
Rippler: Delay Injection for Service Dependency Detection

Ali Zand, Giovanni Vigna, Richard Kemmerer, and Christopher Kruegel

ABSTRACT
Detecting dependencies among network services has been
well-studied in previous research. Previous attempts at ser-
vice dependency detection fall into two classes: active and
passive approaches. While passive approaches suffer from
high false positives, active approaches suffer from applica-
bility problems.

In this paper, we design a new application-independent
active approach for detecting dependencies among services.
We present a traffic watermarking approach with arbitrar-
ily low false positives and easy applicability. Our approach
does not need any modifications to or implementation de-
tails about the existing network services. We provide ways
to watermark sets of network flows and later detect these wa-
termarks dependably. We provide statistical tests for detect-
ing watermarked flows, and we compute the false positive
and false negative rates of these tests both analytically and
experimentally. We also provide a set of criteria for the eval-
uation of dependency detection approaches and compare our
approach to previous ones using these criteria.

Furthermore, we implemented the proposed watermark-
ing system (Rippler) in a small university lab network. We
ran our system for four months and detected 38 otherwise
hidden dependencies among 54 services. Finally, we com-
pared the efficiency of our approach against three previous
systems by testing them on this real-world network data.

1. INTRODUCTION
Corporate and governmental computer networks are tar-

gets of constant attacks [16]. Although the attackers tar-
geting these networks may have different incentives, goals,
and techniques, they generally target the same aspects of
the system: confidentiality, integrity, and availability. While
confidentiality and integrity properties have historically at-
tracted more attention from the security community, avail-
ability property has been comparatively neglected.

We depend on network services for many of our daily
needs (e.g., Internet banking, personal accounting, social
networking, and medical services). The ubiquity and di-
versity of network services have led to an ever-increasing
complexity of the infrastructure supporting these services.
As engineers use divide-and-conquer to attack complexity,

Figure 1: Sample distributed service (webmail)

these services are implemented as composite modules, built
of multiple, simpler, underlying services. This modular ap-
proach enables designers to reuse standard services to build
complex customized ones. For example, a webmail service
is usually implemented using several simple modules includ-
ing a web service, an email service, and a DNS service.

This modular design paradigm has security and reliabil-
ity implications. On the one hand, the modular design along
with reusing and sharing modules makes it challenging to
determine a distributed system’s perimeters. This, in turn,
can lead to insecure network topology design. On the other
hand, the modular design makes it challenging to prioritize
security events and assets, to correlate security alerts, to gen-
erate attack graphs, and to provide situational awareness.

As services become more complex and increasingly dis-
tributed, protecting them becomes more challenging. Be-
cause there are more components that can fail and make the
whole service unavailable, distributed systems are generally
more difficult to protect. One needs to know the components
of a composite service to be able to protect it. Unfortunately,
these implementation and dependency details are often un-
documented and difficult to identify in complex networks.

1

Figure 1 shows a composite webmail service. A typical
client checks her email using a web interface, by first con-
tacting a DNS server to acquire the IP address of the web-
server. The webserver, in turn, contacts a Kerberos server to
authenticate the user, an Active Directory server to load the
user’s contact list, a MySQL server to load the user’s profile,
and an SMTP server to send the user’s email. If any of the
involved services fail, the final webmail service will fail or
will be degraded. The system administrator needs to know
the dependencies between the involved services to be able to
adequately protect the webmail service.

Previous work on service dependency detection can be di-
vided into active [10] and passive [13] approaches. Passive
approaches do not generate any additional traffic. They sim-
ply observe the existing traffic and find the set of services
that exhibit correlated activity. Active approaches, on the
other hand, manipulate the timing or the contents of the traf-
fic to identify dependencies. Each of these approaches has
its own advantages and disadvantages.

Passive approaches suffer from two main problems: higher
false positive rates and the inability to detect the direction of
the dependency relations (who depends on whom). These
problems result from the fact that “correlation does not im-
ply causation.” In other words, when two services are corre-
lated with each other it does not necessarily mean that they
depend on each other. For example, two services may de-
pend on and be influenced by a third service, and that is the
reason why their activities are correlated. Noise and jitters
in a real-world network can also cause occasional spurious
correlated activity in the services. This problem leads to the
detection of false dependencies (false positives). Even when
one service depends on a second one, the correlation does
not show which service depends on the other.

Active approaches are harder to apply, as they require
higher level of access to the individual systems, require more
modifications to the system, and are usually application de-
pendent, and they even may introduce more load into the
network (e.g., by adding tags to application-specific traf-
fic). The high level of access and high level of modifica-
tion to the network that are required by active approaches
make their application in a real production system, at the
very least, challenging. Moreover, application-dependent
approaches cannot be used for detecting dependencies be-
tween unknown types of services.

The main cause of high false positives in passive approaches
is their inability to differentiate between correlation and cau-
sation. In active approaches, one can differentiate between
correlation and causation, by controlling one variable and
observing the other. This process is not possible with pas-
sive methods. Therefore, active approaches are needed to
recognize the direction of dependencies, and to mitigate the
false positive problem.

In this paper, we provide an active watermarking approach
that is application-independent and inflicts minimal burden
on the network. To detect dependencies, we create tempo-

ral perturbation patterns in request arrival timings for dif-
ferent services, and we determine whether or not these pat-
terns propagate to other services. We provide an analytical
framework to interpret the results of the experiments using
statistical inference. More specifically, we use three differ-
ent statistical tests to show the existence of the dependency
relationship. We analytically show that any desirable level
of accuracy can be achieved if the experiment running time
is long enough. We also validate this high accuracy by simu-
lation. We implemented a watermarking system, called Rip-
pler. Finally, we deployed this watermarking system in a
university computer laboratory network and detected 38 de-
pendencies.

Our approach requires the ability to selectively delay pack-
ets and also access to a network dataset that contains the
information about each individual network connection start
and end time. Any frequently used network traffic dump for-
mat, such as NetFlow [7] records or tcpdump, contains the
required information about the network connections.

Our contributions are the following:
• We provide a novel application-independent flow-watermarking

approach for detecting service dependencies.
• We provide statistical models of the watermarking ap-

proach and provide three statistical tests for detecting
service dependencies. We show that the suggested tests
can achieve arbitrarily small error probabilities given large-
enough data samples.

• We implemented a flow-watermarking system, and we
installed it in a university department network and an-
alyzed the gathered data. Our system detected 38 de-
pendencies using this system, some of which were not
previously identified by the system administrators.

• We compared the results of our approach to three pre-
vious works in dependency detection. We showed that
Rippler outperformed the passive approaches, and pro-
duced outputs with high levels of confidence.

2. SERVICE DEPENDENCY
In this paper, we define a network service as a process

running on a host and serving requests destined to a network
socket (triple of IP address, port number, and protocol). We
define dependency among services as follows. A service S2

depends on service S1 if a delay, degradation, or failure in
service S1 leads to a failure, disruption, or degradation of
the service of S2, directly or indirectly. Services can have
different types of dependencies between each other. Chen
et al. [6] classified network service dependencies into two
classes: local-remote and remote-remote dependencies. Ser-
vice S1 has a local-remote dependency on service S2 if S1,
to serve its clients, needs to contact S2. Service S2 has a
remote-remote dependency on service S1 if a remote client,
to access service S2, needs to access service S1 first.

