
Efficient Sparse Matrix-Matrix Multiplication on Multicore Architectures∗

Adam Lugowski† John R. Gilbert‡

May 8, 2014

Abstract

We describe a new parallel sparse matrix-matrix

multiplication algorithm in shared memory using a

quadtree decomposition. Our preliminary implementation

is nearly as fast as the best sequential method on one core,

and scales well to multiple cores.

1 Introduction

Sparse matrix-matrix multiplication (or SpGEMM) is a
key primitive in some graph algorithms (using various
semirings) [9] and in numeric problems such as algebraic
multigrid [15]. Multicore shared memory systems can
solve very large problems [16], or can be part of a
hybrid shared/distributed memory high-performance
architecture.

Two-dimensional decompositions are broadly used
in state-of-the-art methods for both dense [17] and
sparse [1, 2] matrices. Quadtree matrix decompositions
and algorithms have a long history [5, 6, 14, 19, 20],
including recursive matrix multiplication [18].

We propose a new sparse matrix data structure and
the first highly-parallel sparse matrix-matrix multiplica-
tion algorithm designed specifically for shared memory.

2 Quadtree Representation

Our basic data structure is a 2D quadtree matrix
decomposition. Unlike previous work that continues
the quadtree until elements become leaves, we instead
terminate the quadtree early and store the elements in
large leaf blocks. This arrangement brings the best
of both worlds; the quadtree provides isolation and
chunking, and the large leaf blocks provide locality and
a way to amortize tree costs.

There are many answers to the question of when to
stop subdivision. We use a simple strategy: subdivide
until either leaf nnz or leaf size in bytes is below a
threshold. This threshold can be fixed or dynamically
chosen to provide sufficient parallelism for a particular
matrix on a particular machine. The former approach
aims at efficient utilization of fixed resources such
as caches, while the latter method aims to minimize
the number of hypersparse blocks and total per-block
overhead.

∗Supported by Contract #618442525-57661 from Intel Corp.

and Contract #8-482526701 from the DOE Office of Science.
†CS Dept., UC Santa Barbara, alugowski@cs.ucsb.edu
‡CS Dept., UC Santa Barbara, gilbert@cs.ucsb.edu

×	
 =	

×	
)+(
)	
 =	
 ×	
 ×	
 ×	
 (
)+(
)+(

Figure 1: Computation of a result block using a list of
pairwise block multiplications.

Inner blocks form the internal nodes of the quad
tree. Each inner block is a container for four other
blocks. Each child can be null, a leaf, or another
inner block, and represents one quadrant of the parent
inner block. Note that subdivisions always occur on
powers of 2; hence, position in an inner block implies
the high-order bits of row and column indices of the
children. This allows the leaves to use smaller indices
than the matrix dimensions appear to require. We do
not, however require the matrix to have dimensions that
are powers of 2.

The leaf blocks store the matrix elements in
(row, col, value) triples form. Row and column indices
can be 8, 16, 32 or 64-bit unsigned integers, where the
minimum index size that fits the block dimensions is
chosen at runtime. The type of the values is defined by
the user.

A shadow block is a block that provides a view of
a subset of a TriplesBlock’s elements. This is useful
when the blocks of two different quadtrees need to be
matched. Depending on the two trees’ decompositions,
an inner block may be matched with a leaf block. If this
is undesirable, we may perform a shadow subdivision of
the leaf block.

In a shadow subdivision a new inner block is created
and populated with four shadow blocks that together
return the same data as the original TriplesBlock. The
original TriplesBlock’s elements are scanned once, and
the shadow each one belongs to is determined with a
simple bit comparison of its row and column indices. A
shadow block doesn’t own its data; rather it is a view
of a part of another leaf block. Its data structure is
a pointer to the original TriplesBlock and an array of
offsets of each element. It and its parent inner block are

3.1 Symbolic Phase 3 PAIR-LIST MATRIX MULTIPLICATION ALGORITHM

Figure 2: Quadtree of an adjacency matrix of a power
law graph. This is matrix A in our running example in
Figure 6.

considered temporary and are expected to be destroyed
by the end of the operation that created them. For the
purposes of read-only algorithms, a shadow block is a
leaf block.

In our implementation, a shadow block with nnz
nonzeros consists of an O(nnz) space array of indices
into the original TriplesBlock. Another possible scheme
is to partially sort the TriplesBlock into four quadrants,
which allows each shadow block to simply be an O(1)
space begin and end bound. This method has two
problems. First, the partial sort is more expensive than
a scan. Second, the original TriplesBlock is no longer in
pure column order, which makes accessing its elements
both more expensive and more complicated when this
block is part of several tasks. Both problems can be
solved by using Z-Morton [12] order instead of column
order, which allows arbitrarily deep subdivisions. Z-
Morton order, however, does not provide O(1) lookups
by row or column indices, which makes the sparse
multiplication kernels asymptotically more expensive.

3 Pair-List Matrix Multiplication Algorithm

The quadtree decomposition suggests a natural recur-
sive SpGEMM algorithm: recursively evaluate the fol-
lowing:

(3.1)

C4 = (A1 ×B1) + (A2 ×B3)
C2 = (A1 ×B2) + (A2 ×B4)
C3 = (A3 ×B1) + (A4 ×B3)
C4 = (A3 ×B2) + (A4 ×B4)

This algorithm has a serious flaw, however. Each level of
the recursion introduces an SpAdd operation in addition

Figure 3: Quadtree of an adjacency matrix of an Erdős-
Rényi graph. This is matrix B in our running example
in Figure 6.

to the recursive multiplies. When thought of as a DAG
of tasks, the multiplies are the leaves of a large tree of
SpAdds. The number of SpAdds each block is involved
in is equal to its depth in the tree. Unfortunately,
there is no known method to perform an SpAdd in time
proportional to only the FLOPs required. Instead, the
total time of all additions is proportional to total FLOPs
plus the size of the operands times the height of the tree.
The add tree therefore imposes an unwanted log factor
and becomes a significant bottleneck. Our algorithm
reformulates the operations such that the SpAdds can
be inlined into the leaf multiplies.

The algorithm consists of a symbolic phase and
a computational phase. The symbolic phase gener-
ates an execution strategy, and the computational phase
carries out that strategy. Each phase is itself a set of
parallel tasks. We are willing to temporarily reor-
ganize data on-the-fly, and discard the changes
after use. This extra work does not add to the asymp-
totic complexity.

The source of parallelism of both phases comes from
the recursive structure of the quadtree of C. Each
internal node yields a symbolic phase task, and each
leaf yields a computational phase task.

We choose to formulate a DAG of tasks and
let a scheduling framework map those tasks to
threads. Our algorithm does not perform scheduling;
rather, we use a standard scheduling framework such as
TBB, Cilk, or OpenMP.

3.1 Symbolic Phase The symbolic phase divides
computation of C = A × B into compute tasks such

2

3 PAIR-LIST MATRIX MULTIPLICATION ALGORITHM 3.2 Symbolic Phase Example

that each compute task owns (is the only writer to) a
particular block of C and is supplied with a list of all
the operands it needs to perform the multiplication.

Let Cown be a leaf block in C, and pairlist be the
list of pairs of leaf blocks from A and B whose block
inner product is Cown:

(3.2) Cown =
∑|pairlist|

i=1
Ai ×Bi

The blocks Ai and Bi may be original leaf blocks or
shadow blocks. The symbolic phase recursively deter-
mines all the Cown and corresponding pairlist. Equa-
tion (3.2) still contains additions, but in Section 3.3
we describe a method to evaluate (3.2) without explicit
SpAdd steps.

