
UCSB Technical Report 2016-10

University of California
Santa Barbara

Governance of Cloud-hosted Web Applications

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Hiranya K. Jayathilaka

Committee in charge:

Professor Chandra Krintz, Chair
Professor Rich Wolski
Professor Tevfik Bultan

December 2016

The Dissertation of Hiranya K. Jayathilaka is approved.

Professor Rich Wolski

Professor Tevfik Bultan

Professor Chandra Krintz, Committee Chair

December 2016

Governance of Cloud-hosted Web Applications

Copyright c© 2016

by

Hiranya K. Jayathilaka

iii

Acknowledgements

My sincere gratitude goes out to my advisors Chandra Krintz, Rich Wolski and Tevfik

Bultan, whose guidance has been immensely helpful to me during my time at graduate

school. They are some of the most well informed and innovative people I know, and I

consider it both an honor and a privilege to have had the opportunity to work under

their tutelage.

I also thank my wonderful parents, whose love and continued support have been the

foundation of my life. Thank you for the values you have instilled in me, and giving me

courage to face all sorts of intellectual and emotional challenges.

I am also grateful to all my teachers and mentors from the past, who generously

shared their knowledge and experiences with me. My special thanks go out to Sanjiva

Weerawarana whose intelligence and leadership skills inspire me to be better at my work

everyday.

Finally, I thank the amazing faculty, staff and the community at UC Santa Barbara,

whose smiles and positive attitude have made my life so much easier and exciting. I

especially like to mention my colleagues at the RACELab, both present and past, for all

the intellectual stimulation as well as their warm sense of friendship.

Thank you, and Ayubowan!

iv

Curriculum Vitæ
Hiranya K. Jayathilaka

Education

2016 Ph.D. in Computer Science (Expected),
University of California, Santa Barbara, United States.

2009 B.Sc. Engineering (Hons) Degree,
University of Moratuwa, Sri Lanka.

Publications

Service-Level Agreement Durability for Web Service Response Time
H. Jayathilaka, C. Krintz, R. Wolski
International Conference on Cloud Computing Technology and Science (CloudCom),
2015.

Response time service level agreements for cloud-hosted web applications
H. Jayathilaka, C. Krintz, and R. Wolski
ACM Symposium on Cloud Computing (SoCC), 2015.

EAGER: Deployment-Time API Governance for Modern PaaS Clouds
H. Jayathilaka, C. Krintz, and R. Wolski
IC2E Workshop on the Future of PaaS, 2015.

Using Syntactic and Semantic Similarity of Web APIs to Estimate Porting Effort
H. Jayathilaka, A. Pucher, C. Krintz, and R. Wolski
International Journal of Services Computing (IJSC), 2014.

Towards Automatically Estimating Porting Effort between Web Service APIs
H. Jayathilaka, C. Krintz, and R. Wolski
International Conference on Services Computing (SCC), 2014.

Cloud Platform Support for API Governance
C. Krintz, H. Jayathilaka, S. Dimopoulos, A. Pucher, R. Wolski, and T. Bultan
IC2E Workshop on the Future of PaaS, 2014.

Service-driven Computing with APIs: Concepts, Frameworks and Emerging Trends
H. Jayathilaka, C. Krintz, and R. Wolski
IGI Global Handbook of Research on Architectural Trends in Service-driven Computing,

v

2014.

Improved Server Architecture for Highly Efficient Message Mediation
H. Jayathilaka, P. Fernando, P. Fremantle, K. Indrasiri, D. Abeyruwan, S. Kamburuga-
muwa, S. Jayasumana, S. Weerawarana and S. Perera
International Conference on Information Integration and Web-based Applications and
Services (IIWAS), 2013.

Extending Modern PaaS Clouds with BSP to Execute Legacy MPI Applications
H. Jayathilaka and M. Agun
ACM Symposium on Cloud Computing (SoCC), 2013.

vi

Abstract

Governance of Cloud-hosted Web Applications

by

Hiranya K. Jayathilaka

Cloud computing has revolutionized the way developers implement and deploy ap-

plications. By running applications on large-scale compute infrastructures and program-

ming platforms that are remotely accessible as utility services, cloud computing provides

scalability, high-availability, and increased user productivity.

Despite the advantages inherent to the cloud computing model, it has also given rise

to several software management and maintenance issues. Specifically, cloud platforms

do not enforce developer best practices, and other administrative requirements when

deploying applications. Cloud platforms also do not facilitate establishing service level

objectives (SLOs) on application performance, which are necessary to ensure reliable and

consistent operation of applications. Moreover, cloud platforms do not provide adequate

support to monitor the performance of deployed applications, and conduct root cause

analysis when an application exhibits a performance anomaly.

We employ governance as a methodology to address the above mentioned issues preva-

lent in cloud platforms. We devise novel governance solutions that achieve administrative

conformance, developer best practices, and performance SLOs in the cloud via policy en-

forcement, SLO prediction, performance anomaly detection and root cause analysis. The

proposed solutions are fully automated, and built into the cloud platforms as cloud-native

features thereby precluding the application developers from having to implement similar

features by themselves. We evaluate our methodology using real world cloud platforms,

and show that our solutions are highly effective and efficient.

vii

Contents

Curriculum Vitae v

Abstract vii

1 Introduction 1

2 Background 8
2.1 Cloud Computing . 8
2.2 Platform-as-a-Service Clouds . 10

2.2.1 PaaS Architecture . 11
2.2.2 PaaS Usage Model . 13

2.3 Governance . 15
2.3.1 IT and SOA Governance . 15
2.3.2 Governance for Cloud-hosted Applications 17
2.3.3 API Governance . 19

3 Governance of Cloud-hosted Applications Through Policy Enforcement 21
3.1 Enforcing API Governance in Cloud Settings 26
3.2 EAGER . 29

3.2.1 Metadata Manager . 32
3.2.2 API Deployment Coordinator . 33
3.2.3 EAGER Policy Language and Examples 35
3.2.4 API Discovery Portal . 41
3.2.5 API Gateway . 42

3.3 Prototype Implementation . 43
3.3.1 Auto-generation of API Specifications 44
3.3.2 Implementing the Prototype . 45

3.4 Experimental Results . 45
3.4.1 Baseline EAGER Overhead by Application 47
3.4.2 Impact of Number of APIs and Dependencies 48
3.4.3 Impact of Number of Policies . 50

viii

3.4.4 Scalability . 52
3.4.5 Experimental Results with a Real-World Dataset 53

3.5 Related Work . 56
3.6 Conclusions and Future Work . 58

4 Response Time Service Level Objectives for Cloud-hosted Web Appli-
cations 60
4.1 Domain Characteristics and Assumptions 65
4.2 Cerebro . 70

4.2.1 Static Analysis . 71
4.2.2 PaaS Monitoring Agent . 72
4.2.3 Making SLO Predictions . 73
4.2.4 Example Cerebro Workflow . 75
4.2.5 SLO Durability . 78
4.2.6 SLO Reassessment . 79

4.3 Experimental Results . 80
4.3.1 Correctness of Predictions . 81
4.3.2 Tightness of Predictions . 85
4.3.3 SLO Validity Duration . 88
4.3.4 Long-term SLO Durability and Change Frequency 91
4.3.5 Effectiveness of QBETS . 98
4.3.6 Learning Duration . 101

4.4 Related Work . 102
4.5 Conclusions and Future Work . 106

5 Performance Anomaly Detection and Root Cause Analysis for Cloud-
hosted Web Applications 110
5.1 Performance Debugging Cloud Applications 115
5.2 Roots . 116

5.2.1 Data Collection and Correlation 117
5.2.2 Data Storage . 120
5.2.3 Data Analysis . 120
5.2.4 Roots Process Management . 122

5.3 Prototype Implementation . 123
5.3.1 SLO-violating Anomalies . 125
5.3.2 Path Distribution Analysis . 127
5.3.3 Workload Change Analyzer . 128
5.3.4 Bottleneck Identification . 129

5.4 Results . 132
5.4.1 Anomaly Detection: Accuracy and Speed 133
5.4.2 Path Distribution Analyzer: Accuracy and Speed 135
5.4.3 Workload Change Analyzer Accuracy 137

ix

5.4.4 Bottleneck Identification Accuracy 138
5.4.5 Multiple Applications in a Clustered Setting 142
5.4.6 Results Summary . 143
5.4.7 Roots Performance and Scalability 143

5.5 Related Work . 147
5.6 Conclusions and Future Work . 150

6 Conclusion 153

Bibliography 159

x

Chapter 1

Introduction

Cloud computing turns compute infrastructures, programming platforms and software

systems into online utility services that can be easily shared among many users [1, 2]. It

enables processing and storing data on large, managed infrastructures and programming

platforms, that can be accessed remotely via the internet. This provides an alternative to

running applications on local servers, personal computers, and mobile devices, all of which

have strict resource constraints. Today, cloud computing technologies can be obtained

from a large and growing number of providers. Some of these providers offer hosted cloud

platforms that can be used via the web to deploy applications without installing any

physical hardware (e.g. Amazon AWS [3], Google App Engine [4], Microsoft Azure [5]).

Others provide cloud technologies as downloadable software, which users can install on

their computers or data centers to set up their own private clouds (e.g. Eucalyptus [6],

AppScale [7], OpenShift [8]).

Cloud computing model provides high scalability, high availability and enhanced levels

of user productivity. Cloud platforms run on large resource pools, typically in one or more

data centers managed by the platform provider. Therefore cloud platforms have access to

a vast amount of hardware and software resources. This enables cloud-hosted applications

1

Introduction Chapter 1

to scale to varying load conditions, and maintain high availability. Moreover, by offering

resources as utility services, cloud computing is able to facilitate a cost-effective, on-

demand resource provisioning model that greatly enhances user productivity.

Over the last decade cloud computing technologies have enjoyed explosive growth,

and near universal adoption due to their many benefits and promises [9, 10]. Industry

analysts project that the cloud computing market value will exceed $150 billion by the

year 2020 [11]. A large number of organizations run their entire business as a cloud-

based operation (e.g. Netflix, Snapchat). For startups and academic researchers who do

not have a large IT budget or a staff, the cost-effective on-demand resource provisioning

model of the cloud has proved to be indispensable. The growing number of academic

conferences and journals dedicated to discussing cloud computing is further evidence that

cloud is an essential branch in the field of computer science.

Despite its many benefits, cloud computing has also given rise to several application

development and maintenance challenges that have gone unaddressed for many years.

As the number of applications deployed in cloud platforms continue to increase these

shortcoming are rapidly becoming conspicuous. We highlight three such issues.

Firstly, cloud platforms lack the ability to enforce developer best practices and ad-

ministrative conformance on deployed user applications. The developer best practices

are the result of decades of software engineering research, and include code reuse, proper

versioning of software artifacts, dependency management between application compo-

nents, and backward compatible software updates. Administrative conformance refers

to complying with various development and maintenance standards that an organization

may wish to impose on all of their production software. Cloud platforms do not provide

any facilities that enforce such developer practices or administrative standards. Instead,

cloud platforms make it extremely trivial and quick to deploy new applications or update

existing applications (i.e. roll out new versions). The resulting speed-up of the devel-

2

Introduction Chapter 1

opment cycles combined with the lack of oversight and verification, makes it extremely

difficult for IT personnel to manage large volumes of cloud-hosted applications.

Secondly, today’s cloud platforms do not provide support for establishing service level

objectives (SLOs) regarding the performance of deployed applications. A performance

SLO specifies a bound on application’s response time (latency). Such bounds are vital

for developers who implement downstream systems that consume the cloud-hosted ap-

plications, and cloud administrators who wish to maintain a consistent quality of service

level. However, when an application is implemented for a cloud platform, one must sub-

ject it to extensive performance testing in order to comprehend its performance bounds;

a process that is both tedious and time consuming. The difficulty in understanding the

performance bounds of cloud-hosted applications is primarily due to the very high level

of abstraction provided by the cloud platforms. These abstractions shield many details

concerning the application runtime, and without visibility into such low level application

execution details it is impossible to build a robust performance model for a cloud-hosted

application. Due to this reason, it is not possible to stipulate SLOs on the performance

of cloud-hosted applications. Consequently, existing cloud platforms only offer SLOs

regarding service availability.

Thirdly, cloud platforms do not provide adequate support for monitoring application

performance, and running diagnostics when an application fails to meet its performance

SLOs. Most cloud platforms only provide the simplest monitoring and logging features,

and do not provide any mechanisms for detecting performance anomalies or identifying

bottlenecks in the application code or the underlying cloud platform. This limitation has

given rise to a new class of third party service providers that specialize in monitoring

cloud applications (e.g. New Relic [12], Dynatrace [13], Datadog [14]). But these third

party solutions are expensive. They also require code instrumentation, which if not done

correctly, leads to incorrect diagnoses. The perturbation introduced by the instrumen-

3

Introduction Chapter 1

tation also changes and degrades application performance. Furthermore, the extrinsic

monitoring systems have a restricted view of the cloud platform, due to the high level

of abstraction provided by cloud platform software. Therefore they cannot observe the

complexity of the cloud platform in full, and hence cannot pinpoint the component that

might be responsible for a perceived application performance anomaly.

In order to make the cloud computing model more dependable, maintainable and

convenient for the users as well as the cloud service providers, the above limitations need

to be addressed satisfactorily. Doing so will greatly simplify the tasks of developing cloud

applications, and maintaining them in the long run. Developers will be able to specify

SLOs on the performance of their cloud-hosted applications, and offer competitive service

level agreements (SLAs) to the end users that consume those applications. Developers

as well as cloud administrators will be able to detect performance anomalies promptly,

and take corrective actions before the issues escalate to major outages or other crises.

Our research focuses on addressing the above issues in cloud environments using

governance. We define governance as the mechanism by which the acceptable operational

parameters are specified and maintained in a software system [15, 16]. This involves

multiple steps:

• Specifying the acceptable operational parameters

• Enforcing the specified parameters

• Monitoring the system to detect deviations from the acceptable behavior

To learn the feasibility and the efficacy of applying governance techniques in a cloud

platform, we propose and explore the following thesis question: Can we efficiently enforce

governance for cloud-hosted web applications to achieve administrative conformance, de-

veloper best practices, and performance SLOs through automated analysis and diagnos-

tics?

4

Introduction Chapter 1

For governance to be useful within the context of cloud computing, it must be both

efficient and automated. Cloud platforms are comprised of many components that have

different life cycles and maintenance requirements. They also serve a very large number

of users who deploy applications in the cloud. Therefore governance systems designed

for the cloud should scale to handle a large number of applications and related software

components, without introducing a significant runtime overhead on them. Also they must

be fully automated since it is not practical for a human administrator to be involved in

the governance process given the scale of the cloud platforms.

Automated governance for software systems is a well researched area, especially in

connection with classic web services and service-oriented architecture (SOA) applica-

tions [16, 17, 18, 19, 20]. We adapt the methodologies outlined in the existing SOA

governance research corpus, so they can be applied to cloud computing systems. These

methodologies enable specifying acceptable behavior via machine readable policies, which

are then automatically enforced by a policy enforcement agent. Monitoring agents watch

the system to detect any deviations from the acceptable behavior (i.e. policy violations),

and alert users or follow predefined corrective procedures. We can envision similar fa-

cilities being implemented in a cloud platform to achieve administrative conformance,

developer best practices and performance SLOs. The operational parameters in this case

may include coding and deployment conventions for the cloud-hosted applications, and

their expected performance levels.

In order to answer the above thesis question by developing efficient, automated gov-

ernance systems, we take the following three-step approach.

• Design and implement a scalable, low-overhead governance framework for cloud

platforms, complete with a policy specification language and a policy enforcer. The

governance framework should be built into the cloud platforms, and must keep the

5

Introduction Chapter 1

runtime overhead of the user applications to a minimum while enforcing developer

best practices and administrative conformance.

• Design and implement a methodology for formulating performance SLOs (bounds)

for cloud-hosted web applications, without subjecting them to extensive perfor-

mance testing or instrumentation. The formulated SLOs must be correct, tight

and durable in the face of changing conditions of the cloud.

• Design and implement a scalable cloud application performance monitoring (APM)

framework for detecting violations of performance SLOs. For each violation de-

tected, the framework should be able to run diagnostics, and identify the potential

root cause. It should support collecting data from the cloud platform without

instrumenting user code, and without introducing significant runtime overheads.

To achieve administrative conformance and developer best practices with minimal

overhead, we perform governance policy enforcement when an application is deployed; a

technique that we term deployment-time policy enforcement. We explore the trade off

between what policies can be enforced, and when they can be enforced with respect to

the life cycle of a cloud-hosted application. We show that not all policies are enforceable

at deployment-time, and therefore some support for run-time policy enforcement is also

required in the cloud. However, we find that deployment-time policy enforcement is

efficient, and a governance framework that performs most, if not all, enforcement tasks

at deployment-time can scale to thousands of applications and policies.

We combine static analysis with platform monitoring to establish performance SLOs

for cloud-hosted applications. Static analysis extracts the sequence of critical operations

(cloud services) invoked by a given application. Platform monitoring facilitates con-

structing a historic performance model for the individual operations. We then employ a

time series analysis method to combine these results, and calculate statistical bounds for

6

Introduction Chapter 1

application response time. The performance bounds calculated in this manner are asso-

ciated with a specific correctness probability, and hence can be used as SLOs. We also

devise a statistical framework to evaluate the validity period of calculated performance

bounds.

In order to detect and diagnose performance SLO violations, we monitor various per-

formance events that occur in the cloud platform, correlate them, and employ statistical

analysis to identify anomalous patterns. Any given statistical method is only sensitive

to a certain class of anomalies. Therefore, to be able to diagnose a wide range of perfor-

mance anomalies, we devise an algorithm that combines linear regression, change point

detection and quantile analysis. Our approach detects performance SLO violations in

near real time, and identifies the root cause of each event as a workload change or a

performance bottleneck in the cloud platform. In case of performance bottlenecks, our

approach also correctly identifies the exact component in the cloud platform, in which

the bottleneck manifested.

Our contributions push the state of the art in cloud computing significantly towards

achieving administrative conformance, developer best practices and performance SLOs.

Moreover, our work addresses all the major steps associated with software system gov-

ernance – specification, enforcement and monitoring. We show that this approach can

significantly improve cloud platforms in terms of their reliability, developer-friendliness

and ease of management. We also demonstrate that the governance capabilities proposed

in our work can be built into existing cloud platforms, without having to implement them

from the scratch.

7

Chapter 2

Background

2.1 Cloud Computing

Cloud computing is a form of distributed computing that turns compute infrastruc-

ture, programming platforms and software systems into scalable utility services [1, 2].

By exposing various compute and programming resources as utility services, cloud com-

puting promotes resource sharing at scale via the Internet. The cloud model precludes

the users from having to set up their own hardware, and in some cases also software.

Instead, the users can simply acquire the resources “in the cloud” via the internet, and

relinquish them when the resources are no longer needed. The cloud model also does

not require the users to spend any start up capital. The users only have to pay for the

resources they acquired, usually based on a pay-per-use billing model. Due to these ben-

efits associated with cloud computing, many developers and organizations use the cloud

as their preferred means of developing and deploying software applications [9, 10, 11].

Depending on the type of resources offered as services, cloud computing platforms

can be categorized into three main categories [2].

Infrastructure-as-a-Service clouds (IaaS) Offers low-level compute, storage and net-

8

Background Chapter 2

working resources as a service. Compute resources are typically provided in the form

of on-demand virtual machines (VMs) with specific CPU, memory and disk config-

urations (e.g. Amazon EC2 [21], Google Compute Engine [22], Eucalyptus [23]).

The provisioned VMs usually come with a base operating system installed. The

users must install all the application software necessary to use them.

Platform-as-a-Service clouds (PaaS) Offers a programming platform as a service,

that can be used to develop and deploy applications at scale (e.g. Google App

Engine [4], AppScale [7], Heroku [24], Amazon Elastic Beanstalk [25]). The pro-

gramming platform consists of several scalable services that can be used to obtain

certain application features such as data storage, caching and authentication.

Software-as-a-Service clouds (SaaS) Offers a collection of software applications and

tools as a service, that can be directly consumed by application endusers (e.g.

Salesforce [26], Workday [27], Citrix go2meeting [28]). This can be thought of as

a new way of delivering software to endusers. Instead of prompting the users to

download and install any software, SaaS enables the users to consume software via

the Internet.

Cloud-hosted applications expose one or more web application programming inter-

faces (web APIs) through which client programs can remotely interact with the applica-

tions. That is, clients send HTTP/S requests to the API, and receive machine readable

responses (e.g. HTML, JSON, XML, Protocol Buffers [29]) in return. This type of web-

accessible, cloud-hosted applications tend to be highly interactive, and clients have strict

expectations on the application response time [30].

A cloud-hosted application may also consume web APIs exposed by other cloud-

hosted applications. Thus, cloud-hosted applications form an intricate graph of inter-

dependencies among them, where each application can service a set of client applications,

9

Background Chapter 2

while being dependent on a set of other applications. However, in general, each cloud-

hosted application directly depends on the core services offered by the underlying cloud

platform for compute power, storage, network connectivity and scalability.

In the next section we take a closer look at a specific type of cloud platforms –

Platform-as-a-Service clouds. We use PaaS clouds as a case study and a testbed in a

number of our explorations.

2.2 Platform-as-a-Service Clouds

PaaS clouds, which have been growing in popularity [31, 32], typically host web-

accessible (HTTP/S) applications, to which they provide high levels of scalability, avail-

ability, and sandboxed execution. PaaS clouds provide scalability by automatically allo-

cating resources for applications on the fly (auto scaling), and provide availability through

the execution of multiple instances of the application. Applications deployed on a PaaS

cloud depend on a number of scalable services intrinsic to the cloud platform. We refer

to these services as kernel services.

PaaS clouds, through their kernel services, provide a high level of abstraction to the

application developer that effectively hides all the infrastructure-level details such as

physical resource allocation (CPU, memory, disk etc), operating system, and network

configuration. Moreover, PaaS clouds do not require the developers to set up any util-

ity services their applications might require such as a database or a distributed cache.

Everything an application requires is provisioned and managed by the PaaS cloud. This

enables application developers to focus solely on the programming aspects of their appli-

cations, without having to be concerned about deployment issues. On the other hand,

the software abstractions provided by PaaS clouds obscure runtime details of applications

making it difficult to reason about application performance, and diagnose performance

10

Background Chapter 2

Figure 2.1: PaaS system organization.

issues.

PaaS clouds facilitate deploying and running applications that are directly consumed

by human users and other client applications. As a result all the problems outlined

in the previous chapter, such as poor development practices, lack of performance SLOs,

and lack of performance debugging support directly impact PaaS clouds. Therefore PaaS

clouds are ideal candidates for implementing the type of governance systems proposed in

this work.

2.2.1 PaaS Architecture

Figure 2.1 shows the key layers of a typical PaaS cloud. Arrows indicate the flow

of data and control in response to application requests. At the lowest level of a PaaS

cloud is an infrastructure that consists of the necessary compute, storage and networking

resources. How this infrastructure is set up may vary from a simple cluster of physical

machines to a comprehensive Infrastructure-as-a-Service (IaaS) cloud. In large scale PaaS

11

Background Chapter 2

clouds, this layer typically consists of many virtual machines and/or containers with the

ability to acquire more resources on the fly.

On top of the infrastructure layer lies the PaaS kernel – a collection of managed, scal-

able services that high-level application developers can compose into their applications.

The provided kernel services may include database services, caching services, queuing

services and more. The implementations of the kernel services are highly scalable, highly

available (have SLOs associated with them), and automatically managed by the plat-

form while being completely opaque to the application developers. Some PaaS clouds

also provide a managed set of programming APIs (a “software development kit” or SDK)

for the application developer to access these kernel services. In that case all interactions

between the applications and the PaaS kernel must take place through the cloud provider

specified SDK (e.g. Google App Engine [4], Microsoft Azure [33]).

One level above the PaaS kernel reside the application servers that are used to deploy

and run applications. Application servers provide the necessary integration (linkage)

between application code and the PaaS kernel services, while sandboxing application code

for secure, multi-tenant execution. They also enable horizontal scaling of applications by

running the same application on multiple application server instances.

The front-end and load balancing layer resides on top of the application servers layer.

This layer is responsible for receiving all application requests, filtering them, and routing

them to an appropriate application server instance for further execution. Front-end server

is therefore the entry point for PaaS-hosted applications for all application clients.

Each of the above layers can span multiple processes, running over multiple physical

or virtual machines. Therefore processing a single application request typically involves

cooperation of multiple distributed processes and/or machines.

12

Background Chapter 2

Figure 2.2: Applications deployed in a PaaS cloud: (a) An external client making
requests to an application via the web API; (b) A PaaS-hosted application invoking
another in the same cloud.

2.2.2 PaaS Usage Model

Three types of users interact with PaaS clouds.

Cloud administrators These are the personnel responsible for installing and maintain-

ing the cloud platform software. They are always affiliated with the cloud platform

provider.

Application developers These are the users who develop applications, and deploy

them in the PaaS cloud.

Application clients These are the users that consume the applications deployed in a

PaaS cloud. These include human users as well as other client applications that

programmatically access PaaS-hosted applications.

Depending on how a particular PaaS cloud is set up (e.g. private or public cloud), the

above three user groups may belong to the same or multiple organizations.

13

Background Chapter 2

Figure 2.2 illustrates how the application developers interact with PaaS clouds. The

cloud platform provides a set of kernel services. The PaaS SDK provides well defined

interfaces (entry points) for these kernel services. The application developer uses the

kernel services via the SDK to implement his/her application logic, and packages it as a

web application. Developers then upload their applications to the cloud for deployment.

Once deployed, the applications and any web APIs exported by them can be accessed

via HTTP/S requests by external or co-located clients.

PaaS-hosted applications are typically developed and tested outside the cloud (on a

developer’s workstation), and then later uploaded to the cloud. Therefore PaaS-hosted

applications typically undergo three phases during their life-cycle:

Development-time The application is being developed and tested on a developer’s

workstation

Deployment-time The finished application is being uploaded to the PaaS cloud for

deployment

Run-time Application is running, and processing user requests

We explore ways to use these different phases to our advantage in order to minimize the

governance overhead on running applications.

We use PaaS clouds in our research extensively both as case studies and experimental

platforms. Specifically, we use Google App Engine and AppScale as test environments

to experiment with our new governance systems. App Engine is a highly scalable public

PaaS cloud hosted and managed by Google in their data centers. While it is open for

anyone to deploy and run web applications, it is not open source software, and its internal

deployment details are not commonly known. AppScale is open source software that can

be used to set up a private cloud platform on one’s own physical or virtual hardware.

14

Background Chapter 2

AppScale is API compatible with App Engine (i.e. it supports the same cloud SDK),

and hence any web application developed for App Engine can be deployed on AppScale

without any code changes. In our experiments, we typically deploy AppScale over a small

cluster of physical machines, or over a set of virtual machines provided by an IaaS cloud

such as Eucalyptus.

By experimenting with real world PaaS clouds we demonstrate the practical feasibil-

ity and the effectiveness of the systems we design and implement. Furthermore, there are

currently over a million applications deployed in App Engine, with a significant propor-

tion of them being open source applications. Therefore we have access to a large number

of real world PaaS applications to experiment with.

2.3 Governance

2.3.1 IT and SOA Governance

Traditionally, information and technology (IT) governance [15] has been a branch of

corporate governance, focused on improving performance and managing the risks associ-

ated with the use of IT. A number of frameworks, models and even certification systems

have emerged over time to help organizations implement IT governance [34, 35]. The

primary goals of IT governance are three fold.

• Assure that the use of IT generates business value

• Oversee performance of IT usage and management

• Mitigate the risks of using IT

When the software engineering community started gravitating towards web services

and service-oriented computing (SOC) [36, 37, 38], a new type of digital assets rose to

15

Background Chapter 2

prominence within corporate IT infrastructures – “services”. A service is a self-contained

entity that logically represents a business activity (a functionality; e.g. user authenti-

cation, billing, VM management) while hiding its internal implementation details from

the consumers [37]. Compositions of loosely-coupled, reusable, modular services soon

replaced large monolithic software installations.

Services required new forms of governance for managing their performance and risks,

and hence the notion of service-oriented architecture (SOA) governance came into exis-

tence [16, 17]. Multiple definitions of SOA governance are in circulation, but most of

them agree that the purpose of SOA governance is to exercise control over services and

associated processes (service development, testing, monitoring etc). A commonly used

definition of SOA governance is ensuring and validating that service artifacts within the

architecture are operating as expected, and maintaining a certain level of quality [16].

Consequently, a number of tools that help organizations implement SOA governance have

also evolved [18, 20, 39, 19]. Since web services are the most widely used form of ser-

vices in SOA-driven systems, most of these SOA governance tools have a strong focus on

controlling web services [40].

Policies play a crucial role in all forms of governance. A policy is a specification

of the acceptable behavior and the life cycle of some entity. The entity could be a

department, a software system, a service or a human process such as developing a new

application. In SOA governance, policies state how services should be developed, how

they are to be deployed, how to secure them, and what level of quality of service to

maintain while a service is in operation. SOA governance tools enable administrators

to specify acceptable service behavior and life cycle as policies, and a software policy

enforcement agent automatically enacts those policies to control various aspects of the

services [41, 42, 43].

16

Background Chapter 2

2.3.2 Governance for Cloud-hosted Applications

Cloud computing can be thought of as a heightened version of service-oriented com-

puting. While classic SOC strives to offer data and application functionality as services,

cloud computing offers a variety of computing resources as services, including hardware

infrastructure (compute power, storage space and networking) and programming plat-

forms. Moreover, the applications deployed on cloud platforms typically behave like

services with separate implementation and interface components. Much like classic ser-

vices, each cloud-hosted application can be a dependency for another co-located cloud

application, or a client application running elsewhere (e.g. a mobile app).

Due to this resemblance, we argue that many concepts related to SOA governance

are directly applicable to cloud platforms and cloud-hosted applications. We extend

the definition of SOA governance, and define governance for cloud-hosted applications

as the process of ensuring that the cloud-hosted applications operate as expected while

maintaining a certain quality of service level.

Governance is a broad topic that allows room for many potential avenues of research.

In our work we explore three specific features of governance as they apply to cloud-hosted

applications.

Policy enforcement Policy enforcement refers to ensuring that all applications de-

ployed in a cloud platform adhere to a set of policies specified by a cloud adminis-

trator. Some of these policies include specific dependency management practices,

naming and packaging standards for software artifacts, software versioning require-

ments, and practices that enable software artifacts to evolve while maintaining

backward compatibility. Others specify run-time constraints, which need to be

enforced per application request.

Formulating performance SLOs This refers to automatic formulation of statistical

17

Background Chapter 2

bounds on the performance of cloud-hosted web applications. A service level ob-

jective (SLO) specifies a system’s minimum quality of service (QoS) level in a

measurable and controllable manner [44]. They may cover various QoS parameters

such as availability, response time (latency), and throughput. A performance SLO

specifies an upper bound on the application’s response time, and the likelihood that

bound is valid. Cloud administrators and application developers use performance

SLOs to negotiate service level agreements (SLAs) with clients, and monitor appli-

cations for consistent operation. Clients use them to reason about the performance

of downstream applications that depend on cloud-hosted applications.

Application performance monitoring Application performance monitoring (APM)

refers to continuously monitoring cloud-hosted applications to detect violations of

performance SLOs and other performance anomalies. It also includes diagnosing

the root cause of each detected anomaly, thereby expediting remediation. This

feature is useful for cloud administrators, application developers and clients alike.

None of the above features are implemented satisfactorily in the cloud technologies

available today. In order to fill the gaps caused by these limitations, many third-party

governance solutions that operate as external services have come into existence. For ex-

ample, services like 3Scale [45], Apigee [46] and Layer7 [47] provide a wide range of access

control and API management features for web applications served from cloud platforms.

