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Abstract

Data and Application Management in an Open Cloud
Platform

Navraj Chohan

Cloud computing has had tremendous uptake in the global ankles expected to
grow well into the future. The commoditization of compubaidl and storage resources
has given massive capabilities to individuals and compattiecquire such resources
on demand, and to relinquish them when no longer requiratpwi the need to budget
for additional hardware and management.

Platform-as-a-Service (PaaS) architectures have ans#reipast years to allevi-
ate the burdens of resource management for developers whaomafocus strictly
on application development. This faster time-to-value inaseased productivity for
both developers and their respective organizations. Dpees no longer have to worry
about lower level details such as CPU consumption, bandviitations, memory
consumption, and disk usage, as it has been common in the Pastscaling of ap-
plications is now the burden of the platform system. Paa&syshave become the
operating systems of the datacenter.

Our research has been focused on developing a PaaS system cai give the

aforementioned attributes in an open and pluggable way. édage the Google App



Engine PaaS system as it was one of the first to come to marttetfimed the promise
of infinite scalability at the front end of application sersend the backend of large
data storage, all powered by Google’s robust infrastrectur

We call our PaaS solution AppScale. AppScale is an open gitattbrm capable
of transparently executing Google App Engine applicat@nscale and without mod-
ification. AppScale is a cloud-based web framework whiclvigles multiple services
that provide cloud infrastructure control, data persiséercaching and a number of
other common application technologies. AppScale both Kies and facilitates the
benchmarking of the execution of scalable cloud technekogsing real applications.

This Ph.D. thesis discusses the design, implementaticsh,esaluation of App-
Scale. It considers the many components of AppScale witltasfon the data man-
agement layer for scalable storage, transaction semastia&ble queries, analysis of

"Big Data”, and live migration support.
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Chapter 1

Introduction

Cloud computing has revolutionized the means of which catpams, both large
and small, maintain and operate their IT departments amdstrficture. The availabil-
ity of compute and storage resources has increased tremsgdor organizations as
large cloud providers such as Amaz@hdénd Rackspace3[] have servicized access of
these resources via well defined APIs and web consoles.idiodils and corporations
can now provide web services without the need to set up isdoesources. Customers
can outsource their IT infrastructure to specialized clptaviders who have been able
to consolidate and streamline processes to drive down,@kiwing them to focus on
their core competencies.

Providers of cloud services make their resources avaitatitee general public with
certain characteristics which are indicative of cloud catimy: scalability, elasticity,
and fault tolerance. The amount of resources which can b&éatt on-demand are

virtually unlimited. The on-demand nature of access todlresources gives users the
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flexibility to grow and shrink based on their workloads—mayvthem pay for only what
they use. Faults to the underlying physical resources arerghly hidden from users
with access abstractions.

There are multiple layers in cloud computing, with many jpubhd private com-
mercial offerings throughout the cloud stack. The lowestlleffering is Infrastructure-
as-a-Service (laaS) which provides virtualized maching$y Amazon Web Services
being a prime example and an early leader in dictating théigpldaS market. More-
over, there is a market for private cloud implementationat for the self service of
IT resources within an organization. There are many prigktted implementations of
AWS'’s laaS Elastic Compute Cloud (EC2) API including Eucalyp@genStack, and
CloudStack.

Additionally, Platform-as-a-Service, a higher level ahstion than laaS, has many
public and private offerings. Public offerings includesétau, Microsoft Azure, Google
App Engine (GAE), Amazon Elastic Beanstalk, and many othehsle private cloud
PaaS offerings include AppScale, CloudFoundry, and OpénSFiese services and
products abstract away the laaS layer and provide a fullyagah application stack
which allows for simple deployment and ideally no maintesefor the developer.

The cost model for PaaS is based on metered usage with thkildgga scale in
and out as required by the workload. Customers of such a ptatbay for the usage

of APIs which interfaces with the infrastructure. Moreqviite provider will either
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automatically scale up or down an application for any of tbguired services (i.e.,
GAE), allow the developer to dictate scaling rules (i.e.uf, or give an easy-to-use
web console for manual scaling (i.e., Heroku). The APIs fffedng laaS and PaaS
offerings are similar in nature but are not easily intergeable and readily portable.

Cloud architectures, laaS and PaaS, have been designedtaneg for web ser-
vices, or also referred to as Software-as-a-Service (SH@Inost common application
domain. This paradigm shifts the application hosting fréwa ¢tlient (native binaries)
to a remote service which is accessible via a web browserougin a REST interface.

As the popularity of REST and service oriented architect&®@A) has risen, the
support by high level languages has populated many offefmrgveb frameworks such
as Ruby on Rails (RoR), Django for Python, and Node.|s for JaysiSddevelopers
can use these mature frameworks which have a common setsattiledibraries on top
of a service provider who then takes care of server maintandrackup, and scaling,
where scaling is a key concern due to the possiblity of ajtaifarge user base.

With the increase in internet usage and the proliferatiowelb enabled devices,
online services such as Gmail, Facebook, and Salesformesee tremendous traffic—
traffic which is logged in detail resulting in terabytes tdgi®/tes of data. These logs
provide insight on how users are utilizing the service afmgobusiness critical infor-

mation such as fraud and anomaly detection.
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Data sets at such sizes must be distributed across a cotleztimachines, and
as the datasets grow, existing relational technologies Baown themselves to slow
down to fulfill sophisticated SQL queries requiring a newdetechnologies built for
large data. NoSQL datastores have been adopted to handeedh&a sets, providing
replication, fault tolerance, and high availability.

There are multiple public and private storage offeringsNoSQL. Amazon pro-
vides Simple Storage Service (S3), a highly scalable, hiig#lable, and highly avail-
able key/value storage service. GAE offers Google’s Bigdabthnology, a highly
scalable column-oriented key/value stoi®][ as an API for web applications. Since
the publication of the BigTable technology, many open soopiens have arisen in-
cluding HBase, Hypertable, and Cassandi® 49, 14]. These open source technolo-
gies are currently deployed in companies such as FacebodijtRand Baidu.

Many common relational features have been removed from No&@astores to
attain the feature set of high availability, high throughmnd fault tolerance. These
features include full SQL and transaction support which camse bottlenecks, high
latency response times, and even system failure when deaith extremely large
datasets.

Because NoSQL datastores do not have a built-in fully expuesgiery language,
additional technologies and adapters have been addedl{zankata. The most preva-

lent technology is MapReduce, made popular by Google’s pa@904 B0]. MapRe-
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duce and open source implementations, such as Hadoop, lar®abn mappers and
reducers on a data set which spans across multiple machhilesamtomatically han-
dling faults. Higher level tools such as Pig and Hivéd,[67] were created to abstract
away the need to write mappers and reducers and supply aga®@L interface to
access the data. These tools can take large volumes of dhfaalitate ad-hoc ana-
lytically queries.

Developers now face multiple challenges when selecting@@odatastore to rely
on, as there has been a proliferation of NoSQL technologhs. particular technol-
ogy has an API locking-in an application and hence movinghfane technology to
another requires an expensive porting effort. Any portifigrerequires the user to
learn the installation process, the procedure to starttaliised deployment, the API
to interface with the datastore, how to add and remove nodaisitenance procedures,
backup methods, and how to correctly bring down or restartsiyrstem. This can be
a costly engineering endeavor. Furthermore, because teelseologies are in their
infancy compared to SQL offerings, there are new releaséiseo$oftware often, and
this requires porting from one version to another to get bxesfi new features, and
performance improvements.

Businesses also face challenges related to the multitudeafes for NoSQL tech-
nologies. In particular, there is no easy way for developersompare and contrast

different offerings without having to become an expert ireaf datastores; there is
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no simple way to move between datastores as the creatorstotlatastores are not in-
centivized to provide migration tools; there are lackingtéees developers have come
to expect such as transactions and an expressive queryalgagépplications which
are written for high scale may find that there is no one besgéflescenarios datas-
tore, and that different applications get better perforoeamsing a particular datastore.
Moreover, portions of an application may require featureshsas transactions, at the

expense of extreme scale.

1.1 Thesis Question

The primary research question that we explore in this dis8en can be stated as

follows:

How can we facilitate the portability and development of datansive
applications across cloud infrastructures and storageteays while ex-
panding functionality for analytics and migration via novgybrid cloud
techniques?

