to im-
plement efficient parameter passing between the groups. If the request is to
be handled off-node, Ambience performs serialization and communication.
Critically, it is the Ambience image builder (and not the programmer) that
automatically generates and inserts what ever code is needed to facilitate the
communication efficiently, based on the IDL types and on the deployment
manifest.

Finally, Ambience also uses this information to synthesize a broad range
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of higher level functionality. For example, because Ambience can make sense
of the bytes in service requests it can auto-generate externally accessible
REST [1] end-points to be consumed by web applications, and automati-
cally inject sophisticated authorization code by inspecting parameters for
correctness.

3.8 Memory Management

Unlike unikernels, Ambience supports multiple address spaces natively. How-
ever, services running in isolated address spaces (i.e. separate Ambience
groups) cannot communicate via direct function calls the way that services
within the same address space can and, thus must involve the kernel to fa-
cilitate efficient passing and returning of necessary information between ad-
dress spaces. For communication between microservice components mapped
to separate nodes, this communication is implemented by automatically
inserted serialization/deserialization and RPC communication primitives.
However, for cross-group communication within the same node, Ambience
makes heavy use of any memory protection features that are available from
the node where the kernel is executing.

Ambience’s memory management system is designed both to work on
hardware systems that include a full-featured MMU (implementing paged
virtual memory) as well as low-level, embedded systems with memory “Mem-
ory Protection Units” (MPUs) that implement protection (but no address
mapping) of physical memory segments. Lack of virtual addressing on ma-
chines with MPUs means that Ambience’s design must include the ability
for services to work with a single address space with protected segments of
memory.

Ambience’s memory subsystem supports a generalized “page” abstrac-
tion called an address space fragment. An address space fragment is a range
of contiguous memory in one address space that can be zero-copy shared with
another address space. Supportable fragment sizes and the ability to support
multiple sizes are hardware dependent. On paged systems (i.e. ones with
MMUs), a fragment corresponds to a page directly and page sizes cannot
be changed. On a microcontroller system, however, the fragment sizes and
alignments can change dynamically. For example, MPU and PMP (Physi-
cal Memory Protection) hardware found in the ARM [67] and RISC-V [47]
architectures correlate protected segment size with alignment. Specifically,
a segment of size n (where n is a power of 2) must be aligned on an address
that is a multiple of n. Therefore, there is no single fragment layout in such
systems and runtime calculations are required to determine a fragment given
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a range of memory.

3.9 Memory Sharing

When Ambience provides transparent access to a service in another ad-
dress space, the kernel will automatically map memory segments from the
caller’s address space to the callee’s address space usually in a read-only
fashion to achieve zero-copy calls. Memory for the return values are also
supplied by the caller via the message builder type. Fragments belonging
to a message builder are mapped with read-write privileges to the callee.
Allocation of these regions can be managed by users, but Ambience provides
a user space library for simplifying their management, as these regions must
be well-aligned. All fragments related to a call are immediately unmapped
as soon as the callee completes the request.

Ambience’s support for transparent cross-address space mapping is a
novel feature. Cross-address space mapping in many existing systems re-
quires non-trivial coordination across the processes accessing the shared
memory. On POSIX systems, for example, memory can be shared using
MAP SHAREd anonymous pages across a fork or using a shared file or shared
memory objects. In all such cases, programmers of both the caller and the
callee must explicitly setup the sharing and make sure all arguments are in
the shared area. While the sharing can support zero-copy communication,
it is difficult to automate and/or error prone to program.

In particular, one challenge Ambience’s design addresses is that a caller
process might supply the same fragments (due to memory space limitation
concerns) for multiple concurrent requests to the same server. In this case,
the operating system must ensure that the fragments must remain mapped
until the last request is completed. Our prototype associates an atomic
reference count with each fragment mapped to an address space, and the
reference count is maintained at every call and return.

3.10 Efficient Cross-address Space Communication

Cross-address space interprocess communication (IPC) is implemented by
Ambience using a combination of memory copies (for small values) and
pointer sharing and memory mapping (for larger ones). Because all inter-
faces are typed, Ambience can generate and automatically insert optimized
IPC when microservices deployed to separate address spaces on the same
machine communicate.

An Ambience IPC consists of a typed structure on the sending side of the
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communication that the operating system replicates on the receiving side.
As the kernel has a priori knowledge about the contents of the structure, it
can replicate arbitrarily complex data structures and use the most efficient
primitives for performing this replication.

Since large objects are passed by pointer, the kernel will follow the point-
ers and ensure the same data structure is replicated from the sender side to
the receiver side. Whether a “true” zero-copy transfer for a data structure
referenced by a pointer is possible or not depends on the data structure’s
alignment in the sender. For example, if a user-space computation attempts
to send a string containing 100 characters on a paged system with 4k pages,
it is impossible to directly map the page because the string shares the page
with other data structures that should not be sent. However, as another
example, consider sending a string of size 8193 bytes, on a system with 4K
pages, starting at address 4096 ∗ k + 4095 for some constant k. This means
that except for 1 byte at the beginning, the whole string can be mapped
directly from the sending address space to the receiving one. For this case,
Ambience will allocate an anonymous page to the receiver, copy the single
byte to the end and map this at address 4096 ∗ k in the destination address
space. The rest of the data will be mapped directly at 4096 ∗ (k + 1). This
partial-copy approach ensures no unintended data is sent from the sender
to the receiver service while using as little data copying as possible for large
objects.

Note that on MPU systems, partial copying is not possible if the sending
data structure not well aligned and sized, and a total copy has to be made
since it is impossible to supply different physical memory for the unaligned
portions of the data structure without virtual memory support. Zero-copy
is still supported for buffers that are well aligned and sized so that they do
not share memory fragments with other data structures.

3.11 Interprocess Communication Implementation using C++

Ambience’s IPC mechanism is implemented within the kernel and written
in C++. Since the approach is type based, Ambience can make use of
C++ templates to synthesize the necessary functions. The IPC interface
requires that each fundamental type in a message “opt-in” by providing
a specialization of the primary sharer<T> template. The sharer interface
consists of two required static functions: size t compute size(const T&

arg); and T do share(Share auto& share, const T& arg);.
The compute size function returns how many bytes of extra data would

arg need in the destination address space. For example, for small scalars,
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this function always returns 0 since such scalars are always stored within
the structure itself. For a string, it would be the size of the string if a total-
copy needs to be made, or 0 if the string can be memory mapped. do share

performs the actual share through copying or memory mapping. Notice that
if T is a pointer, do share returns a pointer as well.