Similarly, services like New Relic [12], Dynatrace [13] and Datadog [14] provide monitor-

ing support for cloud-hosted applications. But these services are expensive, and require

additional programming and/or configuration. Some of them also require changes to

applications in the form of code instrumentation. Moreover, since these services operate

outside the cloud platforms they govern, they have limited visibility and control over the

applications and related components residing in the cloud. A goal of our research is to

18

Background Chapter 2

facilitate governance from within the cloud, as an automated, cloud-native feature. We

show that such built-in governance capabilities are more robust, effective and easy to use

than external third-party solutions that overlay governance on top of the cloud.

2.3.3 API Governance

A cloud-hosted application is comprised of two parts – implementation and interface.

The implementation contains the functionality of the application. It primarily consists

of code that implements various application features. The interface, which abstracts

and modularizes the implementation details of an application while making it network-

accessible, is often referred to as a web API (or API in short). The API enables remote

users and client applications to interact with the application by sending HTTP/S re-

quests. The responses generated by an API could be based on HTML (for display on

a web browser), or they could be based on a data format such as XML or JSON (for

machine-to-machine interaction). Regardless of the technology used to implement an

API, it is the part of the application that is visible to the remote clients.

Developers today increasingly depend on the functionality of already existing web

applications in the cloud, which are accessible through their interfaces (APIs). Thus, a

modern application often combines local program logic with calls to remote web APIs.

This model significantly reduces both the programming and the maintenance workload

associated with applications. In theory, because the APIs interface to software that is

curated by cloud providers, the client application leverages greater scalability, perfor-

mance, and availability in the implementations it calls upon through these APIs, than

it would if those implementations were local to the client application (e.g. as locally

available software libraries). Moreover, by accessing shared web applications, developers

avoid “re-inventing the wheel” each time they need a commonly available application

19

Background Chapter 2

feature. The scale at which clouds operate ensures that the APIs can support the large

volume of requests generated by the ever-growing client population.

As a result, web-accessible APIs and the software applications to which they provide

access are rapidly proliferating. At the time of this writing, ProgrammableWeb [48], a

popular web API index, lists more than 15, 000 publicly available web APIs, and a nearly

100% annual growth rate [49]. These APIs increasingly employ the REST (Represen-

tational State Transfer) architectural style [50], and many of them target commercial

applications (e.g. advertising, shopping, travel, etc.). However, several non-commercial

entities have also recently published web APIs, e.g. IEEE [51], UC Berkeley [52], and

the US White House [53].

This proliferation of web APIs in the cloud demands new techniques that automate

the maintenance and evolution of APIs as a first-class software resource – a notion that we

refer to as API governance [54]. API management in the form of run-time mechanisms to

implement access control is not new, and many good commercial offerings exist today [45,

46, 47]. However, API governance – consistent, generalized, policy implementation across

multiple APIs in an administrative domain – is a new area of research made poignant by

the emergence of cloud computing.

We design governance systems targeting the APIs exposed by the cloud-hosted web

applications. We facilitate configuring and enforcing policies at the granularity of APIs.

Similarly, we design systems that stipulate performance SLOs for individual APIs, and

monitor them as separate independent entities.

20

Chapter 3

Governance of Cloud-hosted

Applications Through Policy

Enforcement

In this chapter we discuss implementing scalable, automated API governance through

policy enforcement for cloud-hosted web applications. A lack of API governance can lead

to many problems including security breaches, poor code reuse, violation of service-level

objectives (SLOs), naming and branding issues, and abuse of digital assets by the API

consumers. Unfortunately, most existing cloud platforms within which web APIs are

hosted provide only minimal governance support; e.g. authentication and authorization.

These features are important to policy implementation since governance often requires

enforcement of access control on APIs. However, developers are still responsible for im-

plementing governance policies that combine features such as API versioning, dependency

management, and SLO enforcement as part of their respective applications.

Moreover, today’s cloud platforms require that each application implements its own

governance. There is no common, built-in system that enables cloud administrators to

21

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

specify policies, which are automatically enforced on applications and their APIs. As a

result, the application developers must be concerned with development issues (correct and

efficient programming of application logic), as well as governance issues (administrative

control and management) when implementing applications for the cloud.

Existing API management solutions [45, 46, 47] typically operate as external stand-

alone services that are not integrated with the cloud. They do attempt to address gov-

ernance concerns beyond mere access control. However, because they are not integrated

within the cloud platform, their function is advisory and documentarian. That is, they

do not possess the ability to implement full enforcement, and instead, alert operators to

potential issues without preventing non-compliant behavior. They are also costly, and

they can fail independently of the cloud, thereby affecting the scalability and availability

of the software that they govern. Finally, it is not possible for them to implement policy

enforcement at deployment-time – the phase of the software lifecycle during which an

API change or a new API is being put into service. Because of the scale at which clouds

operate, deployment-time enforcement is critical since it permits policy violations to be

remediated before the changes are put into production (i.e. before run-time).

Thus, our thesis is that governance must be implemented as a built-in, native cloud

service to overcome these shortcomings. That is, instead of an API management approach

that layers governance features on top of the cloud, we propose to provide API governance

as a fundamental service of the cloud platform. Cloud-native governance capabilities

• enable both deployment-time and run-time enforcement of governance policies as

part of the cloud platform’s core functionality,

• avoid inconsistencies and failure modes caused by integration and configuration of

governance services that are not end-to-end integrated within the cloud fabric itself,

• leverage already-present cloud functionality such as fault tolerance, high availability

22

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

and elasticity to facilitate governance, and

• unify a vast diversity of API governance features across all stages of the API lifecycle

(development, deployment, deprecation, retirement).

As a cloud-native functionality, such an approach also simplifies and automates the en-

forcement of API governance in the cloud. This in turns enables separation of governance

concerns from development concerns for both cloud administrators as well as cloud ap-

plication developers. The cloud administrators simply specify the policies, and trust

the cloud platform to enforce them automatically on the applications. The application

developers do not have to program any governance features into their applications, and

instead rely on the cloud platform to perform the necessary governance checks either

when the application is uploaded to the cloud, or when the application is being executed.

To explore the efficacy of cloud-integrated API governance, we have developed an

experimental cloud platform that supports governance policy specification, and enforce-

ment for the applications it hosts. EAGER – Enforced API Governance Engine for

REST – is a model and an architecture that is designed to be integrated within ex-

isting cloud platforms in order to facilitate API governance as a cloud-native feature.

EAGER enforces proper versioning of APIs and supports dependency management and

comprehensive policy enforcement at API deployment-time.

Using EAGER, we investigate the trade-offs between deployment-time policy enforce-

ment and run-time policy enforcement. Deployment-time enforcement is attractive for

several reasons. First, if only run-time API governance is implemented, policy violations

will go undetected until the offending APIs are used, possibly in a deep stack or call path

in an application. As a result, it may be difficult or time consuming to pinpoint the spe-

cific API and policy that are being violated (especially in a heavily loaded web service). In

these settings, multiple deployments and rollbacks may occur before a policy violation is

23

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

triggered making it difficult or impossible to determine the root cause of the violation. By

enforcing governance as much as possible at deployment-time, EAGER implements “fail

fast” in which violations are detected immediately making diagnosis and remediation less

complex. Further, from a maintenance perspective, the overall system is prevented from

entering a non-compliant state, which aids in the certification of regulatory compliance.

In addition, run-time governance typically implies that each API call will be intercepted

by a policy-checking engine that uses admission control, and an enforcement mechanism

creating scalability concerns. Because deployment events occur before the application

is executed, traffic need not be intercepted and checked “in flight”, thus improving the

scaling properties of governed APIs. However, not all governance policies can be imple-

mented strictly at deployment-time. As such, EAGER includes run-time enforcement

facilities as well. The goal of our research is to identify how to implement enforced API

governance most efficiently by combining deployment-time enforcement where possible,

and run-time enforcement where necessary.

EAGER implements policies governing the APIs that are deployed within a single

administrative domain (i.e. a single cloud platform). It treats APIs as first-class software

assets due to the following reasons.

• APIs are often longer lived than the individual clients that use them or the imple-

mentations of the services that they represent.

• APIs represent the “gateway” between software functionality consumption (API

clients and users) and service production (web service implementation).

EAGER acknowledges the crucial role APIs play by separating the API life cycle

management from that of the service implementations and the client users. It facilitates

policy definition and enforcement at the API level, thereby permitting the service and

client implementations to change independently without the loss of governance control.

24

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

EAGER further enhances software maintainability by guaranteeing that developers reuse

existing APIs when possible to create new software artifacts (to prevent API redundancy

and unverified API use). At the same time, it tracks changes made by developers to

already deployed web APIs to prevent any backwards-incompatible API changes from

being put into production.

EAGER includes a language for specifying API governance policies. The EAGER lan-

guage is distinct from existing policy languages like WS-Policy [55, 56] in that it avoids

the complexities of XML, and it incorporates a developer-friendly Python programming

language syntax for specifying complex policy statements in a simple and intuitive man-

ner. Moreover, we ensure that specifying the required policies is the only additional

activity that API providers should perform in order to use EAGER. All other API gov-

ernance related verification and enforcement work is carried out by the cloud platform

automatically.

To evaluate the feasibility and performance of the proposed architecture, we proto-

type the EAGER concepts in an implementation that extends AppScale [57], an open

source cloud platform that emulates Google App Engine [4]. We describe the implemen-

tation and integration as an investigation of the generality of the approach. By focusing

on deployment actions and run-time message checking, we believe that the integration

methodology will translate to other extant cloud platforms.

We further show that EAGER API governance and policy enforcement impose a

negligible overhead on the application deployment process, and the overhead is linear in

the number of APIs in the applications being validated. Finally, we show that EAGER

is able to scale to tens of thousands of deployed web APIs and hundreds of governance

policies.

In the sections that follow, we present some background on cloud-hosted APIs, and

overview the design and implementation of EAGER. We then empirically evaluate EA-

25

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

GER using a wide range of APIs and experiments. Finally, we discuss related work, and

conclude the chapter.

3.1 Enforcing API Governance in Cloud Settings

Software engineering best practices separate the service implementation from API,

both during development and maintenance. The service implementation and API are

integrated via a “web service stack” that implements functionality common to all web

services (message routing, request authentication, etc.). Because the API is visible to

external parties (i.e. clients of the services), any changes to the API impacts users and

client applications not under the immediate administrative control of the API provider.

For this reason, API features usually undergo long periods of “deprecation” so that in-

dependent clients of the services can have ample time to “migrate” to newer versions of

an API. On the other hand, technological innovations often prompt service reimplemen-

tation and/or upgrade to achieve greater cost efficiencies, performance levels, etc. Thus,

APIs typically have a more slowly evolving and longer lasting lifecycle than the service

implementations to which they provide access.

Modern computing clouds, especially clouds implementing some form of Platform-as-

a-Service (PaaS) [58], have accelerated the proliferation of web APIs and their use. Most

PaaS clouds [57, 59, 8] include features designed to ease the development and hosting of

web APIs for scalable use over the Internet. This phenomenon is making API governance

an absolute necessity in cloud environments.

In particular, API governance promotes code reuse among developers since each API

must be treated as a tracked and controlled software entity. It also ensures that software

users benefit from change control since the APIs they depend on change in a controlled

and non-disruptive manner. From a maintenance perspective, API governance makes it

26

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

possible to enforce best-practice coding procedures, naming conventions, and deployment

procedures uniformly. API governance is also critical to API lifecycle management – the

management of deployed APIs in response to new feature requests, bug fixes, and orga-

nizational priorities. API “churn” that results from lifecycle management is a common

phenomenon and a growing problem for web-based applications [60]. Without proper

governance systems to manage the constant evolution of APIs, API providers run the

risk of making their APIs unreliable while potentially breaking downstream applications

that depend on the APIs.

Unfortunately, most web technologies used to develop and host web APIs do not

provide API governance facilities. This missing functionality is especially glaring for

cloud platforms that are focused on rapid deployment of APIs at scale. Commercial

pressures frequently prioritize deployment speed and scale over longer-term maintenance

considerations only to generate unanticipated future costs.

As a partial countermeasure, developers of cloud-hosted applications often undertake

additional tasks associated with implementing custom ad hoc governance solutions using

either locally developed mechanisms or loosely integrated third-party API management

services. These add-on governance approaches often fall short in terms of their consis-

tency and enforcement capabilities since by definition they have to operate outside the

cloud (either external to it or as another cloud-hosted application). As such, they do not

have the end-to-end access to all the metadata and cloud-internal control mechanisms

that are necessary to implement strong governance at scale.

In a cloud setting, enforcement of governance policies on APIs is a tradeoff between

what can be enforced, and when they are enforced. Performing policy enforcement at

application run-time provides full control over what can be enforced, since the policy en-

gine can intercept and control all operations and instructions executed by the application.

However, this approach is highly intrusive, which introduces complexity and performance

27

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

overhead. Alternatively, attempting to enforce policies prior to application’s execution

is attractive in terms of performance, but it necessarily limits what can be enforced. For

example, ensuring that an application does not connect to a specific network address

and/or port requires run-time traffic interception, typically by a firewall that is inter-

posed between the application and the offending network. Enforcing such a policy can

only be performed during run-time.

For policy implementation, often the additional complexities and overhead introduced

by run-time enforcement outweigh its benefits. For example, in an application that con-

sists of API calls to services that, in turn, make calls to other services, run-time policy

enforcement can make violations difficult to resolve, especially when the interaction be-

tween services is non-deterministic. When a specific violation occurs, it may be “buried”

in a lattice of API invocations that is complex to traverse, especially if the application

itself is designed to handle large-scale request traffic loads.

Ideally, then, enforcement takes place as non-intrusively as possible before the ap-

plication begins executing. In this way, a violation can be detected and resolved before

the API is used, thereby avoiding possible degradations in user-experience that run-time

checks and violations may introduce. The drawback of attempting to enforce all gov-

ernance before the application begins executing is that policies that express restrictions

only resolvable at run time cannot be implemented. Thus, for scalable applications that

use API calls internally in a cloud setting, an API governance approach should attempt

to implement as much as possible no later than deployment time, but must also include

some form of run-time enforcement.

Note that the most effective approach to implementing a specific policy may not

always be clear. For example, user authentication is usually implemented as a run-

time policy check for web services since users enter and leave the system dynamically.

However it is possible to check statically, at deployment time, whether the application

28

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

is consulting with a specific identity management service (accessed by a versioned API)

thereby enabling some deployment-time enforcement.

Thus, any efficient API governance solution for clouds must include the following

functionalities.

• Policy Specification Language – The system must include a way to specify

policies that can be enforced either at deployment-time (or sooner) or, ultimately

at run-time.

• API Specification Language – Policies must be able to refer to API functional-

ities to be able to express governance edicts for specific APIs or classes of APIs.

• Deployment-time Control – The system must be able to check policies no later

than the time that an application is deployed.

• Run-time Control – For policies that cannot be enforced before runtime, the

system must be able to intervene dynamically.

In addition, a good solution should automate as much of the implementation of API

governance as possible. Automation in a cloud context serves two purposes. First, it

enables scale by allowing potentially complex optimizations to be implemented reliably by

the system, and not by manual intervention. Secondly, automation improves repeatability

and auditability thereby ensuring greater system integrity.

3.2 EAGER

To experiment with API governance in cloud environments, we devise EAGER –

an architecture for implementing governance that is suitable for integration as a cloud-

native feature. EAGER leverages existing SOA governance techniques and best practices,

29

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

Figure 3.1: EAGER Architecture

and adapts them to make them suitable for cloud platform-level integration. In this

section, we overview the high-level design of EAGER, its main components, and the

policy language. Our design is motivated by two objectives. First, we wish to verify that

the integration among policy specification, API specification, deployment-time control,

and run-time control is feasible in a cloud setting. Secondly, we wish to use the design

as the basis for a prototype implementation that we could use to evaluate the impact of

API governance empirically.

EAGER is designed to be integrated with PaaS clouds. PaaS clouds accept code that

is then deployed within the platform so that it may make calls to kernel services offered

by the cloud platform, or other applications already deployed in the cloud platform via

their APIs. EAGER intercepts all events related to application deployment within the

cloud, and enforces governance checks at deployment-time. When a policy verification

check fails, EAGER aborts the deployment of the application, and logs the information

30

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

necessary to perform remediation. EAGER assumes that it is integrated with the cloud,

and that the cloud initiates in a policy compliant state (i.e. there are no policy violations

when the cloud is first launched before any applications are deployed). We use the term

“initiates” to differentiate the first clean launch of the cloud, from a platform restart.

EAGER must be able to maintain compliance across restarts, but it assumes that when

the cloud is first installed and suitably tested, it is in a policy compliant state. Moreover,

it maintains the cloud in a policy compliant state at all times. That is, with EAGER

active, the cloud is automatically prevented from transitioning out of policy compliance

due to a change in the applications it hosts.

Figure 3.1 illustrates the main components of EAGER (in blue), and their interac-

tions. Solid arrows represent the interactions that take place during application deployment-

time, before an application has been validated for deployment. Short-dashed arrows in-

dicate the interactions that take place during deployment-time, after an application has

been successfully validated. Long-dashed arrows indicate interactions at run-time. The

diagram also outlines the components of EAGER that are used to provide deployment-

time control and run-time control. Note that some components participate in interactions

related to both deployment and run-time control (e.g. metadata manager).

EAGER is invoked by the cloud whenever a user attempts to deploy an application

in the cloud. The cloud’s application deployment mechanisms must be altered so that

each deployment request is intercepted by EAGER, which then performs the required

governance checks. If a governance check fails, EAGER preempts the application deploy-

ment, logs relevant data pertaining to the event for later analysis, and returns an error.

Otherwise, it proceeds with the application deployment by activating the deployment

mechanisms on the user’s behalf.

Architecturally, the deployment action requires three inputs: the policy specification

governing the deployment, the application code to be deployed, and a specification of

31

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

the APIs that the application exports. EAGER assumes that cloud administrators have

developed and installed policies (stored in the metadata manager) that are to be checked

against all deployments. API specifications for the application must also be available to

the governance framework. Because the API specifications are to be derived from the

code (and are, thus, under developer control and not administrator control) our design

assumes that automated tools are available to perform analysis on the application, and

generate API specifications in a suitable API specification language. These specifications

must be present when the deployment request is considered by the platform. In the

prototype implementation described in section 3.3, the API specifications are generated

as part of the application development process (e.g. by the build system). They may also

be offered as a trusted service hosted in the cloud. In this case, developers will submit

their source code to this service, which will generate the necessary API specifications in

the cloud, and trigger the application deployment process via EAGER.

The proposed architecture does not require major changes to the existing components

of the cloud, since its deployment mechanisms are likely to be web service based. However,

EAGER does require integration at the platform level. That is, it must be a trusted

component in the cloud platform.

3.2.1 Metadata Manager

The metadata manager stores all the API metadata in EAGER. This metadata in-

cludes policy specifications, API names, versions, specifications and dependencies. It

uses the dependency information to compute the dependency tree among all deployed

APIs and applications. Additionally, the metadata manager also keeps track of develop-

ers, their subscriptions to various APIs, and the access credentials (API keys) issued to

them. For these purposes, the metadata manager must logically include both a database,

32

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

and an identity management system.

The metadata manager is exposed to other components through a well defined web

service interface. This interface allows querying existing API metadata and updating

them. In the proposed model, the stored metadata is updated occasionally – only when a

new application is deployed or when a developer subscribes to a published API. Therefore

the Metadata Manager does not need to support a very high write throughput. This

performance characteristic allows the Metadata Manager to be implemented with strong

transactional semantics, which reduces the development overhead of other components

that rely on metadata manager. Availability can be improved via simple replication

methods.

3.2.2 API Deployment Coordinator

The API Deployment Coordinator (ADC) intercepts all application deployment re-

quests, and determines whether they are suitable for deployment, based on a set of policies

specified by the cloud administrators. It receives application deployment requests via a

web service interface. At a high-level, ADC is the most important entity in the EAGER’s

deployment-time control strategy.

An application deployment request contains the name of the application, version

number, names and versions of the APIs exported by the application, detailed API

specifications, and other API dependencies as declared by the developer. Application

developers only need to specify explicitly the name and version of the application and

the list of dependencies (i.e. APIs consumed by the application). All other metadata can

be computed automatically by performing introspection on the application source code.

The API specifications used to describe the web APIs should state the operations

and the schema of their inputs and outputs. Any standard API description language

33

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

can be used for this purpose, as long as it clearly describes the schema of the requests

and responses. For describing REST interfaces, we can use Web Application Description

Language (WADL) [61], Swagger [62], RESTful API Modeling Language (RAML) or any

other language that provides similar functionality.

When a new deployment request is received, the ADC checks whether the application

declares any API dependencies. If so, it queries the metadata manager to make sure

that all the declared dependencies are already available in the cloud. Then it inspects

the enclosed application metadata to see if the current application exports any web

APIs. If the application exports at least one API, the ADC makes another call to

the metadata manager, and retrieves any existing metadata related to that API. If the

metadata manager cannot locate any data related to the API in question, ADC assumes

it to be a brand new API (i.e. no previous version of that API has been deployed in the

cloud), and proceeds to the next step of the governance check, which is policy validation.

However, if any metadata regarding the API is found, then the ADC is dealing with an

API update. In this case, the ADC compares the old API specifications with the latest

ones provided in the application deployment request to see if they are compatible.

To perform this API compatibility verification, the ADC checks to see whether the

latest specification of an API contains all the operations available in the old specification.

If the latest API specification is missing at least one operation that it had previously, the

ADC reports this to the user and aborts the deployment. If all the past operations are

present in the latest specification, the ADC performs a type check to make sure that all

past and present operations are type compatible. This is done by performing recursive

introspection on the input and output data types declared in the API specifications.

EAGER looks for type compatibility based on the following rules inspired by Hoare

logic [63], and the rules of type inheritance from object oriented programming.

34

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

• New version of an input type is compatible with the old version of an input type, if

the new version contains either all or less attributes than the old version, and any

new attributes that are unique to the new version are optional.

• New version of an output type is compatible with the old version of an output type,

if the new version contains either all or more attributes than the old version.

In addition to the type checks, ADC may also compare other parameters declared in

the API specifications such as HTTP methods, mime types and URL patterns. We have

also explored and published results on using a combination of syntactic and semantic

comparison to determine the compatibility between APIs [60, 64]. Once the API specifi-

cations have been successfully compared without error, and the compatibility established,

the ADC initiates policy validation.

3.2.3 EAGER Policy Language and Examples

Policies are specified by cloud or organizational administrators using a subset of

the popular Python programming language. This design choice is motivated by several

reasons.

• A high-level programming language such as Python is easier to learn and use for

policy implementors.

• Platform implementors can use existing Python interpreters to parse and execute

policy files. Similarly, policy implementors can use existing Python development

tools to write and test policies.

• In comparison to declarative policy languages (e.g. WS-Policy), a programming

language like Python offers more flexibility and expressive power. For example, a

policy may perform some local computation, and use the results in its enforcement

35

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

clauses. The control flow tools of the language (e.g. conditionals, loops) facilitate

specifying complex policies.

• The expressive power of the language can be closely regulated by controlling the

set of allowed built-in modules and functions.

We restrict the language to prevent state from being preserved across policy valida-

tions. In particular, the EAGER policy interpreter disables file and network operations,

third party library calls, and other language features that allow state to persist across

invocations. In addition, EAGER processes each policy independently of others (i.e. each

policy must be self-contained and access no external state). All other language constructs

and language features can be used to specify policies in EAGER.

To accommodate built-in language APIs that the administrators trust by fiat, all

module and function restrictions of the EAGER policy language are enforced through a

configurable white-list. The policy engine evaluates each module and function reference

found in policy specifications against this white-list to determine whether they are allowed

in the context of EAGER. Cloud administrators have the freedom to expand the set of

allowed built-in and third party modules by making changes to this white-list.

As part of policy language, EAGER defines a set of assertions that policy writers

can use to specify various checks to perform on the applications. Listing 3.1 shows the

assertions currently supported by EAGER.

Listing 3.1: Assertions supported by the EAGER policy language.

a s s e r t t r u e (cond i t ion , o p t i o n a l e r r o r m s g)

a s s e r t f a l s e (cond i t ion , o p t i o n a l e r r o r m s g)

asser t app dependency (app , d name , d v e r s i o n)

as se r t not app dependency (app , d name , d v e r s i o n)

a s s e r t app dependency in range (app , name ,\

lower , upper , exc lude lower , exc lude upper)

36

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

In addition to these assertions, EAGER adds a function called “compare versions”

to the list of available built-in functions. Policy implementors can use this function to

compare version number strings associated with applications and APIs.

In the remainder of this section we illustrate the use of the policy language through

several examples. The first example policy, shown in listing 3.2, mandates that any

application or mash-up that uses both Geo and Direction APIs must adhere to certain

versioning rules. More specifically, if the application uses Geo 3.0 or higher, it must

use Direction 4.0 or higher. Note that the version numbers are compared using the

“compare versions” functions described earlier.

Listing 3.2: Enforcing API version comparison

g = f i l t e r (lambda dep : dep . name == ‘Geo ’ , app . dependenc ies)

d = f i l t e r (lambda dep : dep . name == ‘ Di r e c t i on ’ , app . dependenc ies)

i f g and d :

g api , d ap i = g [0] , d [0]

i f compare vers ions (g ap i . ver s ion , ‘ 3 . 0 ’) >= 0 :

a s s e r t t r u e (compare vers ions (d ap i . ver s ion , ‘ 4 . 0 ’) >= 0)

In listing 3.2, app is a special immutable logical variable available to all policy files.

This variable allows policies to access information pertaining to the current application

deployment request. The assert true and assert false functions allow testing for arbitrary

conditions, thus greatly improving the expressive power of the policy language.

Listing 3.3 shows a policy file that mandates that all applications deployed by the

“admin@test.com” user must have role-based authentication enabled, so that only users

in the “manager” role can access them. To carry out this check the policy accesses the

security configuration specified in the application descriptor (e.g. the web.xml for a Java

application).

37

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

Listing 3.3: Enforcing role-based authorization.

i f app . owner == ‘ admin@test . com ’ :

r o l e s = app . web xml [‘ s e cu r i t y−r o l e ’]

c o n s t r a i n t s = app . web xml [‘ s e cu r i t y−c o n s t r a i n t ’]

a s s e r t t r u e (r o l e s and c o n s t r a i n t s)

a s s e r t t r u e (l en (r o l e s) == 1)

a s s e r t t r u e (‘ manager ’ == r o l e s [0] [‘ r o l e−name ’])

Listing 3.4 shows an example policy, which mandates that all deployed APIs must

explicitly declare an operation which is accessible through the HTTP OPTIONS method.

This policy further ensures that these operations return a description of the API in the

Swagger [62] machine-readable API description language.

Listing 3.4: Enforcing APIs to publish a description.

opt ions = f i l t e r (lambda op : op . method == ‘OPTIONS ’ ,

ap i . ope ra t i on s)

a s s e r t t r u e (opt ions , ‘API does not support OPTIONS ’)

a s s e r t t r u e (opt ions [0] . type == ‘ swagger . API ’ ,

‘ Does not re turn a Swagger d e s c r i p t i o n ’)

Returning machine-readable API descriptions from web APIs makes it easier to au-

tomate the API discovery and consumption processes. Several other research efforts

confirm the need for such descriptions [65, 66]. A policy such as this can help enforce

such practices, thus resulting in a high-quality API ecosystem in the target cloud.

The policy above also shows the use of the second and optional string argument to

the assert true function (the same is supported by assert false as well). This argument

can be used to specify a custom error message that will be returned to the application

developer, if his/her application violates the assertion in question.

The next example policy prevents developers from introducing dependencies on dep-

38

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

recated web APIs. Deprecated APIs are those that have been flagged by their respective

authors for removal in the near future. Therefore introducing dependencies on such APIs

is not recommended. The policy in listing 3.5 enforces this condition in the cloud.

Listing 3.5: Preventing dependencies on deprecated APIs.

deprecated = f i l t e r (

lambda dep : dep . s t a t u s == ’DEPRECATED’ ,

app . dependenc ies)

a s s e r t f a l s e (deprecated ,

’Must not use a deprecated dependency ’)

Listing 3.6: Tenant-aware policy enforcement.

i f app . owner . endswith (‘ @engineer ing . t e s t . com ’) :

as ser t app dependency (app , ‘ Log ’ , ‘ 1 . 0 ’)

e l i f app . owner . endswith (‘ @sa les . t e s t . com ’) :

as ser t app dependency (app , ‘ Analyt icsLog ’ , ‘ 1 . 0 ’)

else :

a s se r t app dependency (app , ‘ GenericLog ’ , ‘ 1 . 0 ’)

Our next example presents a policy that enforces governance rules in a user-aware (i.e.

tenant-aware) manner. Assume a multi-tenant private PaaS cloud that is being used by

members of the development team and the sales team of a company. The primary goal in

this case is to ensure that applications deployed by both teams log their activities using

a set of preexisting logging APIs. However, we further want to ensure that applications

deployed by the sales team log their activities using a special analytics API. A policy

such as the one in listing 3.6 can enforce these conditions.

The example in listing 3.7 shows a policy, which mandates that all HTTP GET

operations exposed by APIs must support paging. APIs that do so define two input

parameters named “start” and “count” to the GET call.

39

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

Listing 3.7: Enforcement of paging functionality in APIs.

for api in app . a p i l i s t :

get = f i l t e r (lambda op : op . method == ‘GET’ ,

api . ope ra t i on s)

f o r op in get :

param names = map(lambda p : p . name ,

op . parameters)

a s s e r t t r u e (‘ s t a r t ’ in param names and

‘ count ’ in param names)

This policy accesses the metadata of API operations that is available in the API de-

scriptions. Since API descriptions are auto-generated from the source code of the APIs,

this policy indirectly references information pertaining to the actual API implementa-

tions.

Finally, we present an example for the HTTP POST method. The policy in listing 3.8

mandates that all POST operations exposed by an API are secured with OAuth version

2.0.

Listing 3.8: Enforcement of OAuth-based authentication for APIs.

for api in app . a p i l i s t :

post = f i l t e r (lambda op : op . method == ‘POST ’ ,

api . ope ra t i on s)

f o r op in post :

a s s e r t t r u e (op . a u t h o r i z a t i o n s . get (‘ oauth2 ’))

EAGER places no restrictions on how many policy files are specified by adminis-

trators. Applications are validated against each policy file. Failure of any assertion in

any policy file causes the ADC to abort application deployment. Once an application

is checked against all applicable policies, ADC persists the latest application and API

metadata into the Metadata Manager. At this point, the ADC may report success to

40

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

the user, and proceed with application deployment. In a PaaS setting this deployment

activity typically involves three steps:

1. Deploy the application in the cloud application run-time (application server).

2. Publish the APIs enclosed in the application and their specifications to the API

Discovery Portal or catalog.

3. Publish the APIs enclosed in the application to an API Gateway server.

Step 1 is required to complete the application deployment in the cloud even without

EAGER. We explain the significance of steps 2 and 3 in the following subsections.

3.2.4 API Discovery Portal

The API Discovery Portal (ADP) is an online catalog where developers can browse

available web APIs. Whenever the ADC approves and deploys a new application, it

registers all the APIs exported by the application in ADP. EAGER mandates that any

developer interested in using an API, first subscribe to that API and obtain the proper

credentials (API keys) from the ADP. The API keys issued by the ADP can consist of an

OAuth [67] access token (as is typical of many commercial REST-based web services) or a

similar authorization credential, which can be used to identify the developer/application

that is invoking the API. This credential validation process is used for auditing, and

run-time governance in EAGER.

The API keys issued by the ADP are stored in the metadata manager. When a

programmer develops a new application using one or more API dependencies, we require

the developer to declare its dependencies along with the API keys obtained from the

ADP. The ADC verifies this information against the metadata manager as a part of

41

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

its dependency check, and ensures that the declared dependencies are correct and the

specified API keys are valid.

Deployment-time governance policies may further incentivize the declaration of API

dependencies explicitly by making it impossible to call an API without first declaring

it as a dependency along with the proper API keys. These types of policies can be

implemented with minor changes to the application run-time in the cloud so that it

loads the API credentials from the dependency declaration provided by the application

developer.