To answer this question, we investigate novel support femilost commonly used
component of these types of applications: the datastoes.ldy particular, we inves-
tigate the design and implementation of a datastore-agrasftware layer for cloud
platforms. The layer separates and buffers applicatimm the implementation of the

underlying datastore. There are currently over 150 NoSQagtlares today7?2] that
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can be plugged in our datastore layer, which currently mhelGassandra, Hypertable,
HBase, Voldemort, Redis, MongoDB, and others.

Each datastore implementation requires a one time porthahgng datastore AP,
installation procedure, and deployment process. Our sy#ten automatically does
installation, configuration, and starting of processes distibuted system. Applica-
tions which run using our unifying datastore API are theradblchange the underlying
technology underneath without modification. We outlina fhriocess in Chaptét

We then export this level of indirection that this layer imgan three unique ways
to enable a wider range of datastore functionality thategkiley for most NoSQL op-

tions today:

e Expanded NoSQL Featuredmplement a common support infrastructure to pro-
vide application critical features including a limited forof ACID transactions
and secondary indexing, outline and detailed in Chaptard Chapteb, respec-

tively.

e Analytics Implement a hybrid cloud offline analysis system where wenasy
chronously replicate data from an online transactionakesysloud deployment.
The offline system provides expanded functionality whichestricted by the
cloud platform. The data replication also lends itself fadter recovery, capa-

ble of swap-over upon system failures (cf. Chajier
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e Live Application Migration Implement the ability to move applications and
their data between cloud deployments where the underlyafigvare stack is

updated or modified with minimal to no downtime (cf. Cha@8gr

To investigate the design and implementation of these ionions, we have de-
veloped the first open source cloud platform. This platf@sra-service technology
is called AppScale (cf. Chapt&). AppScale is API compatible with GAE, and thus
any application written for GAE can also be run on AppScalthaut modification.
AppScale is infrastructure agnostic, i.e., it executes wiréualized systems as well as
public and private cloud infrastructures. This facilitgplication portability across
cloud and non-cloud clusters.

In summary, with this dissertation, we investigate new apphes to supporting
data-intensive cloud applications that simplify and fgaié portable use of emerging
storage and analytics tools (NoSQL datastores and MapReeciceologies) and that
employ multiple clouds in concert (hybrid cloud computing}o so. In particular, we

contribute the following with this dissertation:

e An open source PaaS for the research community to use antexte

e A datastore abstraction layer for plug and play interchabdigy of datastores

e A datastore agnostic transaction support for NoSQL stores

e A datastore agnostic secondary indexing support for NoSQiles

8



Chapter 1. Introduction

e Live migration of cloud applications
e A hybrid cloud system for data analytics and disaster regove

The result we believe is a system with which the research aamtgncan investigate
new approaches to cloud computing as well as new techniquetseghnologies in
the areas of distributed storage, application developnsemvice management, and a

hybrid cloud use, among others.

1.2 Dissertation Organization

This dissertation is organized as follows. | first provideazhground on related
cloud technologies in Chapt@r which discusses the three layers of cloud computing—
SaaS, PaaS, and laaS, and cloud technologies relevans tindisis. Chapte3 gives
an overview of AppScale, the first open source PaaS. In Chaptgnow the ability to
compare and contrast different datastores while also gditastore-agnostic ACID
transactions support. Chaptegives another extension to the datastore-agnostic layer,
providing secondary indexing support for expanded quergiapabilities. | connect
AppScale and GAE to form a hybrid cloud in Chapdo provide offline analytics and
show general methods using spot instances to reduce thefdzdt analytics platform

in Chapter7. Chapte8 shows the design and implementation of live migration suippo



Chapter 1. Introduction

within AppScale. | conclude in Chapt8rwith related work, impact of of my thesis,

and future work.
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Background

In this chapter, we provide background on and survey the-stiathe-art in cloud
computing fabrics. Cloud computing has been standardizedédNIST to have three
distinct layers in the cloud software stack: Software-&eavice (SaaS), Platform-as-
a-Service (PaaS), and Infrastructure-as-a-Service [@&@5 Each layer has different
levels of abstraction from the physical hardware from wtitoh software runs on top

of. We first consider each of the different levels shown inuFeg. L

e Software-as-a-ServiceDynamic services on the internet which are accessible
via a browser can be classified as a SaaS product. Throughtarenof HTML,
JavaScript, CSS, and other technologies, websites are regonore dynamic
with the capabilities of native applications which werevyioesly only available
by installation on the local operating system. State haf$eshfrom the local-

host to remote storage whose physical location can be unkboivaddressable

11
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Software-as-a-Service

Platform-as-a-Service

Infrastructure-as-a-Service

Figure 2.1: Cloud computing software layers.

through a domain name or IP. Updates to state can be admadsteough HTTP

POST request via HTML or through JavaScript.

SaaS products have alleviated many problems softwareajessl used to face
when required to ship shrink-wrapped software. Softwareld@ment iteration
cycles can now be much quicker because updates can be seeveather than
client side. A user can get the latest version of the serwceefreshing a web
page. Portability is provided by devices that run standadibrowsers removing
worries such as whether the machine the client is using isebdian or little-

endian or what operating system is running. Moreover, appbn intellectual

property is protected by having core code on the servergnrdltian the client

machine (although HTML, CSS, and JavaScript are visibleecctient).

12
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SaaS describes systems in which high-level functionadity.( SalesForce.cor@3,
which provides customer relationship management softwaran on-demand
service) is hosted by the cloud and exported to thin clieil@she network. The
main feature of SaaS systems is that the API offered to thedobtient is for a

complete software service and not programming abstractionesources. Com-
mercial SaaS systems typically charge according to the ruwiftusers and ap-
plication features. Other popular examples of SaaS indimtenail, Facebook,
and Google Apps. Itis not uncommon for services to have atfee¢freemium

model) and for the service to have a professional tier as wiedire a user can

pay for additional storage or features.

e Infrastructure-as-a-ServiceHardware virtualization has given the ability to cre-
ate virtual machines (VMs) that run on physical hardwareh(\@iguest operating
system) and have them share resources between differenn$fisinices. With
hypervisors, such as Xen and KVM, VMs can be started by bgatidisk image
on the host operating system. These guest VMs can be altbeateaximum

amount of memory, disk space, CPU cores, and network banalwidt

The ability to rent and use resources in an on-demand natasedviven by the
outgrowth of virtualization in datacenters. Virtual mawds can now be multi-

plexed on physical machines with resource isolation tonafior multitenancy.
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Excess capacity can be sold to third parties who no longee tato pay for
upfront costs of hardware acquisition. The provider is dbl@chieve higher
utilization of their resources by selling off spare capgaicouping system ad-

ministrator costs as well as power costs.

Customers of these services benefit from the elasticity efgoable to grow and
shrink based on demand, where they can acquire a fully fumatimachine in
minutes or less. In the past, a machine would have requieethgtallation of an
operating system which can take up to 30 or more minutes teptean machine
was available on hand. Furthermore, VMs can be customizddhawe their
image saved to be repeatedly launched, saving the timereeqto build the

entire runtime software stack.

Customers of these resources are able to outsource theifrBStiucture and
administration costs and no longer have to worry about proning hardware
resources. Because resources are now rented on a fixed timéagity (usually
on a per-hour-basis), resource consumption can be elgstiwing and shrinking
entirely on a need basis. Moreover, the self-serve natutead allows for less
overhead, as developers can request resources withouvenvent of system

administrators.
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Providers of public laaS have become very specialized atff@structure that is
fault tolerant, highly available, and fast to provision.tYthere is also a need to
bring these benefits to large datacenters which want théfléxiand elasticity
of the public cloud behind their firewall. We refer to this apravate cloud.
There are many software systems which enable laaS for prodatids including
Eucalyptus, OpenStack, and CloudStack. These softwarersgstre agnostic to
the virtualization layer, being able to provision and managtual machines on
demand regardless of whether the underlying technologeis KXVM, or some

proprietary software such as VMWare.

e Platform-as-a-ServiceHigher up the stack from laaS there is the PaaS layer
which abstracts away the infrastructure and OS details.pldtéorm allows de-
velopers to focus strictly on application developmenteathan VM or physical
machine management. Concerns about CPUs, memory, and diskdeeauto-
matic management and provisioning. The PaaS provider mayda a few op-
tions into how things are managed and scheduled (i.e. ngddtency for lower
cost), but this is generally for more advance users of théesys The cloud
provider will provide the full run-time stack and may alsatréect how resources
can be accessed via well defined APIs. However, some vendibedlow lower
level access via SSH to the virtual machine itself for adeaunmsers to optimize,

debug, and tinker with the run-time.
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Some popular public PaaS offerings include Microsoft’s A&z Google App En-

gine, Heroku, Salesforce, and EngineYard. Any developersign up and use
these public resources and start within the free tier. Wheim service requires
more resources, the customer can provide a credit card ke Isegond the free
guota. Different providers will charge for different mesj but general ones in-

clude data storage, bandwidth, and front end server hours.