An example of a local-remote dependency is the depen-
dency of a webserver on a MySQL server to load its con-

2

Figure 2: Local-Remote vs. Remote-Remote Depen-
dency

(a) Local-Remote Dependency

(b) Remote-Remote Dependency

tents. That is, the webserver, when contacted by the client,
must contact the MySQL server to load the required con-
tents.

An example of a remote-remote dependency (indirect de-
pendency) is the dependency between a webserver and a
DNS server. A client often needs to contact a DNS server
to find the IP address of the desired web server. Without the
DNS server, the client most likely will not be able to contact
the webserver (unless the client knows the IP address of the
webserver a priori).

Figure 2 shows examples of remote-remote and local-remote
dependencies. The graphs in this figure show the execution
order of a request. The X-axis is the time axis. The graph
shows the order of execution and request-response. A hor-
izontal line shows local execution on one machine, while a
downward line from one machine to the other means the first
machine sent a request to the second one and is waiting for
the response, and an upward line from a machine to another
shows that a response has been returned.

Figure 2(a) depicts a local-remote dependency between
service 1 and service 2. In this figure, the client connects
to service S1. Service S1 in turn connects to service S2.
When service S2 replies to the request from S1, S1 computes
and returns the appropriate response to the request from the
client.

Figure 2(b) shows a remote-remote dependency. In this
figure, the client connects to server S1 to request a service.
The response from S1 enables the client to connect to S2.

Certainly, one can imagine more complicated types of de-
pendencies, but they can be generalized by considering the
fact that dependencies are transitive relationships. In other
words, if S3 depends on S2, and S2 depends on S1, S3 also
indirectly depends on S1.

To express the transitivity property of the dependency re-
lationship, we define the following: S1 → S2 means that
service S1 depends on service S2 (either by a local-remote
or a remote-remote dependency). S1

L−→ S2 means that ser-

vice S1 depends on service S2, and this dependency is a
local-remote dependency. Similarly, S1

R−→ S2 means that
service S1 depends on service S2 and this dependency is a
remote-remote dependency. Using this formalization, the
trasitivity of the dependency relation can be expressed as:
(
S1

L−→ S2

)
∧ (S2 → S3)⇒ S1

L−→ S3(
S1

R−→ S2

)
∧ (S2 → S3)⇒ S1

R−→ S3

This property can lead to non-trivial dependencies among
services that one would not suspect may depend on each
other.

It should be noted that a service S1 can have, at the same
time, both local-remote and remote-remote dependencies on
service S2. For example, a webserver that is acting as a
web proxy can have a remote-remote dependency on a DNS
server, because the clients need to contact the DNS server
to acquire the webserver’s IP address before contacting the
webserver. Moreover, this webserver also has a local-remote
dependency on the DNS server, because it needs to contact
the DNS server to acquire the IP address of the website re-
quested by the proxy user.

In this paper, we detect both direct and indirect dependen-
cies using a watermarking approach.

3. WATERMARKING FOR DEPENDENCY
DETECTION

Dependency relationships have interesting properties that
can be leveraged for detecting them. One such property is
that if two services depend on each other, a delay injected
in one service will propagate to the other one. We use this
property for detecting dependency relationships among ser-
vices.

We use a traffic watermarking approach for detecting de-
pendency relations. That is, we perturb the connections to
one service (create a ripple) and then observe whether the
perturbations are propagated to a second service. More pre-
cisely, to find whether two services depend on each other,
we delay the first packet of each connection directed to a
service S1. Then, we check if the connections to the other
service exhibit any similar delays. Our approach is generic
and application-independent, as we do not inspect or change
the packet contents.

In the following section, we describe how perturbations
propagate among interdependent services.

3.1 Watermarking Effect on Different Types
of Dependencies

When two services depend on each other, we expect that
a delay in connection to one service will result in a similar
delay connection to the other service. However, the way in
which the delay propagates and its direction depend on the
type of the dependency. Interestingly, this fact can be used
to further distinguish the type of the dependency between
services.

3

Figure 3: Effect of delays on remote-remote dependency

As mentioned earlier, service S2 has a remote-remote de-
pendency on service S1

1 if clients need to contact service S1

before contacting service S2. A classic example is a client
that needs to contact a DNS service before contacting a web-
server. In this case, a delay in the beginning of the connec-
tion to the DNS service (S1) results in a similar delay of
the start time of a connection to the webserver (S2). On the
other hand, a delay in the beginning of a connection to the
webserver (S2) does not have any effect on the connections
to the DNS service (S1). Figure 3 illustrates this concept.

Service S1 has a local-remote dependency on the service
S2 if service S1 contacts service S2 whenever it is contacted
by a client. An example of a local-remote dependency is a
webserver that needs to contact a MySQL server to load the
contents for satisfying a client request. In this case, a delay
of the beginning of a connection to S1 results in a similar
delay of the start time of a connection to S2. In addition, a
delay of the start of a connection to S2 results in a similar
delay of the end time of a connection to S1. Figure 4 shows
this type of dependency.

To leverage these properties to detect dependencies, we
need to detect the resulting delay in the depending service.
In the next section, we provide the required modeling and
statistical framework for detecting the propagated delay.

4. INDUCED PERTURBATION MODEL
Although the injected delay to a single connection to ser-

vice S1 leads to a similar delay in a connection to a de-
pending or depended service S2, recognizing the relation be-
tween these connections is not straightforward. Even though
the delayed connections can be observed, they are usually
mixed with many other connections, and it can be challeng-
1Throughout the paper, the service that has to be contacted first will
be called S1

Figure 4: Effect of delays on local-remote dependency

ing to map individual connections to each other (which may
require a priori knowledge about the dependency relation).
Our solution is not to map individual connections, but to
create patterns that statistically stand out and can be distin-
guished from random variations.

The dependency detection problem can be modeled as fol-
lows: Assume that we want to determine whether two ser-
vices S1 and S2 have a dependency between them.2 The
goal of the analysis is to determine if any of the two services
depend on the other one. Additionally, we want to determine
the type and direction of the dependency.

Service S2 has a remote-remote dependency on service
S1 or service S1 has a local-remote dependency on service
S2 (S1

L−→ S2 ∨ S2
R−→ S1) when a delay, degradation, or

failure in service S1 causes a delay, degradation, or failure
in service S2. Our hypothesis is that if service S2 has a
remote-remote dependency on service S1 or the service S1

has a local-remote dependency on the service S2 (S1
L−→

S2 ∨ S2
R−→ S1), a delay d1 in service S1 should result in

a similar delay d2 u d1 in service S2. As a local-remote
dependency example, if a webserver depends on a MySQL
server to deliver its contents, a delay to the connections to
the webserver causes a similar shift in the arrival times of
the requests to the MySQL server. In the remote-remote de-
pendency example, if a webserver “depends” on the DNS
server to be contacted by clients, a delay to the connections
to the DNS server causes a similar shift in the arrival times of
(a fraction of, due to caching) the requests to the webserver.

2We may have chosen these two services based on their high cor-
related activity, some heuristics, or we could have simply tried all
possible pairs of services.

4

Figure 5: Delayer effect on connections

As we also showed in Section 3.1, this delay propagation
holds regardless of the dependency type.