In addition to API discovery, the ADP also provides a user interface for API authors

to select their own APIs and deprecate them or retire them. Deprecated APIs will be

removed from the API search results of the portal, and application developers will no

longer be able to subscribe to them. However, already existing subscriptions and API keys

will continue to work until the API is eventually retired. The deprecation is considered

a courtesy notice for application developers who have developed applications using the

API, to migrate their code to a newer version of the API. Once retired, any applications

that have not still been migrated to the latest version of the API will cease to operate.

3.2.5 API Gateway

Run-time governance of web services by systems such as Synapse [68] make use of an

API “proxy” or gateway. The EAGER API gateway does so to intercept API calls and

validate the API keys contained within them. EAGER intercepts requests by blocking

direct access to the APIs in the application run-time (app servers), and publishing the

API Gateway address as the API endpoint in the ADP. We do so via firewall rules that

prevent the cloud app servers from receiving any API traffic from a source other than

the API gateway. Once the API gateway validates an API call, it routes the message to

42

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

the application server in the cloud platform that hosts the API.

The API gateway can be implemented via one or more load-balanced servers. In

addition to API key validation, the API gateway can perform other functions such as

monitoring, throttling (rate limiting), and run-time policy validation.

3.3 Prototype Implementation

We implement a prototype of EAGER by extending AppScale [57], an open source

PaaS cloud that is functionally equivalent to Google App Engine (GAE). AppScale sup-

ports web applications written in Python, Java, Go and PHP. Our prototype implements

governance for all applications and APIs hosted in an AppScale cloud.

As described in subsection 3.2.3, EAGER’s policy specification language is based on

Python. This allows the API deployment coordinator (also written in Python) to execute

the policies directly using a modified Python interpreter to implement the restrictions

previously discussed.

The prototype relies on a separate tool chain (i.e. one not hosted as a service in

the cloud) to automatically generate API specifications and other metadata (c.f. Sec-

tion 3.2.2), which currently supports only the Java language. Developers must document

the APIs manually for web applications implemented in languages other than Java.

Like most PaaS technologies, AppScale includes an application deployment service

that distributes, launches and exports an application as a web-accessible service. EAGER

controls this deployment process according to the policies that the platform administrator

specifies.

43

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

3.3.1 Auto-generation of API Specifications

To auto-generate API specifications, the build process of an application must include

an analysis phase that generates specifications from the source code. Our prototype

includes two stand-alone tools for implementing this “build-and-analyze” function.

1. An Apache Maven archetype that is used to initialize a Java web application project,

and

2. A Java doclet that is used to auto-generate API specifications from web APIs

implemented in Java

Developers invoke the Maven archetype from the command-line to initialize a new

Java web application project. Our archetype sets up projects with the required AppScale

(GAE) libraries, Java JAX-RS [69] (Java API for RESTful Web Services) libraries, and

a build configuration.

Once the developer creates a new project using the archetype, he/she can develop

web APIs using the popular JAX-RS library. When the code is developed, it can be built

using our auto-generated Maven build configuration, which introspects the project source

code to generate specifications for all enclosed web APIs using the Swagger [70] API

description language. It then packages the compiled code, required libraries, generated

API specifications, and the dependency declaration file into a single, deployable artifact.

Finally, the developer submits the generated artifact for deployment to the cloud

platform, which in our prototype is done via AppScale developer tools. To enable this,

we modify the tools so that they send the application deployment request to the EAGER

ADC and delegate the application deployment process to EAGER. This change required

just under 50 additional lines of code in AppScale.

44

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

EAGER Component Implementation Technology
Metadata Manager MySQL
API Deployment Coordinator Native Python implementation
API Discovery Portal WSO2 API Manager [71]
API Gateway WSO2 API Manager

Table 3.1: Implementation technologies used to implement the EAGER prototype

3.3.2 Implementing the Prototype

Table 3.1 lists the key technologies that we use to implement various EAGER func-

tionalities described in section 3.2 as services within AppScale. For example, AppScale

controls the lifecycle of the MySQL database as it would any of its other constituent

services. EAGER incorporates the WSO2 API Manager [72] for use as an API discovery

mechanism, and to implement any run-time policy enforcement. In the prototype, the

API gateway does not share policies expressed in the policy language with the ADC.

This integration is left to be implemented in the future.

Also, according to the architecture of EAGER, metadata manager is the most suit-

able location for storing all policy files. The ADC may retrieve the policies from the

metadata manager through its web service interface. However, for simplicity, our current

prototype stores the policy files in a file system, that the ADC can directly read from.

In a more sophisticated future implementation of EAGER, we will move all policy files

to the metadata manager where they can be better managed.

3.4 Experimental Results

In this section, we describe our empirical evaluation of the EAGER prototype, and

evaluate its overhead and scaling characteristics. To do so, we populate the EAGER

database (metadata manager) with a set of APIs, and then examine the overhead as-

45

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

sociated with governing a set of sample AppScale applications (shown in Table 3.2) for

varying degrees of policy specifications and dependencies. In the first set of results we use

randomly generated APIs, so that we may vary different parameters that may affect per-

formance. We then follow with a similar analysis using a large set of API specifications

“scraped” from the ProgrammableWeb [48] public API registry.

Note that all the figures included in this section present the average values calculated

over three sample runs. The error bars cover an interval of two standard deviations

centered at the calculated sample average.

We start by presenting the time required for AppScale application deployment without

EAGER, as it is this process on which we piggyback EAGER support. These measure-

ments are conservative since they are taken from a single node deployment of AppScale

where there is no network communication overhead. Our test AppScale cloud is deployed

on an Ubuntu 12.04 Linux virtual machine with a 2.7 GHz CPU, and 4 GB of memory. In

practice AppScale is deployed over multiple hosts in a distributed manner where different

components of the cloud platform must communicate via the network.

Table 3.2 lists a number of App Engine applications that we consider, their artifact

size, and their average deployment times across three runs, on AppScale without EA-

GER. We also identify the number of APIs and dependencies for each application in

the Description column. These applications represent a wide range of programming

languages, application sizes, and business domains.

On average, deployment without EAGER takes 34.5 seconds, and this time is corre-

lated with application artifact size. The total time consists of network transfer time of

the application to the cloud (which in this case is via localhost networking), and disk

copy time to the application servers. For actual deployments, both components are likely

to increase due to network latency, available bandwidth, contention, and large numbers

of distributed application servers.

46

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

Application Description Size
(MB)

Deployment
Time (s)

guestbook-py A simple Python web application
that allows users to post comments
and view them

0.16 22.13

guestbook-java A Java clone of the guestbook-
python app

52 24.18

appinventor A popular open source web appli-
cation that enables creating mobile
apps

198 111.47

coursebuilder A popular open source web applica-
tion used to facilitate teaching online
courses

37 23.75

hawkeye A sample Java application used to
test AppScale

35 23.37

simple-jaxrs-app A sample JAXRS app that exports
2 web APIs

34 23.45

dep-jaxrs-app A sample JAXRS app that exports
a web API and has one dependency

34 23.72

dep-jaxrs-app-
v2

A sample JAXRS app that exports
2 web APIs and has one dependency

34 23.95

Table 3.2: Sample AppScale applications

3.4.1 Baseline EAGER Overhead by Application

Figure 3.2 shows the average time in seconds taken by EAGER to validate and verify

each application. We record these results on an EAGER deployment without any policies

deployed, and without any prior metadata recorded in the metadata manager (that is, an

unpopulated database of APIs). We present the values as absolute measurements (here

and henceforth) because of the significant difference between them and deployment times

on AppScale without EAGER (100’s of milliseconds compared to 10’s of seconds). We

can alternatively observe this overhead as a percentage of AppScale deployment time by

dividing these times by those shown in Table 3.2.

Note that some applications do not export any web APIs. For these EAGER over-

47

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

Figure 3.2: Absolute mean overhead of EAGER by application. Each data point
averages three executions, the error bars are two standard deviations, and the units
are seconds.

head is negligibly small (approximately 0.1s). This result indicates that EAGER does

not impact deployment time of applications that do not require API governance. For

applications that do export web APIs, the recorded overhead measurements include the

time to retrieve old API specifications from the metadata manager, the time to compare

the new API specifications with the old ones, the time to update the API specifications

and other metadata in the Metadata Manager, and the time to publish the updated APIs

to the cloud. The worst case observed overhead for governed APIs (simple-jaxrs-app in

the figure 3.2) is 2.8%.

3.4.2 Impact of Number of APIs and Dependencies

Figure 3.3 shows that EAGER overhead grows linearly with the number of APIs

exported by an application. This scaling occurs because the current prototype imple-

mentation iterates through the APIs in the application sequentially, and records the API

metadata in the metadata manager. Then EAGER publishes each API to the ADP and

API Gateway. This sequencing of individual EAGER events, each of which generates a

48

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

Figure 3.3: Average EAGER overhead vs. number of APIs exported by the appli-
cation. Each data point averages three executions, the error bars are two standard
deviations, and the units are seconds.

separate web service call, represents an optimization opportunity via parallelization in

future implementations.

At present we expect most applications deployed in cloud to have a small to mod-

erate number of APIs (10 or fewer). With this API density EAGER’s current scaling

is adequate. Even in the unlikely case that a single application exports as many as 100

APIs, the average total time for EAGER is under 20 seconds.

Next, we analyze EAGER overhead as the number of dependencies declared in an

application grows. For this experiment, we first populate the EAGER metadata manager

with metadata for 100 randomly generated APIs. To generate random APIs we use the

API specification auto-generation tool to generate fictitious APIs with randomly varying

numbers of input/output parameters. Then we deploy an application on EAGER which

exports a single API, and declares artificial dependencies on the set of fictitious APIs

that are already stored in the Metadata Manager. We vary the number of declared

dependencies and observe the EAGER overhead.

Figure 3.4 shows the results of these experiments. EAGER overhead does not appear

to be significantly influenced by the number of dependencies declared in an application.

49

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

Figure 3.4: Average EAGER overhead vs. number of dependencies declared in the ap-
plication. Each data point averages three executions, the error bars are two standard
deviations, and the units are seconds.

In this case, the EAGER implementation processes all dependency-related information

via batch operations. As a result, the number of web service calls and database queries

that originate due to varying number of dependencies remains constant.

3.4.3 Impact of Number of Policies

So far we have conducted all our experiments without any active governance policies

in the system. In this section, we report how EAGER overhead is influenced by the

number of policies.

The overhead of policy validation is largely dependent on the actual policy content

which is implemented as Python code. Since users may include any Python code (as

long as it falls in the accepted subset) in a policy file, evaluating a given policy can take

an arbitrary amount of time. Therefore, in this experiment, our goal is to evaluate the

overhead incurred by simply having many policy files to execute. We keep the content

of the policies small and trivial. We create a policy file that runs following assertions:

1. Application name must start with an upper case letter

2. Application must be owned by a specific user

50

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

Figure 3.5: Average EAGER overhead vs. number of policies. Each data point
averages three executions, the error bars are two standard deviations, and the units
are seconds. Note that some of the error bars for guestbook-py are smaller than the
graph features at this scale, and are thus obscured.

3. All API names must start with upper case letters

We create many copies of this initial policy file to vary the number of policies deployed.

Then we evaluate the overhead of policy validation on two of our sample applications –

guestbook-py and simple-jaxrs-app.

Figure 3.5 shows how the number of active policies impact EAGER overhead. We see

that even large numbers of policies do not impact EAGER overhead significantly. It is

only when the active policy count approaches 1000 that we can notice a small increase

in the overhead. Even then, the increase in deployment time is under 0.1 seconds.

This result is due to the fact that EAGER loads policy content into memory at system

startup, or when a new policy is deployed, and executes them from memory each time an

application is deployed. Since policy files are typically small (at most a few kilobytes),

this is a viable option. The overhead of validating the simple-jaxrs-app is higher than

that of the guestbook-py because, simple-jaxrs-app exports web APIs. This means the

third assertion in the policy set is executed for this app, and not for guestbook-py. Also,

additional interactions with the metadata manager is needed in case of simple-jaxrs-app

in order to persist the API metadata for future use.

51

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

Figure 3.6: Average EAGER overhead vs. number of APIs in metadata manager.
Each data point averages three executions, the error bars are two standard deviations,
and the units are seconds. Note that some of the error bars for guestbook-py are
smaller than the graph features at this scale and are thus obscured.

Our results indicate that EAGER scales well to hundreds of policies. That is, there

is no significant overhead associated with simply having a large number of policy files.

However, as mentioned earlier, the content of a policy may influence the overhead of

policy validation, and will be specific to the policy and application EAGER analyzes.

3.4.4 Scalability

Next, we evaluate how EAGER scales when a large number of APIs are deployed in

the cloud. In this experiment, we populate the EAGER metadata manager with a varying

number of random APIs. We then attempt to deploy various sample applications. We

also create random dependencies among the APIs recorded in the metadata manager to

make the experimental setting more realistic.

Figure 3.6 shows that the deployment overhead of the guestbook-py application is

not impacted by the growth of metadata in the cloud. Recall that guestbook-py does not

export any APIs nor does it declare any dependencies. Therefore the deployment process

of the guestbook-py application has minimal interactions with the metadata manager.

Based on this result we conclude that applications that do not export web APIs are not

52

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

significantly affected by the accumulation of metadata in EAGER.

Both simple-jaxrs-app and dep-jaxrs-app are affected by the volume of data stored

in metadata manager. Since these applications export web APIs that must be recorded

and validated by EAGER, the growth of metadata has an increasingly higher impact

on them. The degradation of performance as a function of the number of APIs in the

metadata manager database is due to the slowing of query performance of the RDBMS

engine (MySQL) as the database size grows. Note that the simple-jaxrs-app is affected

more by this performance drop, because it exports two APIs compared to the single API

exported by dep-jaxrs-app. However, the growth in overhead is linear to the number of

APIs deployed in the cloud, presumably indicating linear scaling factor in the installation

of MySQL that EAGER used in these experiments. Also, even after deploying 10000

APIs, the overhead on simple-jaxrs-app is only increased by 0.5 seconds.

Another interesting characteristic in Figure 3.6 is the increase in overhead variance

as the number of APIs in the cloud grows. We believe that this is due to the increasing

variability of database query performance and the data transfer performance as the size

of the database increases.

In summary, the current EAGER prototype scales well to 1000’s of APIs. If further

scalability is required, we can employ parallelization and database query optimization.

3.4.5 Experimental Results with a Real-World Dataset

Finally, we explore how EAGER operates with a real-world dataset with API meta-

data and dependency information. For this, we crawl the ProgrammableWeb API reg-

istry, and extract metadata regarding all registered APIs and mash-ups. At the time

of the experiment, we managed to collect 11095 APIs and 7227 mash-ups, where each

mash-up depends on one or more APIs.

53

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

Figure 3.7: Average EAGER overhead over three experiments when deploying on
ProgrammableWeb Dataset. The the error bars are two standard deviations, and the
units are seconds.

We auto-generated API specifications for each API and mash-up, and populated the

EAGER metadata manager with them. We then used the mashup-API dependency in-

formation gathered from ProgrammableWeb to register dependencies among the APIs in

EAGER. This resulted in a dependency graph of total 18322 APIs with 33615 dependen-

cies. We then deploy a subset of our applications, and measure EAGER overhead.

Figure 3.7 shows the results for three applications. The guestbook-py app (without

any web APIs) is not significantly impacted by the large dependency database. Ap-

plications that export web APIs show a slightly higher deployment overhead due to the

database scaling properties previously discussed. However, the highest overhead observed

is under 2 seconds for simple-jaxrs-app, which is an acceptably small percentage of the

23.45 second deployment time as shown in table 3.2.

The applications in this experiment do not declare dependencies on any of the APIs

in the ProgrammableWeb dataset. The dep-jaxrs-app does declare a dependency, but

that is on an API exported by simple-jaxrs-app. To see how the deployment time is

impacted when applications become dependent on other APIs already registered in EA-

GER, we deploy a test application that declares random fictitious dependencies on APIs

from the ProgrammableWeb corpus registered in EAGER. We consider 10, 20, and 50

54

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

Figure 3.8: EAGER Overhead when deploying on ProgrammableWeb dataset with
dependencies. The suffix value indicates the number of dependencies; the prefix in-
dicates if these dependencies are randomized or not, upon redeployment. Each data
point averages three executions, the error bars that are two standard deviations, and
the units are seconds.

declared dependencies, and deploy each application three times. We present the results

in Figure 3.8. For the “random” datasets, we run a deployment script that randomly

modifies the declared dependencies at each redeployment. For the “fixed” datasets the

declared dependencies remains the same across redeployments.

We observe that the dependency count does not have a significant impact on the

overhead. The largest overhead observed is under 1.2 seconds for 50 randomly varied

dependencies. In addition, when the dependency declaration is fixed, the overhead is

slightly smaller. This is because our prototype caches the edges of its internally generated

dependency tree, which expedites redeployments.

In summary, EAGER adds a very small overhead to the application deployment pro-

cess, and this overhead increases linearly with the number of APIs exported by the

applications, and the number of APIs deployed in the cloud. Interestingly, the number

of deployed policies and declared dependencies have little impact on the EAGER gover-

nance overhead. Finally, our results indicate that EAGER scales well to 1000’s of APIs

and adds less than 2 seconds latency with over 18, 000 “real-world” deployed APIs in its

database. Based on this analysis we conclude that enforced deployment-time API gov-

55

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

ernance can be implemented in modern PaaS clouds with negligible overhead and high

scalability. Further, deployment-time API governance can be made an intrinsic compo-

nent of the PaaS cloud itself, thus alleviating the need for weakly integrated third-party

API management solutions.

3.5 Related Work

Our research builds upon advances in the areas of SOA governance and service man-

agement. Guan et al introduced FASWSM [73] a web service management framework

for application servers. FASWSM uses an adaptation technique that wraps web services

in a way so they can be managed by the underlying application server platform. Wu

et al introduced DART-Man [74], a web service management system based on seman-

tic web concepts. Zhu and Wang proposed a model that uses Hadoop and HBase to

store web service metadata, and process them to implement a variety of management

functions [75]. Our work is different from these past approaches in that EAGER targets

policy enforcement, and we focus on doing so by extending extant cloud platforms (e.g.

PaaS) to provide an integrated and scalable governance solution.

Lin et al proposed a service management system for clouds that monitors all service

interactions via special “hooks” that are connected to the cloud-hosted services [76].

These hooks monitor and record service invocations, and also provide an interface so

that the individual service artifacts can be managed remotely. However, this system only

supports run-time service management and provides no support for deployment-time

policy checking and enforcement. Kikuchi and Aoki [77] proposed a technique based on

model checking to evaluate the operational vulnerabilities and fault propagation patterns

in cloud services. However, this system provides no active monitoring or enforcement

functionality. Sun et al proposed a reference architecture for monitoring and managing

56

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

cloud services [78]. This too lacks deployment-time governance, policy validation support,

and the ability to intercept and act upon API calls which limits its use as a comprehensive

governance solution for clouds.

Other researchers have shown that policies can be used to perform a wide range

of governance tasks for SOA such as access control [79, 80], fault diagnosis [81], cus-

tomization [82], composition [83, 84] and management [85, 86, 87]. We build upon the

foundation of these past efforts, and use policies to govern RESTful web APIs deployed in

cloud settings. Our work is also different in that it defines an executable policy language

(implemented as a subset of Python in the EAGER prototype) that employs a simple,

developer-friendly syntax based upon the Python language (vs XML), which is capable

of capturing a wide range of governance requirements.

Peng, Lui and Chen showed that the major concerns associated with SOA governance

involve retaining the high reliability of services, recording how many services are avail-

able on the platform to serve, and making sure all the available services are operating

within an acceptable service level [20]. EAGER attempts to satisfy similar requirements

for modern RESTful web APIs deployed in cloud environments. EAGER’s metadata

manager and ADP record and keep track of all deployed APIs in a simple, extensible,

and comprehensive manner. Moreover, EAGER’s policy validation, dependency manage-

ment, and API change management features “fail fast” to detect violations immediately

making diagnosis and remediation less complex, and prevent the system from ever enter-

ing a non-compliant state.

API management has been a popular topic in the industry over the last few years, re-

sulting in many commercial and open source API management solutions [72, 46, 47, 88].

These products facilitate API lifecycle management, traffic shaping, access control, mon-

itoring and a variety of other important API-related functionality. However, these tools

do not support deep integration with cloud environments in which many web applications

57

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

and APIs are deployed today. EAGER is also different in that it combines deployment-

time and run-time enforcement. Previous systems either work exclusively at run-time or

do not include an enforcement capability (i.e. they are advisory).

3.6 Conclusions and Future Work

In this chapter, we describe EAGER, a model and a software architecture that fa-

cilitates API governance as a cloud-native feature. EAGER supports comprehensive

policy enforcement, dependency management, and a variety of other deployment-time

API governance features. It promotes many software development and maintenance best

practices including versioning, code reuse, and API backwards compatibility retention.

EAGER also includes a language based on Python that enables creating, debugging, and

maintaining API governance policies in a simple and intuitive manner. EAGER can be

built into cloud platforms that are used to host APIs to automate governance tasks that

otherwise require custom code or developer intervention.

Our empirical results, gathered using a prototype of EAGER developed for AppScale,

show that EAGER adds negligibly small overhead to the cloud application deployment

process, and the overhead grows linearly with the number of APIs deployed. We also

show that EAGER scales well to handle tens of thousands of APIs and hundreds of

policies. Based on our results we conclude that efficient and automated policy enforce-

ment is feasible in cloud environments. Furthermore, we find that policy enforcement at

deployment-time can help cloud administrators and application developers achieve ad-

ministrative conformance and developer best practices with respect to cloud-hosted web

applications.

As part of our future work, we plan to investigate the degree to which deployment-

time governance can be expanded. Run-time API governance imposes a number of new

58

Governance of Cloud-hosted Applications Through Policy Enforcement Chapter 3

scalability and reliability challenges. By offloading as much of the governance overhead

to deployment-time as possible, EAGER ensures that the impact of run-time governance

is minimized.

We also plan to investigate the specific language features that are essential to EA-

GER’s combined deployment-time and run-time approach. The use of Python in the

prototype proved convenient from a programmer productivity perspective. It is not yet

clear, however, whether the full set of language features that we have left unrestricted

are necessary. By minimizing the policy language specification we hope to make its im-

plementation more efficient, less error prone to develop and debug, and more amenable

to automatic analysis.

Another future research direction is the integration of policy language and run-time

API governance. We wish to explore the possibility of using the same Python-based

policy language for specifying policies that are enforced on APIs at run-time (i.e. on

individual API calls). Since API calls far more frequent than API deployment events,

we should evaluate the performance aspects of the policy engine to make this integration

practically useful.

59

Chapter 4

Response Time Service Level

Objectives for Cloud-hosted Web

Applications

In the previous chapter we discussed how to implement API governance in cloud en-

vironments via policy enforcement. This chapter focuses on stipulating bounds on the

performance of cloud-hosted web applications. The ability to understand the performance

bounds of an application is vital in several governance use cases such as performance-

aware policy enforcement, and application performance monitoring.

Cloud-hosted web applications are deployed and used as web services. They enable

a level of service reuse that both expedites and simplifies the development of new client

applications. Despite the many benefits, reusing existing services also has pitfalls. In par-

ticular, new client applications become dependent on the services they compose. These

dependencies impact correctness, performance, and availability of the composite appli-

cations, for which the “top level” developer is often held accountable. Compounding the

situation, the underlying services can and do change over time while their APIs remain

60

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

stable, unbeknownst to the developers that programmatically access them. Unfortu-

nately, there is a dearth of tools that help developers reason about these dependencies

throughout an application’s life cycle (i.e. development, deployment, and run-time).

Without such tools, programmers must adopt extensive, continuous, and costly, testing

and profiling methods to understand the performance impact on their applications that

results from the increasingly complex collection of services that they depend on.

We present Cerebro to address this requirement without subjecting applications to

extensive testing or instrumentation. Cerebro is a new approach that predicts bounds on

the response time performance of web APIs exported by applications that are hosted in

a PaaS cloud. The goal of Cerebro is to allow a PaaS administrator to determine what

response time service level objective (SLO) can be fulfilled by each web API operation

exported by the applications hosted in the PaaS.

An “SLO” specifies the minimum service level promised by the service provider re-

garding some non-functional property of the service such as its availability or performance

(response time). Such SLOs are explicitly stated by the service provider, and are typi-

cally associated with a correctness probability, which can be described as the likelihood

the service will meet the promised minimum service level. A typical availability SLO

takes the form: “the service will be available p% of the time”. Here the value p% is

the correctness probability of the SLO. Similarly, a response time SLO would take the

form of the statement: “the service will respond under Q milliseconds, p% of the time.

Naturally, p should be a value close to 100, for this type of SLOs to be useful in practice.

In a corporate setting, SLOs are used to form service level agreements (SLAs), formal

contracts that govern the service provider-consumer relationship [89]. They consist of

SLOs, and the clauses that describe what happens if the service fails to meet those SLOs

(for example, if the service is only available p′% of the time, where p′ < p). This typically

boils down to service provider paying some penalty (a refund), or providing some form

61

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

of free service credits for the users. We do not consider such legal and social obligations

of an SLA in this work, and simply focus on the minimum service levels (i.e. SLOs), and

the associated correctness probabilities, since those are the parameters that matter from

a performance and capacity planning point of view of an application.

Currently, cloud computing systems such as Amazon Web Services (AWS) [3] and

Google App Engine (GAE) [4] advertise SLOs specifying the fraction of availability

over a fixed time period (i.e. uptime) for their services. However, they do not pro-

vide SLOs that state minimum levels of performance. In contrast, Cerebro facilitates

auto-generating performance SLOs for cloud-hosted web APIs in a way that is scalable.

Cerebro uses a combination of static analysis of the hosted web APIs, and runtime mon-

itoring of the PaaS kernel services to determine what minimum statistical guarantee can

be made regarding an API’s response time, with a target probability specified by a PaaS

administrator. These calculated SLOs enable developers to reason about the perfor-

mance of the client applications that consume the cloud-hosted web APIs. They can also

be used to negotiate SLAs concerning the performance of cloud-hosted web applications.

Moreover, predicted SLOs are useful as baselines or thresholds when monitoring APIs for

consistent performance – a feature that is useful for both API providers and consumers.

Collectively, Cerebro and the SLOs predicted by it enable implementing a number of au-

tomated governance scenarios involving policy enforcement and application performance

monitoring, in ways that were not possible before.

Statically reasoning about the execution time of arbitrary programs is challenging

if not unsolvable. Therefore we scale the problem down by restricting our analysis to

cloud-hosted web applications. Specifically, Cerebro generates response time SLOs for

APIs exported by a web application developed using the kernel services available within

a PaaS cloud. For brevity, in this work we will use the term web API to refer to a web-

accessible API exported by an application hosted on a PaaS platform. Further, we will

62

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

use the term kernel services to refer to the services that are maintained as part of the

PaaS and available to all hosted applications. This terminology enables us to differentiate

the internal services of the PaaS from the APIs exported by the deployed applications.

For example, an application hosted in Google App Engine might export one or more web

APIs to its users while leveraging the internal datastore kernel service that is available

as part of the Google App Engine PaaS.

Cerebro uses static analysis to identify the PaaS kernel invocations that dominate the

response time of web APIs. By surveying a collection of web applications developed for

a PaaS cloud, we show that such applications indeed spend majority of their execution

time on PaaS kernel invocations. Further, they do not have many branches and loops,

which makes them amenable to static analysis (section 4.1). Independently, Cerebro also

maintains a running history of response time performance for PaaS kernel services. It uses

QBETS [90] – a forecasting methodology we have developed in prior work for predicting

bounds on “ill behaved” univariate time series – to predict response time bounds on

each PaaS kernel invocation made by the application. It combines these predictions

dynamically for each static program path through a web API operation, and returns the

“worst-case” upper bound on the time necessary to complete the operation.

Because service implementations and platform behavior under load change over time,

Cerebro’s predictions necessarily have a lifetime. That is, the predicted SLOs may become

invalid after some time. As part of this chapter, we develop a model for detecting such

SLO invalidations. We use this model to investigate the effective lifetime of Cerebro

predictions. When such changes occur, Cerebro can be reinvoked to establish new SLOs

for any deployed web API.

We have implemented Cerebro for both the Google App Engine public PaaS, and

the AppScale private PaaS. Given its modular design and this experience, we believe

that Cerebro can be easily integrated into any PaaS system. We use our prototype

63

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

implementation to evaluate the accuracy of Cerebro, as well as the tightness of the bounds

it predicts (i.e. the difference between the predictions and the actual API execution

times). To this end, we carry out a range of experiments using App Engine applications

that are available as open source.

We also detail the duration over which Cerebro predictions hold in both GAE and

AppScale. We find that Cerebro generates correct SLOs (predictions that meet or exceed

their probabilistic guarantees), and that these SLOs are valid over time periods ranging

from 1.4 hours to several weeks. We also find that the high variability of performance in

public PaaS clouds due to their multi-tenancy and massive scale requires that Cerebro

be more conservative in its predictions to achieve the desired level of correctness. In

comparison, Cerebro is able to make much tighter SLO predictions for web APIs hosted

in private, single tenant clouds.

Because Cerebro provides this analysis statically it imposes no run-time overhead

on the applications themselves. It requires no run-time instrumentation of application

code, and it does not require any performance testing of the web APIs. Furthermore,

because the PaaS is scalable and platform monitoring data is shared across all Cerebro

executions, the continuous monitoring of the kernel services generates no discernible load

on the cloud platform. Thus we believe Cerebro is suitable for highly scalable cloud

settings.

Finally, we have developed Cerebro for use with EAGER (Enforced API Governance

Engine for REST) [91] – an API governance system for PaaS clouds. EAGER attempts

to enforce governance policies at the deployment-time of cloud applications. These gover-

nance policies are specified by cloud administrators to ensure the reliable operation of the

cloud and the deployed applications. PaaS platforms include an application deployment

phase during which the platform provisions resources for the application, installs the ap-

plication components, and configures them to use the kernel services. EAGER injects a

64

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

policy checking and enforcement step into this deployment workflow, so that only appli-

cations that are compliant with respect to site-specific policies are successfully deployed.

Cerebro allows PaaS administrators to define performance-aware EAGER policies that

allow an application to be deployed only when its web APIs meet a pre-determined SLO,

and developers to be notified by the platform when such SLOs require revision.

We structure the rest of this chapter as follows. We first characterize the domain

of PaaS-hosted web APIs for GAE and AppScale in Section 4.1. We then present the

design of Cerebro in section 4.2 and overview our software architecture and prototype

implementation. Next, we present our empirical evaluation of Cerebro in section 4.3.

Finally, we discuss related work (Section 4.4) and conclude (Section 4.5).

4.1 Domain Characteristics and Assumptions

The goal of our work is to analyze a web API statically, and from this analysis without

deploying or running the web API, accurately predict an upper bound on its response

time. With such a prediction, developers and cloud administrators can provide perfor-

mance SLOs to the API consumers (human or programmatic), to help them reason about

the performance implications of using APIs – something that is not possible today. For

general purpose applications, such worst-case execution time analysis has been shown by

numerous researchers to be challenging to achieve for all but simple programs or specific

application domains. To overcome these challenges, we take inspiration from the latter,

and exploit the application domain of PaaS-hosted web APIs to achieve our goal. In this

chapter, we focus on the popular Google App Engine (GAE) public PaaS, and AppScale

private PaaS, which support the same applications, development and deployment model,

and platform services.

The first characteristic of PaaS systems that we exploit to facilitate our analysis is

65

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

their predefined programming interfaces through which they export various kernel ser-

vices. Herein we refer to these programming interfaces as the cloud software development

kit or the cloud SDK. The cloud SDK is comprised of several interfaces, each of which

plays the role of a client stub for some kernel service offered by the cloud platform.

