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ABSTRACT

Logic programming’s applications in knowled

ge based systems will require heavy use of

images for effective human interfaces, and future graphic work stations need efficient
and easily usable methods of describing images. Logic programming methods provide a
promising way for naive users to manipulate images. This promise is demonstrated, and
a novel application of infinite logic terms is explored. These terms arise from the lack of
an occur check in the fast unification algorithms of most logic programming systems.
Infinite terms are not part of traditional logic but are useful in image processing, partic-
ularly in describing recursive images. An implementation is briefly described.

Computing Reviews Categories and Subject Descriptors: 1.3.6 [ Computer Graphies]:
Methodology and Techniques—interaction technigues; 1.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—representations fprocedural and

rule-based).

General Terms: Human Factors, Languages.

Additional Key Words and Phrases: Logic Programming, Prolog, Infinite Objects.

1. Introduction

Logic programming systems, notably
those based on Prolog [1, 11], have
received special attention recently owing
to their successes in several expert sys-
tem applications and their selection by
the Japanese as a cornerstone of the
Fifth Generation Computer Project. Logic
programming is easy to explain to users
naive to computer programming, and
thus promises to have wide application in
systems dealing with human experts who
are not necessarily versed in computer
software. Although at first glance logic
programs may look like a compromise
between programs and specifications,
they execute surprisingly quickly, some-
times faster than efficient compiled Lisp
[1R,22]. Current applications are as
diverse as architecture and interior
design [9, 19], algorithm debugging [18],
natural language recognition [24], and
compilation [23]. Proposed uses include
integration with large knowledge bases,
VL3I and robotics design and testing, and
speech and image processing [20, 25].
Prolog itself is easy to modify to handle
specialized problems [3]. It seems

inevitable that logic programming sys-
tems will be an important implementa-
tion tool in building new knowledge based
computing systems.

Logic programming terms have been
traditionally displayed in a textual for-
mat, but the success of systems such as
Smalltalk and Logo show that even good
ones can be greatly improved with graph-
ical interaction. Furthermore, several of
the potential applications listed above
require display of images. The newly
developed interactive graphic logic pro-
gramming system GLOG is based on Edin-
burgh CProlog [15], and was designed to
run on a personal work station with a high
resolution bit map display. The design
emphasized a simple user interface that
is oriented towards logic programming.
The desire for simplicity caused the
design's primitives to resemble, say,
PIC's simple ones [6] instead of IDEAL's
more general, complicated ones [21].
GLOG's important contribution lies not in
its primitives, but in the way a user can
put them together with logic program-
ming methods.
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While developing GLOG, we discovered
that repetitive and infinite images are
surprisingly easy to specify with certain
graphical output primitives combined
with Prolog's definition of unification.

The following sections introduce logic
programming notions, propose a scheme
for displaying logical terms, and illus-
trate the interplay between logic pro-
gramming and graphics particularly with
infinite images.

2. Logic programming, unification and
infinite terms :

A logic program is a set of procedures
each consisting of a series of Horn
clauses[5]. Clauses are either azioms,
such as the three axioms

father(zeus, athena).
father(zeus, aphrodite).
mother(aphrodite, eros).

or inference rules, such as the rule

parent(P,C) :— father(P,C);
mother(P,C).

This rule may be read, *'For all C and P, P
is C's parent if P is C's father or P is C's
mother.” A rule thus has two parts: a
head (before the "':—"") and a body; an
axiom is a head with no body. Axioms
may be general, as in

X=X

which may be read ‘'For all X, X is equal
to X" and defines the equality procedure.
Rules may be recursive; for example,

ancestor(A,C) :— parent(A,C).
ancestor(A,C) :— parent(A,B),
ancestor(B,C).

defines ''ancestor" recursively using
"parent"”,

Logic programs deal with and consist
of logical ferms, A term is either a logi-
cal variable, or consists of an atomic
Junctor and zero or more terms as argu-
menis. An afom is a functor with zero
arguments. Logical variables are capital-
ized and functors are in lower case, so
that X is a variable and f, f(X) and f(a,X)
contain zero, one and two arguments.
Functors may appear in infix, prefix and
suffix notation, so the terms —X+Y! and
+(—(X),!(Y)) are equivalent; parenthesiza-
tion overrides operator precedence in the

usual way. By convention,

the term  denotes
A B A AND B,
AB A OR B,
A:—-B B IMPLIES A,
(] the empty list,
[X]Y] the list with first
element X and tail Y, and
[A,B,C] thelist [AI[B[[CI[111].

