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Abstract

Spatial Stochastic Simulation of Biochemical Systems

Brian J. Drawert

Recent advances in biology have shown that proteins and genes often interact

probabilistically. The resulting effects that arise from these stochastic dynamics

differ significantly than traditional deterministic formulations, and have biologi-

cally significant ramifications. This has led to the development of computational

models of the discrete stochastic biochemical pathways found in living organisms.

These include spatial stochastic models, where the physical extent of the domain

plays an important role; analogous to traditional partial differential equations.

Simulation of spatial stochastic models is a computationally intensive task.

We have developed a new algorithm, the Diffusive Finite State Projection (DFSP)

method for the efficient and accurate simulation of stochastic spatially inhomo-

geneous biochemical systems. DFSP makes use of a novel formulation of Finite

State Projection (FSP) to simulate diffusion, while reactions are handled by the

Stochastic Simulation Algorithm (SSA). Further, we adapt DFSP to three dimen-

sional, unstructured, tetrahedral meshes in inclusion in the mature and widely

usable systems biology modeling software URDME, enabling simulation of the

complex geometries found in biological systems. Additionally, we extend DFSP

ix



with adaptive error control and a highly efficient parallel implementation for the

graphics processing units (GPU).

In an effort to understand biological processes that exhibit stochastic dynam-

ics, we have developed a spatial stochastic model of cellular polarization. Specifi-

cally we investigate the ability of yeast cells to sense a spatial gradient of mating

pheromone and respond by forming a projection in the direction of the mating

partner. Our results demonstrates that higher levels of stochastic noise results in

increased robustness, giving support to a cellular model where noise and spatial

heterogeneity combine to achieve robust biological function. This also highlights

the importance of spatial stochastic modeling to reproduce experimental observa-

tions.
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6.5 Polarisome tracking of directional change in Cdc42a (Green:
Ste20 (Cdc42a), Red: Spa2, Blue: Bni1). Left: In vivo data.
Right: In silico data. Top row: In both the cell (A) and the simula-
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Chapter 1

Introduction

Mathematical modeling and computer simulation have emerged as indispens-

able components in the scientific process. The construction of computer models to

explain the behavior of natural processes often illuminates assumptions or is able

predict previously unknown behaviors of these systems. This leads investigators

to design laboratory experiments to test these limits, which in turn creates more

complete models and advances the frontiers of knowledge.

The field of computational systems biology harnesses the synergy of the model-

ing driven experiment to understand the dynamical nature of biological processes.

Systems biology is a field of study that focuses on the complex interactions within

biological systems to develop a mechanistic understanding. Computational sys-

tems biology seeks to advance the understanding of biological processes through
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modeling-driven experiment design. Our work focuses on stochastic chemical ki-

netics and spatial stochastic simulation in the context of biological systems.

In recent years it has become increasingly clear that stochasticity plays an im-

portant role in many biological processes. Some examples include bistable genetic

switches (both endogenous [90, 91] and synthetically constructed [46, 57]), noise-

enhanced robustness of oscillations [130, 30], and fluctuation-enhanced sensitivity

or “stochastic focusing” [106]. In many cellular systems, small local populations

can create stochastic effects even if total cellular levels are high [41]. A review

in Nature noted that numerous cellular systems, including development, polar-

ization and chemotaxis, rely on spatial stochastic noise for robust performance

[133]. Additional examples include end-to-end oscillations in MinCDE in E. coli

[66], spontaneous polarization of S. cerevisiae [2], and actin mediated directed

transport[87].

Spatial localization plays a critical role in many cellular processes. An example

of spatial localization that underlies many aspects of cell and developmental biol-

ogy, from stem cells to the brain [29], is cell polarity, whereby cellular components

that were previously uniformly distributed become asymmetrically localized, cre-

ating complexity of form and function. Cell polarity is fundamental to the diverse

specialized functions of eukaryotic cells. In epithelial cells, for example, the dif-

ferentiation of apical and basal specializations results in apical and baso-lateral
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regions of plasma membrane that differ markedly in lipid and protein composition.

In the C. elegans embryo, polarity is determined by opposing protein complexes

that create distinct anterior and posterior domains, establishing and maintaining

both cortical and cytoplasmic differences [101]. In yeast, cell polarity is necessary

in division and mating. Beyond yeast, cell polarity is essential to the partition-

ing of cell fate in embryonic development. It is also essential in the creation of

axons and their guidance during neuronal development, as well as the intimate

communication between lymphocytes within the immune system [17]. From a

modeling point of view, cell localization cannot be understood without proper

modeling of the spatial dynamics that govern the creation and time evolution of

such localization.

In this dissertation we present contributions to the field of computational sys-

tems biology in the form of advanced algorithms and software for spatial stochastic

simulation of discrete biochemical systems. We also present work that illustrates

the fundamental importance of spatial stochastic dynamics to biological systems

by modeling the polarization mating response in S. cerevisiae.
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1.1 Outline

The remainder of this dissertation is organized as follows: in the next chapter

we describe the mathematical and computational formalism for stochastic simu-

lation. In Chapter 3 we introduce the Diffusive Finite State Projection (DFSP)

algorithm for spatial stochastic simulation. In Chapter 4 we present the software

package URDME for simulation of Reaction Diffusion Master Equation models on

Unstructured tetrahedron based spatial grids. In Chapter 5 we extend DFSP to

include automatic error control, and explore the benefits of parallel execution on

NVIDIA graphics processing units. In Chapter 6 we explore the spatial stochastic

dynamics of cellular polarization in yeast mating. We conclude this dissertation

with a summary and directions for future work.
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Chapter 2

Simulation of Spatially Inhomogeneous

Discrete Biochemical Systems

Discrete stochastic models of chemical reactions have been successful in de-

scribing numerous noise-induced phenomena in the cell. In discrete stochastic

simulation, the state of the system is described by the number of molecules of

each reacting species present at a given time in a reacting volume. The proba-

bility of finding the system in a given state is governed by the Chemical Master

Equation (CME). This is the equation that describes the evolution of the prob-

ability density functions of the system. The CME is a set of as many coupled

ordinary differential equations as there are combinations of molecules that can

exist in the system.
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From a simulation perspective, the most common approach for simulating the

CME relies on Gillespie’s Stochastic Simulation Algorithm (SSA) [49], which is

a Kinetic Monte Carlo method for generating sample paths of the underlying

stochastic chemical process. A key assumption in Gillespie’s original SSA is that

the system is well-mixed, i.e. the probability of finding a molecule in a given

volume is given by the ratio of that volume divided by the total volume of the

entire system (e.g. the cell). This assumption is valid for problems where the

diffusion rates are fast compared to the reaction rates, so that the system can be

considered homogeneous and well-mixed after each reaction. While this is a rea-

sonable assumption in some situations, biological cells are obviously not spatially

homogeneous. The SSA has been adapted to solve inhomogeneous problems in a

formulation referred to as the inhomogeneous SSA (ISSA), whereby the cell vol-

ume is partitioned into an array of small sub-volumes (voxels) in which reactions

take place among reactant species in each voxel while the reactant species diffuse

over time from each voxel to its neighbors.
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2.1 Discrete Biochemical Simulation

2.1.1 Chemical Master Equation and the SSA

Consider a system involving N molecular species {S1, ..., SN}, represented by

the state vector X(t) = [X1(t), ..., XN(t)]T , where Xi(t) is the number of molecules

of species Si at time t. The M reaction channels are labeled {R1, ..., RM}. Assume

the system is well-mixed and in thermal equilibrium. The dynamics of reaction

channel Rj are characterized by the propensity function aj and by the state change

vector νj = [ν1j, ..., νNj]
T : aj(x)dt gives the probability that, given X(t) = x, one

Rj reaction will occur in the next infinitesimal time interval [t, t + dt], and νij

gives the change in Xi induced by one Rj reaction.

The system is a Markov process whose dynamics are described by the Chemical

Master Equation (CME) [50]

∂P (x, t|x0, t0)

∂t
=MP (x, t|x0, t0)

=
M∑
j=1

[aj(x− νj)P (x− νj, t|x0, t0)− aj(x)P (x, t|x0, t0)] , (2.1)

where the function P (x, t|x0, t0) denotes the probability that X(t) will be x, given

that X(t0) = x0 and M denotes the generating matrix for the Markov chain

that describes the chemical reactions. For all but the most simple systems, the
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chemical master equation is made up of an extremely large or infinite number

(dimension) of coupled ordinary differential equations (ODEs). Rather than evolve

the CME directly, it is common practice to compute an ensemble of stochastic

realizations whose probability density function converges to the solution of the

CME. In chemical kinetics, the SSA [49] is used for this purpose.

By far the most widely used methods for simulating the CME are based on

Gillespie’s Stochastic Simulation Algorithm (SSA) [49], which generates sample

paths of the underlying stochastic process. On each time step, the SSA generates

two random numbers which determine, based on the probabilistic reaction rates

(called propensities), which reaction will fire next and what time it will fire. Then

the system state is updated by firing that reaction, and the propensities, which

depend on the system state, are updated. A great many stochastic realizations are

needed to generate accurate probability density functions for the state variables

of the system.

At each step, the SSA generates two random numbers, r1 and r2 in U(0, 1)

(the set of uniformly distributed random numbers in the interval (0,1) ). The time

for the next reaction to occur is given by t+ τ , where τ is given by

τ =
1

a0

ln

(
1

r1

)
. (2.2)
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The index µ of the occurring reaction is given by the smallest integer satisfying

µ∑
j=1

aj > r2a0, (2.3)

where a0(x) =
∑M

j=1 aj(x). The system states are updated by X(t+τ) = X(t)+νµ.

The simulation then proceeds to the time of the next reaction. Because the SSA

simulates all reaction events in the system, it can be computationally intensive.

Much recent effort has gone into speeding up the SSA by reformulation [15], [48],

[119], use of advanced computer architecture [82], and by aggregating reaction

events to take larger time steps (tau-leaping)[51].

2.1.2 The Finite State Projection Algorithm

The Finite State Projection (FSP) [98] method directly calculates an analytical

approximation to the solution of the CME, as opposed to simulating an ensemble

of trajectories by SSA. It does this by forming a computationally tractable pro-

jection of the full state space and computing the time evolution of the probability

density function in this projection space. The FSP was formulated to solve spa-

tially homogeneous stochastic models, but can be adapted to solve the diffusion

master equation (DME). Techniques for taking advantage of time scale separation
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in spatially homogeneous chemically reaction system were explored in [107] and

[92].

The FSP method determines the approximate probability density vector (PDV)

of the populations in a chemically reacting system by solving the CME in a trun-

cated state space. Two theorems provide the foundation for the FSP. The first

shows that the solution of the projected system increases monotonically as the

size of the projection increases. The second guarantees that the approximate so-

lution never exceeds the actual solution, and provides a bound on the error. It is

important to note that while the evolution of a trajectory is random, the evolution

of the PDV for a given initial condition is deterministic.

For a truncated state transition matrix AJ (see [98] for its construction) and

initial truncated PDV PJ(t = 0), the FSP finds PJ(t) at any time t within any

given accuracy ε using the truncated CME

ṖJ = AJ PJ(t). (2.4)

Since (2.4) is a linear constant-coefficient ODE, its solution is given by

PJ(t) = exp(AJt)PJ(0). (2.5)
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Recent work has focused on optimizing FSP through more effective dynamic state

space truncation [100] and more efficient algorithms for solving the resulting equa-

tion [13].

2.2 Spatially Inhomogeneous Systems

2.2.1 Reaction-Diffusion Master Equation

The dynamics of spatially inhomogeneous stochastic systems are governed by

the Reaction-Diffusion Master Equation (RDME) which was originally proposed

and derived in [45]. More recently it was shown that biologically observed self-

organized criticality emerges only when diffusion and reactions are treated as

discrete stochastic processes [118]. This led to the adaptation of Gillespie’s SSA

to spatially inhomogeneous problems, called the Inhomogeneous SSA, or ISSA. In

this formulation, the domain is discretized into subvolumes or voxels. Each voxel

is well-mixed so that intra-voxel reactions are unchanged from the homogeneous

case. Diffusive transfers between voxels are modeled by unimolecular decay and

creation events occurring simultaneously in adjacent voxels. The state of the

system is then the number of molecules of each species in each voxel at a given

time.
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It is important to note that the spatially inhomogeneous stochastic model is

formulated on the mesoscopic scale. The voxel size is bounded by the well-mixed

assumption of its mathematical formulation. The length ` of a voxel must be

chosen to be small enough to capture the desired features of our system, but large

enough so that the system can be considered to be well mixed in each voxel.

Specifically, ` should satisfy ` � Kn/D, where K is the reaction rate constant,

n is the number of molecules in a given voxel and D = DA +DB is the combined

diffusion rates of the reactants [70, 37]. Recent work has further characterized the

minimum voxel size and explored computational methods for accurate simulation

below this limit [61, 40].

For spatial discretization, assume that the domain Ω is partitioned into voxels

Vk, k = 1, ..., K. For simplicity of presentation, we will consider for the moment

a one dimensional domain. Each molecular species is represented by the state

vector Xi(t) = [Xi,1(t), ..., Xi,K(t)], where Xi,k(t) is the number of molecules of

species Si in voxel Vk at time t. Molecules in the domain are able to react with

molecules within their voxel, as described in Section 2.1.1, and diffuse between

neighboring voxels. The dynamics of diffusion of species Si from voxel Vk to Vj is

characterized by the diffusion propensity function di,k,j and the state change vector

µk,j. µk,j is a vector of length K with −1 in the kth position, 1 in the jth position

and 0 everywhere else: di,k,j(x)dt gives the probability that, given Xi,k(t) = x,

12
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one molecule of Si will diffuse from voxel Vk to Vj in the next infinitesimal time

interval [t, t + dt]. Note that if k = j ± 1 then di,j,k(x) = D/l2, where D is the

diffusion rate and l is the characteristic length of the voxel, and otherwise it is

zero. The Diffusion Master Equation (DME) can then be written in a form similar

to the CME:

∂P (x, t|x0, t0)

∂t
= D P (x, t|x0, t0)

=
N∑
i=1

K∑
k=1

K∑
j=1

[di,j,k(xi − µk,j)P (x1, ..., xi − µk,j, ..., xN , t|x0, t0)

−di,j,k(xi)P (x, t|x0, t0)] , (2.6)

where D denotes the generating matrix for the Markov chain that describes the

diffusion of molecules in the system.

Combining (2.1) and (2.6) yields the RDME

∂P (x, t|x0, t0)

∂t
=MP (x, t|x0, t0) +DP (x, t|x0, t0) . (2.7)

The RDME is a linear constant-coefficient ODE, however it has many more

possible states than the corresponding CME and thus is more difficult to solve.

Rather than solve the RDME directly, it is common practice to compute an en-
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semble of stochastic realizations whose histogram converges to the PDV of the

RDME.

2.2.2 Spatial Stochastic Simulation Algorithms

Spatial stochastic simulation via the ISSA begins by partitioning the cell vol-

ume into an array of small sub-volumes (voxels). We will be primarily concerned

with two essential processes: reaction and diffusion. Reactions take place among

reactant species occupying each of the voxels. At the same time, the reactant

species diffuse over time from one voxel element to its neighbors. Species are as-

sumed to diffuse independently. Diffusion is modeled as unimolecular decay and

creation events occurring simultaneously in adjacent voxels, with the transition

rate dictated by the diffusion coefficient and possibly by other factors.

Some recent work has dealt with efficient formulations of the ISSA. The Next

Subvolume Method (NSM)[31] is a clever and widely used formulation of the ISSA

to provide better efficiency for reaction-diffusion systems. It is used in the MesoRD

[58] and SmartCell [3] software. However, its efficiency is limited by the fact that,

as an exact method, it must simulate every event in the system, including all of the

diffusive transfers. The Multinomial Simulation Algorithm (MSA)[79] aggregates

the fast diffusive transfers. Instead of executing each diffusive event individually,

it calculates the inter-voxel flux of particles by sampling from a binomial distri-
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bution. The binomial tau-leap spatial stochastic simulation algorithm [88] seeks

to improve performance by combining the ideas of aggregating diffusive transfers

with the priority queue structure found in the NSM. Under some circumstances

it is possible to treat diffusion deterministically, thus eliminating the tracking of

fast diffusive transfers almost entirely. Reactions are typically handled by the

SSA. The Hybrid Multiscale Kinetic Monte Carlo Method [139] and the Gille-

spie multi-particle method [113] are examples of this approach. The adaptive

hybrid method for stochastic reaction-diffusion processes described in [42] inte-

grates multiple methods for stochastic and deterministic diffusion adaptively for

different components of a model.
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Chapter 3

The Diffusive Finite State Projection

Algorithm for Efficient Simulation of the

Stochastic Reaction-Diffusion Master

Equation

Spatial stochastic simulation is an extremely computationally intensive task.

This is due to the large number of molecules which, along with the refinement

of the discretized spatial domain, results in a large number of diffusive transfers

between voxels (sub-volumes). In this chapter, we present a novel formulation of

the Finite State Projection (FSP) method [98], called the Diffusive FSP (DFSP)

method, for the efficient and accurate simulation of diffusive processes. Using
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the FSP method’s ability to provide a bound on the error, we are able to take

large diffusion timesteps with confidence in our solution. We then show how to

construct a fractional step method for spatial stochastic simulation of reaction-

diffusion processes which treats diffusion with DFSP and reactions with SSA. This

work was performed in collaboration with Michael Lawson, and was originally

presented in [28].

3.1 The Diffusive FSP Method

The DFSP method is based on two observations. First, diffusion of any one

molecule is independent of the diffusion of all other molecules in the system. Using

this independence, we note that the diffusion of molecules originating in one voxel

is independent of the diffusion of all molecules originating in other voxels. Thus,

we can decompose the problem of diffusing molecules in K voxels into K sub-

problems, one for each voxel.

The second observation is that the DME describes a stochastic process, but

the DME itself is a system of ODEs. That is, the evolution of a particular tra-

jectory is stochastic, but the evolution of the Probability Density Vector (PDV)

is deterministic. Thus, if we can solve the DME for a given sub-problem with

n molecules for a time step ∆t, then we can re-use this solution for all other
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sub-problems with n molecules and time step ∆t. Next we will describe more

rigorously a sub-problem and show how to set up and solve a FSP for such a sub-

problem. Note that to solve the full problem, one needs only to sum the molecule

distributions from each sub-problem.

3.1.1 DFSP

As above, we will consider a problem on a 1D periodic domain that is sub-

divided into K equally sized voxels, each with length l. The kth sub-problem

defines a diffusion problem that is initialized with empty voxels, except for the

kth voxel, which contains nk molecules of a given species. This initial condition is

considered a state. The states of the system are defined by unique configurations

of molecules in voxels, with the total number of molecules in the system always

summing to nk. The possible number of states is finite, though extremely large.

The PDV enumerates these states and gives the probability of being in any state

at a given time. For the initial condition, it is clear that the PDV for the system

is P (0) = [1, 0, 0...0]T . That is, at time zero, the probability of being in the state

of the initial condition is one, and the probability of being in all other states is

zero.

To solve the DME directly for a sub-problem, the DFSP method retains a finite

set of states that carry a high probability, and truncates states of little probabilistic
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importance. To determine which states to retain, we will walk through the process

of diffusing molecules. The initial condition forms the first tier. The second tier is

defined by the states that can be reached with one diffusion event from the initial

condition. The third tier is defined by the states that can be reached with one

diffusion event from any state in the second tier and is not redundant with states

in higher tiers.

In defining each of these states, there is an additional parameter, MAX, that

is defined as the maximum number of voxels a particle can diffuse away from

its originating voxel in one time step. The value of MAX is one less than the

number of tiers. All of the states in the last tier are one diffusive step away from

violating the MAX condition. MAX puts a limit on the allowable number of

particles for a sub-problem without violating the error condition, (error < ε). It

is important to note that MAX dictates the amount of memory storage required

by the algorithm.

For illustration, consider the situation where a voxel contains 20 molecules at

the beginning of a time step, and MAX = 2; that is, we are tracking diffusive

jumps of at most 2 voxels away from the originating voxel per time step. The initial

state is given by x1 = {0, 0, 20, 0, 0}. x1 is the only state in the first tier. Since we

are on a one-dimensional domain, the states reachable in a single diffusive jump

event from x1 are x2 = {0, 1, 19, 0, 0} and x3 = {0, 0, 19, 1, 0}. These two states
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make up the second tier. The third tier is comprised of x4 = {1, 0, 19, 0, 0}, x5 =

{0, 0, 19, 0, 1}, x6 = {0, 2, 18, 0, 0}, x7 = {0, 0, 18, 2, 0} and x8 = {0, 1, 18, 1, 0}.

Note that x1 is reachable from the states in the second tier, but since that state

is found in a higher tier, it is not included in the third tier.

As each tier is added, the corresponding state transitions are included in AJ .

After each tier is added, the truncated system can be solved and the truncated

PDV (PJ(∆t)) calculated. Thus, after adding a tier, we can determine a bound

on our error for the current projection (ε). The addition of states ends when the

error bound is below a predetermined tolerance.

To calculate the final state of the system due to diffusion over an interval of

∆t, we sample the PDV by selecting K uniformly distributed random numbers

Rk ∈ U(0, 1) and finding the smallest integer µk such that
∑µk

j=1 PDV [j] > Rk,

where PDV [j] is the probability weight of state j. Let Xs,k(t) = nk be the number

of molecules of species s in voxel k at time t and let Tκ(j |n) be the number of

molecules in voxel κ of state xj, given n molecules initially (e.g. x1 = {0, 0, n, 0, 0}

if MAX=2). Then the discrete time evolution of the system is given by

Xs,k(t+ ∆t) =
MAX∑

i=−MAX

Ti (µk+i |Xs,k+i(t)) . (3.1)
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For a sub-problem with n molecules and a time step ∆t, we can store its PDV

and re-use it for all other sub-problems containing n molecules and time step

∆t. As a result, if we keep a constant time step, simulating a diffusion process

becomes a matter of selecting K random numbers and performing a look-up and

comparison.

To simulate the full RDME, we take a reaction step and then a diffusion step,

each of size τD. Following the SSA, we take a reaction step by evolving the system

through reaction events until the time of the next reaction exceeds τD. We then

perform diffusion of the molecules at the end of the reaction step via the DFSP as

described above. At the end of the diffusive step, the simulation time is t0 + τD.

We continue interleaving reaction and diffusion steps until the final time.

3.1.2 Adaptive Step Splitting

In the case where an initial population for a sub-problem is large enough

to exceed the error condition (ε) for a given MAX, we need to split the step.

Rather than split the step in time, we take advantage of the independence of

diffusing molecules and split the sub-problem into several sub-sub-problems. For

example, suppose that the maximum number of particles one can diffuse in τD

without violating the error condition is 10. In this case, we would treat this sub-

problem of 20 particles as two sub-sub-problems of 10 each. The states for each
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sub-sub-problem are x1 = {0, 0, 10, 0, 0}, x2 = {0, 1, 9, 0, 0}, x3 = {0, 0, 9, 1, 0},

x4 = {1, 0, 9, 0, 0}, x5 = {0, 0, 9, 0, 1}, x6 = {0, 2, 8, 0, 0}, x7 = {0, 0, 8, 2, 0} and

x8 = {0, 1, 8, 1, 0}. We can then reconstruct the solution for the sub-problem

by picking a uniformly distributed random number (as above) for each sub-sub-

problem, selecting the corresponding state and then summing these two sets. It

is clear that the states of the sub-problem are all possible combinations of x1, x2,

x3, x4, x5, x6 and x7. While some of these combinations may be redundant, the

number of unique states for the sub-problem of 20 particles has been increased

from the original 7. By the first FSP theorem, the solution of the projected system

increases monotonically as the size of the projection increases; as a corollary, the

size of the error must decrease as we add states.