Using these specializations, passing an entire structure can be achieved
by copying the structure verbatim to the destination address space and
transforming each member through the sharer<T>::do share method. The
resulting code for sharers is very concise, and the overall sharing code is easy
to read and maintain. The sharing functions for all fundamental types are
implemented in less than 250 lines of code, most of which are templates.
For user defined interface types, the necessary functions are automatically
synthesized using these templates since they are by definition a composition
of the fundamental types and can be trivially synthesized. Also, because the
IPC code is implemented using static polymorphism, Ambience is able to
optimize complicated, multi-step shares to a use a single memcpy and even
to a single SIMD store instruction for smaller parameter packs.

The overall effect of the Ambience memory management functionality
is to allow it to implement highly efficient IPC between microservices that
are co-located on the same machine, but do not share addresses spaces.
The operating system code makes maximal use of memory mapping to im-
plement zero-copy communication on both systems with an MMU and on
those with only MPU support (although with greater restrictions for the
latter). Finally, the goal of Ambience is to allow the mapping of microser-
vices to protection domains to be a transparent deployment-time decision,
and without sacrificing performance. In this this way, Ambience makes use
of typed interfaces, C++ templates, and static polymorphism to automate
IPC optimization.

3.12 Automatic Network Overlay Generation

Ambience services that communicate over a network (i.e. between nodes)
do not use overt network communication abstractions. Instead, the Am-
bience kernel supports efficient message forwarding (using the mechanisms
described in Subsection 3.8) and the Ambience image builder automatically
synthesizes an application-level network overlay for each deployment using
the lidl (Ambience’s IDL) specifications for each microservice interface and
the deployment manifest. By incorporating the network overlay as first-class
operating system abstraction that is automatically constructed at deploy-
ment time, Ambience is able to map the same service mesh to different
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Figure 2: Ambience services import network interfaces when they need to
accept off-node requests and export interface when they are required to
send requests off-node. The build process generates an network overlay
path by modeling the node mesh as a weighted directed graph and finding
the shortest path from the desired service’s node to the importing node. In
this figure, the letters identify each edge and the MCU can import a service
from VM2 through the path H,G,D,C,B,A. Note this automatic overlay
generation feature allows Ambience to deploy the same service mesh over
different heterogeneous, private and asymmetric networks.

heterogeneous network topologies without developer intervention.
From a deployment manifest, the Ambience image builder constructs a

graph in both networks and nodes are both represented as vertices. In Fig-
ure 2, the networks are marked as “Xbee” represent a low-power Xbee radio
network, “Internet” represents the common-carrier Internet, and “SFO2”
represents an internal private network. Services that communicate off-node
import from a network when they will perform requests to a node in that
network and export to a network when they will serve requests to nodes in
that network. An import is represented by a directed edge from the network
vertex for the last “hop” in the graph to the node vertex where the service
is to be hosted and, similarly, an export is a directed edge from the hosting
node vertex to the network vertex that will be used for off-node that must
traverse that network to reach their next hop. The edges are directed to
allow for potential asymmetry in the connectivity (e.g. firewall rules that
control connectivity) and weighted to allow deployment-time valuation of
forwarding paths (e.g. by representing the relative bandwidth, latency, or
reliability of alternative network choices).

Using this graph, Ambience constructs a high level communication over-
lay at the application layer (i.e. in terms of typed service requests rather
than routing of untyped packets) as opposed to at the network layer as
found on many existing systems [71]. The Ambience image builder consults
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the deployment manifest and the graph to determine which services may
send and receive requests that traverse more than one network vertex in the
graph. Using the edge weights, it computes a least-weighted path between
all pairs of communicating services. It then uses the lidl specification for any
services that communicate across more than one network vertex to synthe-
size request forwarders for each node vertex along a a least-weighted path.
These forwarders are then compiled into forwarding services and added to
the deployment.

For example, using the graph shown in Figure 2, the image builder would
create a request forwarder for each request from VM1 to the MCU and
it would assign the forwarders to the node marked “Edge” in the figure.
Finally, the image builder would set the destination address for any request
from VM1 to the MCU to be the forwarder microservice on Edge.

Note that Ambience uses the same lidl specification for each service in
a deployment to synthesize and inject IPC code and to generate the over-
lay forwarding microservices. Using this application-level overlay approach
Ambience can transparently join public and private IP networks, low-power
networks such as XBee [80, 111], as well as point-to-point links such as
USB [7], SPI [37] and UART [52].

Note also that the generated application-level forwarding microservices
take full advantage of the fast IPC mechanisms described in Subsection 3.8.
Further, since they are synthesized by the image builder, Ambience deploys
them within the kernel’s isolation domain (as described in Subsection 3.4)
for the best possible forwarding performance. In this way, Ambience builds
application-level network overlays into the kernels of a specific deployment,
making such overlays a first-class operating system abstraction.

Ambience need not deploy a common network software implementation
to the radio links and wired networks alike. Returning to the example graph
shown in Figure 2, XBee network communications are encrypted by default.
Thus, Ambience need not deploy an additional encryption layer such as
TLS [39] when messages are traversing edges A and B in the figure, while
the communication from Edge to VM1 (traversing edges C and D in the
figure) will require TLS, as IP networks are not encrypted by default. These
specializations are automatically built into the individual kernel images,
along with the required networking software, as dependencies needed to
support microservices that are assigned to each node in a deployment.
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3.13 End-to-end Access Control & Security

In typical microservice applications, network paths may be publicly acces-
sible and (if software defined networking or network function virtualization
is deployed) network traversal may require other services to be invoked. As
a result, per “The End-to-end Argument” [96], the microservice mesh is ex-
pected to implement access control via an amalgamation of authorization
mechanisms such as role- or attribute-based access control, access control
lists, or decentralized, token-based authorization primitives [63, 23]. This
approach introduces redundant work, precludes a separation of concerns,
and limits the operating system’s ability to specialize services within the
same trust domain.

At the service level, access control takes the form of sanitization; it must
answer the the question, “Can the current subject call this procedure with
these arguments?” With conventional operating systems, the microservices
are the “ends” with respect to end-to-end security. However, Ambience
essentially convolves the microservices and operating system abstractions
when it builds each image in a deployment. That is, the Ambience im-
ages are the “ends” in the terms of an End-to-end argument for security.
As a result, the images can implement end-to-end security using code auto-
matically inserted during image construction. Ambience combines the typed
interfaces for each microservice with a with formal specification of predicates
to ensure per procedure to synthesize access control code in each image of
a deployment where it is needed.