To provide intuition for what we wish to accomplish,
consider a dense β × β grid of blocks instead of a
quadtree. The result matrix will contain β2 blocks,
each one the result of a block inner product between
the corresponding block row of A and block column of
B. The ith block in the block row of A is matched with
the ith block in the block column of B in this block
inner product. Therefore, we describe this block inner
product with a list, named pairlist, with length β of
pairs of blocks.

We now wish to accomplish the same task, but with
two differently structured quadtrees of blocks instead
of a dense grid. Different pairlists can have blocks of
different sizes, though all the blocks in one pairlist are
the same size. An element of an input matrix may
participate in several pairlists with different block sizes,
via shadow blocks.

The PairList algorithm’s symbolic phase recursively
determines all the Cown and corresponding pairlist. We
begin with Cown ← C, and pairlist← [(A,B)].

If pairlist consists only of leaf blocks, spawn a
compute task with Cown and pairlist.

If all the blocks in pairlist are divided, we divide
Cown into four children with one quadrant each and
recurse, rephrasing divided C = A×B using (3.2):

(3.3)

C1 = [(A1, B1), (A2, B3)]
C2 = [(A1, B2), (A2, B4)]
C3 = [(A3, B1), (A4, B3)]
C4 = [(A3, B2), (A4, B4)]

In total, each recursive call receives a Cown and an
entire list of pairs of blocks. For every pair in pairlist,
insert two pairs into each child’s pairlist according to
the respective line in (3.3). Each child’s pairlist is twice
as long as the parent’s pairlist, but totals only 4 sub-
blocks to the parent’s 8.

If pairlist includes both divided blocks and leaf
blocks, we temporarily divide the leaves until all blocks

=	

C1	
 C2	

C3	
 C4	

A1	
 A2	

A3	
 A4	

×	

B1	
 B2	

B3	
 B4	

×	
 =	

B	
 A	
 C	

C4	
 ×	
)	
 +	
 (
)	
 =	
 ×	
 (
 B4	
 A4	
 B2	
 A3	

C1	
 ×	
)	
 +	
 (
)	
 =	
 ×	
 (
 B3	
 A2	
 B1	
 A1	

C2	
 ×	
)	
 +	
 (
)	
 =	
 ×	
 (
 B4	
 A2	
 B2	
 A1	

C3	
 ×	
)	
 +	
 (
)	
 =	
 ×	
 (
 B3	
 A4	
 B1	
 A3	

?	

Figure 4: Illustration of Equation (3.3).

in pairlist are equally divided. This temporary division
creates shadow blocks as described in Section 2. Shadow
subdivision resolves any differences in quadtree depth
between the operands. It allows the symbolic phase to
recurse until only leaves remain, which lets the compute
phase only operate on leaves. See Figure 5 for an
example. The shadow blocks persist only until the end
of the SpGEMM.

3.2 Symbolic Phase Example We illustrate the
symbolic phase of a multiplication of two matrices by
tracing how two result blocks’ pair lists are generated.
We use the running example in Figure 6. Operand A is
more dense in a corner as might appear in an adjacency
matrix of a power law graph. Operand B shows a
uniform subdivision, as might appear in an adjacency
matrix of an Erdős-Rényi [4] graph. Their respective
quadtrees are illustrated in Figures 2 and 3.

In the figures, leaf blocks and compute tasks are de-
noted with rounded corners; shadow blocks and shadow
subdivisions are denoted with dotted lines.

Both traces share the same root symbolic task. This
task is initialized with the full problem: pairlist =
[(A,B)] and Cown = C. It sees that all blocks in
pairlist are subdivided, so the recursive case applies.
Cown is subdivided and a matching pairlist is generated
according to (3.2) (as illustrated in Figure 4). Four
new symbolic tasks are spawned, one for each newly
divided Cown child. Our two traces diverge here; each

3

3.3 Computational Phase 3 PAIR-LIST MATRIX MULTIPLICATION ALGORITHM

?	

Shadow	
 	
 	
 	
 	
 	
 	
 	
 Subdivide	

×	
)	
 +	
 (
)	
 =	
 ×	
 (

×	
)	
 +	
 (
)	
 =	
 ×	
 (

Figure 5: Division mismatch: a leaf block is paired with
an inner block. A shadow subdivision of the leaf block
yields an inner block that resolves the mismatch and
allows another recursive step.

×	
 =	

Example	
 II	
 Example	
 I	

Figure 6: The running example. We wish to multiply an
RMAT matrix with an adjacency matrix of an Erdős-
Rényi graph. The quadtree for the RMAT is shown in
Figure 2, and the ER in Figure 3.

one follows the recursive call on a different child.
Example Trace I follows the third (bottom left)

child. It is fully illustrated in Figure 7. The second level
symbolic task has a pairlist that consists of three inner
blocks and one leaf. This requires a shadow subdivision
of the leaf. The recursion then continues, spawning four
more symbolic tasks. Each one of these four consists of
only leaves, so they simply spawn compute tasks.

Example Trace II follows the first (top left) child of
the root symbolic task. This trace is fully illustrated in
Figure 8. The second level symbolic task has a pairlist
that consists of all inner blocks, so the recursive case is
trivially applied again. This spawns four more symbolic
tasks, and we choose to follow the fourth (bottom right)
child. This third level symbolic task has a pairlist
with one inner block and seven leaves. The leaves must
be shadow subdivided so another recursive case can be
applied. These recursive children contain only leaves.
Some are original leaves, corresponding to the most
dense part of A. The rest are shadows, both from less
dense parts of A, and from the generally less dense B.
The final recursion, then, can spawn compute tasks.

(A	
 ×	
 B)	
 =	
 C	

Compute	
 task	

×	
)	
 +	
 (
)	
 =	
 ×	
 (

×	
)	
 +	
 (
)	
 =	
 ×	
 (
 ?	

2nd	
 level	
 symbolic	
 task	

?	
 ?	

?	
 ?	

×	
)	
 =	

?	

?	
 ?	

×	
)	
 =	

Root	
 symbolic	
 task	

(

(

?	

?	

Shadow	
 	
 	
 	
 	
 	
 	
 	
 Subdivide	

×	
)	
 +	
 (
)	
 =	
 ×	
 (

×	
)+(
)	
 =	
 ×	
 ×	
 ×	
 (
)+(
)+(

Figure 7: Example Trace I: The root symbolic task
applies the recursive case. The next recursive symbolic
task has a mix of inner block and leaves, so performs a
shadow subdivide. The next recursion are all leaf tasks,
so are turned into compute tasks.

3.3 Computational Phase This phase consists of
tasks that each compute one block inner product (3.2).
We present the final approach in Algorithm 1 and
describe it below. Observe that each compute task
is lock-free because it only reads from the blocks in
pairlist and only writes to Cown.

4

3 PAIR-LIST MATRIX MULTIPLICATION ALGORITHM 3.3 Computational Phase

(A	
 ×	
 B)	
 =	
 C	

×	
)+(
)	
 ×	
 ×	
 ×	
 (
)+(
)+(

×	
)+(
)	
 =	
 ×	
 ×	
 ×	
)+(
)+(
 +(

Compute	
 task	

×	
)+(
)	
 =	
 ×	
 ×	
 ×	
 (
)+(
)+(

Inner	
 block	
 requires	
 leaf	
 blocks	

to	
 be	
 shadow	
 subdivided	

×	
)+(
)	
 =	
 ×	
 ×	
 ×	
 (
)+(
)+(

?	

×	
)+(
)	
 =	
 ×	
 ×	
 ×	
 (
)+(
)+(

3rd	
 level	
 symbolic	
 task	

×	
)	
 +	
 (
)	
 =	
 ×	
 (
 ?	