We refer to the individual member interfaces of the cloud SDK as cloud SDK inter-

faces, and to their constituent operations as cloud SDK operations. These interfaces

export scalable functionality that is commonly used to implement web APIs: key-value

datastores, caching, task scheduling, security and authentication, etc. In an applica-

tion, each cloud SDK call represents an invocation of a PaaS kernel service. Therefore,

we use the terms cloud SDK calls and PaaS kernel invocations interchangeably in the

remainder of this chapter. The App Engine and AppScale cloud SDK is detailed in

https://cloud.google.com/appengine/docs/java/javadoc/.

With PaaS clouds, developers implement their application code as a combination of

calls to the cloud SDK, and their own code. Developers then upload their applications to

the cloud for deployment. Once deployed, the applications and any web APIs exported

by them can be accessed via HTTP/S requests by external or co-located clients.

Typically, PaaS-hosted web APIs make one or more cloud SDK calls. The reason for

this is two-fold. First, kernel services that underpin the cloud SDK provide web APIs

with much of the functionality that they require. Second, PaaS clouds “sandbox” web

APIs to enforce quotas, to enable billing, and to restrict certain functionality that can

lead to security holes, platform instability, or scaling issues [92]. For example, GAE and

AppScale cloud platforms restrict the application code from accessing the local file sys-

tem, accessing shared memory, using certain libraries, and arbitrarily spawning threads.

Therefore developers must use the provided cloud SDK operations to implement program

logic equivalent to the restricted features. For example, the datastore interface can be

used to read and write persistent data instead of using the local file system, and the

66

https://cloud.google.com/appengine/docs/java/javadoc/

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

memcache interface can be used in lieu of global shared memory.

Furthermore, the only way for a web API to execute is in response to an HTTP/S

request or as a background task. Therefore, execution of all web API operations start and

end at well defined program points, and we are able to infer this structure from common

software patterns. Also, concurrency is restricted by capping the number of threads and

requiring that a thread cannot outlive the request that creates it. Finally, PaaS clouds

enforce quotas and limits on kernel service (cloud SDK) use [93, 94, 92]. App Engine,

for example, requires that all web API requests complete under 60 seconds. Otherwise

they are terminated by the platform. Such enforcement places a strict upper bound on

the execution of a web API operation.

To understand the specific characteristics of PaaS-hosted web APIs, and the potential

of this restricted domain to facilitate efficient static analysis and response time prediction,

we next summarize results from static analysis (using the Soot framework [95]) of 35 real

world App Engine web APIs. These web APIs are open source (available via GitHub [96]),

written in Java, and run over Google App Engine or AppScale without modification. We

selected them based on availability of documentation, and the ability to compile and run

them without errors.

Our analysis detected a total of 1458 Java methods in the analyzed codes. Figure 4.1

shows the cumulative distribution of static program paths in these methods. Approxi-

mately 97% of the methods considered in the analysis have 10 or fewer static program

paths through them. 99% of the methods have 36 or fewer paths. However, the CDF

is heavy tailed, and grows to 34992. We truncate the graph at 100 paths for clarity.

As such, only a very small number of methods each contains a large number of paths.

Fortunately, over 65% of the methods have exactly 1 path (i.e. there are no branches).

Next, we consider the looping behavior of web APIs. 1286 of the methods (88%)

considered in the study do not have any loops. 172 methods (12%) contain loops. We

67

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Figure 4.1: CDF of the number of static paths through methods in the surveyed web APIs.

believe that this characteristic is due to the fact that the PaaS SDK and the platform

restrictions like quotas and response time limits discourage looping.

Approximately 29% of all the loops in the analyzed programs do not contain any cloud

SDK calls. A majority of the loops (61%) however, are used to iterate over a dataset

that is returned from the datastore cloud SDK interface of App Engine (i.e iterating on

the result set returned by a datastore query). We refer to this particular type of loops

as iterative datastore reads.

Table 4.1 lists the number of times each cloud SDK interface is called across all paths

and methods in the analyzed programs. The datastore API is the most commonly used

interface. This is because data management is fundamental to most web APIs, and the

PaaS disallows using the local filesystem to do so for scalability and portability reasons.

Next, we explore the number of cloud SDK calls made along different paths of exe-

cution in the web APIs. For this study we consider all paths of execution through the

methods (64780 total paths). Figure 4.2 shows the cumulative distribution of the number

of SDK calls within paths. Approximately 98% of the paths have 1 cloud SDK call or

68

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Table 4.1: Static cloud SDK calls in surveyed web APIs
Cloud SDK Interface No. of Invocations

blobstore 7
channel 1

datastore 735
files 4

images 3
memcache 12

search 6
taskqueue 24

tools 2
urlfetch 8

users 44
xmpp 3

Figure 4.2: CDF of cloud SDK call counts in paths of execution.

69

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

fewer. The probability of finding an execution path with more than 5 cloud SDK calls is

smaller than 1%.

Finally, our experience with App Engine web APIs indicates that a significant portion

of the total time of a method (web API operation) is spent in cloud SDK calls. Confirming

this hypothesis requires careful instrumentation (i.e. difficult to automate) of the web

API codes. We performed such a test by hand on two representative applications, and

found that the time spent in code other than cloud SDK calls accounts for 0-6% of the

total time (0-3ms for a 30-50ms web API operation).

This study of various characteristics typical of PaaS-hosted web APIs indicates that

there may be opportunities to exploit the specific aspects of this application domain to

simplify analysis, and to facilitate performance SLO prediction. In particular, operations

in these applications are short, have a small number of paths to analyze, implement few

loops, and invoke a small number of cloud SDK calls. Moreover, most of the time spent

executing these operations results from cloud SDK invocations. In the next section,

we describe our design and implementation of Cerebro that takes advantage of these

characteristics and assumptions. We then use a Cerebro prototype to experimentally

evaluate its efficacy for estimating the worst-case response time for applications from

this domain.

4.2 Cerebro

Given the restricted application domain of PaaS-hosted web APIs, we believe that

it is possible to design a system that predicts response time SLOs for them using only

static information from the web API code itself. To enable this, we design Cerebro with

three primary components:

• A static analysis tool that extracts sequences of cloud SDK calls for each path

70

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

through a method (web API operation),

• A monitoring agent that runs in the target PaaS, and efficiently monitors the

performance of the underlying cloud SDK operations, and

• An SLO predictor that uses the outputs of these two components to accurately

predict an upper bound on the response time of the web API.

We overview each of these components in the subsections that follow, and then discuss

the Cerebro workflow with an example.

4.2.1 Static Analysis

This component analyzes the source code of the web API (or some intermediate repre-

sentation of it), and extracts a sequence of cloud SDK calls. We implement our analysis

for Java bytecode programs using the Soot framework [95]. Currently, our prototype

analyzer considers the following Java codes as exposed web APIs.

• classes that extend the javax.servlet.HttpServlet class (i.e. Java servlet implemen-

tations)

• classes that contain JAX-RS @Path annotations, and

• any other classes explicitly specified by the developer in a special configuration file.

Cerebro performs a simple construction and inter-procedural static analysis of control

flow graph (CFG) [97, 98, 99, 100] for each web API operation. The algorithm extracts all

cloud SDK calls along each path through the methods. Cerebro analyzes other functions

that the method calls, recursively. Cerebro caches cloud SDK details for each function

once analyzed so that it can be reused efficiently for other call sites to the same function.

Cerebro does not analyze third-party library calls, if any, which in our experience typically

71

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

do not contain cloud SDK calls. Cerebro encodes each cloud SDK call sequence for each

path in a lookup table. We identify cloud SDK calls by their Java package name (e.g.

com.google.appengine.apis).

To handle loops, we first extract them from the CFG and annotate all cloud SDK

calls that occur within them. We then annotate each such SDK call with an estimate

on the number of times the loop is likely to execute in the worst case. We estimate loop

bounds using a loop bound prediction algorithm based on abstract interpretation [101].

As shown in the previous section, loops in these programs are rare, and when they

do occur, they are used to iterate over a dataset returned from a database. For such

data-dependent loops, we estimate the bounds if specified in the cloud SDK call (e.g.

the maximum number of entities to return [102]). If our analysis is unable to estimate

the bounds for these loops, Cerebro prompts the developer for an estimate of the likely

dataset size and/or loop bounds.

4.2.2 PaaS Monitoring Agent

Cerebro monitors and records the response time of individual cloud SDK operations

within a running PaaS system. Such support can be implemented as a PaaS-native

feature or as a PaaS application (web API); we use the latter in our prototype. The

monitoring agent runs in the background with, but separate from, other PaaS-hosted web

APIs. The agent invokes cloud SDK operations periodically on synthetic datasets, and

records timestamped response times in the PaaS datastore for each cloud SDK operation.

The agent also periodically reclaims old measurement data to eliminate unnecessary

storage. The Cerebro monitoring and reclamation rates are configurable, and monitoring

benchmarks can be added and customized easily to capture common PaaS-hosted web

API coding patterns.

72

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

In our prototype, the agent monitors the datastore and memcache SDK interfaces

every 60 seconds. In addition, it benchmarks loop iteration over datastore entities to

capture the performance of iterative datastore reads for datastore result set sizes of 10,

100, and 1000. We limit ourselves to these values because the PaaS requires that all

operations complete (respond) within 60 seconds – so the data sizes (i.e. number of data

entities) returned are typically small. Sizing up the datastore in terms of powers of 10,

mirrors the typical approach taken by DevOps personnel to approximate the size of a

database. If necessary, our prototype allows adding iterative datastore read benchmarks

for other result set sizes easily.

4.2.3 Making SLO Predictions

To make SLO predictions, Cerebro uses Queue Bounds Estimation from Time Series

(QBETS) [90], a non-parametric time series analysis method that we developed in prior

work. We originally designed QBETS for predicting the scheduling delays for the batch

queue systems used in high performance computing environments, but it has proved

effective in other settings where forecasts from arbitrary times series are needed [103, 104,

105]. In particular, it is both non-parametric, and it automatically adapts to changes

in the underlying time series dynamics making it useful in settings where forecasts are

required from arbitrary data with widely varying characteristics. We adapt it herein for

use “as-a-service” in PaaS systems to predict the execution time of web APIs.

A QBETS analysis requires three inputs:

1. A time series of data generated by a continuous experiment.

2. The percentile for which an upper bound should be predicted (p ∈ [1..99]).

3. The upper confidence level of the prediction (c ∈ (0, 1)).

73

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

QBETS uses this information to predict an upper bound for the pth percentile of the

time series. It does so by treating each observation in the time series as a Bernoulli

trial with probability 0.01p of success. Let q = 0.01p. If there are n observations,

the probability of there being exactly k successes is described by a Binomial distribution

(assuming observation independence) having parameters n and q. IfQ is the pth percentile

of the distribution from which the observations have been drawn, the equation

1−
k∑

j=0

(
n

j

)
· (1− q)j · qn−j (4.1)

gives the probability that more than k observations are greater than Q. As a result, the

kth largest value in a sorted list of n observations gives an upper c confidence bound on

Q when k is the smallest integer value for which Equation 4.1 is larger than c.

More succinctly, QBETS sorts observations in a history of observations, and com-

putes the value of k that constitutes an index into this sorted list that is the upper c

confidence bound on the pth percentile. The methodology assumes that the time series

of observations is ergodic so that, in the long run, the confidence bounds are accurate.

QBETS also attempts to detect change points in the time series of observations so

that it can apply this inference technique to only the most recent segment of the series

that appears to be stationary. To do so, it compares percentile bound predictions with

observations throughout the series, and determines where the series is likely to have

undergone a change. It then discards observations from the series prior to this change

point and continues. As a result, when QBETS starts, it must “learn” the series by

scanning it in time series order to determine the change points. We report Cerebro

learning time in our empirical evaluation in subsection 4.3.6.

Note that c is an upper confidence level on pth percentile which makes the QBETS

bound estimates conservative. That is, the value returned by QBETS as a bound predic-

74

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

tion is larger than the true pth percentile with probability 1 − c under the assumptions

of the QBETS model. In this study, we use the 95th percentile with c = 0.01.

Note that the algorithm itself can be implemented efficiently so that it is suitable for

on-line use. Details of this implementation as well as a fuller accounting of the statistical

properties and assumptions are available in [90, 103, 104, 106].

QBETS requires a sufficiently large number of data points in the input time series

before it can make an accurate prediction. Specifically, the largest value in a sorted

list of n observations is greater than the pth percentile with confidence c when n >=

log(c)/log(0.01p).

For example, predicting the 95th percentile of the API execution time, with an upper

confidence of 0.01 requires at least 90 observations. We use this limit as a lower bound

for the length of the history to keep. There is no upper bound for the history length that

QBETS can process. But in Cerebro’s case, several thousand data points in the history

(i.e. 1-3 days of monitoring data) provides a good balance between results accuracy and

computation overhead.

The minimum history length also provides a bound on the variability of the time

series that can be tolerated by QBETS. In general, each time series must be approxi-

mately ergodic, meaning their mean and the variance should not change abruptly. More

specifically, if the values in the time series change too fast for QBETS to gather a sta-

tionary dataset at least as long as the minimum history length, its prediction accuracy

may suffer.

4.2.4 Example Cerebro Workflow

Figure 4.3 illustrates how the Cerebro components interact with each other during

the prediction making process. Cerebro can be invoked when a web API is deployed to

75

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Figure 4.3: Cerebro architecture and component interactions.

a PaaS cloud, or at any time during the development process to give developers insight

into the worst-case response time of their applications.

Upon invoking Cerebro with a web API code, Cerebro performs its static analysis on

all operations in the API. For each analyzed operation it produces a list of annotated

cloud SDK invocation sequences – one sequence per program path. Cerebro then prunes

this list to eliminate duplicates. Duplicates occur when a web API operation has multiple

program paths with the same sequence of cloud SDK invocations. Next, for each pruned

list Cerebro performs the following operations:

1. Retrieve (possibly compressed) benchmarking data from the monitoring agent for

all SDK operations in each sequence. The agent returns ordered time series data

(one time series per cloud SDK operation).

2. Align retrieved time series across operations in time, and sum the aligned values

to form a single joint time series of the summed values for the sequence of cloud

SDK operations.

3. Run QBETS on the joint time series with the desired p and c values to predict an

76

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

upper bound.

Cerebro uses the largest predicted value (across path sequences) as its SLO prediction

for a web API operation. The exhaustive approach by which Cerebro predicts SLOs for

all possible program paths ensures that the final SLO holds valid regardless of which

path gets executed at runtime. This SLO prediction process can be implemented as a

co-located service in the PaaS cloud or as a standalone utility. We do the latter in our

prototype.

As an example, suppose that the static analysis results in the cloud SDK invocation

sequence < op1, op2, op3 > for some operation in a web API. Assume that the monitoring

agent has collected the following time series for the three SDK operations:

• op1: [t0 : 5, t1 : 4, t2 : 6,, tn : 5]

• op2: [t0 : 22, t1 : 20, t2 : 21,, tn : 21]

• op3: [t0 : 7, t1 : 7, t2 : 8,, tn : 7]

Here tm is the time at which the mth measurement is taken. Cerebro aligns the three

time series according to timestamps, and sums the values to obtain the following joint

time series: [t0 : 34, t1 : 31, t2 : 35,, tn : 33]

If any operation is tagged as being inside a loop, where the loop bounds have been

estimated, Cerebro multiplies the time series data corresponding to that operation by

the loop bound estimate before aggregating. In cases where the operation is inside a

data-dependent loop, we request the time series data from the monitoring agent for its

iterative datastore read benchmark for a number of entities that is equal to or larger than

the annotation, and include it in the joint time series.

Cerebro passes the final joint time series for each sequence of operations to QBETS,

which returns the worst-case upper bound response time it predicts. If the QBETS

77

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

predicted value is Q milliseconds, Cerebro forms the SLO as “the web API will respond

in under Q milliseconds, p% of the time”. When the web API has multiple operations,

Cerebro estimates multiple SLOs for the API. If a single value is needed for the entire

API regardless of operation, Cerebro returns the largest predicted value as the final SLO

(i.e. the worst-case SLO for the API).

4.2.5 SLO Durability

For a given web API, Cerebro predicts an initial response time SLO at the API’s

deployment-time (following the above workflow). It then consults an on-line API bench-

marking service to continuously verify the predicted response time SLO to determine

if and when it has been violated. SLO violations occur when conditions in the PaaS

change in ways that adversely impact the performance of the cloud SDK operations.

Such changes can result from congestion (multi-tenancy), component failures, and mod-

ifications to PaaS service implementations. The continuous tracking of SLO violations is

necessary to notify the affected API consumers promptly.

Cerebro also periodically recomputes the SLOs for the APIs over time. Cerebro is

able to perform fast, online prediction of time series percentiles via QBETS as more SDK

benchmarking data becomes available from the cloud SDK monitor. This periodic re-

computation of SLOs is important because changes in the PaaS can occur that make new

SLOs available that are better and tighter than the previously predicted ones. Cerebro

must detect when such changes occur so that API consumers can be notified.

To determine SLO durability, we extend Cerebro with a statistical model for detecting

when a Cerebro-generated SLO becomes invalid. Suppose at time t Cerebro predicts value

Q as the p-th percentile of some API’s execution time. If Q is a correct prediction, the

probability of API’s next measured response time being greater than Q is 1− (0.01p). If

78

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

the time series consists of independent measurements, then the probability of seeing n

consecutive values greater than Q (due to random chance) is (1− 0.01p)n. For example,

using the 95th percentile, the probability of seeing 3 values in a row larger than the

predicted percentile due to random chance is (0.05)3 = 0.00012.

This calculation is conservative with respect to autocorrelation. That is, if the time

series is stationary but autocorrelated, then the number of consecutive values above the

95th percentile that correspond to a probability of 0.00012 is larger than 3. For example,

in previous work [90] using an artificially generated AR(1) series, we observed that 5

consecutive values above the 95th percentile occurred with probability 0.00012 when the

first autocorrelation was 0.5, and 14 when the first autocorrelation was 0.85. QBETS uses

a look-up table of these values to determine the number of consecutive measurements

above Q that constitute a “rare event” indicating a possible change in conditions.

Each time Cerebro makes a new prediction, it computes the current autocorrelation,

and uses the QBETS rare-event look-up table to determine Cw: the number of consecutive

values that constitute a rare event. We measure the time from when Cerebro makes the

prediction until we observe Cw consecutive values above that prediction as being the time

duration over which the prediction is valid. We refer to this duration as the SLO validity

duration.

4.2.6 SLO Reassessment

We extend Cerebro with an SLO reassessment process that invalidates SLOs at the

end of the SLO validity duration, and provides a new SLO for the API consumer. API

consumers receive an initial SLO for a web API hosted by a Cerebro-equipped PaaS as

part of the API subscription process (i.e. when obtaining API keys). This initial SLO may

be issued in the form of an SLA that is negotiated between the API provider and the con-

79

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

sumer. At this point Cerebro records the tuple < Consumer,API, T imestamp, SLO >.

When Cerebro detects consecutive violations of one of its predictions, it considers the

corresponding SLO to be invalid, and provides the affected API consumers with a new

SLO. Upon this SLO change, Cerebro updates the Timestamp and SLO entries in the

appropriate data tuple for future reference.

There is also a second way that an API consumer may encounter an SLO change.

When recomputing SLOs periodically, Cerebro might come across situations where the

latest SLO is smaller than some previously issued SLO (i.e. a tighter SLO is available).

Cerebro can notify the API consumer about this prospect. If the API consumer consents

to the SLO change, Cerebro may update the data tuple, and treat the new SLO as in

effect.

We next use empirical testing and simulations to explore the feasibility of the Cerebro

SLO reassessment process, and evaluate how SLO validity duration and invalidation

impact API consumers over time.

4.3 Experimental Results

To empirically evaluate Cerebro, we conduct experiments using five open source,

Google App Engine applications.

StudentInfo RESTful (JAX-RS) application for managing students of a class (adding,

removing, and listing student information).

ServerHealth Monitors, computes, and reports statistics for server uptime for a given

web URL.

SocialMapper A simple social networking application with APIs for adding users and

comments.

80

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

StockTrader A stock trading application that provides APIs for adding users, register-

ing companies, buying and selling stocks among users.

Rooms A hotel booking application with APIs for registering hotels and querying avail-

able rooms.

These web APIs use the datastore cloud SDK interface extensively. The Rooms web

API also uses the memcache interface. We focus on these two interfaces exclusively in

this study. We execute these applications in the Google App Engine public cloud (SDK

v1.9.17) and in an AppScale (v2.0) private cloud. We instrument the programs to collect

execution time statistics for verification purposes only (the instrumentation data is not

used to predict the SLOs). The AppScale private cloud used for testing was hosted using

four “m3.2xlarge” virtual machines running on a private Eucalyptus [6] cloud.

We first report the time required for Cerebro to perform its analysis and SLO predic-

tion. Across web APIs, Cerebro takes 10.00 seconds on average, with a maximum time

of 14.25 seconds for the StudentInfo application. These times include the time taken

by the static analyzer to analyze all the web API operations, and the time taken by

QBETS to make predictions. For these results, the length of the time series collected by

PaaS monitoring agent is 1528 data points (25.5 hours of monitoring data). Since the

QBETS analysis time depends on the length of the input time series, we also measured

the time for 2 weeks of monitoring data (19322 data points) to provide some insight into

the overhead of SLO prediction. Even in this case, Cerebro requires only 574.05 seconds

(9.6 minutes) on average.

4.3.1 Correctness of Predictions

We first evaluate the correctness of Cerebro predictions. A set of predictions is correct

if the fraction of measured response time values that fall below the Cerebro prediction

81

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

is greater than or equal to the SLO success probability. For example, if the SLO success

probability is 0.95 (i.e. p = 95 in QBETS) for a specific web API, then the Cerebro

predictions are correct if at least 95% of the response times measured for the web API

are smaller than their corresponding Cerebro predictions.

We benchmark each web API for a period of 15 to 20 hours. During this time we

run a remote HTTP client that makes requests to the web APIs once every minute. The

application instrumentation measures and records the response time of the API operation

for each request (i.e. within the application). Concurrently, and within the same PaaS

system, we execute the Cerebro PaaS monitoring agent, which is an independently hosted

application within the cloud that benchmarks each SDK operation once every minute.

Our test request rate (1 request/minute) is not sufficient to put the backend cloud

servers under any stress. However, cloud platforms like Google App Engine and AppScale

are highly scalable. When the load increases, they automatically spin up new backend

servers, and maintain the average response time of deployed web APIs steady. This

enables us to measure and evaluate the correctness of the Cerebro predictions under

light load conditions. Note that our cloud SDK benchmarking rate at the cloud SDK

monitor is also 1 request per minute. We assume that the time series of cloud SDK

performance is ergodic (i.e. stationary over a long period). Under that assumption,

QBETS is insensitive to the measurement frequency, and a higher benchmarking rate

would not significantly change the results.

Cerebro predicts the web API execution times using only the cloud SDK benchmark-

ing data collected by Cerebro’s PaaS monitoring agent. We configure Cerebro to predict

an upper bound for the 95th percentile of the web API response time, with an upper

confidence of 0.01.

QBETS generates a prediction for every value in the input time series (one per

minute). Cerebro reports the last one as the SLO prediction to the user or PaaS admin-

82

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Figure 4.4: Cerebro correctness percentage in Google App Engine and AppScale cloud
platforms.

istrator in production. However, having per-minute predictions enables us to compare

these predictions against actual web API execution times measured during the same time

period to evaluate Cerebro correctness. More specifically, we associate with each measure-

ment the prediction from the prediction time series that most nearly precedes it in time.

The correctness fraction is computed from a sample of 1000 prediction-measurement

pairs.

Figure 4.4 shows the final results of this experiment. Each of the columns in fig-

ure 4.4 corresponds to a single web API operation in one of the sample applications. The

columns are labeled in the form of ApplicationName#OperationName, a convention we

will continue to use in the rest of the section. To maintain clarity in the figures we do

not illustrate the results for all web API operations in the sample applications. Instead

we present the results for a selected set of web API operations covering all five sample

applications. We note that other web API operations we tested also produce very similar

results.

83

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Since we are using Cerebro to predict the 95th percentile of the API response times,

Cerebro’s predictions are correct when at least 95% of the measured response times are

less than their corresponding predicted upper bounds. According to figure 4.4, Cere-

bro achieves this goal for all the applications in both cloud environments. The lowest

percentage accuracy observed in our tests is 94.6% (in the case of StockTrader#buy on

AppScale), which is also very close to the target of 95%. Such minor lapses below 95%

are acceptable anyway, since we expect percentage accuracy value to be gently fluctuat-

ing around some average value over time (a phenomenon that will be explained in our

later results). Overall, this result shows us that Cerebro produces highly accurate SLO

predictions for a variety of applications running on two very different cloud platforms.

The web API operations illustrated in Figure 4.4 cover a wide spectrum of scenarios

that may be encountered in real world. StudentInfo#getStudent and StudentInfo#addStudent

are by far the simplest operations in the mix. They invoke a single cloud SDK operation

each, and perform a simple datastore read and a simple datastore write respectively. As

per our survey results, these alone cover a significant portion of the web APIs developed

for the App Engine and AppScale cloud platforms (1 path through the code, and 1 cloud

SDK call). The StudentInfo#deleteStudent operation makes two cloud SDK operations

in sequence, whereas StudentInfo#getAllStudents performs an iterative datastore read.

In our experiment with StudentInfo#getAllStudents, we had the datastore preloaded

with 1000 student records, and Cerebro was configured to use a maximum entity count

of 1000 when making predictions.

ServerHealth#info invokes the same cloud SDK operation three times in sequence.

Both StockTrader#buy and StockTrader#sell have multiple paths through the applica-

tion (due to branching), thus causing Cerebro to make multiple sequences of predictions

– one sequence per path. The results shown in Figure 4.4 are for the longest paths

which consist of seven cloud SDK invocations each. According to our survey, 99.8% of

84

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

the execution paths found in Google App Engine applications have seven or fewer cloud

SDK calls in them. Therefore we believe that the StockTrader web API represents an

important upper bound case.

Rooms#getRoomByName invokes two different cloud SDK interfaces, namely data-

store and memcache. Rooms#getAllRooms is another operation that consists of an

iterative datastore read. In this case, we had the datastore preloaded with 10 entities,

and Cerebro was configured to use a maximum entity count of 10.

4.3.2 Tightness of Predictions

In this section we discuss the tightness of the predictions generated by Cerebro.

Tightness is a measure of how closely the predictions bound the actual response times of

the web APIs. Note that it is possible to perfectly achieve the correctness goal by simply

predicting overly large values for web API response times. For example, if Cerebro were

to predict a response time of several years for exactly 95% of the web API invocations

and zero for the others, it would likely achieve a correctness percentage of 95%. From a

practical perspective, however, such an extreme upper bound is not useful as an SLO.

Figure 4.5 depicts the average difference between predicted response time bounds and

actual response times for our sample web APIs when running in the App Engine and

AppScale clouds. These results were obtained considering a sequence of 1000 consecutive

predictions (of 95th percentile), and the averages are computed only for correct predictions

(i.e. ones above their corresponding measurements).

According to Figure 4.5, Cerebro generates fairly tight SLO predictions for most web

API operations considered in the experiments. In fact, 14 out of the 20 cases illustrated

in the figure show average difference values less than 65ms. In a few cases, however, the

bounds differ from the average measurement substantially:

85

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Figure 4.5: Average difference between predictions and actual response times in
Google App Engine and AppScale. The y-axis is in log scale.

• StudentInfo#getAllStudents on both cloud platforms

• ServerHealth#info, SocialMapper#addComment, StockTrader#buy and StockTrader#sell

on App Engine

To understand why Cerebro generates conservative predictions for some operations we

further investigate the performance characteristics of them. We take StudentInfo#getAllStudents

operation on App Engine as a case study, and analyze its execution time measurements

in depth. This is the case which exhibits the largest average difference between predicted

and actual execution times.

Figure 4.6 shows the empirical cumulative distribution function (CDF) of measured

execution times for the StudentInfo#getAllStudents on Google App Engine. This dis-

tribution was obtained by considering the application’s instrumentation results gathered

within a window of 1000 minutes. The average of this sample is 3431.79ms, and the 95th

percentile from the CDF is 4739ms. Thus, taken as a distribution, the “spread” between

the average and the 95th percentile is more than 1300ms.

86

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Figure 4.6: CDF of measured executions times of the StudentInfo#getAllStudents
operation on App Engine.

From this, it becomes evident that StudentInfo#getAllStudents records very high

execution times frequently. In order to incorporate such high outliers, Cerebro must be

conservative and predict large values for the 95th percentile. This is a required feature

to ensure that 95% or more API invocations have execution times under the predicted

SLO. But as a consequence, the average distance between the measurements and the

predictions increases significantly.

We omit a similar analysis of the other cases in the interest of brevity but summarize

the tightness results as indicating that Cerebro achieves a bound that is “tight” with

respect to the percentiles observed by sampling the series for long periods.

Another interesting observation we can make regarding the tightness of predictions is

that the predictions made in the AppScale cloud platform are significantly tighter than

the ones made in Google App Engine (Figure 4.5). For nine out of the ten operations

tested, Cerebro has generated tighter predictions in the AppScale environment. This

is because web API performance on AppScale is far more stable and predictable thus

87

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

resulting in fewer measurements that occur far from the average.

The reason why AppScale’s performance is more stable over time is because it is

deployed on a set of closely controlled, and monitored cluster of virtual machines (VMs)

that use a private Infrastructure-as-a-Service (IaaS) cloud to implement isolation. In

particular, the VMs assigned to AppScale do not share nodes with “noisy neighbors” in

our test environment. In contrast, Google App Engine does not expose the performance

characteristics of its multi-tenancy. While it operates at vastly greater scale, our test

applications also exhibit wider variance of web API response time when using it. Cerebro,

however, is able to predict a correct and tight SLOs for applications running in either

platform: the lower variance private AppScale PaaS, and the extreme scale but more

varying Google App Engine PaaS.

4.3.3 SLO Validity Duration

To be of practical value to PaaS administration, the duration over which a Cerebro

prediction remains valid must be long enough to allow appropriate remedial action when

load conditions change, and the SLO is in danger of being violated. In particular, SLOs

must remain correct for at least the time necessary to allow human responses to changing

conditions such as the commitment of more resources to web APIs that are in violation or

alerts to support staff that customers may be calling to claim SLO breach (which likely

resulted in a higher level SLA violation). Ideally, each prediction should persist as correct

for several hours or more to match staff response time to potential SLO violations.

However, determining when a Cerebro-predicted SLO becomes invalid is potentially

complex. For example, given the definition of correctness described in subsection 4.3.1,

it is possible to report an SLO violation when the running tabulation of correctness per-

centage falls below the target probability (when expressed as a percentage). However, if

88

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Table 4.2: Prediction validity period distributions of different operations in App En-
gine. Validity durations were computed by observing 3 consecutive SLO violations.
5th and 95th columns represent the 5th and 95th percentiles of the distributions re-
spectively. All values are in hours.

Operation 5th Average 95th

StudentInfo#getStudent 7.15 70.72 134.43
StudentInfo#deleteStudent 2.55 37.97 94.37
StudentInfo#addStudent 1.45 26.8 64.78

ServerHealth#info 1.41 39.22 117.71
Rooms#getRoomByName 7.24 70.47 133.36
Rooms#getRoomsInCity 2.08 30.12 82.58

this metric is used, and Cerebro is correct for many consecutive measurements, a sud-

den change in conditions that causes the response time to persist at a higher level will

not immediately trigger a violation. For example, Cerebro might be correct for several

consecutive months and then incorrect for several consecutive days before the overall cor-

rectness percentage drops below 95%, and a violation is detected. If the SLO is measured

over a year, such time scales may be acceptable but we believe that PaaS administrators

would consider such a long period of time where the SLOs were continuously in violation

unacceptable. Thus we adopt the more conservative approach described in section 4.2.5

to measure the duration over which a prediction remains valid than simply measuring the

time until the correctness percentage drops below the SLO-specified value. Tables 4.2

and 4.3 present these durations for Cerebro predictions in Google App Engine and App-

Scale respectively. These results were calculated by analyzing a trace of data collected

over 7 days.