We continue splitting the sub-problems until the error from each sub-problem

is less than ε/2L, where L is the recursion level. In the extreme case of splitting

the sub-problem into sub-sub-problems of one molecule, the combination of states

would provide all possible combinations of the original nk particles in the 2 ×

MAX + 1 voxels of the sub-problem.

The advantage of splitting the sub-problems in this way (as opposed to splitting

the time step) is that we can keep ∆t constant, which allows us to re-use our lookup

table. Calculation of the lookup table is the most computationally expensive part
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of the algorithm. In order to maximize speed, we seek to avoid changing the time

stepsize whenever possible.

Next we perform an analysis of the adaptive step splitting error control. Con-

sider the case where we want to calculate a final state of a sub-problem containing

100 molecules of a chemical species after τD = 0.1 using a local error tolerance

of 10−5. If all 100 molecules are moved simultaneously, then the resulting sin-

gle step FSP error will be 0.38 and our truncated state space contains 62% of

the probability density. Utilizing the fact that the FSP error has a non-linear

relationship with the number of molecules moved (Figure 3.1 shows the error as

a function of the number of molecules moved in one timestep), we can split the

molecules into smaller groups where the sum of the error of diffusing the smaller

groups is less than the original error. We recursively split a group of molecules

in half if the error to move it in one step is greater than the error tolerance (ad-

justed for the recursion level). For 100 molecules, we first split them into two

groups of 50 (error of 3.86e − 2), then four groups of 25 (error of 1.46e − 3),

and so on. In total, we will move twelve groups of six molecules each with er-

ror 2.4e − 7 < 10−5/24 = 6.3e − 7 (four levels of recursion), four groups of four

molecules each with error 1.4e− 8 < 10−5/25 = 3.1e− 7, and four groups of three

molecules each with error 1.6e − 9 < 10−5/25 = 3.1e − 7 (both with five levels

of recursion). The total error is 3.0e − 6 which is the sum of the error in all of
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the recursion steps. Using this method, we are able to satisfy the error tolerance,

while continuing to utilize the efficiency of the lookup tables.
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Figure 3.1: Projection error (ε) for varying number of molecules given τD = 0.1s,
` = 0.62µm, D = 0.001µm2s−1. Adaptive step splitting allows us to take advan-
tage of the independence of diffusing molecules and the nonlinear relationship of
projection error to the number of molecules diffused to reduce the total error of
diffusion step over τD by splitting it into sub-sub-problems of fewer molecules, as
opposed to splitting the time step.

3.1.3 Detailed Algorithm Descriptions

State Space Exploration The algorithm to determine the truncated state

space is presented in detail in Algorithm 1. The input parameters are the number

nk of particles in the originating voxel k, and the maximum number of diffusive

transfers MAX that a particle can move away from the originating voxel in one
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diffusion time step. The state representing the initial condition is that all nk par-

ticles are in the originating voxel. The algorithm is presented for an anisotropic,

one dimensional Cartesian mesh with periodic boundary conditions, and assumes

that the number of voxels in any dimension is large relative to MAX.

INPUT: nk, MAX, Initial State
OUTPUT: TransitionMatrixn, StateListn

1: Initialize: NextTierQueue ← Initial State, Queue ← Ø
2: Initialize: StateList ← Initial State, TransitionMatrix ← Ø
3: for Tier ∈ (2, MAX) do
4: Queue ← NextTierQueue

5: NextTierQueue ← Ø
6: for all states s ∈ Queue do
7: for all non-empty voxels v ∈ s do
8: for all inter-voxel transitions d {with probabilities p(d)}

originating from v do
9: find state t ← s + d(v)

10: if t /∈ StateList then
11: add t to StateList, add t to NextTierQueue

12: end if
13: TransitionMatrix(s,t) ← p(d)
14: end for
15: end for
16: end for
17: end for
18: Update Diagonal elements in TransitionMatrix

19: Truncate TransitionMatrix so that it is of dimension |StateList|
20: Create absorbing state in TransitionMatrix

Algorithm 1: State Space Exploration

We then store the TransitionMatrixn and StateListn for later use. For

all cases where the number of particles in the originating voxel n, such that n

is greater than MAX, the structure of the TransitionMatrixn is constant, and
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the values in the matrix are linear functions of n. This matrix is obtained by

performing the state space exploration algorithm with n as an unspecified pa-

rameter constrained to a value greater than MAX. For n < MAX it is still

necessary to go through the state space exploration, because for these values the

TransitionMatrixn will not conform to the general structure.

DFSP diffusion step This is the algorithm for taking a single time step of

length τD for a single voxel k containing nk particles. We assume that

TransitionMatrixn and StateListn have already been calculated and stored,

and that MAX and τD are constant. Model parameters for the diffusion coefficient

D and voxel length ` are also used.

Algorithm 2 shows the details of this process. The output of this algorithm

is a vector map where the positions correspond to voxel indices and the values

correspond to the number of particles that have traveled to that voxel from the

originating voxel nk via diffusion after an interval of length τD seconds.

Reactions In our computational framework for reaction-diffusion problems, we

use a fractional step method which simulates the diffusive transfers by DFSP

and the reaction events by SSA. We begin at t0 and calculate the first reaction

event. We simulate reactions until the time to the next reaction would advance

the simulation beyond t0 + τD, at which point we forego the last reaction and
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INPUT: nk, τD, TransitionMatrixn, StateListn, ErrorTolerance
OUTPUT: Output State

1: Initialize once: PDVLookupTable, nmax ← ∞, L ←0
2: if nk >= nmax then
3: return Output State ← DFSP Diffusion(bnk/2c,L+1) +

DFSP Diffusion(dnk/2e,L+1)
4: else
5: if PDVLookupTable contains nk then
6: PDV ← PDVLookupTable[nk]
7: else
8: PDV ← exp( TransitionMatrixnk

×D/`2 × τD )× [1, 0, 0, · · · , 0]T

9: if PDV[end] > ErrorTolerance / 2L then
10: nmax ← nk
11: return Output State ← DFSP Diffusion(bnk/2c) +

DFSP Diffusion(dnk/2e)
12: end if
13: PDVLookupTable[nk] ← PDV

14: end if
15: Generate a random number X ∈ U(0, 1)
16: Find the smallest integer µ such that

∑µ
j=1 PDV[j] > X

17: return Output State ← StateListnk
[µ]

18: end if
Algorithm 2: DFSP diffusion step with splitting
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perform a diffusion step using DFSP. After the diffusion step, the simulation is at

time t0 + τD. This process is repeated until the simulation is complete.

This process is detailed in Algorithm 3. Inputs to this algorithm are τD,

the stoichiometric matrix ν and the initial state of the system. The calls to

DFSP Diffusion use a StateList and TransitionMatrix that correspond to the

geometry and jump propensities of the problem as well as a specified ErrorTolerance.

3.2 Examples and Analysis

We examine two models to explore the validity, accuracy and speed of DFSP.

The first is a model of pure diffusion. The second is a biologically inspired reaction-

diffusion spatial stochastic model.

3.2.1 Diffusion Example

The first example is composed of a single chemical species diffusing in one

dimension. The domain is periodic (Ω = 12.4µm) and we discretized it into 200

voxels of length ` = 0.062µm. This domain is equivalent to a circle with radius

2µm, so we plot the results on the interval [−2π, 2π). The initial condition is

a step-function such that each voxel in the interval [−2π, 0) has 100 molecules

and the remaining voxels are empty. The chemical species move with a diffusion
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1: Initialize system state: X, t = 0
2: Calculate the propensity functions ajk(X) and a0 ←

∑K
k=1

∑M
j=1 ajk(X)

{where M is the number of reactions and K is the number of voxels}
3: Generate two random numbers r1, r2 ∈ U(0, 1)

4: tnext rxn ← t+ 1
a0

ln
(

1
r1

)
5: tnext diff ← t+ τD
6: while t < tfinal do
7: if tnext rxn < tnext diff then
8: Find µr, µx smallest integers to satisfy

∑µx

k=1

∑µr

j=1 ajk > r2a0

9: Update Xµx(tnext rxn) = Xµx(t) + νµr

10: Generate two random numbers r1, r2 ∈ U(0, 1)
11: t← tnext rxn
12: else
13: Xnext ← Ø
14: for k ∈ (1...K) do
15: for i ∈ (1...N) do
16: Xnext ← Xnext + DFSP Diffusion(Xk,i) {diffusion of species i in

voxel k}
17: end for
18: end for
19: X ← Xnext

20: t← tnext diff
21: tnext diff ← t+ τD
22: end if
23: Update propensity functions ajk(X) and a0 ←

∑K
k=1

∑M
j=1 ajk(X)

24: tnext rxn ← t+ 1
a0

ln
(

1
r1

)
25: end while

Algorithm 3: RDME simulation algorithm using DFSP for diffusion and SSA
for reactions
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coefficient of 0.001µm2s−1. Numerical experiments show that the relaxation time

of this system is approximately 7000 seconds (data not shown). In this example,

we use the adaptive step splitting with MAX = 5. Figure 3.2 shows the initial

condition (dashed blue), a transient state (dotted black) and a final state (solid

blue) for a single sample trajectory of this model.
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Figure 3.2: Solution to a pure diffusion problem with a step function as the
initial condition. Plotted is the state of the system at t = 0s (dashed blue), 500s
(dotted black) and 7000s (solid red) for a stochastic trajectory. The domain is a
circle with radius 2µm, subdivided equally into 200 voxels.
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Validation

To test the validity of solving the diffusion example with ISSA or DFSP we

solve for the moments analytically (see [28] for derivation). Figure 3.3 shows

the error in the mean and variance as a function of time for three different sized

ensembles of ISSA and DFSP trajectories. The error is calculated using the L∞

norm (across space) of the difference between the ensemble moments and the

analytically derived moments, divided by the norm of the analytical moment.

Normalized L∞ error(t) =
‖analytical moment(x, t)− ensemble moment(x, t)‖∞

‖analytical moment(x, t)‖∞
(3.2)

As the ensemble size increases, the error in both the mean and the variance de-

creases at the same rate for ISSA as for DFSP. Figure 3.4 shows the error in the

mean and variance as a function of voxel size. As the voxel size decreases, the

error decreases. This demonstrates convergence of RDME solution methods to

the analytical solution to the stochastic diffusion equation. Since the ISSA is an

exact simulation method to the RDME while DFSP is an approximate method,

this analysis shows that DFSP is just as valid as the ISSA for these parameter

values.

To assess the accuracy of DFSP, we treat an ensemble of ISSA simulations

as the baseline distribution because the ISSA is a true realization of the RDME
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Figure 3.3: Plot of the Normalized L∞ error (maximum deviation from analyt-
ical solution) versus time in the mean (a) and variance (b) for varying ensemble
sizes for both DFSP (τD = 0.1s) and ISSA (voxel size of 0.06µm), for an en-
semble size of 103 trajectories. The error increases with time (as expected for a
discretized solution) at the same rate for both DFSP and ISSA. Additionally, the
error decreases (to the discretization error limit) with increasing ensemble size at
the same rate for DFSP and ISSA.
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Figure 3.4: Plot of the Normalized L∞ error versus voxel size (both on a log-
scale) calculated at t = 100s (a transient state) for an ensemble size of 103 tra-
jectories. As voxel size decreases, the error in the mean decreases at the same
rate for both DFSP and ISSA. The error in the variance shows a similar trend,
however it also shows increased error for small voxel sizes. This is mostly likely
sampling error due to a constant system population distributed into an increasing
number of voxels.
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and its ensemble converges to the exact solution of the RDME. The Kolmogorov

distance [77] is a standard measurement of the difference between two cumula-

tive distribution functions (CDF). It is defined as the largest deviation between

two CDFs. We choose this measure because it compares all the moments of two

distributions and is thus a stronger tool for analysis than methods that use indi-

vidual moments. We plot the average Kolmogorov distance across space (Kmean)

sampled at each point in time. This is given by

Kmean(a, b, t) =
1

N

N−1∑
n=0

‖CDFa(n`, t)− CDFb(n`, t)‖∞ (3.3)

where N is the number of voxels. The CDFa(x, t) is calculated from an ensemble

of trajectories generated by algorithm a (e.g. ISSA or DFSP) sampled at spatial

location x at time t. We compare the Kmean of two independent ISSA ensembles

(this is known as the self-distance) at each sampled point in time with the Kmean

of an ISSA ensemble and a DFSP ensemble. If the two Kmean values are similar,

then DFSP is statistically indistinguishable from ISSA for this ensemble size.

Figure 3.5 showsKmean values across time for the ISSA self distance and ISSA

versus DFSP. We show results for ISSA versus DFSP for two sets of simulation

parameters: the first uses τD = 0.1s, ErrorTolerance = 10−5 and the second uses

τD = 1.9s, ErrorTolerance = 10−3. These results are for an ensemble size of 105
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trajectories. We note that for an ensemble size ≤ 104, DFSP is indistinguishable

from ISSA (data not shown). These results show that for sufficiently small τD and

ErrorTolerance, DFSP is a good approximation for ISSA. For the results with

τD = 1.9s, the adaptive step splitting fails to meet the error tolerance; therefore,

as the ensemble size grows the error accrued by DFSP is no longer negligible.

Thus, it is clear that for increasing values of τD and ErrorTolerance the error

in the simulation grows. We will show that it is possible to utilize this feature of

DFSP to trade accuracy for computational performance.
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Figure 3.5: The distribution distance for the diffusion example, the Kmean at
every 100s for 7000s for ISSA-vs-ISSA (green line with dots), ISSA-vs-DFSP with
τD = 0.1s (dashed red line) and τD = 1.9s (blue line). In this plot the ensemble
size is 105, at which point the DFSP solution becomes distinguishable from the
ISSA solution for larger time steps. For ensemble sizes ≤ 104, the DFSP solution
is indistinguishable from the ISSA solution for both step sizes (results not shown).
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Error Analysis

To study the error properties of DFSP, we must first find the limits of our

adaptive step splitting error control method. The contribution from diffusion to

the total error should be constant for all values of τD as long as we are able to

move at least one molecule per DFSP diffusion step without violating our error

tolerance. Figure 3.6 shows a plot of the maximum possible number of molecules

moved per diffusion step of DFSP for various values of τD, and a fixed error

tolerance of 10−5. To find the maximum number of molecules we can move for a

given τD we compute DFSP matrix exponentials for increasing molecule counts.

The maximum number that can be moved is one less than the number at which

the estimate error first exceeds the tolerance. From this study, we determined

that the maximum value of τD is 0.925s.

To measure the error in the simulated ensembles, we integrate the deviation

between the Kolmogorov distance of DFSP and ISSA and the self-distance of ISSA

over space and time, normalized by the size of the domain.

ErrorτD =

∫ ∫
|DFSPτD(x, t)− ISSA(x, t)| dx dt∫ ∫

dx dt
(3.4)

where ISSA(x, t) is the Kolmogorov distance over space and time between two en-

sembles of 10,000 runs of the ISSA, and DFSPτD(x, t) is the Kolmogorov distance
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Figure 3.6: Maximum number of molecules moved in a single diffusion step of
DFSP versus τD for an error tolerance of 10−5. For values of τD > 0.925s, DFSP
will try to move less than one molecule, thus violating the error tolerance.

over space and time between 10,000 runs of the DFSP algorithms (with diffusion

step τD) and 10,000 runs of the ISSA algorithm. We examine this error metric

for varying values of τD with a fixed error tolerance of 10−5. Figure 3.7 shows the

error as a function of τD for the diffusion example as well as the G-protein exam-

ple (discussed in Section 3.2.2). Thus for this range of values of τD, the error for

the diffusion example is constant, and is a function only of the ErrorTolerance

parameter.
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Figure 3.7: ErrorτD vs τD for DFSP applied to the diffusion example (line with
circles) and G-protein cycle example (line with x’s), linear fits (red dashed lines).
For the diffusion example, the error is constant and only a function of the error
tolerance. This is because there is no contribution to the error from the reaction
operator. For the G-protein cycle example, the error increases linearly with τD
and converges to the diffusion error as τD goes to zero. This is because the error
in the reaction operator is linear with the timestep (τD); as the timestep goes to
zero the reaction error goes to zero.
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3.2.2 G-protein Cycle Example

The second example is the pheromone induced G-protein cycle in Saccha-

romyces cerevisiae. We have converted the PDE model from [18] into a stochastic

model and for simplicity reduced it to ligand, receptor and G-protein species. The

ligand level is constant in time but varies spatially (a cosine function), with param-

eters determined experimentally. The ligand binds stochastically with an initially

isotropic field of receptor proteins. The bound receptor activates the G-protein,

causing the Gα and Gβγ sub-units to separate. Gα acts as an auto-phosphotase

and upon dephosphorylation, rebinds with Gβγ to complete the cycle. The spa-

tial domain is identical to the previous model and the simulation time is set to

100 seconds, as deterministic simulation shows that steady state is achieved by

that time (data not shown). Gβγ is the component farthest downstream from the

ligand input and acts as signal to the downstream Cdc42 cycle and will therefore

be the output for this model. Figure 3.8 shows the constant ligand gradient (left)

and the spatial distribution of Gβγ over 1000 runs (right, mean and standard

deviation). See the Appendix of [28] for complete description of the reactions.

Validation

For the G-protein example, Figure 3.9 shows theKmean for ISSA versus DFSP

(using τD = 0.1s, ErrorTolerance = 10−5) for an ensemble size of 105 trajecto-
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Figure 3.8: Spatial concentration of Ligand (top) and mean and variance of Gβγ

population (bottom) at t = 100s for a trajectory of the G-protein cycle example.
The Ligand gradient is the input to this model and is constant in time. Gβγ is
the output and is time varying.
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ries. Note that for an ensemble size of ≤ 103 trajectories, the results of DFSP are

indistinguishable from those of ISSA. For these simulation parameters, the differ-

ence between ISSA and DFSP values of Kmean is constant over time, and the

DFSP Kmean is consistent across the time span of the simulation. This indicates

that the simulation is stable, but there is an error in the results that shows up as

a difference between the DFSP and ISSA curves. We will discuss the source of

this error and provide an analysis in the following section. We also show results

for τD increased to the CFL limit [19], which is ∼ 1.9s, and with ErrorTolerance

set to 10−3 in an attempt to determine the limits of DFSP’s ability to handle full

reaction-diffusion models. For these parameters the specified ErrorTolerance

cannot be met, though the adaptive splitting moves a single molecule per step.

The difference between this curve and the ISSA curve is significantly greater than

for the previous parameters, and is oscillatory in time. This indicates that the

simulation results are inconsistent with the underlying mathematical process.

Error Analysis

DFSP uses operator splitting over a given timestep of length τD, first apply-

ing the reaction operator (SSA in this case) to the system. Then the diffusion

operator (using FSP) is applied to the resulting state of the system. Since these

operators are decoupled, an additional splitting error is incurred by the method
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Figure 3.9: The distribution distance for the G-Protein cycle example, the
Kmean from (3.3) at every 100s for 7000s for ISSA-vs-ISSA (green line with
dots), ISSA-vs-DFSP with τD = 0.1s (dashed red line) and τD = 1.9s (blue line).
In this plot the ensemble size is 105, at which point the DFSP solution becomes
distinguishable from the ISSA solution for larger time steps. For ensemble sizes
≤ 103, the DFSP solution is indistinguishable from the ISSA solution for both
stepsizes (results not shown).
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when reactions are included. Molecules that react in the timestep are not dif-

fused, and molecules produced by a reaction in the timestep are diffused for the

full length of the timestep.

DFSP applied to the RDME is a first-order operator split method [121], and

as such it is expected that the error should increase approximately linearly with

τD. Figure 3.7 shows the error as a function of τD. We see that the error in the

G-protein example is increasing approximately linearly with respect to τD and

collapses to the error in the diffusion only system as τD goes to zero, confirming

our expectation.

Performance

Figure 3.10 shows the speedup of DFSP over ISSA and MSA for the G-protein

example. The performance increase for DFSP over ISSA and MSA is due in part to

the difference in the number of times the reaction propensities must be updated as

a result of diffusion events. For one realization, the expected number of diffusion

events in an ISSA simulation is 1.2 × 106. Thus the reaction propensities must

be updated approximately 2.4× 106 times (source and destination voxels for each

diffusion event). By numerical experimentation, the average number of reaction

events for any of the methods is ≥ 170, 000. The time to the next diffusion

event for MSA is given as the minimum of the time to the next reaction step
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and a predetermined time step, therefore there must be at least as many diffusion

events in an MSA simulation (regardless of stencil) as reaction events. For MSA,

diffusion is done in all voxels, therefore updates need to be done in every voxel

at each time step. Thus, the expected number of reaction propensity updates

in MSA due to diffusion steps is ≥ 3.4 × 107. For DFSP with τD = 0.1s, 1000

diffusion steps are taken, and the reaction propensities are updated in every voxel

on each DFSP step, resulting in 2×105 reaction updates. Thus, it is reasonable to

expect that for this problem DFSP will be ∼ 102 times faster than MSA2 (MSA

using the two nearest neighbors in each direction) and ∼ 10 times faster than

ISSA for τD = 0.1 for this problem. Figure 3.10 validates this claim.

Next we examine the effect of different spatial discretization schemes on per-

formance. Figure 3.11 shows the computation time as a function of τD for three

levels of mesh refinement, and the computation time for ISSA at each level for

comparison. The computation time for DFSP does not vary as greatly as ISSA for

different mesh sizes. In solving for the diffusion step of the algorithm, DFSP iter-

ates over the voxels in the system and thus should scale linearly with the number

of voxels. For comparison, in ISSA the number of diffusion jumps scales as 2/`2.

Further calculations show that as we double the number of voxels the runtime for

DFSP doubles, while for ISSA it increases by a factor of eight. This confirms our

expectations.
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Figure 3.10: Speedup of DFSP over ISSA and both MSA stencils (subscript 1
denotes the stencil including adjacent voxels, and 2 the stencil including the two
nearest neighbors on either side) for varying values of τD for the G-protein cycle
example. DFSP achieves significant performance increases over ISSA and both
MSA stencils for reaction-diffusion simulation. The speedup is due in part to
the number of times the reaction propensity function needs to be updated due to
diffusive transfers. DFSP updates less often than ISSA or MSA. As τD increases,
the number of updates decreases and performance increases.
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For N=100, ISSA outperforms DFSP for the range of τD values shown. How-

ever, for this discretization level τD can be as large as 3.6s. This would result in

speedups for this discretization level that are equivalent to those of the N=200

and N=400 mesh sizes. For reaction-diffusion systems the operator splitting er-

ror is proportional to τD. Thus for coarse meshes where a large τD is possible,

global accuracy constraints may force a selection of the τD and ErrorTolerance

parameters such that ISSA performs better than DFSP.
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Figure 3.11: Computation time for DFSP with varying values of τD and varying
numbers of voxels in the system with error tolerance of 10−5 for the diffusion
example. ISSA computation times for each of the system sizes is provided for
comparison.