4.1 Detection of the Injected Delay
To detect the dependency relations, we need to detect artificially-

injected delays. Assume the following scenario: A connec-
tion C1 to service S1 is delayed. As a result, service S1

will contact service S2 through connection C2 with a delay
(For the sake of simplicity, we assume a local-remote de-
pendency. A similar argument can be used when a remote-
remote dependency exists between the services). The ob-
server will see these two connections, along with thousands
of other connections, and may not be able to recognize the
two connections C1 and C2 as being causally related.

To make the perturbation visible to the observer, we cre-
ate different patterns in the request arrival times at a selected
service. These patterns are different in different time win-
dows, but result in similar patterns in the related service.

To model the service activity, we divide the observation
period into time windows of equal size (w1, w2, . . . , w2n,
where |wi| = sw, in which sw is the window size, and 2n
is the number of time windows). We delay the requests di-
rected to service S1 for td in odd time windows
w1, w3, w5, . . . , w2n−1 and we do not delay them in even
time windows. This process will create time windows with
more than average requests (tb busy time window) and time
windows with less than average requests (ti idle time win-
dow) on S2 (also referred to as ripples), as shown in Fig-
ure 5. It is straightforward to show that the size of idle time
windows and busy time windows is equal to the amount of
delay (ti = tb = td). The smaller the time window size,
the more samples can be gathered during a fixed period of
time. On the other hand, the time window size, sw, should
be large enough to separate the effects of consecutive tests
and make the samples independent of each other. In other
words, the delayed packets (and the connections triggered
by them) should have enough time to reach their destination
before the next period of delaying starts.

Let’s assume that the number of requests for service S2

in different time windows (td) follows an unknown distribu-
tion D0 = D(µ0, σ0), with the mean and standard devia-
tion equal to µ0 and σ0, respectively. Also, assume that ρ
is the fraction of requests destined to S2 that are caused by
requests destined to S1.

When requests destined to S1 are delayed in the described
way, the number of requests in the idle time windows and
busy time windows on S2 follow
D1 = D(µ0 · (1− ρ), σ0 · (1− ρ)) and
D2 = D(µ0 · (1 + ρ), σ0 · (1 + ρ))3, respectively. In other
words, this watermarking results in consecutive periods of
length td of distributions D1 and D2 separated from each
other by periods of length w− td. The request arrival distri-
bution for the time period between the busy and idle time
periods follows distribution D0. In the next section, we
show how these artificially-generated patterns can be distin-
guished from random noise with high levels of confidence.

5. STATISTICAL INFERENCE
To show the dependency of two services, we want to reject

the hypothesis that two services are independent. Therefore,
we use statistical hypothesis testing for showing the exis-
tence of the dependency relationship. First, we assume that
the given services are independent. In other words, injecting
delays in one service does not alter the request arrival time
distribution on the second one (null hypothesis). Then, we
compute the conditional probability of the observed request
arrival time samples, given the null hypothesis. If the prob-
ability of the observed sample, given the null hypothesis, is
lower than a threshold, the null hypothesis is rejected and the
dependency between services is assumed.

While we use the described request delaying scheme, we
use different statistical tests for comparing the means of the
two populations and to reject the null hypothesis, includ-
ing: two independent samples means t-test, two dependent
samples means (paired) t-test, and two dependent samples
(Wilcoxon) signed rank test.

To simplify the formalization, and without loss of gener-
ality, we assume that we want to determine the relationship
between services S1 and S2, while we are delaying requests
destined to S1. To describe the experiment, we use the fol-
lowing variable definitions:
X is the random variable for the number of requests arriving
to service S2 in each time window of length td, when no de-
lay is applied4.
Xi and Xb are the random variables for the number of re-
quests arriving for service S2 in each ti and tb time windows,
respectively.
µi and µb are the mean of Xi and Xb, respectively.
Our null hypothesis is that the busy and idle time windows
have the same average request arrival rates: H0 ≡ µi = µb.
The null hypothesis states that S2 is independent of S1, and,
as a result, injecting delays to requests to S1 does not change
the request arrival distribution in S2 (H0 ⇒ µi = µb or
equivalently µi 6= µb ⇒ H1).

3If X ∼ D(µx, σx) and Y = aX then µy = a · µx and σy =√∑
(yi−µy)2

n
=

√∑
(a·xi−a·µx)2

n
= a · σx

4We use sliding time windows

5

We describe several statistical tests to calculate
Pr (e|µi = µb), in which e is an observed test statistic. In
the rest of this section, we describe each statistical test and
its properties.

5.1 Two Independent Samples Means t-Test
This test computes the probability that the distributions

from which two samples are drawn have the same means.
The p-value of the 2-sample t-test is calculated using the

following formula:

t =
(Xb−Xi)−(µb−µi)√

S2
p

nb
+

S2
p

ni

H0 ⇒ µi−µb = 0⇒ t = Xb−Xi√
S2
p

nb
+

S2
p

ni

follows t-distribution

with df = nb + ni − 2 degrees of freedom, where,
S2
p =

(nb−1)·S2
b+(ni−1)·S2

i

nb+ni−2 and S2
i = SSi

ni−1 and S2
b = SSb

nb−1 .

We already showed that if S1
L−→ S2 ∨ S2

R−→ S1, µi =
µ0 · (1 − ρ) and µb = µ0 · (1 + ρ). Using the central limit
theorem, it can be shown that, regardless of how small ρ is,
an arbitrarily small p-value can be obtained given a large-
enough set of samples. In other words, the following holds:

H1 ⇒ µb 6= µi ⇒

 Xb −Xi −−−−→
n→∞

µb − µi√
S2
p

nb
+

S2
p

ni
−−−−→
n→∞

0
⇒

⇒ t = Xb−Xi√
S2
p

nb
+

S2
p

ni

−−−−→
n→∞

±∞⇒ p− value −−−−→
n→∞

0.

On the other hand, if the two services are independent,
regardless of the size of the sample, we will not see small
p-values. To summarize, this test is reliable as long as a
large-enough sample set is available. However, this test is
sensitive to noise, because small number of data points with
extreme values can skew considerably the test results.

5.2 Two Dependent Samples Means Paired t-
Test

The number of requests that arrive at S2 in each idle time
window (xi) is related or dependent on its neighbor (con-
secutive) busy time window (xb), as servers have different
load/request arrival behavior during different times of the
day. Unfortunately, the two independent samples means test
does not take advantage of this property.

If we consider each consecutive value of ti and tb to be
related samples, we can use the paired sample t-test. If we
define D = Xb−Xi, the following variable, t ratio, follows
Student’s t distribution with df = n− 15 :

t = D
SD√

n

= D√
SSD

n(n−1)

[8]

It should be noted that if the null hypothesis is not true,
increasing the size of the sample set increases the power of
the test.
5df : degree of freedom

H1 ⇒ µb 6= µi ⇒

 D −−−−→
n→∞

µb − µi√
SSD

n(n−1) −−−−→n→∞
0
⇒

⇒ t = D√
SSD

n(n−1)

−−−−→
n→∞

±∞⇒ p− value −−−−→
n→∞

0

Therefore, the power of this test increases as the number
of the samples increases. This property is important, because
if µb − µi is relatively small, the difference between the dis-
tributions can still be distinguished by increasing the size of
the sample set (i.e., by running the experiment for a longer
time).