From Table 4.2 the average validity duration for all 6 operations considered in App

Engine is longer than 24 hours. The lowest average value observed is 26.8 hours, and

that is for the StudentInfo#addStudent operation. If we just consider the 5th percentiles

of the distributions, they are also longer than 1 hour. The smallest 5th percentile value of

89

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Table 4.3: Prediction validity period distributions of different operations in AppScale.
Validity periods were computed by observing 3 consecutive SLO violations. 5th and
95th columns represent the 5th and 95th percentiles of the distributions respectively.
All values are in hours.

Operation 5th Average 95th

StudentInfo#getStudent 6.1 60.67 115.24
StudentInfo#deleteStudent 6.08 60.21 114.32
StudentInfo#addStudent 6.1 60.67 115.24

ServerHealth#info 6.29 54.53 108.14
Rooms#getRoomByName 6.07 59.18 112.28
Rooms#getRoomsInCity 1.95 33.77 84.63

1.41 hours is given by the ServerHealth#info operation. This result implies that, based

on our conservative model for detecting SLO violations, Cerebro predictions made on

Google App Engine would be valid for at least 1.41 hours or more, at least 95% of the

time.

By comparing the distributions for different operations we can conclude that API

operations that perform a single basic datastore or memcache read tend to have longer

validity durations. In other words, those cloud SDK operations have fairly stable perfor-

mance characteristics in Google App Engine. This is reflected in the 5th percentiles of

StudentInfo#getStudent and Rooms#getRoomByName. Alternatively operations that

execute writes, iterative datastore reads or long sequences of cloud SDK operations have

shorter prediction validity durations.

For AppScale, the smallest average validity duration of 33.77 hours is observed from

the Rooms#getRoomsInCity operation. All other operations tested in AppScale have

average prediction validity durations greater than 54 hours. The lowest 5th percentile

value in the distributions, which is 1.95 hours, is also shown by Rooms#getRoomsInCity.

This means, the SLOs predicted for AppScale would hold correct for at least 1.95 hours or

more, at least 95% of the time. The relatively smaller validity durations values computed

90

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

for the Rooms#getRoomsInCity operation indicates that the performance of iterative

datastore reads is subject to some variability in AppScale.

4.3.4 Long-term SLO Durability and Change Frequency

In this section we further analyze how the Cerebro-predicted SLOs change over long

periods of time (e.g. several months). Our goal is to understand the frequency with

which Cerebro’s auto-generated SLOs get updated due to the changes that occur in

the cloud platform, and the time duration between these update events. That is, we

assess the number of times an API consumer is prompted with an updated SLO, thereby

potentially initiating SLA renegotiations.

To enable this, we deploy Cerebro’s cloud SDK monitoring agent in the Google App

Engine cloud, and benchmark the cloud SDK operations every 60 seconds for 112 days.

We then use Cerebro to make SLO predictions (95th percentile) for a set of test web

applications. Note that we conduct this long-term experiment only on App Engine, which

according to our previous results gives shorter SLO validity durations than AppScale.

Cerebro analyzes the benchmarking results collected by the cloud SDK monitor, and

generates sequences of SLO predictions for the web APIs of each application. Each

prediction sequence is a time series that spans the duration in which the cloud SDK

monitor was active in the cloud. Each prediction is timestamped. Therefore given any

timestamp that falls within the 112 day period of the experiment, we can find an SLO

prediction that is closest to it. Further, we associate each prediction with an integer value

(Cw) which indicates the consecutive number of SLO violations that should be observed,

before we may consider the prediction to be invalid.

We also estimate the actual web API response times for the test applications. This is

done by simply summing up the benchmarking data gathered by the cloud SDK monitor.

91

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Again, we assume that the time spent on non cloud SDK operations is negligible. For

example, consider a web API that executes the cloud SDK operations O1, O2 and O1 in

that order. Now suppose the cloud SDK monitor has gathered following benchmarking

results for O1 and O2:

• O1: [t1 : x1, t2 : x2, t3 : x3...]

• O2: [t1 : y1, t2 : y2, t3 : y3...]

Here ti are timestamps at which the benchmark operations were performed. xi and

yi are execution times of the two SDK operations measured in milliseconds. Given this

benchmarking data, we can calculate the time series of actual response time of the API

as follows:

[t1 : 2x1 + y1, t2 : 2x2 + y2, t3 : 2x3 + y3...]

The coefficient 2 that appears with each xi term accounts for the fact that our web

API invokes O1 twice. In this manner, we can combine the static analysis results of

Cerebro with the cloud SDK benchmarking data to obtain a time series of estimated

actual response times for all web APIs in our sample applications.

Having obtained a time series of SLO predictions (Tp) and a time series of actual

response times (Ta) for each web API, we perform the following computation. From Tp

we pick a pair < s0, t0 >, where s0 is a predicted SLO value and t0 is the timestamp

associated with it. Then starting from t0, we scan the time series Ta to detect the earliest

point in time at which we can consider the predicted SLO value s0 as invalid. This is done

by comparing s0 against each entry in Ta that has a timestamp greater than or equal to

t0, until we see Cw consecutive entries that are larger than s0. Here Cw is the rare event

threshold computed by Cerebro when making SLO predictions. Having found such an

SLO invalidation event at time t′, we record the duration t′ − t0 (i.e. the SLO validity

duration), and increment the counter invalidations, which starts from 0. Then we pick

92

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

the pair < s1, t1 > from Tp where t1 is the smallest timestamp greater than or equal to

t′, and s1 is the predicted SLO value at that timestamp. Then we scan Ta starting from

t1, until we detect the next SLO invalidation (for s1). We repeat this process until we

exhaust either Tp or Ta. At the end of this computation we have a distribution of SLO

validity periods, and the counter invalidations indicates the number of SLO invalidations

we encountered in the process.

This experimental process simulates how a single API consumer encounters SLO

changes. Selecting the first pair of values< s0, t0 > represents the API consumer receiving

an SLO for the first time (i.e. at API subscription). When this SLO becomes invalid,

the API consumer receives a new SLO, which is represented by the selection of the pair

< s1, t1 >. Therefore, when the simulation reaches the end of the time series, we can

determine how many times the API consumer observed changes to the SLO (given by

invalidations). The recorded SLO validity periods give an indication of the time between

these SLO change events.

For a given web API we perform the above simulation many times, using each entry

in Tp as a starting point. That is, in each run we change our selection of < s0, t0 > to be

a different entry in Tp. This way, for a time series comprised of n entries, we can run the

simulation n−1 times, discarding the last entry. We can assume that each simulation run

corresponds to a different API consumer. Therefore, at the end of a complete execution

of the experiment we have the number of SLO changes for many different API consumers,

and the empirical SLO validity period distributions for each of them.

The smallest n we encountered in all our experiments was 125805. That is, we repeat-

edly simulated each web API SLO trace for at least 125804 API consumers. Similarly,

the largest number of API consumers we performed the simulation for is 145130.

We now present the experimental results obtained using this methodology. We an-

alyze the number of SLO changes observed by each API consumer during the 112 day

93

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Figure 4.7: CDF of the number of SLO change events faced by API consumers.

period of the experiment, and calculate a set of cumulative distribution functions (CDF).

These CDFs describe the probability of finding an API consumer that experienced a given

number of SLO change events. Figure 4.7 presents the CDFs. We use the convention

ApplicationName#Operation to label individual web API operations.

According to Figure 4.7, the largest number of SLO changes experienced by any user

is 6. This is with regard to the StudentInfo#addStudent operation. Across all web APIs,

at least 96% of the API consumers experience no more than 4 SLO changes during the

period of 112 days. Further, at least 76% of the API consumers see no more than 3

SLO changes. These statistics indicate that SLOs predicted by Cerebro for Google App

Engine are stable over time, and reassessment is required only rarely. From an API

consumer’s perspective this is a highly desirable property, since it reduces the frequency

of SLO changes, which reduces the potential SLA renegotiation overhead.

Next we analyze the time duration between SLO change events. For this we combine

the SLO validity periods computed for different API consumers into a single statistical

distribution. Table 4.4 shows the 5th percentile, mean, and 95th percentile of these

94

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Operation 5th Mean 95th

StudentInfo#getStudent 12.97 631.24 1911.19
StudentInfo#deleteStudent 7.65 472.07 2031.59
StudentInfo#addStudent 0.05 458.24 1711.08

ServerHealth#info 12.96 630.01 1911.19
Rooms#getRoomByName 8.48 345.13 1096.53
Rooms#getRoomsInCity 20.56 296.44 1143.45

Stocks#buy 8.46 411.75 815.5

Table 4.4: Prediction validity period distributions (in hours). 5th and 95th columns
represent the 5th and 95th percentiles of the distributions respectively.

combined distributions.

The smallest mean SLO validity period observed in our experiments is 296.44 hours

(12.35 days). This value is given by the Rooms#getRoomsInCity operation. This implies

that on average, API consumers do not see a change in Cerebro-predicted SLOs for at

least 12.35 days. Similarly, we observed the largest mean SLO validity period of 26.3 days

with the StudentInfo#getStudent operation. The smallest 5th percentile value of 0.05

hours is shown by the StudentInfo#addStudent operation, but this appears to be a special

case compared to the other web API operations. The second smallest 5th percentile value

of 7.65 hours is shown by the StudentInfo#deleteStudent operation. Therefore, ignoring

the StudentInfo#addStudent operation, API consumers observe SLO validity periods

longer than 7.65 hours at least 95% of the time. That is, the time between SLO changes

is greater than 7.65 hours at least 95% of the time.

To reduce the number of SLO changes further, we observe that we can exploit the

SLO change events in which the difference between an invalidated SLO and a new SLO

is small. In such cases, it is of little use to provide a new SLO, and API consumers

may be content to continue with the old SLO. To incorporate this behavior into Cerebro

(and our simulation process), we introduce threshold value slo delta threshold into the

process. This parameter takes a percentage value that represents the minimum acceptable

95

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Figure 4.8: CDF of the number of SLO change events faced by API consumers, when
slo delta threshold = 10%

percentage difference between the old and new SLO values before renegotiation. If the

percentage difference between the two SLO values is below this threshold, we do not

record the SLO validity period, nor increment the count of the SLO invalidations. That

is, we do not consider such cases as SLO change events. We simply carry on with the

old SLO value until we come across an invalidation event with a percentage difference

that exceeds the threshold. Note that our previous experiments are a special case of

thresholding for which slo delta threshold is 0.

Next we evaluate the sensitivity of our results to slo delta threshold. Figure 4.8 shows

the resulting CDFs of per-user renegotiation count when the threshold is 10%. That is,

Cerebro does not prompt the API consumer with an SLO change, unless the new SLO

is at least 10% off from the old one. In this case, the maximum number of SLO change

events drops from 6 to 5. Also most of the probabilities shift slightly upwards. For

instance, now more than 82% of the users see 3 or less renegotiation events (as opposed

to 76%).

96

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Operation 5th Mean 95th

StudentInfo#getStudent 19.93 644.58 1911.19
StudentInfo#deleteStudent 7.93 512.52 2031.59
StudentInfo#addStudent 0.05 491.68 1711.08

ServerHealth#info 19.91 643.33 1911.19
Rooms#getRoomByName 8.48 392.01 1096.53
Rooms#getRoomsInCity 21.82 304.97 1143.45

Stocks#buy 7.41 510.31 1277.7

Table 4.5: Prediction validity period distributions (in hours) when slo delta threshold
= 10%. 5th and 95th columns represent the 5th and 95th percentiles of the distributions
respectively.

Table 4.5 shows the SLO validity period distributions computed when slo delta threshold

is 10%. Here, as expected most of the mean and 5th percentile values have increased

slightly from their original values. The smallest mean value recorded in the table is

304.97 hours. We have also considered a slo delta threshold value of 20%. This change

introduces only small shifts in the probability values of the CDFs (more than 84% of the

users see 3 or less renegotiations), and the maximum number of renegotiations remains

at 5.

In summary, we find that the performance SLOs predicted by Cerebro for the Google

App Engine cloud environment are stable over time. That is, the predictions are valid

for long periods of time, and API consumers do not observe SLO changes often. In our

experiment spanning over a period of 112 days, the maximum number of SLO changes a

user had to undergo was 6. More than 76% of the users experienced only 3 or less changes.

We can further reduce the number of SLO changes per API consumer by introducing a

threshold for the minimum applicable percentage SLO change. This helps to eliminate

the cases where an old SLO has been marked as invalid by our statistical model for

detecting SLO invalidations, but the new SLO predicted by Cerebro is not very different

from the old one. However, the effect of this parameter starts to diminish as we increase

97

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

its value. In our experiments, we observe the best results for a threshold of 10%. Using

a value of 20% does not achieve significantly better results.

4.3.5 Effectiveness of QBETS

In order to gauge the effectiveness of QBETS, we compare it to a “näıve” approach

that simply uses the running empirical percentile tabulation of a given joint time series

as a prediction. This simple predictor retains a sorted list of previous observations, and

predicts the p-th percentile to be the value that is larger than p% of the values in the

observation history. Whenever a new observation is available, it is added to the history

and each prediction uses the full history.

Figure 4.9 shows the correctness measurements for the simple predictor using the

same cloud SDK monitoring data and application benchmarking data that was used in

Subsection 4.3.1. That is, we keep the rest of Cerebro unchanged, swap QBETS out for

the simple predictor, and run the same set of experiments using the logged observations.

Thus the results in figure 4.9 are directly comparable to figure 4.4 where Cerebro uses

QBETS as a forecaster.

For the simple predictor, Figure 4.9 shows lower correctness percentages compared to

Figure 4.4 for QBETS (i.e. the simple predictor is less conservative). However, in several

cases the simple predictor falls well short of the target correctness of 95% necessary for

the SLO. That is, it is unable to furnish a prediction correctness that can be used as

the basis of an SLO in all of the test cases. This indicates that QBETS is a superior

approach, albeit conservativeness, for making SLO predictions than simply calculating

the percentiles on cloud SDK monitoring data.

To illustrate why the simple predictor fails to meet the desired correctness level,

figure 4.10 shows the time series of observations, simple predictor forecasts, and QBETS

98

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Figure 4.9: Cerebro correctness percentage resulting from the simple predictor (with-
out QBETS).

forecasts for the Rooms#getRoomsInCity operation on Google App Engine (the case in

figure 4.9 that shows lowest correctness percentage).

In this experiment, there are a significant number of response time measurements that

violate the SLO given by simple predictor (i.e. are larger than the predicted percentile),

but are below the corresponding QBETS prediction made for the same observation. No-

tice also that while QBETS is more conservative (its predictions are generally larger than

those made by the simple predictor), in this case the predictions are typically only 10%

larger. That is, while the simple predictor shows the 95th percentile to be approximately

40ms, the QBETS predictions vary between 42ms and 48ms, except at the beginning

where QBETS is “learning” the series. This difference in prediction, however, results in

a large difference in correctness percentage. For QBETS, the correctness percentage is

97.4% (Figure 4.4) compared to 75.5% for the simple predictor (Figure 4.9).

99

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Figure 4.10: Comparison of predicted and actual response times of
Rooms#getRoomsInCity on Google App Engine.

Figure 4.11: Running tabulation of correctness percentage for predictions made on
App Engine for a period of 1000 minutes, one prediction per minute.

100

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

Figure 4.12: Running tabulation of correctness percentage for predictions made on
AppScale for a period of 1000 minutes, one prediction per minute.

4.3.6 Learning Duration

As described in subsection 4.2.3, QBETS uses a form of supervised learning internally

to determine each of its bound predictions. Each time a new prediction is presented, it

updates its internal state with respect to autocorrelation and change-point detection.

As a result, the correctness percentage may require some number of state updates to

converge to a stable value.

Figure 4.11 shows a running tabulation of correctness percentage for Cerebro pre-

dictions made in Google App Engine during the first 1000 minutes of operation (one

prediction is generated each minute). Similarly, in figure 4.12 we show a running tabula-

tion of correctness percentage for Cerebro predictions made in AppScale during the first

1000 minutes of operation (again, one prediction generated per minute).

For clarity we do not show results for all tested operations. Instead, we only show

data for the operation that reaches stability in the shortest amount of time, and the

operation that takes the longest to converge. Results for other operations fall between

these two extremes.

101

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

In the worst case, Cerebro takes up to 200 minutes to achieve correctness percentage

above 95% in Google App Engine (for StudentInfo#getAllStudents). Alternatively, the

longest time until Cerebro has “learned” the series in AppScale is approximately 40

minutes.

Summarizing these results, the learning time for Cerebro may be several hours (up to

200 minutes in case of Google App Engine), before it produces trustworthy and correct

SLO predictions. The predictions made during this learning period are not necessarily

incorrect. It is just not possible to gauge their correctness quantitatively before the series

has been learned. We envision Cerebro as a continuous monitoring process in PaaS clouds

for which “startup time” is not an issue.

4.4 Related Work

Our research leverages a number of mature research areas in computer science and

mathematics. These areas include static program analysis, cloud computing, time series

analysis, and SOA governance.

The problem of predicting response time SLOs of web APIs is similar to worst-case

execution time (WCET) analysis [107, 108, 109, 100, 110]. The objective of WCET

analysis is to determine the maximum execution time of a software component in a given

hardware platform. It is typically discussed in the context of real-time systems, where the

developers should be able to document and enforce precise hard real-time constraints on

the execution time of programs. In order to save time, manpower and hardware resources,

WCET analysis solutions are generally designed favoring static analysis methods over

software testing. We share similar concerns with regard to cloud platforms, and strive to

eliminate software testing in the favor of static analysis.

Ermedahl et al describe SWEET [108], a WCET analysis tool that make use of pro-

102

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

gram slicing [109], abstract interpretation [111], and invariant analysis [100] to determine

the loop bounds and worst-case execution time of a program. Program slicing used in

this prior work to limit the amount of code being analyzed is similar in its goal to our

focus on cloud SDK invocations. SWEET uses abstract interpretation in interval and

congruence domains to identify the set of values that can be assigned to key control

variables of a program. These sets are then used to calculate exact loop bounds for most

data-independent loops in the code. Invariant analysis is used to detect variables that

do not change during the course of a loop iteration, and remove them from the analy-

sis thus further simplifying the loop bound estimation. Lokuceijewski et al propose a

similar WCET analysis using program slicing and abstract interpretation [112]. They

additionally use a technique called polytope models to speed up the analysis.

The corpus of research that covers the use of static analysis methods to estimate

the execution time of software applications is extensive. Gulwani, Jain and Koskinen

used two techniques named control-flow refinement and progress invariants to estimate

the bounds for procedures with nested and multi-path loops [113]. Gulwani, Mehra and

Chilimbi proposed SPEED [114], a system that computes symbolic bounds for programs.

This system makes use of user-defined quantitative functions to predict the bounds for

loops iterating over data structures like lists, trees and vectors. Our idea of using user-

defined values to bound data-dependent loops (e.g. iterative datastore reads) is partly

inspired by this concept. Bygde [101] proposed a set of algorithms for predicting data-

independent loops using abstract interpretation and element counting (a technique that

was partly used in [108]). Cerebro incorporates minor variations of these algorithms

successfully due to their simplicity.

Cerebro makes use of and is similar to many of the execution time analysis systems

discussed above. However, there are also several key differences. For instance, Cerebro is

focused on solving the execution time prediction problem for PaaS-hosted web APIs. As

103

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

we show in our characterization survey, such applications have a set of unique properties,

that can be used to greatly simplify static analysis. Also, Cerebro is designed to only work

with web API codes. This makes designing a solution much more simpler but less general.

To handle the highly variable and evolving nature of cloud platforms, Cerebro combines

static analysis with runtime monitoring of cloud platforms at the level of SDK operations.

No other system provides such a hybrid approach to the best of our knowledge. Finally,

we use time series analysis [90] to predict API execution time upper bounds with specific

confidence levels.

SLA management on service-oriented systems and cloud systems has been throughly

researched over the years. However, a lot of the existing work has focused on issues

such as SLA monitoring [115, 116, 117, 118], SLA negotiation [119, 120, 121], and SLA

modeling [122, 123, 124]. Some work has looked at incorporating a given SLA to the

design of a system, and then monitoring it at the runtime to ensure SLA compliant

behavior [125]. Our research takes a different approach from such works, whereby it

attempts to predict the performance SLOs for a given web API, which in turns can be

used to formulate performance SLAs between API providers and consumers. To the best

of our knowledge, Cerebro is the first system to predict performance SLOs for web APIs

developed for PaaS clouds.

A work that is similar to ours has been proposed by Ardagna, Damiani and Sagbo

in [126]. The authors develop a system for early estimation of service performance based

on simulations. Given a STS model (Symbolic Transitions System) of a service, their

system is able to generate a simulation script, which can be used to assess the perfor-

mance of the service. STS models are a type of finite state automata. Further, they

use probabilistic distributions with fixed parameters to represent the delays incurred by

various operations in the service. Cerebro is easier to use than this system because we do

not require API developers to construct any models of the web APIs. They only need to

104

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

provide the source code of the API implementations. Also, instead of using probabilistic

distributions with fixed parameters, Cerebro uses actual historical performance metrics

of cloud SDK operations. This enables Cerebro to generate more accurate results, that

reflect the dynamic nature of the cloud platform.

In PROSDIN [119], a proactive service discovery and negotiation framework, the SLA

negotiation occurs during the service discovery phase. This is similar to how Cerebro

provides an initial SLO with an API consumer, when the consumer subscribes to an API.

PROSDIN also establishes a fixed SLA validity period upon negotiation, and triggers

an SLA renegotiation when this time period has elapsed. Cerebro on the other hand

continuously monitors the cloud platform, and periodically re-evaluates the response time

SLOs of web APIs to determine when a reassessment is needed. Similarly, researchers

have investigated the notions of SLA brokering [121], and the automatic SLA negotiation

between intelligent agents [120], ideas that can complement the simple SLO provisioning

model of Cerebro to make it more powerful and flexible.

Meryn [127] is an SLA-driven PaaS system that attempts to maximize cloud provider

profit, while providing the best possible quality of service to the cloud users. It sup-

ports SLA negotiation at application deployment, and SLA monitoring to detect viola-

tions. However, it does not automatically determine what SLAs are feasible or address

SLA renegotiation, and employs a policy-based mechanism coupled with a penalty cost

charged against the cloud provider to handle SLA violations. Also, Meryn formulates

SLAs in terms of the computing resources (CPU, memory, storage etc.) allocated to

applications. It assumes a batch processing environment where the execution time of an

application is approximated based on a detailed description of the application provided

by the developer. In contrast, Cerebro handles SLOs for interactive web applications. It

predicts the response time of applications using static analysis, without any input from

the application developer. Cerebro also supports automatic SLO reassessment, with

105

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

possible room for economic incentives.

Iosup et al showed via empirical analysis, that production cloud platforms like Google

App Engine and AWS regularly undergo performance variations, thus impacting the re-

sponse time of the applications deployed in such cloud platforms [128]. Some of these

cloud platforms even exhibit temporal patterns in their performance variations (weekly,

monthly, annual or seasonal). Cerebro and the associated API performance forecasting

model acknowledge this fact, and periodically reassess the predicted response time up-

per bounds. It detects when a previously predicted upper bound becomes invalid, and

prompts the API clients to update their SLOs accordingly. Indeed, one of Cerebro’s

strength’s is its ability to detect change points in the input time series data (periodically

collected cloud SDK benchmark results), and generate up-to-date predictions that are

not affected by old obsolete observations that were gathered prior to a change point.

There has also been prior work in the area of predicting SLO violations [129, 130, 131].

These systems take an existing SLO and historical performance data of a service, and

predict when the service might violate the given SLO in the future. Cerebro’s notion of

SLO validity period has some relation to this line of research. However, Cerebro’s main

goal is to make SLO predictions for web APIs before they are deployed and executed. We

believe that some of these existing SLO violation predictors can complement our work by

providing API developers and cloud administrators insights on when a Cerebro-predicted

SLO will be violated.

4.5 Conclusions and Future Work

Stipulating SLOs (bounds) on the response time of web APIs is crucial for implement-

ing several features related to automated governance. To this end we present Cerebro,

a system that predicts response time SLOs for web APIs deployed in PaaS clouds. The

106

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

SLOs predicted by Cerebro can be used to enforce policies regarding the performance

level expected from cloud-hosted web applications. They can be used to negotiate SLAs

with API clients. They can also be used as thresholds when implementing application

performance monitoring (APM) – subject of the next chapter. Cerebro is intended for

use during development and deployment phases of a web API, and precludes the need

for continuous performance testing of the API code. Further, it does not interfere with

run-time operation (i.e. it requires no application instrumentation) making it scalable.

Cerebro uses static analysis to extract the sequence of cloud SDK calls (i.e. PaaS

kernel invocations) made by a given web API code, and combines that with the historical

performance measurements of individual cloud SDK calls. Cerebro employs QBETS, a

non-parametric time series analysis and forecasting method, to analyze cloud SDK per-

formance data, and predict bounds on API response time that can be used as statistical

“guarantees” with associated guarantee probabilities.

We have implemented a prototype of Cerebro for Google App Engine public PaaS,

and AppScale private PaaS. We evaluate it using a set of representative and open source

web applications developed by others. Our findings indicate that the prototype can

determine response time SLOs with target accuracy levels specified by an administrator.

Specifically, we use Cerebro to predict the 95th percentile of the API response time. We

find that:

• Cerebro achieves the desired correctness goal of 95% for all the applications in both

cloud environments.

• Cerebro generates tight predictions (i.e. the predictions are similar to measured

values) for most web APIs. Because some operations and PaaS systems exhibit

more variability in cloud SDK response time, Cerebro must be conservative in some

cases, and produce predictions that are less tight to meet its correctness guarantees.

107

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

• Cerebro requires a “warm up” period of up to 200 minutes to produce trustworthy

predictions. Since PaaS systems are designed to run continuously, this is not an

issue in practice.

• We can use a simple yet administratively useful model to identify when an SLO

becomes invalid to compute prediction validity durations for Cerebro. The average

duration of a valid Cerebro prediction is between 24 and 72 hours, and 95% of

the time this duration is at least 1.41 hours for App Engine and 1.95 hours for

AppScale.

We also find that, when using Cerebro to establish SLOs, the API consumers do not

experience SLO changes often, and the maximum number of times an API consumer

encounters an SLO change over a period of 112 days is six. Overall, this work shows that

automatic stipulation of response-time SLOs for web APIs is practically viable in real

world cloud settings, and API consumer timeframes.

In the current design, Cerebro’s cloud SDK monitoring agent only monitors a prede-

fined set of cloud SDK operations. In our future work we wish to explore the possibility

of making this component more dynamic, so that it automatically learns what operations

to benchmark from the web APIs deployed in the cloud. This also includes learning the

size and the form of the datasets that cloud SDK invocations operate on, so that Cerebro

can acquire more realistic benchmarking data. We also plan to investigate further how

to better handle data-dependent loops (iterative datastore reads) for different workloads.

We are interested in exploring the ways in which we can handle API codes with unpre-

dictable execution patterns (e.g. loops based on a random number), even though such

cases are quite rare in the applications we have looked at so far. Further, we plan to

integrate Cerebro with EAGER, our API governance system and policy engine for PaaS

clouds, so that PaaS administrators can enforce SLO-related policies on web APIs at

108

Response Time Service Level Objectives for Cloud-hosted Web Applications Chapter 4

deployment-time. Such a system will make it possible to prevent any API that does not

adhere to the organizational performance standards from being deployed in the produc-

tion cloud environment. It can also enforce policies that prevent applications from taking

dependencies on APIs that are not up to the expected performance standards.

109

Chapter 5

Performance Anomaly Detection

and Root Cause Analysis for

Cloud-hosted Web Applications

In the previous chapter we presented a methodology for stipulating performance SLOs

for cloud-hosted web applications. In this chapter we discuss detecting performance

SLO violations, and conducting root cause analysis. Timely detection of performance

problems, and the ability to diagnose the root causes of such issues are critical elements

of governance.

This widespread adoption of cloud computing, particularly for deploying web appli-

cations, is facilitated by ever-deepening software abstractions. These abstractions elide

the complexity necessary to enable scale, while making application development easier

and faster. But they also obscure the runtime details of cloud applications, making

the diagnosis of performance problems challenging. Therefore, the rapid expansion of

cloud technologies combined with their increasing opacity has intensified the need for

new techniques to monitor applications deployed in cloud platforms [132].

110

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Application developers and cloud administrators generally wish to monitor applica-

tion performance, detect anomalies, and identify bottlenecks. To obtain this level of

operational insight into cloud-hosted applications, and facilitate governance, the cloud

platforms must support data gathering and analysis capabilities that span the entire soft-

ware stack of the cloud. However, most cloud technologies available today do not provide

adequate application monitoring support. Cloud administrators must therefore trust the

application developers to implement necessary instrumentation at the application level.

This typically entails using third party, external monitoring software [12, 13, 14], which

significantly increases the effort and financial cost of maintaining applications. Develop-

ers must also ensure that their instrumentation is both correct, and does not degrade

application performance. Nevertheless, since the applications depend on extant cloud

services (e.g. scalable database services, scalable in-memory caching, etc.) that are per-

formance opaque, it is often difficult, if not impossible to diagnose the root cause of a

performance problem using such extrinsic forms of monitoring.

Further compounding the performance diagnosis problem, today’s cloud platforms are

very large and complex [132, 133]. They are comprised of many layers, where each layer

may consist of many interacting components. Therefore when a performance anomaly

manifests in a user application, it is often challenging to determine the exact layer or the

component of the cloud platform that may be responsible for it. Facilitating this level of

comprehensive root cause analysis requires both data collection at different layers of the

cloud, and mechanisms for correlating the events recorded at different layers.

Moreover, performance monitoring for cloud applications needs to be highly cus-

tomizable. Different applications have different monitoring requirements in terms of data

gathering frequency (sampling rate), length of the history to consider when performing

statistical analysis (sample size), and the performance SLOs (service level objectives [89])

and policies that govern the application. Cloud monitoring should be able to facilitate

111

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

these diverse requirements on a per-application basis. Designing such customizable and

extensible performance monitoring frameworks that are built into the cloud platforms is

a novel and challenging undertaking.

To address these needs, we present a full-stack application performance monitor

(APM) called Roots that can be integrated with a variety of cloud Platform-as-a-Service

(PaaS) technologies. PaaS clouds provide a set of managed services, which develop-

ers compose into applications. To be able to correlate application activity with cloud

platform events, we design Roots as another managed service built into the PaaS cloud.

Therefore it operates at the same level as the other services offered by the cloud platform.

This way Roots can collect data directly from the internal service implementations of the

cloud platform, thus gaining full visibility into all the inner workings of an application.

It also enables Roots to operate fully automatically in the background, without requiring

instrumentation of application code.

Previous work has outlined several key requirements that need to be considered when

designing a cloud monitoring system [132, 133]. We incorporate many of these features

into our design:

Scalability Roots is lightweight, and does not cause any noticeable overhead in appli-

cation performance. It puts strict upper bounds on the data kept in memory. The

persistent data is accessed on demand, and can be removed after their usefulness

has expired.

Multitenancy Roots facilitates configuring monitoring policies at the granularity of

individual applications. Users can employ different statistical analysis methods to

process the monitoring data in ways that are most suitable for their applications.

Complex application architecture Roots collects data from the entire cloud stack

(load balancers, app servers, built-in PaaS services etc.). It correlates data gathered

112

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

from different parts of the cloud platform, and performs systemwide bottleneck

identification.

Dynamic resource management Cloud platforms are dynamic in terms of their mag-

nitude and topology. Roots captures performance events of applications by aug-

menting the key components of the cloud platform. When new processes/compo-

nents become active in the cloud platform, they inherit the same augmentations,

and start reporting to Roots automatically.

Autonomy Roots detects performance anomalies online without manual intervention.

When Roots detects a problem, it attempts to automatically identify the root cause

by analyzing available workload and service invocation data.