Much like laaS, there is a desire to get the same capabitfi®aaS behind the
firewall. Centralization and automation of application hagtcan provide cost
savings in infrastructure by consolidating resourced)arathan forcing a pro-
grammer or IT staff to provision isolated resources for eaeh service or prod-
uct that needs to be developed. Developers no longer havedk tn resource

allocation, as it becomes self service, allowing for quidkee to development.

2.0.1 History

Remote access to compute and storage resources has beeah sinmerthe advent
of the internet, yet the emergence of Web 2.0 and the comratiolizof compute and
storage resources has proliferated the amount of web ssra@ilable to internet users.
Additionally, service-oriented architectures (SOA), wdservices are loosely-coupled
and interoperable, has allowed for legacy systems to axterivith web services, and

for new services to leverage existing ones.
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One of the first movers in this industry of laaS was Amazonaskt Compute
Cloud (EC2) in August of 2006. Users could use a set of commaeddiols or a web
interface to start up virtual machines in a self serviceitasland be charged on a per
hour basis. Other charges include the amount of bandwidtd asd the storage of
each customized VM image.

Rackspace Cloud was another early service provider for aglaaE with its initial
release in March of 2006. Since then many other companiesdraered the market to
provide public laaS cloud including Microsoft, Linode, Gy@, HP, IBM, and Cisco.

Heroku is a PaaS which first supported the Ruby-on-Rails (RoR)ewaork, and
has since added support for other languages including Jav&lade.js. EngineYard,
another public PaaS supports RoR and PHP, while Amazon’'s&Besanstalk provides
Java, .NET, and PHP. Microsoft released Azure, a .NET cloachéwork supporting
Visual Basic and C#. Google’s initial cloud service was Googg Engine (GAE)
supporting the Python programming language, and then gdidiva and Go in subse-
guent releases.

The laaS and PaasS technologies mentioned are all publicesymeaning any user
can sign up and use the service in a self service model. Yetetbame technologies
with their ability to scale, be fault tolerant, and self\see model, are very appealing

to owners of privately operated datacenters and ownersmopate clusters.

17



Chapter 2. Background

Private laaS software packages include Eucalyptus, whiallaes the EC2 API,
the current market share leader in laaS. Eucalyptus allowarfy applications which
were written for EC2, to also run in local clusters without tieed to port. This is
also appealing in that it eliminates vendor lock-in. Clowat&talso emulates the EC2
API, while OpenStack emulates the Rackspace Cloud API. Bratatid technologies
for PaaS give the same benefits of the public option yet bedindrganization’s fire-
wall. CloudFoundry and OpenShift are two open source Paai@us currently in the

market.

2.0.2 Application Building Blocks

API support for PaaS solutions provide a wide range of cdipabi Some of these

include:
e Datastore

Memcache

Background Tasks

Data Processing

Monitoring

User Management

18
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e Blobstore

e Authentication

These APIs give access to scalable services which are charga usage basis,
and allow developers to quickly prototype and build new mew without having to
reinvent commonly required services. Many PaaS offeringll upon well known
frameworks such as RoR, Django, and Spring to attract existeawglopers familiar
with such technologies.

Of these APIs, the most commonly used is the datastore wimhisaapplications
to persist their data. The most commonly used interface is-883ed technologies for
datasets that can fit within a single node. For applicatibasrequire high throughput
and very large datasets (too large to fit on one machine)icpioins can use NoSQL
technologies that are designed for larger scale at the tésatre sets.

The technologies which first brought NoSQL storage to theffont was Google’s
BigTable [L6] in 2006 and Amazon’s Dynam@]] in 2007. BigTable provides storage
and access structured data in a sorted multi-dimensiona) wizsile Dynamo provides
key/value access with high availability and eventual cetesicy. Both are designed for
very large datasets (terabytes to petabytes). These tegfie® inspired open source

implementations such as HBas#], Hypertable §0], and Accumulo 1], which are
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all BigTable clones, while Cassandr®] is a BigTable and Dynamo hybrid using the
column-oriented data model and peer-to-peer architecture

We target the PaaS cloud layer and the management of datadiccations that run
on top of a PaasS for this thesis work. Much of the inspiratibthis work comes from
the design of the Google App Engine cloud platform, from whie have emulated the
APl in an open source platform called AppScale. AppScaleidvate cloud option we
have built and maintained at UC Santa Barbara. We detail bpfiSéale and Google

App Engine in Chaptes.
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AppScale

In this chapter, we detail the AppScale cloud platform whighdeveloped to en-
able our disseration research as well as the research okottie the next generation
of cloud systems and applications. AppScale is a softwdragtructure that simpli-
fies the deployment of network-accessible programs ovénilalised cluster resources
by exporting the runtime platform “as a service”. AppScal®pen source, fully dis-
tributed, scalable, fault resilient and executes oveuslized cluster resource including
on-premise (private virtualized clusters or on-premisgSlaystems) and public cloud
infrastructures (public laaS systems). AppScale is unipra other cloud offerings in
that the APIs it exports and implements are the same as tbo§obgle App Engine.
That is, AppScale is API-compatible with Google App Engine.

Google App Engine is a public cloud PaaS that exports scalahdl elastic web
service technologies via well-defined APIs. These APIs anm@nt messaging, key-

value data storage, map-reduce, mail, and user autheaticamong other services.
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The platform facilitates easy asynchronous multi-taskimgb server support, elastic-
ity, and resource management. The most important of the KRhe datastore which
persists data. GAE builds this API on top of two technologig Table [L6] and Mega-
store pB]. BigTable provides scalable storage with the capabilitgidorange queries
based on keys. Megastore builds on top of BigTable, addingsaetion support and
high availability.

App Engine applications developers debug and test thegrpmos using an open-
source software development kit (SDK) provided by Googlat iimplements non-
scalable versions of the APIs. Developers then upload toele and data to Google
clusters and use Google cluster resources and servicesrea @up to some fixed set
of per-resource quotas) and pay-per-use (resource reatsih.

AppScale implements the APIs of App Engine by replacing tB& $mplementa-
tions with distributed, scalable, and fault tolerant vemnsi. Like App Engine, AppScale
implements multiple language runtimes — Java, Python, and (¥ia elastic applica-
tion servers). We employ a wide range of open source tecreddor their imple-
mentations. We overview the APIs and their implementatemiologies for both App
Engine and

By providing API-compatibility, any application that exé¢es over Google App
Engine also executes over AppScale without modificatiomc&iAppScale executes

over any virtualized cluster resources, users can depl@pascale cloud (a platform
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that emulates Google App Engine) on-premise using clusteaas resources or over
a public laaS system. Currently, AppScale provides suppordtomatic deployment
over Eucalyptus and Amazon EC2. AppScale is not a replacefoe@oogle App
Engine or any other public cloud technology however. Inipalkar, AppScale is only
as scalable as its underlying physical resource pool. ddst&ppScale is a robust
and extensible research infrastructure and private cldatiopm that provisions the
available resources across multiple applications.

This chapter details the design and implementation of ApfESitom a high level
and defines key terms which are used throughout this diseert&uturemore, it show-
cases the APIs supported by AppScale and their implemengatLastly, it gives initial

experiments given real applications along with an evabuedinalyzing the results.

3.1 Background

The open-source offering most similar to AppScale is Typta@oB6] which came
out six months after our initial release. Typhoonae runs G#aon applications and
does so with more scalable components than the SDK provides.