[X[Y] roughly corresponds to the Lisp
notation (cons XY). For example, the fol-
lowing procedure concat(A,B AB) defines
the relation between two lists A, B and
their concatenation AB.

concat([], B, B).
concat([XJA]. B, BXIAB]) —
concat(A,B,AB).

These two clauses can be read, “*con-
catenating [] to B yields B,”” and "con-
catenating [X]A] to B yields [X|AB] if con-
catenating A to B yields AB.”

A logic program is executed by ask-
ing the system a question, or call, such as

= concat(X, Y, [a,b]).

A logic programming interpreter
attempts to find a consistent substitution
of terms for variables so that the call log-
ically follows from the axioms and rules,
Prolog interpreters attempt to find the
first clause with a head matching the call.
If there is no match the call Jails; if the
match is an axiom, the call succeeds: if
the match is a rule, its body is called in
turn. Prolog interpreters use depth first
search and backtrack to later clauses on
failure, so that the above call can
succeed three times, once for X equal to
[1. [a] and [a,b], respectively. More about
this process, and about other logic pro-
gramming issues, may be found in
Kowalski's introduction [7].

Unification is the technical term for
the word "matching’’ used above. A most
general unification of two terms results
from a minimal substitution of terms for
variables to make the two terms equal.
For example, a unification of f(X,g(Y)) and
f(a.Z) is the term f(a,g(Y)) with the
implied substitution of a for X and g(Y)
for Z. Unification is performed often in
theorem proving programs and several
algorithms have been designed to handle



it in linear time [10, 13].

Unfortunately, even the fastest of
these algorithms must do an *'occur
check” to avoid unifying a variable with a
term containing the variable. For speed,
most logic programming systems lack
the occur check, and thus can unify
terms like X and f(X), even though no
finite term can be substituted for X to
make X and f(X) equal. Avoiding the
occur check leads to significant perfor-
mance improvements. For example, the
first step of concatenating an n-element
list [ay, . . . ,8,] is unifying the list with
the term [X|AB]; this requires O(n) time
with a full unification algorithm because
each of ag, . . . ,a, must be checked to be
not equal to AB. Without the occur check,
this example takes only O(1) time.

If infinite terms are allowed, then X
and f(g,X) are unifiable with
X=f(g.f(g.f(g....))). This term, though
infinite, is rafional, that is, it has a finite
number of subterms, namely itself and g,
Rational terms can be represented in
finite memory by using circularly linked
pointers to represent the repetition. Col-
merauer has developed a theory of
infinite trees and has shown applications
in context free grammars and finite state
automata [R]. However, most Prolog
applications never attempt to generate
rational terms, another reason Prolog
interpreters lack occur checks.

GLOG uses unification as a fundamen-
tal way of dealing with images and pat-
terns. To match an image to a pattern,
one merely unifies the two; the attempt
to match will succeed or fail according to
the usual Prolog rules. For example, the
image (box beside triangle) matches the
pattern (A beside X) by substituting box
for A and triangle for X. Using this primi-
tive, it is still a research issue to attempt
image analysis; the work reported here
instead concentrates on image synthesis
and processing. The next section
describes GLOG's scheme for display of
logical terms; section 4 shows how this
scheme handles infinite rational terms,