2nd	
 level	
 symbolic	
 task	

×	
)	
 =	

?	

?	
 ?	

×	
)	
 =	

Root	
 symbolic	
 task	

(

(

?	

?	

×	
)	
 +	
 (
)	
 =	
 ×	
 (
 ?	
 ?	

?	
 ?	

Figure 8: Example Trace II: Trace that requires 3 levels
of symbolic tasks.

We extend Gustavson’s sequential sparse matrix
multiplication algorithm [8]. Gustavson computes the
product of column j of B and A using a “sparse
accumulator”, or SPA. The SPA can be thought of as
a dense auxiliary vector, or hash map, that efficiently
accumulates sparse updates to a single column of Cown.
Gustavson’s algorithm reads both A and B column-by-
column, but their columns are selected differently. The
algorithm reads the non-empty columns of B in order,
but performs random lookups of columns in A. To
facilitate these access patterns for our (row, col, value)
triples storage, we organize the column-sorted triples. A
column organizer is an auxiliary structure that allows
quick access to particular columns of a block. Due to
different access patterns for blocks A and B, we
organize them differently.

Algorithm 1 Compute Task’s Multi-Leaf Multiply

Require: Cown and pairlist
Ensure: Complete Cown

for all (Ab, Bb) in pairlist do
organize Ab columns with hash map or CSC
organize Bb columns into list

end for
merge all B organizers into combined B org
for all (column j, PairListj) in combined B org do

SPA← {}
for all (Ab, Bb) in PairListj do

for all non-null k in column j in Bb do
accumulate Bb[k, j]×Ab[:, k] into SPA

end for
end for
copy contents of SPA to Cown[:, j]

end for

The first type of column organizer is designed for
constant-time lookup of a particular column i in A.
We provide two methods to achieve this. The first is
a hash map with an entry i→ (offset i, lengthi) for each
non-empty column i. The second is a CSC-like array
of offsets of the first element of a column. Both offer
O(1) lookups of a particular column i, but the CSC-like
method trades a faster constant for O(n) space.

The second type of column organizer allows itera-
tion over non-empty columns B. We generate a list of
tuples (j, offsetj , lengthj).

All column organizers are generated with a single
scan of only the column indices. Therefore each one
takes linear time to generate. For maximum parallelism,
the organizers can be generated in each compute task.
This means each block is organized many times, once
by each compute task it is used in. This cost is
negligible for small to medium matrices, but can be

5

3.4 Post Processing 4 CHOICE OF DIVISION THRESHOLD

greatly reduced by caching the organizers.
The column organizers allow us to efficiently use

Gustavson’s algorithm on our triples to evaluate the
multiplies in (3.2). We show that if all pairwise
block multiplies in a computational task are performed
simultaneously then they can be interleaved in such a
fashion that the addition step is inlined into the
multiply step.

The key to this inlining is the SPA. Gustavson uses
the SPA to accumulate the sparse updates to a single
column j of Cown. Observe that in a blocked algorithm
every non-null column j in any B in the pair list will lead
to its own SPA for column j of that pair’s partial result.
The add step’s only function is to accumulate all the
partial column j results into one. Our key contribution
is do all updates to column j together, allowing us to use
the same SPA for them all. Since there are no further
updates to column j, no add step is necessary.

Another way to picture this process is to observe
that the A blocks represent a short-and-fat slice of the
matrix A, and the B blocks represent a tall-and-skinny
slice of the matrix B. Cown is the inner product of
these two slices. When the slices are thought of as
whole matrices, this inner product already handles the
addition properly. Our contribution can be thought of
as virtually merging the A and B blocks into such slices.

Our addition to Gustavson is a mechanism that
combines columns j from all blocks Bi in pairlist to
present a view of the entire column j from matrix B.
This organizer combiner is like the second column orga-
nizer, but generalized to cover the non-empty columns
in all blocks B instead of just one. We accomplish this
with a structure that combines the B organizers with
the property that all entries of column j are together.

We supply two ways to implement an organizer
combiner. First is an ordered multi-map of j →
(Bsource, offset). We fill the multimap from each B
organizer. The second is a dense 2D array of the same
entries as the multi-map values. This method escapes a
log n insert time at the cost of higher space usage.

Our extensions to Gustavson therefore consist of
column organizers, a column organizer combiner, and
finally an interleaving of inner products of multiple
block pairs.

We draw the reader’s attention to a pattern in
our auxiliary data structures: we provide two versions
for each structure that requires random access. The
traditional implementations of these structures use a
dense array (like CSC column pointers or a dense vector
SPA), and are the only part of the QuadMat data
structure and SpGEMM implementation that depend
on the matrix dimensions m or n. This approach works
superbly for matrices with dimensions small enough for

these structures to fit in available memory. However,
we wish to break this dependency in order to support
huge matrix dimensions. We therefore always provide
an alternative structure that has the same O() time
complexity (but with a higher constant) that does not
depend on the matrix dimensions. The choice of which
version to use is made at runtime.

Our dense SPA is similar to the traditional one [7].
It consists of two arrays of length m. The first, vals is
the actual values (such as doubles). The second is an
array of full/empty bits. Lastly, a used elements array
lists the i where vals[i] is full. Our alternative SPA
implementation uses a hashmap i → (val) instead of
the dense arrays.

3.4 Post Processing The symbolic and compute
phases produce a valid result, but this result might not
be subdivided appropriately. If this is undesirable, a
post-processing phase can correct the problem.

If a resulting block is too dense, i.e. its nnz >
threshold, it needs to be subdivided. A subdivision
resembles a shadow subdivide, but the result is perma-
nent. This subdivision can be done by a single task as
soon as the compute task finishes building the result.

If a resulting block is too sparse, i.e. the sum
nnz of it and its siblings ≤ threshold, it needs to be
coalesced with its siblings in the quadtree. Coalescing
is the opposite of subdivision and can only be attempted
after all children of a result inner block are computed.
Coalescing also needs to be performed recursively up
the quadtree; it is possible that the entire result matrix
is nearly empty and needs to be coalesced into a single
block.

4 Choice of Division Threshold

QuadMat has a tuning parameter in the form of the
subdivision strategy. In this work it is the value of the
division threshold as explained in Section 2.

In our experiments, we decided to avoid hand-
tuning individual SpGEMM problems by using a one-
size-fits-all algorithm to choose a threshold for a particu-
lar problem. We only allow ourselves to use information
known at the start of the problem, namely the process-
ing environment and the dimensions and nonzero count
of the operands. An optimal algorithm is a matter of
ongoing research, but for the purposes of these experi-
ments we make an educated guess and choose a division
threshold=max(50k, largest nnz/80).

The choice of division threshold has wide rami-
fications. The threshold determines the parallelism
of the computation. At one extreme, if we set the
threshold=nnz, the entire matrix is one single leaf block
and potential parallelism is 1. At the other extreme

6

5 EXPERIMENTS AND COMPARISONS

we have a very small threshold with immense potential
parallelism due to the fact that the compute blocks are
independent. This, however, leads to an increase in the
number of blocks and block overhead, mainly column or-
ganization, and an increase in the likelihood that each
block is hypersparse (nnz � n).

The increased cost of column organization is mainly
due to the fact that this preliminary work does not
yet implement organizer caching. Observe that each
block is used in many compute tasks. Without caching,
each compute task performs its own organization of its
operands. This leads to duplicate work, and becomes
significant on some problems with small thresholds.
This is the primary reason why we chose a relatively
large threshold. When ongoing work in caching is
complete we expect to be able to remove this restriction.

