Extended Tech Report #2019-09: Fair Scheduling
for Deadline Driven, Resource-Constrained
Multi-Analytics Workloads

Stratos Dimopoulos, Chandra Krintz, Rich Wolski
Department of Computer Science
University of California, Santa Barbara

Abstract—We present a new approach to fair-share, deadline-aware job
scheduling for resource-limited cloud deployments that are managed
by “big data” framework resource negotiators (e.g. YARN and Mesos),
called Justice. Justice provides admission control that leverages histor-
ical traces and job deadline information to guide and adapt resource
allocation decisions to changing workload conditions. We evaluate Jus-
tice using different deadline types and production analytics workloads.
We find that it outperforms extant allocators in terms of fair allocation,
deadline satisfaction, and useful work, among other metrics.

Keywords—scheduling; analytics; resource-constraints; deadlines;

1 INTRODUCTION

Increasingly, cloud users deploy “big data” frameworks (e.g.
Apache Hadoop [1] and Apache Spark [2]]) via resource
negotiators such as Apache Mesos [21] and YARN [40].
Resource negotiators simplify deployment and enable multiple
frameworks to execute concurrently using the same set of
resources. Resource negotiators employ fair-share resource
allocators [[14,[17], which attempt to partition resources equally
across frameworks in these multi-analytics settings.

In this paper, we investigate fair-share allocation for work-
loads with deadline and resource constraints. Deadline-driven
workloads represent an important class of big data applica-
tions [27} [29, 44], which are unfortunately under supported
in multi-analytic settings. Resource-limited deployments are
those in which more resources (CPU, memory, local disk)
cannot simply be added on-demand, in exchange for an ad-
ditional charge, as they can in a public cloud. Such deploy-
ments include private clouds and IoT edge systems in which
data analytics is performed near where data is collected to
provide low-latency (deadline-driven) actuation, control, data
privacy, and decision support, and to reduce bandwidth re-
quirements [|13} |42]. Because modern resource negotiators and
big data frameworks were not designed for this combination
of constraints, their use can result in low utilization, poor
performance, missed deadlines, unfair sharing, and long job
turn-around times for multi-analytics workloads [9]].

To address these limitations, we design and implement ad-
mission control for resource negotiators that satisfies deadlines

while preserving fairness. Our system, called Justice, uses
historical job analysis and deadline information to assign the
minimal fraction of resources required to meet a job’s deadline.
Justice estimates this fraction from a running tabulation of an
expansion factor that it computes from an on-line, post-mortem
analysis of all previous jobs executed. Further, Justice “risks”
running some jobs with greater or fewer resources so that it can
continuously adapt its admission control to changing workload
characteristics.

We compare Justice to the baseline allocator employed
by Mesos [21] and YARN [40]], to a simple extension of
this allocator, and to an ‘“oracle” allocator, which knows
the exact minimum number of resources required for each
job to meet its deadline. The metrics we use to do this
comparison are fairness and equality [24]] (we use separate
formulas to measure how “equally” and how “fair” resources
are shared), deadline satisfaction, productivity, and utilization.
To evaluate our work, we use two large production workload
traces from an industry partner that provides commercial big-
data services using YAR The original jobs in these traces
were not resource constrained nor did they require completion
according to individual deadlines. For these reasons we use
discrete-event, trace-driven simulation to represent how these
workloads execute with significantly fewer compute resources
using different deadline formulations from related work [[15]
30, 43} |44} 51]].

Our results show that for both traces, Justice performs sim-
ilarly to the oracle in terms of fairness, deadline satisfaction,
and effective use of resources. In addition, Justice performs
significantly better than the Mesos and YARN allocator. We
also find that Justice achieves greater productivity, wastes less
resources, and has significantly better system utilization than
its counter-parts for the workloads, deployment sizes, and
deadlines that we consider.

1. The partner wishes to remain anonymous for reasons of commercial
competitiveness.

2 JUSTICE

Justice is a resource allocator with admission control for
resource negotiators that manage big data frameworks (Hadoop
and Spark, among others) in multi-analytics settings. Justice
is unique in that it supports deadline-driven workloads and
attempts to provide fair sharing of resources, deadline satisfac-
tion, and high productivity (completed useful work), regardless
of deployment size (resource constraints). To enable this,
Justice employs a black-box, framework-agnostic prediction
technique to estimate the minimum number of CPUs that a
job requires to meet its deadline.

Prior work shows that because fair-share allocators assume
“infinite” resources available in a cloud they fail to pre-
serve fairness when resources are limited [9, (19, 148]. This
disadvantage is due in part to the use of greedy allocation
(required because of their inability by the allocator to predict
future demand) and the lack of corrective mechanisms (ex: job
preemption or dropping). Justice addresses these drawbacks by
proactively adapting to future demand and resource availability
through its admission control mechanisms.

Existing fair-share allocators also do not support job dead-
line constraints. Instead, they assume that the result of a job
submitted by a user has value regardless of how large the turn-
around time may be. For Justice we assume that each job is
submitted with a “maximum execution time” parameter that
tells the resource negotiator when the completion of each job
is no longer valuable. Henceforth, we refer to this parameter
as the “deadline” for the job. The only assumption we make is
that the deadline is feasible, i.e., there is an optimal allocation
that is sufficient to complete the job before its deadline.
Currently, cloud administrators statically divide resources with
capacity schedulers [5]], or require users to reserve resources
in advance [[7, |39]] to create differentiated service classes with
respect to turn-around time. Such approaches are inefficient
and impractical when resources are limited, as they further
restrict peak capacity. In contrast, Justice incorporates deadline
information to drive its resource allocation, admission-control,
and job dropping decisions.

2.1 Resource Allocation

To determine how many CPUs to allocate to a new job,
Justice uses the execution time data from previously exe-
cuted jobs. Justice analyzes each completed job and uses
this information to estimate the minimum number of CPUs
that the job would have needed to have finished by its
deadline (represented as the deadlineCPUs variable in
Algorithm [I). Justice assumes that this minimum required
capacity utilizes perfect parallelism and that the number of
tasks for a job is the maximum parallelization possible. We
refer to this number as the requestedTasks for the job.
Therefore, the maximum number of CPUs that can be assigned
to any job (maxCPUs) at any given time is the minimum
between the requestedTasks and the total deployment size
(cluster_capacity).

To bootstrap the system, Justice admits all jobs regardless of
deadline. For these jobs, Justice allocates requestedTasks
CPUs to the job. For any job for which there are insufficient

Algorithm 1 Justice TRACK_JOB Algorithm

1: function TRACK_JOB(compTime,
numC PUsAllocd, success)
deadlineC PUs = compTime/deadline
maxCPUs = min(requestedT asks, cluster_capacity)
minReqRate = deadlineCPUs/maxzCPUs
minReqRateList.add(minReqRate)
MinCPUFrac = min(minReqRateList)
MaxCPU Frac = maz(minReqRateList)
LastCPU Frac = numCPUsAllocd/maxCPU s
: LastSuccess = success
10: fractionError List.append(minReqRate — LastC PU Frac)
11: end function

requestedT asks, deadline,

LRI NE R

Algorithm 2 Fraction Calculation

1: function CALCULATE_ALLOC_FRACTION

2 if LastSuccess then

3 CPUFraq = MinCPUFrac

4: else

5: CPUFraq = MaxCPUFrac

6: end if

7 fraction = (LastCPU Frac+ CPUFraq)/2
8: return fraction

9: end function

resources for the allocation, Justice allocates the number of
CPUs available. When a job completes (either by meeting
or exceeding its deadline), Justice invokes the pseudocode
Function TRACK_JOB shown in Algorithm

TRACK_JOB calculates the minimum number of CPUs
required (deadlineCPUs) if the job were to complete by
its deadline, using its execution profile available from system
logs. Line 2 in the Function is derived from the equality:

numCPUsAllocd * jobET = deadlineC PU s * deadline

On the left is the actual computation time by individ-
val tasks, which we call compTime in the algorithm.
numCPUsAllocd is the number of CPUs that the job used
during execution and jobET is its execution time without
queuing delay. The right side of the equation is the to-
tal computation time consumed across tasks if the job had
been assigned deadlineCPUs, given this execution profile
(compTime). deadline is the time (in seconds) specified in