46



Chapter 3. The Diffusive Finite State Projection Algorithm for Efficient Simula-
tion of the Stochastic Reaction-Diffusion Master Equation

3.3 Conclusions

DFSP is a powerful new algorithm that yields impressive performance improve-

ments over ISSA. It provides a means to quantify and control the error, allowing

a precise trade-off between accuracy and performance. Additionally, unlike many

hybrid algorithms, DFSP conserves mass.

The speedup offered by DFSP enables the simulation on a workstation of

ensemble sizes that were previously feasible only on high performance clusters, and

it extends the scope of problems that are computable on high performance clusters.

To produce our validation data for the G-protein cycle model, we needed an

ensemble of 100,000 runs for statistical accuracy. The DFSP algorithm generated

this data set in 6.2 hours (for τD = 0.1s and error tolerance of 10−5) and 3.8 hours

(for τD = 1.9s and error tolerance of 10−3) on a commodity desktop workstation

with a quad-core processor (computing four trajectories simultaneously). The

ISSA data sets were generated on a high performance computer cluster, so direct

comparison is not possible. However, we estimate that each of the ISSA data sets

would take approximately 472 processor hours, or 118 real hours (approximately

5 days) to calculate on the desktop workstation.
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Chapter 4

URDME: a Modular Framework for Stochastic

Simulation of Reaction-Transport Processes in

Complex Geometries

Experiments in silico using stochastic reaction-diffusion models have emerged

as an important tool in molecular systems biology. Designing computational soft-

ware for such applications poses several challenges. First, realistic lattice-based

modeling for biological applications requires a consistent way of handling complex

geometries, including curved inner- and outer boundaries. Second, spatiotemporal

stochastic simulations are computationally expensive due to the fast time scales

of individual reaction and diffusion events when compared to the biological phe-

nomena of actual interest. We therefore argue that simulation software needs to
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be both computationally efficient, employing sophisticated algorithms, yet in the

same time flexible in order to meet present and future needs of increasingly com-

plex biological modeling.

In collaboration with Andreas Hellander and Stefan Engblom of Uppsala Uni-

versity, we have developed URDME, a flexible software framework for general

stochastic reaction-transport modeling and simulation [26]. URDME uses Unstructured

triangular and tetrahedral meshes to resolve general geometries, and relies on

the Reaction-Diffusion Master Equation formalism to model the processes under

study. An interface to a mature geometry and mesh handling external software

(Comsol Multiphysics) provides for a stable and interactive environment for model

construction. The core simulation routines are logically separated from the model

building interface and written in a low-level language for computational efficiency.

The connection to the geometry handling software is realized via a Matlab inter-

face which facilitates script computing, data management, and post-processing.

For practitioners, the software therefore behaves much as an interactive Matlab

toolbox. At the same time, it is possible to modify and extend URDME with

newly developed simulation routines. Since the overall design effectively hides the

complexity of managing the geometry and meshes, this means that newly devel-

oped methods may be tested in a realistic setting already at an early stage of
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development.

In this chapter we present URDME, originally published in [26]. We demon-

strate, in a series of examples with high relevance to the molecular systems biology

community, that the proposed software framework is a useful tool for both prac-

titioners and developers of spatial stochastic simulation algorithms. Through the

combined efforts of algorithm development and improved modeling accuracy, mod-

eling of increasingly complex biological models has become possible. URDME is

freely available at http://www.urdme.org.

4.1 Background

Stochastic simulation of reaction kinetics has emerged as an important compu-

tational tool in molecular systems biology. In cases for which mean-field analysis

has been shown to be insufficient, stochastic models provide a more accurate,

yet computationally tractable alternative [126, 106, 9]. For example, a frequently

studied topic is the mechanisms for robustness of gene regulatory networks rel-

ative to intrinsic and extrinsic noise [123, 33, 112]. In a stochastic mesoscopic

model the time evolution of the number of molecules of each species is described

by a continuous-time discrete-state Markov process. Realizations of this process
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can be generated using techniques such as the Stochastic Simulation Algorithm

(SSA) [52].

If the system can be assumed to be spatially homogeneous, or well-stirred,

simulations are simplified considerably compared to a spatially varying setting.

However, there are many phenomena inside the living cell for which spatial ef-

fects play an important role [41, 124]. In such cases, a mesoscopic spatial model

can be formulated by first discretizing the computational domain into subvol-

umes, or voxels. Molecular transport processes are then modeled as combined

decay- and creation events that take a molecule from one voxel to an adjacent one

[129, 44]. For appropriate discretizations [70, 37], the assumption of spatial homo-

geneity holds approximately within each voxel, where reactions can be simulated

as in the well-stirred case. The governing equation for the probability density

function is called the Reaction Diffusion Master Equation (RDME) and meth-

ods to generate realizations in this framework have been used previously to study

reaction-diffusion systems in the context of molecular cell biology [11, 41, 31, 122].

Modern experimental techniques can provide information not only on the total

copy numbers but also on the spatial localization of individual molecules [110, 32].

As such techniques are further developed and spatial models can be calibrated to

biological data, methods and software for flexible and efficient simulation of spatial

stochastic models will likely continue to grow in importance. As a coarse-grained
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alternative to detailed microscopic models based on Smoluchowski reaction dy-

namics [140, 4], or other similar microscale simulators such as MCell [75], simu-

lations in the RDME framework are orders of magnitude faster than microscopic

alternatives [62].

For most applications, a large number of sample realizations need to be gener-

ated to allow for a useful statistical analysis. Exploring parameter regimes or esti-

mating responses to different stimuli adds to the complexity so that the generation

of tens of thousands of independent realizations is not uncommon. Computational

efficiency is therefore an important concern and has motivated research in many

types of approximate or optimized methods (see for example [79, 114, 88, 10, 42]).

Despite advances in the development of approximate methods, spatial stochas-

tic simulation in realistic geometries is still challenging. One of the main reasons

is the complexity involved in handling the 3D geometry and the associated mesh.

The purpose with this chapter is to introduce URDME, a modular software frame-

work for spatial stochastic simulation. The goal of URDME is twofold: first, it

provides applied users with a powerful and user-friendly modeling environment

that supports realistic geometries. Second, URDME facilitates the development

of new computational methods by taking care of the technical details concerning

the geometry, the mesh generation, and the assembly of local rate constants. By

providing a well-defined interface to the modeling environment, new algorithms
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can be incorporated into the URDME framework as plug-in solvers. We anticipate

that this modular structure will facilitate the development and dissemination of

advanced simulation methodologies to real-world molecular biology applications.

URDME differs from other public domain software for mesoscopic simulations

such as MesoRD [58] or SmartCell [3], in that it uses unstructured tetrahedral

meshes to discretize the domain, offering a much greater geometrical flexibility

and better resolution of curved surfaces compared to Cartesian meshes. URDME

shares its utilization of tetrahedral meshes with another reaction-diffusion simula-

tion software, STEPS [62], which we will discuss later in the chapter. One of the

defining features of URDME is that it is structured to be highly modular in order

to be useful as a platform for developers of the associated computational tools.

This design also allows for flexible work-flows for result generation. When used

interactively, URDME’s Matlab interface provides for convenient model construc-

tion and evaluation. Since the solvers are automatically compiled into optimized

stand-alone executables, URDME can also be used to define batch jobs using the

very same Matlab interface. In this way, URDME is a convenient platform both

in the initial modeling phase as well as when performing high-performance and/or

high-throughput computational analysis.
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4.2 Implementation

In this section we describe how the URDME framework is structured, how it

is used to simulate a model, and how to interface with it to add new simulation

algorithms. For more details, refer to the software manual [25].

Overview The URDME framework consists of three logical layers connected by

well-defined interfaces (see Figure 4.1). At the top level, a third-party software for

mesh-generation is used to define the geometry and to generate the mesh. Cur-

rently, URDME interfaces with Comsol Multiphysics 3.5a for this functionality.

The middle layer routines in Matlab serve as an interactive environment for model

construction, and connects the geometry and mesh-handling facilities of Comsol

with the core simulation algorithms (bottom layer).

With this modular structure, the top level can be replaced by other mesh gen-

eration software such as for example Gmsh [47], provided that the appropriate

interface routines are added to the middle level interface. Relying on Comsol

Multiphysics for the geometry definition and mesh-generation provides for a con-

venient interactive environment for the model construction, allowing advanced

models to be formulated quite easily.

The default core solver at the bottom level is an optimized implementation of

the Next Subvolume Method (NSM) [41]. Since the solver layer is kept separate
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from the model building interface, new solvers can easily be added to URDME

while taking advantage of all of the infrastructure related to model management

and post-processing. The data passed to the solvers is well-defined and doc-

umented (see [25] for more information). It is our goal for URDME to grow

through the contribution of solvers from the community. One such solver has

already been contributed and distributed in this way: the diffusive finite state

projection (DFSP) algorithm [28], described in Chapter 3 of this dissertation. Ad-

ditionally, the URDME framework has been utilized in the development of new

algorithms [36, 42, 59] and in a master equation formulation of active transport

on microtubules [60].

Using URDME for model development and simulation The process of

analyzing a reaction-diffusion model with URDME begins with the creation of a

Comsol model file that defines the geometry of the domain, including (optionally)

the subdomains where specific localized reactions are to be defined (e.g. mem-

brane, cytosol, and nucleus). At this stage, the biochemical species and their

associated diffusion rates are also defined. Once the model is set up, the mesh

generation facilities of Comsol are used to create a tetrahedral discretization of

the domain. Next, this information is exported to Matlab via an API connection

as illustrated in Figure 4.2A (top). The interface routines of URDME are then
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Figure 4.1: The URDME framework consists of three loosely coupled layers.
Solvers reside at the bottom level and are most often written in a compiled lan-
guage like ANSI-C. The middle layer provides for interfaces between the solvers
and the top-level mesh-generation infrastructure. Both the top- and the bottom-
layer may be replaced by other software as long as the middle level is extended
appropriately.
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used to assemble the data structures needed by the core simulation routines. The

overall process is summarized in Figure 4.2A (bottom).

Apart from defining the geometry, the user also needs to create two additional

program files to be used by URDME. The first is a Matlab function (referred to

as the model file), that defines the data related to the actual simulation. This

includes the initial distribution of molecules, the stoichiometric matrix defining

the topology of the reaction network, a certain dependency graph for events in the

model, and the simulation interval (for a detailed list, see [25]). This model file can

also be used to define custom configurations for the model, including restricting a

species to a specific subdomain, adding modified transport terms, and evaluating

expressions over the geometry such that this information can be passed on to the

core solver. In this way, URDME supports custom modeling that would be very

hard to achieve with a less flexible software architecture. This, we argue, is one

of the defining and unique features of the URDME framework.

The second program file a user must create is a templated C-program file that

defines the propensity functions for the chemical reactions of the model. This file

defines one function for each chemical reaction in the system, which are called

by the core solver routines to calculate the propensity for each reaction in each

voxel. The propensity function template requires the output to depend only on

the system state at the current time, but is unique to a voxel and allows for
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Figure 4.2: (A) URDME flow diagram for the complete simulation process.
(B) Process flow diagram for the stochastic simulation step of (A) using the NSM
solver. (C) DFSP solver flow diagram, an alternative to (B) for the stochastic
simulation step.

additional data to be passed on to the function. The propensity function file is

later automatically compiled and linked with the core solver, resulting in a highly

efficient solution procedure.

Once the model data structure has been exported to Matlab and the model and

propensity functions have been defined, the next step is to let URDME execute a

simulation of the model. From the users’ perspective, simulation now only requires

to invoke the urdme function in Matlab with the proper arguments,

>> model = urdme(model,@model_file,...

{’Propensities’,’propensity_file’});
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The arguments passed are the Comsol data structure, the model function, the

propensity functions, and various optional arguments. URDME now invokes

GCC to compile the propensity function file with the specified solver (default-

ing to NSM) to create a dedicated executable for the model. This executable is

then invoked using the model and geometry data structure as inputs. Note that

compilation and execution of the low-level components of the system is fully au-

tomatic, and requires no additional action from the user. Following a successful

execution of the core solver the urdme function returns a modified model data

structure with a single stochastic solution trajectory attached to it.

Since the layers of URDME are decoupled, it is also possible to execute the

solvers in non-interactive batch mode to allow for more flexible result generation

and distribution of computations on a multicore platform. For example, to con-

duct the simulation in background mode and write the resulting trajectory to the

file ‘output.mat’ one simply invokes urdme with a few additional arguments,

>> model = urdme(model,@model_file,...

{’Propensities’,’propensity_file’,’Mode’,’bg’,...

’Output’,’output.mat’});

Here, control returns to Matlab directly after execution of the solver executable,

without waiting for it to complete.

Visualization and post-processing are important components in most simula-

tion software. Once a URDME simulation is complete, users can easily visualize
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the spatially varying concentration of biochemical species in their model by using

Matlab’s interface to the Comsol graphics routines. Examples of this will be pre-

sented in the Results section. Similarly, most modeling and simulation projects

require custom data analysis once the simulation data has been generated. To

facilitate this, URDME supports the creation of post-processing scripts in Matlab

using its native high-level scripting language and computational libraries. Exam-

ples of complex post-processing routines implemented as Matlab functions and

scripts are available as part of the example directories in the URDME software

distribution package.

Structure and implementation of core simulation algorithms Taken to-

gether, the components of URDME that were introduced in the previous section

create a flexible and expandable platform. While an applied user need not know

any details about how a core solver is implemented, the developer of a new sim-

ulation algorithm can use the infrastructure to implement a plug-in solver to

URDME. Figure 4.2C illustrates the structure of the plug-in solver that imple-

ments the DFSP algorithm [28]. Note the similarities with the flow diagram of the

core NSM solver in Figure 4.2B. URDME plug-in solvers have three main compo-

nents: a Makefile, the solver source files, and (optionally) a pre-execution script

intended to be invoked by the middle-level scripting interface. The solver Make-
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file is used for compiling and building the solver automatically from the Matlab

interface. The name of this file tells URDME what solver it builds; when urdme is

invoked with the option to run a simulation using a specific solver, it will look for a

Makefile with the correct naming pattern. This Makefile then compiles the solver

along with the propensity functions associated with the model being simulated

into a stand-alone binary executable. Hence a different and unique executable is

automatically produced for each new combination of model and solver.

The source code of the solver itself can formally consist of any number of files

in any language as long as the Makefile can create the final executable called by

the middle-level interface. To enable a seamless integration with the URDME

Matlab interface, the URDME C API contains library routines to read and parse

the data structures generated by the URDME model files. These API routines

will parse all data-structures required by the core NSM solver. A plug-in solver

that needs additional input will have to make sure that these are parsed correctly

as part of the solver main routines. To pass such additional data to the solver, it

need only be appended to the ‘model.urdme’ field, either by the Matlab model file,

or by a pre-execution script (compare Figure 4.2C). URDME will then write this

data to the solver input file. Such a pre-execution script is an optional component

of the solver integration. Simply put, when executing a model, URDME always

looks for a Matlab function defined in the file ‘urdme init <solver>.m’.
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All current solvers are written in ANSI-C and use GNU-style Makefiles. The

process of integrating a simulation algorithm in the URDME framework is de-

scribed in more detail in [25] and is also exemplified by the source code for the

DFSP plug-in that is included in the URDME distribution.

In conclusion, when all the components of a solver are in place as described

above, the only difference to an end-user of URDME is a single additional argu-

ment

>> model = urdme(model,@model_file,...

{’Propensities’,’propensity_file’,’Solver’,’dfsp’});

The use of the URDME framework to implement and analyze the performance of

a simulation algorithm will be further described in the Results section.

4.3 Results

In this section we will use three different examples to illustrate how the design

of URDME makes the software framework a useful tool to accomplish different

simulation tasks. In the first example we show how an established model from

the molecular systems biology literature is simulated in URDME. This example

illustrates the powerful nature of the URDME scripting environment in setting

up and conducting a parameter sweep. In the second example we demonstrate

how URDME can aid in the development of efficient simulation algorithms by
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explaining how the Diffusive Finite State Projection (DFSP) method [28], was

integrated into URDME as a plug-in solver. As a final example we simulate a

model of molecular transport in a neuron. Here, the unstructured mesh is an ab-

solutely necessary feature in order to be able to resolve the complex geometry. We

also show with this example how a model of active, molecular motor driven trans-

port as proposed in [60] can be implemented in URDME to simulate molecular

transport in the different parts of the neuron.

4.3.1 Simulating Min oscillations in E. Coli

In E. Coli, the Min family of proteins are believed to play a key role in the

regulation of symmetric cell division. In a mechanism thought to be self-organized

and to function in a manner similar to the formation of Turing-patterns, the MinD

protein oscillates from pole to pole with a period close to 40 seconds. Another Min

protein, MinC, co-localizes with MinD and acts as a repressor for the formation of

the cell division site by destabilizing Ftz polymerization [67]. On average, MinD

(and hence MinC) will spend less time near the center of the cell, allowing the

division ring to assemble there. Both deterministic and stochastic models of this

system have been studied previously in the literature [67, 41].

To illustrate how to use URDME to conduct a parameter sweep we will sim-

ulate the Min-system for increasing lengths of the bacterium and observe the
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behavior of the oscillations. The example is representative for how experiments

using different sets of parameters can be defined and organized with the current

version of URDME. A detailed account of how to create all model files to run

simulations of the model from [41] can be found in the software manual [25] in the

form of a tutorial. There, the model is run interactively from the Matlab prompt

as detailed in the previous sections. In order to conduct the experiment outlined

here in the same fashion we would have to manually rebuild the geometry and

execute the simulations for the different parameter cases. This would be time-

consuming and error prone. Instead, we explain how to automate such a task by

using the Matlab scripting environment and the URDME Matlab interface. Ta-

ble 4.1 shows how the parameter sweep can be specified in a simple script in the

Matlab language. The function ‘coli model’ was automatically generated from the

Comsol interface using the model of an E. coli bacterium shown in Figure 4.3A. It

was then slightly modified by manipulating the original consecutive solid geometry

(CSG) description. The geometry of the bacterium was parametrized by creating

a copy of the original geometry and then translating it along the x-axis. The

union of these two objects is the final geometry and the variable ‘xsep’ specifies

the extent of the translation. Note that, as shown in Figure 4.3C, the bacterium

will ultimately split into two separate geometric objects.
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The results of the parameter sweep are summarized in Figure 4.3. Figure 4.3A

shows the geometry of a model of an E. Coli bacterium with length 4.5 µm and

radius 0.5µm discretized with a tetrahedral mesh. Figure 4.3B shows the temporal

average of membrane bound MinD obtained in a simulation of the model from [67]

with URDME, as well as a time series of pole-to-pole oscillations of the membrane

bound fraction of MinD. As can be seen, the model predicts a minimum of MinD

near the center of the cell. Figure 4.3C shows a visualization of the E. Coli

bacterium at six different lengths, including the temporal average of the relative

concentrations of the MinD protein. Figure 4.3D shows the stability of oscillations

when increasing the ‘xsep’ parameter.

For values of the parameter ‘xsep’ less than about 2µm, coherent oscillations

are observed and the MinD protein is concentrated at the poles of the bacterium.

For larger values, the oscillations cease and MinD is distributed evenly in the

cell. Hence, in order to maintain oscillations also for longer cells, the model needs

to be modified in some way. For example, the total copy number of MinD is

currently kept constant as the cell grows. Different initial conditions such as

constant concentration can of course be tested with equal ease by making the

appropriate changes to the model file.

In this example, URDME is invoked in background mode allowing for several

parameter cases to be run in parallel on a multicore workstation. Instead of
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returning the results directly in the workspace, we direct URDME to store the

result files and the input files on disk for later post-processing.
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Figure 3: (A) Geometry and mesh modeling of an E. Coli cell. (B) Temporal average
concentration of MinD protein as a function of position along the long axis of the E. Coli
cell (top), and the time series plot of the oscillations. (C) Six E. Coli cells of increasing
lengths, as specified in the parameter sweep described in Table 1. The color intensity shows
the temporal average concentration of MinD protein along the membrane. (D) Parameter
sweep shows how the relative concentration of MinD changes as the bacterium grows.
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Figure 3: (A) Geometry and mesh modeling of an E. Coli cell. (B) Temporal average
concentration of MinD protein as a function of position along the long axis of the E. Coli
cell (top), and the time series plot of the oscillations. (C) Six E. Coli cells of increasing
lengths, as specified in the parameter sweep described in Table 1. The color intensity shows
the temporal average concentration of MinD protein along the membrane. (D) Parameter
sweep shows how the relative concentration of MinD changes as the bacterium grows.
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Figure 3: (A) Geometry and mesh modeling of an E. Coli cell. (B) Temporal average
concentration of MinD protein as a function of position along the long axis of the E. Coli
cell (top), and the time series plot of the oscillations. (C) Six E. Coli cells of increasing
lengths, as specified in the parameter sweep described in Table 1. The color intensity shows
the temporal average concentration of MinD protein along the membrane. (D) Parameter
sweep shows how the relative concentration of MinD changes as the bacterium grows.

in the system. E↵ectively, as the mesh becomes finer a larger and larger percentage of the
simulation events will be di↵usion jumps. A similar phenomenon, stochastic sti↵ness, often
occurs in simulations of well-stirred models and has led to extensive methods development
[6, 7, 42, 53]. The DFSP algorithm is an approximate spatial stochastic simulation algorithm
which aggregates a large number of di↵usive transfers over a time-step. It does this by cal-
culating the probability distribution of a molecule starting in a given voxel after some fixed
time-step ⌧D, and then samples from this distribution to redistribute the molecules. DFSP
can in this way give great enhancements in simulation speed at the cost of approximation
errors which can be controlled (see [9] for a more extensive analysis).

Integration of a new solver into the URDME framework is designed to be a simple
process, with the largest fraction of the required new code being specific to the underlying
solver algorithm. URDME solvers have three main components: the solver source code,
a Makefile, and an optional pre-execution script. The Makefile creates a standalone Unix
executable from the source code. The DFSP solver uses a pre-execution script in Matlab
to calculate data specific to the algorithm. This data is then added to the input file that
URDME creates upon execution of the solver. Table 2 describes the files that are part of
the DFSP solver.

8

Figure 4.3: (A) Geometry and mesh modeling of an E. Coli cell. (B) Temporal
average concentration of MinD protein as a function of position along the long
axis of the E. Coli cell (top), and the time series plot of the oscillations. (C) Six
E. Coli cells of increasing lengths, as specified in the parameter sweep described
in Table 4.1. The color intensity shows the temporal average concentration of
MinD protein along the membrane. (D) Parameter sweep shows how the relative
concentration of MinD changes as the bacterium grows.
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% Define the parameter space

Nval = 30;

xsep = linspace(0,4.5e-6,Nval+1);

xsep(end) = []; % (avoid creating two distinct bacteria)

save results/info.mat xsep

for i = 1:Nval

% Generate the E. coli cell by merging two cells with

% separation ’xsep(i)’ along the positive x-axis

fem = coli_model(xsep(i));

% run an instance of URDME in background mode

fem = urdme(fem,@huang,{’Propensities’,’huang’, ...