To implement this support, Ambience incorporates CAPLets [16], an
open source, capability-based authorization framework that runs on both
microcontrollers and resource-rich machines. CAPLets requires policies to
be defined as capabilities and constraints and written manually by develop-
ers. Ambience extends this approach to automatically generate capabilities
and constraints from manifests, precluding the possibility of definition mis-
match and reducing programmer burden. For requests that take place on
the same machine, Ambience uses CAPLets policies directly, as synthesized
and automatically injected code, when services communicate across groups.
For off-node requests, Ambience automatically injects the CAPLets net-
work protocol, which serializes the request, signs it, adds replay protection,
and optionally encrypts it. Once received by the destination node, and
the message is deserialized (again using injected code) the CAPLets policy
mechanism is invoked.

The secret keys needed for network requests inside the deployment are
automatically managed by Ambience through the CAPLets API with no
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user visibility or involvement. However, if a service within a deployment
must respond to externally generated requests (e.g. from a non-Ambience
service) Ambience also generates capability tokens that can be shared (man-
ually) with other parties. In this case Ambience also automatically generates
ingress services to act as proxies for the target Ambience services to validate
the tokens and implement the CAPLets policies.

This deployment-aware access control improves the pace of development
by relieving programmers from implementing access control explicitly, re-
ducing bugs through automatic synthesis of code, and improving runtime
efficiency by optimizing away unnecessary checks. It also simplifies adminis-
tration by providing a uniform authorization infrastructure at the operating
system level.

3.14 Lack of POSIX Compatibility

To understand the technology adoption risk associated with Ambience, we
analyzed the DeathStar microservices benchmark suite [44] to determine
whether a POSIX compatibility layer was an essential feature. The Death-
star benchmarks make use of a test harness framework to implement net-
working, software dependencies, and platform configuration. We found that
while microservices can be ported to Ambience, the test harness (which im-
plements similar functionality to Ambience using conventional Linux system
calls) cannot. Because it is not clear how to separate microservice perfor-
mance from the performance of the test harness in the original Deathstar
benchmark implementations, however, we chose not to use them to generate
the performance evaluations described in Section 5.

From a code inspection, we found that the microservices within the
benchmark suite all communicate with each other not through unstructured
pipes or sockets, but over strongly typed interfaces, either via gRPC [50] or
Thrift [8]. Further, none of the 33 services make direct use of Linux oper-
ating system calls. Even the test harness uses only the Linux signal and
exit system calls, relying on lower-level libraries to interface to the oper-
ating system. This finding, coupled with our experience with microservice
applications, leads us to believe that POSIX system call compliance is not
a requirement in this domain.

The Deathstar suite also incorporates functionality not implemented us-
ing microservices (e.g. databases) that make operating system calls. To
understand the universality of the Ambience design, we have developed
Ambience microservices that provide equivalent functionality. Thus, while
the Deathstar suite depends on external functionality that is not, itself,
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implemented using microservices, the Ambience equivalents are complete
microservice implementations.

These surprising observations have two important consequences for Am-
bience. First, as with any non-derivative operating system approach, users of
Ambience must be concerned with software backwards compatibility, in this
case, largely with the POSIX system call interface. The Deathstar bench-
marks show that for microservices, this concern is potentially unfounded.
Secondly, Ambience kernel need not include a POSIX compatibility layer
that would increase its abstraction and implementation “footprints” and
potentially degradate its performance. However, we note that Ambience
does not have any limitation precluding a POSIX compatibility layer from
being implemented in its user space.

4 Deployment Construction
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Figure 3: End-to-end overview of how Ambience constructs a deployment.

To achieve both the level of IPC optimization that Ambience enables and
also to implement the automatic synthesis of application-level network over-
lays, Ambience constructs a set of customized images (once for each node)
in a deployment. These images must then be installed on each node in a
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node-dependent manner to form an Ambience Cluster. In terms of nomen-
clature, we refer to the entire collection of artifacts as a “deployment” and
the set of installed and running images as a “cluster.” Figure 3 presents an
end-to-end overview of Ambience deployment construction.

A Deployment Manifest document enumerates the services that will be
hosted in the cluster, each of which is described by its own Service Manifest.
Each Service Manifest specifies the interface types for the service, as well as
the interface types of all of its dependencies. The Deployment Manifest also
specifies what nodes and networks will be included in the cluster (cf. 1 ).

Using the Deployment Manifest to determine the node topology and the
type information from the interfaces described in each Service Manifest, Am-
bience automatically synthesizes code to perform cross-group authorization
(cf. 2 ) and optimized interservice communication (cf. 3 ).

Each Service Manifest also specifies an artifact (either binary or source)
that Ambience compiles, if necessary, and links into loadable groups (cf.
4 ). Loadable groups are binary modules that are combined with the

Ambience-synthesized authorization code (cf. 5 ), communication code

(cf. 6 ) to form node-specific kernel images. Ambience uses metadata as-
sociated with each loadable group to pre-allocate certain runtime resources,
such as page tables and sockets (cf. 7 ).

Ambience combines kernel and group artifacts associated with each spe-
cific node to create a bootable image for that node. For x86 or ARM-based
fully-featured platforms Ambience generates a bootable ISO disk image and

for microcontrollers, it generates a loadable image (cf. 8 , 9 , and 10 .)

Using the Deployment Manifest, Ambience also generates memory layouts
for all loadable groups. While a global memory layout is not necessary on
hardware with paged virtual memory, microcontrollers operate directly on
physical memory and each group must be loaded at a suitable location.
At this stage, Ambience has the information necessary to allocate memory
regions for nodes that do not support virtual memory. This build-time mem-
ory mapping relieves the microcontroller kernels from performing runtime
memory relocations as well as avoids the use of position independent code
to achieve maximum performance.

In the current implementation, bootable images generated by Ambience
must be delivered to their respective nodes in a machine-dependent manner

(cf. 11 ). For example, for cloud-hosted nodes, the images for each node

must be uploaded to the cloud’s image registery. Alternatively, for micro-
controllers, the images must be installed via the serial interface or flashed
to the microcontroller ROM.
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Within a deployed cluster, services assigned to different groups that are
co-located on the same node communicate using Ambience’s synthesized,

local Inter Service Communication mechanism (cf. 12 ). Within a node,

Ambience passes arguments and return values between address spaces us-
ing its most optimal strategy (e.g. using memory mapping to deliver large
amounts of data across protection domains).