3. Displaying logical terms

Traditional logic programming sys-
tems display terms only in textual
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format. Also, the SeeLog system [14] has
added the capabilities of the Graphics
Kernel System [17] to Prolog: GKS's prim-
itives are low level graphics output primi-
tives that resemble the ACM Core stan-
dard. We propose the following new
higher level scheme for displaying logical
terms. It is related to Henderson's
scheme for functional graphic program-
ming [4], but handles pictures with rela-
tion as well as functions. Instead of
emphasizing primitive graphical output
commands such as "'draw a line from
(Xo.Yo) to (X1,Y1)"” and writing programs
to execute such commands in proper
order to produce a picture, a GLOG user
deals with logical terms, and uses built in
graphic primitives to describe the rela-
tion between the terms. Thus a user,
instead of commanding the display of a
picture step by step, describes the gen-
eral layout of the picture. This set of
primitives is particularly useful for top
down structured design of graphic pro-
grams. And unlike functional program-
ming, relational programming lets the
user describe an image in any desired
order, top down, bottom up, or a mixture
of the two.

Logical terms are used to describe
images. The built in procedure
plot(Image) displays the term defined by
the term Image. Most of the effort in a
GLOG program will be to create an image,
which can then be displayed.

Images are defined within a unit
square. The term (XY) stands for the
point with the given coordinates in the
unit square; for example, (0, 1/2) stands
for the middle of the square's left side.
Here ","” is used as an infix operator, so
that (X,Y) is equivalent to,(XY). This use
of the comma and its use for logical AND
are distinguished from context.

The term P1-P2 represents the line
segment from P1 to P2 if P1 and P2 are
points. The ''—'' operator may be nested,
so that P1—P2—P3—P4 represents the
union of P1-P2, P2—P3 and P3—P4.

For example,
Triangle =

(0, 1/2)—(1, 1)—(1/2,0)—(0, 1/2),
plot(Triangle).
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produces the image in Fig. 1. Inlater
examples the line "'plot(Image)’’ will be
omitted though it is currently necessary
in GLOG.

The empty list [] represents the
emply picture, that is, the all white unit
square. A list of pictures [P,,P,,...,P; ]
represents the & pictures overlaid on
each other. A happy result is that [A] and
(A) both mean just A, More formally, the
cons term [X|Y] represents X and Y over-
laid; hence [A,B], which is the same as
[AI[BI[]]], represents the overlay of A, B
and the empty picture. For example, two
overlaid sequences of line segments form
the basic pattern to build Fig. 2.

Left_fish =

[ (1,1)—(1/8,3/5)—(1, 1/8)
—(3/4,0)-(1, 0),

: (1/8.3/5)—(1.4/5)

The term (P flipped) is the reflection
of P in the vertical axis that bisects P.
For example, Fig. 3 is defined by

Right_fish = Left_fish flipped

The term (A beside B) is a unit square
containing a copy of A with horizontal
dimensions halved in its left half and a
similar copy of B in its right. For exam-
ple, Fig. 4 is produced by
Up_fish =
Left_fish beside Right__fish

The term (A beside B ratio R) permits an
arbitrary ratio R of A's horizontal size to
B's. Using this and the empty picture []
one can introduce white space as in

Thin__fish = :
([] beside Up_fish ratio 1/2)
beside [] ratio 3

(Fig. 5). The terms (A above B) and (A
above B ratio R) are similar to those
using beside.

The term (P rotated by D) represents
the image P rotated anticlockwise by D
degrees; (P rotated) is the same as (P
rotated by 90). For example, Fig. 6 is
produced by -

Side_fish = Up_fish rotated

Rotations by angles that are not multi-
ples of 90° may cause the image to violate
the boundaries of the unit square; this ig

permitted but is not always good prac-
tice.

Other moving, scaling and titling
primitives are available in GLOG, but
these primitives suffice for later exam-
ples. The primitives are summarized in
Table 1.

Even just these primitives are
surprisingly suitable for creating images.
Complex pictures can be defined clearly
and compactly. Prolog creates and
unifies terms efficiently; only the single
plotting procedure is coded in the lower
level language C. Furthermore, logic pro-
gramming permits the picture to be con-
structed in whatever order seems best to
the user. Many programs are just a
series of equations that may appear in
any order and have a natural interpreta-
tion in logic with infinite terms.