Algorithm 3 Fraction Correction and Validation

1: function CORRECT_ALLOC_FRACTION(fraction)
correction =CALC_SMOOTHED_AVG(fraction Error List))
correctedFraction = fraction + correction
corrected F'raction =VALIDATE_FRACTION(correctedF'raction)
return correctedFraction

end function

: function VALIDATE_FRACTION(fraction)

if fraction < min(minRequiredAllocationRatioList) then

: fraction = min(minRequiredAllocationRatioList)

10: else if fraction > 1 then

LRI N R

11: fraction =1
12: end if
13: return fraction

14: end function

Algorithm 4 Admission Control and Resource Allocation

1: function ADMISSION_CONTROL(Requester.Job)

2 for all j € SubmittedJobs do

3 Feasible = True, TT D = Deadline — ElapsedT'ime
4 reqC'pus = ESTIMATE_REQ(j, TT' D)

5: if reqCpus > min(taskCount, capacity) then

6: Feasible = False

7: end if

8 if Share(j) < reqCpus then

9: if Feasible == True then

10: priority = reqCpus/TT D,ADD2HEAP(priority,j)
11: else

12: DROP_JOB(j)

13: end if

14: end if

15: end for

16: allocations = ALLOC_RESOURCES(heap)

17: if RequesterJob ¢ allocations then

18: Add RequesterJob to queue

19: end if

20: end function

21: function ESTIMATE_REQ(Job)

22: maxCpus = min(tasks, capacity), reqCpus = maxCpus
23: if CompletedJobs > 1 then

24: fraction = CALCULATE_ALLOC_FRACTION()

25: fraction = CORRECT_ALLOC_FRACTION(fraction)

26: fraction = (deadline/(deadline — queue)) * fraction
27: reqCpus = max(ceil(fraction * maxCpus), 1)

28: end if

29: return reqCpus
30: end function

31: function ALLOC_RESOURCES(heap)

32: of fers = CREATE_OFFERS(heap)
33: allocations = SEND_OFFERS(of fers)
34: return allocations

35: end function

36: function CREATE_OFFERS(heap)
37: while availableCpus > 0 and heap not empty do

38: for all Job j € heap do

39: of fer = min(request(j), availableCpus)
40: if of fer < request(j) then

41: offer =0

42: else

43: availableCpus— = of fer

44: of fersDict[j] = of fer

45: end if

46: end for

47: end while
48: return of fersDict
49: end function

the job submission. By dividing compTime by deadline,
we extract deadlineCPUs for this job.

Next, Justice divides deadlineCPUs by the maxi-
mum number of CPUs allocated to the job. The result-
ing minReqRate is a fraction of the maximum that Jus-
tice could have assigned to the job and still have it
meet its deadline. Justice adds minRegRate to a list
of fractions (minReqRateList) that contains the min-
imum required rates (fractions of deadlineCPUs over
requestedTasks) across all completed jobs. Then it cal-
culates from this list the global minimum (MinCPUFrac)
and maximum (MaxCPUFrac) fractions. It also tracks

the observed fraction allocated to the last completed job
(LastCPUFrac) and whether the job satisfied or exceeded
its deadline (LastSucess). Justice then uses MaxCPUFrac
and MinCPUFrac to predict the allocatable fractions of future
jobs. MaxCPUFrac and MinCPUFrac are always less than
or equal to 1. The tighter the deadlines, the more conservative
(nearer to 1) these fractions and the corresponding Justice’s
resource provisioning will be.

Justice computes the CPU allocation fraction
(alocCPUFrac) for each newly submitted job as the
average of the LastCPUFrac and either MinCPUFrac
or MaxCPUFrac, as shown in Algorithm depending on
whether the last completed job met or missed its deadline,
respectively. In other words, consecutive successes make
Justice more aggressive, causing it to allocate smaller
resource fractions (i.e., alocCPUFrac converges to
MinCPUFrac), while deadline violations make Justice more
conservative, causing it to increase the fraction in an attempt
to prevent future violations (alocCPUFrac converges to
MaxCPUFrac).

Justice uses a Kalman filter mechanism to correct inaccu-
racies of its initial estimations (Algorithm [3). Every time a
job completes its execution, Justice tracks the estimation error
and uses it to correct the CPU allocation fraction. Estima-
tion error is the difference between the allocation fraction
and the ideal minimum fraction (deadlineCPUs). Justice
calculates a weighted average of the historical errors (Function
correct_alloc_fraction) and adds it to the allocation
fraction. Justice can be configured to assign the same weights
to all past errors or to use exponential smoothing (i.e., to
weigh recent values higher than those that occurred in the
distant past). Lastly, validate_fraction ensures that the
corrected fraction remains with allowable limits (the fraction
should not be less than the minimum observed MinCPUFrac
or greater than 1).

After Justice computes, corrects, and validates
alocCPUFrac, Justice considers the time that the job
has spent in the queue (line 26 in Function estimate_req
of Algorithm [). Justice multiplies alocCPUFrac by the
number of tasks requested in the job submission (rounding
to the next largest integer value). It uses this value (or
the maximum cloud capacity, whichever is smaller) as the
number of CPUs to assign to the job for execution (Function
estimate_req in Algorithm . Justice allocates resources
to jobs (Function alloc_resources) by creating the offers
according to job priorities (Function offer_ resources
creates offers for jobs until there are no other jobs to be
scheduled or the available resources are exhausted). Justice
sends these offers to the frameworks (line 33 in Algorithm [-
we omit Function SEND_OFFERS for brevity, which provides
communication between Justice and the resource negotiator
(e.g. YARN or Mesos)). Justice performs this process each
time a job is submitted or completes. It also updates the
deadlines for jobs in the queue, reducing each by the time
that has passed since submission (line 3 in Algorithm M),
recomputes the CPU allocation of each enqueued job and
and as part of its admission control policy, it either drops
any jobs in queue with infeasible deadlines or enqueues jobs

that cannot be admitted but are still feasible (lines 12 and 18
respectively in Algorithm [).

2.2 Admission Control

After estimating job resource requirements, Justice implements
a proactive admission control so that it can prevent infeasible
jobs (jobs likely to miss their deadlines) from ever entering
the system and consuming resources wastefully. This way,
Justice attempts to maximize the number of jobs that meet their
deadline even under severe resource constraints (i.e. limited
capacity or high utilization). Justice also tracks jobs that violate
their deadlines and selectively drops some of them to avoid
further waste of resources. It is selective in that it terminates
jobs when their requestedTasks exceed a configurable
threshold. Thus, it still able to collect statistics on “misses”
to improve its estimations by letting the smaller violating jobs
complete their execution while at the same time it prevents
the bigger violators (which are expected to run longer) from
wasting resources.

Justice admits jobs based on a pluggable priority policy. We
have considered various policies for Justice and use a policy
that prioritizes minimizing the number of jobs that miss their
deadlines. For this policy (line 10 in Algorithm [}, Justice
prioritizes jobs with a small number of tasks and greatest
time-to-deadline (TTD). However, all of the policies that
we considered (including shortest time-to-deadline) perform
similarly. Once Justice has selected a job for admission, it
allocates the CPUs to the job and admits it to the system for
execution. Once a job run commences, its CPU allocation does
not change.

3 EXPERIMENTAL METHODOLOGY

We compare Justice to the fair-share allocator that currently
ships with the open-source Mesos [21] and YARN [40] re-
source negotiators, using trace-based simulation. Our system
is based on SimPy [36] and replicates the execution behavior
of industry-provided production traces of big data workloads
(cf Section [4).

The current Mesos and YARN fair-share allocator does not
account for job deadlines. When making allocation decisions, it
(tacitly) assumes that each job will use the resources allocated
to it indefinitely and that there is no limit on the turn-around
time a job’s owner is willing to tolerate. We hypothesize a
straight-forward modification to the basic allocator that allows
it to consider job deadlines (which would need to be submitted
with each job) when making decisions.