A smaller division threshold also leads to each block
becoming less dense. To illustrate, assume that matrix
M with dimensions n has an average of c nonzeros
per column, or nnz = cn. As we divide each column
into b blocks, each block owns c/b column nonzeros.
As b increases with the division threshold, the nonzero
count of each block approaches 0 and the block becomes
hypersparse.

Hypersparse blocks have two important conse-
quences. First, the dense structures (organizers, SPA)
that depend on n and not on nnz become inefficient.
CombBLAS solves this problem by using a Doubly-
Compressed Sparse Columns (DCSC) datastructure,
which is CSC with the column pointers compressed.

Second, hypersparse block inner products have
lower utility for every lookup into A. Recall that
the heart of the compute phase is “accumulate
Bb[k, j]×Ab[:, k] into SPA”. In an undivided M each
nonzero with row k in B will look up column k in A
once. This column may be empty (a miss), but assume
it has c nonzeros. The algorithm then accumulates all c
elements into the SPA. If we do the same on a divided
M , column k is now in b parts. In total, there will now
be b lookups instead of one, but the same number of
accumulation operations to amortize the cost.

The hypersparse effect can be reduced with preven-
tion and mitigation. Prevention means increasing the
division threshold. In practice this likely means that
the optimal division threshold is the maximum one that
provides enough potential parallelism. This implies a
threshold that depends on the number of threads used;
we did not pursue this in our reported experiments. In
qualitative experiments, however, we notice an increase
in performance on low thread counts with higher thresh-
olds.

The hypersparse effect can be mitigated by reducing
the cost of a lookup miss. If the lookup is in cache then

it can incur minimal penalty. Ongoing organizer work
should address this with a hierarchal organizer (similar
to DCSC) that allows many lookup misses to fail quickly
using the same (cached) memory locations. A smaller
threshold results in smaller blocks, and therefore a
larger portion of the organizer can be in cache.

5 Experiments and Comparisons

5.1 Experimental Design We implemented our al-
gorithm in C++, using the Threading Building Blocks
(TBB) framework [13] for task parallelism. We com-
pare it to the fastest serial and parallel codes available.
We use an Intel Westmere-EX machine with four E7-
8870 @ 2.40GHz processors for a total of 40 physical
cores and 80 threads. The machine has 256 GB RAM.

5.1.1 Codes We compare against the leading serial
code, CSparse [3], and the parallel code Combinatorial
BLAS [2]. For this paper, we only consider SpGEMM
kernels.

CSparse is a small sparse matrix package written
in C. It includes implementations for a wide range of
sparse matrix algorithms that are either asymptotically
optimal or fast in practice. The primary drawback to
CSparse is that it is single threaded. Nevertheless, it
is considered a leading sparse matrix code and offers a
strong benchmark.

The Combinatorial BLAS (CombBLAS) is a library
written in highly-templated C++ and MPI that offers a
small set of linear algebraic kernels that can be used
as building blocks for the most common graph-analytic
algorithms. Graph abstractions can be built on top
of its sparse matrices, taking advantage of its existing
best practices for handling parallelism in sparse linear
algebra. The main data structures are sparse matrices
and vectors which are distributed in a two-dimensional
processor grid for scalability. This means that the
CombBLAS requires a square number of processes.
CombBLAS is written for distributed memory, but we
compare our shared-memory code with it as it is a
leading parallel SpGEMM code.

5.1.2 Datasets We present a set of problems that
consist of a single sparse matrix multiplication A×B or
a triple product A×B×C. We generate three types of
matrices, and two randomly permuted variants, to serve
as the base of our problem set as described in Table 1.

Kronecker product (RMAT) matrices [11] approx-
imate a power-law degree distribution among vertices.
We use quadrant edge probabilities of [.57, .19, .19, .05]
and a fill factor of 16. We also symmetrize the matrix
to model an undirected graph. Each RMAT is labeled
with its scale, where the dimensions of the matrix are

7

5.2 Results 5 EXPERIMENTS AND COMPARISONS

Table 1: Dataset categories. Each SpGEMM problem’s
name specifies the matrix used and the operation. The
matrix name is a concatenation of Base, Scale, and RP
from this table. The operation is denoted by a suffix
from Section 5.1.3.

Base Scale
Randomly
Permuted

Matrix
Dim.

Approx.
nnz

Flat random:
ER 18 or 20 2scale 32 ∗ 2scale

Power law random:
rmat 16 or 18 2scale 32 ∗ 2scale

Power law random (randomly permuted):
rmat 16 or 18 RP 2scale 32 ∗ 2scale

3D structured mesh:
torus3D 150 or 200 scale3 7 ∗ scale3

3D structured mesh (randomly permuted):
torus3D 150 or 200 RP scale3 7 ∗ scale3

Algebraic multigrid:
AMG 150 or 200 scale3 27 ∗ scale3

n = 2scale. The maximum possible nnz is 32n; however
due to a large number of collisions in the dense regions
the actual number can be substantially less.

We generate adjacency matrices for Erdős-Rényi
graphs with similar vertex and edge counts to our
RMAT graphs. Each ER graph has n = 2scale vertices
and about 32n edges.

A 3D torus mesh serves to represent 3D geometic
mesh applications. A mesh size of d contains d3 vertices,
each with a connection to its six neighbors and itself.
Therefore, the sparse matrix has dimension d3 with 7d3

nonzeros.
Finally we consider a simple algebraic multigrid

application. We consider a 3D rectahedral mesh of
dimension d, with d3 cells, which performs a linear
combination of its 27 neighbors.

Each dataset has a scale parameter as described.
For the RMAT and torus datasets we also include a
randomly-permuted variant, denoted with a RP suffix.
This variant shows the effect of nonzero distribution.
To ensure compatibility with all codes, all datasets only
contain numeric elements of type double.

5.1.3 Problems We generate SpGEMM problems
from the datasets in several ways, each marked by a
distinct suffix to the dataset name:

1. Suffix sq: We square the matrix.

2. Suffix perm: We randomly permute the matrix
rows by left multiplying it by a generated random

permutation matrix.

3. Suffix sub: We select half the rows and half the
columns of the matrix by a triple product. This
operation is also called SpRef.

4. Suffix cont: Finally, we generate a set of three
matrices that approximate the contraction step of
algebraic multigrid. We contract a dimension d
matrix with d3 cells to a dimension d/2 matrix with
d3/8 cells. This entails a R×A×P triple product.

The complete set of problems is described in Ta-
bles 2 and 3 in the Appendix.

5.1.4 Measurements For each problem we calculate
the number of non-zero arithmetic operations (floating-
point multiplies and additions) that occur. We then run
each code/number of cores combination and record the
elapsed time.

This data allows us to make a variety of compar-
isons. We can determine serial efficiency by looking at
the p = 1 results. We can determine strong scaling
by comparing increasing processor counts on the same
problem, or weak scaling by comparing larger generated
problems on the same number of processors. We can
also compare to the serial CSparse code to determine
when parallelism becomes profitable.

Additionally, we probe QuadMat by profiling its
behavior on one core.

5.2 Results We ran QuadMat with blocksize
threshold=max(50k, largest nnz/80), with a näıve in-
dex caching implementation, no post-processing phase,
and only dense versions of auxiliary data structures.
The raw elapsed times for each problem are listed in
Tables 4 and 5 in the Appendix.

We analyze QuadMat’s performance from several
angles. First, we get a broad overview of the perfor-
mance of all codes by comparing them to each other.
We then explore the effect of nonzero distribution on
the runtimes, and the effect of threshold choice on scal-
ability. Finally we profile QuadMat execution.