Roots collects most of the data it requires by direct integration with various inter-

nal components of the cloud platform. In addition to high-level metrics like request

throughput and latency, Roots also records the internal PaaS service invocations made

by applications, and the latency of those calls. It uses batch operations and asynchronous

communication to record events in a manner that does not substantively increase request

latency.

The previous two chapters present systems that perform the specification (policies

and SLOs) and enforcement functions of governance. Roots also performs an important

function associated with automated governance – monitoring. It is designed to monitor

cloud-hosted web applications for SLO violations, and any other deviations from specified

or expected behavior. Roots flags such issues as anomalies, and notifies cloud admin-

istrators in near real time. Also, when Roots detects an anomaly in an application, it

attempts to uncover the root cause of the anomaly by analyzing the workload data, and

the performance of the internal PaaS services the application depends on. Roots can de-

termine if the detected anomaly was caused by a change in the application workload (e.g.

113

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

a sudden spike in the number of client requests), or an internal bottleneck in the cloud

platform (e.g. a slow database query). To this end we propose a statistical bottleneck

identification method for PaaS clouds. It uses a combination of quantile analysis, change

point detection and linear regression to perform root cause analysis.

Using Roots we also devise a mechanism to identify different paths of execution in an

application – i.e. different paths in the application’s control flow graph. Our approach

does not require static analysis, and instead uses the runtime data collected by Roots.

This mechanism also calculates the proportion of user requests processed by each path,

which is used to characterize the workload of an application (e.g. read-heavy vs write-

heavy workload in a data management application). Based on that, Roots monitors for

characteristic changes in the application workload.

We build a working prototype of Roots using the AppScale [7] open source PaaS.

We evaluate the feasibility and the efficacy of Roots by conducting a series of empirical

trials using our prototype. We also show that our approach for identifying performance

bottlenecks in PaaS clouds, produces accurate results nearly 100% of the time. We also

demonstrate that Roots does not add a significant performance overhead to the applica-

tions, and that it scales well to monitor tens of thousands of applications concurrently.

We discuss the following contributions in this chapter:

• We describe the architecture of Roots as an intrinsic PaaS service, which works

automatically without requiring or depending upon application instrumentation.

• We describe a statistical methodology for determining when an application is ex-

periencing a performance anomaly, and identifying the workload change or the

application component that is responsible for the anomaly.

• We present a mechanism for identifying the execution paths of an application via

the runtime data gathered from it, and characterizing the application workload by

114

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

computing the proportion of requests handled by each path.

• We demonstrate the effectiveness of the approach using a working PaaS prototype.

5.1 Performance Debugging Cloud Applications

By providing most of the functionality that applications require via kernel services, the

PaaS model significantly increases programmer productivity. However, a downside of this

approach is that these features also hide the performance details of PaaS applications.

Since the applications spend most of their time executing kernel services [134], it is

challenging for the developers to debug performance issues given the opacity of the cloud

platform’s internal implementation.

One way to circumvent this problem is to instrument application code [12, 14, 13],

and continuously monitor the time taken by various parts of the application. But such

application-level instrumentation is tedious, and error prone thereby misleading those

attempting to diagnose problems. Moreover, the instrumentation code may slow down

or alter the application’s performance. In contrast, implementing data collection and

analysis as a kernel service built into the PaaS cloud allows performance diagnosis to be

a “curated” service that is reliably managed by the cloud platform.

In order to maintain a satisfactory level of user experience and adhere to any previ-

ously agreed upon performance SLOs, application developers and cloud administrators

wish to detect performance anomalies as soon as they occur. When detected, they must

perform root cause analysis to identify the cause of the anomaly, and take some corrective

and/or preventive action. This diagnosis usually occurs as a two step process. First, one

must determine whether the anomaly was caused by a change in the workload (e.g. a

sudden increase in the number of client requests). If that is the case, the resolution typ-

ically involves allocating more resources to the application or spawning more instances

115

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

of the application for load balancing purposes. If the anomaly cannot be attributed to a

workload change, one must go another step to find the bottleneck component that has

given rise to the issue at hand.

5.2 Roots

Roots is a holistic system for application performance monitoring (APM), perfor-

mance anomaly detection, and bottleneck identification. The key intuition behind the

system is that, as an intrinsic PaaS service, Roots has visibility into all activities of the

PaaS cloud, across layers. Moreover, since the PaaS applications we have observed spend

most of their time in PaaS kernel services [134], we hypothesize that we can reason about

application performance from observations of how the application uses the platform, i.e.

by monitoring the time spent in PaaS kernel services. If we are able to do so, then we

can avoid application instrumentation and its downsides while detecting performance

anomalies, and identifying their root cause in near real time with low overhead.

The PaaS model that we assume with Roots is one in which the clients of a web

application engage in a “service level agreement” (SLA) [89] with the “owner” or operator

of the application that is hosted in a PaaS cloud. The SLA stipulates a response-time

“service level objective” (SLO) that, if violated, constitutes a breech of the agreement. If

the performance of an application deteriorates to the point that at least one of its SLOs

is violated, we treat it as an anomaly. Moreover, we refer to the process of diagnosing

the reason for an anomaly as root cause analysis. For a given anomaly, the root cause

could be a change in the application workload or a bottleneck in the application runtime.

Bottlenecks may occur in the application code, or in the PaaS kernel services that the

application depends on.

Roots collects performance data across the cloud platform stack, and aggregates it

116

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

based on request/response. It uses this data to infer application performance, and to

identify SLO violations (performance anomalies). Roots can further handle different

types of anomalies in different ways. We overview each of these functionalities in the

remainder of this section.

5.2.1 Data Collection and Correlation

We must address two issues when designing a monitoring framework for a system as

complex as a PaaS cloud.

1. Collecting data from multiple different layers.

2. Correlating data collected from different layers.

Each layer of the cloud platform is only able to collect data regarding the state

changes that are local to it. A layer cannot monitor state changes in other layers due

to the level of encapsulation provided by layers. However, processing an application

request involves cooperation of multiple layers. To facilitate system-wide monitoring and

bottleneck identification, we must gather data from all the different layers involved in

processing a request. To combine the information across layers, we correlate the data,

and link events related to the same client request together.

To enable this, we augment the front-end server of the cloud platform. Specifically, we

have it tag incoming application requests with unique identifiers. This request identifier

is added to the HTTP request as a header, which is visible to all internal components

of the PaaS cloud. Next, we configure data collecting agents within the platform to

record the request identifiers along with any events they capture. This way we record

the relationship between application requests, and the resulting local state changes in

different layers of the cloud, without breaking the existing level of abstraction in the

117

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Figure 5.1: Roots APM architecture.

cloud architecture. This approach is also scalable, since the events are recorded in a

distributed manner without having to maintain any state at the data collecting agents.

Roots aggregates the recorded events by request identifier to efficiently group the related

events as required during analysis.

Figure 5.1 illustrates the high-level architecture of Roots, and how it fits into the PaaS

stack. APM components are shown in grey. The small grey boxes attached to the PaaS

components represent the agents used to instrument the cloud platform. In the diagram,

a user request is tagged with the identifier value R at the front-end server. This identifier

is passed down to the lower layers of the cloud along with the request. Events that occur

in the lower layers while processing this request are recorded with the request identifier

R, so Roots can correlate them later. For example, in the data analysis component we

can run a filter query to select all the events related to a particular request (as shown in

the pseudo query in the diagram). Similarly, Roots can run a “group by” query to select

all events, and aggregate them by the request identifier.

Figure 5.1 also depicts Roots data collection across all layers in the PaaS stack (i.e.

118

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

full stack monitoring). From the front-end server layer we gather information related

to incoming application requests. This involves scraping the HTTP server access logs,

which are readily available in most technologies used as front-end servers (e.g. Apache

HTTPD, Nginx).

From the application server layer, we collect application logs and metrics from the

application runtime that are easily accessible, e.g. process level metrics indicating re-

source usage of the individual application instances. Additionally, Roots employs a set

of per-application benchmarking processes that periodically probes different applications

to measure their performance. These are lightweight, stateless processes managed by the

Roots framework. Data collected by these processes is sent to the data storage compo-

nent, and is available for analysis as per-application time series data.

At the PaaS kernel layer we collect information regarding all kernel invocations made

by the applications. This requires intercepting the PaaS kernel invocations at runtime.

This must be done carefully so as to not introduce significant overhead application exe-

cution. For each PaaS kernel invocation, we capture the following parameters.

• Source application making the kernel invocation

• Timestamp

• A sequence number indicating the order of PaaS kernel invocations within an ap-

plication request

• Target kernel service and operation

• Execution time of the invocation

• Request size, hash and other parameters

Collecting PaaS kernel invocation details enables tracing the execution of application

requests without requiring that the application code be instrumented.

119

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Finally, at the lowest level we can collect information related to virtual machines,

containers and their resource usage. We gather metrics on network usage by individual

components which is useful for traffic engineering use cases. We also scrape hypervisor

and container manager logs to learn how resources are allocated and released over time.

To avoid introducing delays to the application request processing flow, we implement

Roots data collecting agents as asynchronous tasks. That is, none of them suspend

application request processing to report data to the data storage components. To enable

this, we collect data into log files or memory buffers that are local to the components

being monitored. This locally collected (or buffered) data is periodically sent to the data

storage components of Roots using separate background tasks and batch communication

operations. We also isolate the activities in the cloud platform from potential failures in

the Roots data collection or storage components.

5.2.2 Data Storage

The Roots data storage is a database that supports persistently storing monitoring

data, and running queries on them. Most data retrieval queries executed by Roots use

application and time intervals as indices. Therefore a database that can index monitoring

data by application and timestamp will greatly improve the query performance. It is also

acceptable to remove old monitoring data to make room for more recent events, since

Roots performs anomaly detection using the most recent data in near realtime.

5.2.3 Data Analysis

Roots data analysis components use two basic abstractions: anomaly detectors and

anomaly handlers. Anomaly detectors are processes that periodically analyze the data

collected for each deployed application. Roots supports multiple detector implementa-

120

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

tions, where each implementation uses a different statistical method to look for per-

formance anomalies. Detectors are configured per-application, making it possible for

different applications to use different anomaly detectors. Roots also supports multiple

concurrent anomaly detectors on the same application, which can be used to evaluate

the efficiency of different detection strategies for any given application. Each anomaly

detector has an execution schedule (e.g. run every 60 seconds), and a sliding window

(e.g. from 10 minutes ago to now) associated with it. The boundaries of the window de-

termines the time range of the data processed by the detector at any round of execution.

Window is updated after each round of execution.

When an anomaly detector finds an anomaly in application performance, it sends

an event to a collection of anomaly handlers. The event encapsulates a unique anomaly

identifier, timestamp, application identifier and the source detector’s sliding window that

correspond to the anomaly. Anomaly handlers are configured globally (i.e. each han-

dler receives events from all detectors), but each handler can be programmed to handle

only certain types of events. Furthermore, they can fire their own events, which are also

delivered to all the listening anomaly handlers. Similar to detectors, Roots supports

multiple anomaly handler implementations – one for logging anomalies, one for sending

alert emails, one for updating a dashboard etc. Additionally, Roots provides two special

anomaly handler implementations: a workload change analyzer, and a bottleneck iden-

tifier. We implement the communication between detectors and handlers using shared

memory.

The ability of anomaly handlers to fire their own events, coupled with their support

for responding to a filtered subset of incoming events enables constructing elaborate event

flows with sophisticated logic. For example, the workload change analyzer can run some

analysis upon receiving an anomaly event from any anomaly detector. If an anomaly

cannot be associated with a workload change, it can fire a different type of event. The

121

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Figure 5.2: Anatomy of a Roots pod. The diagram shows 2 application benchmarking
processes (B), 3 anomaly detectors (D), and 2 handlers (H). Processes communicate
via a shared memory communication bus local to the pod.

bottleneck identifier, can be programmed to only execute its analysis upon receiving

this second type of event. This way we perform the workload change analysis first, and

perform the systemwide bottleneck identification only when it is necessary.

Both the anomaly detectors and anomaly handlers work with fixed-sized sliding win-

dows. Therefore the amount of state these entities must keep in memory has a strict

upper bound. The extensibility of Roots is primarily achieved through the abstractions

of anomaly detectors and handlers. Roots makes it simple to implement new detectors

and handlers, and plug them into the system. Both the detectors and the handlers are

executed as lightweight processes that do not interfere with the rest of the processes in

the cloud platform.

5.2.4 Roots Process Management

Most data collection activities in Roots can be treated as passive – i.e. they take place

automatically as the applications receive and process requests in the cloud platform. They

do not require explicit scheduling or management. In contrast, application benchmarking

and data analysis are active processes that require explicit scheduling and management.

122

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

This is achieved by grouping benchmarking and data analysis processes into units called

Roots pods.

Each Roots pod is responsible for starting and maintaining a preconfigured set of

benchmarkers and data analysis processes (i.e. anomaly detectors and handlers). These

processes are light enough, so as to pack a large number of them into a single pod. Pods

are self-contained entities, and there is no inter-communication between pods. Processes

in a pod can efficiently communicate with each other using shared memory, and call out

to the central Roots data storage to retrieve collected performance data for analysis. This

enables starting and stopping Roots pods with minimal impact on the overall monitoring

system. Furthermore, pods can be replicated for high availability, and application load

can be distributed among multiple pods for scalability.

Figure 5.2 illustrates a Roots pod monitoring two applications. It consists of two

benchmarking processes, three anomaly detectors and two anomaly handlers. The anomaly

detectors and handlers are shown communicating via an internal shared memory com-

munication bus.

5.3 Prototype Implementation

To investigate the efficacy of Roots as an approach to implementing performance

diagnostics as a PaaS service, we have developed a working prototype, and a set of

algorithms that uses it to automatically identify SLO-violating performance anomalies.

For anomalies not caused by workload changes (HTTP request rate), Roots performs

further analysis to identify the bottleneck component that is responsible for the issue.

We implement our prototype in AppScale [7], an open source PaaS cloud that is API

compatible with Google App Engine (GAE) [4]. This compatibility enables us to evaluate

our approach using real applications developed by others since GAE applications run on

123

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Figure 5.3: Roots prototype implementation for AppScale PaaS.

AppScale without modification. Because AppScale is open source, we were able to modify

its implementation minimally to integrate Roots.

Figure 5.3 shows an overview of our prototype implementation. Roots components are

shown in grey, while the PaaS components are shown in blue. We use ElasticSearch [135]

as the data storage component of our prototype. ElasticSearch is ideal for storing large

volumes of structured and semi-structured data [136]. ElasticSearch continuously orga-

nizes and indexes data, making the information available for fast and efficient querying.

Additionally, it also provides powerful data filtering and aggregation features, which

greatly simplify the implementations of high-level data analysis algorithms.

We configure AppScale’s front-end server (based on Nginx) to tag all incoming ap-

plication requests with a unique identifier. This identifier is attached to the incoming

request as a custom HTTP header. All data collecting agents in the cloud extract this

identifier, and include it as an attribute in all the events reported to ElasticSearch.

We implement a number of data collecting agents in AppScale to gather runtime

information from all major components. These agents buffer data locally, and store

them in ElasticSearch in batches. Events are buffered until the buffer accumulates 1MB

of data, subject to a hard time limit of 15 seconds. This ensures that the events are

promptly reported to the Roots data storage while keeping the memory footprint of

124

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

the data collecting agents small and bounded. For scraping server logs, and storing the

extracted entries in ElasticSearch, we use the Logstash tool [137]. To capture the PaaS

kernel invocation data, we augment AppScale’s PaaS kernel implementation, which is

derived from the GAE PaaS SDK. More specifically we implement an agent that records

all PaaS SDK calls, and reports them to ElasticSearch asynchronously.

We implement Roots pods as standalone Java server processes. Threads are used to

run benchmarkers, anomaly detectors and handlers concurrently within each pod. Pods

communicate with ElasticSearch via a web API, and many of the data analysis tasks

such as filtering and aggregation are performed in ElasticSearch itself. This way, our

Roots implementation offloads heavy computations to ElasticSearch which is specifically

designed for high-performance query processing and analytics. Some of the more sophis-

ticated statistical analysis tasks (e.g. change point detection and linear regression as

described below) are implemented in the R language, and the Roots pods integrate with

R using the Rserve protocol [138].

5.3.1 SLO-violating Anomalies

As described previously, Roots defines anomalies as performance events that trigger

SLO violations. Thus, we devise a detector to automatically identify when a SLO viola-

tion has occurred. This anomaly detector allows application developers to specify simple

performance SLOs for deployed applications. A performance SLO consists of an upper

bound on the application response time (T), and the probability (p) that the application

response time falls under the specified upper bound. A general performance SLO can be

stated as: “application responds under T milliseconds p% of the time”.

When enabled for a given application, the SLO-based anomaly detector starts a

benchmarking process that periodically measures the response time of the target ap-

125

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

plication. Probes made by the benchmarking process are several seconds apart in time

(sampling rate), so as to not strain the application with load. The detector then periodi-

cally analyzes the collected response time measurements to check if the application meets

the specified performance SLO. Whenever it detects that the application has failed to

meet the SLO, it triggers an anomaly event. The SLO-based anomaly detector supports

following configuration parameters:

• Performance SLO: Response time upper bound (T), and the probability (p).

• Sampling rate: Rate at which the target application is benchmarked.

• Analysis rate: Rate at which the anomaly detector checks whether the application

has failed to meet the SLO.

• Minimum samples: Minimum number of samples to collect before checking for SLO

violations.

• Window size: Length of the sliding window (in time) to consider when checking for

SLO violations. This imposes a limit on the number of samples to keep in memory.

Once the anomaly detector identifies an SLO violation, it will continue to detect the

same violation until the historical data which contains the anomaly drops off from the

sliding window. In order to prevent the detector from needlessly reporting the same

anomaly multiple times, we purge all the data from anomaly detector’s sliding window

whenever it detects an SLO violation. Therefore, the detector cannot check for further

SLO violations until it repopulates the sliding window with the minimum number of

samples. This implies that each anomaly is followed by a “warm up” period. For instance,

with a sampling rate of 15 seconds, and a minimum samples count of 100, the warm up

period can last up to 25 minutes.

126

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

5.3.2 Path Distribution Analysis

We have implemented a path distribution analyzer in Roots whose function it is to

identify recurring sequences of PaaS kernel invocations made by an application. Each

identified sequence corresponds to a path of execution through the application code (i.e.

a path through the control flow graph of the application). This detector is able to

determine the frequency with which each path is executed over time. Then, using this

information which we term a “path distribution,” it reports an anomaly event when the

distribution of execution paths changes.

For each application, a path distribution is comprised of the set of execution paths

available in that application, along with the proportion of requests that executed each

path. It is an indicator of the type of request workload handled by an application. For

example, consider a data management application that has a read-only execution path,

and a read-write execution path. If 90% of the requests execute the read-only path, and

the remaining 10% of the requests execute the read-write path, we may characterize the

request workload as read-heavy.

Roots path distribution analyzer facilitates computing the path distribution for each

application with no static analysis, by only analyzing the runtime data gathered from the

applications. It periodically computes the path distribution for a given application. If it

detects that the latest path distribution is significantly different from the distributions

seen in the past, it triggers an event. This is done by computing the mean request

proportion for each path (over a sliding window of historical data), and then comparing

the latest request proportion values against the means. If the latest proportion is off

by more than n standard deviations from its mean, the detector considers it to be an

anomaly. The sensitivity of the detector can be configured by changing the value of n,

which defaults to 2.

127

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Path distribution analyzer enables developers to know when the nature of their ap-

plication request workload changes. For example in the previous data management ap-

plication, if suddenly 90% of the requests start executing the read-write path, the Roots

path distribution analyzer will detect the change. Similarly it is also able to detect when

new paths of execution are being invoked by requests (a form of novelty detection).

5.3.3 Workload Change Analyzer

Performance anomalies can arise either due to bottlenecks in the cloud platform or

changes in the application workload. When Roots detects a performance anomaly (i.e.

an application failing to meet its performance SLO), it needs to be able to determine

whether the failure is due to an increase in workload or a bottleneck that has suddenly

manifested. To check if the workload of an application has changed recently, Roots uses a

workload change analyzer. This Roots component is implemented as an anomaly handler,

which gets executed every time an anomaly detector identifies a performance anomaly.

Note that this is different from the path distribution analyzer, which is implemented as

an anomaly detector. While the path distribution analyzer looks for changes in the type

of the workload, the workload change analyzer looks for changes in the workload size or

rate. In other words, it determines if the target application has received more requests

than usual, which may have caused a performance degradation.

Workload change analyzer uses change point detection algorithms to analyze the

historical trend of the application workload. We use the “number of requests per unit

time” as the metric of workload size. Our implementation of Roots supports a number

of well known change point detection algorithms (PELT [139], binary segmentation and

CL method [140]), any of which can be used to detect level shifts in the workload size.

Algorithms like PELT favor long lasting shifts (plateaus) in the workload trend, over

128

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

momentary spikes. We expect momentary spikes to be fairly common in workload data.

But it is the plateaus that cause request buffers to fill up, and consume server-side

resources for extended periods of time, thus causing noticeable performance anomalies.

5.3.4 Bottleneck Identification

Applications running in the cloud consist of user code executed in the application

server, and remote service calls to various PaaS kernel services. An AppScale cloud con-

sists of the same kernel services present in the Google App Engine public cloud (datastore,

memcache, urlfetch, blobstore, user management etc.). We consider each PaaS kernel in-

vocation, and the code running on the application server as separate components. Each

application request causes one or more components to execute, and any one of the com-

ponents can become a bottleneck to cause performance anomalies. The purpose of bot-

tleneck identification is to find, out of all the components executed by an application, the

one component that is most likely to have caused application performance to deteriorate.

Suppose an application makes n PaaS kernel invocations (X1, X2, ...Xn) for each re-

quest. For any given application request, Roots captures the time spent on each kernel

invocation (TX1 , TX2 , ...TXn), and the total response time (Ttotal) of the request. These

time values are related by the formula Ttotal = TX1 + TX2 + ... + TXn + r, where r is

all the time spent in the resident application server executing user code (i.e. the time

spent not executing PaaS kernel services). r is not directly measured in Roots, since that

requires code instrumentation. However, in previous work [134] we showed that typical

PaaS-hosted web applications spend most of their time invoking PaaS kernel services. We

make use of these findings, and assert that for typical, well-designed PaaS applications

r � TX1 + TX2 + ...+ TXn .

Roots bottleneck identification mechanism first selects up to four components as

129

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

possible candidates for the bottleneck. These candidates are then further evaluated by a

weighting algorithm to determine the actual bottleneck in the cloud platform.

Relative Importance of PaaS Kernel Invocations

The purpose of this metric is to find the component that is contributing the most

towards the variance in the total response time. We select a window W in time which

includes a sufficient number of application requests, and ending at the point when the

performance anomaly was detected. Note that for each application request in W , we can

fetch the total response time (Ttotal), and the time spent on individual PaaS kernel services

(TXn) from the Roots data storage. We take all these Ttotal values and the corresponding

TXn values in W , and fit a linear model of the form Ttotal = TX1 + TX2 + ... + TXn using

linear regression. Here we leave r out deliberately, since it is typically and ideally small.

Occasionally in AppScale, we observe a request where r is large relative to TXn . Often

these rare events are correlated with large TXn values as well leading us to suspect that

the effect may be due to an issue with the AppScale infrastructure (e.g. a major garbage

collection event in the PaaS software). Overall, Roots detects these events, and identifies

them correctly (as explained below), but they perturb the linear regression model. To

prevent that, we filter out requests where the r value is too high. This is done by

computing the mean (µr) and standard deviation (σr) of r over the selected window, and

removing any requests where r > µr + 1.65σr.

Once the regression model has been computed, we run a relative importance algo-

rithm [141] to rank each of the regressors (i.e. TXn values) based on their contribution to

the variance of Ttotal. We use the LMG method [142] which is resistant to multicollinear-

ity, and provides a break down of the R2 value of the regression according to how strongly

each regressor influences the variance of the dependent variable. The relative importance

values of the regressors add up to the R2 of the linear regression. We consider 1 − R2

130

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

(the portion of variance in Ttotal not explained by the PaaS kernel invocations) as the

relative importance of r. The component associated with the highest ranked regressor

(i.e. highest relative importance) is chosen as a bottleneck candidate. Statistically, this

is the component that causes the application response time to vary the most.

Changes in Relative Importance

Next we divide the time window W into equal-sized segments, and compute the

relative importance metrics for regressors within each segment. We also compute the

relative importance of r within each segment. This way we obtain a time series of

relative importance values for each regressor and r. These time series represent how the

relative importance of each component has changed over time.

We subject each relative importance time series to change point analysis to detect

if the relative importance of any particular variable has increased recently. If such a

variable can be found, then the component associated with that variable is also a po-

tential candidate for the bottleneck. The candidate selected by this method represents

a component whose performance has been stable in the past, and has become variable

recently.

High Quantiles

Next we analyze the individual distributions of TXn and r. Recall that for each PaaS

kernel invocation Xk, we have a distribution of TXk
values in the window W . Similarly we

can also extract a distribution of r values fromW . Out of all the available distributions we

find the one whose quantile values are the largest. Specifically, we compute a high quantile

(e.g. 0.99 quantile) for each distribution. The component, whose distribution contains

the largest quantile value is chosen as another potential candidate for the bottleneck.

This component can be considered having a high latency in general.

131

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Tail End Values

Finally, Roots analyzes each TXk
and r distribution to identify the one with the

largest tail values with respect to a particular high quantile. For each maximum (tail

end) latency value t, we compute the metric P q
t as the percentage difference between

t and a target quantile q of the corresponding distribution. We set q to 0.99 in our

experiments. Roots selects the component with the distribution that has the largest

P q
t as another potential bottleneck candidate. This method identifies candidates that

contain rare, high-valued outliers (point anomalies) in their distributions.

Selecting Among the Candidates

The above four methods may select up to four candidate components for the bot-

tleneck. We designate the candidate chosen by a majority of methods as the actual

bottleneck. Ties are broken by assigning more priority to the candidate chosen by the

relative importance method.

5.4 Results

We evaluate the efficacy of Roots as a performance monitoring and root cause analysis

system for PaaS applications. To do so, we consider its ability to identify and characterize

SLO violations. For violations that are not caused by a change in workload, we evaluate

Roots’ ability to identify the PaaS component that is the cause of the performance

anomaly. We also evaluate the Roots path distribution analyzer, and its ability to identify

execution paths along with changes in path distributions. Finally, we investigate the

performance and scalability of the Roots prototype.

132

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Faulty Service L1 (30ms) L2 (35ms) L3 (45ms)
datastore 18 11 10

user management 19 15 10

Table 5.1: Number of anomalies detected in guestbook app under different SLOs (L1,
L2 and L3) when injecting faults into two different PaaS kernel services.

5.4.1 Anomaly Detection: Accuracy and Speed

To begin the evaluation of the Roots prototype we experiment with the SLO-based

anomaly detector, using a simple HTML-producing Java web application called “guest-

book”. This application allows users to login, and post comments. It uses the AppScale

datastore service to save the posted comments, and the AppScale user management ser-

vice to handle authentication. Each request processed by guestbook results in two PaaS

kernel invocations – one to check if the user is logged in, and another to retrieve the

existing comments from the datastore. We conduct all our experiments on a single node

AppScale cloud except where specified. The node itself is an Ubuntu 14.04 VM with 4

virtual CPU cores (clocked at 2.4GHz), and 4GB of memory.

We run the SLO-based anomaly detector on guestbook with a sampling rate of 15

seconds, an analysis rate of 60 seconds, and a window size of 1 hour. We set the minimum

sample count to 100, and run a series of experiments with different SLOs on the guestbook

application. Specifically, we fix the SLO success probability at 95%, and set the response

time upper bound to µg + nσg. µg and σg represent the mean and standard deviation of

the guestbook’s response time. We learn these two parameters apriori by benchmarking

the application. Then we obtain three different upper bound values for the guestbook’s

response time by setting n to 2, 3 and 5. We denote the resulting three SLOs L1, L2 and

L3 respectively.

We also inject performance faults into AppScale by modifying its code to cause the

datastore service to be slow to respond. This fault injection logic activates once every

133

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

hour, and slows down all datastore invocations by 45ms over a period of 3 minutes. We

chose 45ms because it is equal to µg + 5σg for the guestbook deployment under test.

Therefore this delay is sufficient to violate all three SLOs used in our experiments. We

run a similar set of experiments where we inject faults into the user management service

of AppScale. Each experiment is run for a period of 10 hours.

Table 5.1 shows how the number of anomalies detected by Roots in a 10 hour period

varies when the SLO is changed. The number of anomalies drops noticeably when the

response time upper bound is increased. When the L3 SLO (45ms) is used, the only

anomalies detected are the ones caused by our hourly fault injection mechanism. As the

SLO is tightened by lowering the upper bound, Roots detects additional anomalies. These

additional anomalies result from a combination of injected faults, and other naturally

occurring faults in the system. That is, Roots detected some naturally occurring faults

(temporary spikes in application latency), when a number of injected faults were still in

the sliding window of the anomaly detector. Together these two types of faults caused

SLO violations, usually several minutes after the fault injection period has expired.

Next we analyze how fast Roots can detect anomalies in an application. We first

consider the performance of guestbook under the L1 SLO while injecting faults into the

datastore service. Figure 5.4 shows anomalies detected by Roots as events on a time

line. The horizontal axis represents passage of time. The red arrows indicate the start

of a fault injection period, where each period lasts up to 3 minutes. The blue arrows

indicate the Roots anomaly detection events. Note that every fault injection period is

immediately followed by an anomaly detection event, implying near real time reaction

from Roots, except in case of the fault injection window at 20:00 hours. Roots detected

a naturally occurring anomaly (i.e. one that we did not explicitly inject, but nonetheless

caused an SLO violation) at 19:52 hours, which caused the anomaly detector to go into

the warm up mode. Therefore Roots did not immediately react to the faults injected at

134

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Time (hh:mm)

13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Fault injection Anomaly detection

Figure 5.4: Anomaly detection in guestbook application during a period of 10 hours.
Red arrows indicate fault injection at the datastore service. Blue arrows indicate all
anomalies detected by Roots during the experimental run.

Time (HH:mm)

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

Fault injection Anomaly detection

Figure 5.5: Anomaly detection in guestbook application during a period of 10 hours.
Red arrows indicate fault injection at the user management service. Blue arrows
indicate all anomalies detected by Roots during the experimental run.

20:00 hours. But as soon as the detector became active again at 20:17, it detected the

anomaly.

Figure 5.5 shows the anomaly detection time line for the same application and SLO,

while faults are being injected into the user management service. Here too we see that

Roots detects anomalies immediately following each fault injection window.

5.4.2 Path Distribution Analyzer: Accuracy and Speed

Next we evaluate the effectiveness and accuracy of the path distribution analyzer.

For this we employ two different applications.

key-value store This application provides the functionality of an online key-value store.

It allows users to store data objects in the cloud where each object is assigned a

unique key. The objects can then be retrieved, updated or deleted using their

keys. Different operations (create, retrieve, update and delete) are implemented as

135

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Time (HH:mm)

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00

Anomalous workload injection Anomaly detection

Figure 5.6: Anomaly detection in key-value store application during a period of 10
hours. Steady-state traffic is read-heavy. Red arrows indicate injection of write-heavy
bursts. Blue arrows indicate all the anomalies detected by the path distribution
analyzer.

Time (HH:mm)

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

Anomalous workload injection Anomaly detection

Figure 5.7: Anomaly detection in cached key-value store application during a period
of 10 hours. Steady-state traffic is mostly served from the cache. Red arrows indicate
injection of cache-miss bursts. Blue arrows indicate all the anomalies detected by the
path distribution analyzer.

separate paths of execution in the application.

cached key-value store This is a simple extension of the regular key-value store, which

adds caching to the read operation using the AppScale’s memcache service. The

application contains separate paths of execution for cache hits and cache misses.