To support off-node communication (determined from the Deployment
Manifest) Ambience automatically includes the serialization and deserial-
ization code necessary for communication to take place across a network,

as well as access control code for protecting these interfaces (cf. 13 ). It

is this component that enables application-level network transparency via
automatically-generated network overlays.

To allow Ambience to service requests originating outside of the cluster,
Deployment Manifests can specify explicit Exports so that Ambience services

can support externally facing service interfaces (cf. 14 ). For example,

Ambience supports the access of any internal service via an HTTP REST
endpoint that is automatically generated and inserted in a node image with
no involvement from the developer.

Similary, Ambience Deployment Manifests can also specify explicit Im-
ports for cluster-external services so that Ambience services may issue re-

quests to non-ambience services (cf. 15 ). However, an imported external

service must provide an RPC-style interface so that it can be accessed trans-
parently (i.e. as if it were an Ambience service) via automatically inserted
communication code. Consequently, integrating with non-RPC services (e.g.
a service supporting a streaming interface) requires the Ambience developer
to perform a manual integration.

5 Evaluation

Evaluating the utility of an operating system with a novel system model
is challenging. In particular, it is often difficult to make comparisons to
existing systems that explain differences (e.g. performance improvements)
analytically. Operating system functionality is often a convolution of archi-
tectural features that are difficult to study in isolation in a way that yields
meaningful comparisons.

In light of this challenge, we focus our evaluation of Ambience on two of
its key design goals:

• the ability to deploy end-to-end microservice meshes in different con-
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figurations without modifications to the microservice code, and

• the effects of its aggressive build-time optimization strategies on per-
node microservice performance.

We note that it is, in fact, Ambience’s ability to achieve deployment reconfig-
urability without recoding coupled with aggressive node-level optimization
that constitute the basis of its novelty and utility in an IoT setting. Also,
we focus on node-level performance since cross-node performance is often
dominated by network speed and the performance of the network protocol
stack. Optimizations applied to either of these features benefit Ambience
and any alternative operating systems equally.

To evaluate deployment reconfigurability, we have developed a motion-
triggered “camera trap” application used in wildlife monitoring settings that
captures digital images from a remote camera, processes them to perform
classification of the images, and stores the classification results in a data
repository. We use equivalent implementations for Ambience and the IoT
software framework from Azure [83] and report both quantitative and qual-
itative (e.g. productivity) metrics associated with deploying each version in
different configurations.

To evaluate the Ambience design decisions from a performance perspec-
tive, we use a set of microbenchmarks to provide isolated measurements of
specific functionality. We also use other service-level benchmarks to expose
the characteristics of different deployments, such as the effect of service call
depth. Quantitatively, we focus on energy use, latency, portability, and
scalability. In practical remote IoT settings, sensor and actuator nodes of-
ten use battery power (recharged during daylight hours using solar power)
and operate on a duty cycle consisting of active periods and periods of low-
power dormancy [76, 70, 38]. The minimum duration of the active periods
is defined by execution speed and communication delay. Thus power con-
sumption is often correlated with execution duration and, hence, reduced
execution duration implies less energy consumption and the use of smaller
batteries, a smaller solar array, more active periods per unit time, etc., for
the same communication duration. Latency measures the duration of a spe-
cific operation or set of operations, and scalability plots the performance of
a node as a function of the load it hosts.

The experimental testbed for these evaluations consists of four different
computational resources (two microcontrollers, one small-board edge com-
puter, and one cloud) and two different networking technologies. We name
the computational platforms Motion, Camera, Edge, and Cloud respec-
tively. Their resource configuration is as follows:
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• Motion is a nRF52840s microcontroller with an ARM Cortex-M4 core
running at 64MHz, 256KB of RAM and 1MB of flash memory with an
attached motion sensor [55], and an Xbee radio network interface [80].

• Camera is an STM32F746 microcontroller with an ARM Cortex-M7
core running at 216MHz, 512KB of RAM, and 1MB of flash memory,
an OV5640 CMOS image sensor [88], a motion sensor [55], and both
an Xbee radio interface [80] and a 100-Mbit Ethernet interface.

• Edge is a single core x86 64 virtual machine with 1GB of RAM run-
ning under QEMU-KVM supported by a Linux Kernel 5.15.6 on an
AMD 5950x processor running at 3.4GHz, on gigabit Ethernet network
interface.

• Cloud are two DigitalOcean [40] single core cloud-hosted virtual ma-
chines with 1GB of RAM on Intel Skylake processors.

On the Edge and Cloud platforms, Ambience executes directly on the
hypervisor as a stand-alone virtual machine with custom virtio [95] drivers
(i.e. it is not “embedded” in another operating system). On the Motion and
Camera microcontrollers, Ambience runs as the native operating system.
Both motion sensors are polyelectric infrared (PIR [113]) sensors and all
code is implemented using C++.

5.1 Wildlife Monitoring Application

As a motivating application and to demonstrate the flexibility that Ambi-
ence makes possible, we describe an end-to-end wildlife monitoring system
designed for off-the-grid locations (e.g. research reserves). Physical sensors
and cameras employ embedded microcontrollers. The application uses a ver-
sion of Tensorflow [105] designed for mobile platforms (e.g. smart phones)
to process images either on-camera, or off-camera (possibly traversing a net-
work link in the process) on an x86 64 edge server device which then posts
the analysis results to the cloud over an Internet connection.

In a typical deployment the motion detector nodes run completely on
batteries, making battery life paramount. The camera nodes have solar
power, but power usage is still important since the camera uses a battery
during nighttime operation that is recharged during daylight hours. In the
deployment we use, the edge servers also use batteries, but they are from
a large battery complex with a large solar array located in an open space.
The cameras communicate with the edge server via an Ethernet network,
and the sensors communicate with the camera via low-power Xbee radios.
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Using this testbed, we deploy the following service mesh. Note that all
of the mesh components are implemented as microservices.

• Motion Sensor manages low level hardware events from the PIR mo-
tion sensors and forwards them to its event handler.

• Camera Manager manages the OV5640 camera using the STM32 Digi-
tal Camera Module Interface (DCMI) peripheral, capturing a full sized
image every time it is triggered and passes the image data to the frame
handler.

• Detection implements an animal detection service using Tensorflow on
a sub-sampled image. If an animal is detected, the frame is passed
to the recognition service. The model used in this service takes up
around 320KB and is fully portable across the Camera and Edge
nodes.