Before describing how infinite terms
are used, an example with just finite
terms seems in order.

matrix(LL,Mat) :— col(LL,M,Mat).

col(IL], 1, P) :— row(L,N,P).
col({L[LL], M+1, P above PP ratio 1/M) :—
row(L,N,P), col(LL,M,PP).

row([X], 1, X).
row([X|L], N+1, X beside P ratio 1/N) :—
row(L,N,P).

The procedure row(L,N,P) succeeds if P is
a row of the N items in the list L stacked
beside each other: col(LL,M,PP) is similar
for columns. For example, Fig. 7 is
created by

U=Up_fish, D =Lrotated,
L = Side_fish, R=D rotated,

matrix([[D, L,L],
D.[]U],
{R,R,UJ], Fish_cycle).

4. Using infinite terms

Infinite rational terms can be
displayed by exhibiting the underlying
directed graph implied by the terms.
Waterloo Prolog [16] version 1.3, for
example, displays the result of unifying X
and f(a,X) as f(a,##1##). This method
suits text better than images.



GLOG attempts to display the entire
contents of an infinite term, given the
resolution of the output device. Thus an
external constraint prevents looping
while attempting to display the term. In
all the representation primitives given,
subimages are smaller than their con-
taining images, so the process must ter-
minate. Some movement and scaling
primitives not described here lack this
property; their use is discouraged, but
has not led to looping problems in prac-
tice. For greater speed, the user can tell
GLOG to pretend that output resolution is
coarser than the physical device's: the
user defined procedure resolution(R)
causes display to stop if the ratio of the
current subimage's size to the original
image's is .-less than 1/R in either the X-
or the Y-dimension. Large Rs slow plot-
ting but improve image detail.

An example of a recursively defined
image is .
Food_chain = P above P,
P = Food_chain beside Side_fish

(Fig. B). AFood_chain contains four qua-
drants: the left quadrants are
Food_chains, and the right quadrants are
Side_fishes. The above definition is
equivalent to

Food_chain =
Food_chain beside Side_fish
above (Food__chain beside Side_fish

which is an equation of the form X=£(X).
Food__chain is a fixed point of this func-
tional equation.

Procedures may be used to define
pictures containing the same pattern but
different basic pictures. The calls
htree(line,Htree_line) and
htree(box,Htree_box) yield Figs. 9 and
10.

htree(Type,H) :—
element(Type, Width,P),
H= [[P, S flipped beside 5],
S =[] beside H rotated
ratio Width.

element(line, 0,
(1/2,178)—(1/2,1)).
element(box, 1/4,
[ (2/5,0)—(2/5,9/10)
—(3/5,9/10)—(3/5, 0)—(2/5,0),
(1/2,9/10)—(1/2,1) ]).

Escher’'s “"Square Limit" (Fig. 19) is
the source of the following extended
example of the power of logic program-
ming graphics using infinite terms [8].
This image was done in a functional style
by Henderson [4]. Henderson's approach
required specification of the image to a
given depth; the following approach has
the advantage that the image is specified
to be infinite, and the amount of
displayed detail depends only on the
resolution of the output device. Hender-
son built the picture out of just four basic
images. We use a different decompeosition
but start with the same basic images P,

Q, R, S, which are assumed to satisfy the
procedures p(P), q(Q), r(R), s(3) (Figs.
11-14). The rest of this section describes
how ""Square Limit" is constructed.

Two basic patterns, T and U (Figs. 15,
18), are formed from P, @, R and S by
using the following procedures

quartet(P,Q,R,S,
(P beside Q) above (R beside S)).
cycle(P,U) :— :
PR = P rotated,
PRR = PR rotated,
PRRR = FRR rotated, ]
quartet(P,PRRR,PR,PRR,U).
together with the calls

quartet(P,Q,R,S,T),
cycle(Q rotated, U) .

"'Square Limit" has nine equal square
parts, which are labeled by Ce (for
Center) and the compass points No, Ea,
So, We, NE, NW, SE and SW. These parts
have the following relationships.