5.3 Code Comparisons The purpose of a shared-
memory parallel code is to perform a task faster than
a sequential code. In this vein we get a broad perfor-
mance overview of both parallel codes by comparing the
speedup each offers compared to CSparse. In Figure 9
we plot the speedup (or slowdown) of 1, 4, 16, 36, and
64-thread runs compared to single-threaded CSparse on
each problem in our set.

We see many strengths of QuadMat and some weak-
nesses. QuadMat’s strongest performance is on ER and

8

5 EXPERIMENTS AND COMPARISONS 5.3 Code Comparisons

ER
_18

_sq

ER
_20

_sq

rm
at_

16
_sq

rm
at_

16
RP_s

q

rm
at_

18
_sq

rm
at_

18
RP_s

q

tor
us3

D_15
0_s

q

tor
us3

D_15
0R

P_s
q

tor
us3

D_20
0_s

q

tor
us3

D_20
0R

P_s
q

10-1

100

101

S
p
e
e
d
u
p
 c

o
m

p
a
re

d
 t
o
 C

S
p
a
rs

e
CSparse QuadMat CombBLAS

AMG_15
0_c

on
t

AMG_20
0_c

on
t

ER
_20

_pe
rm

rm
at_

18
_pe

rm

rm
at_

18
RP_p

erm

tor
us3

D_20
0_p

erm

tor
us3

D_20
0R

P_p
erm

ER
_20

_su
b

rm
at_

18
_su

b

rm
at_

18
RP_s

ub

10-1

100

S
p
e
e
d
u
p
 c

o
m

p
a
re

d
 t
o
 C

S
p
a
rs

e

CSparse QuadMat CombBLAS

Figure 9: (Preliminary) Speedup compared to CSparse for CombBLAS and QuadMat on 1, 4, 16, 36, and 64
threads. Y-axis is in log scale. Note that the machine has 40 cores, so the 64 thread results are using multiple
threads per core.

RMAT matrix squares, and the AMG contraction and
submatrix extraction triple products. In 13 out of 20
problems QuadMat matches CSparse performance with
four cores or fewer. QuadMat shows good speedup
on the remaining problems, and does not match the
CSparse sequential time on only two out of 20 prob-
lems. This shows that there are clearly some significant
bottlenecks remaining.

We plot the same data as absolute values, namely
FLOPS (or nonzero arithmetic operations per second)
achieved. Figure 13 plots the same 1, 4, 16, 36, and
64-thread runs for CombBLAS and QuadMat, but they
can now be directly compared to the FLOPS achieved
by single-threaded CSparse. We observe that on some
problems all codes suffer reduced FLOPS, while all
are faster on others. The gap is large, two orders of
magnitude.

5.3.1 Effects of Nonzero Distribution We com-
pare the effect of nonzero distribution on the various
codes. This is most evident when the same problem
is available in a highly structured and a randomly per-
muted form, namely torus squares. CSparse and Quad-

Mat both perform better on the structured version,
CombBLAS on the randomized version. There are two
primary reasons for this.

Both CSparse and QuadMat use a dense lookup
table for the columns (CSC and CSC-like dense orga-
nizer, respectively). This makes sequential reads of the
columns very efficient. This locality is lost when the
matrix is randomly permuted, and FLOPS performance
approaches that of the ER squares.

The hypersparse algorithm used by CombBLAS
does not allow it to benefit from this locality as much,
so it is less affected by its loss. On the other hand,
CombBLAS uses a uniform block decomposition so the
narrow-banded torus gives a very unbalanced computa-
tional load. The random permutation provides a nearly
uniform nonzero distribution which allows CombBLAS
to scale very well. Indeed we see this effect in all prob-
lems; CombBLAS performs well on problems that offer
good load balancing and less well on ones that do not.

While load balance has a much weaker effect on
QuadMat, we observe that QuadMat struggles when
the left factor is much more sparse and random than
the right factor, such as the permutation problems.

9

5.3 Code Comparisons 5 EXPERIMENTS AND COMPARISONS

To help explain why sparse left factors are a per-
formance bottleneck, we measure the observed utility
of A organizer lookups. As described in Section 4, our
inner product computation performs lookups into A’s
column organizer. The cost of each miss (empty col-
umn) is amortized by the number of nonzero elements
discovered by hits. Each hit discovers at least one ele-
ment.

We instrumented QuadMat to measure the total
number of organizer lookups, the number of hits, and
the number of nonzeros discovered through each hit.
Dividing the latter by the total number of lookups gives
us the lookup utility. Note that these measured numbers
are specific to each particular block decomposition and
will change with a different division threshold. See
Table 6 in the Appendix.

We quickly observe a pattern. QuadMat has
good computational performance on problems with high
lookup utility and poor performance on problems with
low lookup utility. Indeed the worst performing per-
mutation problems have terrible lookup utility because
nearly all lookups miss (due to the sparseness of the
permutation matrix) and the hits discover the minimum
one element. This is the hypersparse block effect.

CombBLAS is not affected by poor lookup utility
because its hypersparse sequential kernel does not per-
form lookups. In ongoing work we try to get the best
of both worlds. We mitigate the cost of the misses
by switching to a DCSC-like organizer on hypersparse
blocks. Our design also permits us to selectively perform
the hypersparse algorithm on some block pairs then
combine that result with results using our Gustavson-
derived kernel.

5.3.2 Strong Scaling We are interested in what our
code does on the same problem when it is given more
resources. In Figure 10 we plot the speedup of QuadMat
on two to 36 cores. On a single socket laptop with 4
cores and 8 threads we see excellent scaling even with
two threads per core, but on our larger machine we see
much less benefit from multiple threads per core.

We observe excellent scaling with 2 and 4 threads
on all problems, and good scaling with 9 threads on
most problems. Thread counts above 9 bring mixed
performance; most problems continue scaling; some
stay about the same. We hypothesize two reasons:
insufficient parallelism and memory effects.

Our profile statistics in Table 6 include the total
compute task work (total number of seconds) and the
span (longest individual task). The ratio of those two
times is our potential parallelism. We see that for our
chosen division threshold, some problems (particularly
AMG contraction) are indeed constrained by insufficient

1 2 4 9 16 25 36
p

0

5

10

15

20

25

S
p
e
e
d
u
p

QuadMat

Figure 10: (Preliminary) Strong scaling of normal
QuadMat. Each line shows the speedup for a particular
problem when more threads are used.

1 2 4 9 16 25 36
p

0

5

10

15

20

25

30

S
p
e
e
d
u
p

ER_18_sq

torus3D_200_sq

ER_20_perm

QuadMat
QuadMat-Special

Figure 11: (Preliminary) Strong scaling comparison of
normal QuadMat with a special version with increased
arithmetic intensity to show impact of memory effects.

potential parallelism.
To explore memory effects, we performed a set

of runs in which we artificially inflated the cost of
arithmetic operations by looping them 5,000 times.
This drastically reduces the effects of memory latency,
bandwidth, and caches. Figure 11 shows the results for
three problems, comparing the speedup of the normal
code with the one with inflated arithmetic.

The vastly improved scaling of the code with in-
flated arithmetic shows that memory effects have a sig-
nificant impact on strong scaling.