This test is less sensitive to noise (extremely high or low
values in the samples) than the two independent samples
means test, because extreme sample data values increase or
decrease both the nominator and the denominator of the frac-
tion in t formula. But, a small number of extreme values still
can skew the test results considerably, because the absolute
value of the sample data points are used in computing t.

5.3 Two Dependent Samples Means
(Paired Wilcoxon) Signed Rank Test

One would expect the network behavior to change through
time. For example, a university web server may be busier in
specific times of the year (e.g., during the registration pe-
riod). Nevertheless, one would also expect that the network
behavior of a service would be rather similar in two close
time periods. The two independent sample t-test does not
take advantage of the fact that ti (idle time windows) and tb
(busy time windows) samples are pairwise related. That is,
the two independent sample t-test ignores the order of the
sample data points. In contrast, the two dependent samples
means t-test uses this ordering information, but it remains
sensitive to noise, because it uses the absolute value of the
sample data points in computing t.

An alternative statistical test that takes pairwise depen-
dency between samples into account is the Wilcoxon test.
The Wilcoxon test checks whether or not paired samples of
ti and tb are drawn from the same population. In this ap-
proach, we match each ti to its consecutive tb. In the null
hypothesis, we consider tis and tbs as samples of the same
population. In other words, if service S2 does not depend
on S1, delaying requests to service S1 should not create any
changes in the distribution of the requests to S2.

To prove that service S2 depends on service S1, it is suffi-
cient to show that the number of requests received on service
S2 at tis does not follow the same distribution as the num-
ber of requests received at tbs. Because the tis and tbs are
paired and related, we use Wilcoxon signed-rank test to cal-
culate the z-score for the null hypothesis (that tis and tbs
belong to the same distribution).

In this test, each Xi is paired with an Xb value. The kth

pair is denoted as Xi
k, X

b
k.

Dk = |Xi
k − Xb

k|, W = |
∑n
k=1 sgn (Dk) ·Rk|, where Rk

is the rank of Dk when the list is sorted in ascending order.
A z-score can be computed using z = W−0.5

σW
, where

6

σW =
√

n(n+1)(2n+1)
6

It can be shown that if the two distributions are different
(µi 6= µb), D has a distribution with a non-zero average.

Please notice that H1 ⇒ µi 6= µb ⇒ z −−−−→
n→∞

∞⇒
⇒ p− value −−−−→

n→∞
0.

In other words, regardless of how small the fraction of the
delayed requests (ρ) is, arbitrarily small p-values can be
achieved by increasing the length of the experiment (period
of time).

Finally, we report service S2 to depend on service S1 if
any of the three statistical tests can reject the null hypothesis.

5.4 Environment Effects on the Accuracy of
the Statistical Tests

There are several factors in a real network environment
that can limit the accuracy and power of the proposed sta-
tistical tests: low number of requests to the server; low per-
centage of the requests to the server affected by the delayer;
and jitter in the network.

Low number of requests to the server results in too few
slots with non-zero data points, preventing the statistical tests
from differentiating between two distributions. This prob-
lem can be mitigated by processing data over a longer period
of time. In other words, if a sample of size l · n of X has a
small mean of µ, it can be converted to a sample of size n of
a distribution X ′ with mean µ′ = µ · l, simply by the follow-
ing variable: X ′i =

∑l·i+l−1
j=l·i Xj .

Low percentage of the requests to the server affected by the
delayer blurs the difference between the two distributions
(with and without delay). In all three proposed statistical
tests, we showed that this problem can be resolved by in-
creasing the length of the experiment.
Jitters in the network cause the requests that were supposed
to arrive in the same time period to arrive in different time
periods and vice versa. If we assume that the packets that
would arrive in a wrong time slot because of the jitter in the
network are selected randomly based on some probability,
this problem can be converted to and modeled as the previ-
ous problem (Low percentage of the requests affected by the
delayer). Therefore, increasing the length of the experiment
and hence, the sample set size, mitigates this problem.

The limits and powers of the statistical tests can be mea-
sured using simulation. To measure the accuracy of the pro-
posed statistical tests, we simulate servers with different prop-
erties, such as different request arrival time distributions and
different percentage of clients under delay.

6. TEST ACCURACY ANALYSIS
To compute the accuracy of the tests, in general type I and

type II errors are presented. The type II error is equivalent
to a false positive error and its value is directly computed as
the p-value. The type I error is equivalent to a false negative
error: t is more challenging to calculate, and it is not always
possible to derive a formula for it analytically. For exam-

Figure 6: The effect of delay percentage and the length
of experiment on false negatives

ple, to the best of our knowledge, no analytical solution to
Wilcoxon paired test exists. Therefore, we calculate the test
power by simulation.

We calculated the probability of rejection of the null hy-
pothesis (detection) under different assumptions about the
distributions of the arriving requests. One main finding is
that the power of the experiment depends on different pa-
rameters such as the number of samples, difference of the
distribution means, difference of distribution standard devi-
ations, and percentage of the requests being delayed.

We calculated the power of the tests both by completely
simulating the server and by simulating delays in real server
traffic. We use a Poisson distribution for the arrival times of
the simulated requests.

6.1 Simulation
To study the effects of different parameters (characteris-

tics of the network under analysis) on the accuracy of the
tests, we ran a set of simulations. First, we simulated the
request arrival times for a set of services based on a Poisson
distribution. We varied the percentage of requests getting
delayed by the delayer, the load of the server, and the length
of the experiment (amount of sample data).

Figure 6 shows the p-values of the true dependencies. The
X-axis corresponds to the length of the experiment (number
of periods in which the service was delayed). The Y-axis
shows the p-value of the true dependency calculated by the
statistical tests in log scale. Each line corresponds to a differ-
ent request delay percentage (the percentage of the requests
that are affected by the delayer). We used simulated service
with an average load of 1 request per time slot, and varied
the length of the experiment and the percentage of delayed
requests. As Figure 6 shows, the results improve when more

7

Figure 7: The effect of delay percentage and the load of
the service on false negatives

sample data points are added or when the percentage of de-
layed requests increases.

Figure 7, similarly, shows the effect of the load of the
server on the test power. The X-axis corresponds to the load
of the service (in requests per slot). The Y-axis is the p-value
of the true dependencies in log scale. The experiment con-
tains 200 data points (epochs). This figure shows that the
p-value decreases as the delay percentage or the service load
increases.

In addition to this completely simulated experiment, we
used real network NetFlow records and simulated the delay
injection on real server request arrival times. Similar results
were achieved with the simulated services.

6.2 Sanity Check
To test the accuracy of the test, we also ran the statisti-

cal tests on the data while we were not delaying any packets
in the network. We used NetFlow data gathered during one
month. That is, since no packet has been delayed by our de-
layer in this data, we expect the request arrival of consecutive
time slots to be drawn from the same distribution. Consis-
tent with our prediction, no dependency among services was
detected on this dataset by any of the statistical tests.