Finally, we implement an “oracle” allocator that has perfect
foreknowledge of the minimum resource requirements each
job needs to meet its deadline exactly. Note that the oracle
does not implement system-wide prescience — its prediction
is perfect on a per-job basis. That is, the oracle does not try
all possible combinations of job schedules to determine the
optimal allocation. Instead, the oracle makes its decision based
on a perfect prediction of each job’s needs. These allocation
policies are summarized as follows:

Baseline FS: This allocator employs a fair sharing pol-
icy [4, |16l [17} |37, 46] Its behavior is similar to that of the

default allocator in Mesos and YARN and, as such, runs
all jobs submitted regardless of their deadlines and resource
requirements.

Reactive FS: This allocator extends Baseline FS by al-
lowing the allocator to terminate any job that has exceeded its
deadline. That is, it “reacts” to a deadline miss by freeing the
resources so that other jobs may use them.

Oracle: This allocator allocates the minimum number of
resources that a job requires to meet its deadline. If sufficient
resources are unavailable, the Oracle queues the job until the
resources become available or until its deadline has passed (or
is no longer achievable). For the queued jobs, Oracle gives
priority to jobs with fewer required resources and longer time
until the deadline.

Justice: As described in Section[2] this allocator proactively
drops, enqueues, or admits jobs submitted. It estimates the
share of each job as a fraction of its maximum demand. This
fraction is based on the historical performance of jobs. For
the queued jobs, Justice gives priority to jobs with fewer
required resources and longer computation times. Justice drops
any jobs that are infeasible based on a comparison of their
deadlines with a prediction of the time to completion. Jobs
that are predicted to miss their deadlines are not admitted
(they are dropped immediately) as are any jobs that exceed
their deadlines.

3.1 Deadline Types

We evaluate the robustness of our approach by running exper-
iments using deadline formulations from prior works [15} {30,
43| 144, 51| and interesting variations on them. In particular,
we assign deadlines that are multiples of the optimal execution
time of a job (which we extract from our workload traces). We
use two types of multiples: Fixed and variable.

Fixed Deadlines: With fixed deadlines, we use a dead-
line that is a multiple of the optimal execution time (a
formulation found in [30, |51]]). Each deadline is expressed as
D; = z - T;, where T; is the optimal runtime of the job and
x >= 1.0 is some fixed multiplicative expansion factor. In our
experiments, we use constant factors of z = 1 and =z = 2,
which we refer to as FixedIx and Fixed2x respectively.
Variable Deadlines: For variable deadlines, we com-
pute deadline multiples by sampling distributions. We consider
the following variable deadline types:

e Jockey: We pick with equal probability a deadline expan-
sion factor from two possible values (a formulation
described in [15]]). In this work, we use the intervals
from the sets with values (1,2) and (2,4) to choose x
and, again, compute D; = x - T;, where T is the mini-
mum possible execution time. We refer to this variable
deadline formulation as Jockeylx2x and Jockey2x4x.

e 90loose: This is a variation of the Jockey1x2x deadlines,
in which the deadlines take on the larger value (i.e. are
loose) with a higher probability (0.9) while the other
uses the smaller value.

e Aria: The deadline multiples of this type are uniformly
distributed in the intervals [1, 3] and [2, 4] (as described
in [43]|44]); we refer to these deadlines as Arialx3x and
Aria2x4x, respectively.

_—) TR1
o~ T2

4

Number of Tasks [Loganthmic Scale)

(a) CDFs of number of tasks per job

e

Number of Tasks (Logarthmec Scale)

(c) Job computation time vs number of tasks for TR1

Frobabaty

~ oy TR1
™2

A $ $) "]

Computation Time » CPU*Seconds (Loganthmic Scale

(b) CDFs of computation time per job

Number of Tasks (Logarthmec Scale)

(d) Job computation time vs number of tasks for TR2

Fig. 1: Workload Characteristics: Number of tasks per job (Figure [E) and computation time per job (Figure for TR1 and
TR2 and computation time relative to jobs size in number of tasks (Figures and [Id). Small jobs are large in number but

consume a very small proportion of trace computation time.

Trace CPUs Jobs Comp. 1-Task 1-Task
Time Pct Time Pct
(Hours)

TR1 9345 159194 8585673 58% 0.1%

TR2 24721 1140064 13301659 62% 0.3%

TABLE 1: Summary of Traces. Columns are trace name, peak
cluster capacity, total number of jobs, total computation time
in hours, percentage of 1-task jobs, and percentage of 1-task
job computation time.

4 WORKLOAD CHARACTERIZATION

To evaluate Justice, we use two 3-month traces from pro-
duction Hadoop deployments executing over different YARN
clusters. The traces were recently donated to the Justice effort
by an industry partner on condition of anonymity. Each trace
contains a job ID, job category, number of map and reduce
tasks, map and reduce time (computation time across tasks),
job runtime, among other data. It does contain information
about the scheduling policy or HDFS configuration used in
each cluster. Thus we assume a minimum of one CPU per
task and use this minimum to derive cluster capacity; we are
considering sub-portions of CPUs as part of future work.
Table [I| summarizes the job characteristics of each trace.
The table shows the peak cluster capacities (total number of
CPUs), the total number of jobs, the total computation time

across all tasks in the jobs, the percentage of jobs that have
only one task, and the percentage of computation time that
single-task jobs consume across jobs. We refer to the trace
with 159194 jobs as TR1 and the trace with 1140064 jobs as
TR2. The peak observed capacity (maximum number of CPUs
in use) for TR1 is 9345 and for TR2 is 24721.

The table also shows that even though there are many single-
task jobs, they consume a small percentage of the total com-
putation time in each trace. To understand this characteristic
better, we present the cumulative distribution of number of
tasks in Fig. and computation time in Fig. per job in
on a logarithmic scale. Approximately 60% of the jobs have a
single task and 70-80% of the jobs have fewer than 10 tasks,
across traces. Only 13% of the jobs in TR1 and 3% of the jobs
in TR2 have more than 1000 tasks. Also, the vast majority
of jobs have short computation times. Approximately 70% of
jobs in TR1 and 80% in TR2 have computation time that is
less than 1000 cpu*seconds, ie their execution would be 1000
seconds if they were running in one CPU core.

The right graph in the figure compares job computation
time with the number of tasks per job (both axes are on a
logarithmic scale) for the TR1 trace (TR2 exhibits a similar
correlation). In both traces, 80% of the 1-task jobs and 60%
of the 2-10 task jobs have computation time of fewer than 100
seconds. Their aggregate computation time is less than 1% of
the total computation time of the trace. Jobs with more than
1000 tasks account for 98% and 94% of the total computation

time for TR1 and TR2, respectively. Finally, job computation
time varies significantly across jobs.

We have considered leveraging the job ID and number of
map and reduce tasks to track repeated jobs, but find that
for these real-world traces such jobs are small in number.
In TR1, 18% of the jobs repeat more than once and 12% of
the jobs repeat more than 30 times. In TR2, 25% of the jobs
repeat more than once and 16% of the jobs repeat more than
30 times. Moreover, we observe high performance variation
within each job class. Previous research has reported similar
findings and limited benefits from exploiting job repeats for
production traces [15].

5 RESULTS

We evaluate Justice using two production traces for different
resource-constrained cloud deployments (number of CPUs).
We compare Justice against different fair share schedulers and
an Oracle using multiple deadline strategies: a fixed multiple
(Fixed), a random multiple (Jockey), a uniform multiple (Aria)
of the actual computation time, and mixed loose and strict
deadlines (90loose), as described on Section

5.1 Fairness Evaluation

We use Jain’s fairness index [24] applied to the fraction of
demand each scheduler is able to achieve as a measure of
fairness. For each job ¢, among n total jobs, we define the
fraction of demand as F; = g—i where D, is the resource
request for job 7 and A; is the allocation given to job i. When
A; >= D the fraction is defined to be 1. Jain’s fairness index

. n o F?
is then 7‘2”:,3 lz.
n* 4

Figure iiésénts the fairness index averaged over 60-sec
intervals for all the allocation policies and deadlines considered
in this study, for trace TR1 (top graphs) and trace TR2 (bottom
graphs) and for two resource-constrained cloud deployments;
highly constrained (left graphs) and moderately constrained
(right graphs) settings.