’Mode’,’bg’, ...

’Outfile’,sprintf(’results/out%d.mat’,i)});

% save input separately for later use

save(sprintf(’results/in%d.mat’,i),’fem’);

end

Table 4.1: Matlab script that executes simulations of the Min-model in a ge-
ometry modeling an E. Coli cell with varying length. URMDE executes the core
simulation algorithm in the background and saves the results and input files for
later post-processing, allowing for many points in parameter space to be simulated
in parallel on a multicore workstation.

4.3.2 Developing and benchmarking a new algorithm for

spatial stochastic simulation

Generally, a large fraction of the effort in developing simulation tools goes into

software infrastructure as opposed to code pertaining to the underlying solver al-

gorithms. URDME is designed to provide that infrastructure. The first two layers
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of the framework provides handling of geometry and meshing, assembly of diffu-

sion jump-rate constants, model integration, pre- and post-processing and data

visualization. In this section we illustrate how to use URDME’s infrastructure

to enhance the development and benchmarking of a new stochastic simulation

algorithm, DFSP [28], described in Chapter 3 of this dissertation. We describe

the components of this solver and how they are integrated with URDME. This

example may therefore serve as a design pattern for algorithm integration into the

URDME framework.

Integration of a new solver into the URDME framework is designed to be a

simple process, with the largest fraction of the required new code being specific to

the underlying solver algorithm. URDME solvers have three main components:

the solver source code, a Makefile, and an optional pre-execution script. The

Makefile creates a standalone Unix executable from the source code. The DFSP

solver uses a pre-execution script in Matlab to calculate data specific to the al-

gorithm. This data is then added to the input file that URDME creates upon

execution of the solver. Table 4.2 describes the files that are part of the DFSP

solver.

In addition to the lower integration overhead of implementing a new algorithm

in the URDME framework, URDME allows developers to easily benchmark their

solvers. Table 4.3 shows a Matlab script that sets up a benchmarking experi-
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Directory File Description

urdme/build Makefile.dfsp Solver Makefile.

urdme/src/dfsp dfsp.c Solver entry point and data initialization.
dfsp.h DFSP header file.
dfspcore.c Main entry point for the solver.
dfsp reactions.c Simulates reaction events.
dfsp diffusion.c Simulates diffusion events.

urdme/msrc urdme init dfsp.m Matlab pre-execution script.

Table 4.2: Overview of the files that make up the DFSP plug-in solver. This
structure follows the general design pattern suggested for solver integration in the
URDME framework and is very similar to the structure of the default NSM core
solver (see [25]).

% DFSP Performance and Error benchmark code

tic;

solution = urdme(fem,@fange,{’Solver’,’nsm’,...

’Propensities’,’fange’});

nsm_simulation_time = toc

nsm_period = find_mincde_period(solution)

for tau_D = [ 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 ]

tic;

solution = urdme(fem,@fange,{’Propensities’,’fange’,...

’Solver’,’dfsp’,’tau’,tau_D,’max_jump’,10,...

’DFSP_cache’,dfsp_cache_filename});

dfsp_simulation_time = toc

dfsp_period = find_mincde_period(solution)

error = abs(dfsp_period-nsm_period)/nsm_period

end

Table 4.3: Matlab code for benchmarking the DFSP solver using the MinCDE
model of oscillations in E. coli.
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ment to assess the performance and error of the DFSP solver when simulating

the model for Min-oscillations described in the first example in this chapter. This

code also illustrates the calling signature for the urdme function when used with

the NSM and DFSP solvers. The DFSP solver takes the additional arguments

‘tau’ as the time-step, ‘max jump’ as the maximum spatial jump distance, and

‘DFSP cache’ as the cache file used to store the data specific to the DFSP al-

gorithm. The utility function find mincde period finds the peak period of the

oscillations through straightforward spectral analysis using built-in routines in

the Matlab scripting environment, again illustrating the advantage of using the

scripting layer’s post-processing capabilities. Figure 4.4 shows the results of the

benchmarking experiment. We find that the DFSP method with 0.01 < τD < 0.1

produces simulation results faster than NSM and with good accuracy in the os-

cillation period.

4.3.3 Active transport in a neuron

Diffusion is the dominating mechanism of molecular transport in prokaryotes

such as E. Coli, and it was in that context the NSM was first applied [31, 41].

However, diffusion is not the only mechanism for molecular transport in eukaryotic

cells. Intra-cellular cargo can be transported by motor proteins along cytoskeletal

structures made up of microtubule and actin polymers [65, 86, 128]. Molecular
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% DFSP Performance and Error benchmark code
tic;
solution = urdme(fem,@fange,{’Solver’,’nsm’,’Propensities’,’fange’});
nsm_simulation_time = toc
nsm_period = find_mincde_period(solution)
for tau_D = [ 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 ]

tic;
solution = urdme(fem,@fange,{’Propensities’,’fange’,’Solver’,’dfsp’,...

’tau’,tau_D,’max_jump’,10,’DFSP_cache’,dfsp_cache_filename});
dfsp_simulation_time = toc
dfsp_period = find_mincde_period(solution)
error = abs(dfsp_period-nsm_period)/nsm_period

end

Table 3: Matlab code for benchmarking the DFSP solver using the MinCDE model of
oscillations in E. coli.

environment, again illustrating the advantage of using the scripting layer’s post-processing
capabilities. Figure 4 shows the results of the benchmarking experiment. We find that the
DFSP method with 0.01 < ⌧D < 0.1 produces simulation results faster than NSM and with
good accuracy in the oscillation period.
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Figure 4: DFSP benchmark results. (A) Performance of DFSP shows a comparison of
simulation times for DFSP at varying ⌧D values (red) and NSM (blue), and the DFSP
speedup factor (green). For this model, DFSP outperforms NSM for ⌧D > 0.01. (B) Error
in DFSP shows the relative error in MinCDE oscillation period (red) and the oscillation
patterns for three simulations. Simulations with ⌧D < 0.1 produces coherent oscillation
patterns and result in a negligible error. The system was simulated to a final time 900s.
Simulations were performed on a 1.8 Ghz Intel Core i7 processor.

Active transport in a neuron

Di↵usion is the dominating mechanism of molecular transport in prokaryotes such as E.
Coli, and it was in that context the NSM was first applied [10, 17]. However, di↵usion is
not the only mechanism for molecular transport in eukaryotic cells. Intra-cellular cargo can
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Figure 4.4: DFSP benchmark results. (A) Performance of DFSP shows a
comparison of simulation times for DFSP at varying τD values (red) and NSM
(blue), and the DFSP speedup factor (green). For this model, DFSP outperforms
NSM for τD > 0.01. (B) Error in DFSP shows the relative error in MinCDE
oscillation period (red) and the oscillation patterns for three simulations. Sim-
ulations with τD < 0.1 produces coherent oscillation patterns and result in a
negligible error. The system was simulated to a final time 900s. Simulations were
performed on a 1.8 Ghz Intel Core i7 processor.

motor proteins bind to the cargo and to the filaments and move the cargo along

the fiber, always in a specific direction depending on the type of motor and fiber.

This transport is usually much faster than diffusion but requires additional energy.

Vesicles, organelles, mRNA and proteins involved in signaling are examples of

cargo that are transported in this way inside living cells.

Due to the ubiquity of active transport in biological systems, it is important

that simulation software have the capability to handle mesoscopic models with

general transport mechanisms. In [60], the RDME was extended to include an

advection term that models cargo transport on the microtubule network. A sim-
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ple model of signaling in a yeast cell was considered and URDME was used for

model development and simulation. To illustrate both the geometrical flexibility

of URDME as well as its capability to model more general transport mechanisms,

we show here how to simulate active transport in a model of a neuron with a

detailed geometry.

Active transport of cellular cargo is of fundamental importance to maintain

the highly polarized state of a healthy neuron. In the axon, microtubules are

uniformly oriented with plus-end towards the soma and minus-end towards the

synapse. Kinesin transports cargo in the anterograde direction, from the cell

body to the synapse. For example, kinesin drive the transport of synaptic vesicles

from the cell body through the axon where they are subsequently docked to the

plasma membrane in the presynaptic terminus. Dynein drives transport in the

opposite direction (retrograde transport) in the axon, and may aid in transporting

for example RNA from the cell body to the dendrites [89]. In the dendrites,

the situation is more complex than in the axon, since the microtubules form

an array of mixed orientation. While the particular motor protein transports

cargo in a specific direction on the fibers, a single cargo such as a vesicle can

have many different motors bound to it simultaneously and therefore may move

in a bidirectional manner [135, 56, 35]. The details of how kinesin and dynein-

driven transport is coordinated and regulated to achieve differential targeting and
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localization of cargo is still a largely unresolved issue [54, 116]. As an example of

a possible mechanism of regulation, the microtubule binding protein Tau effects

the binding affinity of kinesin to the microtubule, while dynein is less sensitive to

elevated Tau concentrations [22].

A B

Figure 5: The neuron geometry (a) is based on a artistic CAD rendering generated with
the public domain version of the software Blender (http://www.blender.org). In order to
conduct simulations in this geometry, the model was exported in the STL surface mesh for-
mat, imported into the open-source meshing package Gmsh [20], where the boundary was
re-parametrized and the domain subsequently meshed with a volume mesh in 3D. The result-
ing mesh was then converted into a Comsol Multiphysics 3.5a model to serve as a geometry
description for the URDME model. Assembly of active transport jump rate constants are
conducted by URDME on the unstructured mesh shown in (b). For a mathematical back-
ground on how to obtain these constants on the unstructured mesh, see [26]. URDME’s
capability to use an unstructured mesh made up of tetrahedral and triangular elements is
of vital importance in order to be able to resolve the complex geometry of the neuron.

to model both di↵usion and active transport in a complex geometry, the values of the various
parameters have not been chosen to fit any particular neuron geometry. Hence the velocity
of dynein is conveniently set to be half of that of kinesin in the axon. Also, the net rate
of transport in the dynein is set to be one hundredth of the rate of kinesin in the axon to
reflect the e↵ects of mixed polarity of fibers [27].

In order to setup this simulation in URDME, a Matlab function for the velocity field
modeling the average orientation of the fibers at any point in the domain needs to be pro-
vided. Obviously, specification of this velocity field requires biological knowledge. The
ability to work in the Matlab environment greatly simplifies parametrization of the velocity
field. Since this geometry was given as a surface mesh, which is also often the case when the
domain is obtained from cell imaging, we have no analytical expression for the parametriza-
tion of the geometry to rely on. In this example we want the velocity field to trace the axon
and dendrite structures. To achieve this, we first compute surface normals to all triangles
on the surface of the neuron. An interpolation table containing vectors with base in the cen-
troids in the triangles of the surface mesh and pointing in the direction of suitably chosen
reference points was thus constructed. For simplicity, we only used two di↵erent reference
points, one near the center of the cell body and the other beyond the axon terminus along
the long axis of the axon. The smoothness of the velocity field can easily be improved by
adding more reference points. For any point inside the domain, we evaluate the velocity by
nearest neighbor interpolation using the interpolation table. From this description of the
microtubule network and the information about the mesh, utility routines available as add-
ons to the basic URDME package can be used to assemble jump rate constants to be used
in the definition of the stochastic transport process in much the same way as for di↵usion
[26]. This procedure may seem complicated at a first glance, but can be performed quite
easily in Matlab using built-in utility routines. The model files required to run this example
can be found in Additional File 5.
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Figure 4.5: The neuron geometry (A) is based on a artistic CAD ren-
dering generated with the public domain version of the software Blender
(http://www.blender.org). In order to conduct simulations in this geometry, the
model was exported in the STL surface mesh format, imported into the open-
source meshing package Gmsh [47], where the boundary was re-parametrized and
the domain subsequently meshed with a volume mesh in 3D. The resulting mesh
was then converted into a Comsol Multiphysics 3.5a model to serve as a geometry
description for the URDME model. Assembly of active transport jump rate con-
stants were conducted by URDME on the unstructured mesh shown in (B). For a
mathematical background on how to obtain these constants on the unstructured
mesh, see [60]. URDME’s capability to use an unstructured mesh made up of
tetrahedral and triangular elements is of vital importance in order to be able to
resolve the complex geometry of the neuron.

To illustrate how diffusion and active transport can simultaneously be modeled

with URDME in the neuron geometry we consider a straightforward model where a
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cargo species is transported to different regions of the neuron. The motor proteins

are modeled implicitly, that is, we assume that a population of motor proteins is

associated to the cargo species at all times. Although an approximation, there

are recent experimental evidence that the distributions of motors on vesicles are

relatively stable [35]. Table 4.4 summarizes the model. The cargo species V is

created uniformly in the cell body (R1). V can diffuse and bind reversibly to

microtubule filaments, either with a kinesin motor as V k or with a dynein motor

as V d (R2–R5). When bound to a filament, V is actively transported in a direction

dictated by the kind of motor that is currently active. The cargo can reverse its

direction on the fiber in bidirectional transport by letting the currently active

motor protein change with some probability (R6,R7). The quotient σkd/σdk then

dictates the direction of net transport. Finally, V is uniformly degraded (R8) in

the whole neuron so that the total number of cargo V reaches a steady-state level.

Reaction Description Cellular location

(R1) ∅ µ1−→ V Creation of cargo Cell body

(R2–R5) V
σb



σd

V k,d Binding of V to microtubule All domains

(R6,R7) V k
σkd



σdk

V d Reversal of direction Microtubule

(R8) V
µ2−→ ∅ Degradation of V All domains

Table 4.4: Model of active transport of a cargo species V that is transported on
microtubule filaments in a direction determined by the orientation of the fibers
(as modeled by a velocity field) and the current motor protein bound to the fiber
(kinesin or dynein). See text for more details.
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To illustrate the ability of cargo to localize to different compartments of the cell

depending on the dominating motor protein, we consider the following scenario.

First, we let σdk = 10σkd, so that on average, kinesin will spend more time bound

to the microtubule than will dynein. In this case, the cargo will travel through

the axon and eventually localize to the axon terminus. After half of the total

simulation time has elapsed, the situation is reversed and σkd = 10σdk such that

the cargo will localize to the dendrites.

Figure 4.6: Normalized concentration of cargo V in the soma (green), axon
(blue) and dendrites (red) as a function of time. Initially, the parameters satisfy
σkd = 10σdk and cargo localizes to the axon due to the larger fraction of time
spent in the kinesin binding state. At time t = 0.5 the situation is reversed, and
the localization of V shifts from axon to dendrites. The red regions in the inlays
depicting the neuron show the areas where V is present.
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Figure 4.6 shows a typical output of a simulation with URDME. The con-

centration V of cargo is plotted in the different regions of the neuron geometry

(axon, soma, and dendrites). Since the purpose of this example is to illustrate the

capability of URDME to model both diffusion and active transport in a complex

geometry, the values of the various parameters have not been chosen to fit any

particular neuron geometry. Hence the velocity of dynein in the axon is conve-

niently set to be half that of kinesin. Also, the net rate of transport of dynein in

the axon is set to be one hundredth of the rate of transport of kinesin, to reflect

the effects of mixed polarity of fibers [63].

In order to set up this simulation in URDME, a Matlab function for the veloc-

ity field modeling the average orientation of the fibers at any point in the domain

needs to be provided. Obviously, specification of this velocity field requires biolog-

ical knowledge. The ability to work in the Matlab environment greatly simplifies

parametrization of the velocity field. Since this geometry was given as a surface

mesh, which is also often the case when the domain is obtained from cell imaging,

we have no analytical expression for the parametrization of the geometry to rely

on. In this example we want the velocity field to trace the axon and dendrite

structures. To achieve this, we first compute surface normals to all triangles on

the surface of the neuron. An interpolation table containing vectors with base in

the centroids in the triangles of the surface mesh and pointing in the direction
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of suitably chosen reference points was thus constructed. For simplicity, we used

two different reference points, one near the center of the cell body and the other

beyond the axon terminus along the long axis of the axon. The smoothness of

the velocity field can easily be improved by adding more reference points. For

any point inside the domain, we evaluate the velocity by nearest neighbor inter-

polation using the interpolation table. From this description of the microtubule

network and the information about the mesh, utility routines available as add-ons

to the basic URDME package can be used to assemble jump rate constants to be

used in the definition of the stochastic transport process in much the same way

as for diffusion [60]. This procedure may seem complicated at a first glance, but

can be performed quite easily in Matlab using built-in utility routines. The model

files required to run this example can be found in [26].

4.4 Discussion

The design of URDME is motivated by both modeling and algorithm devel-

opment. Systems biology investigations are typically computationally intensive,

and often require large ensembles of trajectories spanning parameter space to

match data, or to conduct a sensitivity and robustness analysis. Development of

more efficient simulation methods is needed to make such large scale investigations
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feasible. However, due to the overhead of handling complex geometries, mesh gen-

eration and visualization of results, algorithm developers often tend to consider

only simple test models in simple geometries, often restricted to one or two spatial

dimensions. While this can be enough to illustrate the potential benefits of a new

method, the resulting software is often not general enough for use on complex

biological models. URDME aims to bridge this gap by providing a large part of

the infrastructure needed for simulation of realistic models. We exemplified this

in this Chapter by the application of the DFSP algorithm in a full 3D simulation.

The theory and methodology for spatial stochastic simulation is still under-

going extensive development, and no single mathematical modeling framework or

method has emerged as a de facto standard. The utility of the URDME frame-

work is not restricted to mesoscopic RDME simulations; we have used URDME to

develop solvers based on the Smoluchowski model and a microscopic–mesoscopic

hybrid methods [59].

Another benefit of the modular architecture is that it simplifies the use of

different execution models for the simulations. As part of work on methods for

enactment of computation in grid environments, we have developed a URDME

server module that enables remote execution in distributed computing environ-

ments [102, 103]. This enables highly task-parallel investigations to utilize dis-
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tributed computational resources such as clusters, grids, and clouds to greatly

increase productivity for the end-user.

Comparison of spatial stochastic software packages To further illustrate

the design of our software, we have compared its features to two other publicly

available packages for mesoscopic spatial stochastic simulation. Table 4.5 shows

a comparison between URDME 1.1, MesoRD 1.0, and STEPS 1.3. MesoRD was

one of the first software projects aimed at simulation of the RDME. STEPS was

developed for simulation of detailed models of dendrites and synapses, but is

generally applicable to a lager set of reaction-diffusion models.

There are three significant ways in which a user interacts with a spatial stochas-

tic software package: the environment for model development, execution of a sim-

ulation, and post-processing and analysis of the data generated by the simulation.

The interface and model development environment used by URDME and STEPS

are similar in that both are closely tied to a programming language environment:

Matlab in the case of URDME and Python for STEPS. URDME provides a single

function entry point, and models are developed in external programming files.

This design pattern follows that of the Matlab ODE suite. STEPS provides an

object oriented Python interface for creation, simulation and post-processing of

models. STEPS claims that a programmatic interface offers significant advan-
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URDME 1.1 MesoRD 1.0 STEPS 1.3
Interface Matlab & Comsol Command line Python

Simple GUI (Windows)
Visualization Matlab & Comsol OpenGL tool PyOpenGL tool

Matlab toolbox
Post-processing Matlab 3rd party Python
SBML support Conversion tool SBML L2v4 Import module

(no geometry) + CSG geometry (no geometry)
Edit Geometry Comsol SBML 3rd party

Mesh Type Vertex centered Uniform Cartesian Body centered
Tetrahedrons Tetrahedrons

Algorithms NSM, DFSP NSM Spatial-SSA
+ extendable +non-local extension

Propensity types All SBML (MathML) Mass-action
Model Features compartments compartments compartments

surfaces surfaces
volume diffusion volume diffusion volume diffusion
surface diffusion

directed transport

Table 4.5: A comparison of features of RDME simulation software.
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tages over a non-interactive software interface [62] (in contrast to the command

line and input file interface), and we share this opinion. The major differences

between URDME and STEPS are the feature set and the performance. The exe-

cution platform of URDME is the Matlab-Comsol environment, thus URDME has

full access to the scientific libraries of Matlab as well as the advanced geometry

and mesh handling interface of Comsol. Another major difference is one of aim.

URDME is developed by a team of biological model developers as well as of algo-

rithm developers, and it aims itself at both communities. This is reflected in its

expandable solver interface and performance centric design. STEPS is aimed at

simulation of neuron signaling pathway models. In contrast to the design pattern

used in URDME and STEPS, MesoRD functions as a command line program that

uses an input file in the Systems Biology Markup Language (SBML) [68] format

to describe the model. SBML is a community effort with the aim to standardize

descriptions of biochemical reaction network models. MesoRD extends the format

with a custom Consecutive Solid Geometry (CSG) description of the domain ge-

ometry of the model. SBML has been widely adopted as a standard to exchange

non-spatial models, but the limitations in its capability to describe spatial models

has restricted its adoption for RDME simulations. The post-processing environ-

ment of URDME is closely integrated into Matlab. MesoRD provides a Matlab

toolbox for analyzing the simulation data files. STEPS utilizes the Python pro-
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gramming environment and packages such as NumPy, SciPy, and Matplotlib for

post-processing and analysis.

Compared to static XML input files, the programmatic paradigm used by

URDME and STEPS provides a more powerful but also more complex modeling

environment. Constructing model files using a complete programming language

reduces the restrictions imposed on the software by the model format. For ex-

ample, the model of the neuron presented in the Results section could not have

been described by an SBML document, nor the extended SBML format used by

MesoRD. Since propensities in URDME are defined in a program file, any type of

functional propensity can be used in URDME models, including Michaelis-Menten

and Hill term style propensities, and even arbitrary logical expressions can be em-

ployed. This offers great flexibility in terms of the models that can be simulated,

but also places more responsibility on the end-user. MesoRD uses MathML as

part of the SBML definition, which allows the use of any mathematical expression

in the propensities and facilitates handling of units and error checking. This is a

powerful and robust, but also computationally expensive strategy. The STEPS

reaction object supports only mass action kinetics, which results in an efficient

but less flexible strategy.

In addition to having the most efficient and expandable design of the model

propensity, URDME also provides the largest set of geometry and mesh model
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features of the three software packages. URDME supports volume compartments

with internal and external 2D surfaces embedded in the 3D geometry, as well as

diffusion and reactions on surfaces and in the 3D volume. URDME also sup-

ports directed transport (convection) in 3D through an add-on module. STEPS

1.3 supports 3D compartments and volume diffusion. It is capable of localizing

species to a curved surface embedded in 3D, but does not support surface dif-

fusion. MesoRD 1.0 supports 3D compartments and volume diffusion only. To

represent cellular membranes, MesoRD typically uses a small 3D volume on the

exterior of the domain.

In summary, as a consequence of the design of the model environment, MesoRD

is simpler to learn and use than both URDME and STEPS and also offers a bet-

ter support for e.g. handling units, but the latter two offer a much more flexible

and efficient modeling and simulation environment. In addition to the program-

matic environment, both URDME and STEPS provide limited support for SBML.

URDME has an experimental conversion utility that will create templates for the

model and propensity file from an SBML description of the chemical reactions, see

[26]. This utility will be fully included in the next version of URDME. STEPS pro-

vides a function to convert an SBML file into Python model objects. In addition

to the SBML document defining the biochemical reaction network, both URDME
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and STEPS require a mesh describing the model domain geometry be provided.