• Recognition implements an animal recognition service, using Tensor-
flow but on a higher resolution version of the frame, and classifies the
subject. The classification result is passed to the database service.

• Database implements an append only log of classification events.

The service mesh deployment configuration shown in Figure 4 represents
a typical deployment in a wildlife monitoring setting. The Motion device
is located near a “stage” (e.g. a watering location) that is imaged by the
Camera device from a clear vantage. Thus this service mesh configuration
consists of four “tiers.” Motion (tier 1) communicates with Camera (tier
2) via Xbee low power radio to trigger an image capture. Camera then
communicates with Edge (tier 3) which has a public Internet connection
that it uses to communicate with Cloud (tier 4). This four-tiered deploy-
ment requires 53 lines of Ambience configuration code (in addition to the
code for the service mesh components), all of which is contained in Ambience
Manifests.

In settings where the image stage is larger than what a single PIR sensor
can cover, a different deployment configuration that uses the motion sensors
on both Motion and Camera together is necessary.

Switching from using only the motion detector on Motion to using
both motion detectors requires 5 lines of Ambience Manifest change, and
no change to the service mesh code itself. Ambience synthesizes the neces-
sary networking overlay code with no additional input from the user.
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Figure 4: A typical service mesh deployment configuration for the Camera
Trap application using the hardware testbed. For brevity, we omit the lower-
level services such as logging, timers etc.

We deploy the Tensorflow Detection service on Camera by default.
However if a camera is particularly active causing the Detection service
to drain the battery at a rate that could threaten an overnight shut down,
the service can be transparently offloaded to Edge (extending the battery
charge duration of Camera) and then and moved back once the battery is
recharged (to reduce computational load Edge). Offloading requires 2 Am-
bience Manifest configuration lines to change, and no change to the service
code itself.

5.2 Microcontroller Latency Analysis

To understand the efficiency of the Ambience implementation on the micro-
controllers, in Figure 5 we show a timeline of Ambience events that take place
when the Motion Sensor microservice is executed on Motion and it makes
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Figure 5: Timeline of the events captured using a logic analyzer when the
Detection service is deployed on the Edge node and the Motion service is
deployed on the Motion node. Units are in milliseconds.

a service request of the Camera Manager service on Camera to capture an
image. The timeline units are milliseconds and the data was gathered with a
logic analyzer attached to both microcontrollers. Our goal, with this study,
is to understand the efficiency of the Ambience interaction between services
hosted on microcontrollers in the camera trap application. In particular, we
wanted to understand the prospective battery life of Motion since it does
not have a solar array to recharge its battery.

On Motion, an IRQ (approximately 1 ms) triggers Ambience to start
the process of sending a request to Camera. Next, approximately 15 ms
(marked Motn Tx in the figure) are required to activate the Xbee radio
through an on-board serial interface. Sending a message over the radio
(marked Tx-Rx space in the figure) requires approximately 5 ms of commu-
nication latency during which time both the radios on Motion and Camera
are active. To transfer the message from the Xbee radio through the serial
interface on Camera requires approximately 15 ms (marked Camera Rx
in the figure). The Ambience-induced workload necessary to receive the
message and send a response (marked Cam Work) is approximately 2 ms,
followed by 2 ms needed to transfer the short service response across the
serial interface on Camera to the Xbee radio (marked Cam Tx in the fig-
ure). The 5 ms of network latency for the response is followed by 2 ms
for the response to traverse the serial interface between the radio and the
microcontroller (marked Motn Rx) on Motion.

Note from Figure 5 that approximately 40 of the 50 milliseconds are
devoted to serial communication with radios on each microcontroller board.
During these periods, the microcontroller processors are in low-power sleep
and the transfers are made entirely using DMA hardware to conserve power.
In particular, the Motion microcontroller is awake for less than 3% of the
entire operation and spends less than 20 µJ for the entire event with the
radio requiring 4.32 mJ. Using a battery cell with 13Wh capacity [2], this
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energy consumption is sufficient for the device to service approximately 10
million events detected and transmitted over an XBee network. At rea-
sonable event rates and quiescent current leakages, the battery could last
multiple years, demonstrating Ambience’s abstractions are efficient and ef-
fective enough to support low power applications as well as high performance
ones.

5.3 Edge Platform Overheads

To facilitate reuse and scaling, individual microservices often implement very
narrow functionalities, which are composed to form higher level services.
Such services are deployed in separate trust domains (processes, address
spaces) to achieve isolation. Services then use the IPC mechanisms imple-
mented by the operating system to communicate between domains. Previous
work [44, 61] notes that microservices can have quite large communication-
to-computation ratios. From a performance perspective, cycles spent for
computation is “useful work” and cycles spent for communication is “over-
head” – a cost required to implement the useful work. Thus the ratio of
communication cycles (cost) to computation cycles (benefit) is a simple rep-
resentation of the cost/benefit ratio associated with a microservice deploy-
ment. We term this metric the overhead ratio.

To study the overhead imposed by the platforms, we implement a pair
of Camera Manager and and Detection services 3 ways: natively on Am-
bience, using Azure IoT SDK, and using lidl on Linux over Unix Domain
Sockets. To avoid differences in workload caused by the effects of numerical
precision and Ambience’s inlining of application and operating system code,
we use parameterizable “mock” versions of both services that allow the the
compute cycle counts for the microservice portion of the workloads to be
set explicitly. We then compare the same services across three platforms in
different configurations. Our mock Detection service allows us to specify an
exact cycle count (regardless of architecture) to use to subsample an image
in a given frame. We also experiment with multiple concurrent requests to
try and amortize communication costs.