We first deploy the key-value store on AppScale, and populate it with a number of

data objects. Then we run a test client against it which generates a read-heavy workload.

On average this workload consists of 90% read requests and 10% write requests. The

test client is also programmed to randomly send bursts of write-heavy workloads. These

bursts consist of 90% write requests on average, and each burst lasts up to 2 minutes.

Figure 5.6 shows the write-heavy bursts as events on a time line (indicated by red arrows).

Note that almost every burst is immediately followed by an anomaly detection event

(indicated by blue arrows). The only time we do not see an anomaly detection event

136

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

is when multiple bursts are clustered together in time (e.g. 3 bursts between 17:04 and

17:24 hours). In this case Roots detects the very first burst, and then goes into the warm

up mode to collect more data. Between 20:30 and 21:00 hours we also had two instances

where the read request proportion dropped from 90% to 80% due to random chance.

This is because our test client randomizes the read request proportion around the 90%

mark. Roots identified these two incidents also as anomalous.

We conduct a similar experiment using the cached key-value store. Here, we run a

test client that generates a workload that is mostly served from the cache. This is done

by repeatedly executing read requests on a small selected set of object keys. However,

the client randomly sends bursts of traffic requesting keys that are not likely to be in the

application cache, thus resulting in many cache misses. Each burst lasts up to 2 minutes.

As shown in figure 5.7, Roots path distribution analyzer correctly detects the change in

the workload (from many cache hits to many cache misses), nearly every time the test

client injects a burst of traffic that triggers the cache miss path of the application. The

only exception is when multiple bursts are clumped together, in which case only the first

raises an alarm in Roots.

5.4.3 Workload Change Analyzer Accuracy

Next we evaluate the Roots workload change analyzer. In this experiment we run a

varying workload against the key-value store application for 10 hours. The load generat-

ing client is programmed to maintain a mean workload level of 500 requests per minute.

However, the client is also programmed to randomly send large bursts of traffic at times of

its choosing. During these bursts the client may send more than 1000 requests a minute,

thus impacting the performance of the application server that hosts the key-value store.

Figure 5.8 shows how the application workload has changed over time. The workload

137

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

13:00 15:00 17:00 19:00 21:00

50
0

10
00

15
00

20
00

Time (hh:mm)

R
eq

ue
st

s
pe

r
m

in
ut

e

Figure 5.8: Workload size over time for the key-value store application. The test client
randomly sends large bursts of traffic causing the spikes in the plot. Roots anomaly
detection events are shown in red dashed lines.

generator has produced 6 large bursts of traffic during the period of the experiment,

which appear as tall spikes in the plot. Note that each burst is immediately followed by

a Roots anomaly detection event (shown by red dashed lines). In each of these 6 cases,

the increase in workload caused a violation of the application performance SLO. Roots

detected the corresponding anomalies, and determined them to be caused by changes in

the workload size. As a result, bottleneck identification was not triggered for any of these

anomalies. Even though the bursts of traffic appear to be momentary spikes, each burst

lasts for 4 to 5 minutes thereby causing a lasting impact on the application performance.

5.4.4 Bottleneck Identification Accuracy

Next we evaluate the bottleneck identification capability of Roots. We first discuss

the results obtained using the guestbook application, and follow with results obtained

using a more complex application. In the experimental run illustrated in figure 5.4, Roots

determined that all the detected anomalies except for one were caused by the AppScale

datastore service. This is consistent with our expectations since in this experiment we

artificially inject faults into the datastore. The only anomaly that is not traced back to

138

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Time (hh:mm)

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Fault injection Anomaly detection

Figure 5.9: Anomaly detection in stock-trader application during a period of 10 hours.
Red arrows indicate fault injection at the 1st datastore query. Blue arrows indicate
all anomalies detected by Roots during the experimental run.

the datastore service is the one that was detected at 14:32 hours. This is indicated by

the blue arrow with a small square marker at the top. For this anomaly, Roots concluded

that the bottleneck is the local execution at the application server (r). We have veri-

fied this result by manually inspecting the AppScale logs, and traces of data collected

by Roots. As it turns out, between 14:19 and 14:22 the application server hosting the

guestbook application experienced some problems, which caused request latency to in-

crease significantly. Therefore we can conclude that Roots has correctly identified the

root causes of all 18 anomalies in this experimental run including one that we did not

inject explicitly.

Similarly, in the experiment shown in figure 5.5, Roots determined that all the anoma-

lies are caused by the user management service, except in one instance. This is again

inline with our expectations since in this experiment we inject faults into the user man-

agement service. For the anomaly detected at 04:30 hours, Roots determined that local

execution time is the primary bottleneck. Like earlier, we have manually verified this

diagnosis to be accurate. In this case too the server hosting the guestbook application

became slow during the 04:23 - 04:25 time window, and Roots correctly identified the

bottleneck as the local application server.

In order to evaluate how the bottleneck identification performs when an application

makes more than 2 PaaS kernel invocations, we conduct another experiment using an

139

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Time (HH:mm)

03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00

Fault injection Anomaly detection

Figure 5.10: Anomaly detection in stock-trader application during a period of 10
hours. Red arrows indicate fault injection at the 2nd datastore query. Blue arrows
indicate all anomalies detected by Roots during the experimental run.

application called “stock-trader”. This application allows setting up organizations, and

simulating trading of stocks between the organizations. The two main operations in this

application are buy and sell. Each of these operations makes 8 calls to the AppScale

datastore. According to our previous work [134], 8 kernel invocations in the same path of

execution is very rare in web applications developed for a PaaS cloud. The probability of

finding an execution path with more than 5 kernel invocations in a sample of PaaS-hosted

applications is less than 1%. Therefore the stock-trader application is a good extreme

case example to test the Roots bottleneck identification support. We execute a number

of experimental runs using this application, and here we present the results from two of

them. In all experiments we configure the anomaly detector to check for the response

time SLO of 177ms with 95% success probability.

In one of our experimental runs we inject faults into the first datastore query executed

by the buy operation of stock-trader. The fault injection logic runs every two hours, and

lasts for 3 minutes. The duration of the full experiment is 10 hours. Figure 5.9 shows the

resulting event sequence. Note that every fault injection event is immediately followed

by a Roots anomaly detection event. There are also four additional anomalies in the time

line which were SLO violations caused by a combination of injected faults, and naturally

occurring faults in the system. For all the anomalies detected in this test, Roots correctly

selected the first datastore call in the application code as the bottleneck. The additional

140

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

four anomalies occurred when a large number of injected faults were still in the sliding

window of the detector. Therefore, it is accurate to attribute those anomalies also to the

first datastore query of the application.

Figure 5.10 shows the results from a similar experiment where we inject faults into

the second datastore query executed by the operation. Here also Roots detects all the

artificially induced anomalies along with a few extras. All the anomalies, except for one,

are determined to be caused by the second datastore query of the buy operation. The

anomaly detected at 08:56 (marked with a square on top of the blue arrow) is attributed

to the fourth datastore query executed by the application. We have manually verified

this diagnosis to be accurate. Since 08:27, when the previous anomaly was detected, the

fourth datastore query has frequently taken a long time to execute (again, on its own),

which resulted in an SLO violation at 08:56 hours.

In the experiments illustrated in figures 5.4, 5.5, 5.9, and 5.10 we maintain the ap-

plication request rate steady throughout the 10 hour periods. Therefore, the workload

change analyzer of Roots did not detect any significant shifts in the workload level. Con-

sequently, none of the anomalies detected in these 4 experiments were attributed to a

workload change. The bottleneck identification was therefore triggered for each anomaly.

To evaluate the agreement level among the four bottleneck candidate selection meth-

ods, we analyze 407 anomalies detected by Roots over a period of 3 weeks. We report

that except on 13 instances, in all the remaining cases 2 or more candidate selection

methods agreed on the final bottleneck component chosen. This implies that most of the

time (96.8%) Roots identifies bottlenecks with high confidence.

141

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Time (hh:mm)

13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

G4 anomaly G6 anomaly G7 anomalyFault injection

Figure 5.11: Anomaly detection in 8 applications deployed in a clustered AppScale
cloud. Red arrows indicate fault injection at the datastore service for queries generated
from a specific host. Cross marks indicate all the anomalies detected by Roots during
the experiment.

5.4.5 Multiple Applications in a Clustered Setting

To demonstrate how Roots can be used in a multi-node environment, we set up an

AppScale cloud on a cluster of 10 virtual machines (VMs). VMs are provisioned by a

Eucalyptus (IaaS) cloud, and each VM is comprised of 2 CPU cores and 2GB memory.

Then we proceed to deploy 8 instances of the guestbook application on AppScale. We use

the multitenant support in AppScale to register each instance of guestbook as a different

application (named G1 through G8). Each instance is hosted on a separate application

server instance, has its own private namespace on the AppScale datastore, and can be

accessed via a unique URL. We disable auto-scaling support in the AppScale cloud, and

inject faults into the datastore service of AppScale in such a way that queries issued

from a particular VM, are processed with a 100ms delay. We identify this VM by its

IP address in our test environment, and shall refer to it as Vf in the discussion. We

trigger the fault injection every 2 hours, and when activated it lasts for up to 5 minutes.

Then we monitor the applications using Roots for a period of 10 hours. Each anomaly

detector is configured to check for the 75ms response time SLO with 95% success rate.

ElasticSearch, Logstash and the Roots pod are deployed on a separate VM.

Figure 5.11 shows the resulting event sequence. Note that we detect anomalies in

3 applications (G4, G6 and G7) immediately after each fault injection. Inspecting the

142

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

topology of our AppScale cloud revealed that these were the only 3 applications that

were hosted on Vf . As a result, the bi-hourly fault injection caused their SLOs to get

violated. Other applications did not exhibit any SLO violations since we are monitoring

against a very high response time upper bound.

In each case Roots detected the SLO violations 2-3 minutes into the fault injection

period. As soon as that happened, the anomaly detectors of G4, G6 and G7 entered

the warmup mode. But our fault injection logic kept injecting faults for at least 2 more

minutes. Therefore when the anomaly detectors reactivated after 25 minutes (time to

collect the minimum sample count), they each detected another SLO violation. As a

result, we see another set of detection events approximately half an hour after the fault

injection events.

5.4.6 Results Summary

We conclude our discussion of Roots efficacy with a summary of our results. Table 5.2

provides an overview of all the results presented so far, broken down into four features

that we wish to see in an anomaly detection and bottleneck identification system.

5.4.7 Roots Performance and Scalability

Next we evaluate the performance overhead incurred by Roots on the applications

deployed in the cloud platform. We are particularly interested in understanding the

overhead of recording the PaaS kernel invocations made by each application, since this

feature requires some changes to the PaaS kernel implementation. We deploy a number

of applications on a vanilla AppScale cloud (with no Roots), and measure their request

latencies. We use the popular Apache Bench tool to measure the request latency under

a varying number of concurrent clients. We then take the same measurements on an

143

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Feature Results Observed in Roots
Detecting anomalies All the artificially induced anomalies were de-

tected, except when multiple anomalies are clus-
tered together in time. In that case only the first
anomaly was detected. Roots also detected several
anomalies that occurred due to a combination of
injected faults, and natural faults.

Characterizing anomalies
as being due to workload
changes or bottlenecks

When anomalies were induced by varying the ap-
plication workload, Roots correctly determined
that the anomalies were caused by workload
changes. In all other cases we kept the workload
steady, and hence the anomalies were attributed
to a system bottleneck.

Identifying correct bottle-
neck

In all the cases where bottleneck identification was
performed, Roots correctly identified the bottle-
neck component.

Reaction time All the artificially induced anomalies (SLO viola-
tions) were detected as soon as enough samples of
the fault were taken by the benchmarking process
(2-5 minutes from the start of the fault injection
period).

Path distribution All the artificially induced changes to the path dis-
tribution were detected.

Table 5.2: Summary of Roots efficacy results.

144

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Without Roots With Roots
App./Concurrency Mean

(ms)
SD Mean

(ms)
SD

guestbook/1 12 3.9 12 3.7
guestbook/50 375 51.4 374 53
stock-trader/1 151 13 145 13.7
stock-trader/50 3631 690.8 3552 667.7

kv store/1 7 1.5 8 2.2
kv store/50 169 26.7 150 25.4

cached kv store/1 3 2.8 2 3.3
cached kv store/50 101 24.8 97 35.1

Table 5.3: Latency comparison of applications when running on a vanilla AppScale
cloud vs when running on a Roots-enabled AppScale cloud.

AppScale cloud with Roots, and compare the results against the ones obtained from the

vanilla AppScale cloud. In both environments we disable the auto-scaling support of

AppScale, so that all client requests are served from a single application server instance.

In our prototype implementation of Roots, the kernel invocation events get buffered in

the application server before they are sent to the Roots data storage. We wish to explore

how this feature performs when the application server is under heavy load.

Table 5.3 shows the comparison of request latencies. We discover that Roots does

not add a significant overhead to the request latency in any of the scenarios considered.

In all the cases, the mean request latency when Roots is in use, is within one standard

deviation from the mean request latency when Roots is not in use. The request latency

increases when the number of concurrent clients is increased from 1 to 50 (since all

requests are handled by a single application server), but still there is no sign of any

detrimental overhead from Roots even under load.

Finally, to demonstrate how lightweight and scalable Roots is, we deploy a Roots

pod on a virtual machine with 4 CPU cores and 4GB memory. To simulate monitoring

multiple applications, we run multiple concurrent anomaly detectors in the pod. Each

145

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

100 1000 10000

Memory
CPU

Number of Detectors

M
ax

 M
em

or
y

U
sa

ge
 (

M
B

)

0
20

0
40

0
60

0
80

0

0
50

10
0

15
0

20
0

25
0

M
ax

 C
P

U
 U

sa
ge

 (
%

)

Figure 5.12: Resource utilization of a Roots pod.

detector is configured with a 1 hour sliding window. We vary the number of concurrent

detectors between 100 and 10000, and run each configuration for 2 hours. We track the

memory and CPU usage of the pod during each of these runs using the jstat and pidstat

tools.

Figure 5.12 illustrates the maximum resource utilization of the Roots pod for different

counts of concurrent anomaly detectors. We see that with 10000 concurrent detectors,

the maximum CPU usage is 238%, where 400% is the available limit for 4 CPU cores.

The maximum memory usage in this case is only 778 MB. Since each anomaly detector

operates with a fixed-sized window, and they bring additional data into memory only

when required, the memory usage of the Roots pod generally stays low. We also exper-

imented with larger concurrent detector counts, and we were able to pack up to 40000

detectors into the pod before getting constrained by the CPU capacity of our VM. This

result implies that we can monitor tens of thousands of applications using a single pod,

thereby scaling up to a very large number of applications using only a handful of pods.

146

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

5.5 Related Work

Roots falls into the category of performance anomaly detection and bottleneck iden-

tification (PADBI) systems. A PADBI system is an entity that observes, in real time,

the performance behaviors of a running system or application, while collecting vital

measurements at discrete time intervals to create baseline models of typical system be-

haviors [133]. Such systems play a crucial role in achieving guaranteed service reliability,

performance and quality of service by detecting performance issues in a timely manner

before they escalate into major outages or SLO/SLA violations [143]. PADBI systems

are thoroughly researched, and well understood in the context of traditional standalone

and network applications. Many system administrators are familiar with frameworks like

Nagios [144], Open NMS [145] and Zabbix [146] which can be used to collect data from

a wide range of applications and devices.

However, the paradigm of cloud computing, being relatively new, is yet to be fully

penetrated by PADBI systems research. The size, complexity and the dynamic nature of

cloud platforms make performance monitoring a particularly challenging problem. The

existing technologies like Amazon CloudWatch [147], New Relic [12] and DataDog [14]

facilitate monitoring cloud applications by instrumenting low level cloud resources (e.g.

virtual machines), and application code. But such technologies are either impracticable

or insufficient in PaaS clouds where the low level cloud resources are hidden under layers

of managed services, and the application code is executed in a sandboxed environment

that is not always amenable to instrumentation. When code instrumentation is possible,

it tends to be burdensome, error prone, and detrimental to the application’s performance.

Roots on the other hand is built into the fabric of the PaaS cloud giving it full visibility

into all the activities that take place in the entire software stack, and it does not require

application-level instrumentation.

147

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

Our work borrows heavily from the past literature [132, 133] that detail the key

features of cloud APMs. Consequently, we strive to incorporate requirements like scala-

bility, autonomy and dynamic resource management into our design. Ibidunmoye et al

highlight the importance of multilevel bottleneck identification as an open research ques-

tion [133]. This is the ability to identify bottlenecks from a set of top-level application

service components, and further down through the virtualization layer to system resource

bottlenecks. Our plan for Roots is highly in sync with this vision. We currently support

identifying bottlenecks from a set of kernel services provided by the PaaS cloud. As a

part of our future work, we plan to extend this support towards the virtualization layer

and the physical resources of the cloud platform.

Cherkasova et al developed an online performance modeling technique to detect

anomalies in traditional transaction processing systems [148]. They divide time into

contiguous segments, such that within each segment the application workload (volume

and type of transactions) and resource usage (CPU) can be fit to a linear regression

model. Segments for which a model cannot be found, are considered anomalous. Then

they remove anomalous segments from the history, and perform model reconciliation to

differentiate between workload changes and application problems. While this method is

powerful, it requires instrumenting application code to detect different external calls (e.g.

database queries) executed by the application. Since the model uses different transaction

types as parameters, some prior knowledge regarding the transactions also needs to be

fed into the system. The algorithm is also very compute intensive, due to continuous

segmentation and model fitting. In contrast, we use a very lightweight SLO monitoring

method in Roots to detect performance anomalies, and only perform heavy computations

to perform bottleneck identification.

Dean et al implemented PerfCompass [149], an anomaly detection and localization

method for IaaS clouds. They instrument the VM operating system kernels to capture the

148

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

system calls made by user applications. Anomalies are detected by looking for unusual

increases in system call execution time. They group system calls into execution units

(processes, threads etc), and analyze how many units are affected by any given anomaly.

Based on this metric they conclude if the problem was caused by a workload change or an

application level issue. We take a similar approach in Roots, in that we capture the PaaS

kernel invocations made by user applications. We use application response time (latency)

as an indicator of anomalies, and group PaaS kernel invocations into application requests

to perform bottleneck identification.

Nguyen et al presented PAL, another anomaly detection and localization mechanism

targeting distributed applications deployed on IaaS clouds [150]. Similar to Roots, they

also use an SLO monitoring approach to detect application performance anomalies. When

an anomaly is detected, they perform change point analysis on gathered resource usage

data (CPU, memory and network) to identify the anomaly onset time. Having detected

one or more anomaly onset events in different components of the distributed application,

they sort the events by time to determine the propagation pattern of the anomaly.

Magalhaes and Silva have made significant contributions in the area of anomaly detec-

tion and root cause analysis in web applications [151, 152]. They compute the correlation

between application workload and latency. If the level of correlation drops significantly,

they consider it to be an anomaly. A similar correlation analysis between workload and

other local system metrics (e.g. CPU and memory usage) is used to identify the sys-

tem resource that is responsible for a given anomaly. They also use an aspect-oriented

programming model in their target applications, which allows them to easily instrument

application code, and gather metrics regarding various remote services (e.g. database)

invoked by the application. This data is subjected to a series of simple linear regressions

to perform root cause analysis. This approach assumes that remote services are indepen-

dent of each other. However, in a cloud platform where kernel services are deployed in the

149

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

same shared infrastructure, this assumption might not hold true. Therefore we improve

on their methodology, and use multiple linear regression with relative importance to

identify cloud platform bottlenecks. Relative importance is resistant to multicollinearity,

and therefore does not require the independence assumption.

Anomaly detection is a general problem not restricted to performance analysis. Re-

searchers have studied anomaly detection from many different points of view, and as a

result many viable algorithms and solutions have emerged over time [153]. Prior work

in performance anomaly detection and root cause analysis can be classified as statistical

methods (e.g. [154, 155, 152, 150]) and machine learning methods (e.g. [156, 157, 158]).

While we use many statistical methods in our work (change point analysis, relative im-

portance, quantile analysis), Roots is not tied to any of these techniques. Rather, we

provide a framework on top of which new anomaly detectors and anomaly handlers can

be built.

5.6 Conclusions and Future Work

Uncovering performance bottlenecks in a timely manner, and resolving them urgently

is a key requirement for implementing governance in cloud environments. Application

developers and cloud administrators wish to detect performance anomalies in cloud appli-

cations, and perform root cause analysis to diagnose problems. However, the high level of

abstraction provided by cloud platforms, coupled with their scale and complexity, makes

performance diagnosis a daunting problem. This situation is particularly apparent in

PaaS clouds, where the application runtime details are hidden beneath a layer of kernel

services. The existing cloud monitoring solutions do not have the necessary penetra-

tive power to monitor all the different layers of cloud platforms, and consequently, their

diagnosis capabilities are severely limited.

150

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

We present Roots, a near real time monitoring framework for applications deployed

in a PaaS cloud. Roots is designed to function as a curated service built into the cloud

platform, as opposed to an external monitoring system. It relieves the application devel-

opers from having to configure their own monitoring solutions, or having to instrument

the application code in anyway. Roots captures runtime data from all the different layers

involved in processing application requests. It can correlate events across different layers,

and identify bottlenecks deep within the kernel services of the PaaS.

Roots monitors applications for SLO compliance, and detects anomalies via SLO vio-

lations. When Roots detects an anomaly, it analyzes workload data and other application

runtime data to perform root cause analysis. Roots is able to determine whether a partic-

ular anomaly was caused by a change in the application workload, or due to a bottleneck

in the cloud platform. To this end we also devise a bottleneck identification algorithm,

that uses a combination of linear regression, quantile analysis and change point detec-

tion. We also present an analysis method by which Roots can identify different paths of

execution in an application. Our method does not require static analysis, and we use it

to detect changes in an application’s workload characteristics.

We evaluate Roots using a prototype built for the AppScale open source PaaS. Our

results indicate that Roots is effective at detecting performance anomalies in near real

time. We also show that our bottleneck identification algorithm produces accurate results

nearly 100% of the time, pinpointing the exact PaaS kernel service or the application

component responsible for each anomaly. Our empirical trials further reveal that Roots

does not add a significant overhead to the applications deployed on the cloud platform.

Finally, we show that Roots is very lightweight, and scales well to handle large populations

of applications.

In our future work we plan to expand the data gathering capabilities of Roots into

the low level virtual machines, and containers that host various services of the cloud plat-

151

Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
Chapter 5

form. We intend to tap into the hypervisors and container managers to harvest runtime

data regarding the resource usage (CPU, memory, disk etc.) of PaaS services and other

application components. With that we expect to extend the root cause analysis support

of Roots so that it can not only pinpoint the bottlenecked application components, but

also the low level hosts and system resources that constitute each bottleneck.

152

Chapter 6

Conclusion

Cloud computing delivers IT infrastructure resources, programming platforms, and soft-

ware applications as shared utility services. Enterprises and developers increasingly de-

ploy applications on cloud platforms due to their scalability, high availability and many

other productivity enhancing features. Cloud-hosted applications depend on the core

services provided by the cloud platform for compute, storage and network resources. In

some cases they use the services provided by the cloud to implement most of the appli-

cation functionality as well (e.g. PaaS-hosted applications). Cloud-hosted applications

are typically accessed over the Internet, via the web APIs exposed by the applications.

As the applications hosted in cloud platforms continue to increase in number, the

need for enforcing governance on them becomes accentuated. We define governance as

the mechanism by which the acceptable operational parameters are specified and main-

tained for a cloud-hosted application. Governance enables specifying the acceptable

development standards and runtime parameters (performance, availability, security re-

quirements etc.) for cloud-hosted applications as policies. Such policies can then be

enforced automatically at various stages of the application life-cycle. Governance also

entails monitoring cloud-hosted applications to ensure that they operate at a certain level

153

Conclusion Chapter 6

of quality, and taking corrective action when deviations are detected. Through the steps

of specification, enforcement, monitoring and correction, governance facilitates resolv-

ing a number of prevalent issues in today’s cloud platforms. These issues include lack

of good software engineering practices (code reuse, dependency management, versioning

etc), lack of performance SLOs for cloud-hosted applications, and lack of performance

debugging support.

We explore the feasibility of efficiently enforcing governance on cloud-hosted applica-

tions, and evaluate the effectiveness of governance as a means of achieving administrative

conformance, developer best practices and performance SLOs in the cloud. Considering

the scale of today’s cloud platforms in terms of the number of users and the applica-

tions, we strive to automate much of the governance tasks through automated analysis

and diagnostics. To achieve efficiency, we put more emphasis on deployment-time policy

enforcement, static analysis of performance bounds, and non-invasive passive monitoring

of cloud platforms, thereby keeping the governance overhead to a minimum. We avoid

run-time enforcement and invasive instrumentation of cloud applications as much as pos-

sible. We also focus on building governance systems that are deeply integrated with the

cloud platforms themselves. This enables using the existing scalability and high avail-

ability features of the cloud to provide an efficient governance solution that can control

all application events in a fine-grained manner. Furthermore, such integrated solutions

relieve the users from having to maintain and pay for additional, external governance

and monitoring solutions.

In order to explore the feasibility of implementing efficient, automated governance

systems in cloud environments, and evaluate the efficacy of such systems, we follow a

three-step research plan.

1. Design and implement a scalable, low-overhead policy enforcement system for cloud

154

Conclusion Chapter 6

platforms.

2. Design and implement a methodology for formulating performance SLOs for cloud-

hosted applications.

3. Design and implement a scalable application performance monitoring system for

detecting and diagnosing performance anomalies in cloud platforms.

We design and implement EAGER [54, 91] – a lightweight governance policy enforce-

ment framework built into PaaS clouds. It supports defining policies using a simple syntax

based on the popular Python programming language. EAGER promotes deployment-

time policy enforcement, where policies are enforced on user applications (and APIs)

every time an application is uploaded to the cloud. By carrying out policy validations

at application deployment-time, and refusing to deploy applications that violate policies,

we provide fail-fast semantics, which ensure that deployed applications are fully policy

compliant. EAGER architecture also provides the necessary provisions for facilitating

run-time policy enforcement (through an API gateway proxy) when necessary. This is

required, since not all policy requirements are enforceable at deployment-time; e.g. a

policy that prevents an application from making connections to a specific network ad-

dress. Our experimental results show that EAGER validation and policy enforcement

overhead is negligibly small, and it scales well to handle thousands of user applications

and policies. Overall, we show that integrated governance for cloud-hosted applications

is not only feasible, but also can be implemented with very little overhead and effort.

To facilitate formulating performance SLOs, we design and implement Cerebro [134]

– a system that predicts bounds on the response time of web applications developed for

PaaS clouds. Cerebro is able to analyze a given web application, and determine a bound

on its response time without subjecting the application to any testing or runtime instru-

mentation. This is achieved by a mechanism that combines static analysis of application

155

Conclusion Chapter 6

source code with runtime monitoring of the underlying cloud platform (PaaS SDK to

be specific). Our approach is limited to interactive web applications developed using a

PaaS SDK. We show that such applications have very few branches and loops, and they

spend most of their execution time invoking PaaS SDK operations. These properties

make the applications amenable to both static analysis, and statistical treatment of their

performance limits.

Cerebro is fast, can be invoked at the deployment-time of an application, and does not

require any human input or intervention. The bounds predicted by Cerebro can be used as

statistical guarantees (with well defined correctness probabilities) to form performance

SLOs. These SLOs in turns can be used in SLAs that are negotiated with the users

of the web applications. Cerebro’s SLO prediction capability, coupled with a policy

enforcement framework such as EAGER, can facilitate specification and enforcement of

performance-related policies for cloud-hosted applications. We implement Cerebro for

Google App Engine public cloud and AppScale private cloud. Our experiments with real

world PaaS applications show that Cerebro is able to determine accurate performance

SLOs that closely reflect the actual response time of the applications. Furthermore, we

show that Cerebro-predicted SLOs are not easily affected by the dynamic nature of the

cloud platform, and they remain valid for long durations. More specifically, Cerebro

predictions remain correct for more than 12 days on average [159].

Finally, we design and implement Roots – a performance anomaly detection and

bottleneck identification system built into PaaS clouds. It collects data from all the

different layers of the PaaS stack; from load balancers to low level PaaS kernel service

implementations. However, it does so without instrumenting user code, and without

introducing a significant overhead to the application request processing flow. Roots uses

the metadata (request identifiers) injected by the load balancers to correlate the events

observed in different layers, thereby enabling tracing of application requests through

156

Conclusion Chapter 6

the PaaS stack. Roots is also extensible in the sense that any number of statistical

analysis methods can be incorporated into Roots for performance anomaly detection

and diagnosis. Furthermore, it facilitates configuring monitoring requirements at the

granularity of user applications, which allows different applications to be monitored and

analyzed differently.

Roots detects performance anomalies by monitoring applications for performance SLO

violations. When an anomaly (i.e. an SLO violation) is detected, Roots determines if

the anomaly was caused by a change in the application workload or by a performance

bottleneck in one of the underlying PaaS kernel services. If the SLO violation was caused

by a performance bottleneck in the cloud, Roots needs to be able to locate the exact PaaS

kernel service in which the bottleneck manifested. To this end we present a root cause

analysis method that uses a combination of linear regression, change point detection and

quantile analysis. We show that our combined methodology makes accurate diagnoses

nearly 100% of the time. Moreover, we also present a path distribution analyzer that can

identify different paths of execution in an application, via the run-time data gathered from

the cloud platform. We show that this mechanism is capable of detecting characteristic

changes in application workload as a special type of anomalies.

Our results demonstrate that efficient and automated governance in cloud environ-

ments is not only feasible, but also highly effective. We did not have to implement a cloud

platform from the scratch to implement the governance systems designed as a part of this

work. Rather, we were able to implement the proposed governance systems for existing

cloud platforms like Google App Engine and AppScale; often with minimal changes to

the cloud platform software. Our policy enforcement and monitoring systems are inte-

grated with the cloud platform (i.e. they operate from within the cloud platform), and

hence preclude the cloud platform users from having to set up or implement their own

external governance solutions that provide API management or application monitoring

157

functionality. Our governance systems are also efficient, in the sense they do not add a

significant overhead to the applications deployed in the cloud platform, and they scale

well to handle a very large number of applications and governance policies.

Our research is aimed at providing increased levels of oversight, control and automa-

tion to cloud platforms. Therefore it has the potential to increase the value offered by the

cloud platforms to the application developers and the application clients. More specif-

ically, our research can greatly enhance the use of PaaS clouds. A lot of our work is

directly applicable to popular PaaS clouds such as Google App Engine and AppScale,

and the respective developer communities can greatly benefit from our findings.

Our research paves the way to making cloud platforms more dependable and main-

tainable for administrators, application developers and clients alike. It brings automated

policy enforcement – a governance technique that has been successfully applied in classic

SOA systems in the past – to modern cloud environments. Policy enforcement solves a

variety of issues related to poor application coding practices, and lack of administrative

control. We also enable stipulating performance SLOs for cloud-hosted applications, a

feature that is not supported in existing cloud platforms to the best of our knowledge.

Our research also supports full-stack monitoring of cloud platforms for detecting perfor-

mance SLO violations, and determining the root causes of such violations. When taken

together, our research addresses all three components of governance (specification, en-

forcement and monitoring) both efficiently and automatically, as cloud-native features.

The systems we propose ensure that cloud-hosted applications always operate in a policy

compliant state, and any performance anomalies are detected and diagnosed fast. In

conclusion, our governance systems facilitate achieving developer best practices, admin-

istrative conformance and performance SLOs for cloud-hosted applications in ways that

were not possible before.

158

Bibliography

[1] Q. Hassan, Demystifying cloud computing, The Journal of Defense Software
Engineering (2011) 16–21.

[2] P. M. Mell and T. Grance, Sp 800-145. the nist definition of cloud computing,
tech. rep., Gaithersburg, MD, United States, 2011.

[3] Amazon Web Services home page, 2015. http://aws.amazon.com/ [Accessed
March 2015].