10

6 DISCUSSION AND FUTURE WORK

ER
_1
8_
sq

ER
_2
0_
sq

rm
at
_1
6_
sq

rm
at
_1
6R
P_
sq

rm
at
_1
8_
sq

rm
at
_1
8R
P_
sq

to
ru
s3
D
_1
50
_s
q

to
ru
s3
D
_1
50
R
P_
sq

to
ru
s3
D
_2
00
_s
q

to
ru
s3
D
_2
00
R
P_
sq

A
M
G
_1
50
_c
on
t

A
M
G
_2
00
_c
on
t

ER
_2
0_
pe
rm

rm
at
_1
8_
pe
rm

rm
at
_1
8R
P_
pe
rm

to
ru
s3
D
_2
00
_p
er
m

to
ru
s3
D
_2
00
R
P_
pe
rm

ER
_2
0_
su
b

rm
at
_1
8_
su
b

rm
at
_1
8R
P_
su
b

0.0

0.2

0.4

0.6

0.8

1.0
Fr
a
ct
io
n
 o
f
R
u
n
ti
m
e

Other
Symbolic Phase
Column Organize
SPA Arithmetic
 and Storage

Figure 12: (Preliminary) Breakdown of time spent in each part of the algorithm on a single core. The green
‘SPA Arithmetic & Storage’ portion represents the inner block product computation. The blue ‘Column Organize’
proportion accounts for the time to generate and combine column organizers. The red ‘Symbolic Phase’ is
dominated by shadow block creation. Miscellaneous code such as destructors and TBB overhead go into the black
‘Other’ portion.

We wish to bring the reader’s attention to a hidden
pitfall of shared memory algorithms that perform mem-
ory allocation in threaded kernels. Main memory is a
shared resource, therefore its allocation must be done
in a thread-safe manner. The näıve approach, locking,
introduces a serialization hidden to the algorithm de-
signer. One solution is an allocator based on thread-
private heaps. TBB provides such an allocator [10].

5.3.3 Profiling We explore the efficiency of our algo-
rithm and implementation through profiling. We com-
piled a special profiled binary which records the time
spent in each phase of the algorithm. We are partic-
ularly interested in the amount of time taken by over-
head in our design: the symbolic phase (dominated by
shadow block creation) and column organization. We
profile every problem in our problem set on one core in
Figure 12.

The profile data shows that the symbolic phase,
dominated by shadow block creation, is not a significant
portion of the runtime. The time spent in the symbolic
phase is less than 5% of runtime in all but four problems;
the maximum is 25%.

Recall that this preliminary implementation in-
cludes only a näıve implementation of organizer caching.
The need for efficient organization and organizer reuse
is suggested by the profile data; column organization
accounts for between 15 − 45% of runtime for all but
ER and RMAT square problems.

6 Discussion and Future Work

Our results show that, despite room for improvement,
our algorithm has excellent performance and scaling.
It offers significant speedup on some problems, and we
have strong leads on how to improve the cases where it
does not.

Interestingly, the problems that QuadMat excels on
are also the ones that are sometimes considered the most
difficult in the graph community: ones with a small
number of high-degree vertices.

Our continuing work includes two main improve-
ments that should significantly reduce or eliminate
QuadMat’s weaknesses: organizer caching and a hier-
archical A-side organizer. These improvements should
provide more latitude in automatically choosing a good
division threshold.

Our algorithm has potential to be extended in
several ways.

We envision a triple product primitive that does
not materialize the entire intermediate product at any
one time. This can be accomplished by merging the two
SpGEMMs’ symbolic phases. When done carefully with
added destructor tasks, the portions of the intermediate
product needed for a portion of the second SpGEMM
can be materialized, used, and destroyed.

We also believe that the quadtree intermediate
structure and triples leaf storage enables computing
AT ×B with similar complexity to A×B.

Additionally, we plan to take advantage of the
block decomposition to use serialization coupled with
compression algorithms for savings in both memory and
memory bandwidth.

11

9 APPENDIX

We may be able to save extra post-processing work
by merging the subdivide or coalesce step with the
compute phase. This is a great application for auto-
tuning, as the appropriate choice needs to be made at
runtime and according to the actual workload.

We also emphasize that our leaf blocks provide a
triples interface, but do not mandate triples storage as
an implementation. This enables features such as dense
blocks or generator blocks that emit triples but do not
store them.

7 Conclusion

In conclusion, we summarize the key contributions of
the design of our quadtree sparse matrix multiplication
algorithm:

• A method for elimination of explicit SpAdd opera-
tions that offers a significant reduction in work for
block-based SpGEMM.

• A split between symbolic and computational phases
with temporary on-the-fly data reorganization for
simpler operations.

• An algorithm description that divides work into
small tasks that can be scheduled on any number
of threads by third-party frameworks.

• A quadtree of triples blocks datastructure that has
significant flexibility with manageable overhead.

• A preliminary implementation that demonstrates
these benefits.

8 Acknowledgments

We wish to acknowledge Sam Williams and Aydın
Buluç for their help and inspiration of parts of the
experiments.

References

[1] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert,
and C. E. Leiserson. Parallel sparse matrix-vector
and matrix-transpose-vector multiplication using com-
pressed sparse blocks. In Proc. 21st Symp. on Paral-
lelism in Algorithms and Arch., 2009.

[2] A. Buluç and J.R. Gilbert. The Combinatorial BLAS:
Design, implementation, and applications. Intl. J. High
Perf. Computing Appl., 25(4):496–509, 2011.

[3] T. A Davis. Direct Methods for Sparse Linear Systems.
SIAM, Philadelphia, Sept 2006.

[4] P. Erdős and A Rényi. On the evolution of random
graphs. In Publication of the Mathematical Institute of
the Hungarian Academy of Sciences, pages 17–61, 1960.

[5] Jeremy D. Frens and David S. Wise. Auto-blocking
matrix-multiplication or tracking BLAS3 performance
from source code. SIGPLAN Not., 32(7):206–216, June
1997.

[6] Jeremy D. Frens and David S. Wise. QR factorization
with Morton-ordered quadtree matrices for memory re-
use and parallelism. In Proceedings of the Ninth ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’03, pages 144–154, New
York, NY, USA, 2003. ACM.

[7] J. Gilbert, C. Moler, and R. Schreiber. Sparse matrices
in MATLAB: Design and implementation. SIAM Jour-
nal on Matrix Analysis and Applications, 13(1):333–
356, 1992.

[8] F. G. Gustavson. Two fast algorithms for sparse
matrices: Multiplication and permuted transposition.
ACM Trans. Math. Softw., 4(3):250–269, 1978.

[9] J. Kepner and J. R. Gilbert, editors. Graph Algorithms
in the Language of Linear Algebra. SIAM, 2011.

[10] Alexey Kukanov and Michael J. Voss. The founda-
tions for scalable multi-core software in Intel Threading
Building Blocks. Intel Technology Journal, 11(4):309 –
322, 2007.

[11] J. Leskovec, D. Chakrabarti, J. Kleinberg, and
C. Faloutsos. Realistic, mathematically tractable graph
generation and evolution, using Kronecker multiplica-
tion. In Proc. 9th Principles and Practice of Knowledge
Disc. in Databases, pages 133–145, 2005.

[12] Guy M. Morton. A computer oriented geodetic data
base and a new technique in file sequencing. Technical
report, IBM, Ottawa, Canada, 1966.

[13] C. Pheatt. Intel threading building blocks. J. Comput.
Sci. Coll., 23(4):298–298, April 2008.

[14] H. Samet. The quadtree and related hierarchical data
structures. Computing Surveys, 16(2):187–260, 1984.

[15] Y. Shapira. Matrix-based Multigrid: Theory and Appli-
cations. Springer, 2003.

[16] J. Shun and G. E. Blelloch. Ligra: A lightweight graph
processing framework for shared memory. SIGPLAN
Not., 48(8):135–146, February 2013.