Neither software is able to use SBML as a comprehensive model description.

Simulation performance To compare the performance of the software pack-

ages, we implemented the model of Min oscillations in E. Coli as described in [41]

in each of the three software environments. Figure 4.7 shows simulation time as a

function of the number of voxels in the mesh. The simulation was run for 900 sec-

onds (simulation time), with the system state recorded every second. A detailed

description of the model setup in the different packages and the scripts used for

producing these benchmarks are provided in [26]. The URDME framework has

a strong emphasis on efficient simulation algorithms, which is also visible in the

figure. URDME clearly outperforms the other packages. We believe that this is

in large part due to URDME’s modular design and the fact that the solver source

files and the propensity functions file are compiled into a dedicated executable for

each separate model (see the Implementation section for details).

The numerical treatment of mesoscopic diffusion. URDME emphasizes

the use of unstructured tetrahedral and triangular meshes to discretize the ge-

ometry. Unstructured meshes offer distinct advantages over Cartesian meshes for

resolving complex geometries with non-trivial boundaries and they are more flexi-

ble than cut-cell approaches when it comes to describing processes occurring on a
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Figure 4.7: Performance comparison of the three software packages for an in-
creasing number of voxels. Each point shows the mean and the error bars show
the standard deviation of a ensemble of N = 5 runs. For URDME the number
of voxels represents the number of mesh vertices, for MesoRD it represents the
number of cubic subvolumes, and for STEPS it represents the number of tetrahe-
drons. All simulations were performed on a 1.8 GHz Intel core i7 processor with
4GB of memory.
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curved boundary embedded in 3D space, such as the cell membrane of a spherical

cell or the nuclear membrane [71]. The first version of URDME was developed as a

product of theoretical work on how to obtain mesoscopic diffusion jump constants

on triangular and tetrahedral meshes [36]. In short, the methodology used by UR-

DME is based on the fact that a numerical discretization scheme for the standard

diffusion equation will give jump coefficients that result in mesoscopic simulations

that are consistent with both the behavior of mean values of a large ensemble of

particles and the probability density function for a single particle diffusing accord-

ing to Brownian motion. The latter is true since the Fokker-Planck equation for

the one-particle probability density function is mathematically equivalent to the

macroscopic diffusion equation. URDME currently uses a discretization with the

Finite Element method to obtain the diffusion jump coefficients.

The quality of the tetrahedral mesh is an important aspect of a numerical

discretization. An in-depth discussion of the requirements on the mesh for use

in the mesoscopic model is given in [36]. Tetrahedra should not be too irregular,

and between regions in the domain with much different resolution, the size of the

elements should not grow too fast. This is also true for the solution of PDEs, and

mesh generation software is aware of these issues and attempts to optimize the

meshes accordingly. Surface meshes in 2D from state-of-the art mesh generation

software such as Comsol tend to be of very high quality. In 3D, many meshes

86



Chapter 4. URDME: a Modular Framework for Stochastic Simulation of
Reaction-Transport Processes in Complex Geometries

will violate the assumptions in [36] to some degree. Generation of high quality

unstructured meshes is an active area of research due to their importance in

industrial applications. The modular design of URDME ensures that we can

accommodate new results in this area without major restructuring of the code.

The influence of mesh quality on RDME simulations with unstructured meshes

in 3D was studied for several different discretization schemes in [76] using partic-

ularly revealing and highly sensitive model problems. They show that unless the

meshes are of high quality, discretization errors may lead to small but persisting

errors for both the Finite Element and the Finite Volume methods, i.e. the con-

vergence properties of the schemes are affected negatively. In some of these cases,

simulations using a structured Cartesian mesh will have better numerical proper-

ties if the geometry permits resolution of the domain with a feasible number of

subvolumes. On the other hand, it is not difficult to think of cases for which this

is very difficult and for which sensitive processes occur on the parts of the domain

which are hard to resolve.

Using MesoRD, surfaces in a 3D model are modeled as volume geometry ob-

jects by ensuring that the thickness of the membrane is small compared to its size,

approaching a true 2D model as the thickness of the membrane becomes small.

Unless one desires to resolve some dynamics on such high level of detail as to

consider vertical movement of molecules in the membrane, this will be unneces-
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sarily expensive since the mesh elements has to be sufficiently small to resolve the

narrow 3D volume. The mesh generation in MesoRD needs several grid points in

the extent of a membrane to give a fully connected diffusion volume [34, Fig. 11].

With a uniform grid, this will lead to expensive simulations since the size of the

voxels necessary to accurately resolve the membrane must be used everywhere in

the domain. In order to demonstrate this, we conducted a simple diffusion-only

numerical experiment, described in detail in [26]. We let molecules diffuse freely

on the surface of a unit sphere, and be absorbed by a small circular patch at one

of the poles. Simulations using URDME are in excellent agreement with the exact

solution, even for fairly coarse meshes. For example, using an ensemble size of

105 molecules to compute the mean absorption time, the error was ≈ 0.2% for

a mesh with 4343 voxels. The computing time to generate the solution was 21

seconds. By contrast, for a membrane thickness of 100 nm and a voxel size of

20 nm, MesoRD 1.0 produces a solution with about 14% error using 157128 voxels

and a simulation time of 1 hour and 50 minutes on the same 2.66 Ghz Intel Core

i7 with 8GB of RAM.

For complex models with both volume diffusion, surface diffusion, and reac-

tions, it is difficult to predict what impact different sources of error in the diffusion

will have on the output metric of interest. For example, for the Min system used

to benchmark the different software packages in Figure 4.7, URDME, STEPS,
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and MesoRD give quite similar period times of oscillations. In addition to errors

caused by the discretization, errors intrinsic to the RDME mathematical model

arise for highly diffusion limited reactions when the voxels become very small [70].

To some extent, this can be alleviated using modified, mesh dependent bimolecu-

lar reaction rates [37, 40], but there is a critical size of the voxels under which no

correction to the traditional RDME can make it consistent with more fine scaled

particle based methods [61]. Since unstructured meshes can more accurately re-

solve complex geometries, their spatial accuracy is often higher for equivalently

sized voxels when compared to Cartesian meshes. This can help in avoiding ge-

ometrical features of the model to force us to approach the critical regime for

the voxel sizes. The combined effects of diffusion discretization error and error

caused by small subvolumes were investigated for several additional models in

[76]. For the examples studied there, it was concluded that the error introduced

by small subvolumes in 3D could be a bigger source of error than any numerical

discretization errors of the diffusion operator.

Conclusions

As demonstrated by the examples in this chapter, the URDME infrastructure

offers great flexibility at the stage of model construction and execution. Using
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a simple script in Matlab, URDME was used to set up and conduct a series of

experiments in which the geometry of an E. Coli bacterium was automatically

varied. In another example, the basic reaction-diffusion modeling framework was

extended to include active transport in a highly complex geometry obtained from

external CAD and meshing software.

The URDME software framework offers unique features for both model and

methods developers in computational systems biology. The support of unstruc-

tured meshes provides the capability to create models with a complex geometry

that closely match the physical descriptions of the systems under study. URDME

integrates easily with widely used scientific computing software to provide a ver-

satile platform for mathematical and computational modeling, allowing for the

implementation of complex and customized models and pre- and post-processing

routines. The modular design ensures extensibility and interchangeability of the

third-party tools used for model specification and mesh generation, as well as of

the core simulation algorithms.
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Chapter 5

Adaptive Accelerated Spatial

Stochastic Simulation on

NVIDIA graphics processing

units

One of the biggest challenges faced by scientists utilizing the DFSP algorithm

is correct selection of the appropriate operator splitting timestep. A correctly

chosen timestep will produce results at the optimum speed without violating the

specified error tolerance. Choosing an appropriate timestep requires estimation

of the error due to operator splitting. The error is a function of the spatial
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discretization of the domain, the diffusion coefficients of the molecules within the

system, and the stiffness of the chemical reaction channels.

In this chapter we present an extension to the DFSP algorithm that auto-

matically and adaptively selects the appropriate timestep for performance and

error control. We demonstrate the utility of this method with a traditional CPU

implementation. In addition we demonstrate the parallel efficiency inherent in

the adaptive DFSP algorithm (ADFSP) with an implementation on the NVIDIA

Graphics Processing Unit (GPU). This work was done in collaboration with An-

dreas Hellander and Michael Lawson.

5.1 Overview of the DFSP Algorithm

The key observation underlying the DFSP method is that the diffusion of each

molecule is independent of all other molecules in the system. Starting with an

initial population of a given species in a voxel, the DFSP method [28] uses the

Finite State Projection method [99] to compute the probability of transition of

that species into neighboring voxels. DFSP approximates the DME (2.6) for one

species s and one voxel i at a time:

d

dt
pi,s(x, t) = Dspi,s(x, t), (5.1)
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where the diffusion matrix Ds has the same structure for all species in the do-

main, but is scaled by the appropriate diffusion coefficient. The solution to this

linear differential system is Pi,s = e∆tDspi,s(x, 0). The final spatial distribution

of molecules after a timestep is then found by sampling new molecular positions

using the solution vectors Pi,s and executing the resulting transitions.

Since the diffusion of each molecule is independent, DFSP partitions the sys-

tem into sub-problems of diffusing individual molecules. This requires no further

approximation, but makes the resulting matrix exponential far more tractable

and allows for a higher level of parallelism. Therefore, in this work we will diffuse

molecules one at a time. Below we discuss the details of how we solve for the

single molecule PDFs, but first we outline approximations to these subproblems

and how we use them to compose a solution to the full diffusion problem.

To solve the DME directly for a sub-problem, the DFSP method retains a

finite set of states that carry a high probability, and truncates states of lower

probability. In the case of the DME for one molecule, states are defined by the

location of that molecule. The states closest to the originating voxel will have

the highest probability associated with them; those further away will have lower

probability. Thus, there is a clear systematic way to search for the states with

the highest probability, and the states of lower probability are lumped into one

absorbing state, ε, that provides an error bound. In our previous work we defined
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a parameter MAX as the farthest distance molecules were allowed to diffuse in

one step (and thus the farthest reachable state), and the remaining transitions

were captured in D̃s. The approximation is given by P̃i,s = e∆tD̃spi,s(x, 0) ≈

e∆tDspi,s(x, 0) and the resulting error bound is ‖P̃i,s − Pi,s‖1 ≤ 2ε. We note that

ε is directly calculated and can be made arbitrarily small by adding states.

In this work we use the uniformization method [73] to compute the full ma-

trix exponential. We start with the portion of the state space with the highest

probability, and end when the probability of the truncated states drops below ε.

This results in the same 2ε bound as in our previous work, only now the bound is

tight: ‖P̃i,s−Pi,s‖1 = 2ε. Similar to MAX, we have a value Nmax that denotes the

maximum number of voxels kept. In practice we fix the time step and error crite-

rion and then vary Nmax, but it is an important parameter to introduce because

it will be used in some of the analysis that follows. This method of solving the

single molecule problem requires a search on a sorted list, but it does not require

a matrix exponentiation at each step of a guess and check.

To calculate the final state of the system due to diffusion over an interval of

length ∆t, we sample the PDF by selecting uniformly distributed random numbers

R ∈ U(0, 1) and finding the smallest integer µ such that
∑µ

j=1 P̃i,s[j] > R, where

P̃i,s[j] is the probability weight of state j. P̃i,s is normalized so that conservation
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of probability is achieved:

P̃i,s[j] =
P̃i,s[j]

‖P̃i,s‖1

.

Repeating this process
∑

i,sXi,s(t) times identifies the final location of all the

molecules in the system at time t+ ∆t.

For molecules of the same type originating from the same voxel, we can re-use

the PDF. In addition, we can re-use the PDF for future time-steps of length ∆t. As

a result, for a constant time step, simulating a diffusion process becomes a matter

of selecting
∑

i,sXi,s(t) random numbers and performing a lookup and comparison.

Since we are able to diffuse each molecule independently, this algorithm is highly

parallelizable within a time-step.

5.2 Computation of DFSP lookup tables via Uni-

formization

The computationally expensive part of the DFSP algorithm is the generation

of the lookup tables necessary to redistribute the molecules to neighboring voxels

on each diffusion step. Since each molecule is independent, this can be thought of

as generating the one-particle PDF for each voxel in the system. In other words,

given that a molecule starts in a particular voxel, for every voxel in the system
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what is the probability that it will be located in that voxel at the end of the time

step? For small problem sizes, explicitly forming local, truncated matrices and

solving for the PDFs using matrix exponentials is an efficient approach that allows

for reasonably large time steps (the procedure used in our previous work [28]).

However, for larger problem sizes in 2D and 3D and for unstructured meshes,

this strategy becomes prohibitively expensive and can negate any performance

benefits of DFSP unless the ensemble size is very large and the lookup-tables can

be reused efficiently between independent realizations.

We compute the one-particle PDFs by uniformization of the Markov process

[73]. Uniformization can be used to analyze a continuous-time Markov process

by converting it to a discrete-time chain subordinate to a Poisson process. Define

λmax = supx∈Z+ D(x) as a bound on the maximum intensity of the generator of

the Markov process. In the general case λmax is unbounded, but for the case

of a single particle jumping on the mesh, the state space is finite and λmax =

max
i
|Dii|, i=0,...,Ndofs. The discrete time chain defined by the transition matrix

S = I − D/λmax subordinate to the Poisson process Po(λmax) is the equivalent

to the original continuous chain [73], where I denotes the identity matrix. The

computation of the time dependent PDF for a particle starting in Vi amounts to

computing the average

Pi(∆t) =
∞∑
k=0

pkS
kei, (5.2)
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where ei is a vector with all elements zeros except for ei = 1, and

pk =
(λmax∆t)

k

k!
exp (−λmax∆t)

is the Poisson probability that the final time ∆t was reached in k steps of the

discrete chain. In practice, the sum (5.2) is truncated when the tail of the Poisson

distribution is small enough according to some tolerance ε,
∑Nu

k=0 pk ≥ 1 − ε. In

the context of DFSP, ε corresponds to the probability for the particle to be in the

absorbing state and NMAX corresponds roughly to the MAX parameter [28]. This

follows trivially from the fact that since S describes a Markov chain, Skei ≥ 0,

‖Skei‖1 = 1 ∀k and hence

‖
∞∑

k=Nu+1

pkS
kei‖1 ≤

∞∑
k=Nu+1

pk‖Skei‖1 ≤ ε. (5.3)

In practice, when the tolerance ε is met, the resulting one-particle PDF is renor-

malized as described in the previous section in order for the algorithm to conserve

the total copy number of molecules.

With the procedure (5.3) to compute the one-particle PDFs, the following

bound on the error in PDF holds by construction, where A is the truncated
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solution and D is the full matrix for the DME:

‖e∆tD − A‖1 ≤ ε. (5.4)

For the expected value, we then have the trivial bound

‖∆E[Xn+1]‖1 = ‖(e∆tD − eτDfsp)xn‖1 = ‖(e∆tD − A)xn‖1 ≤ ε‖xn‖1.

(5.5)

Hence, the error tolerance parameter ε bounds the conditional relative error in

mean in one timestep of DFSP,

‖∆E[Xn+1]‖1

‖xn‖1

≤ ε. (5.6)

In many cases, this can be expected to be an overly conservative bound. In

our case however, given ε, ∆t will be chosen to fulfill the bound (5.6) by con-

struction provided that the one-particle PDFs are computed to ε tolerance using

uniformization.

The cost of uniformization increases rapidly with the stiffness of the diffusion

operator. Intuitively, DFSP moves the problem of stiffness in the stochastic simu-

lation to a problem of solving the diffusion equation for every voxel and chemical
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species in the mesh. Conceptually, uniformization is related to the explicit Euler

method for solving the diffusion PDE. In the PDE literature, it is well known that

implicit methods or exponential integrators are advantageous in the stiff regime

because they allow for larger time steps. Taking large time steps (relative to the

CFL condition), however, quickly makes the computation of the lookup tables

too expensive to be worthwhile over a pure NSM simulation. Hence, while DFSP

improves on the stiffness issue of the RDME, it does not offer a clear cut solution.

There are a number of different ways to solve for the one particle PDFs, in-

cluding Krylov subspace methods, Padé methods, and using the solution of a

system of ordinary differential equations. While some of these techniques are

used more commonly in general to compute the matrix exponential [96] than the

uniformization method, we found that they were more complex to implement, and

had greater computation times, while providing no additional accuracy benefit.

Uniformization also provided the additional benefit that it is very amenable to

parallelization and has a low memory requirement, which is beneficial for GPU

implementations. We will comment further on the cost and complexity of uni-

formization in Section 5.4.
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5.3 Estimation of the Operator-Splitting Error

Here we will summarize the results derived in [27]. DFSP uses a first order op-

erator splitting method, or Lie-Trotter splitting, to decouple the reaction operator

M and the diffusion operator D in the RDME:

p(x, t) = et(M+D)p(x, 0). (5.7)

The first order operator splitting approximates (5.7) by

ps(x, t+ ∆t) = e∆tMe∆tDps(x, t), (5.8)

which is accurate toO(∆t2). Simulation of (5.8) in done by applying each operator

to the state sequentially:

1. p1/2
s = e∆tMp(x, t)

2. ps(x, t+ ∆t) = e∆tDp1/2
s . (5.9)

With the commutator error analysis of [72], we can find a bound on the local

error in the approximation using

‖p(x,∆t)− ps(x,∆t)‖ ≤ C∆t, (5.10)
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where C is an arbitrary constant. Thus the local error is bounded by the difference

between applying the reaction operator first versus applying the diffusion operator

first.

The error in a single step of the ADFSP algorithm is given by:

E = (e∆t(M+D) − e∆tMe∆tD)p(x, t) =
∆t2

2
[D,M]p(x, t) +O(∆t3), (5.11)

where the commutator [A,B] is defined as [A,B] = AB −BA.

We can approximate (5.11) by finding the expected change of state ∆E[X] for

a given state x = p(x, t):

∆E[X] = 0.5∆t2 (D(M(x))−M(Dx)) . (5.12)

Then we can select the next time step based on the current estimate of local error

(for voxel i and species s) using

τsuggested = min
s

[√
2(ErrorTolerance)∑N

i=1 |Vi||∆E[X]is|

]
, (5.13)

where |Vi| is the volume of voxel i.
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5.4 Adaptive DFSP algorithm

In this section we discuss the implementation of the adaptive DFSP algorithm

on both the CPU and GPU compute environments. First, we describe the im-

plementation of the whole algorithm on a single core of the host, then for each

component of the algorithm, we provide a performance study of the parallel GPU

implementation in order to motivate the decision of whether to execute a compo-

nent on the GPU or CPU in the multicore implementation.

The algorithm has six components. The SSA reaction operator advances the

state of the system by executing reactions using the SSA direct method within

each voxel over a time step τD. The DFSP diffusion operator advances the state

of the system by executing diffusion between voxels over the same time step.

Lookup-table generation; the DFSP diffusion operator uses a lookup table that is

generated by the uniformization method discussed previously. For each value of

τD, a distinct table is generated. A cache of lookup tables is stored to minimize

the number of tables generated. Local error estimation. After we have advanced

the state of the system, we estimate the error due to operator splitting by the

formula (5.12). Compute proposed time step. Using the estimated error, we can

compute the largest time step we can advance the system by, while maintaining

the error tolerance specified by the user using formula (5.13). Accept or reject the
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proposed time step. Due to the fast fluctuations in system states during stochastic

simulation, the exact value of the estimated time step fluctuates as well. Since

a lookup table is generated for each new value of time step, we choose the next

time step so that it differs from the previous time step by a factor of 2j, where

j ∈ Z. Thus, if the proposed time step is larger than the current time step, then

the accepted time step is the current time step multiplied by the largest factor of

two for which the product is smaller than the estimated time step. Conversely, if

the proposed time step is smaller than the current time step, then the accepted

time step is the current time step multiplied by largest factor of two for which the

product is smaller than the proposed time step.

Algorithm 4 describes the algorithm in pseudo-code, and Figure 5.1 shows

a diagram of the process flow of the overall algorithm. The first step of the

algorithm is always a small step with NSM. The reason for this is that often the

initial condition of a system to be simulated is uniformly distributed in space, or

is an empty domain. In these cases, the error estimation and time step selection

formulas do not produce good initial guesses for the time step.

SSA Reaction Operator ADFSP uses a simple, straightforward implementa-

tion of the direct SSA method. The chemical reactions in each voxel are simulated

independently and sequentially. First, the propensity for each reaction channel in
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INPUT: Input State
OUTPUT: Output States

1: Take step with NSM
2: while t ≤ tend do
3: estimate splitting error in each voxel
4: calculate min [τsuggested] over all voxels
5: accept new τD based on τsuggested and current τD
6: if diffusion lookup table does not exist for τD then
7: calculate diffusion lookup table for τD
8: end if
9: take DFSP diffusion step of length τD

10: take DFSP reaction step of length τD
11: add τD to t
12: end while

Algorithm 4: ADFSP algorithm

Estimate splitting 
error

Compute tau SSA reaction step

DFSP diffusion step

(Start) NSM step

Accept tau

Generate lookup 
table

Figure 5.1: Process flow of the Adaptive DFSP algorithm. The first step is
taken with NSM to move the system out of the initial state. Next the local
splitting error is calculated in each voxel (as described above), and the maximum
value of τD is calculated so that it is accurate for the given error tolerance. Then
SSA reaction steps are executed until time t + τD and DFSP diffusion steps are
executed until time t+ τD, and a lookup table is generated if necessary. Next the
local splitting error and value of τD for the next step are calculated. The loop
continues until the simulation end time.
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each voxel is computed. The time to the next reaction in the voxel is calculated.

If that time is larger than t + τD, the reaction step for that voxel is complete.

Otherwise the reaction is selected, the local state for the voxel is updated by the

state change vector, and the relevant reaction propensities are updated. Finally,

the time to the next event is calculated, and this procedure continues until the

time step is complete.

DFSP Diffusion Operator ADFSP uses a simpler method than in our pre-

vious work to implement the DFSP diffusion operator. In this implementation,

we move each molecule independently as opposed to the finding final spatial con-

figurations of multiple molecules, as the earlier procedure did not scale well due

to the complex connectivity of unstructured meshes. The procedure to perform

a diffusion step of τD requires input of the current state of the system and the

DFSP lookup table. The lookup table may provide redistribution PDFs for a

timestep τtable that is some factor of two less than the input τD, due to conver-

gence requirements of the uniformization method. For each molecule in each voxel,

a destination voxel is selected randomly from the DFSP lookup table. Once all

molecules in the domain have been moved, the procedure is repeated τD
τtable

times.