Figure 6 presents the overhead results. The y-axis in each graph is the
overhead ratio computed as

overhead ratio = (total cycles− work cycles)/work cycles (1)

We set the number of work cycles explicitly in the benchmark and measure
the total processor time using the real-time clock on Edge, dividing the
overall time by the processor clock rate.
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Figure 6: Overhead ratios for three benchmark regimes. The overhead ratio
is computed as number of non-compute processor cycles to compute cy-
cles processor cycles. In the Compute benchmark (left), the x-axis shows
increasing compute workload summed over 16 concurrent requests and a
fixed, 200KB message. For the IO benchmark (middle), the x-axis shows
increasing request message size for a single request (concurrency 1) requir-
ing 0.25 ms of compute cycles. For the Concurrency benchmark (right), the
x-axis shows increasing concurrent requests, each requiring 0.25 ms of com-
pute and a 200KB message size. Both the x-axis and the y-axis are shown
on a log scale in each graph.
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In Figure 6, we show the overhead ratio on the y-axis (on a log scale) for
three different benchmark regimes using the “mock” Detection benchmark.
The leftmost graph of Figure 6, shows results for a “Compute” benchmark.
The x-axis corresponds to increasing compute workload for each of 16 con-
current requests that each require a 200 KB payload. The center graph
shows results for increasing message payload along the x-axis for a single
request requiring 0.25 ms. Finally, the rightmost graph shows increasing
message concurrency along the x-axis, for 0.25 ms requests, each requiring
a 200KB message payload. Note that Azure sets a 256KB limit on message
payload and that the x-axis is depicted on a log scale in each graph. A ratio
of greater than 1.0 gives the number “extra” non-work cycles necessary to
accomplish a single cycle of useful work.

The evaluation shows that for low-compute, high-communication sce-
narios, Linux imposes significant overheads, with an communication-to-
computation ratio of as much as 61. In contrast, the Azure overhead ratio
of 1381 is almost two-orders of magnitude higher than that for the highest
overhead native Linux implementation (large message sizes in the IO graph).
By comparison, the overhead ratio for Ambience ranges from between 0.008
to 0.59. That is, Ambience is between two and four orders of magnitude
more efficient than Linux, and between four and six orders of magnitude
more efficient than Azure, in terms of communication-to-computation over-
head ratio. Further, the overhead ratio for Ambience is never greater than
1.0 in these experiments indicating that the Ambience optimizations are
able to amortize each overhead cycle against multiple work cycles in these
benchmark regimes.

The predominant reason for this significant difference in efficiency is that
the Linux and Azure IPC mechanisms require data to be copied when it
traverses a protection domain. While this approach induces relatively little
overhead when the data is small and the computations are lengthy, it creates
significant overheads in a microservice context where each service performs
a simple computation and the overall application is a large composition of
such service invocations. For example, the Detection service requires the
entire image to be passed between address spaces, but once it has been
moved, the compute requirements are relatively small (since it subsamples
the image). Thus the communication-to-computation ratio is potentially
large when the entire image is copied into the protection domain hosting
the Detection service.

Further, we note from the analysis of the DeathStar benchmark suite [44]
discussed in Subsection 3.14 that simple computations are common to many
of the microservice requests it embodies. For cloud-based microservices,
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the resulting overheads may not be a serious impediment, but in an IoT
context, where the overhead results in additional power consumption, this
per-request efficiency is an important point of optimization.

Also of note is that all systems show improvements as concurrency in-
creases, since certain costs such as i-cache and TLB misses and context
switches amortize between concurrent requests, with Ambience improving
the most while being the best overall. We expand our analysis of IPC over-
heads below using microbenchmarks. Note also that Azure imposes a hard
limit of 256KB [15] on message size, preventing us from using it for com-
parative purposes with large messages. However, these results demonstrate
that Ambience’s aggressive type-aware, specialized IPC mechanism can dra-
matically reduce cross-domain overheads for microservices on a single node.

5.4 Portability of Cloud IoT SDKs

To compare the portability and network transparency features of Ambience
to the state-of-the-art, we implemented as much of Camera Trap application
as possible using Azure’s SDK, since it, like Ambience, features the ability
to run on the cloud, edge and microcontrollers. The embedded SDK for mi-
crocontrollers is not the same SDK as for the cloud or edge devices, meaning
that moving software written for one to the other requires substantive code
changes, testing to make sure that both implementations are equivalent, etc.
This impediment is primarily due to divergent APIs, different programming
models, and different deployment models needed to host a microservice in
a specific tier. Specifically, on the cloud and edge, programmers must make
use of Linux APIs, whereas on the microcontroller devices, the developer has
the choice of FreeRTOS [43, 51], AzureRTOS [103] or “native” bare metal
coding, each of which provides a unique and incompatible set of abstrac-
tions, making writing a piece of code that runs portably across the various
platforms in a deployment labor-intensive and error prone.

Additionally, the communication infrastructure required by the Azure
SDK makes use of MQTT for all interservice communication. Thus co-
locating two services on the same node incurs MQTT communication over-
head even for the local communication. As a result, even if the operating
systems abstractions could be unified across tiers in some future version of
the Azure SDK, the communication overheads would remain comparatively
high compared to Ambience. Finally, the hard limit on message sizes in the
Azure SDK also makes certain service mesh decompositions impractical.

Ambience support for network overlay synthesis is a further aid to de-
ployment portability. The available Azure software does not include support

39



for Xbee radio communication. Thus, to implement the communication be-
tween microcontrollers using the Azure SDK required we code a custom
XBee driver for the Azure implementation that is based on the one auto-
matically inserted by Ambience.

Finally, although the Azure software stack supports two microcontrollers
models in the same “family” as the ones we had available for Motion and
Camera, the specific models supported by Azure were unavailable due to
supply-chain delays and, as a result, we could not obtain them to use with
an Ambience port. Instead, we attempted unsuccessfully to port the Azure
stack to Motion and Camera which share the same processor cores and
peripherals with the Azure supported platforms. As a result, while we can
make qualitative observations about microservice portability, the sensitiv-
ity of Azure to differences in platform-specific features made an end-to-end
quantitative performance comparison of the Camera Trap application ulti-
mately infeasible.

5.5 Microbenchmarks

While the wildlife camera trap application exemplifies the utility of Ambi-
ence in an end-to-end IoT context, its complexity makes isolating the effects
of specific design choices challenging. To permit a more focused analysis, we
detail the performance of individual design features using a combination of
synthetic benchmarks and benchmarks extracted from more complex appli-
cations. Together, we refer to these as “microbenchmarks” since they each
test a specific Ambience feature or subsystem.

Interface Benchmarking

To evaluate the effects of Ambience’s integration of interface type informa-
tion into the kernel, we created a variety of synthetic microservice interfaces
designed to cover a representative set of results. Specifically, we constructed
benchmarks with interfaces consisting of scalars of a uniform type, scalars
of mixed types and relatively large strings and buffers. We executed the
benchmarks while increasing the sizes of the arguments to identify any po-
tentially hidden overheads. For each interface, we executed 10K requests
using four implementation strategies and measured the average latency and
overall throughput of each.