There are multiple differences between AppScale and TypdeoFirst, Typhoonae
(and any GAE applications that execute using it) is hostettedy using a single
guestVM image, which places significant limitations on lasgs@ge/accounting, per-

formance, scalability, and fault tolerance. AppScale i @b be deployed on many
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machines and has been run up to as many as 96 nodes. Our ARmethtions are
meant for a distributed system whereas Typhoonae has & $ogit of failure for all
APIs. Moreover, AppScale has cloud support for laaS so#tvgach as EC2, Eucalyp-

tus, and OpenStack or the vast selection of datastores.

3.2 AppScale

GAE App Developer
(AppScale Admin)

ll GAE App Users

AppScale Tools
€«—> HTTP

(,:> Internal Communication

Figure 3.1: Overview of the AppScale design. The AppScale cloud consitian
AppLoadBalancer (ALB), a Database Master (DBM), one or moreabade Slaves
(DBS), one or more ZooKeepers (ZK), and one or more AppSerd&ss). Users
of GAE applications interact with ASs or indirectly througjiee load balancer; the
developer deploys AppScale and her GAE applications thHrolig head node (i.e. the
node on which the ALB is located) using the AppScale Toolsp@gntrollers (ACs)
on each node interact with the other nodes in the system; #8sact with the DBM
via HTTP or HTTPS.
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To provide a platform for GAE application execution usingdband private cluster
resources, to investigate novel cloud services, and tditédei research for the next-
generation of cloud software and applications, we haveemphted AppScale. App-
Scale is a multi-language, multi-component framework fxeceiting GAE applica-
tions. Figure3.1 overviews the AppScale design and its high level roles amdpoe
nents.

AppScale consists of a toolset (the AppScale Tools), thrieegpy components, the
AppServer (ASs), the database management system, and ph@#gBalancer (ALB),
and an AppController (AC) for inter-component communicatiéppServers are the
execution engines for GAE applications which interact withatabase Master (DBM)
via HTTP for data storage and access. Database Slaves (D&34gpfe distributed,
scalable, and fault tolerant data management. The AppQtemtis responsible for
setup, initialization, and tear down of AppScale instanessvell as cross component
interaction. In addition, the AppController facilitategiieyment of and authentication
for GAE applications. The ALB serves as the head node of arS&pfe deployment
and initiates connections to GAE applications running insAShe AC of the head
node also monitors and manages the resource use and digilabihe deployment.
All communications across the system are encrypted viadbers socket layer (SSL).

A GAE application developer interacts with an AppScaleanse (cloud) remotely

using the AppScale Tools. Developers use these tools t@gdégpScale, to submit
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GAE applications to deployed AppScale instances, and &vact with and administer
AppScale instances and deployed GAE applications. Wendisish developers from
users users are the clients/users of individual GAE application

An AppScale deployment consists of one or more virtualizeerating system in-
stances (guestVMs). GuestVMs are Linux systenmlés$ that execute over the Xen
virtual machine monitor, the Kernel Virtual Machine (KVMVBT] or laaS systems such
as Amazon’s EC2 and Eucalyptus For each AppScale deployritent is a single
AppLoadBalancer (ALB) which we consider the head node, oneaemppServers
(AS), one Database Master (DBM) and one or more DatabasesSIB&Ss). A node
can implement any individual component as well as any coatlain of these compo-
nents; the AppScale configuration can be specified by thd@msevia command line
options of an AppScale tool.

We next detail the implementation of each of these companérud facilitate this
implementation we employ and extend a number of existing¢esssful, web service

technologies and language frameworks.

3.2.1 ZooKeeper (ZK)

Roles of components of nodes is stored in ZooKeeper (ZK), kvisi¢ault tolerant
and fast locking system to handle distributed coordinatidK nodes use the Paxos

algorithm to keep data synchronized between nodes. Alsrolast register with ZK
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before proceeding with normal operation, and they musoperally check ZK to make
sure they correctly registered. ZK is also used by the ti@imsasystem explained in

the following chapter.

3.2.2 AppController (AC)

The AppController (AC) is a SOAP client/server daemon writterRuby. The
AC executes on every node and starts automatically whenubstgM boots. The
AC on the head node starts the ALB first and initiates deploynaad boot of any
other guestVM. This AC then contacts the ACs on the other §Msiand spawns the
components on each node. The head node AC first spawns the DBigh(then starts
the DBSs) and then spawns the AppServers, configuring eablthatlP of the DBM
(to enable access to the database via HTTP or HTTPS).

The AC on the head node also monitors the AppScale deployfoefailed nodes
and for opportunities to grow and shrink the AppScale dapleyt according to sys-
tem demand and developer preferences. The AC periodically urrently every 10
seconds) the AC of every other node for a “heartbeat” and bieatgoer-application
behavior and resource use (e.g. CPU and memory load). When@ooemt fails, the
AC restarts the component with the use of the Ruby process.’god

Although in this chapter we evaluate the static default ojplent of AppScale,

we can also use this feedback mechanism to spawn and kiidhdil nodes of a de-
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ployment to respond to system load and performance. Kiliodes reduces resource
consumption (and cost of resources are being paid for) andists of stopping the
components within a node and destroying the guestVM. We spendes to add more

AppServers, LoadBalancers, or Database Slaves to the system

3.2.3 ApplLoadBalancer (ALB)

The AppLoadBalancer is a Ruby on RaiB2] application that employs a sim-
ple HTTP server (nginx71]) to select between three replicated Mongrel application
servers 6] (for head-node load balancing). The ALB distributes alitequests from
users to the AppServers (ASs) of GAE applications. Usetmlilyi contact the ALB
to request a login to a GAE application. The ALB provides anduthenticates this
login and then selects an AS randomly. It then redirects flee request to the selected
AS. The user, once redirected, continues to use the AppSerwaich she was routed
and does not interact further with the ALB unless she logotite AppServer she is
using becomes unreachable. We also have support for the AlaBttas a full proxy

rather than a reverse proxy.

3.2.4 AppServer (AS)

An AppServer is an extension to the development serverildised freely as part

of the Google AppEngine SDK for GAE application execution tiee Python, Java,
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and Go languages. Our extensions to the development sarableefully automated
execution of GAE applications on any virtualized clustemtoich the developer has
access, including EC2, Eucalyptus, and OpenStack. Oursgtenprovide a generic
datastore interface through which any database technalagye used. We have im-
plemented this interface to HBase, and Hypertable, opereedmplementations of
Google’s BigTable that execute over the distributed Hadatgp$ystem (HDFS)41].
We also have plugins for MySQL Clustes§], Cassandrald], Voldemort [88], and
more.

We intercept the protocol buffer requests from the appboaand route them over
HTTP to/from the DBM front-end called tHéBServer The PBServer implements the
interface to every datastore available and routes the stgjo@ the appropriate data-
store. The interaction is simple but fully supported by a bamof different error

conditions, and includes:

Put: add a new item into the table (create table if non-exiyte

Get: retrieve an item by ID number or uniqgue name

Query: limited SQL query semantics

Delete: delete an item by ID number or unique name

Chapterd does into further details of this datastore interface.
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Our other extensions facilitate automatic invocation ofsAfhid authentication of
GAE users. The AC of the node sets the location of the damgpassed in from a
request from the head node AC), upon AS start. The AS alsosstoré verifies the
cookie secret that we use to authenticate users and dieecothponent to authenticate
using the local AppController (AC).

An AS executes a single GAE application at time. To host mldtGAE applica-
tions, AppScale uses additional ASs (one or more per GAH@gifn) that it isolates
within their own AppScale nodes or that it co-locates withther nodes containing

other AppScale components.

3.2.5 Data Management

In front of the Database Master (DBM) sits the The PBServerasfitbnt-end of
the DBM. This Python program processes protocol buffers feo@AE application
and makes requests on its behalf to read and write data toatiastdre. As men-
tioned previously, AppScale currently supports HBase angdrigble datastores. Both
execute over HDFS within AppScale which performs replaatifault tolerance, and
provides reliable service using distributed Databasee&Slavhe PBServer interfaces
with HBase, Hypertable, Cassandra, and Voldemort using fTmifcross-language

interoperation.
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The AC on the DBM node provides access to the datastore via thesfaces to
the other ACs and the ALB of an AppScale system. The ALB stoptsaded GAE
applications as well as user credentials in the databasgheraticate the developer and

users of GAE applications.