The results show that when resources are limited, fair-shair
allocation policies generate substantially lower fairness indices
compared to Justice. This occurs because these allocators
do not anticipate the arrival of future workload. Thus, jobs
that require large fractions of the total resource pool receive
everything they ask for, causing jobs that arrive later to block
or to be under-served [9]. Moreover, jobs waiting in queue
may miss their deadlines (i.e. receive an A; value of zero) or
receive an insufficient allocation once released.

Note that adding the ability to simply drop jobs that have
missed their deadlines does not alleviate the fairness problem.
The Reactive FS policy (described in Section [3)) achieves better
fairness than the Baseline fair-share scheduler on TR1, but
does not achieve the same levels as Justice. Also notice that
the Baseline FS and Reactive FS are not directly comparable
with each other as they both apply the same fairness policy
while one of them (Reactive FS) drops the jobs that have
already missed their deadlines leading to a different workload
schedule. Thus, on TR2 the Baseline FS achieves better results
than the Reactive FS. However, for both TR1 and TR2 the

“fair” allocators do worse than Justice and the oracle. When a
large job (one with a large value of D;) can meet its deadline
(i.e. it is not dropped by Reactive FS), it may only get a small
fraction of its requested allocation (receiving a small value
of A;) thereby contributing to the fairness imbalance when
compared to Justice. Because the confidence intervals between
Reactive FS and Justice on TR1 and Baseline FS and Justice
on TR2 overlap, we also conducted a Welch’s t-test [47] for
all deadline-types and resource capacities. We find that in all
cases, the P-value is very small (e.g. significantly smaller than
0.01). Thus the probability that the means are the same is also
very small.

The reason Justice is able to achieve fairness is because
it uses predictions of future demand to implement admission
control. Justice uses a running tabulation of the average frac-
tion of A;/D, that was required by previous jobs to meet their
deadline to weight the value of A;/D; for each newly arriving
job. Justice computes this fraction globally by performing
an on-line “post mortem” of completed jobs. Then, for each
new job, Justice allocates a fraction of the demand requested
using this estimated fraction. Justice continuously updates its
estimate of this fraction so that it can adapt to changing
workload conditions. As a result, every requesting job gets
the same share of resources as a fraction of its total demand,
which is by definition the best possible fairness according to
Jain’s formula.

Interestingly, Justice achieves a better fairness index than
the Oracle for variable deadlines (e.g. Arialx3x). The Oracle
allocates to every job the minimum amount of resources
required to meet the deadline. Consequently, when the deadline
tightness across jobs differ, the fraction of resources that each
job gets compared to its maximum resources will also differ.
This leads to inequalities in terms of fairness. To avoid the
paradox of an Oracle not giving perfect fairness, we could
modify Jain’s formula by replacing the maximum demand of
a job with the minimum required resources in order to meet
a deadline. However, we wish to use prior art when making
comparisons to the existing fair-share allocators, and so the
Oracle (under this previous definition) also does not achieve
perfect fairness. In other words, Oracle is an oracle with
respect to minimum resource requirements needed to satisfy
each job’s deadline and not a fairness oracle for the overall
system.

Although Justice yields the best fairness results compared to
other allocators, it is not optimal (i.e. the fairness index is not
1). In particular, when queued jobs are released they may miss
their deadlines, but while doing so, cause other jobs to receive
little or no allocation. To compensate for this, Justice attempts
to further weight their allocation by the ratio of the deadline
to the time remaining to the deadline (- dlif:f(éijzzeﬂme), or
if achieving the deadline is not possible, Justice drops them
to avoid wasted occupancy. The cost of this optimization is an
occasional fairness imbalance but this cost is less than that for
the other allocators we evaluate.

Integer CPU assignment is another source of fairness imbal-
ance. Because jobs require an integer number of CPUs each
allocation must be rounded up when it is weighted by the
current success fraction. For small jobs, the additional fraction

¥ Baseline FS Reactive FS Oracle Justice
x 1.2
-1
E i lh
é 0.8 l
5 06 ; % k I
0.4 1 . | :
’ . : ; i
0 - i k| : |
+ + + 2 & &
-0.2 34 & o 5 P o
& & & ‘Q' N & &
& o A ¥
© \°
Deadline Type
(a) TR1: Fairness Index with 2250 CPUs
¥ Baseline FS Reactive FS Oracle ™ Justice
x 1.2
@
2
: ! T R R
£ 08 i i L
0.6
0.4 |
0.2 | L |
L L L |
0 8 | % | 28 % % %_|
\Sa Ca ot 3 e o5k ah
\J*eé (*zé e‘l‘&* (:‘g,*\’r" 90\00 P‘{\’bx* N’\‘b’]'*

Deadline Type
(c) TR2: Fairness Index with 2500 CPUs

M Baseline FS Reactive FS Oracle ™ Justice
x 1.2
°
Gos 0 Tk 1 1
0.2 . . |
0 /8 % | 48 7% | | i il
+ + + + e + G+
> & 5 o & e o
& & N N O R R
& & M ¥ ¥
M ¥

Deadline Type

(b) TR1: Fairness Index with 4500 CPUs

M Baseline FS Reactive FS Oracle ®Justice
x 1.2
)
°
ﬁ 1 7 I& & & & 1& IE
g 0.8 E . : | %
0.6 g E | | |
0.4 . | . %
02 . . . | >
. | . i
0 % | i i i | ; B =7 |
Ak O O o o sk nh
(J\‘ﬁ'z6 Q‘*eé e‘* d_e‘n‘* 90\00 N'@&* PK\’A’L*

Deadline Type
(d) TR2: Fairness Index with 5000 CPUs

Fig. 2: Fairness Evaluation: Average of Jain’s fairness index (and 0.95 error bars) for trace TR1 (top graphs) and trace TR2
(bottom graphs) with highly constrained capacities (left graphs) and moderately constrained capacities (right graphs). Experiments
denoted as ’Fixed’ have deadlines multiples of 1 and 2. Experiments denoted as ’Jockey’ have multiples picked randomly from
a set with two values (1, 2) and (2, 4). Experiments denoted as *90loose’ have 90% deadlines with a multiple of 2 and 10%
deadlines with a multiple of 1. Experiments denoted as ’Aria’ have multiples drawn from uniformly distributed intervals [1, 3]

and [2, 4]

constitutes a significant overhead in terms of fairness. While
the industry traces contain large numbers of small jobs, they
are often short lived allowing Justice to adapt overall fairness
quickly. We are considering sub-CPU allocations as part of
future work.

We next evaluate fairness using a second metric, which we
refer to as “equality”. Fair-share allocators attempt to give an
“equal” share of resources to concurrently executing jobs. To
evaluate, the degree to which the allocators achieve this goal in
resource-constrained settings, we modify Jain’s fairness index
so that F; corresponds to the resource allocation of each job
1 instead of to the job’s fraction of demand.

To compute equality, we classify jobs based on their max-
imum demand. We then calculate the index for each job
and the weighted average across indexes. Weights correspond
to the number of jobs in each class (e.g., all jobs with
demand of Y CPUs). We classify jobs in this way to avoid
considering “unfair” (or “unequal”) allocations that correspond
to differences in maximum demand (a job cannot be allocated
more CPUs than it demands).

Figure [3| presents equality results across all allocators, work-
loads, and capacities that we consider. The results show that
in resource constrained settings, fair-shair allocation policies
preserve equality better than they do fairness. Justice again
achieves a better fairness score than the fair-share allocators
by up to 23% and 17% for the two capacities for TR1 (TR2
results are similar). Even though the goal of Justice is not to
preserve equality but instead to prioritize fairness, it performs
better than the fair-share allocators for two reasons. First,
Justice keeps the system less utilized and therefore fewer jobs
wait in the queue, which contributes negatively to equality
(when they do not get any resources at all). Second, due to
constrained resources, Justice drops large jobs more frequently
which provides more opportunity for it to facilitate fairness at
a finer grain across frameworks.