DFSP Lookup-table generation ADFSP uses uniformization to calculate the

one-particle PDF lookup tables used by the DFSP diffusion operator. We will
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summarize the computational procedure, however further explanation is found in

Section 5.2. First we compute λmax, the largest absolute value in the diagonal of

the D matrix. This value is used to determine the maximum diffusion timestep,

τtable, where the uniformization iteration will converge within the maximum al-

lowed iterations (we use 50 iterations for this implementation). Using λmax we

determine that the iteration will converge if the following inequality holds:

ErrorTolerance

2
> 1−

50∑
i=0

Pi (λmaxτtable) ,

where Pi(x) is the ith Poisson PDF value for a distribution with mean x. Initially

we set τtable = τD. If the inequality does not hold, we reduce τtable by a factor of

two, and repeat the procedure until it does. We also record the minimum number

of iterations necessary for convergence. Next, we perform the uniformization iter-

ation for each species in each voxel separately. The iteration starts with a vector

that is all zero except the position corresponding to the species in the voxel that

this iteration is calculating, which has the value 1. This corresponds to the initial

position probability of the diffusing molecule, which is 1 in the initial location and

0 elsewhere. Then, we perform a sparse matrix-vector multiplication with the D

matrix (normalized by λmax) and multiply the result by the Poisson PDF value

corresponding to the iteration number Pi (λmaxτtable). The resulting vector is used
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as input for the next matrix-vector multiplication, and the iteration repeats for

the previously determined number of iterations. When this procedure is complete,

the resulting vector is used as probabilities and is sorted and transformed into a

cumulative distribution function for efficient selection of the destination state by

the diffusion operator, and stored in the lookup table.

Local Error Estimation This procedure is explained more fully in Section

5.3, specifically equation (5.12). First, the reaction propensities for the current

state are evaluated for each reaction channel in each voxel. That value is then

multiplied by the state change vector for each species effected by that reaction.

Then, the sum of the products from the previous step are stored for each species in

each voxel. This is known as the expected change of state due to reactions. Next,

for each species in each voxel we multiply the population times the probability

of jumping to an adjacent voxel (multiply the state vector times the D matrix).

For each destination voxel, we sum the products of the previous step. This is

the expected change of state due to diffusion. Our next step is to combine the

previous two steps, thus we take the expected state change due to diffusion and

for each species in each voxel multiply that value times the probability of jumping

to an adjacent voxel. Again, for each destination voxel we sum the products of

that step as the expected change of state due to reaction-then-diffusion. Next, we
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combine the first two steps in reverse order by first calculating the propensity

function of each reaction channel using as the input the state of the expected

change of state due to diffusion. Then for each species in each voxel we sum

the products of all the reaction propensities from the previous step that effect

that species, times the state change vector of that reaction channel to find the

expected change of state due to diffusion-then-reaction. Finally, we calculate the

expected change of state by finding the difference for each species in each voxel

between the expected change of state due to diffusion-then-reaction from expected

change of state due to a reaction-then-diffusion. The ADFSP method calculates

the operator splitting error after the initial NSM step is complete, and again every

time 10 reaction-diffusion steps are taken.

5.4.1 Implementation in URDME

We used URDME [26] as the development platform for the implementation

of both the CPU and GPU version of the adaptive DFSP algorithm. URDME

is designed with a dual purpose: to enable efficient development and simulation

of molecular systems biology models, and to enable efficient development and

deployment of RDME simulation solvers. URDME provides a unified modeling,

pre-processing and geometry handling infrastructure. This allowed us to focus our

efforts on efficient implementation of the algorithm without the burden of creating
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a reaction-diffusion simulation framework. We use the highly optimized NSM core

solver in URDME to compare the efficiency of our algorithm. NSM in URDME

has been shown to outperform other popular reaction-diffusion simulators [26] and

is to the best of our knowledge the fastest current general purpose implementation

of exact RDME simulations.

The ADFSP solver is compatible with the newly released 1.2 version of UR-

DME. Specifically, URDME 1.2 adds support for the model propensity to be

defined via ”inline” propensities (reactants and reaction rate specified in an array

in the matlab model file, usable for mass-action only). The ADFSP GPU solver

provides a plug-in to the URDME framework (specifically ”urdme inline convert

adfsp gpu.m”) that automatically converts the inline propensity to a set of device

and host CUDA functions. This allows end users to easily specify their models

without writing complex and fragile CUDA code.

5.4.2 Parallel GPU implementation

The parallelization strategy used throughout the ADFSP GPU algorithm is

to assign one GPU thread to each voxel in the system. The strategy works well

for the reaction, diffusion, uniformization and error estimation components of the

algorithm. The exception is the calculate time step component, as it performs

an L1 norm on the estimated error vector. The GPU architecture subdivides
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the total number of threads into blocks of threads that run simultaneously. The

blocks are scheduled according to available resources. For this implementation we

set the number of threads per block using the CUDA occupancy calculator and by

performance testing. Figure 5.2 shows the process flow for the ADFSP algorithm

with GPU implementation.

CPU

GPU

Estimate splitting 
error Compute tau

Reaction & diffusion 
kernel

DFSP diffusion 
kernel

(Start) NSM step

Accept tau

Generate lookup 
table kernel

Figure 5.2: Process flow for the GPU solver. Boxes above the dashed line
correspond to the components that are implemented in the CPU, and below the
line are the components implemented in the GPU. Compare to Figure 5.1.

SSA Reaction Operator Kernel GPU devices have two major types of mem-

ory. The first is global device memory which is accessible to programs running

on both CPU and GPU. The second type is on-chip local shared memory, which

is only accessible from GPU kernels. Each block of threads has access to the

same bank of shared memory, and shared memory is not persistent between block

executions. It is often thought of as an explicitly managed cache.
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The SSA reaction kernel makes use of local shared memory, as access to local

shared memory is much faster than to global memory. Each GPU thread first

reads the state of the voxel assigned to the thread into local shared memory.

Then, the SSA algorithm is executed. First, the reaction propensity for each

reaction is calculated. Then, the time to the next reaction is found. If that time

exceeds t + τD the state of the system in shared memory is written to global

memory and the kernel is complete. Otherwise the reaction is selected, the local

state is updated by the state change vector, the relevant reaction propensities are

updated, and the time to the next event is calculated.

DFSP Diffusion Operator Kernel The DFSP diffusion operator implemented

on the GPU first reads the state of the voxel assigned to the thread into local

shared memory. Then for each molecule in the voxel, the outbound destination

is randomly selected using the lookup table, and the destination is stored in a

flux vector in local shared memory. When all diffusion events have been calcu-

lated, the total flux to each outbound voxel is written to global memory using

the atomicAdd() function to ensure that no race conditions are present in this

communication step.

Figure 5.3 shows the performance of the SSA reaction kernel and the DFSP

diffusion kernel as a function of time stepsize for the G-protein 1D model (see
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Section 5.5.1 for complete description). The number of reaction events and diffu-

sion events increases linearly with the time step size. The execution time of the

SSA reaction kernel also depends linearly on the timestep. However, the DFSP

diffusion kernel performance is nearly constant with respect to stepsize, increasing

only 13% over two and a half orders of magnitude of stepsize. On the other hand,

at least for this problem, the DFSP kernel is dominating the execution time.
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Figure 5.3: Performance analysis of the reaction and diffusion kernels. The
number of events is linear in timestep for both the reaction and diffusion operators.
The execution time of the SSA reaction kernel (solid red line) depends linearly on
the time step, while the DFSP diffusion kernel is nearly constant. On the other
hand, at least for this problem, the DFSP kernel is dominating the execution time.
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Combined Reaction-Diffusion Operator Kernel To optimize performance,

we created a GPU kernel that combines the reaction and diffusion steps. In this

kernel, the state is first read from global memory to local shared memory. Then all

reactions in the voxel are performed for the timestep, then the outbound diffusion

destination for each molecule in the voxel is calculated. Then those states are

written back to global memory. This combination ensures that a minimum number

of global memory read/write operations are performed. Additional diffusion steps

may also be performed if the lookup table timestep τtable (determined by the

uniformization) is less than τD.

Uniformization Lookup Table Generation Kernel When the ADFSP al-

gorithm takes a diffusion step, it searches its cache for a lookup table that matches

the currently selected time step. If no appropriate table is found, it uses the uni-

formization method to generate the lookup table for that time step. This step

potentially is one of the most expensive components of the computation. This

motivates the accept-time-step component which ensures that new time steps are

a power of two different from previous time steps, reducing the total number of

possible lookup tables to a smaller discrete number and ensuring that new ta-

bles are calculated only if there is a significant effect on performance or accuracy.

Implementation of the uniformization method on the GPU imposed significant
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challenges. The method needs several arrays for the calculation of the matrix-

vector products. When the method is parallelized, each thread needs its own

private copy of these arrays. The simplest method is to statically allocate the

arrays. For small and medium sized problem this strategy provided good perfor-

mance and reasonable memory usage. However, when used with a large problem

we found that the total device memory usage was so large that the remaining

free space was not enough to allocate the lookup table. We used two strategies

to mitigate this problem. The first was to move existing lookup tables to CPU

memory to free additional space on the GPU. Whenever memory needed to be al-

located on the GPU, the free space was first checked. If the space was insufficient,

all lookup tables were flushed to the CPU and freed on the GPU. The lookup

tables were then moved back to GPU memory as needed. The second strategy

was to use dynamically allocated memory on the GPU for the working array. The

advantage of this method is that the memory usage is much more efficient and the

working arrays are freed after the method is complete, allowing for more space

for lookup tables to be resident in GPU memory. The disadvantage is that uni-

formization with dynamically allocated memory is significantly slower than the

same method with statically allocated memory. Figure 5.4 shows memory and

performance comparisons for static and dynamically allocated arrays in the GPU

114



Chapter 5. Adaptive Accelerated Spatial Stochastic Simulation on NVIDIA
graphics processing units

implementation of the Uniformization DFSP lookup table generation method for

the MinCDE model (see Section 5.5.2 for complete description).
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Figure 5.4: (left) Uniformization memory usage, (right) Uniformization speed
comparison. GPU implementation of the uniformization matrix exponential algo-
rithm for generation of the DFSP lookup tables. This shows the limitations of the
GPU architecture, as the GPU card that we used (GeForce GTX 560) has 1GB of
memory. Thus, ADFSP is unable to use the static uniformization method (blue
line) as it uses more memory than is available. Dynamic memory allocation uses
far less total device memory (red). The total memory used is even less with the
additionally allocated working memory (black). However, use of dynamic memory
is significantly slower than static memory, and even slower than the serial CPU
method for large problem sizes (right).

Error Estimation Kernel Figure 5.5 shows performance comparisons for the

MinCDE model between GPU and the CPU implementations for estimating the

operator splitting error. Note that the CPU implementation is faster than both

implementations on the GPU. The CPU implementation has multiple cross voxel

data dependencies, and was not suitable fort the one thread per voxel paralleliza-

tion. The implementation was reorganized such that each voxel error calculation
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is independent, however this required a net increase in the number of propensity

function evaluations and a linear search step of complexityO[ (# of connections)2].

This method (Figure 5.5 dashed red line) was found to be significantly slower than

the CPU method (Figure 5.5 solid blue).

We implemented an optimized version on the GPU which increased the per-

formance at the expense of additional memory to store the transposed diffusion

matrix (DT ). The matrices used by the ADFSP algorithm are very sparse, thus

we use the compressed column storage (CCS) method. By creating and storing a

transposed diffusion matrix (DT ) on the GPU, we were able to remove the linear

search step of the original implementation, and drive the time to access that data

to O[1]. This significantly increased the speed of the algorithm.

However, the performance of this method (Figure 5.5 black line with dots)

was found to be closer to, but still slower than, the CPU method. As a result,

the CPU error estimation method is used in the final implementation. We note,

however, that the transposed D matrix GPU method has better scaling properties

than the CPU method, and could possibly outperform it on larger problem sizes

than the memory limitations allowed us to explore.
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Figure 5.5: Comparison of GPU and CPU implementations of the operator
splitting error estimate. The CPU implementation is more efficient than both
GPU implementations, and thus is used in the final ADFSP method.
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5.5 Numerical experiments

In this section we demonstrate the accuracy and efficiency of the proposed

method by examining the performance, error and time step selection of the adap-

tive algorithm in a 1D and a 3D simulations, for varying error tolerances.

5.5.1 Polarization of S. cerevisiae

The first example is the pheromone induced G-protein cycle in Saccharomyces

cerevisiae. We have converted the PDE model from [18] into a stochastic model

and reduced it to ligand, receptor, and G-protein species (see Chapter 3 for de-

tails). The ligand level is constant in time but it varies spatially (a cosine func-

tion), with parameters determined experimentally. The ligand binds stochastically

with an initially isotropic field of receptor proteins. The bound receptor activates

the G-protein, causing the G-alpha (Ga) and G-beta-gamma (Gbg) subunits to

separate. Ga acts as an autophosphotase and upon dephosphorylation, rebinds

with Gbg to complete the cycle. The model is set in a 1D periodic domain. The

simulation time is set to 1000 seconds, as steady state is achieved by that time.

Gbg is the component furthest downstream from the ligand input and acts as a

signal to the downstream Cdc42 cycle, and will therefore be the output for this

model.
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Table 5.1 provides performance comparisons for the G-protein model on the

1D domain. ADFSP is a serial implementation of our adaptive algorithm on a

1.8 Ghz Intel Core i7 CPU. ADFSP GPU is a parallel implementation of our

adaptive algorithm on a GeForce GTX 560 GPU. It is clear that the parallel

implementation of ADFSP is 10 to 100 times faster than the serial implementation,

which shows excellent parallel efficiency. Additionally, we found that the parallel

GPU implementation of ADFSP (ADFSP GPU) provides a 2.77x speedup over

NSM, which is the fully optimized standard simulation algorithm of the field.

Algorithm time (s)
ADFSP GPU 1.86± 0.46 tol=1e-1
ADFSP 53.47± 31.13 tol=1e-1
NSM 5.17± 0.18

Table 5.1: Comparison of algorithm speed for the 1D polarization model. For
this problem and parameters, the GPU implementation of ADFSP is 28 times
faster than the CPU implementation and 2.7 times faster than NSM.
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Component Time (s) Fraction # of calls E[time/call] (s)
reaction-diffusion 22.85458 93.74% 94330 2.42E-04
estimate error 1.175021 4.82% 8576 1.37E-04
generate lookup table 0.072708 0.3% 4 1.82E-02
compute timestep 0.021148 0.09% 8576 2.47E-06
accept timestep 0.001859 0.01% 8575 2.17E-07
TOTAL TIME: 24.3798 (s)

Table 5.2: Computation profile for ADFSP algorithm on the G-protein model
with an error tolerance of 1e-1. This table provides profiling information for the
ADFSP algorithm. It shows the time taken for each kernel, along with the fraction
(percentage) of the total time. It also shows the number of times that kernel was
executed (# of calls) as well as the average time of execution for each call of the
kernel. E.g. the ”generate lookup table” kernel was executed 4 times with an
average time of 0.0182 seconds per call, which accounted for 0.3% of the total
execution time. Similarly, the reaction-diffusion kernel took 94330 steps with an
average time of 2.42e-04 seconds per step, which accounted for 93.74% of the total
execution time.

Component Time (s) Fraction # of calls E[time/call] (s)
reaction-diffusion 1.454347 85.83% 1645 8.84E-04
generate lookup table 0.210692 12.43% 3 7.02E-02
estimate error 0.013811 0.82% 150 9.21E-05
compute timestep 0.000527 0.03% 150 3.51E-06
accept timestep 0.000051 0% 149 3.42E-07
TOTAL TIME: 1.6945 (s)

Table 5.3: Computation profile for ADFSP GPU algorithm on the G-protein
model with an error tolerance of 1e-1. Shown is the total time taken for each
kernel, along with the fraction (percentage) of the total time. It also shows the
number of times that component was executed (# of calls) as well as the average
time of execution for each call of the component.
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5.5.2 Min oscillations in E. coli

A spatial reaction-diffusion system that has been studied frequently in the

literature both in a deterministic setting [67] and using a stochastic description

[41] is the periodic oscillations of Min proteins in the bacterium E. coli. By

oscillating from pole to pole, MinC suppresses the formation of a cell division

site at the poles, indirectly positioning it in the middle of the cell. See Section

4.3.1 for more details on this model. Figure 5.6 provides visualizations of this

model. This is an ideal model to test spatial stochastic algorithms, as it has a

complex geometry with both membrane and cytoplasm domain, and has both

mono-molecular and bi-molecular reactions.

Figure 5.6: Min oscillations in E. Coli. Left: 3D tetrahedral mesh of the E. coli.
Right: Time averaged concentration of MinD on the membrane. Note that the
concentration is low in the center and high on the poles of the organism. This is
due to the oscillatory nature of the MinCDE cycle. MinD acts as a contractile
ring formation inhibitor, thus the contractile ring forms at the center of the cell
where the concentration of MinD is lowest. This allows the E. coli cell to reliably
undergo mitosis into two equal halves.
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Figure 5.7 shows an overlay of the pole-to-pole oscillation pattern of membrane-

bound MinD in E. coli, along with the time steps selected by the adaptive step

size selection algorithm in ADFSP. The MinD protein binds to the membrane

near the poles of the cell, becomes cytoplasmic and diffuses to the opposite pole,

where it binds to the membrane again. When the population of MinD is mostly

membrane bound, ADFSP is able to take a larger time step, resulting in greater

performance. When MinD is mostly cytoplasmic, ADFSP reduces the timestep.

In this trajectory the time steps oscillate between τ= 1.95e-3, 9.77e-4, and 4.33e-4

seconds.

To evaluate the performance of our algorithm we timed the execution of the

MinCDE model with a medium discretization (1009 voxels), while varying the

error tolerance. Results from these tests are shown in Figure 5.9. As the error tol-

erance is loosened, the execution performance of the ADFSP algorithm increases,

as expected. The GPU implementation is consistently faster than the CPU im-

plementation of the ADFSP algorithm. Figure 5.10 shows the oscillation patterns

of the MinD protein for both the ADFSP and NSM methods. Figure 5.11 shows

the oscillation patterns of the CPU and GPU implementations of ADFSP as well

as of NSM. These results show the effects of the simulation error, as the coherence

of the oscillations degrades as the error tolerance is loosened. Table 5.4 and Table

5.5 provide profiling information on the computation.
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Figure 5.7: The figure shows the time steps selected by ADFSP (red dashed
line) and the oscillation of the MinD protein (solid blue line). Note that the time
steps oscillate with a period that is approximately half the period of the MinD
oscillation. When MinD is at its peak, most of the MinD protein in the system
has bound to the membrane at the left pole of the E. coli. Similarly, when the
pattern is at its trough, most of the MinD has bound to the membrane at the
right pole.

Component Time (s) Fraction # of calls E[time/call] (s)
reaction-diffusion 83.91669 71.84% 323386 2.59E-04
estimate error 19.99549 17.12% 29399 6.80E-04
generate lookup table 11.41732 9.77% 4 2.85E+00
compute timestep 0.327569 0.28% 29399 1.11E-05
accept timestep 0.01212 0.01% 29398 4.12E-07
TOTAL TIME: 116.8069 (s)

Table 5.4: Profiling information for ADFSP algorithm on the MinCDE model
with medium discretization (1009 voxels) and error tolerance of 1e-1.
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Figure 5.8: Performance versus error tolerance for the ADFSP implementations
on CPU and GPU, along with NSM for comparison. As the error tolerance is
loosened, the run time for both the ADFSP (CPU) and ADFSP GPU methods
decreases. These results are from the MinCDE model with medium discretization
(1009 voxels). For an error tolerance of 1e-1, ADFSP is 3 times faster than NSM
and ADFSP GPU is 4.3 times faster.
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Component Time (s) Fraction # of calls E[time/call](s)
reaction-diffusion 51.9517 64.94% 328391 1.58E-04
estimate error 12.4333 15.54% 29854 4.16E-04
generate lookup table 14.95643 18.7% 4 3.74E+00
compute timestep 0.415993 0.52% 29854 1.39E-05
diffusion kernel 0.035804 0.04% 33 1.08E-03
accept timestep 0.008629 0.01% 29853 2.89E-07
TOTAL TIME: 80.0015 (s)

Table 5.5: Computation profile for ADFSP GPU algorithm on the MinCDE
model with medium discretization (1009 voxels) and an error tolerance of 1e-1.
Note that the ADFSP GPU implementation has both the reaction-diffusion and
diffusion-only kernels (See Figure 5.2 for more details).

125



Chapter 5. Adaptive Accelerated Spatial Stochastic Simulation on NVIDIA
graphics processing units

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

log[ Error Tolerance ]

R
el

at
iv

e 
E

rr
or

 in
 P

er
io

d

 

 
ADFSP
ADFSP_GPU

Figure 5.9: Relative error in oscillation period versus error tolerance for ADFSP
implementation on the CPU and GPU. As the error tolerance is loosened the
error in oscillation period for both the ADFSP (CPU) and ADFSP GPU methods
increase.
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Figure 5.10: Comparison of the oscillation in ADFSP and NSM. The ADFSP
run used an error tolerance of 5e-2. For this value, the ADFSP algorithm is
approximately the same speed as NSM for this problem. These results are for the
MinCDE model with medium discretization (1009 voxels).
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Figure 5.11: Comparison of the oscillation pattern in ADFSP, ADFSP GPU
and NSM for the MinCDE model with medium discretization (1009 voxels). The
phase of each trajectory is adjusted so that the center peaks (closest to t=200)
are aligned. The ADFSP runs use an error tolerance of 1e-3 (top left), 1e-2 (top
right), and 1e-1 (bottom). Note that the coherence of the oscillation patterns
degrades as the error tolerance is loosened.
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5.6 Discussion

In this Chapter we introduced ADFSP as an extension of the DFSP algorithm

that provides an error control mechanism that automatically and adaptively se-

lects time steps to control the local error due to operator splitting. This allows

the user to directly trade accuracy in simulation results for increased simulation

performance, without a prior knowledge of the system. In addition, the inherently

parallel nature of the DFSP algorithm is demonstrated with an implementation

of ADFSP on the high-performance GPU compute environment.

Implementation of the ADFSP algorithm in the GPU compute environment

presents many challenges. One of these challenges is efficient global synchroniza-

tion of threads. We use a parallel model where each GPU thread is assigned

to the computation of a single voxel. For most of the kernels this is the ideal

arrangement, as there is no communication between threads. Global communi-

cation occurs in the ADFSP algorithm in two kernels: the diffusion kernel and

the compute time step kernel. In the diffusion kernel each thread reads the local

system state from global memory, calculates outbound diffusion jump events, and

writes the resulting values to the global memory. Race conditions are a major

concern, as multiple threads must write to the same location in global memory.
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Ensuring global consistency while synchronizing multiple threads in multiple

blocks is challenging. We explored several strategies to address this issue in the

diffusion kernel. The first was simply to use the atomic primitive atomicAdd()

when writing to the global state. This ensured consistency at the cost of serial-

izing write operations on collision, when two threads write to the same location.

The second strategy was to combine the thread states on a per-block basis and

then use atomicAdd() for global writes, in an effort to reduce the number of col-

lisions. The third strategy was to use a global memory matrix of size the system

state squared, and use two kernels in sequence to synchronize the read/write com-

munication. The first kernel reads the system state vector, calculates diffusion,

then writes a column of the matrix with each row corresponding to the outbound

diffusion events. The second kernel sums across each row of the matrix, writing

the result to the system state vector. In our implementation we used the first

strategy. The second strategy was found to be not amenable to our computation

due to the unstructured mesh discretization and the broad spatial reach of the

DFSP diffusion kernel. Neighboring voxels rarely diffuse molecules to the same

destination voxel, and since each voxel may still be written to by multiple blocks,

the atomicAdd() function is still required for consistency when writing to global

memory. Thus, the reduction strategy does not significantly reduce the number of

atomic operations required. The third strategy did not provide any performance
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improvement due to the large number of global memory access operations. Bench-

marking the diffusion kernel on the MinCDE model showed that the first strategy

had an average execution time of 1.5e-04 seconds, while the third strategy had an

average execution time of 1.9e-02 seconds.