[17] R. A. Van De Geijn and J. Watts. Summa: Scal-
able universal matrix multiplication algorithm. Con-
currency: Practice and Experience, 9(4):255–274, 1997.

[18] David S. Wise. Representing matrices as quadtrees for
parallel processors: Extended abstract. SIGSAM Bull.,
18(3):24–25, August 1984.

[19] David S. Wise and John Franco. Costs of quadtree rep-
resentation of nondense matrices. Journal of Parallel
and Distributed Computing, 9(3):282 – 296, 1990.

[20] David S. Wise, Jeremy D. Frens, Yuhong Gu, and
Gregory A. Alexander. Language support for Morton-
order matrices. SIGPLAN Not., 36(7):24–33, June
2001.

9 Appendix

. . .

12

9 APPENDIX

Table 2: The Problems - Matrix Squares. Colors in the visual representation of nonzero distribution indicate
density. Green and red hues represent more nonzeros. All matrices here and in Table 3 share the same color scale.

Name Factors Product
Non-Zero

Arithmetic
Ops.

ER 18 sq ×
262K × 262K, nnz = 8.39M
262K × 262K, nnz = 8.39M

262K × 262K
nnz = 268M

269M

ER 20 sq ×
1.05M × 1.05M , nnz = 33.6M
1.05M × 1.05M , nnz = 33.6M

1.05M × 1.05M
nnz = 1.07G

1.07G

rmat 16 sq ×
65.5K × 65.5K, nnz = 1.83M
65.5K × 65.5K, nnz = 1.83M

65.5K × 65.5K
nnz = 365M

2.15G

rmat 16RP sq ×
65.5K × 65.5K, nnz = 1.83M
65.5K × 65.5K, nnz = 1.83M

65.5K × 65.5K
nnz = 365M

2.15G

rmat 18 sq ×
262K × 262K, nnz = 7.65M
262K × 262K, nnz = 7.65M

262K × 262K
nnz = 3.04G

16.1G

rmat 18RP sq ×
262K × 262K, nnz = 7.65M
262K × 262K, nnz = 7.65M

262K × 262K
nnz = 3.04G

16.1G

torus3D 150 sq ×
3.38M × 3.38M , nnz = 23.6M
3.38M × 3.38M , nnz = 23.6M

3.38M × 3.38M
nnz = 84.4M

246M

torus3D 150RP sq ×
3.38M × 3.38M , nnz = 23.6M
3.38M × 3.38M , nnz = 23.6M

3.38M × 3.38M
nnz = 84.4M

246M

torus3D 200 sq ×
8.00M × 8.00M , nnz = 56.0M
8.00M × 8.00M , nnz = 56.0M

8.00M × 8.00M
nnz = 200M

584M

torus3D 200RP sq ×
8.00M × 8.00M , nnz = 56.0M
8.00M × 8.00M , nnz = 56.0M

8.00M × 8.00M
nnz = 200M

584M

13

9 APPENDIX

Table 3: The Problems - Algebraic Multigrid Contractions, Permutations, and Submatrix Extractions. Colors in
the visual representation of nonzero distribution indicate density. Green and red hues represent more nonzeros.
All matrices here and in Table 2 share the same color scale.

Name Factors Product
Non-Zero

Arithmetic
Ops.

AMG 150 cont × ×
422K × 3.38M , nnz = 3.38M
3.38M × 3.38M , nnz = 90.7M
3.38M × 422K, nnz = 26.8M

422K × 422K
nnz = 11.4M

571M

AMG 200 cont × ×
1.00M × 8.00M , nnz = 8.00M
8.00M × 8.00M , nnz = 215M
8.00M × 1.00M , nnz = 63.7M

1.00M × 1.00M
nnz = 27.1M

1.36G

ER 20 perm ×
1.05M × 1.05M , nnz = 1.05M
1.05M × 1.05M , nnz = 33.6M

1.05M × 1.05M
nnz = 33.6M

33.6M

rmat 18 perm ×
262K × 262K, nnz = 262K
262K × 262K, nnz = 7.65M

262K × 262K
nnz = 7.65M

7.65M

rmat 18RP perm ×
262K × 262K, nnz = 262K
262K × 262K, nnz = 7.65M

262K × 262K
nnz = 7.65M

7.65M

torus3D 200 perm ×
8.00M × 8.00M , nnz = 8.00M
8.00M × 8.00M , nnz = 56.0M

8.00M × 8.00M
nnz = 56.0M

56.0M

torus3D 200RP perm ×
8.00M × 8.00M , nnz = 8.00M
8.00M × 8.00M , nnz = 56.0M

8.00M × 8.00M
nnz = 56.0M

56.0M

ER 20 sub × ×
524K × 1.05M , nnz = 524K
1.05M × 1.05M , nnz = 33.6M
1.05M × 524K, nnz = 524K

524K × 524K
nnz = 8.39M

25.2M

rmat 18 sub × ×
131K × 262K, nnz = 131K
262K × 262K, nnz = 7.65M
262K × 131K, nnz = 131K

131K × 131K
nnz = 4.24M

9.98M

rmat 18RP sub × ×
131K × 262K, nnz = 131K
262K × 262K, nnz = 7.65M
262K × 131K, nnz = 131K

131K × 131K
nnz = 1.88M

5.67M

14

9
A
P
P
E
N
D
IX

Table 4: Preliminary Matrix Square elapsed time in seconds, mean of 5 runs. The machine has 40 cores capable of 80 concurrent threads.

E
R

18
sq

E
R

20
sq

rm
at

16
sq

rm
at

16
R

P
sq

rm
at

18
sq

rm
at

18
R

P
sq

to
ru

s3
D

15
0

sq

to
ru

s3
D

15
0R

P
sq

to
ru

s3
D

20
0

sq

to
ru

s3
D

20
0R

P
sq

CSparse 1p 9.20 56.2 12.4 14.6 115. 131. 1.43 11.4 4.37 29.4

CombBLAS

1p 59.7 255. 158. 161. 29.6 45.5 74.2 109.
4p 16.7 73.4 84.1 42.9 418. 15.8 15.5 39.8 39.4
9p 8.39 35.0 65.4 20.0 577. 161. 10.6 9.16 27.2 23.8

16p 4.97 20.7 41.4 12.0 355. 121. 16.7 6.71 43.4 17.2
25p 3.82 15.9 40.2 8.23 342. 67.9 6.73 5.55 18.2 14.0
36p 3.08 13.0 35.7 6.32 309. 76.8 18.3 4.80 47.9 12.0
64p 2.65 11.0 30.8 4.99 297. 117. 23.5 4.68 62.5 11.8

QuadMat

1p 21.4 126. 29.8 23.7 244. 204. 4.88 138. 11.9 516.
2p 12.5 73.1 15.3 13.3 138. 117. 2.89 80.6 6.82 282.
4p 6.21 36.0 7.80 6.80 69.5 58.9 1.51 42.2 3.51 150.
9p 3.20 21.5 3.75 3.40 34.0 26.8 .823 23.3 1.81 76.8

16p 2.25 14.6 2.49 2.05 21.3 15.8 .672 15.1 1.25 45.6
25p 1.86 11.0 2.23 1.59 16.7 11.1 .624 10.7 1.16 30.9
36p 1.73 8.57 2.26 1.42 15.5 8.71 .652 7.64 1.13 23.0
64p 1.46 6.79 1.81 1.15 12.8 7.17 .636 5.74 1.29 17.3
80p 1.40 6.55 1.61 1.22 11.0 7.31 .653 5.12 1.08 16.5

15

9
A
P
P
E
N
D
IX

Table 5: Preliminary Algebraic Multigrid Contraction, Permutation, and Submatrix Extraction elapsed time in seconds, mean of 5 runs. The
machine has 40 cores capable of 80 concurrent threads.