5.2 Deadline Satisfaction

We next evaluate how well the allocators perform in terms
of deadline satisfaction. Our goal with this set of experiments

M Baseline FS Reactive FS Oracle ® Justice
x 1.2
)
or
2 | - i 1 ;
o A B2 R ALA LA N
+ + + + 2 + +
‘i*‘e& @_e& z‘i\;v e‘i\’?‘ 0\0& i@\? i@q;‘?
\oe,t- \oae © ¥ ¥
Deadline Type
(a) TR1: Equality Index with 2250 CPUs
¥ Baseline FS Reactive FS Oracle ™ Justice
x 1.2
-
e ! T Ig ,]j
g 0.8 Ié gé I'Ig I' I I‘L
i Vil atulal
i Ll
18 01 1 B
101 01011
02 1 1 & & §® |
o 78 78 78 78 /8 7|
T ot SOk PO
o @« odgﬂx od\e‘ﬂ' o° N‘a\’ N\'a'l‘
Deadline Type

(c) TR2: Equality Index with 2500 CPUs

Fairness Index

M Baseline FS Reactive FS Oracle ® Justice
x 1.2
S
c 1 % | .
3. 112 [k
§ 06 sg |
0.4 L]
0.2 L |
o A A
N ol
ng’b Q\‘\g’b
¢
Deadline Type
(b) TR1: Equality Index with 4500 CPUs
® Baseline FS Reactive FS Oracle ™ Justice
1.2
1 % | 3 J . =
e B B
s g tutututula
el 8 % 1 8§ B B
‘ | . | . | |
0.2 o . i T
0 B j | | | %
+ v+ C o o APt it
Q‘*e Q’*e \Od\e‘\x 0{:«(’:\'L Q,Q\o N\’b‘\ N\a’)‘

Deadline Type
(d) TR2: Equality Index with 5000 CPUs

Fig. 3: Equality Evaluation: Average equality indexes (and 0.95 error bars) for trace TR1 (top graphs) and trace TR2 (bottom
graphs) with highly constrained capacities (left graphs) and moderately constrained capacities (right graphs).

is to verify that Justice is not simply achieving fairness by
dropping a large fraction of jobs — so that those that remain
receive a fair allocation.

To investigate this, we compute the Satisfied Deadline Ratio
(SDR) as the fraction of the jobs that complete before their
deadline over the total number of submitted jobs. For the set
of all the submitted jobs Jy, J3, ..., Jn, if m < n is the subset
of successful jobs Jy, Js,...J,,, then SDR is: Z’Z‘;ﬁ;

Figure [] presents the SDR for each combination of allo-
cator and deadline type. For all deadline types, Justice meets
significantly more deadlines than the fair-share policies and
performs similarly to the Oracle. Justice satisfies at least 88%
more deadlines than Baseline FS and from 83% to 207%
more deadlines than Reactive FS. Justice outperforms fair-
share policies because these policies do not consider deadline
information and share resources naively and greedily. Because
Justice is able to use both job deadlines and historical job
behavior in its allocation decision, it is able to meet a larger
fraction of deadlines than existing allocators while achieving
greater fairness.

In particular, without admission control, the Baseline and
Reactive FS allocators must admit a large fraction of jobs
that ultimately do not meet their deadlines. This “wasted”

work has two consequences on deadline performance. First,
it causes unnecessary queuing of jobs that, because of the
time spent in queue, may also miss their deadlines. Second,
it causes resource congestion, thereby reducing the fraction of
resources allocated to all jobs. Consequently, some jobs, which
would otherwise succeed, miss their deadlines. By attempting
to identify those jobs most likely to miss and dropping those
jobs proactively, Justice is able to achieve a larger fraction of
deadline successes overall.

Fair-share policies fail to meet deadlines when resources
are constrained also because of their greedy allocation. They
allocate as many resources as are available until they run out
regardless of what jobs require to meet their deadlines. As
a consequence, jobs with looser deadlines get more resources
than what they actually need to finish on time, wasting valuable
resources that are needed for future jobs with tighter deadlines.
In contrast, Justice attempts to identify, based on the fraction of
demand that previous successful jobs needed in order to meet
their deadlines, the minimum number of resources required to
meet their deadlines “just in time.”

Finally, as noted previously, the Oracle does not have perfect
information (i.e., it does not have a global optimal schedule).
Instead it knows the actual job computation time (compTime).
Thus, it is able to assign the minimum number of CPUs to

H Baseline FS Reactive FS Oracle Justice
., 100%
g
5 80%
3
o 60%
©
L
£ 40%
8 ,
3
0% = . - - - - -
S & o o & o o
o« <@ K s &° s &
™ & ce (}z of & &
¥ ¥
Deadline Type
(a) TR1: Satisfied Deadlines with 2250 CPUs
¥ Baseline FS Reactive FS Justice Justice
100%
v
g / :
5 80% 1 ;
3 f
o 60%
g 2 i
£ 40% . |
g I
“ o 20% | ! L
ow [EZE BR78 B8 B8 2 k78 &R
+ + + + 2 + +
N v 4V 4 & g g
& & é\« Q:Qa 0\<> . @'\’ . @’1«
< < & & > 8 $
¥ W

Deadline Type

(c) TR2: Satisfied Deadlines with 2500 CPUs

Satisfied Deadlines

Satisfied Deadlines

M Baseline FS Reactive FS Oracle Justice

100%

80%
60% | ! , ’
40% : i : ‘
20% I
N o ot ot & ot o+
'*g'b ,\\@b 2*\) Q’er Q\00 »@,\+ _50\
< L S ¢
v Y
Deadline Type
(b) TR1: Satisfied Deadlines with 4500 CPUs
M Baseline FS Reactive FS Justice Justice
100% = -
80% i o . i
60% i i
{ | i |
40% £ § |
20% { |
ol 7’8 78 78 778 78 78 7
3 + + + 2 + +
N4 g & o & 2 &
q*_e Qd_e e,*\' @Q’ &° (@'\, (@"v
& & o ¥ ¥
¥ ¥

Deadline Type

(d) TR2: Satisfied Deadlines with 5000 CPUs

Fig. 4: Deadline Satisfaction: Satisfied Deadlines Ratio (SDR) for trace TR1 (top graphs) and TR2 (bottom graphs) with highly
constrained capacities (left graphs) and moderately constrained capacities (right graphs) for different deadline types.

each job to satisfy its deadline. SDR for Oracle is not 100%
because it must drop (refuse to admit) jobs for which there is
insufficient capacity to meet their deadline.

5.3 Efficient Resource Usage

We next evaluate workload productivity, i.e. the measure of
productive time (i.e. the work done by jobs that complete by
their deadlines) and wasted time (i.e. work done by jobs that
miss their deadline) via the metrics Productive Time Ratio
(PTR) and Wasted Time Ratio (WTR). For the set of all the
submitted jobs Ji, Ja, ..., J,, and their corresponding runtimes
T1,T5, ..., T, we consider the subset of m < n successful jobs
J1, o2, ..., J, and the subset of k < n faile:,r(L:l or dropped jobs
Ji,Ja, ..., Ji, where n = m + k. PTR is %;;1% and WTR is
Z:‘,C:l T ’

T
Zi:_ilgujre [5] and Figure [6] present PTR and WTR, respectively,
for different allocation policies and deadline type for two
resource constrained settings for trace TR1 (top graphs) and
TR2 (bottom graphs). For all cases, Baseline FS spends a
very small ratio of computation time productively, i.e. it
spends almost all the computation time on jobs that missed
their deadlines. Reactive FS improves over Baseline FS by
reactively dropping jobs that have already violated their dead-
lines. Justice, performs significantly better (up to 221% higher

PTR and up to 100% lower WTR than Reactive FS) and
slightly worse than the Oracle (up to 33% lower PTR) for the
2250 CPUs deployment. Justice outperforms fair-share policies
because it proactively drops jobs with violated deadlines and
jobs that it predicts are likely to miss their deadline.