3.2.6 AppScale Tools

The developer employs the AppScale tools to setup an AppSesiance and to
deploy GAE applications over AppScale. The toolset coasa$ta small number of
Ruby scripts that we named in the spirit of Amazon’s EC2 tootsA/S. The tools
facilitate AppScale deployment on Xen-based clusters dlsasdaa$S infrastructures.
The latter two systems require credentials and servicg-Byreements (SLAS) for the
use, allocation (killing and spawning of instances) of teses on behalf of a devel-
oper; the EC2 tools (for either laaS system) generate, madajebute (to deployed
instances), and authenticate the credentials throughewltister. The AppScale tools
sit above these commands and make use of them for crederr@gement in laaS
settings. In a Xen-only setting, no credential managengenecessary; the tools em-
ploy ssh keys for cluster management. The tools enablealsd to start an AppScale
system, to deploy and tear down GAE applications, to quexsthte and performance

of an AppScale deployment or application, and to maniputeeAppScale configura-
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tion and state. There is currently a limit of 10 on the numbexpplications that can be

uploaded, yet this number can be arbitrarily changed.

3.2.7 Tolerating Failures

There are multiple ways in which AppScale is fault tolergne component which
is fault tolerant is the AppController which executes on altles. If the AC fails on
a node with an AS, that AS can no longer authenticate usera foarticular GAE
application but authenticated users proceed unimpedeelsiilsat contact an ALB to
re-authenticate (acquire a cookie) are redirected to a maithea functioning AS/AC
to continue accessing the application. If the AC fails onnbeée with the ALB, no
new users can reach any GAE applications deployed in the égdpdstance and the
developer is not able to upload additional GAE applicati@xsant users however, are
unaffected. This scenario (AC on the ALB node failure) isiamto AC failure on
the DBM node. In this scenario (AC on the DBM node failure), A88 aisers are
unaffected.

The database system continues to function as long as ablea$dBS is available
with a replica. Similarly, the system is tolerant to failmiethe PBServer (DBM front-
end). If the PBServer fails on the DBM, the ASs will temporably unable to reach
the database until the AC on the node restarts the PBServerA%h are not able to

continue to execute (GAE applications will fail) if the DBM g® down or becomes
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unreachable. In this scenario, the ALB will restart the DBNingmnent but unless the
data from the original DBM is available to restore, the rastasimilar to restarting
AppScale.

Although, coupling multiple components per node reducesniimber of nodes
(resource requirements) and potentially better utilizegenlying resources, it also in-
creases the likelihood of failure. For example, if all comeots are located in a single
node, node failure equals system failure—a single poirdiafre. If the node containing
the ALB and DBM fails, the system fails. In these scenariospponent failure does
not equal node failure however; the AC in the head node widmapt to restart com-
ponents with god. The DBM issues 3 replicas by default of &abde DBSs to store,
thus user data is available on failure of any individual DB8&ponent. The Ruby god
process will automatically start up a process if it crasloesvhatever reason, and will
also monitor a process and kill and restart it if it takes nmbea a threshold of memory.

We distribute AppScale as a single Linux image and the ApleSbaolset. The
image contains the code for the implementation of all of tomgonents and a 64-
bit Linux kernel and Ubuntu distribution. The system is &fale fromhttp://
appscal e. cs. ucsb. edu/ ; all new programs that we have contributed carry the

Berkeley Software Distribution (BSD) License.
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3.3 API Support

This section enumerates the many GAE APIs available forldpees to use easing
their development process. Each API is scalable and someudteipon others. All
APIs must have identical interfaces and side effects soasgplications which run
on top of them do not know whether they are running on Googi’astructure or on
AppScale.

Private,

enterprise

data, Google
— — apps

Upload via SDK

Google App Engine (GAE)
GAE Application (Python, Java, Go)
i A
{ Images > URL Protobuf

fetch Data APls

Services w ’l’

Blob Datastore
=) ()

Administrator

Figure 3.2: APIs in AppScale.

Datastore The Datastore API allows for the persistence of applicatata. The
API provides both a key/value interface along with querymrp The Google Query

Language (GQL) is similar to and is a subset of SQL; fundaaibnit lacks relational
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operations such as JOIN and MERGE to enable scale and dlas#e example of

such a query for an application where users sign a guestisaksuch:

SELECT * FROM Greetings ORDER BY date DESC LIMT 10")

which states to get ten greetings sorted by descending date.

AppScale initially employed in-memory filters for GQL statents while later sup-
porting property indexing for scalable queries (detaite@haptes), emulating Google
App Engine’s use of BigTable and Megastore for data persisten

AppScale implements transactional semantics (multikew/atomic updates) us-
ing the same semantics as Google App Engine. Transactionsrig be performed
within an entity group. Entity groups are programmatic clees that describe rela-
tionships between datastore elements. Similarly, trdimgecare expressed within a
program via application functions passed to the Google Apgifie run as transaction
function. All AppScale datastore operations within a tesnt®n are ACID-compliant
with READ-COMMITTED isolation. Transaction support is expi@a on in Chaptet
along with the capability of allowing for the pluggability different NoSQL datastore
options.

This chapter uses the Cassandra plug in for its evaluatione e subsequent
chapter evaluate a wider range of datastore technologi¢isd@iven APl support with

and without transactions.
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Namespace The Namespace API implements the ability to segregate détadif-
ferent namespaces. For example, developers can test fpdicadion in production
without tampering with live production data. The NamespA&# can also be used
with the Memcache and Task Queue APIs.

It is implemented by appending the given namespace to thty émd for table

naming, separated by a delimiter. This provides isolatiemvben namespaces.

Memcache The Memcache API permits applications to store their fretjyeused
data in a distributed memory grid via a key/value API. Thia sarve as a cache to
prevent relatively expensive re-computations or databasesses. Developers must be
aware that it is possible that entries may be evacuated &becspace for new updates.
The Memcache APl is implemented in AppScale using memcaetmeapen source,
distributed memory object caching system. AppScale placgeemcache role on each
machine which is running the same node as an AS. The keys heapplication name

preprended to provide isolation between applications.

Blobstore Google App Engine’s Blobstore API is the primary method ofisgplarge
objects. There are two methods of getting blobs uploaded,i®ithe Files API, in
which you directly supply a large binary object programmeity, and the other is via

an HTML form.
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Figure 3.3: Memcache is distributed on multiple nodes and is shared &etiveen
different ASes. ASes by themselves are stateless and catatbedsand stopped as
needed.

The Blobstore service in AppScale uses a server solely reggerfor uploading
data into the datastore. This server is a python tornadeseriich handles request

from all applications. Figur8.4 shows the flow for uploading blobs.

1. The user requests a web page which has an upload file form

2. The application will create a blobstore session and st&session info into the
datastore to prevent unauthorized uploads and then retumgae path to the

blobstore server

3. The action path of the HTML form contains the path from thevpus step
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Figure 3.4: Blobstore allows for the uploading of large files which areetoin the
datastore in 1IMB chunks.

4. When the user submits the form it goes to the blobstore serve

5. The blobstore server interacts with the datastore byyweg the session, storing

blob information, storing the file in 1MB chunks, and the remng the session

6. APOST is done to the successful path (stored as meta data)ldorm elements

are forwarded

7. The successful path handler does a redirect

8. The redirect is forwarded to the user client

XMPP The XMPP API gives user the ability to receive and send messaging

a valid XMPP account. Google App Engine leverages the Gobglle infrastructure
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while AppScale employs Ejabberd, an instant messaging/iaodtwritten in Erlang and

highly scalable.

Channel The Channel API allows for the pushing of messages to a didat/aScript
code. AppScale’s scalable implementation is built usirepBerd and StropheJS, two
open source projects.

There are two sets of APIs for the developer. First is the ARictv consists of
createchannel(appclientid) and sendmessage(applientid, message) The create
channel APl uses the XMPP service implementation of AppSaak are able to lever-
age Ejabberd to take care of the distribution and sendingesfSages. We must create
temporary accounts with each new channel created. Thigrescgarbage collection of
channels which live on longer than a prescribe period of time

The second set of APlIs is for the JavaScript client which ecambluded into the
developer’s code by adding an import statement within treglaeof the user's HTML
code.