[4] “App Engine - Run your applications on a fully managed PaaS.”
"https://cloud.google.com/appengine” [Accessed March 2015].

[5] “Microsoft windows azure.” "http://www.microsoft.com/windowsazure/”
[Accessed March 2015].

[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov, The Eucalyptus open-source cloud-computing system, in
IEEE/ACM International Symposium on Cluster Computing and the Grid, 2009.

[7] C. Krintz, The appscale cloud platform: Enabling portable, scalable web
application deployment, Internet Computing, IEEE 17 (March, 2013) 72–75.

[8] “OpenShift by RedHat.” "https://www.openshift.com”.

[9] N. Antonopoulos and L. Gillam, Cloud Computing: Principles, Systems and
Applications. Springer Publishing Company, Incorporated, 1st ed., 2010.

[10] P. Pinheiro, M. Aparicio, and C. Costa, Adoption of cloud computing systems, in
Proceedings of the International Conference on Information Systems and Design
of Communication, 2014.

[11] “Roundup of Cloud Computing Forecasts and Market Estimates 2015.”
http://www.forbes.com/sites/louiscolumbus/2015/01/24/

roundup-of-cloud-computing-forecasts-and-market-estimates-2015

[Accessed May 2016].

159

http://aws.amazon.com/
"
"
"
http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-computing-forecasts-and-market-estimates-2015
http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-computing-forecasts-and-market-estimates-2015

[12] “Application Performance Monitoring and Management - New Relic.”
http://www.newrelic.com [Accessed April 2016].

[13] “Application Performance Monitoring and Management - Dynatrace.”
http://www.dynatrace.com [Accessed April 2016].

[14] “Datadog - Cloud-scale Performance Monitoring.” http://www.datadoghq.com

[Accessed April 2016].

[15] Brown, Allen E and Grant, Gerald G, Framing the frameworks: A review of IT
governance research, Communications of the Association for Information Systems
15 (2005), no. 1 38.

[16] “Gartner, Magic Quadrant for Integrated SOA Governance Technology Sets,
2007.” https://www.gartner.com/doc/572713/

magic-quadrant-integrated-soa-governance [Accessed April 2016].

[17] “SOA Governance.”
http://www.opengroup.org/soa/source-book/gov/gov.htm. [Online; accessed
14-October-2013].

[18] T. G. J. Schepers, M. E. Iacob, and P. A. T. Van Eck, A Lifecycle Approach to
SOA Governance, in Proceedings of the 2008 ACM Symposium on Applied
Computing, 2008.

[19] F. Hojaji and M. R. A. Shirazi, A Comprehensive SOA Governance Framework
Based on COBIT, in 2010 6th World Congress on Services, 2010.

[20] K. Y. Peng, S. C. Lui, and M. T. Chen, A Study of Design and Implementation
on SOA Governance: A Service Oriented Monitoring and Alarming Perspective,
in Service-Oriented System Engineering, 2008. SOSE ’08. IEEE International
Symposium on, 2008.

[21] “Amazon Elastic Compute Cloud (Amazon EC2).”
http://aws.amazon.com/ec2/.

[22] “Google Compute Engine IaaS.” https://cloud.google.com/compute/.

[23] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov, Eucalyptus : A technical report on an elastic utility computing
archietcture linking your programs to useful systems, in UCSB Technical Report
ID: 2008-10, 2008.

[24] “Heroku Cloud Application Platform.” http://www.heroku.com.

[25] “Amazon Elastic Beanstalk.” https://aws.amazon.com/elasticbeanstalk/.

160

http://www.newrelic.com
http://www.dynatrace.com
http://www.datadoghq.com
https://www.gartner.com/doc/572713/magic-quadrant-integrated-soa-governance
https://www.gartner.com/doc/572713/magic-quadrant-integrated-soa-governance
http://www.opengroup.org/soa/source-book/gov/gov.htm
http://aws.amazon.com/ec2/
https://cloud.google.com/compute/
http://www.heroku.com
https://aws.amazon.com/elasticbeanstalk/

[26] “Salesforce - What is SaaS?.” https://www.salesforce.com/saas/.

[27] “Workday - Alternative to ERP for HR and Financial Management.”
http://www.workday.com/.

[28] “GoToMeeting - Easy Online Conferencing.” http://www.gotomeeting.com.

[29] Protocol buffers, 2016. https://developers.google.com/protocol-buffers
[Accessed Sep 2016].

[30] 2009. http://highscalability.com/
latency-everywhere-and-it-costs-you-sales-how-crush-it [Accessed Sep
2016].

[31] SearchCloudComputing, 2015. http://searchcloudcomputing.techtarget.
com/feature/Experts-forecast-the-2015-cloud-computing-market

[Accessed March 2015].

[32] Forbes, 2016. http://www.forbes.com/sites/louiscolumbus/2016/03/13/
roundup-of-cloud-computing-forecasts-and-market-estimates-2016

[Accessed Sep 2016].

[33] “Microsoft windows azure.” "http://www.microsoft.com/windowsazure/”.

[34] G. Ataya, Information security, risk governance and management frameworks:
An overview of cobit 5, in Proceedings of the 6th International Conference on
Security of Information and Networks, SIN ’13, (New York, NY, USA), pp. 3–5,
ACM, 2013.

[35] 2007. http://www.isaca.org/certification/
cgeit-certified-in-the-governance-of-enterprise-it/pages/default.

aspx [Accessed Sep 2016].

[36] M. P. Papazoglou, Service-oriented computing: concepts, characteristics and
directions, in Web Information Systems Engineering, 2003. WISE 2003.
Proceedings of the Fourth International Conference on, 2003.

[37] “What is SOA?.” http://www.opengroup.org/soa/source-book/soa/soa.htm

[Accessed April 2016].

[38] M. N. Haines and M. A. Rothenberger, How a service-oriented architecture may
change the software development process, Commun. ACM 53 (Aug., 2010)
135–140.

[39] C. Xian-Peng, L. Bi-Ying, and M. Rui-Fang, An ITIL v3-Based Solution to SOA
Governance, in Services Computing Conference (APSCC), 2012 IEEE
Asia-Pacific, 2012.

161

https://www.salesforce.com/saas/
http://www.workday.com/
http://www.gotomeeting.com
https://developers.google.com/protocol-buffers
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://searchcloudcomputing.techtarget.com/feature/Experts-forecast-the-2015-cloud-computing-market
http://searchcloudcomputing.techtarget.com/feature/Experts-forecast-the-2015-cloud-computing-market
http://www.forbes.com/sites/louiscolumbus/2016/ 03/13/roundup-of-cloud-computing-forecasts-and-market-estimates-2016
http://www.forbes.com/sites/louiscolumbus/2016/ 03/13/roundup-of-cloud-computing-forecasts-and-market-estimates-2016
"
http://www.isaca.org/certification/cgeit-certified-in-the-governance-of-enterprise-it/pages/default.aspx
http://www.isaca.org/certification/cgeit-certified-in-the-governance-of-enterprise-it/pages/default.aspx
http://www.isaca.org/certification/cgeit-certified-in-the-governance-of-enterprise-it/pages/default.aspx
http://www.opengroup.org/soa/source-book/soa/soa.htm

[40] F. Belqasmi, R. Glitho, and C. Fu, Restful web services for service provisioning in
next-generation networks: a survey, Communications Magazine, IEEE 49
(December, 2011) 66–73.

[41] A. M. Gutierrez, J. A. Parejo, P. Fernandez, and A. Ruiz-Cortes, WS-Governance
Tooling: SOA Governance Policies Analysis and Authoring, in Policies for
Distributed Systems and Networks (POLICY), 2011 IEEE International
Symposium on, 2011.

[42] T. Phan, J. Han, J. G. Schneider, T. Ebringer, and T. Rogers, A Survey of
Policy-Based Management Approaches for Service Oriented Systems, in 19th
Australian Conference on Software Engineering (aswec 2008), 2008.

[43] Y. C. Zhou, X. P. Liu, E. Kahan, X. N. Wang, L. Xue, and K. X. Zhou, Context
Aware Service Policy Orchestration, in IEEE International Conference on Web
Services (ICWS 2007), 2007.

[44] R. Strum, W. Morris, and M. Jander, Foundations of Service Level Management.
Pearson, 2000.

[45] “Free and Enterprise API Management Platform and Infrastructure by 3scale –
http://www.3scale.net.”

[46] “Enterprise API Management and API Strategy – http://apigee.com/about/.”

[47] “Enterprise API Management - Layer 7 Technologies –
http://www.layer7tech.com.”

[48] “ProgrammableWeb.” http://www.programmableweb.com [Accessed March
2015].

[49] “ProgrammableWeb Blog – http://blog.programmableweb.com/2013/04/30/

9000-apis-mobile-gets-serious/.”

[50] R. T. Fielding, Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000. AAI9980887.

[51] IEEE Xplore Search Gateway, 2015. http://ieeexplore.ieee.org/gateway/
[Accessed March 2015].

[52] Berkeley API Central, 2015. https://developer.berkeley.edu [Accessed
March 2015].

[53] Agency Application Programming Interfaces, 2015.
http://www.whitehouse.gov/digitalgov/apis [Accessed March 2015].

162

http://www.3scale.net
http://apigee.com/about/
http://www.layer7tech.com
http://www.programmableweb.com
http://blog.programmableweb.com/2013/04/30/9000-apis-mobile-gets-serious/
http://blog.programmableweb.com/2013/04/30/9000-apis-mobile-gets-serious/
http://ieeexplore.ieee.org/gateway/
https://developer.berkeley.edu
http://www.whitehouse.gov/digitalgov/apis

[54] C. Krintz, H. Jayathilaka, S. Dimopoulos, A. Pucher, R. Wolski, and T. Bultan,
Cloud platform support for api governance, in Cloud Engineering (IC2E), 2014
IEEE International Conference on, 2014.

[55] A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T. Boubez, and
U. Yalcinalp, Web services policy framework (wspolicy), September, 2007.

[56] “SOA Governance Technical Standard –
http://www.opengroup.org/soa/source-book/gov/intro.htm.”

[57] C. Krintz, The AppScale Cloud Platform: Enabling Portable, Scalable Web
Application Deployment, IEEE Internet Computing Mar/Apr (2013).

[58] G. Lawton, Developing software online with platform-as-a-service technology,
Computer 41 (June, 2008) 13–15.

[59] “Platform as a Service - Pivotal CF.”
"http://www.gopivotal.com/platform-as-a-service/pivotal-cf”.

[60] H. Jayathilaka, C. Krintz, and R. Wolski, Towards Automatically Estimating
Porting Effort between Web Service APIs, in Services Computing (SCC), 2014
IEEE International Conference on, 2014.

[61] “Web Application Description Language.”
http://www.w3.org/Submission/wadl/, 2013. [Online; accessed
27-September-2013].

[62] “Swagger: A simple, open standard for describing REST APIs with JSON.”
https://developers.helloreverb.com/swagger/. [Online; accessed
05-August-2013].

[63] C. A. R. Hoare, An axiomatic basis for computer programming, Commun. ACM
12 (Oct., 1969) 576–580.

[64] H. Jayathilaka, A. Pucher, C. Krintz, and R. Wolski, Using syntactic and
semantic similarity of Web APIs to estimate porting effort, International Journal
of Services Computing 2 (2014), no. 4.

[65] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, J. G. Vallés, and R. Van de
Walle, Functional descriptions as the bridge between hypermedia APIs and the
Semantic Web, in International Workshop on RESTful Design, 2012.

[66] T. Steiner and J. Algermissen, Fulfilling the hypermedia constraint via http
options, the http vocabulary in rdf, and link headers, in Proceedings of the Second
International Workshop on RESTful Design, WS-REST ’11, (New York, NY,
USA), pp. 11–14, ACM, 2011.

163

http://www.opengroup.org/soa/source-book/gov/intro.htm
"
http://www.w3.org/Submission/wadl/
https://developers.helloreverb.com/swagger/

[67] “OAuth 2.0 – http://oauth.net/2/.”

[68] “Apache Synapse.” https://synapse.apache.org/. [Online; accessed
25-March-2014].

[69] “JSR311 - The Java API for RESTful Web Services –
https://jcp.org/aboutJava/communityprocess/final/jsr311/.”

[70] “Swagger - A simple, open standard for describing REST APIs with JSON –
https://helloreverb.com/developers/swagger.”

[71] “WSO2 API Manager.” http://wso2.com/products/api-manager/, 2013.
[Online; accessed 27-September-2013].

[72] “WSO2 API Manager – http://wso2.com/products/api-manager/.”

[73] H. Guan, B. Jin, J. Wei, W. Xu, and N. Chen, A framework for application server
based web services management, in Software Engineering Conference, 2005.
APSEC ’05. 12th Asia-Pacific, pp. 8 pp.–, Dec, 2005.

[74] J. Wu and Z. Wu, Dart-man: a management platform for web services based on
semantic web technologies, in Computer Supported Cooperative Work in Design,
2005. Proceedings of the Ninth International Conference on, vol. 2, pp. 1199–1204
Vol. 2, May, 2005.

[75] X. Zhu and B. Wang, Web service management based on hadoop, in Service
Systems and Service Management (ICSSSM), 2011 8th International Conference
on, pp. 1–6, June, 2011.

[76] C.-F. Lin, R.-S. Wu, S.-M. Yuan, and C.-T. Tsai, A web services status
monitoring technology for distributed system management in the cloud, in
Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2010
International Conference on, pp. 502–505, Oct, 2010.

[77] S. Kikuchi and T. Aoki, Evaluation of operational vulnerability in cloud service
management using model checking, in Service Oriented System Engineering
(SOSE), 2013 IEEE 7th International Symposium on, pp. 37–48, March, 2013.

[78] Y. Sun, Z. Xiao, D. Bao, and J. Zhao, An architecture model of management and
monitoring on cloud services resources, in Advanced Computer Theory and
Engineering (ICACTE), vol. 3, pp. V3–207–V3–211, Aug, 2010.

[79] R. Bhatti, D. Sanz, E. Bertino, and A. Ghafoor, A policy-based authorization
framework for web services: Integrating xgtrbac and ws-policy, in Web Services,
2007. ICWS 2007. IEEE International Conference on, pp. 447–454, July, 2007.

164

http://oauth.net/2/
https://synapse.apache.org/
https://jcp.org/aboutJava/communityprocess/final/jsr311/
https://helloreverb.com/developers/swagger
http://wso2.com/products/api-manager/
http://wso2.com/products/api-manager/

[80] S.-C. Chou and J.-Y. Jhu, Access control policy embedded composition algorithm
for web services, in Advanced Information Management and Service (IMS), 2010
6th International Conference on, pp. 54–59, Nov, 2010.

[81] L. Li, K. Xiaohui, L. Yuanling, X. Fei, Z. Tao, and C. YiMin, Policy-based fault
diagnosis technology for web service, in Instrumentation, Measurement,
Computer, Communication and Control, 2011 First International Conference on,
pp. 827–831, Oct, 2011.

[82] H. Liang, W. Sun, X. Zhang, and Z. Jiang, A policy framework for collaborative
web service customization, in Service-Oriented System Engineering, 2006. SOSE
’06. Second IEEE International Workshop, pp. 197–204, Oct, 2006.

[83] A. Erradi, P. Maheshwari, and S. Padmanabhuni, Towards a policy-driven
framework for adaptive web services composition, in Next Generation Web
Services Practices, 2005. NWeSP 2005. International Conference on, pp. 6 pp.–,
Aug, 2005.

[84] A. Erradi, P. Maheshwari, and V. Tosic, Policy-driven middleware for
self-adaptation of web services compositions, in International Conference on
Middleware, 2006.

[85] B. Suleiman and V. Tosic, Integration of uml modeling and policy-driven
management of web service systems, in ICSE Workshop on Principles of
Engineering Service Oriented Systems, 2009.

[86] M. Thirumaran, D. Ponnurangam, K. Rajakumari, and G. Nandhini, Evaluation
model for web service change management based on business policy enforcement,
in Cloud and Services Computing (ISCOS), 2012 International Symposium on,
pp. 63–69, Dec, 2012.

[87] F. Zhang, J. Gao, and B.-S. Liao, Policy-driven model for autonomic management
of web services using mas, in Machine Learning and Cybernetics, 2006
International Conference on, pp. 34–39, Aug, 2006.

[88] “Mashery – http://www.mashery.com.”

[89] A. Keller and H. Ludwig, The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web Services, J. Netw. Syst. Manage. 11 (Mar.,
2003).

[90] D. Nurmi, J. Brevik, and R. Wolski, QBETS: Queue Bounds Estimation from
Time Series, in International Conference on Job Scheduling Strategies for Parallel
Processing, 2008.

165

http://www.mashery.com

[91] H. Jayathilaka, C. Krintz, and R. Wolski, EAGER: Deployment-time API
Governance for Modern PaaS Clouds, in IC2E Workshop on the Future of PaaS,
2015.

[92] Google App Engine Java Sandbox, 2015.
"https://cloud.google.com/appengine/docs/java/#Java The sandbox” [Accessed
March 2015].

[93] “Microsoft Azure Cloud SDK Service Quotas and Limits.”
http://azure.microsoft.com/en-us/documentation/articles/

azure-subscription-service-limits/#cloud-service-limits [Accessed
March 2015].

[94] “Google Cloud SDK Service Quotas and Limits.”
https://cloud.google.com/appengine/docs/quotas [Accessed March 2015].

[95] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, Soot:
A Java Bytecode Optimization Framework, in CASCON First Decade High Impact
Papers, 2010.

[96] Github - build software better, together, 2015. "https://github.com” [Accessed
March 2015].

[97] F. E. Allen, Control Flow Analysis, in Symposium on Compiler Optimization,
1970.

[98] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and
Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[99] R. Morgan, Building an Optimizing Compiler. Digital Press, Newton, MA, USA,
1998.

[100] S. S. Muchnick, Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[101] S. Bygde, Static WCET analysis based on abstract interpretation and counting of
elements. PhD thesis, Mälardalen University, 2010.

[102] https://cloud.google.com/appengine/docs/java/javadoc/com/google/

appengine/api/datastore/FetchOptions [Accessed March 2015].

[103] D. Nurmi, J. Brevik, and R. Wolski, Modeling Machine Availability in Enterprise
and Wide-area Distributed Computing Environments, in Proceedings of Europar
2005, 2005.

[104] J. Brevik, D. Nurmi, and R. Wolski, Quantifying Machine Availability in
Networked and Desktop Grid Systems, in Proceedings of CCGrid04, April, 2004.

166

"
http://azure.microsoft.com/en-us/documentation/articles/azure-subscription-service-limits/#cloud-service-limits
http://azure.microsoft.com/en-us/documentation/articles/azure-subscription-service-limits/#cloud-service-limits
https://cloud.google.com/appengine/docs/quotas
"
https://cloud.google.com/appengine/docs/java/javadoc/com/google/appengine/api/datastore/FetchOptions
https://cloud.google.com/appengine/docs/java/javadoc/com/google/appengine/api/datastore/FetchOptions

[105] R. Wolski and J. Brevik, QPRED: Using Quantile Predictions to Improve Power
Usage for Private Clouds, Tech. Rep. UCSB-CS-2014-06, Computer Science
Department of the University of California, Santa Barbara, Santa Barbara, CA
93106, September, 2014.

[106] D. Nurmi, R. Wolski, and J. Brevik, Model-Based Checkpoint Scheduling for
Volatile Resource Environments, in Proceedings of Cluster 2005, 2004.

[107] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström, The Worst-case Execution-time
Problem&Mdash;Overview of Methods and Survey of Tools, ACM Trans. Embed.
Comput. Syst. 7 (May, 2008).

[108] A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper, Loop Bound
Analysis based on a Combination of Program Slicing, Abstract Interpretation, and
Invariant Analysis., in WCET, 2007.

[109] C. Sandberg, A. Ermedahl, J. Gustafsson, and B. Lisper, Faster WCET Flow
Analysis by Program Slicing, in ACM SIGPLAN/SIGBED Conference on
Language, Compilers, and Tool Support for Embedded Systems, 2006.

[110] C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen, WCET Analysis of Java
Bytecode Featuring Common Execution Environments, in International Workshop
on Java Technologies for Real-Time and Embedded Systems, 2011.

[111] P. Cousot and R. Cousot, Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints, in
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
1977.

[112] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel, A Fast and Precise Static
Loop Analysis Based on Abstract Interpretation, Program Slicing and Polytope
Models, in IEEE/ACM International Symposium on Code Generation and
Optimization, 2009.

[113] S. Gulwani, S. Jain, and E. Koskinen, Control-flow Refinement and Progress
Invariants for Bound Analysis, in ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[114] S. Gulwani, K. K. Mehra, and T. Chilimbi, SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity, in ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2009.

167

[115] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, Comprehensive QoS
Monitoring of Web Services and Event-based SLA Violation Detection, in
International Workshop on Middleware for Service Oriented Computing, 2009.

[116] A. K. Tripathy and M. R. Patra, Modeling and Monitoring SLA for Service Based
Systems, in International Conference on Intelligent Semantic Web-Services and
Applications, 2011.

[117] F. Raimondi, J. Skene, and W. Emmerich, Efficient Online Monitoring of
Web-service SLAs, in ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2008.

[118] A. Bertolino, G. De Angelis, A. Sabetta, and S. Elbaum, Scaling Up SLA
Monitoring in Pervasive Environments, in Workshop on Engineering of Software
Services for Pervasive Environments, 2007.

[119] K. Mahbub and G. Spanoudakis, Proactive SLA Negotiation for Service Based
Systems: Initial Implementation and Evaluation Experience, in IEEE
International Conference on Services Computing, 2011.

[120] E. Yaqub, R. Yahyapour, P. Wieder, C. Kotsokalis, K. Lu, and A. I. Jehangiri,
Optimal negotiation of service level agreements for cloud-based services through
autonomous agents, in IEEE International Conference on Services Computing,
2014.

[121] L. Wu, S. Garg, R. Buyya, C. Chen, and S. Versteeg, Automated SLA Negotiation
Framework for Cloud Computing, in IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, 2013.

[122] T. Chau, V. Muthusamy, H.-A. Jacobsen, E. Litani, A. Chan, and P. Coulthard,
Automating SLA Modeling, in Conference of the Center for Advanced Studies on
Collaborative Research: Meeting of Minds, 2008.

[123] K. Stamou, V. Kantere, J.-H. Morin, and M. Georgiou, A SLA Graph Model for
Data Services, in International Workshop on Cloud Data Management, 2013.

[124] J. Skene, D. D. Lamanna, and W. Emmerich, Precise Service Level Agreements,
in International Conference on Software Engineering, 2004.

[125] H. He, Z. Ma, H. Chen, and W. Shao, Towards an SLA-Driven Cache Adjustment
Approach for Applications on PaaS, in Asia-Pacific Symposium on Internetware,
2013.

[126] C. Ardagna, E. Damiani, and K. Sagbo, Early Assessment of Service
Performance Based on Simulation, in IEEE International Conference on Services
Computing (SCC), 2013.

168

[127] D. Dib, N. Parlavantzas, and C. Morin, Meryn: Open, SLA-driven, Cloud
Bursting PaaS, in Proceedings of the First ACM Workshop on Optimization
Techniques for Resources Management in Clouds, 2013.

[128] A. Iosup, N. Yigitbasi, and D. Epema, On the Performance Variability of
Production Cloud Services, in Cluster, Cloud and Grid Computing (CCGrid),
2011 11th IEEE/ACM International Symposium on, 2011.

[129] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar, and
F. Leymann, Runtime Prediction of Service Level Agreement Violations for
Composite Services, in Service-Oriented Computing. ICSOC/ServiceWave 2009
Workshops (A. Dan, F. Gittler, and F. Toumani, eds.), vol. 6275 of Lecture Notes
in Computer Science, pp. 176–186. Springer Berlin Heidelberg, 2010.

[130] B. Tang and M. Tang, Bayesian Model-Based Prediction of Service Level
Agreement Violations for Cloud Services, in Theoretical Aspects of Software
Engineering Conference (TASE), 2014.

[131] S. Duan and S. Babu, Proactive Identification of Performance Problems, in ACM
SIGMOD International Conference on Management of Data, 2006.

[132] G. Da Cunha Rodrigues, R. N. Calheiros, V. T. Guimaraes, G. L. d. Santos,
M. B. de Carvalho, L. Z. Granville, L. M. R. Tarouco, and R. Buyya, Monitoring
of cloud computing environments: Concepts, solutions, trends, and future
directions, in Proceedings of the 31st Annual ACM Symposium on Applied
Computing, SAC ’16, (New York, NY, USA), pp. 378–383, ACM, 2016.

[133] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth, Performance anomaly
detection and bottleneck identification, ACM Comput. Surv. 48 (2015), no. 1.

[134] H. Jayathilaka, C. Krintz, and R. Wolski, Response Time Service Level
Agreements for Cloud-hosted Web Applications, in Proceedings of the Sixth ACM
Symposium on Cloud Computing, 2015.

[135] Elasticsearch - search and analyze data in real time, 2016.
"https://www.elastic.co/products/elasticsearch” [Accessed Sep 2016].

[136] O. Kononenko, O. Baysal, R. Holmes, and M. W. Godfrey, Mining modern
repositories with elasticsearch, in Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, (New York, NY, USA), pp. 328–331,
ACM, 2014.

[137] Logstash - collect, enrich and transport data, 2016.
"https://www.elastic.co/products/logstash” [Accessed Sep 2016].

169

"
"

[138] S. Urbanek, Rserve – a fast way to provide r functionality to applications, in
Proc. of the 3rd international workshop on Distributed Statistical Computing
(DSC 2003), 2003.

[139] R. Killick, P. Fearnhead, and I. A. Eckley, Optimal detection of changepoints with
a linear computational cost, Journal of the American Statistical Association 107
(2012), no. 500 1590–1598.

[140] C. Chen and L.-M. Liu, Joint estimation of model parameters and outlier effects
in time series, Journal of the American Statistical Association 88 (1993), no. 421
284–297.

[141] U. Groemping, Relative importance for linear regression in r: The package
relaimpo, Journal of Statistical Software 17 (2006), no. 1.

[142] G. R. Lindeman R.H., Merenda P.F., Introduction to Bivariate and Multivariate
Analysis. Scott, Foresman, Glenview, IL, 1980.

[143] Q. Guan, Z. Zhang, and S. Fu, Proactive failure management by integrated
unsupervised and semi-supervised learning for dependable cloud systems, in
Availability, Reliability and Security (ARES), 2011 Sixth International
Conference on, pp. 83–90, Aug, 2011.

[144] R. C. Harlan, Network management with nagios, Linux J. 2003 (July, 2003) 3–.

[145] “The OpenNMS Project.” http://www.opennms.org [Accessed April 2016].

[146] P. Tader, Server monitoring with zabbix, Linux J. 2010 (July, 2010).

[147] Amazon cloud watch, 2016. https://aws.amazon.com/cloudwatch [Accessed
Sep 2016].

[148] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni, Anomaly?
application change? or workload change? towards automated detection of
application performance anomaly and change, in 2008 IEEE International
Conference on Dependable Systems and Networks With FTCS and DCC (DSN),
pp. 452–461, June, 2008.

[149] D. J. Dean, H. Nguyen, P. Wang, and X. Gu, Perfcompass: Toward runtime
performance anomaly fault localization for infrastructure-as-a-service clouds, in
Proceedings of the 6th USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’14, (Berkeley, CA, USA), pp. 16–16, USENIX Association, 2014.

[150] H. Nguyen, Y. Tan, and X. Gu, Pal: Propagation-aware anomaly localization for
cloud hosted distributed applications, in Managing Large-scale Systems via the
Analysis of System Logs and the Application of Machine Learning Techniques,
SLAML ’11, (New York, NY, USA), pp. 1:1–1:8, ACM, 2011.

170

http://www.opennms.org
https://aws.amazon.com/cloudwatch

[151] J. P. Magalhaes and L. M. Silva, Detection of performance anomalies in
web-based applications, in Proceedings of the 2010 Ninth IEEE International
Symposium on Network Computing and Applications, NCA ’10, (Washington, DC,
USA), pp. 60–67, IEEE Computer Society, 2010.

[152] J. a. P. Magalhães and L. M. Silva, Root-cause analysis of performance anomalies
in web-based applications, in Proceedings of the 2011 ACM Symposium on Applied
Computing, 2011.

[153] V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: A survey, ACM
Comput. Surv. 41 (July, 2009) 15:1–15:58.

[154] G. Casale, N. Mi, L. Cherkasova, and E. Smirni, Dealing with burstiness in
multi-tier applications: Models and their parameterization, IEEE Transactions on
Software Engineering 38 (Sept, 2012) 1040–1053.

[155] S. Malkowski, M. Hedwig, J. Parekh, C. Pu, and A. Sahai, Bottleneck detection
using statistical intervention analysis, in Proceedings of the Distributed Systems:
Operations and Management 18th IFIP/IEEE International Conference on
Managing Virtualization of Networks and Services, DSOM’07, (Berlin,
Heidelberg), pp. 122–134, Springer-Verlag, 2007.

[156] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase, Correlating
instrumentation data to system states: A building block for automated diagnosis
and control, in Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, OSDI’04, (Berkeley, CA, USA),
pp. 16–16, USENIX Association, 2004.

[157] L. Yu and Z. Lan, A scalable, non-parametric anomaly detection framework for
hadoop, in Proceedings of the 2013 ACM Cloud and Autonomic Computing
Conference, CAC ’13, (New York, NY, USA), pp. 22:1–22:2, ACM, 2013.

[158] K. Bhaduri, K. Das, and B. L. Matthews, Detecting abnormal machine
characteristics in cloud infrastructures, in 2011 IEEE 11th International
Conference on Data Mining Workshops, pp. 137–144, IEEE, 2011.

[159] H. Jayathilaka, C. Krintz, and R. Wolski, Service-level agreement durability for
web service response time, in 2015 IEEE 7th International Conference on Cloud
Computing Technology and Science (CloudCom), 2015.

171

	Curriculum Vitae
	Abstract
	Introduction
	Background
	Cloud Computing
	Platform-as-a-Service Clouds
	PaaS Architecture
	PaaS Usage Model

	Governance
	IT and SOA Governance
	Governance for Cloud-hosted Applications
	API Governance

	Governance of Cloud-hosted Applications Through Policy Enforcement
	Enforcing API Governance in Cloud Settings
	EAGER
	Metadata Manager
	API Deployment Coordinator
	EAGER Policy Language and Examples
	API Discovery Portal
	API Gateway

	Prototype Implementation
	Auto-generation of API Specifications
	Implementing the Prototype

	Experimental Results
	Baseline EAGER Overhead by Application
	Impact of Number of APIs and Dependencies
	Impact of Number of Policies
	Scalability
	Experimental Results with a Real-World Dataset

	Related Work
	Conclusions and Future Work

	Response Time Service Level Objectives for Cloud-hosted Web Applications
	Domain Characteristics and Assumptions
	Cerebro
	Static Analysis
	PaaS Monitoring Agent
	Making SLO Predictions
	Example Cerebro Workflow
	SLO Durability
	SLO Reassessment

	Experimental Results
	Correctness of Predictions
	Tightness of Predictions
	SLO Validity Duration
	Long-term SLO Durability and Change Frequency
	Effectiveness of QBETS
	Learning Duration

	Related Work
	Conclusions and Future Work

	Performance Anomaly Detection and Root Cause Analysis for Cloud-hosted Web Applications
	Performance Debugging Cloud Applications
	Roots
	Data Collection and Correlation
	Data Storage
	Data Analysis
	Roots Process Management

	Prototype Implementation
	SLO-violating Anomalies
	Path Distribution Analysis
	Workload Change Analyzer
	Bottleneck Identification

	Results
	Anomaly Detection: Accuracy and Speed
	Path Distribution Analyzer: Accuracy and Speed
	Workload Change Analyzer Accuracy
	Bottleneck Identification Accuracy
	Multiple Applications in a Clustered Setting
	Results Summary
	Roots Performance and Scalability

	Related Work
	Conclusions and Future Work

	Conclusion
	Bibliography