7. SYSTEM ARCHITECTURE
Figure 8 shows the architecture of the watermarking sys-

tem. As shown in the figure, our dependency detection sys-
tem is composed of two main components: the delay injec-
tion device and the network data gathering device (shown
as NetFlow switches in the figure). Given the fact that the
delayer is built using commodity hardware, we added a by-
pass switch to increase the reliability of our final solution. A
bypass switch is a special network switch with at least four
network interfaces. It intercepts the connections on each of

Figure 8: Watermarking system architecture

its input interfaces and forwards them to the delayer. The
delayer also acts as a switch. The delayer can decide when
to forward the packets (whether or not to delay any specific
packet). When the delayer forwards the packet to its other
interface, the packet is received by the bypass switch and
is forwarded to the appropriate network interface. The by-
pass switch checks the availability and responsiveness of the
delayer using a heartbeat protocol. In case the delayer be-
comes unresponsive, the bypass switch bypasses the delayer
and becomes a simple switch connecting its two interfaces
directly.

7.1 Delayer
The delayer should be located on the path between ser-

vices under study and their clients. It selectively delays pack-
ets sent to those services. By selectively delaying or not
delaying packets, the delayer creates statistically detectable
request arrival patterns at the servers under examination.

Naturally, the more traffic that passes through the delayer,
the more power it has for creating request arrival patterns on
more services. The delayer is ideally a switch that resides
in the path of the dependencies one wants to detect. For
example, the core switch of an organization would be a good
candidate for detecting the dependencies among services in
different buildings, while a switch close to a server room
would be a good candidate for detecting the dependencies to
the services in that room.

7.2 Network Data Collector
The network data collector is used for collecting the fol-

lowing information about each connection to or from the ser-
vices under study: the service socket address (the tuple of IP,
port, and protocol), the connection start time, and the con-
nection end time.

We purposely chose to impose minimal requirements on
the network data collector. The reason is that complete in-
formation about the network data is not always available or
achievable, due to network privacy policies or technical chal-
lenges.

First, storing complete network data (including the pay-
load) requires a significant amount of storage. Therefore,

8

Figure 9: Distributed watermarking system architecture

network administrators usually adopt less complete formats
of network data dumps that capture important and compact
information about the traffic. NetFlow is one example of
this summarized network data format. NetFlow, for each
connection, keeps only the socket address of both sides, the
number of bytes and packets sent and received, and the tim-
ing of the connection start and end. Dumping only packet
headers using tcpdump is another example of summarized
network datasets.

Second, even if full packet data is available from a net-
work, the network privacy issues and policies may prohibit
a researcher or data analyst from having access to this data.

Therefore, to be widely applicable, a traffic analysis tool
must rely on limited amounts of information.

7.3 Handling Lack of Infrastructure
for Central Analysis

In some cases, installing a central delayer or network data
collector can be impossible or challenging, due to the pol-
icy or technical issues. In those cases, the delay injection
and data gathering can be achieved using host-based delay-
ers and sensors, as shown in Figure 9. In other words, the
sensor and the delayers directly reside on the servers un-
der analysis and gather the data on the host. Although this
can lead to clock discrepancy6 among multiple delayers and
would require additional considerations to resolve that issue,
it is a last resort for the cases where network-based solutions
are not deployable.

8. IMPLEMENTATION
We implemented and tested a central prototype (using a

central network-based delayer) of Rippler in a small lab. We
introduce the minimal amount of delay that is required to
detect perturbations. This delay time should be greater than
the clock discrepancy between the delayer and flow collector
devices. The clock discrepancy in our network is less than or
equal to 40 milliseconds (the computer clocks are synchro-
nized by NTP). We used a delay of 100 milliseconds, which
6Using host based delay injection leads to a clock discrepancy
problem. That is, different delayers on different machines will start
and stop delaying packets on slightly different times, due to the
clock skew of their respective machines.

one can expect not to have significant effects on typical ser-
vices. We are aware that there may exist services for which
100 milliseconds of delay could cause a failure, but these
services are usually not implemented in typical TCP/IP net-
works. These services should have their own dedicated net-
works as small amounts of delay/jitter are expected in regu-
lar networks.

In our prototype implementation, we were able to show
that the busy and idle time windows (tbs and tis) are de-
tectable.

We developed the delayer using an off-the-shelf Linux
system. This system has two bridged interfaces and acts as
a regular bridge for the packets that are not selected to be
delayed. On the other hand, the packets that are selected to
be delayed are buffered and forwarded at a later time.

A set of five services were selected for delay injection. We
ordered the set of selected services and periodically delayed
them one after another. The first packets to each service,
when it is its turn, is delayed for 100 milliseconds in a period
of 10 seconds and then no service is delayed for 10 seconds
and the next service is delayed afterwards. The periods of
no delay between the delay periods of different services is
to separate (and make recognizable) the effects of injected
delays in each service from others.

8.1 Installation and Detected Dependencies
In the prototype application, we showed that the injected

delays are recognizable. For the main experiment, we in-
stalled our delayer and NetFlow collectors in a university
department lab. Unfortunately, the university network ad-
ministrators were not able to provide us with a central delay
injection point in their infrastructure. Therefore, we were
forced to deploy our host-based delayer. The delayer was
installed in a lab used by students (mainly for doing their
assignments and homeworks). To overcome the clock dis-
crepancy between the hosts that run the delayer, we had to
increase the amount of delay from 100ms to 500ms (the de-
lay discrepancy between the hosts was around 40ms). A set
of 54 most frequently used services were selected to be de-
layed.

In a normal day, students use the computers in this lab
to do their homework. All the machines in the lab are cen-
trally managed (using cfengine) and they have an identical
configuration. Users authenticate using an LDAP server,
and their home directories are mounted from several NFS
servers. Users check and send emails using an internal mail
server. An internal DNS server is used to look up IP ad-
dresses. All hosts have an /etc/hosts file that lists all the
internal servers’ names along with their IP addresses.

Network administrators provided us with a central net-
work data gathering point. The network traffic information
is gathered in NetFlow format. We gathered 133GB of Net-
Flow data which corresponds to 12.5 billion connections.
The packets were delayed for 500ms.

9

Table 1: The dependency analysis results
service perturbated services
NFS1 LDAP, web, cfenginei, dhcp, portmapper,

lab shell, DNS
web26 NFS26, portmapper26
NFS46 LDAP12, LDAP36, NFS13, dhcp10, NFS41

CFengine NFS1, NetBios, IMAP, NFS2
NFS3 MySQL and NFS4
WWW NFS1, IMAP, NFS4

In the course of the experiments, we delayed requests to
54 services. We compared our results with three previous ap-
proaches. We first present the comparison of our approach
to these approaches in Section 9. Later in Section 10, we
describe previous work in dependency detection and com-
pare the characteristics of our approach against the previous
work. Table 1 shows the detected true dependencies using
Rippler.

9. COMPARISON WITH SHERLOCK,
ORION, AND NSDMINER

We ran Sherlock [3], Orion [6], and NSDMiner [13] (three
passive dependency detection systems) on our NetFlow dataset
gathered from the department computer lab. The results of
the experiment are shown in Figure 10. We ran all four
systems with different parameter tunings and calculated the
number of false positive and true positives for each tool, and
for each configuration. As shown in Figure 10, Rippler pro-
duces less false positives for any given true positives that it
generated. It should be noted that Rippler did not generate
any false positives when we set the p-value to any value less
than or equal to 10−6.

To verify and compare the results, we manually labeled
156 dependencies (the superset of all resulting dependen-
cies from all four tools). The dependencies were confirmed
by interviewing the administrators. We also looked into the
configuration of the hosts in the lab. As all the hosts share
the same configuration, by looking into the host configura-
tion we learned about many dependencies.