This API allows for the creation of connections using Stejd. Strophejs is a ro-
bust and open source project that enabled BOSH connecti&jatiberd. The creation
of a channel socket uses StropheJS’s connections, as vitslihagssage callbacks. The

functions have the same name and functionality to presbe/éPl, but the implemen-
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tation is different, where Google’s implementation uses@e Talk and their internal

XMPP service.

Users The Users API provides authentication for web applicatibingugh the use of

HTTP cookies. Google App Engine’s implementation levesaipe Google Accounts
infrastructure, so users with a Google Account can use ittess App Engine apps.
Since AppScale does not have access to this infrastructuegyuires that users create
an account through an AppScale portal URL. Alternativelyp8pale can be extended
to employ other authentication services, e.g. those peavigy the Eucalyptus open
source cloud infrastructure or via LDAP. The AppScale imptatation of this API

distinguishes between regular users, application adtrandss, and cloud administra-

tors (the latter categories possessing greater privijeges

Mail AppScale allows for outgoing mail using the Unix commaeddmail whereas
Google leverages their GMail infrastructure. AppScalesdoet, however, currently

support incoming mail.

Images The Images API facilitates programmatic manipulation odges. Popular
functions in this APl include the ability to generate thuralts, perform rotations, com-
position, conversion between formats, and cropping imaggpScale is able to use

the SDK implementation.
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URL Fetch Anapplication can perform POST and GET requests on remsteirees
using the URL Fetch API. In addition, the application can asd®EST APIs from third
parties using this API. Certain outgoing ports are limitedskecurity reasons. The SDK

implementation is used, but modified to also allow for asyaobus fetches.

Task Queue The Task Queue API facilitates asynchronous computatasks) by

applications. Such background computation is importanafgplications that perform
operations other than those in response to a web requestpg8dale, cloud admin-
istrators can set both the (inline) computation duratiomtliand asynchronous task
duration limit if desired. Moreover, tasks can be chainethst one task can pick up

where a previous one left off. The implementation is disedsa detail in Chaptes.

3.4 Evaluation

We next present the basic performance characteristics pSaale default deploy-
ment of four nodes using a full proxy at the ALB. We note thas tiudy presents a
baseline from which we will work to improve the performancel acalability of the
system over time and serves as a snapshot in time. Our géalywpScale to provide
a research framework for the community, thus, we and othérikely identify ways

to improve its performance over time. We simply provide arfesvork with which to
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investigate existing open source GAE applications, sesyiand execution characteris-

tics using local cluster resources.

3.4.1 Methodology

We use the Multi-Mech framewaork capable to simulating npléticoncurrent users.
We use the configuration of a max of 60 concurrent threads famatime of 300
seconds. Threads are ramped up evenly over the course offbaraent until all 60
threads are operating, simulating organic growth. For expleriment, we investigate
throughput (number of transactions per second) and lateMaynbers are calculated
and put into 30 second buckets.

Our testbed uses Eucalyptus 3.0. We acquired 4 VMs of me.haith the charac-
teristics of 4 cores with 7500 MB of RAM and 20 GB of instancekdipace.

Our benchmarks consist of real applications that run on tAE @amework. Here
we look at three different applications: guestbook, sheill sieves. The guestbook
application allows for users to sign a post. Of our test ydeaH either request to see
the signing, or sign the guestbook themselves. The shéelicagpipn allows for python
commands to be run on a shell-like setting. Our test usemsialthe command "a =
5; b =2; a+Db;”. The sieves application prints out the firstA@dme numbers, and,

unlike the other two applications, does not access the tdagas
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Figure 3.5: Points of latency of request over time as users are rampeudargime for
the guestbook application.
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Figure 3.6: Time series of latency of request over time showing the 8eticgntile,

90th percentile, and average as users are ramped up oveotithe guestbook appli-
cation.

The guestbook application consists of two database acceBse first is a query for
the last ten items posted on the site. The other is a postitigetsite. Figure.5shows
the plotting of all latencies for each request. We see thApipScale the latency grad-
ually increases as more and more users enter the systere,@iigle maintains some
consistency before getting more sporadic results. Figudshows the average of the
points as well as the 80th and 80th percentile. Here we sde WwppScale increases in
its latency, Google maintains consistency latency ungil2ZR0 second mark. FiguBe7

has the number of transactions per second achieved by Algp&cd Google, and it
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Figure 3.7: Throughput over time as the number of users are ramped ugiovefor
the guestbook application.
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Figure 3.8: Points of latency of request over time as users are rampedargime for
the shell application.

can be seen that throughput drops over time for AppScaldevidaogle is able to scale
well with its virtually unlimited resources.

The primary reason for the inadequate performance by Adp$saecause query
support brings the entire table into the memory before bigieged. Hence, there is not
only additional load as users are posting but also addingg@mount of data which
must be filtered in memory. This inefficiency is addressed iafg@ér5 in which range
query support is used to get O(1) timing much like how Googlahle to achieve with

its BigTable/Megastore storage layer.
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Figure 3.9: Time series of latency of request over time showing the 8eticgntile,
90th percentile, and average as users are ramped up ovebtithe shell application.
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Figure 3.10: Throughput over time as the number of users are ramped ugimefor
the shell application.

The shell application sees better performance compareddstigook. Here each
operation does writes and reads to the datastore to stovatiadles given by the user
in the command line. Figurd.8 shows slower growth in latency but also shows a bi-
modal latency where a majority of latencies are less thansewend, but there are
also segments of latencies after the 140 second mark of hilgae 3 seconds, which
explains the temporary drop in throughput shown in Figlite(a) Google’s respon-
siveness is more variable compared to AppScale’s in thelfi8tseconds. AppScale
is able to achieve higher throughput more quickly, but keegkr after the 110 second

mark. Google gets to the 80 transactions per second marklbréfbre the end of the
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Figure 3.11: Points of latency of request over time as users are rampedergime
for the sieves application.

L
50 100 200 250 300

50
Elapsed Time In Test (secs)

Elapsed Time In Test (secs)

(a) AppScale (b) Google
Figure 3.12: Time series of latency of request over time showing the 8éticgntile,

90th percentile, and average as users are ramped up ovdotithe sieves application.
experiment, but it should be noted that our load generatahina was in the same
subnet as that of AppScale, whereas Google suffered a hligiedrof latency due to
round trip time which we measured at 51ms. We also see higirtence at the end of
the experiment for Google where the throughput tapered off.

The sieves application is only computational, and does noéss the datastore.
Here in Figure3.11(a)and Figure3.12(a)we see that AppScale has two levels of re-
sponsiveness, one which is under two seconds in latencyharather which grows as
the number of users grows. By comparison, Fighifel (b)and Figure8.12(b)has much

higher variability in its responsiveness. AppScale manstaa much higher level of
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Figure 3.13: Throughput over time as the number of users are ramped ugimefor
the sieves application.

transactions per second for the sieves application at 12quend, compared to Google
which ranges between 1.0 and 3.0 per second (Figur&(a)and Figure3.13(b) re-

spectively).

3.5 Summary

We present AppScale, an open source PaaS cloud computeaychsramework
that emulates the Google AppEngine-based cloud offeringpStale is easy to use
and to extend and automatically deploys itself and GAE appbns over Xen-based
cluster resources and laaS clouds such as Amazon EC2 andypusal AppScale
implements a number of different components that facditetployment of GAE appli-
cations using local (non-proprietary resources). Mored¥ppScale provides a frame-
work with which cloud researchers and application devel®pan investigate new tech-
niques (services, tools, schedulers, optimizations),thagerformance and behavior

of these techniques, and for real (GAE) applications.
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This chapter gave an overview of the research platform thaentral to the the
dissertation thesis. AppScale provides the framework foickvthe subsequent chap-
ters are based off of where real GAE application can run. rLeltapters expand on
AppScale on thesis topics related to scalable data manaemeluding transaction
support for NoSQL datastores and big data analytics. The ctepter looks to ex-
tend AppScale by supplying a pluggable interface for datastand the means for a

middleware for supplemental feature sets such as transacti
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A Database-Agnostic Cloud Platform
with Transaction Support

Given the availability of vast compute and storage resauasilable on-demand,
along with virtually infinite amounts of information (finaiat, scientific, social) via
the Internet, applications have become increasingly datdric and our data resources
and products have grown explosively in both number and sizee prominent way
in which a wide range of applications access such data is giadefined structures
that facilitate data processing, manipulation, and comoation. Structured data ac-
cess (via database/datastore systems) is a mature teghinolwide-spread use that
provides programmatic and web-based access to vast anwiudata efficiently.