Our experiments also show that the more constrained or
utilized the system, the better Justice performs in terms of
PTR and WTR, relative to the other allocators that we consider.
Baseline FS fails to satisfy deadlines of bigger jobs because
it shares a very limited resources equally between bigger and
smaller jobs. This share, under resource constrained settings, is
not sufficient for the bigger jobs to complete on time. Reactive
FS improves PTR and WTR because it drops jobs that violate
their deadlines, freeing up resources for other jobs. Justice
wastes significantly fewer resources compared to Reactive FS
because it drops jobs with large expected computation times
using its pluggable priority policy (Section [2), as soon as they
become infeasible.

When the system is less constrained (e.g. 4500 CPUs in the
right graphs), Justice’s PTR is significantly better than Baseline
FS (from 146% on Aria2x4x up to 926% on Fixed1x). It also
outperforms Reactive FS up to 72% and performs similarly to
the Oracle, for deadline types with less variation (Fixed and
90loose). However, it achieves slightly (14% for Jockey1x2x)
or moderately (44% for Arialx3x) less PTR for high variable

H Baseline FS Reactive FS Oracle # Justice
° 100%
£
= 80%
o
2
€ 60%
3
©
o 40%
o
20%
0% | =S8 .
+ + + + + +
N 1 4 A S ' A
& % J V' §° > v
< A S
W W
Deadline Type
(a) TR1: Productive Time with 2250 CPUs
M Baseline FS Reactive FS Oracle Justice
100%
@
£
= 80%
o
2
€ 60%
3
? 40%
a
20%
0% | & . W7 . W7
+ + + + + +
& S S ot o°%e 4 o
R\ 3 @\ 27\ P P
A K ¥ d
Y Y

Deadline Type

(c) TR2: Productive Time with 2500 CPUs

Productive Time

Productive Time

¥ Baseline FS Reactive FS Oracle Justice
100%

80%

60%

40%

20%
s F I Frnr i

Deadline Type

(b) TR1: Productive Time with 4500 CPUs

M Baseline FS Reactive FS Oracle Justice
100%
80%
60%
40%
20%
+ + + + 2 + +
B gV & & & 2 N
Q*g’ 4\‘5’ & Q,Q' ° (\’b\’ (\’g’
& & & ¥
X X

Deadline Type

(d) TR2: Productive Time with 5000 CPUs

Fig. 5: Productivity: Productive Time Ratio (PTR) for trace TR1 (top graphs) and TR2 (bottom graphs) with highly constrained
capacities (left graphs) and moderately constrained capacities (right graphs) for different deadline types.

deadline types, even though it still satisfies significantly more
deadlines compared to Reactive FS for the these deadline types
(recall Justice’s SDR on Figure[dalis 44% and 33% higher than
reactive FS for Jockey1x2x and Arialx3x respectively).

Specifically, as resource scarcity is reduced for a fixed
workload, large jobs that are admitted by the Baseline FS and
Reactive FS allocators stand a better chance of getting the
“extra” resources necessary to complete, and thus, add to the
PTR compared to Justice, which might have excluded them
due to admission control. However, when deadlines are vari-
able, Justice’s admission control is conservative, prioritizing
fairness and deadline success over resource saturation. This
result indicates that extant fair-share allocators may be more
appropriate for maximizing productive work when resources
are more plentiful and the need to meet deadlines less of a
concern. Put another way, when resources are plentiful, the
cost of meeting a higher fraction of deadlines with greater
fairness is a lower PTR due to admission control.

5.4 Cluster Utilization

The final set of experiments investigates how allocation poli-
cies for resource constrained settings impact overall utilization
and CPU idle times. Justice considers a CPU to be idle when

the allocator has not assigned to it any tasks to run and and
to be busy when the CPU is running a task. We then define
Cluster Utilization as Mﬁ% where busy is the total busy
time and <dle is the total idle time across a workload.

Figure |/| shows resource utilization for trace TRI (top
graphs) and trace TR2 (bottom graphs) with highly constrained
capacity (left graphs) and moderately constrained capacity
(right graphs), for the different deadline types that we consider.
The results in the left graphs are particularly surprising and
somewhat counter-intuitive. Given severe resource constraints,
Justice achieves lower utilization than the other allocators, but
(as presented previously in Figures [5] and [f] respectively)
exhibits higher PTR and lower WTR. Thus, Justice enables
more productive work with less waste and lower utilization.
One might assume that the utilization difference is due to
less productivity or more overhead. However, the results show
that this is not the case. Justice is able to achieve both a
greater fraction of deadlines (cf Figure f) and better fairness
(cf Figure [2), with fewer resources.

These results are also interesting in that they reveal a poten-
tial opportunity to introduce more workload (to take advantage
of the available utilization that is not used by Justice) when
resources are severely constrained. To investigate this potential,
we extract and analyze the number and duration of idle CPUs

¥ Baseline FS Reactive FS Oracle ™ Justice

100%
o
£
= 80%
©
@
% 60%
-
40%
20%
0%
& -\'-”+ o
z z N ’» o Y v
q'\"‘ Q* e{_z‘\ e{gﬁ 0,0\ ‘?3@ @
¥ ¥
Deadline Type
(a) TR1: Wasted Time with 2250 CPUs
M Baseline FS Reactive FS Oracle ® Justice
o 100%
£
F 80%
3
o 60%
S
40%
20%
0%
. e '\,*‘ ’»*‘ \o . '»"‘ . ’\}"
<<\‘" <<\‘\' &Q:\ &z“\ qQ ?5\0 v.\\'b
v Y

Deadline Type

(c) TR2: Wasted Time with 2500 CPUs

Wasted Time

Wasted Time

M Baseline FS Reactive FS Oracle ™ Justice

100%

80%
60%
40%
0% L - L L
2 + +
Qx*g‘ Q&Q’ <‘,@i¢ &QQ*. QQ\OO‘, v(\'b\’.& Yi\&&
©
Deadline Type
(b) TR1: Wasted Time with 4500 CPUs
M Baseline FS Reactive FS Oracle ™ Justice
100%
80%
60%
40%
20% g n
0% | | §j
&
ng' Q*g' (\}_z‘i\? &e‘i" O’Q\e v(\’b\’ ((5\’+
¥ Y

Deadline Type

(d) TR2: Wasted Time with 5000 CPUs

Fig. 6: Resource Waste: Wasted Time Ratio (WTR) for trace TR1 (top graphs) and TR2 (bottom graphs) with highly constrained
capacities (left graphs) and moderately constrained capacities (right graphs) for different deadline types. Lower is better.

that correspond to the experiments shown in Figure [7a] for
the Arialx3x deadline type on trace TR1. Figure [§] presents
the cumulative distribution of idle time for CPUs that are
simultaneously idle in groups of 10 (red, dotted curve) and
100 (blue, solid curve). We find that for deadline types that
yield lower utilizations, idle time durations are even larger; we
omit these results for brevity.

From these results, we observe that 81% of the 10-CPU
groups remain idle more than 100 seconds, 68% more than
500 seconds and 59% more than 1000 seconds. Similarly for
100-CPU groups, 80%, 52%, and 41% have idle times of 100
seconds, 500 seconds and 1000 seconds, respectively. From
these results, we can derive that 10-CPU and 100-CPUS idle
groups exist at any given time of the traces duration with
probabilities 98% and 76% respectively.

We next consider the workload characteristics of the traces
that we study (Section). We have shown (Figure [Ib) that
40% of jobs compute for less than 100 CPU*seconds, 60%
compute for less than 500 CPU*seconds, and 70% compute
less than 1000 CPU*seconds. Moreover, approximately 60%
of the jobs employ a single task, 70% of the jobs have fewer
than 10 tasks, and 80% less than 100 tasks (Figure @ As a
result, Justice is able to free up enough capacity for sufficient
durations to as to admit significant additional workload. That

is, if the traces contained more jobs with these characteristics,
Justice would likely have been able to achieve similar fairness,
deadline, and productive work results via increased utilization.
We are currently investigating this potential and how to best
exploit it as part of on-going and future work.