The other kernel that requires global communication is the compute timestep

kernel, which computes the L1 norm across space for each species in the system.

This is not amenable to the one thread per voxel parallelism strategy. Two meth-

ods of implementing this kernel on the GPU were attempted. The first was a

strategy that performed the calculation in two phases using a single block of 512

threads and a local shared memory buffer of size number-of-voxels times number-

of-species. First, each thread reads the expected change of state from global mem-

ory, multiplies it by the volume and writes the product to local shared memory.

In the second phase, one thread is assigned to each species in the system, while

the rest of the threads wait. The active threads read and sum the values for each

voxel from local shared memory, and return the square root of the sum. We found

that the limited amount of shared memory rendered this method feasible only for

small problem sizes. The second method also used a single block of threads, but

used a single GPU thread per species in the system and no shared memory. Each

thread reads the expected change of state from global memory and multiplies it

by the volume, that value is summed for each voxel in the system, and the square
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root of the sum is returned. While this method was feasible for larger problem

sizes, it was found to be significantly slower than the CPU implementation. Thus

we used the CPU compute time step kernel in our final implementation.

We analyzed both the performance and the error control characteristics of the

ADFSP algorithm on two biological model systems. The first was the G-protein

cycle in yeast, the reaction-diffusion problem studied in Chapter 3. The paral-

lelism of the ADFSP algorithm was demonstrated. In the first model, the GPU

implementation was shown to be 28 times faster than the CPU implementation,

and nearly 3 times faster than the fastest implementation (to our knowledge) of

NSM. The second model was the MinCDE oscillation in E. coli, a spatial stochastic

system that cycles between slow membrane diffusion or fast cytoplasmic diffusion

regimes. We demonstrated the performance versus accuracy tradeoff inherent in

the DFSP method by showing performance and error in oscillation period as a

function of the error tolerance parameter. For our nominal error tolerance pa-

rameter (1e-1), ADFSP was more than 4 times faster than NSM, while producing

solutions with minimal error.
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Chapter 6

Spatial Stochastic Modeling of Cell Polarization

Cell polarity is the fundamental process of breaking symmetry to create asym-

metric cellular structures. Although polarity is an essential feature of living cells,

it is far from being well-understood. In this Chapter we focus on the ability of

yeast cells to sense a spatial gradient of mating pheromone and respond by form-

ing a projection in the direction of the mating partner. Specifically, we examine

the formation of a key element in the mating process: the polarisome, a protein

complex located at the tip of the mating projection.

In this Chapter we present work done in collaboration with Michael Lawson

and Tau-Mu Yi, originally presented in [80]. Using a combination of computa-

tional modeling and biological experiments we closely examine the pheromone-

induced formation of the yeast polarisome. Focusing on the role of noise and

spatial heterogeneity, we develop and investigate two mechanistic spatial models
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of polarisome formation, one deterministic and the other stochastic. We compare

the contrasting predictions of these two models against experimental phenotypes

of wild-type and mutant cells, and find that the stochastic model can more ro-

bustly reproduce two fundamental characteristics observed in wild-type cells. The

first is a highly polarized phenotype, via a mechanism that we refer to as spatial

stochastic amplification. The second is the ability of the polarisome to track a

moving pheromone input. Additionally, we find that only the stochastic model can

simultaneously reproduce these characteristics of the wild-type phenotype and the

multi-polarisome phenotype of a deletion mutant of the scaffolding protein Spa2.

It is an open question how the stochasticity of biochemical interactions in the

cell hinders or helps cell polarity. Our analysis demonstrates that higher levels of

stochastic noise levels result in increased robustness of polarization to parameter

variation. Furthermore, our work suggests a novel role for a polarisome protein

in the stabilization of actin cables. These findings elucidate the intricate role of

spatial stochastic effects in cell polarity, giving support to a cellular model where

noise and spatial heterogeneity combine to achieve robust biological function.
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6.1 Background

Cell polarity is a classic example of symmetry-breaking in biology. In response

to an internal or external cue, the cell asymmetrically localizes components that

were previously uniformly distributed. Polarization underlies behaviors such as

the chemotaxis of motile cells up chemoattractant gradients, and asymmetric cell

division during development [29, 133].

In Saccharomyces cerevisiae, a haploid cell (a or α) senses a spatial gradient

of mating pheromone from its partner and responds by producing a mating pro-

jection toward the source. The peptide pheromone binds to a G-protein coupled

receptor which activates the heterotrimeric G-protein. Free Gβγ recruits Cdc24 to

the membrane where it activates Cdc42. The spatial gradient of activated Cdc42

(Cdc42a) is used to position the polarisome, which generates the mating projec-

tion [7, 23, 108]. The role of actin-mediated vesicle transport in the establishment

and maintenance of Cdc42a polarity is an area of active research [81, 115], however

we focus only on the downstream components.

The polarisome, located at the front of the cell, helps to organize structural,

transport, and signaling proteins [109], and guides polarized transport and secre-

tion along actin cables. The function of the polarisome is conserved in eukaryotes,
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and analogous scaffold complexes are responsible for such diverse structures as fo-

cal adhesions and synapses [1].

A striking feature of the polarisome is its narrow localization at the tip of

the mating projection. We call the process of transforming a shallow external

gradient into a steep internal gradient (i.e. all-or-none) of protein components

spatial amplification; it is a significant challenge to understand and model in

cellular polarization [20, 69]. In yeast, this polarization occurs in steps through

successive stages of the mating pathway from the extracellular gradient of α-factor

(gray in Figure 6.1A) to the more pronounced polarization of Gβγ (blue) to the

crescent cap of active Cdc42 (green) to the punctate polarisome at the front of

the cell (red) [97].

The two main components of the polarisome are Spa2 and Bni1. Spa2 is an

abundant scaffold protein important for structural cohesion of the polarisome;

Bni1 is a formin that initiates the polymerization of actin cables, which direct

vesicles to the front of the cell [108]. In the absence of Bni1, the mating pro-

jection forms slowly and is misshapen [38]. In the absence of Spa2, the mating

projection adopts a broad appearance and the polarisome is no longer a single

punctate entity [6, 84, 12]. In both loss-of-function mutants, mating efficiency is

drastically reduced. One hypothesis is that proper mating requires the alignment

of punctate polarisomes (Fig. 1B). Indeed, mutants that exhibit abnormal polari-
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Figure 6.1: Spatial amplification in cell polarity during yeast mating
(A) Spatial amplification occurs in stages during cell polarization in yeast. The
external spatial gradient of α-factor is shallow (gray), and it generates a compa-
rable gradient of free Gβγ on the cell membrane. This initial internal gradient
induces a polarized cap of active Cdc42 (green) which in turn localizes the tightly
condensed polarisome (red) to the front of the cell. In this manner, a shallow ex-
ternal gradient is amplified to a steep internal gradient. (B) A schematic and mi-
croscopy image of two mating yeast cells with aligned punctate polarisomes. The
polarisomes are labeled with Spa2-GFP (a-cell) and Spa2-RFP (α-cell). During
mating the polarisomes at the tip of the mating projection are tightly localized and
seek out one another until they are aligned and adjacent. When the projections
meet the membranes and polarisomes fuse, and mating occurs.

137



Chapter 6. Spatial Stochastic Modeling of Cell Polarization

some dynamics often also exhibit decreased mating performance [38, 6, 24]. These

data are consistent with the view that a tightly localized polarisome is critical for

efficient mating.

A second key feature of the mating projection and polarisome is the ability

to track a gradient that may be changing direction. Mathematical modeling of

cell polarization highlights the potential tradeoff between amplification, which

produces the tight polarization, and tracking of a moving signal source [93, 95].

Positive feedback is one way to achieve amplification, but this feedback can impede

the ability to follow a shift in signal direction. Recent studies have shown that

fine-tuned modulation of positive feedback can lead to proper polarization and

chemotaxis [69, 78], whereas disruption of the positive feedback results in defective

polarization [104]. Most of these studies have relied on deterministic models of

spatial dynamics. An important question is how stochastic spatial dynamics affect

cell polarity, and more specifically how noise affects the amplification/tracking

tradeoff.

The impact of noise and stochastic dynamics on signal transduction, protein

interaction networks, and gene regulation has gained broad recognition [5]. Ex-

amples range from the stochastic lysis-lysogeny decision in phage lambda [90] to

transcriptional noise in yeast [85] to morphogen gradient noise in Drosophila [64]

to stochastic dynamics in the human brain [21]. As a result, many stochastic
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models of biological systems have been developed [111] including one of the yeast

mating pheromone pathway [131]. In fact, continuous deterministic models (gov-

erned by ordinary differential equations) represent a limiting case of more accurate

discrete stochastic models (governed by the chemical master equation) [53].

However, most of these models have been non-spatial, in which the system

is considered well-mixed. Altschuler et al. [132] modeled cell polarity in yeast

using stochastic spatial dynamics. In this system, polarization was induced by

overexpressing constituitively-active Cdc42. Their stochastic models of cell polar-

ization involving self-recruitment [2] and actin nucleation with directed transport

[87] have highlighted the important role of spatial stochastics in initiating and

maintaining spontaneous polarization. In these studies, the authors focused on

polarization in the absence of a cue, and did not investigate the amplification or

tracking of a gradient.

We present a mathematical model of Cdc42a-gradient induced polarisome for-

mation. To our knowledge this is the first such model. The model is well-supported

by experimental data, and we discuss the process of obtaining the parameters

from experimental data. There are only two free parameters in the model, and

we explore this space via extensive parameter sweeps. Comparing the results of

stochastic and deterministic models with equivalent structure, stochastic simula-

tions reveal better and more robust tradeoffs between spatial amplification and
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signal tracking. In particular, spatial stochastic effects contribute to tighter polar-

ization, an effect we refer to as spatial stochastic amplification. In addition, only

the stochastic model can reproduce both of these characteristics of the wild-type

(WT) phenotype, as well as the muti-polarisome phenotype of the spa2∆ mutant.

Finally, our work suggests a novel role for a polarisome protein in the stabilization

of actin cables.

6.2 Model Description

We have constructed a mathematical model of the formation of the yeast

polarisome. Focusing on the final stage of the mating system, our model takes the

broad Cdc42a distribution on the membrane as the input and seeks to produce

a narrow polarisome as the output. We sought a simple model that captures

the essential dynamics while limiting the size of the parameter space for model

analysis. The chemical reactions that make up our model structure were simulated

both stochastically and deterministically. The following two subsections describe

the model structure and the parameter estimation based on our biological data.

For a complete description of the model, see [80].
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6.2.1 Model Structure

Figure 6.2 describes our model of the formation of the punctate yeast polari-

some in response to a cue: the broader polarization of activated Cdc42 (Cdc42a).

The polarisome is a complex structure consisting of at least five different pro-

teins [108]. The two primary functions of the polarisome proteins are structural

(scaffolding) and catalytic (nucleation of actin cables). Spa2 is the most abundant

scaffold protein, thus to simplify our model we aggregated the scaffold species into

Spa2. Bni1 is the formin responsible for actin cable formation during the mat-

ing response [38], and so we aggregated the actin nucleation dynamics into Bni1.

Table 6.1 lists the biochemical species in our model.

The input to the model is the experimentally measured membrane profile of

Cdc42a, and the output is the spatial profile of Spa2. Note that in the simulations,

Cdc42a is not a dynamic state variable. However, the direction of the Cdc42a

polarization can be shifted as a change in input. To estimate the input profile, we

averaged the fluorescence intensity of a Cdc42a reporter, Ste20-GFP, over multiple

cells. In the model, Cdc42a recruits Bni1 to the membrane, where it nucleates

actin cable assembly [38], producing a positive feedback loop via Spa2, which is

delivered to the membrane by transport along the actin cables. For simplicity, we

do not explicitly model the actin polymerization process, but instead model actin
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Figure 6.2: Diagram describing yeast polarisome model. (A) In-
put driven recruitment of cytoplasmic Bni1 by membrane bound active Cdc42
(Cdc42a). (B) Bni1 on the membrane nucleates and polymerizes actin cables.
(C) Actin cables direct transport of Spa2 from the cytoplasm to the membrane.
(D) Spa2 provides positive feedback as it recruits cytoplasmic Bni1 to the mem-
brane and inhibits actin depolymerization.
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cables attaching to and detaching from the membrane (Fig. 6.2), thus combining

actin initiation and polymerization into a single event.

There are two positive feedback loops in the model. First Spa2 recruits Bni1

to the membrane. There is experimental evidence for Spa2 binding Bni1 [43].

Second, a polarisome component inhibits actin depolymerization so that more

Spa2 can be transported to the membrane along actin cables. This is accom-

plished via a Michaelis-Menten term (see Table 6.2). We constructed two versions

of the model structure because the exact mechanism of actin stabilization is not

known: one in which Bni1 inhibits actin depolymerization (B-model), and one

in which Spa2 inhibits actin depolymerization (S-model). We will focus on the

S-model; analogous results can be found for the B-model in [80]. The strength of

the first positive feedback loop can be adjusted via the parameter Bfb, and the

strength of the second positive feedback loop by the inhibition constant Km. The

second positive feedback loop is a model hypothesis motivated by prior model-

ing results [87]. However, we note that Yu et al. [137] have shown that during

yeast budding, polarization is accompanied by more stable actin cable dynamics.

In addition, formins in other organisms can facilitate actin bundling at higher

concentrations [55]. Finally, Spa2 interacts with a number of accessory proteins

including Myo2 which exhibits synthetic lethality with Tpm1 (mutants with both

genes deleted are inviable), which binds and stabilizes actin cables [83]. Table 6.2
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lists the equations and Table 6.3 lists the parameters that we use to describe the

model. For each of the two possible model structures, we employed two modes of

simulation. The first uses discrete stochastic kinetics for diffusion and biochem-

ical reactions. The second uses a continuous deterministic formulation, i.e. the

familiar partial differential equations for reaction-diffusion systems.

Species Description
Bni1c Bni1 in the cytoplasm
Bni1m Bni1 on the plasma membrane
Spa2c Spa2 in the cytoplasm
Spa2m Spa2 on the plasma membrane
Actinc Unpolymerized actin in the cytoplasm
Actinm Polymerized actin on the plasma membrane

Table 6.1: Biochemical species for the polarisome model.
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Reaction Reaction Rate
Bni1c + Cdc42m → Bni1m + Cdc42m Bon × [Bni1c]× [Cdc42m]

Bni1m → Bni1c Boff × [Bni1m]
Actinc +Bni1m → Actinm +Bni1m Aon × [Bni1m]× [Actinc]
Actinm + Spa2m → Actinc + Spa2m Aoff

Km

Km+[Spa2m]
× [Actinm]

Spa2c + Actinm → Spa2m + Actinm Son × [Spa2c]× [Actinm]
Spa2m → Spa2c Soff × [Spa2m]

Bni1c + Spa2m → Bni1m + Spa2m Bfb × [Bni1c]× [Spa2m]

Table 6.2: Reactions and reaction rates for the polarisome model. The reaction
rates are all first-order or second-order (bilinear) kinetics except for the actin
depolymerization reaction which contains an inhibition term.

Parameter Value Description/References
Bon 1.6× 10−6 mol−1s−1 Active Cdc42 recruits Bni1 to the membrane [38].
Boff 0.25 s−1 Bni1 dissociates from the membrane [14].
Bfb 1.9× 10−5 mol−1s−1 Spa2 on the membrane recruits Bni1 [117].
Aon 7.7× 10−5 mol−1s−1 Bni1 initiates polymerization of actin cables [55].
Aoff 0.018 s−1 Actin cables depolymerize.
Km 3500 Spa2 inhibits actin depolymerization.
Son 0.16 mol−1s−1 Spa2 is transported along actin cables [117].
Soff 0.35 s−1 Spa2 dissociates from the membrane.
Bni1t 1000 molecules Total population of Bni1 in the cell.
Spa2t 5000 molecules Total population of Spa2 in the cell.
Actint 40 molecules Total population of actin cables in the cell.
D 0.0053 µm s−2 Diffusion coefficient for membrane bound protein.

Table 6.3: Parameters and parameter values for the polarisome model. In Section
6.2.2 we outline the estimation procedure for D, Boff, Soff, Aon, Son and Soff . This
leaves two free parameters: the Bfb/Bon ratio and the (Km, Aoff) relationship
(derivation in [80]).
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6.2.2 Parameter Estimation

We used our simple model structure to estimate most of the reaction rates and

diffusion constants from our in vivo data. This section provides a summary of the

full calculations for the S-model. A complete description as well as calculations

for the B-model are found in [80].

Similar to the approach of Marco et al. [87], we performed fluorescence re-

covery after photobleaching (FRAP) experiments (Fig. 6.3A) in the presence and

absence of the actin depolymerization agent Latrunculin A (LatA). With LatA

treatment we observed a greatly extended recovery time for Bni1, implying that

actin-dependent recycling was increasing the recovery rate (compare Fig. 6.3A

FRAP recovery curves (curves represent average of 5 experiments with 95% con-

fidence interval)). From the LatA FRAP recovery curves, we directly estimated

the membrane diffusion coefficient for Bni1 to obtain D = 0.005µm
s2 . Because we

did not exclude actin-independent mechanisms of Bni1 membrane removal, the

measured diffusion coefficient represents an upper bound, however this value is

consistent with the slowest of those measured for membrane proteins in [127].

The membrane localization of Spa2 depends on actin, thus we could not perform

the identical analysis on Spa2. Instead, we set the diffusion coefficient for Spa2

to be the same as Bni1, a protein similar in size.
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Figure 6.3: Parameter estimation from experimental data including
FRAP. (A) Experimental FRAP recovery curves for Bni1 (Solid blue line: av-
erage of 5 experiments. Light blue area: 95% confidence interval around average.
Dashed red: fit to exponential). Notice that the WT curve has a much shorter
time to half recovery than the LatA-treated curve (time to half recovery indicated
by dashed black lines). (B) FRAP simulation time to half recovery for varying
diffusion rates and Boff (left) and Bon (right). There is no change with Bon, while
for Boff as D goes to zero the curves approach the theoretical no-diffusion limit
(dashed black). (C) Left: Cartoon illustrating the Bni1 temperature sensitive
mutant experiment performed in [39] and simulated in this paper. Right: Phase
plane of actin cable half-life (color-coded) as a function of Aoff and Km (simula-
tion of the experiment in [39]), with the curve representing 45s (dotted black) and
our model fit (dashed black). This phase plane represents the average of those
generated for initial conditions corresponding to 10 different observed cells.
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We derived an analytic expression relating the recovery half-time to the off-rate

using a simple version of our model in the limit of no diffusion [120]: tmax/2 = log(2)
koff

.

Then we calculated tmax/2 from FRAP simulations of the full model using a range

of values for Boff and the diffusion constant D (left panel of Fig. 6.3B). As D

approaches zero, the simulations converge toward the no-diffusion limit analytic

expression (Fig. 6.3B). These results do not depend on a specific value for Bon

(right panel of Fig. 6.3B). From the curves in Figures 6.3A and 6.3B and the

measured value of D, we were able to estimate Boff = 0.25s−1. The same procedure

was performed for Spa2, with the result Soff = 0.35s−1. These values correspond

to a region of parameter space in which the polarisome reaction kinetics are faster

than the diffusion kinetics for typical yeast membrane proteins.

From the steady-state levels of Spa2 (approximately 90% on the membrane)

and Soff, we estimated Son = 0.32 molecules−1s−1. The fact that approximately

20% of Bni1 is on the membrane cannot uniquely determine the Bon parameter,

as Bni1 is delivered to the membrane in two ways: recruitment by Cdc42a (Bon)

and binding by Spa2 (Bfb). Instead, our analysis produced a linearly constrained

relationship between Bon and Bfb.

Finally, we estimated the rate constants for actin polymerization and depoly-

merization. We made use of data from Evangelista et al. [39], in which the authors

induced Bni1 loss-of-function using a temperature-sensitive allele, and then mea-
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sured the time course of decay in the number of cells possessing actin cables. As-

suming that actin depolymerization is an exponential decay process, the half-life

of a single cable is the same as the half-life of a population of cables. Therefore, we

can use the decay curve in [39] to estimate a depolymerization rate for individual

cables. We fit the data with an exponential decay curve and determined that the

time to half actin depolymerization was approximately 45s. In vitro experiments

by Carlier et al. [16] agree with this timescale for actin depolymerization. In

our model, depolymerization depends on both a basal rate Aoff and an inhibition

term containing the constant Km, representing Spa2 inhibition of actin depoly-

merization. After substituting the actin cable half-life, we obtained the following

equation for the total actin depolymerization rate:
{
Aoff ∗ Km

Km+Spa2

}
= log(2)

45s
. We

note that a similar expression holds for the B-model. Using the above equation

we estimated the polymerization rate constant Aon to be 7.7e-5 molecules−1s−1.

We performed simulations of the actin depolymerization experiment in [39] to

derive a simpler expression for the relationship between Aoff and Km. Starting

with probability distributions of Spa2 and Bni1 taken from fluorescence data as

initial conditions, we varied Aoff and Km and calculated the actin cable half-life.

This was repeated on data from 10 cells. Figure 6.3D shows a phase plane of

decay times as a function of the two parameters. From this graph, we were able

to obtain a direct relationship between Aoff and Km (Fig. 6.3C, dashed black).
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In summary, we used experimental data to identify 6 parameters in the model,

reducing the free parameter space to two dimensions: the Bon/Bfb ratio and the

(Aoff, Km) relationship. A third undetermined parameter is the total number of

actin cables. In the deterministic simulations, variation of this parameter did not

affect polarization, thus it was explored separately. We have selected values for

the two free parameters based on the model’s ability to reproduce the spatio-

temporal characteristics of our in vivo data (Km=3500, Bfb/Bon = 7.5). We use

these values as our nominal parameter set.

6.3 Results

6.3.1 Spatial Stochastic Amplification

A striking feature of the yeast polarisome is its tight localization compared

to the broader polarization of Cdc42a (Fig. 6.4A). To characterize this polar-

ization experimentally, we used Ste20-GFP as a fluorescent reporter for Cdc42a

(an alternative reporter Gic2-208-GFP produced similar results, see [80]). In

pheromone-induced cells, it spanned a full width at half maximum (FWHM, see

Section 6.5) of approximately 48◦ on the membrane (averaged over multiple cells,

see Fig. 6.4C). The punctate polarisome was marked by Spa2-mCherry, which

localized to a region of FWHM approximately 18◦. Cdc42a directs the localiza-
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tion of the polarisome by binding polarisome components such as Bni1 [108]. As

described above, we refer to spatial amplification as the transformation from a

broader input polarization (Cdc42a) to a narrower output polarization (Spa2).

The parameter estimation described in the previous section left our model

with two remaining degrees of freedom: Bfb/Bon and (Aoff, Km). Exploring this

space we found that, for any given parameter set, the stochastic model always

produced tighter polarization than the deterministic model. We refer to this cue-

directed, noise-driven emergent behavior as spatial stochastic amplification. This

is illustrated in Figure 6.4D for our nominal parameter set, and this behavior is

observed across parameter space. The sharp stochastic peaks sample a range of

directions similar to what is observed experimentally, whereas the deterministic

peak is stationary. As a result, we found that the deterministic simulation of

the model overlaid the ensemble average of stochastic trajectories (see Fig. 6.4D).