A
M

G
15

0
co

nt

A
M

G
20

0
co

nt

E
R

20
p
er

m

rm
at

18
p
er

m

rm
at

18
R

P
p
er

m

to
ru

s3
D

20
0

p
er

m

to
ru

s3
D

20
0R

P
p
er

m

E
R

20
su

b

rm
at

18
su

b

rm
at

18
R

P
su

b

CSparse 1p 2.69 6.99 5.40 .583 .681 3.99 17.3 2.69 .503 .452

CombBLAS

1p 75.1 185. 31.9 5.31 5.32 30.0 55.3 22.5 5.29 4.22
4p 44.5 94.0 7.35 2.55 1.62 12.2 14.3 7.02 2.84 1.22
9p 29.3 74.3 3.25 1.86 .873 8.83 6.98 3.93 2.61 .686

16p 29.4 55.9 1.91 1.16 .535 7.24 4.35 2.81 1.82 .456
25p 21.8 53.5 1.41 1.09 .435 6.51 3.29 2.21 1.85 .382
36p 21.8 59.8 1.14 .965 .356 6.00 2.77 1.83 1.77 .322
64p 30.8 59.3 .958 .758 .290 6.37 2.74 1.85 1.53 .323

QuadMat

1p 8.30 19.1 24.5 22.0 3.04 99.0 347. 3.63 1.17 .622
2p 4.45 10.7 13.7 11.7 1.53 52.8 203. 2.06 .616 .331
4p 2.35 5.44 6.97 6.11 .788 26.8 105. 1.06 .327 .179
9p 1.35 2.78 4.21 2.92 .413 12.4 55.9 .535 .170 .0996

16p 1.14 2.94 4.09 1.81 .281 7.70 34.5 .359 .125 .0688
25p 1.19 2.29 3.13 1.29 .223 6.01 23.8 .322 .113 .0662
36p 1.11 2.58 2.52 1.14 .206 5.21 17.9 .311 .118 .0734
64p .982 2.61 1.98 1.69 .244 5.39 12.9 .314 .125 .0805
80p 1.25 2.64 1.90 2.11 .241 5.53 12.2 .342 .134 .0896

16

9
A
P
P
E
N
D
IX

rm
at_

16
_sq

rm
at_

16
RP
_sq

rm
at_

18
_sq

rm
at_

18
RP
_sq

0.0

0.5

1.0

1.5

2.0

2.5

FL
O
P
S

1e9
CSparse CombBLAS QuadMat

(a) RMAT matrix squares.

ER
_18

_sq

ER
_20

_sq

tor
us3

D_15
0_s

q

tor
us3

D_15
0R

P_s
q

tor
us3

D_20
0_s

q

tor
us3

D_20
0R

P_s
q

0

1

2

3

4

5

6

FL
O

P
S

1e8
CSparse CombBLAS QuadMat

(b) Other matrix squares.

AM
G_
15
0_c

on
t

AM
G_
20
0_c

on
t

0

1

2

3

4

5

6

7

8

FL
O
P
S

1e8

(c) Algebraic multigrid
contractions.

ER
_20

_pe
rm

rm
at_

18
_pe

rm

rm
at_

18
RP
_pe

rm

tor
us3

D_
20
0_p

erm

tor
us3

D_
20
0R
P_p

erm

ER
_20

_su
b

rm
at_

18
_su

b

rm
at_

18
RP
_su

b
0.0

0.2

0.4

0.6

0.8

1.0

FL
O
P
S

1e8
CSparse CombBLAS QuadMat

(d) Permutations and submatrix extractions.

Figure 13: (Preliminary) FLOPS, or nonzero arithmetic operations per second, for each of the problems listed in Tables 2 and 3. Each set of
five CombBLAS and QuadMat bars correspond to 1, 4, 16, 36 and 64 threads, while the CSparse bar is a single thread. The machine has 40 cores
capable of 80 concurrent threads. The height of each bar indicates the mean of 5 runs; the error bars mark the fastest and slowest runs.

17

9
A
P
P
E
N
D
IX

Table 6: Preliminary Problem statistics extracted using an instrumented build of QuadMat run with one thread. Detailed analysis of this data
is in Sections 5.3.1 and 5.3.2. The division threshold is chosen to balance parallelism with minimization of total block count (reduce hypersparse
blocks). The same very preliminary choice algorithm is used for all problems. Relatively poor QuadMat performance on some problems is explained
by two factors. Poor scaling can be due to insufficient potential parallelism (threshold too large). Poor computational performance (torus squares,
all permutations and submatrix extractions) is due to low A organizer lookup utility (threshold too small).

E
R

18
sq

E
R

20
sq

rm
at

16
sq

rm
at

16
R

P
sq

rm
at

18
sq

rm
at

18
R

P
sq

to
ru

s3
D

15
0

sq

to
ru

s3
D

15
0R

P
sq

to
ru

s3
D

20
0

sq

to
ru

s3
D

20
0R

P
sq

Block Division Threshold 104850 419424 50000 50000 95639 95639 295312 295312 700000 700000
Total Comp. Tasks (Work) 21.7s 122s 26.1s 25.2s 236s 202s 4.85s 133s 11.6s 471s

Max Comp. Task (Span) 0.0971s 0.634s 0.224s 0.437s 0.867s 0.948s 0.031s 0.315s 0.0621s 0.893s
Potential Parallelism 223.7 191.8 116.3 57.8 271.8 213.2 156.3 423.2 186.0 527.1

A Organizer Lookups 1.34× 108 5.37× 108 8.06× 107 1.46× 107 6.33× 108 1.22× 108 7.53× 107 6.14× 108 1.78× 108 1.74× 109

Hits 86.5% 86.5% 69.6% 96.3% 63.4% 93.7% 74.5% 24% 69.7% 20.5%
A nnz / Hit 2.31 2.31 22.4 89.1 23.9 83.3 2.95 1.12 3.15 1.1

A nnz / Lookup 2 2 15.6 85.7 15.1 78.1 2.2 0.269 2.2 0.226

A
M

G
15

0
co

nt

A
M

G
20

0
co

nt

E
R

20
p
er

m

rm
at

18
p
er

m

rm
at

18
R

P
p
er

m

to
ru

s3
D

20
0

p
er

m

to
ru

s3
D

20
0R

P
p
er

m

E
R

20
su

b

rm
at

18
su

b

rm
at

18
R

P
su

b

Block Division Threshold 1133988 2690984 419424 95639 95639 700000 700000 419424 95639 95639
Total Comp. Tasks (Work) 6.29s 15.3s 23s 17.6s 2.9s 86.6s 339s 3.34s 0.912s 0.615s

Max Comp. Task (Span) 0.215s 0.45s 0.114s 0.0226s 0.0284s 0.0177s 0.401s 0.0108s 0.0045s 0.00319s
Potential Parallelism 29.2 33.9 201.1 780.7 102.1 4906.9 846.7 310.0 202.8 192.6

A Organizer Lookups 3.94× 107 9.5× 107 5.37× 108 6.09× 108 1.22× 108 6.89× 109 1.73× 109 4.19× 106 4.65× 106 1.05× 106

Hits 79.3% 77.3% 6.25% 1.26% 6.25% 0.813% 3.23% 86.5% 18% 28.3%
A nnz / Hit 6.85 6.92 1 1 1 1 1 2.31 5.08 6.32

A nnz / Lookup 5.43 5.35 0.0625 0.0126 0.0625 0.00813 0.0323 2 0.912 1.79

18