6 RELATED WORK

This paper is an extension to an early version of this work,
entitled Justice : A Deadline-aware, Fair-share Resource Allo-
cator for Implementing Multi-analytics [10], which overviews
the approach. Herein, we significantly extend the original
work via the inclusion of a comprehensive algorithm for
Justice, and a more extensive empirical evaluation that adds a
second, larger production workload trace. We also compare the
different allocators using a second new fairness analysis, which
we refer to as “equality” in Section [5} Other related work
includes multi-tenant resource allocators and job performance
prediction.

Sharing in Multi-tenant Resource Allocators: Cluster man-
agers like Mesos and YARN enable the sharing
of cloud and cluster resources by multiple data processing
frameworks. Recent research builds on this
sharing, to allow users to run jobs without knowledge of the

M Baseline FS Reactive FS Oracle ® Justice
100%
80%

60%

Utilization

40%

20%

0%

Deadline Type

(a) TR1: Utilization with 2250 CPUs

® Baseline FS Reactive FS Oracle ™ Justice
100%

80%

Utilization

60%
40%
20%

0%

Deadline Type

(c) TR2: Utilization with 2500 CPUs

Utilization

Utilization

12

Reactive FS Oracle ™ Justice

M Baseline FS

100%
80%
60%
40%
20%

0%

Deadline Type

(b) TR1: Utilization with 4500 CPUs

M Baseline FS Reactive FS Oracle ™ Justice

Deadline Type

(d) TR2: Utilization with 5000 CPUs

Fig. 7: Cluster Utilization: Utilization for trace TR1 (top graphs) and TR2 (bottom graphs) with highly constrained capacities
(left graphs) and moderately constrained capacities (right graphs) for different deadline types.

10 idle CPUs
100 idle CPUs

J W00 0000 XI';::):’J:(:);":’:): 000 WO0OT 40000
Fig. 8: CDFs of idles times of 10 and 100 CPU groups on
TR1 (Similar distribution holds for TR2 as well).

underlying data processing engine. In these multi-analytics
settings, the goal of the resource allocator is to provide
performance isolation to frameworks by sharing the resources
between them [17]. However, for resource-constrained
deployments, the fair-shair policies fail to preserve
fairness (Section [5.1). Also, all the sharing policies in these
works are deadline-agnostic. To meet deadlines, administrators
add cluster resources, use a capacity scheduler [5]], or require
users to reserve resources in advance 139]]. Such solutions

are costly, inefficient, or impractical for resource constrained
clusters.

Another issue encountered in multi-analytics systems, is that
frameworks like Hadoop and Spark, which run on top of these
resource allocators, have their own intra-job schedulers that
greedily occupy the resources allocated to them, even when
they are not using them [9} [19} 48]. CARBYNE attempts
to address this issue by exploiting task-level resource require-
ments information and DAG dependencies. PYTHIA ad-
dresses the same issue by introducing framework-independent
admission control that resource allocators use to support dy-
namic fair-sharing of system resources. Similar to PYTHIA
(and contrary to CARBYNE), Justice utilizes admission con-
trol without requiring job-repetitions and task-level informa-
tion. Moreover, Justice adapts to changing cluster conditions to
avoid over-provisioning and preserves fair-sharing in addition
to satisfying deadlines.

Performance Prediction: To allocate the required resources
and meet job deadlines, much related work focuses on exploit-

ing historic [8l 22| 26| 28| 43| |44, [49| [51]l, and runtime [§]
job information, while other
research focuses on building job

performance profiles and scalability models offline. Although,

effective in many situations, we show that approaches similar
to these suffer when used under resource constrained settings.

Strategies that depend solely on repeated jobs, by definition,
do not guarantee performance of ad-hoc queries. While ap-
proaches that use runtime models, sampling, simulations, and
extensive monitoring, impose overheads and additional costs.
Moreover, trace analysis in this paper and other research [[15]]
shows that some production workloads have small ratio of
repeated jobs and these jobs have often large execution times
dispersion. Therefore, approaches based on past executions
might not have the required mass of similar jobs over a
short period of time in order to predict with high statistical
confidence. Furthermore, the vast number of jobs have very
short computation times [6, |15} (30} |31} 33|]. Thus, approaches
that adapt their initial allocation after a job has already started
might be ineffective. Lastly, most of these approaches require
task-level information, for the specific framework they target,
either Hadoop [20) |22} [23] |25} 28} |32} 38l |43| |44] {49, 50, |51]
or Spark [34} |45]]. For this reason, they cannot be integrated
into resource managers as Justice can.

7 CONCLUSIONS

We present Justice, a fair-share and deadline-aware resource
allocator with admission control for multi-analytic resource ne-
gotiators such as Mesos and YARN. Justice uses historical job
statistics and deadline information to automatically adapt its
resource allocation and admission control to achieve fairness
and satisfy deadlines even when resource availability is highly
constrained or contended for (e.g. as in private cloud and/or
edge and fog cloud settings). We evaluate Justice using trace-
based simulation of two production YARN workloads under
different resource constraints and deadline formulations. We
compare Justice to the existing fair-share allocator that ships
with Mesos and YARN and find that Justice is able to achieve
better fairness, deadline satisfaction, and resource utilization
for the settings we investigate.

This work is funded in part by NSF (CNS-1564157,
CCF-1539586, CNS-1218808, CNS-0905237, ACI-0751315),
NIH (1R01EB014877-01), ONR NEEC (N00174-16-C-0020),
Huawei, and the CEC (PON-14-304).

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org/ [Online; accessed
2-January-2017].

[2] Apache Spark. http://spark.apache.org/ [Online; accessed 2-
January-2017].

[3] M. Babaioff et al. ERA: A Framework for Economic Resource
Allocation for the Cloud. In: Proceedings of the 26th Inter-
national Conference on World Wide Web Companion. Inter-
national World Wide Web Conferences Steering Committee.
2017, pp. 635-642.

[4] A. Bhattacharya et al. Hierarchical scheduling for diverse
datacenter workloads. In: ACM SoCC. 2013.

[S]1 YARN Capacity Scheduler. https://hadoop.apache.org/docs/r2.
7.1/hadoop-yarn/hadoop- yarn-site/CapacityScheduler.html.

[6] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical
processing in big data systems: A cross-industry study of
mapreduce workloads. In: VLDB 5.12 (2012), pp. 1802-1813.

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. Curino et al. Reservation-based Scheduling: If You’re Late
Don’t Blame Us! In: ACM Symposium on Cloud Computing.
2014, pp. 1-14.

C. Delimitrou and C. Kozyrakis. Quasar: resource-efficient and
QoS-aware cluster management. In: ACM SIGPLAN Notices
49.4 (2014), pp. 127-144.

S. Dimopoulos, C. Krintz, and R. Wolski. Big Data Framework
Interference In Restricted Private Cloud Settings. In: /EEE
International Conference on Big Data. IEEE. 2016.

S. Dimopoulos, C. Krintz, and R. Wolski. Justice: A Deadline-
aware, Fair-share Resource Allocator for Implementing Multi-
analytics. In: Cluster Computing (CLUSTER), 2017 IEEE
International Conference on. IEEE. 2017, pp. 233-244.

S. Dimopoulos, C. Krintz, and R. Wolski. PYTHIA: Admis-
sion Control for Multi-Framework, Deadline-Driven, Big Data
Workloads. In: International Conference on Cloud Computing.
IEEE. 2017.

K. Doka et al. Mix’n’Match Multi-Engine Analytics. In: IEEE
International Conference on Big Data. IEEE. 2016.

A. R. Elias et al. Where is The Bear?-Automating Wildlife
Image Processing Using IoT and Edge Cloud Systems. In:
ACM Conference on IoT Design and Implementation. ACM.
2017.

YARN Fair Scheduler. https://hadoop.apache.org/docs/12.4.1/
hadoop-yarn/hadoop-yarn-site/FairScheduler.html|

A. D. Ferguson et al. Jockey: guaranteed job latency in data
parallel clusters. In: ACM European Conference on Computer
Systems. ACM. 2012, pp. 99-112.

E. Friedman, A. Ghodsi, and C.-A. Psomas. Strategyproof
allocation of discrete jobs on multiple machines. In: ACM EC.
2014.