Moreover, as we demonstrate below, increasing the stochasticity of the dynamics

results in increased amplification.

6.3.2 Tracking of a Dynamic Input

A second key performance objective that must be balanced against tight po-

larization is that the yeast polarisome must track a change in the direction of the

input cue (Cdc42a). In yeast cells, a change in the α-factor gradient direction
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Figure 6.4: Punctate Polarization (Green: Cdc42a, Red: Spa2). (A)
Yeast cells treated with α-factor show the wider Cdc42a (marked by Ste20-GFP)
and tighter Spa2 polarization. (B) Visualization of a stochastic realization of the
polarisome model (white indicates regions with actin cables). (C) Normalized
fluorescence intensity membrane profiles of Ste20-GFP and Spa2-mCherry from
a yeast cell undergoing polarisome formation (Green: Ste20 (Cdc42a). Dashed
black: Ste20 fit. Red: Spa2). (D) Normalized membrane intensity profile from
stochastic and deterministic realizations of polarisome model, the Cdc42a input,
and the mean output of a stochastic ensemble (n = 500). Inset: Absolute mem-
brane intensity profile from stochastic and deterministic realizations of polarisome
model, and Spa2 ensemble mean. (Red: Spa2 Stochastic. Dashed blue: Spa2 de-
terministic. Black diamond: Spa2 ensemble mean. Green: Cdc42a (input)).
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results in a corresponding change in Cdc42a polarization. Similarly, extended ex-

posure to isotropic pheromone will also induce a change in Cdc42a localization

because of the oscillatory dynamics underlying the formation of multiple projec-

tions [12, 105, 125]. We imaged dual-labeled Ste20-GFP/Spa2-mCherry cells in

100 nM α-factor. Under both directional gradient and isotropic α-factor condi-

tions (Fig. 6.5A), we observed that Cdc42a shifts its position to a new polarization

site. After a delay (middle panel of Fig. 6.5A) this change was followed by the

relocalization of the polarisome (right panel of Fig. 6.5A). We refer to the relo-

calization of the polarisome following a shift in Cdc42a orientation as successful

tracking.

We also imaged cells with Bni1-GFP/Spa2-mCherry to observe the spatio-

temporal dynamics of these two polarisome constituents during tracking. A typical

time trace for Bni1 and Spa2 is shown in Figures 6.5C and 6.5E respectively. We

note that there is an approximately 10 minute transition period during which

the nascent second polarisome has begun to form while the initial polarisome still

persists. The median characteristic time of this overlap from in vivo measurements

of five cells was 10 minutes (mean = 15±11).

In both Cdc42a/Spa2 (Fig. 5B) and Bni1/Spa2 (Fig. 6.5D and 6.5F) dynamics

we found that our in silico experiments matched the characteristic spatio-temporal

features of our in vivo experimental results. Figure 6.5B shows that there is a
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Figure 6.5: Polarisome tracking of directional change in Cdc42a (Green:
Ste20 (Cdc42a), Red: Spa2, Blue: Bni1). Left: In vivo data. Right: In
silico data. Top row: In both the cell (A) and the simulation (B), the Cdc42a
profile shifts first, followed by the the polarisome (indicated by Spa2). Middle
and bottom rows: Spatial dynamics of Bni1 (C, D) and Spa2 (E, F) during
polarisome tracking of Cdc42a. Note that the time scale of polarisome switching
is similar between in vivo and in silico experiments, especially in the ∼ 10 minute
overlap time when two polarisomes are present.
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delay in polarisome relocation after a switch in Cdc42a orientation. This is an

indication of the need to be in a parameter regime that balances tight polarization

(determined in part by Bfb) and the ability to successfully track the input signal

(determined by Bon), a tradeoff that will be discussed further in the following

section.

Figures 6.5D and 6.5F show that Bni1 and Spa2 populations in our in silico

experiments reproduced the spatio-temporal polarisome characteristics noted in

our in vivo experiments: an approximately 10 minute transition period in which

two polarisomes are present. Analysis of an ensemble of 500 trajectories gave

an median overlap time of 9.5 (mean = 11.5 ± 8) minutes. This confirms that

the polarisome dynamics produced by our model qualitatively and quantitatively

agrees with what we observed experimentally.

6.3.3 Robustness to Parameter Perturbation

Previously, it has been hypothesized that there is a tradeoff between the am-

plified polarization and the ability to follow changes in signal direction [18, 94, 69].

We explored this hypothesis in the context of the polarisome system and investi-

gated the effects of stochastic dynamics on the tradeoff. To accomplish this, we

generated phase planes in parameter space for the deterministic and stochastic

formulations of the S-model with Bfb/Bon on the y-axis and Km on the x-axis.
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We measured polarisome width and the ability to track a directional change.

These plots demonstrate this tradeoff for both the stochastic and deterministic

simulations (Fig. 6.6). Stronger positive feedback (Bfb > Bon) and a more stable

polarisome (small Km) produced tighter localization. Because tracking requires

the ability to sense a new input direction and shift the polarisome to the new

site, greater input influence (Bon > Bfb) and less polarisome stability (large Km)

yielded better tracking.

To elucidate the effect of stochasticity on the polarisome system, we varied

the total number of actin cables in the cell. Figure 6.6 shows phase planes for

various levels of total actin cables in the cell, from 20 to 100. We also adjusted Son

(rate of actin-mediated Spa2 delivery) to maintain the same flux of Spa2 to the

membrane. In our model approximately half of the total population of actin is on

the membrane, thus the lower range of actint (total number of actin cables) values

is consistent with the measurements made by Yu et al. [138]. For the deterministic

model, varying the number of actin cables had no effect on polarisome dynamics

because partial differential equations treat protein populations as continuous, thus

the same profile was produced for all total actin populations. The dynamics of

the stochastic model, on the other hand, was strongly dependent on actin cable

number.
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For the lower range of actin cables there were two striking differences between

the performance of the stochastic and deterministic simulations: the stochastic

model exhibited a larger overlapping region in parameter space in which both the

amplification and tracking criteria were met (see Fig 6.6, compare the purple re-

gion of the first and last panels). Additionally, the deterministic model displays an

abrupt transition to tracking failure, whereas the stochastic model has a smoother

tradeoff between polarisome width and the probability of successful tracking. To

illustrate this tradeoff, we examined the minimum possible width given successful

tracking. For deterministic models the minimum width was 11.3◦. For stochastic

models (actint=40), the minimum width depended on the strictness of the track-

ing criteria: at 75% tracking probability the minimum was 12.0◦, at 70% it was

10.8◦, and at 50% it was 10.7◦. This provides further evidence that the stochastic

dynamics of this system play a non-trivial role in polarisome formation.

As the number of actin cables was increased, we observed that the gap between

stochastic and deterministic performance decreased. As we increase the number

of actin cables, the stochastic phase plane increasingly resembles the deterministic

one (see Fig. 6.6). The effect is striking both in terms of the individual regions of

sufficient amplification (red) and tracking (blue) as well as in the region of overlap

(purple). The convergence to deterministic behavior with larger populations is not

surprising, given that deterministic models represent the large population limit of
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Figure 4: A4 param search on Spa2 of Km vs. Bon. Km values (horizontal) range from 0 to 4000,
Bfb/Bon ratio (vertical) ranges from 0 to 10. Blue indicates accurate tracking (>70%), Red indicates
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2

Figure 6.6: Six polarization phenotype space plots of Bfb/Bon ratio
versus Km. The first five panels show results from the stochastic model with
varying Actint values of 20, 40, 60, 80, 100 (left to right); the final panel shows
results from the deterministic model. Km values (x-axis) range from 0 to 4000,
Bfb/Bon ratio (y-axis) ranges from 0 to 10. Blue indicates accurate tracking (>70%
probability), red indicates narrow width (<22◦ FWHM), and purple indicates that
both criteria are met. As the number of actin cables is increased, the stochastic
phenotype plots converge to the deterministic plot. Lower actin cable number
confers a larger region where both criteria are satisfied, indicating that increased
stochasticity leads to more robustness to parameter variation. For each plot, the
Son parameter was adjusted to maintain a constant flux of Spa2 to the membrane.

stochastic models. Large total actin cable populations reduce the intrinsic noise

in the system, making the stochastic model behave deterministically. Thus, these

data suggest that the number of actin cables determines the level of stochasticity in

the polarisome system, and that increased noise in the system confers robustness to

parameter perturbations. Finally, we found that all of the above observations hold

in both the S- and B-models (see [80]) in which either Spa2 or Bni1 inhibits actin

depolymerization. Indeed, the simulations showed that some level of polarisome

protein mediated inhibition (i.e. Km <∞) was necessary for proper amplification

and tracking, suggesting a novel role for a polarisome protein in the stabilization

of actin cables.
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6.3.4 Stochastic Simulations Reproduce the Mutant Phe-

notype

We characterized the in vivo dynamic behavior of pheromone-induced spa2∆

cells [6] compared to WT cells. In both, the polarisome was marked by the protein

Bni1 tagged with GFP (bottom row of Fig. 6.7A). Because the low total population

of Bni1 made visualization difficult, we also included mutant and WT images of

cells containing the more abundant polarisome marker Sec3 tagged with GFP

(top row of Fig. 6.7A). After a two hour treatment with 100 nM α-factor, WT

cells possessed a polarisome that exhibited only moderate variability in spatial

and temporal behavior (left column of Fig. 6.7). On the other hand, spa2∆ cells

displayed a distinct phenotype in which multiple polarisome foci appeared (multi-

polarisome phenotype), possessing a more dramatic noisy behavior and broader

polarization (right column of Fig. 6.7A). These results provide support for the

Spa2-dependent positive feedback in the model.

We performed spatial stochastic and deterministic simulations for both WT

and spa2∆ cells (Fig. 6.7B). In the stochastic simulations we were able to observe

the dynamic behavior of the WT polarisome. More strikingly, the stochastic

simulations were able to capture important aspects of the spa2∆ multi-polarisome

phenotype in terms of multiple foci (top right panel of Fig. 6.7B), noisy behavior,
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Figure 6.7: The multi-polarisome phenotype in spa2∆ cells. Columns:
WT phenotype (left), spa2∆ phenotype (right). (A)In vivo microscopy images
of polarizing yeast cells marked with Sec3-GFP (top row) and Bni1-GFP (bottom
row). Note the difference between the single punctuate polarisome (left) and the
multi-polarisome phenotype (right). (B) In silico snapshots of yeast polarisome
simulations for both stochastic (top row) and deterministic (bottom row) models
showing Bni1. Note that only the stochastic in silico model is able to match the
in vivo multi-polarisome phenotype.
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and broader polarization. In contrast, deterministic simulations of the model

could not reproduce the WT or spa2∆ polarisome behaviors (bottom right panel

of Fig. 6.7B). Specifically in the spa2∆ case, the deterministic simulations showed

neither the presence of multi-polarisomes nor the noisy dynamic behavior.

6.4 Discussion

In this work we have constructed a simple model of the yeast polarisome, a

classic example of cell polarity, focusing on the dynamics of the proteins Bni1 (a

formin) and Spa2 (a scaffold protein). The parameters in the model were fit to

experimental data including FRAP experiments performed on living cells. We

note that this is the first mathematical model of the polarisome, and as such

provides a valuable foundation for future studies of this system. In addition, our

model suggests a novel role for a polarisome protein (i.e. Spa2 or Bni1) in the

stabilization of actin cables, which we plan to test in the future.

Our in silico experiments have shown that stochastic dynamics produced qual-

itatively different results from deterministic dynamics. First, we found that spatial

stochastic amplification provided tighter polarization across a range of parameters.

Second, the intrinsic noise enabled better tracking given tight amplification, pro-

vided increased robustness to parameter perturbations, and better reproduced
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the qualitative searching behavior of the polarisome (see below). Finally, only the

stochastic model was able to reproduce the spa2∆ multi-polarisome phenotype.

This work builds upon and extends the previous work of Marco et al. [87] and

Altschuler et al. [2] The key difference is that we focus on the polarisome and the

physiological process of sensing and responding to an input gradient of Cdc42a,

versus spontaneous polarization in the absence of a cue. However, in all cases,

the research demonstrates the power of spatial stochastic dynamics to initiate,

amplify, and adjust the polarity.

Similar to the work of Fange and Elf [41], we demonstrate that stochastic

but not deterministic simulations can reproduce the phenotype of a mutant in

which random spatial clusters appear. In yeast, the wild-type polarisome is a

punctate structure that senses an input signal, but forms multiple foci when the

Spa2-mediated positive feedback is diminished. In E. coli, the MinD protein is

normally dispersed and undergoes oscillations, but forms random clusters when

the positive feedback is increased (rate of spontaneous association with the mem-

brane is decreased). In both cases, spatial clusters arise from the amplification

provided by stochastic spatial dynamics.

The two keys to understanding spatial stochastic amplification are the discrete-

ness of molecules and the noisy nature of chemical systems. The discreteness of

molecules dictates an integer number of proteins in a given location, so that the
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Figure 6.8: Stochastic versus deterministic polarization schematic time
course: Green is the input Cdc42a profile, Red is the output (Spa2 or Bni1). Top:
Initially, in both the stochastic and deterministic simulations, all of the output
protein is in the cytoplasm. Middle: After a short time period one molecule
has been recruited to the membrane. In the stochastic simulation this addition
takes place in one discrete location, whereas in the deterministic simulation the
addition is in a continuous concentration gradient along the membrane. Bottom:
This difference in allocation of molecules results in differing final profiles. In the
stochastic case, feedback has recruited most of the output protein to the location
of the first addition, whereas in the deterministic simulation output protein has
been added smoothly along the membrane, resulting in a smooth final distribution.
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addition of a molecules is a unit step in population. If molecules were continuous

in the sense of concentration, then there would be a smooth addition of molecules

to the membrane. Figure 6.8 explains the results of these essential differences. In

both the stochastic and deterministic cases we begin at the top of the diagram

with all of the Spa2 (or Bni1) in the cytoplasm. After some period of time the

first Spa2 molecule in the stochastic simulation has moved to the membrane. By

contrast, in the deterministic simulation, a concentration of Spa2 has been added

to the membrane in a smooth distribution, in which the total membrane popula-

tion is equivalent to one molecule of Spa2. Finally, the presence of Spa2 creates

positive feedback. In the stochastic simulation the Spa2 molecule is in a discrete

location, however in the deterministic simulation, Spa2 exists in a spatially vary-

ing continuum across the membrane. In this way it becomes clear how stochastic

simulation of the same parameter set, resulting in roughly the same membrane

fraction of protein, produces tighter polarization than deterministic simulation.

In the parameter regime where this difference is most notable, the output and in-

put shapes are decoupled. That is, the output polarization is the same regardless

of input shape (e.g. gradient steepness), but its location is biased by the input

profile. As noted above, this process is related to the positive feedback induced

symmetry breaking without a directional cue observed in [2].
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The polarisome engages in a dynamic search process during mating projection

formation and tracking. There are two aspects to this behavior. First, in a single

projection, the polarisome scans within the polarized region of Cdc42a as the

projection attempts to align with the gradient. Second, during the formation of

the second projection, the polarisome explores the new region before it becomes

more tightly localized. Both of these behaviors can be observed in the stochastic

simulations.

As has been noted in [18, 94, 69] and is clear from the phase planes in Figure

6.6, there is a tradeoff between tight polarization and tracking. Given tighter

localization it might seem intuitive that the stochastic simulations would be less

likely to track. Tight polarization generally requires stability and strong feed-

back. Reliable tracking requires instability and high input sensing. The noise

in the system lends additional intrinsic instability to the system independent of

feedback/sensing tradeoffs, allowing for reliable tracking for relatively tight polar-

ization.

An important feature of robust biological models is that they do not require

careful selection of parameters. When modeling bacterial chemotaxis, Barkai and

Leibler [8, 136] demonstrated that the experimentally observed perfect adapta-

tion was a structural property of their model, while alternative models required

fine-tuning of the parameters to achieve similar performance. We have shown
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that for the same model structure and parameters, stochastic dynamics were ro-

bust to parameter variation whereas deterministic dynamics required fine-tuning

to produce the experimentally observed phenotype. These results add to a grow-

ing body of evidence that stochastic noise can play a beneficial role through the

introduction of novel and/or robust functionality, which in turn endows cells with

a performance advantage [106, 130, 5, 134].

6.5 Materials and Methods

Computational strategy

We modeled polarization of a yeast cell on a one-dimensional periodic domain

(i.e. a circle) representing the membrane, which surrounds a well-mixed cytoplas-

mic region. On the membrane, the spatial location of the biochemical species

was critical to understanding the polarization process. Thus, we tracked the lo-

cation of populations of proteins on the membrane and allowed them to move via

a diffusive random walk.

Our stochastic model was formalized via the RDME and simulated with the

ISSA for accuracy (see Chapter 3). The deterministic model was described by a

set of partial differential equations and solved using standard methods.
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Tracking

To determine the effectiveness of our model in replicating this phenotype, we

performed the following in silico experiment in which the initial Cdc42 signal

served as an input in one direction (see first panel of Figure 6.5B). After 1020

seconds, the input was switched by 180 degrees (see second panel of Figure 6.5B).

816 seconds later, we measured how well the polarisome tracked the input sig-

nal (see third panel of Figure 6.5B, where the polarisome in the simulation has

successfully tracked the input signal). Our criterion for successful tracking was

that the polarisome be within 90 degrees of the final input (using average location

during the final 204 seconds of the simulation).

Full Width at Half-Maximum (FWHM)

We characterized the polarization tightness with the FWHM of a normal dis-

tribution fit to the intensity profile data (see Figure 6.3C for an example fit to

experimental data). The width was measured in the same trajectory as above.

The polarisome was allowed to form and stabilize for the first 510 seconds, then

the FWHM was sampled at each point in time for the next 510 seconds and the

time average was taken to be the width value for that trajectory. Final values

presented in the phenotype space plots represent the ensemble mean value.
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Cell culture and pheromone treatment

All yeast strains were derivatives of RJD415 (W303). Genetic techniques were

performed according to standard methods. Complete strain details are presented

in [80]. Cells were cultured in YPD (yeast extract-peptone-dextrose) media.

Cells were treated with α-factor for 2 hours before imaging. A low concentra-

tion of pheromone (10-20 nM) was used for imaging a dynamic single projection,

and a high concentration (100 nM) was used for imaging the second projection

formation in the tracking experiments.

Microscopy

Live yeast cells were immobilized on glass slides with concanavalin A (ConA)

in the presence of YPD media containing α-factor. They were then imaged on an

Olympus Fluoview confocal microscope with a 60x objective using 488 nm (GFP)

and 568 nm (mCherry) excitation wavelengths. Time-lapse images were taken at

30s intervals over a 30 min to 1 hour period. A relatively long dwell time and

scan averaging removed much of the imaging noise.
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Conclusions

To conclude, we summarize the research contributions of this dissertation and

provide some further discussion.

In Chapter 3 we introduced the Diffusive Finite State Projection (DFSP) algo-

rithm for spatial stochastic simulation. The DFSP algorithm is a computational

framework for accurate and efficient simulation of stochastic spatially inhomoge-

neous biochemical systems. This new computational method employs a fractional

step hybrid strategy. A novel formulation of the Finite State Projection (FSP)

method [98], called the Diffusive FSP (DFSP) method, is used for the efficient and

accurate simulation of diffusive transport. Reactions are handled by the Stochastic

Simulation Algorithm (SSA).
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In Chapter 4 we presented the software package URDME for simulation of

Reaction Diffusion Master Equation models on Unstructured tetrahedron based

spatial grids. URDME is designed for both investigators studying spatial stochas-

tic models in the field of molecular systems biology, and for developers of spatial

stochastic algorithms. For investigators, URDME provides an interactive Mat-

lab interface for model building, script computing, data management, and post-

processing. In addition, it provides an interactive environment for 3D model con-

struction through a connection to the Comsol Multiphysics geometry and mesh

handling software. For algorithm developers, URDME is designed to be easily

modified and extended with newly developed simulation routines. The complex-

ity of model building, and management of the geometry and meshes are logically

abstracted from the simulation routines. This facilitates the testing of newly

developed methods in realistic settings at an early stage of development.

In Chapter 5 we presented an extension to DFSP that includes automatic er-

ror control, and explored the benefits of parallel execution on NVIDIA graphics

processing units. The biggest challenge faced by scientists utilizing the DFSP

algorithm is a selection of the operator splitting timestep that produces opti-

mum speed without violating the specified error tolerance. This requires a priori

knowledge of the system under study. To address this challenge, we introduced

the adaptive DFSP algorithm (ADFSP) that automatically and adaptively se-
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lects the appropriate timestep for performance and error control. In addition, we

demonstrated the parallel efficiency inherent in the ADFSP algorithm with an

implementation on the NVIDIA Graphics Processing Unit.

In Chapter 6 we explored the spatial stochastic dynamics of cellular polar-

ization in yeast mating. Polarization is an essential behavior of living cells, yet

the dynamics of this symmetry-breaking process are not fully understood. In this

work, we focused on the ability of yeast cells to sense a spatial gradient of mating

pheromone and respond by forming a projection in the direction of the mating

partner. Using experiments and modeling, we examined the formation of the yeast

polarisome, a punctate structure localized to the tip of the mating projection,

and we elucidated the intricate role of spatial stochastic effects in its formation.

We found that only the stochastic models were able reproduce observed wild-

type characteristics of polarization. Additionally, we found that higher levels of

stochastic noise levels result in increased robustness of polarization to parameter

variation.

There are several promising directions for future work. Potential enhancements

to the ADFSP method include an advanced error control algorithm that is more

efficient to compute and that would allow for larger operator splitting timesteps

to be taken. Another enhancement would be a formulation of the algorithm that

would be analogous to an implicit method for differential equations. This would

171



Chapter 7. Conclusions

address the limitations of explicit timestep selection and allow for greater effi-

ciency by using larger timesteps. A third is to utilize asynchronous time stepping,

allowing different spatial subdomains to take steps of different sizes for greater

efficiency.

The ADFSP GPU method could be enhanced with a hybrid multi-core, multi-

GPU implementation. This would allow larger models to be simulated, and could

allow some components to be simultaneously executed on the CPU and GPU.

One example would be to execute the error estimate on the CPU while the GPU

computes the next reaction-diffusion step. In addition, the new Kepler series

GPU from NVIDIA promises several features that would significantly speed up

execution. The dynamic parallelism feature, the ability for GPU kernels to launch

other GPU kernels, enables global synchronization without returning control to

the CPU and would allow the entire algorithm to be implemented in the GPU.

The hyper-q feature enables multiple CPU threads to launch GPU kernels. This

enables greater GPU utilization by reducing serialization and idle computational

units.

Advances in spatial stochastic algorithms allow scientists to study larger, more

complex systems. And, as computational resources increase in their size and

complexity, the size of the models that are able to be simulated also increases.

As a result of this progress, computational models of a whole cell have become
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feasible [74], and have begun to play an important role in molecular systems

biology. Software and algorithms that enable modeling of a whole cell, where

all components are handled using spatial stochastic methods, would be of great

utility of the scientific community.
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