We compare four different interface strategies for implementing each in-
terface. The User strategy represents typical interprocess communication
(IPC) using byte wise copy between user spaces and the kernel (e.g. Linux
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Figure 7: Average throughput for passing scalar arguments (of varying total
size) between two address spaces. Uniform depicts the case where the scalars
are all of the same type and mixed shows the effect of multiple scalar types
in the argument payload. Each experiment is repeated 10,000 times and the
units are megabytes/second.

pipes). All type erasure occurs in the user space, the kernel copies the
bytes from the client to the server and the server deserializes the buffer. For
Linux, we re-implemented the User strategy using pipes on Linux 5.15.6 and
the same serialization/deserialization code in each comparative experiment.

In the Dynamic strategy, the user space code sets up a vector of pointers
to arguments and tells the kernel the types of the pointers dynamically. The
kernel then performs the sharing to the other address space, and creates a
new vector of pointers to arguments the server address space can access.
The advantage of this approach over the User strategy is the kernel can
automatically map pages for large buffers (although it cannot precompile
optimized sharing for each argument).

The Static strategy (the Ambience default strategy) is one in which
the user space sets up a tuple of typed arguments and passes a pointer
to this tuple to the kernel. Since the kernel has been compiled with type
information from the interface for the system call it “knows” the structure
of the data the tuple at compile time. It again creates the same structure on
the server address space by either copying the arguments or mapping pages
but the decision is “hard coded” into the kernel and optimized during the
kernel image build.

Figure 7 shows the throughput achieved by the four strategies (Static,
User, Linux, and Dynamic) with four different payload sizes (4 bytes, 32
bytes, 64 bytes, and 128 bytes). Each payload size consists of either a single
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Figure 8: Average throughput for passing larger buffers across address
spaces. User and Linux fall short as they always perform copies.

scalar type (denoted “Uniform” or a mixed set of scalars (denoted Mixed)
where the sizes of the constituent scalars sum to the payload size. For
example, the Uniform 32-byte payload consists of four 64-bit integers while
the Mixed 32-byte payload comprises a 64-bit unsigned integer, a 64-bit
signed integer, an 8-bit boolean, a signed 8-bit integer, a 32-bit floating-
point scalar, a 16-bit signed integer, and a 64-bit floating point scalar.

From the figure, each strategy achieves approximately the same through-
put performance for small payload sizes, except the Dynamic strategy which
incurs a noticeable throughput penalty when the payload is Mixed. Note
that the Static strategy (the Ambience default) achieves higher throughputs
as the payload size increases, with little difference between the Uniform and
Mixed payloads.

Further, comparing the Static and Dynamic strategies shows the effect
of compile-time optimizations. While Dynamic uses the same primitives
as Static in a program, for Dynamic, Ambience must traverse a list and
make an indirect function call for each argument. The effects of this im-
plementation is most apparent when there are many parameters of different
types (i.e. Mixed workload) causing substantial branch mis-predictions and
I-Cache invalidations. Static, User, and Linux on the other hand have no
virtual function calls and there is no list to traverse: parameters are simply
a packed, contiguous tuple. On top of the cache-friendliness, the static type
information unlocks inlining opportunities for the compiler. For example,
when passing 16 scalar arguments, the Static strategy emits a single large
memcpy as opposed to 16 small ones. For passing few, well aligned large
buffers (starting at around 100KB), Dynamic achieves similar results when
its cache and inlining disadvantages are overshadowed by the efficiencies of
page table manipulation.
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Note also that because User and Linux need to perform multiple copies of
large buffers (one for in-process serialization, another for IPC), they cannot
achieve the high throughput afforded by direct page mapping. However, as
they can make use of the static types in user space, they still outperform
Dynamic for the mixed-type workload.

Figure 8 shows similar throughput results for larger buffers that are both
page aligned and unaligned. Specifically the 1024 and 4000 are not page
aligned sizes and thus must be copied for all cases. However, the 4096 byte
buffer can be directly mapped for the strategies that can take advantage of
page remapping.

Overall, the results show that the Static strategy is superior in both
the small payload and large buffer experiments achieving 2.66x and 3.18x
(respectively) higher average and 4.08x and 2.29x (respectively) higher max-
imum throughput. Further, the Linux and User results are almost identical
results since they are implemented in a very similar manner.

Note that Linux user-space page-mapping support (i.e. mmap) cannot
be used to automatically implement mapped arguments in system calls.
Linux does not currently include support for mapping arbitrary pages from
one address space into another, temporarily, with shared ownership. Using
mmap, two processes could implement their own application-level emulation
of the Ambience mechanisms however they would need to explicitly allocate
memory in those pages, since mmap cannot map existing, anonymous pages to
another address space. Further, if the same page is supplied as an argument
in multiple concurrent requests, the page must be unmapped only when
the last request completes (which would also need to be implemented as
bespoke application code). Again, mmap does not support automatically
mapping the same page multiple times and an unmap function that uses
reference counting.

Scalability Benchmarking

Ambience supports stackless coroutines as its basic computational model.
To explore the efficiency of this choice, particularly with respect to service
request scalability, we implemented two different versions of a recursive and
caching, DNS-like, name resolving service where clients make requests to
resolve names to network addresses. One implementation uses Ambience
coroutines while the other employs an implementation of fibers [66] for Am-
bience.

The experiment consists of two terminal resolvers (one implemented with
coroutines and the other with fibers) each storing half of the known domains.
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A single client of each resolver generates 10,000 requests for uniformly ran-
dom selected domains (including some invalid domains). The requests are
sent in batches where each request in a batch is serviced concurrently and the
average request time is computed as the total time to complete all requests
divided by 10,000.

For the fiber version, we use a stack size of 32KB which we note is
moderately sized compared to the space (often tens of megabytes) allocated
for stacks by other systems. In contrast, the coroutine version dynamically
allocates a specifically-sized continuation frame of 627 bytes which is the
minimum needed for each request.

Because the resolver is recursive, if the requested hostname is not cached,
it will make a request to one or more of its upstream resolvers (we use a
university campus DNS service as the most immediate upstream in these
experiments) and wait. If the result is in the cache, it responds immediately.
Once a request completes, all resources are freed. This means that if a
request completes without any blocking, it consumes memory for only a
very short time. Therefore, if the cache hit fraction is N , only B ∗ (1 −N)
requests consume memory in a batch of requests having size B. We have
tuned the request streams so that N is approximately 0.5 in the experiments
we conduct.