In the end, 68 of these 156 dependencies were true depen-
dencies, 70 were false dependencies, and we were not able
to determine the correctness of 18 dependencies.

9.1 Sherlock
Sherlock calculates the strength of a dependency relation

from service S2 to service S1 as the probability that service
S1 accessed within a time interval from when service S2 is
accessed. Among other problems, this approach will detect
every pair of frequent services as depending on each other.
The results of our experiments verified this property. Sher-
lock created a large number of false positives, and typically
these false positives included the most-frequently-used ser-
vices.

Figure 10: ROC curves for Rippler, NSDMiner, Orion,
and Sherlock

It should be noted that we recognize the fact that we tested
a partial implementation of Sherlock, using only the part
that detects the service dependencies. Sherlock, in addition,
uses this information to predict system failures and localize
faults.

9.2 Orion
Orion exploits the fact that if two services are depend-

ing on each other, the delays between consecutive accesses
follow some pattern. For example, if an application needs
to access service S1 before accessing service S2, the delay
between accesses to service S1 and service S2 will follow
some non-random distribution. Orion uses this property to
detect this different distribution from a random distribution.
Although Orion has a more compelling confidence measure
than Sherlock, it still fails to create high-confidence depen-
dencies. Orion confidence in a dependency relationship is
expressed in how different the delay patterns between ac-
cesses to the two services are from random, in terms of num-
ber of standard deviations. In our experiments, Orion did not
generate any dependencies for any confidence higher than
1.5 standard deviations, which corresponds to p − value =
0.1336.

9.3 NSDMiner
NSDMiner detects only local-remote dependencies. There-

fore, it misses remote-remote dependencies. Another prob-
lem with NSDMiner is the fact that it is sensitive to the tim-
ing information of the sensors. NSDMiner detects a depen-
dency from service A to service B when the probability that
the life span of connections to service B is included in the
life span of a connection to service A is higher than a thresh-
old. This threshold is called α. We varied α from 0 to 1.

In our experiment, the NetFlow probes and the delayer
are placed between the lab clients and the servers they use,
which are located in a server room. Therefore, most of the
traffic from a server to another does not pass our probes and

10

delayers. This property makes the remote-remote dependen-
cies the most common dependencies in our configuration.
NSDMiner does not try to detect remote-remote dependen-
cies, and therefore it misses most of the true dependencies in
our configuration.

9.4 Correlation Does Not Imply Causation
The most common problem with correlation-based approaches

for dependency detection is the confusion of correlation with
causation. In other words, passive approaches are suscepti-
ble to false positives. The experiments showed that the prob-
lem exists in the approaches we tested.

For example, the correlation-based approaches detected a
dependency from several services to the main DNS server.
This dependency is a false positive, because the machines
that are used in the experiment have the IP addresses of the
hosts in the internal network in their /etc/hosts file. There-
fore, these hosts do not need to lookup the IP addresses of
the internal services. The reason for the false positive is that
DNS is one of the most frequently used services in the net-
work, and therefore it appears as the prequel to other services
being used. This property of the DNS server has led to false
dependencies detected by both Orion and Sherlock. NSD-
Miner does not detect dependencies to the DNS server, be-
cause NSDMiner only detects local-remote dependencies7.

9.5 Rippler

In the experiment, we excluded the services that did not
receive at least 1000 requests in the period of data gather-
ing. We varied p-value from 1 to 10−20. We experienced
some false positives when p-value was greater than 10−6,
but when we reached 10−6, all false positives disappeared.

When we included the idle services (services with less
than 1000 requests during the experiment), seven false posi-
tives appeared.

We did not expect any false positives from Rippler. The
reason for this confidence is that when a ripple is detected the
probability of it being caused by a random process is negli-
gible (by choosing a small enough p-value as the threshold).
One possible explanation is that the dependency between
two services has a long time lag and therefore the delay rip-
ple from the first service arrives late and is considered as the
effect of another service.

Figure 11 shows the distribution of the detected ripples
among the time slots. Each window of time dedicated to a
service is called a period. Each time slice inside a period that
is used to detect a ripple is called a time slot. As a period is
20 seconds long and we use 500ms of delay, we have 80
slots in each period (because of using sliding windows). As
shown in the figure, the ripples are either in the left side of
the period or in the middle of it. Even though most ripples
follow this pattern, which is expected from a low-latency
dependency, we observe several cases of ripples scattered in

7the dependency between the services and DNS server is usually a
remote-remote dependency

Figure 11: Distribution of detected ripples in different
time slots

random slots. This shows that high-delay dependencies exist
among our services. These high-delay dependencies can be
the cause of false positives, because they confuse Rippler
in recognizing which service delay was responsible for the
observed delay in the target server. This problem can be
easily resolved by dedicating a longer time period to each
service.

10. RELATED WORK
Previous work on service dependency detection includes

many different approaches. In order to compare the previous
work, we first introduce some desirable effectiveness criteria
for a dependency detection approach.

10.1 Dependency Detection Effectiveness
Metrics

One can expect several properties from an ideal depen-
dency detection system. The dependency detection should:
be able to detect direct and indirect dependencies; be able
to handle partial data; affect the network operation mini-
mally; be easy to deploy; be application-independent; re-
quire a minimum amount of change to machines in the net-
work; provide a metric of meaningful confidence; need a
minimum amount of high level data; and be able to work
with anonymized data.

A dependency-detection approach may or may not detect
both local-remote and remote-remote dependencies.

A dependency detection approach may or may not work
with partial data. Partial data issues occur when the whole
information flow path from the depending service to the de-
pended service is not visible to the system. For example,
assume that service S4 depends on service S3, which in turn
depends on service S2, which finally depends on service S1.
If the communication between service S2 and S3 is hidden

11

from the system, the dependency detection system will not
be able to build the entire information flow path between
service S1 and service S4 and may miss the dependency re-
lationship.

A dependency detection approach can be host-based or
network-based, depending on the data source it uses (net-
work traces or system logs). A host-based system sits on the
host on which the service dependencies are going to be ex-
plored and has access to the host configurations and various
types of logs generated by the host. On the other hand, a
network-based approach looks into the traffic.

A dependency detection approach can be application-dependent
or application-independent. An application-independent ap-
proach works correctly in presence of unknown types of ser-
vices. On the other hand, the application-dependent approaches
need readjustments or reimplementations for different types
of services.

A dependency detection approach may or may not han-
dle cached services. We call a service cached if its clients
normally cache the response from the server, and use the
cached response in case of an identical request at a later time.
Cached services pose a challenge to dependency detection
approaches as they invalidate the assumption that every re-
quest to the depending service will cause a request to the
depended service.

A dependency detection approach may or may not provide
a measure of confidence for detected dependencies. To have
a confidence level for each dependency detection can help
the administrators to decide and choose their most important
dependencies based on the most reliable information.

And finally, a dependency detection approach may or may
not be susceptible to confusing correlation with causation.