Public and private cloud providers increasingly employcsezed databases, called
key-value stores (or datastore&y|28, 31, 16, 46, 14, 81, 88, 64, 50]. These systems
support structured data access over warehouse-scalegegmols, by large numbers

of concurrent users and applications, and with elasticig;éamic growing and shrink-

49



Chapter 4. A Database-Agnostic Cloud Platform with Transac8upport

ing of resource and table use). Examples of public cloudstiatas include Google’s
BigTable, Amazon Web Services (AWS) SimpleDB, and Microsd{sire Table Stor-
age. Examples of private or internal cloud use of datastmm@ade Amazon’s Dy-
namo B1], and customized versions of open source systems (e.g. HB@sélyper-
table p0], Cassandrall], etc.) is in use by Facebook, Baidu, SourceForge, LinkedIn,
Twitter, Reddit, and others.

To enable high scalability and dynamism, key-value storésraignificantly from
more traditional database technologies (e.g. relatioygtems) in that they are much
simpler (entities are accessed via a single key) and exdugeort for multi-table
gueries (e.g. joins, unions, differencing, merges, eted) @her features such as multi-
row (multi-key) atomic transaction support. Extant datestofferings differ in query
language, topology (master/slave vs peer-to-peer), datsistency policy, replication
policy, programming interfaces, and implementations iffed@nt programming lan-
guages. Moreover, each system has a unique methodologgribgaring and deploy-
ing the system in a distributed environment.

In this chapter, we address two growing challenges brouglhyuthe thesis ques-
tions with the use of cloud-based datastore technologiks.fifst is the vast diversity
of offerings: applications written to use one datastoretrbesmodified and ported to
use another. Moreover, it is difficult to "test drive” pubbfferings extensively without

paying for such use, and challenging to configure and degklyilslited open source
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technologies in a private setting. The second challendgeitack of support for atomic
transactions across multiple keys in a table. Most datastoffer atomic updates at
the row (key) level only which are important for applicatsowhere eventually consis-
tent data can be hard to reason about in application logie latk of all-or-nothing
updates to multiple data entities concurrently precludesyrbusiness, financial, and
data-analytic applications and significantly limits dé&bas utility for all but very sim-
ple applications.

To address these issues, we present the design and impéimerdf a database-
agnostic, portability layer for cloud platforms. This |layensists of a well-defined
API for key-value-based structured storage, a plug-in rhémteintegrating different
database/datastore technologies into the platform, amd a@f €omponents that auto-
matically configures and deploys any datastore that is @dgugfo the layer. This layer
decouples the API that applications use to access a dadsbon its implementation
(to enable program portability across datastore systentspatomates distributed de-
ployment of these systems (to make it easy to configure anidylégpe systems). De-
velopers write their application to use our datastore APl teir applications execute
using any datastore that plugs into the platform, withoutiication. This support
enables us to compare and contrast the different systendiffierent applications and
usage models and enables users to select across diffetastata technologies with

less effort and learning curve.
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To address the second challenge, we extend this layer taderdistributed trans-
actional semantics for the datastore plug-ins. Such secsaincrease the range of
applications that can make use of cloud systems. Our appraclates and extends
the limited transaction semantics of the Google App Engioed platform to pro-
vide atomic, consistent, isolated, and durable (ACID) upsldb multiple rows at a
time for any datastore that provides row-level atomicity énhable this, we rely on
ZooKeeper 94], an open-source distributed directory service that naamstconsistent
and highly available access to metadata using a varianed®aixos algorithmg9, 15].

We implement this database-agnostic software layer witinopen source App-
Scale cloud platform and integrate a number of differentutenpopen source and pro-
prietary database and datastore systems. These plugeinsienCassandra, HBase,
Hypertable, and MySQL cluste69] (which we employ as a key-value store), among
others. Moreover, since AppScale executes over differgnastructure-as-a-service
(laaS) cloud systems (Amazon ECZ and Eucalyptus{3, 34]) and emulates Google
App Engine functionality, developers are given the freedochoose the infrastructure
on which their application runs on, providing far reachipglcation portability.

In the sections that follow, we present related work and ttestribe the design and
implementation of the abstract database layer that deesupk AppScale datastore
API from the plug-ins (implementations of the API). We déserhow we extend this

layer with ACID transaction semantics in a database-agndéesshion in Sectio.3.
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We then present an evaluation of the system using differatatstbres in Sectio4.6,

and conclude in Sectiof.7.

4.1 Background

Distributed transactions, two-phase locking, and mugtision concurrency control
(MVCC) have been employed in a multitude of distributed systemce the distributed
transaction process was defined &. [Our design is based on MVCC and uses ver-
sioning of data entities. Google App Engine’s implemenptatof transactions uses
optimistic currency controld0], which was first presented by Kung et al. in 1988

There are two systems closely related to our work that peedsoftware layer
implementing transactional semantics over top of distetwatastore systems. They
are Google’s Percolato7f] and Megastoreq]. Percolator is a system, proprietary to
Google, that provides distributed transaction supportherBigTable datastore. The
system is used by Google to enable incremental processiwglofndexes. Megastore
is the most similar to our system as it is used directly by G@dgp Engine for trans-
actions and for secondary indexing. Our approach is dagahgsostic and not tied
to any particular datastore. Prior approaches tightly Btqansaction support to the
database. DAT can be used for any key/value store and, witSAéale, provide scale,
fault tolerance, and reliability with an open source soluti Moreover, our system is

platform agnostic as well (running in/on Eucalyptus, Ogents [75], EC2, VMWare,
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Xen [92], and KVM [57]) while automatically installing and configuring a datasto
and the DAT layer for any given number of nodes.

Cloud TPS 89 provides transactional semantics over key spaces intda¢gssuch
as HBase. Cloud TPS achieves high throughput because itsxdedigsed heavily in
in-memory storage. Replication is done across nodes in meraod the system will
periodically flush the data to a persistence layer such as &8ather cloud storage.
DAT differs from Cloud TPS providing higher durability becauDAT requires each
write to be written to disk. In the case of system wide outagés possible to lose all
transactions which have not been persisted with Cloud TP wDAT all writes are
written to a journal which is replicated on disk at multipledes.

In [53] Kossman et al. compared different clouds and datastorespbwhich is
GAE. GAE has improved over time so the results, while valithat point in time, are
no longer valid. The same can be said for the other cloudshwiigre benchmarked,
as each system has evolved over time. Likewise, any resu#a @ this thesis is also

a snapshot in time for any given technology.

4.2 The AppScale Database Support and Portability Layer

In this chapter, we investigate a database-agnostic satiager for cloud plat-
forms that decouples the datastore interface from its implgation(s) and automates

distributed deployment of datastore systems. We designmpl@ment this layer as
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Python Server Java Server Go Server
EJabberD
(xmpp & channel AP1) Blobstore server memcacheD

Routing (HAProxy and Nginx)

AppController

Datastore Support Layer
(AP, plug-in, automatic configuration/deployment support)

Datastore
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Redis, ...)

Figure 4.1: The AppScale Software Stack. This chapter presents thgrdasid im-
plementation of the database software layer and its extesgn support of distributed,
database-agnostic, multi-key transactional semantics.

part of the AppScale cloud platform and then extend it to supgatabase-agnostic
distributed transaction support.

Figure4.1 shows the AppScale software stack. At the top of the stackharep-
plication servers that serve Python, Java, and Go apgitatiThe AppScale APIs that
the applications employ leverage existing open sourcevaodt such as eJabberBZ
and memcacheDB[], or custom services (e.g. blobstore) that we provide,Heirtim-
plementations. AppScale uses Ngifd] and HAProxy B4] to route and load balance

requests to the application servers. Nginx provides SSinections, and HAProxy
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performs health checks on servers, routing only to resperegplication servers. A
background service on each node in AppScale restarts anigedinat stops function-
ing correctly. An AppScale cloud consists of a set of virtmachine instances (nodes)
working together in a distributed system, each of which enpnt this software stack.