Figure 9 compares the scalability of each approach in terms for four
metrics: average request throughput, memory usage, TLB misses, and CPU
processor cache misses, each as a function of increasing request concurrency.
The throughput units are requests per second, memory usage is measured
in bytes, TLB misses and cache misses are counts. Note that the cache-miss
graph is on a log scale.

The results show that coroutines achieve approximately 2× greater max-
imum throughput compared to fibers while supporting a maximum of 50×
the number of requests in the same memory footprint. This comparison
illustrates both the runtime overheads and excess memory that a fiber im-
plementation incurs, compared to coroutines, particularly when requests
must block waiting for an upstream response.

The results also show that maximum throughput occurs when each batch
of requests is size 64 (i.e. when B = 64) for both coroutines and fibers. To
investigate this phenomenon in detail, we implemented kernel support for the
Performance Monitor Counters for the AMD 5950x processor and gathered
information on cache and TLB misses.

For fewer than 64 coroutines, the increase in throughput stems from
a dramatic reduction in the number of context switches leading to fewer
TLB misses and a relatively low cache miss rate as shown in the bottom
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two graphs of Figure 9. However, every additional concurrent request grows
the working set as individual, dedicated pages are created for each request
and response. As concurrency increases beyond 64 requests, the TLB miss
count continues to drop, but cache miss rate increases. The point at which
these effects balance (yielding the highest throughput) is when the request
concurrency is 64.

Cross Isolation Group Benchmarking

A key design feature of Ambience is the ability to change trust domain
topology at deployment time without code modification. To explore the
effect of this feature on performance, we compare a deployment scenario in
which the client and the DNS resolver are trusted equally by the deployer to
a scenario in which the deployer places them in separate trust domains. Note
that in a Linux microservice context, this choice is not typically available
– the deployer must use separate isolation domains regardless of the trust
architecture associated with a specific deployment.

To evaluate this design feature, we placed the coroutine recursive re-
solver in the same group as the client and compare that performance to the
performance shown in Figure 9 for the coroutine version where the client
and resolver are in separate Ambience groups.

Figure 10 shows the comparative throughput in requests per second
(×106). Note that the solid bars in the figure are generated from the data
shown in Figure 9 which uses units an order of magnitude less than those
in Figure 10. For example, in Figure 9, the average cross group through-
put for concurrency level 64 is approximately 2 × 105 requests per second
which is shown in Figure 10 as 0.2 × 106 requests per second. This change
of scale is necessary because colocation of the client and the service within
the same security group results in more than an order of magnitude increase
in throughput. Critically, this benchmark comparison did not require code
changes to either the client or resolver microservice code. Only the Am-
bience deployment manifest differs between the two deployment isolation
topologies compared in Figure 10.

Benchmarking “Kernelized” Services

For deployments where the microservices and the Ambience kernel are equally
trusted (e.g. on a device with a single owner who wishes to dedicated it to
running one or more microservices), Ambience allows the microservices to
share the kernel’s address space. Note that this deployment choice, again,
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Figure 10: Comparing request throughput when the resolver and the client
are deployed in the isolation group and separate isolation groups. The units
are requests per second ×106.

User Space Kernel

Edge PC 9.418 0.348

Motion MCU 58.765 7.265

Table 1: Average time to first service instruction from a hardware interrupt
on Edge and Motion when the service is deployed in user space versus
in-kernel. Units are microseconds.

only requires manifest declarations indicating kernel deployment with no
code changes to the services themselves. Also, it is possible to “kernelize”
multiple microservices with the same kernel, in contrast to a unikernel ap-
proach where each service may be comingled with its own, separate kernel.

Kernelized services (where they can be deployed according to the local-
ized trust architecture) permit low-latency request responses because they
avoid the context switching overhead necessary for user-space execution.
Table 1 compares the average latency (measured in microseconds) between
when an interrupt occurs and the first instruction of a microservice is exe-
cuted on Edge and on Motion. Note that for Edge the timing is gathered
within the virtual machine (i.e. after the interrupt has been vectored to the
virtual machine by the hypervisor) in both cases.

In-kernel deployment reduces time to service latency by 27× for the
x86 64-based Edge and by 8× for Motion microcontroller. The perfor-
mance improvement is because when the service is in-kernel, Ambience can
immediately schedule the service on the kernel job queue without initializing
the memory protection data structures necessary for a full context switch.
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6 Conclusion

We present Ambience, a new operating system for efficiently executing and
deploying microservices. It does so via a novel combination of abstrac-
tions for isolation, asynchronous control flow, statically typed interfaces,
automatic network overlays, capability-based access control, and separated
declarative deployment orchestration. This combination makes it possible
to optimize individual services and the kernels running those services and
to reduce the overheads that hamper the use of general purpose operating
systems on resource constrained machines and devices.

To achieve device portability across resource scales in an IoT setting, the
Ambience design emphasizes memory parsimony and execution efficiency
so that it is capable of implementing microservices on the most resource
restricted devices. Its use of typed service interfaces and C++ compile-time
optimizations allow it to scale these efficiencies “up” to more fully featured
and resource-rich platforms (such as single board computers, edge systems,
cloud computing instances, and Linux systems) without modifications to the
microservices code or developer intervention.

The empirical evaluation of Ambience demonstrates both the ability to
deploy unmodified microservices at different scales in an end-to-end IoT
application and the performance opportunities and costs associated with
different deployment configurations for the same set of microservices. This
deployment flexibility is novel in that no other existing operating system or
operating system style decouples IoT application development from deploy-
ment to this same extent. At the same time, this additional flexibility does
not impose a performance penalty relative to the state of the art. Ambi-
ence is often between one and three orders of magnitude more efficient than
commercial, multi-resource IoT frameworks.

To achieve these results, Ambience sacrifices “traditional” operating sys-
tems abstractions for more flexible isolation and control flow. In this respect,
it is non-derivative and not backward compatible with other operating sys-
tems (although many of its features are inspired by and partially shared with
other different systems). Part of the rationale for the “clean-slate” design
approach stems from its focus on microservices which, at present, do not
make heavy use of typical operating system abstractions directly.

For IoT, where the proliferation of devices, deployment requirements,
and distributed security concerns span resource scales from small embedded
systems to the cloud, Ambience postulates a unifying operating system that
is designed to “tame” this heterogeneity. At the same time, it recognizes
that for IoT, the in situ requirements defined by individual deployments
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should allow the same set of microservices that comprise an application
to be deployed in different configurations without the need for recoding or
developer intervention.
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