10.2 Previous Work
NSDMiner [13] is a passive correlation-based dependency-

detection system. It looks only for local-remote dependen-
cies by computing the probability of the remote service be-
ing requested given the local service being requested.

eXpose [11] is another passive dependency-detection sys-
tem. It uses JMeasure as a metric for measuring the depen-
dency of two services. eXpose uses statistical rule mining to
detect frequent patterns of communication between services.
As it detects correlation between services, it is also suscep-
tible to false positives. eXpose needs to see the information
flow path between the correlated services and therefore, can-
not handle partial data problem. It also suffers from false
positives, because it is a correlation based technique.

Chen et al. [6] developed a passive dependency-detection
system called Orion. Orion uses traffic delay distributions
to find services that depend on each other. More specifi-
cally, Orion looks for spikes in delays of service usage. The
basic idea is that the delay patterns (spikes) between two
independent services are expected to be random, while the
delay distribution between two depending services follows
some distribution that depends on the execution path of the

services. As Orion is a correlation detection technique, it
also suffers from the false positive problem. For example,
if two services depend on a third service, and that service is
causing the same spikes to propagate to both services, Orion
detects those two services as depending on each other, while
in reality, they depend on a common third service.

Sherlock [3] is a passive host-based dependency-detection
system. Sherlock fails to detect indirect dependencies, be-
cause it recognizes dependencies between two services only
when the same client (on which Sherlock processes are run)
directly contacts both services. It does not detect local-remote
dependencies. It also has difficulties to detect dependencies
among cached services, as it computes the strength of the
dependency as the probability of the services being accessed
together. Sherlock also suffers false positives, because it de-
tects correlated services as depending.

Pinpoint [5] is a host-based active dependency-detection
system that uses system logs to trace the requests across a
distributed system. It uses a probabilistic context-free gram-
mar to model normal path behavior. Pinpoint modifies the
service under study to generate unique IDs for each request
and pass them through the system. Pinpoint is application-
dependent, and therefore, it cannot be used to detect depen-
dencies among unknown services.

Macroscope [14] is a passive host-based dependency-detection
system. It uses system logs to map network connections
to different applications/processes. The analyzer aggregates
the information gathered on different hosts to extract the de-
pendencies between different applications.

Constellation [2] is a passive dependency-detection sys-
tem that uses activity correlation as a measure of depen-
dency. It uses statistical hypothesis testing to calculate con-
fidence of the derived dependency relations. It learns the
delay distribution function based on two predefined distribu-
tion function classes (Gaussian and exponential). It uses ex-
pectation maximization to compute the output channel dis-
tribution based on the input channel distributions.

X-Trace [10] is an active dependency-detection system
that modifies network protocols to carry X-Trace meta-data.
It inserts unique identifiers into the requests and propagates
them to the further requests generated by the original one.
Then, X-Trace gathers this information and builds a tree
structure of the request path. X-Trace enforces a tree struc-
ture for request path topology. Therefore, it cannot detect
dependencies of other topologies.

Kind et al. [12] used a passive correlation-based approach
to detect direct and indirect dependencies between different
services in a corporate network.

Dechouniotis et al. [9] developed a passive network-based
dependency-detection system. They used NetFlow as their
data source, and used a fuzzy inference engine to classify
the detected relations as high confidence and low confidence
relations.

ADD [1, 4] (Active Dependency Discovery) uses active
perturbation in an to detect dependencies between services.

12

Table 2: Comparison with Dependency Mining Tools
Table column names correspond to the following properties: handling
Cached Services (CS), handling both Local-remote and Remote-remote
dependencies (LR), handling Bad Sensor Placement (SP), No modifica-
tion to the Hosts (NH), No extra Traffic injected (NT), Application Inde-
pendence (AI), Not Confusing Correlation with Causation (NCC). An ‘N’
means that the corresponding system handles the corresponding problem,
and a ‘Y’ means that it fails to completely handle the corresponding prob-
lem.

Approach CS LR SP NH NT AI NCC
NSDminer [13] Y N N Y Y Y N

eXpose [11] Y Y N Y Y Y N
Orion [6] Y Y N Y Y Y N

Sherlock [3] Y N N N Y Y Y
Pinpoint [5] Y Y N N Y N Y

Macroscope [14] Y N N N Y Y N
Constellation [2] Y Y N N Y Y N

X-Trace [10] Y Y Y N N N Y
ADD [4] Y Y Y N N N Y
Rippler Y Y Y Y Y Y Y

This approach uses a relatively aggressive approach as it per-
turbs different components of the system by load injection.
ADD creates some workload on a component in the network
and observes its effect on another component. To create ap-
propriate workload for a service, ADD needs to understand
the logic of the service. Therefore, ADD is application-
dependent. ADD also has problems detecting dependencies
to replicated (or load balancing) components, as adding load
to one component may not necessarily lead to reduced effi-
ciency of the target service.

In summary, all previous passive approaches are suscep-
tible to confuse correlation with causation. Therefore, all
previous passive approaches have high false positive rates
(compared to active approaches). However, all previous ac-
tive approaches are application-dependent, cannot be used to
detect dependencies among unknown services, they should
be customized for different services.

Table 2 shows and compares the features of the previous
work in service dependency detection. Rippler is, to the best
of our knowledge, the first application-independent active
dependency-detection system.

We selected Sherlock, Orion, and NSDMiner to evaluate
the performance of our system. We did not choose any of
the three previous active approaches (Pinpoint, X-Trace, and
ADD), because all these approaches are application-dependent.
In other words, they either require modification of the appli-
cations (Pinpoint and X-Trace) under-study, or need to know
details about the application protocols (ADD).

11. DISCUSSION

In this section, we discuss security applications of Rip-
pler and clarify the differences between dependency detec-
tion and other applications of network watermarking.

11.1 Security Use Scenarios for Dependency
Information

The results of our analysis can be used in different sce-
narios to improve the system security: for example, by cor-
relating security events, prioritizing security events, priori-
tizing network assets, understanding underlying service de-
pendencies, debugging network topology, improving service
efficiency (by co-locating depending services), or localizing
distributed system bugs.

The high volume of the alerts generated by intrusion de-
tection systems (IDS) makes it difficult for security adminis-
trators to process this information. One way to address this
challenge is to summarize and prioritize the alerts generated
by different sensors. The dependency information about the
servers can be used for this purpose.

Designing the network topology for a large network is
complicated and error-prone. An administrator can easily
compromise the security and efficiency of the system by
misplacing the depending services. Dependency detection
approaches can be used to fix topology bugs in the network
structure. For example, an administrator may place an im-
portant service A (DB service) into a high-security network
zone, while another service B, that service A depends on,
is placed in an unsafe zone. Dependency detection can help
the administrators in improving the security and efficiency
of the system by placing these services in the appropriate
zones.

Finally, distributed systems are often complex systems and
comparatively susceptible to errors. Locating the errors in a
distributed system is a challenging task. Dependency detec-
tion approaches can be used to limit the possible paths that
could have led to the failure of a service.

11.2 Watermarking for Deanonymization
Watermarking has been widely used to deanonymize con-

nections in anonymous communication systems [17, 18]. It
has also been used in tracing watermarked attack/stepping-
stone flows [15,19,20]. An anonymous communication net-
work typically encrypts the incoming connections and (after
repacketizing or other procedures to make deanonymization
difficult) forwards them through a semi-randomly selected
path of network nodes, and, at the end, it delivers the pack-
ets to the destination. Deanonymization of these connections
is a serious threat to the security and privacy of the users of
these anonymous communication networks.