No = Ea rotated, NW = NE rotated,
We = No rotated, SW = NW rotated,
So = We rotated, SE = SW rotated

Thus only three parts are different. Ce,



Ea and NE. But Ce = U, and Fa and NE
can be defined by

RT =T rotated rotated rotated,
NE = (No above U) beside (NE above Ea),
Ea = (T above RT) beside (Ea above Ea)

(Figs. 17, 1B). By now the alert reader
should be adept at following the picture’s
decomposition.

In summary, “Square Limit" can be
defined as follows, where the procedures
cycle, matrix and quartet were defined
earlier,

square_limit(Square_limit) —
p(P), qEQ). r(R), s(S),
quartet(P,Q,R,S,T),
cycle(Q rotated, U),
matrix({fNE,No.NW].

We,Ce,Ea],

[SW,So,SE]], Square_limit),
No = Ea rotated, NW = NE rotated,
We = No rotated, SW = NW rotated,
So = We rotated, SE = SW rotated,
Ce=1,
RT =T rotated rotated rotated,
Ea = (T above RT) beside (Ea above Ea),

]

NE = (No above U) beside (NE above Ea).

5. Conclusion

The important thing about these
examples is not the images themselves,
but the method used to describe and gen-
erate them. Logic programs can specify
images cleanly and concisely; they are
suited for naive users, and they seem to
fill a certain procedural gap in current
picture specification languages. Because
pattern matching and backtracking are
an integral part of logic programming
systems, they also seem suited for the
other part of image processing: image
analysis. Any logic programming system
that could both analyze and synthesize
images would be a powerful tool indeed
for building future knowledge based sys-
tems. The work reported here concen-
trated on the easy half, synthesis, and
work is already under way to extend its
framework to image analysis,
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7. Appendix: implementation details

GLOG is written in C and runs under
Berkeley Unix. It can runon a VAX or a
Sun work station, and can generate dev-
ice independent output suitable for
several different plotting devices.

Two procedures control the output
besides the procedures and operators
defined in Table 1. The user defined pro-
cedure term(T) specifies the output ter-
minal type T: term(sun) causes the out-
put to be suitable for a Sun work station.'

- Other terminal types, for example, 4014

(Tektronix 4014), ver (Versatec
printer/plotter), direct output to a file F
defined by the procedure outfile(F). The
graph can be obtained by the standard
Unix plotting program plot(1).

Two low level output terms are not
described in Table 1. The term
move(X,Y,P) yields a copy of P, with (XY)
added to all P's coordinates. The term
scale(X,Y,P) similarly multiplies P's coor-
dinates by (X,Y). These terms may gen-
erate a picture that exceeds the unit
square boundaries, but no checking or
clipping is performed.

GLOG contains two independent plot-
ting subsystems. One is specially for the
Sun work station display, the other is for
everything else. Each subsystem is about
600 lines of C code. A small interpreter
of thirty lines of Prolog handles terminal
types, resolutions and output control.

GLOG's performance is satisfactory.
Fig. 10 needed only seven seconds of CPU
time on a VAX-11/780at resolution(80);
Fig. 19 needed a minute at resolu-
tion(120). Increasing resolution
increases the cost. GLOG requires about
12K extra bytes of memory over CProlog,
including the extra program text for both
plotting subsystems. Little stack space is
needed at run time by Prolog standards,
because GLOG does not create extra
terms on the Prolog user stack. Instead,
it recursively descends the infinite tree
and stops at the resolution limit.



Table 1. GLOG output primitives.

| procedure interpretation
A=B Images A and B unify
plot(A) Plot the image A
resolution(R) Ignore subimages smaller than 1/R
term represents
(XY) Point with given X- and Y-coordinates
P-P; Line segment from P to Py
Pi=iiva <P Connected line segments from Py to P,
E] the empty picture
AB] A and B overlaid
PAy, svosita ] Ay ... A, overlaid
Aabove BratioR A above B: R is size ratio of A to B
A above B A above B ratio 1
A beside BratioR A beside B; R is size ratio of A to B
A beside B A beside B ratio 1
A rotated by D A rotated anticlockwise by D degrees
A rotated A rotated by 90
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