A. Ghodsi et al. Dominant resource fairness: Fair allocation of
multiple resource types. In: NSDI. 2011.

I. Gog et al. Musketeer: all for one, one for all in data
processing systems. In: European Conference on Computer
Systems. 2015.

R. Grandl et al. Altruistic scheduling in multi-resource clusters.
In: USENIX Symposium on Operating Systems Design and
Implementation. 2016.

H. Herodotou and S. Babu. Profiling, what-if analysis, and
cost-based optimization of mapreduce programs. In: VLDB
4.11 (2011), pp. 1111-1122.

B. Hindman et al. Mesos: A Platform for Fine-Grained Re-
source Sharing in the Data Center. In: NSDI. 2011, pp. 22-22.
M. Hu et al. Deadline-Oriented Task Scheduling for MapRe-
duce Environments. In: International Conference on Algo-
rithms and Architectures for Parallel Processing. Springer.
2015, pp. 359-372.

Z. Huang et al. RUSH: A RobUst ScHeduler to Manage Uncer-
tain Completion-Times in Shared Clouds. In: 2016 IEEE 36th
International Conference on Distributed Computing Systems
(ICDCS). IEEE. 2016, pp. 242-251.

R. Jain, D.-M. Chiu, and W. R. Hawe. A quantitative measure
of fairness and discrimination for resource allocation in shared
computer system. Vol. 38. Eastern Research Laboratory, Digital
Equipment Corporation Hudson, MA, 1984.

V. Jalaparti et al. Bridging the tenant-provider gap in cloud
services. In: ACM Symposium on Cloud Computing. 2012.

S. A. Jyothi et al. Morpheus: towards automated SLOs for
enterprise clusters. In: Proceedings of OSDI’16: 12th USENIX
Symposium on Operating Systems Design and Implementation.
2016, p. 117.

http://hadoop.apache.org/
http://spark.apache.org/
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]
(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

K. Kc and K. Anyanwu. Scheduling hadoop jobs to meet
deadlines. In: International Conference on Cloud Computing.
2010, pp. 388-392.

P. Lama and X. Zhou. Aroma: Automated resource allocation
and configuration of mapreduce environment in the cloud.
In: ACM International Conference on Autonomic Computing.
2012, pp. 63-72.

S. Li et al. WOHA: deadline-aware map-reduce workflow
scheduling framework over hadoop clusters. In: Distributed
Computing Systems (ICDCS), 2014 IEEE 34th International
Conference on. IEEE. 2014, pp. 93-103.

J. Liu, H. Shen, and H. S. Narman. CCRP: Customized Coop-
erative Resource Provisioning for High Resource Utilization
in Clouds. In: IEEE International Conference on Big Data.
IEEE. 2016.

A. Pavlo et al. A comparison of approaches to large-scale
data analysis. In: ACM SIGMOD International Conference on
Management of data. 2009, pp. 165-178.

J. Polo et al. Performance-driven Task Co-Scheduling for
MapReduce Environments. In: IEEE Network Operations and
Management Symposium. 2010, pp. 373-380.

K. Ren et al. Hadoop’s Adolescence; A Comparative Work-
loads Analysis from Three Research Clusters. In: SC Com-
panion. 2012.

S. Sidhanta, W. Golab, and S. Mukhopadhyay. OptEx: A
Deadline-Aware Cost Optimization Model for Spark. In: arXiv
preprint arXiv:1603.07936 (2016).

A. Simitsis et al. Optimizing analytic data flows for multiple
execution engines. In: ACM SIGMOD International Confer-
ence on Management of Data. 2012, pp. 829-840.

Simpy. https://simpy.readthedocs.io/en/latest/.

J. Tan et al. Multi-resource fair sharing for multiclass work-
flows. In: ACM SIGMETRICS Performance Evaluation Review
42.4 (2015).

F. Tian and K. Chen. Towards optimal resource provisioning
for running mapreduce programs in public clouds. In: Cloud
Computing (CLOUD), 2011 IEEE International Conference
on. IEEE. 2011, pp. 155-162.

A. Tumanov et al. TetriSched: global rescheduling with adap-
tive plan-ahead in dynamic heterogeneous clusters. In: Euro-
pean Conference on Computer Systems. 2016, p. 35.

V. K. Vavilapalli et al. Apache hadoop yarn: Yet another
resource negotiator. In: ACM Symposium on Cloud Computing.
2013.

S. Venkataraman et al. Ernest: efficient performance prediction
for large-scale advanced analytics. In: /3th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
16). 2016, pp. 363-378.

T. Verbelen et al. Cloudlets: bringing the cloud to the mobile
user. In: ACM workshop on Mobile cloud computing and
services. ACM. 2012.

A. Verma, L. Cherkasova, and R. H. Campbell. ARIA: au-
tomatic resource inference and allocation for mapreduce en-
vironments. In: ACM International Conference on Autonomic
Computing. 2011, pp. 235-244.

A. Verma et al. Deadline-based workload management for
MapReduce environments: Pieces of the performance puzzle.
In: 2012 IEEE Network Operations and Management Sympo-
sium. IEEE. 2012, pp. 900-905.

K. Wang and M. M. H. Khan. Performance Prediction for
Apache Spark Platform. In: 2015 IEEE 17th International Con-
ference on High Performance Computing and Communications
(HPCC). IEEE. 2015, pp. 166-173.

[46]

[47]

[48]

[49]

[50]

[51]

W. Wang, B. Liang, and B. Li. Multi-resource fair allocation
in heterogeneous cloud computing systems. In: IEEE Trans.
Farallel Distrib. Syst. 26.10 (2015).

Welch’s T-Test. https://en.wikipedia.org/wiki/Welch’ s_t- test
[Online; accessed 22-July-2017]. URL: https://en.wikipedia.
org/wiki/Welch’s_t-test.

Y. Yao et al. Admission control in YARN clusters based on dy-
namic resource reservation. In: IEEE International Symposium
on Integrated Network Management. 2015, pp. 838-841.

N. Zaheilas and V. Kalogeraki. Real-time scheduling of skewed
mapreduce jobs in heterogeneous environments. In: 7/th In-
ternational Conference on Autonomic Computing (ICAC 14).
2014, pp. 189-200.

W. Zhang et al. Mimp: Deadline and interference aware
scheduling of hadoop virtual machines. In: IEEE Cluster,
Cloud and Grid Computing. 2014, pp. 394—403.

Z. Zhang et al. Automated profiling and resource manage-
ment of pig programs for meeting service level objectives.
In: ACM International Conference on Autonomic computing.
2012, pp. 53-62.

Stratos Dimopoulos Stratos Dimopoulos holds
a Ph.D. degree in CS from UC Santa Bar-
bara. His research interests are broadly in the
area of big data processing systems, distributed
systems and cloud computing. Before joining
UCSB, he got his BS degree in Informatics and
Telecommunications from the National University
of Athens and his MsC in Computer Science
from the Athens University of Economics and
Business.

Chandra Krintz Chandra Krintz is a Professor
of Computer Science (CS) at UC Santa Barbara
and Chief Scientist at AppScale Systems Inc.
Chandra holds M.S./Ph.D. degrees in CS from
UC San Diego. Chandra’s research interests
include programming systems, cloud and big
data computing, and the Internet of Things (loT).
Chandra has supervised and mentored over 60
students and has led several educational and
outreach programs that introduce young people
to computer science.

Rich Wolski Dr. Rich Wolski is a Professor of
Computer Science at the UC Santa Barbara, and
co-founder of Eucalyptus Systems Inc. Having
received his M.S. and Ph.D. degrees from UC
Davis (while a research scientist at Lawrence
Livermore National Laboratory) he has also held
positions at the UC San Diego, and the Univer-
sity of Tennessee, the San Diego Supercomputer
Center and Lawrence Berkeley National Labora-
tory. Rich has led several national scale research
efforts in the area of distributed systems, and is

the progenitor of the Eucalyptus open source cloud project.

https://simpy.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Welch's_t-test
https://en.wikipedia.org/wiki/Welch's_t-test
https://en.wikipedia.org/wiki/Welch's_t-test