Although watermarking has been widely used for deanonymiza-
tion purposes, applying the same techniques for detecting
service dependencies is far from trivial. The reason is that
deanonymization methods match pairs of connection carry-
ing the same information to each other, while dependency
detection systems match services that their connections are

13

causally related, and not usually carrying the same informa-
tion.

11.3 Limitations
Rippler needs to be able to delay the traffic to the servers

under-study at specific times. This requires the delayer com-
ponent to be placed between the services and their corre-
sponding clients. In other words, Rippler cannot verify or
reject dependencies between two services if it is not able to
delay requests to either of them.

Another limitation of Rippler is that because each service
gets delayed in specific time windows, Rippler should know
the set of under-study services beforehand.

One more limitation of Rippler is that for each particular
service, only a small fraction of all the requests to that ser-
vice are delayed8, and, therefore, if a service does not have
a large enough number of requests, the chances that a big
enough number of its requests are delayed are small, and its
dependencies would not be detectable. This problem can be
solved by allocating a larger number of delaying time slots
to services with less traffic.

12. CONCLUSIONS
In this paper, we presented a new application-independent

active approach (Rippler) to detect dependencies among ser-
vices using traffic watermarking. We showed, both ana-
lytically and experimentally, that Rippler can achieve ar-
bitrarily low false positives if provided with large enough
data sets. We compared Rippler with previous dependency-
detection systems using a set of general effectiveness criteria
for dependency-detection systems. Furthermore, we applied
Rippler to a real-world network, and compared its results
with three previous systems and showed that Rippler outper-
formed those systems.

13. REFERENCES
[1] S. Bagchi, G. Kar, and J. Hellerstein. Dependency analysis in

distributed systems using fault injection: Application to
problem determination in an e-commerce environment. In In
Proc. 12th Intl. Workshop on Distributed Systems:
Operations & Management, 2001.

[2] P. Bahl, P. Barham, R. Black, R. Ch, M. Goldszmidt,
R. Isaacs, S. K, L. Li, J. Maccormick, D. A. Maltz,
R. Mortier, M. Wawrzoniak, and M. Zhang. Discovering
dependencies for network management. In In Proc. V
HotNets Workshop, 2006.

[3] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz,
and M. Zhang. Towards highly reliable enterprise network
services via inference of multi-level dependencies.
SIGCOMM Comput. Commun. Rev., 37, 2007.

[4] A. Brown, G. Kar, G. Kar, and A. Keller. An Active
Approach to Characterizing Dynamic Dependencies for
Problem Determination in a Distributed Environment. In In
Seventh IFIP/IEEE International Symposium on Integrated
Network Management, 2001.

8The reason for this is to prevent delays from different services to
affect other under-study services

[5] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson,
A. Fox, and E. Brewer. Path-Based Failure and Evolution
Management. In Proceedings of NSDI‘04, 2004.

[6] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl. Automating
network application dependency discovery: experiences,
limitations, and new solutions. USENIX Association, 2008.

[7] B. Claise. Cisco Systems NetFlow Services Export Version
9. RFC 3954 (Informational), Oct. 2004.

[8] T. Coladarci, C. Cobb, E. Minium, and R. Clarke.
Fundamentals of Statistical Reasoning in Education.
Wiley/Jossey-Bass Education. John Wiley & Sons, 2010.

[9] D. Dechouniotis, X. Dimitropoulos, A. Kind, and S. Denazis.
Dependency detection using a fuzzy engine. In Proceedings
of the Distributed systems: operations and management 18th
IFIP/IEEE international conference on Managing
virtualization of networks and services, DSOM’07, pages
110–121. Springer-Verlag, 2007.

[10] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica.
X-trace: A pervasive network tracing framework. In In
NSDI, 2007.

[11] S. Kandula, R. Chandra, and D. Katabi. What’s going on?:
learning communication rules in edge networks. SIGCOMM
Comput. Commun. Rev., 2008.

[12] A. Kind, D. Gantenbein, and H. Etoh. Relationship discovery
with netflow to enable business-driven it management. In
Business-Driven IT Management, 2006. BDIM ’06. The First
IEEE/IFIP International Workshop on, pages 63 – 70, april
2006.

[13] A. Natarajan, P. Ning, Y. Liu, S. Jajodia, and S. E.
Hutchinson. NSDMiner: Automated Discovery of Network
Service Dependencies. In In proceedings of IEEE
International Conference on Computer Communications
(INFOCOM ’12), March 2012.

[14] L. Popa, B. gon Chun, J. Chandrashekar, N. Taft, and
I. Stoica. Macroscope: End-Point Approach to Networked
Application Dependency Discovery, 2009.

[15] Y. J. Pyun, Y. Park, D. S. Reeves, X. Wang, and P. Ning.
Interval-based flow watermarking for tracing interactive
traffic. Comput. Netw., 56(5):1646–1665, Mar. 2012.

[16] O. Thonnard, L. Bilge, G. O’Gorman, S. Kiernan, and
M. Lee. Industrial espionage and targeted attacks:
Understanding the characteristics of an escalating threat. In
D. Balzarotti, S. J. Stolfo, and M. Cova, editors, RAID,
volume 7462 of Lecture Notes in Computer Science, pages
64–85. Springer, 2012.

[17] X. Wang, S. Chen, and S. Jajodia. Tracking anonymous
peer-to-peer voip calls on the internet. In Proceedings of the
12th ACM conference on Computer and communications
security, CCS ’05, pages 81–91, New York, NY, USA, 2005.
ACM.

[18] X. Wang, S. Chen, and S. Jajodia. Network flow
watermarking attack on low-latency anonymous
communication systems. In Security and Privacy, 2007. SP
’07. IEEE Symposium on, pages 116 –130, may 2007.

[19] X. Wang, J. Luo, and M. Yang. An efficient sequential
watermark detection model for tracing network attack flows.
In Computer Supported Cooperative Work in Design
(CSCWD), 2012 IEEE 16th International Conference on,
pages 236 –243, may 2012.

[20] X. Wang and D. S. Reeves. Robust correlation of encrypted
attack traffic through stepping stones by manipulation of
interpacket delays. In Proceedings of the 10th ACM
conference on Computer and communications security, CCS
’03, pages 20–29. ACM, 2003.

14

	Introduction
	Service Dependency
	Watermarking for Dependency Detection
	Watermarking Effect on Different Types of Dependencies

	Induced Perturbation Model
	Detection of the Injected Delay

	Statistical Inference
	Two Independent Samples Means t-Test
	Two Dependent Samples Means Paired t-Test
	Two Dependent Samples Means (Paired Wilcoxon) Signed Rank Test
	Environment Effects on the Accuracy of the Statistical Tests

	Test Accuracy Analysis
	Simulation
	Sanity Check

	System Architecture
	Delayer
	Network Data Collector
	Handling Lack of Infrastructure for Central Analysis

	Implementation
	Installation and Detected Dependencies

	Comparison with Sherlock, Orion, and NSDMiner
	Sherlock
	Orion
	NSDMiner
	Correlation Does Not Imply Causation
	Rippler

	Related Work
	Dependency Detection Effectiveness Metrics
	Previous Work

	Discussion
	Security Use Scenarios for Dependency Information
	Watermarking for Deanonymization
	Limitations

	Conclusions
	References