The AppController is a software layer in the stack that is iargle of service initi-
ation, configuration, and heart beat monitoring, cloudewviBelow the AppController
is the database-agnostic software layer (to which we refastthe datastore support
layer in the figure).

Our new datastore support layer decouples applicationsadeestructured data
from its implementation. It is this layer we extend with ACIRmsaction semantics in
the next section. This layer exports a simple yet universghtalue programming in-
terface that we implement using a wide range of availablasdate technologies. This
layer provides portability for applications across daiess, i.e. applications written to
access this datastore interface will work with any datastbat implements this inter-
face, without modification. The interface provides full GAlctionality and consists

of:

e Put(table, key, value)

o Get(table, key)

e Delete(table, key)
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e Query(table, q)

Put stores the value given the key and creates a table if one dbedready exist.
If a Get or Query is performed on a table which does not exist, nothing is netdr
A Del et e on a key which does exist results in an exceptiQueryuses the Google
Query Language (a subset of SQL) syntax and semantics.

The data values that AppScale stores in the datastore deel eadtities (data ob-
jects) and are similar to those defined by GAID|[ Each entity has a key object;
AppScale stores each entity according to its key as a sexthprotocol buffer7g].

We implement the datastore APl in AppScale using populangperce, distributed
datastore systems. These include HBak}, [Hypertable 50], Cassandral4], Re-
dis [81], Voldemort [88], MongoDB [65], SimpleDB [84], and MySQL Cluster §9].
HBase and Hypertable both rely on HDRE&] for their distributed file system imple-
mentations, as does the Map-Reduce API which integratesdfiailiapReduce43]
support.

Each AppScale cloud deployment implements a single datagttoud-wide). The
AppController in the system interacts with a template thafigures and deploys each
datastore dynamically upon cloud instantiation. The setdpts configure, start, stop,

and test an instantiated datastore using the following API:

e startdb_master()
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o startdb_slave()

¢ setupdb_config files(masterip, slaveips, creds)
e stopdb_master()

e stopdb slave()

Each datastore must implement these calls. To set up thegooatiion files, the App-
Controller provides template files and inserts node namep@®p@riate. The "creds”
argument is a dictionary in which additional, potentialptastore-specific, arguments

are passed, e.g. the number of replicas to use for faulaioter

4.3 Database-Agnostic Distributed

Transaction Support

We next extend the datastore support layer in the cloudgphatfvith ACID trans-
action semantics. We refer to this extension as databasestg transactions (DAT).
Such support is key for a wide range of applications that ireqatomic updates to
multiple keys at a time. Thus, we provide it in a databasesatyn fashion that is in-
dependent of any datastore but that can be used by all desdteat plug into the

database support layer.
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4.3.1 DAT Design

To enable DAT, we extend the AppScale datastore API with sugpr specifying
the boundaries of a transaction programmatically. To en&AE compatibility, we

use the GAE syntax for this API:
run_i n_transaction

which defines the transaction block.

We make three key assumptions in the design of DAT. First, sgeirme that each
of the underlying datastores provide strong consisten@stMxtant datastores provide
strong consistency either by default (e.g. HBase, HypestddyySQL-cluster) or as a
command-line option (e.g. Cassandra). Second, we assutamthdatastore that plugs
into the DAT layer provides row-level atomicity. All the @atores we have evaluated
provide row-level atomicity, where any row update providdsor-nothing semantics
across the row’s columns. Third, we assume that there ardambalgor table-level
transactions; instead, transactions can be performedsarset of related entities. We
impose this restriction for scalability purposes, speaifjcto avoid slow, coarse-grain
locking across large sections or tables of the datastore.

To enable multi-entity transactional semantics, we emffleynotion of entity groups

as implemented in GAEIQ]. Entity groups consist of one or more entities, all of whom
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share the same ancestor. This relationship is specifiedgrogatically. For example,

the Python code for an application that specifies such aoedtip looks as follows:

cl ass Parent (db. Mbdel):

bal ance = db. | ntegerProperty()

cl ass Chil d(db. Model):
bal ance = db. | ntegerProperty()

Par ent (key_name="Ali ce")

=]
I

(@)
I

Chi | d( parent =p, key_ nane="Bob")

A class is a model that definekand, an instance of a kind is an entity, and an entity
group consists of a set of entities that share the same raiof éan entity without a
parent) or ancestor. In addition, entity groups can coos$istultiple ki nds. An entity
group defines the transactional boundary between entities.

The keys for each of these entities are:
app-id\Parent: Alice
and
app.i d\Parent: Ali ce\Chi | d: Bob
for p (Alice) andc (Bob), respectively. Alice is a root entity with attributgpé (kind),
key_nane (a reserved attribute), and balance. The key of a non-radyesuch as
Bob, contains the name of the application and the entire dath ancestors, which for

this example, consists of only Alice. Itis possible to hawkeaper hierarchy of entities
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as well. AppScale prepends the application ID to each keyéble multitenancy for
datastores which do not support dynamic table creationtaungighare one key space.
A transactional work-flow in which a program transfers someneatary amount

from the parent entity to the child entity is specified prognaatically as:

def give_all owance(src, dest, anount):

def tx()

p Par ent . get by key nane(src)

C Chi | d. get _by_key_nane(dest)

p. bal ance = p.account - anount

p. put ()

c. bal ance c. bal ance + anount

c.put()

db. run_i n_transaction(tx)

A transaction may composgets puts deletesand querieswithin a single entity
group. Any entity without a parent entity is a root entity; @t entity without child
entities is alone in an entity group. Once entity relatiopsiare specified they cannot

be changed.
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4.3.2 DAT Semantics

DAT enforces ACID (atomicity, consistency, isolation, andability) semantics for
each transaction. To enable this, we use multi-versionwoest control (MVCC) 8.
When a transaction completes successfully, the systemgatieancommit any changes
that the transaction procedure made and updatesttteversion numbefthe last com-
mitted value) of the entity in the system. The operatipuasor deleteoutside of a pro-
grammatic transaction are transparently implementedaasarctions. If a transaction
cannot complete due to either a program error or lock timetbet system rolls back
any modifications that have been made, i.e., DAT restorelmthevalid version of the
entity.

A read @ef) outside of a programmatic transaction accesses the \aigion of the
entity, i.e., reads have “read committed” isolation. Withitransaction, all operations
have serialized isolation semantics, i.e., they see tleetsfbf all prior operations. Op-
erations outside of transactions and other transactiansisy the latest valid version
of the entity.

The implementation of transaction semantics GAE and ApjeStiffer, each hav-
ing their own set of trade-offs. GAE implements transadiasing optimistic concur-
rency control §]. If a transaction is running, and another one begins ondaheesentity
group, the prior transaction will discover its changes heen disrupted, forcing a

retry. An entity group will experience a drop in throughpsta@ntention on a group
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grows. The rate of serial updates on a single root entitynardity group depends on
the update latency and contention, and ranges from 1 to 2&ep@er second].

We instead associate each entity group with a lock. DAT giterto acquire the
lock for each transaction on the group. DAT will retry thrgeds (a default, config-
urable setting) and then throw an exception if unsuccessfutontrast to GAE, we
provide a fixed amount of throughput regardless of contard&pending on the length
of time the lock is held before being released. A rollbackdoractive transaction for
an entity group does not get triggered when a new transaattempts to commence
for that same entity group as it does for GAE, but a transactiast acquire the lock in
DAT before moving forward, a restriction GAE does not haveptactice, our locking
mechanism is simple, works well, and provides sufficienbtighput in private cloud
settings which always consist of orders of magnitude fewachimes than Google’s
public cloud.

We also have designed DAT to handle faults at multiple levalthough we do
not handle Byzantine faults. Failure at the application lléveletected by a timeout
mechanism. We reset this timeout each time the applicati@mats to modify the
datastore state to avoid prolonged stalls. We also prevent sipdates and failures at

the database support layer and describe this further ingkiesection.
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4.4 DAT Implementation

To implement DAT within AppScale, we provide support forigas, an implemen-
tation of the programmatic datastore interface for tratisas (un_in_transactior), and
multi-version consistency control and distributed trantiga coordination (global state
maintenance and locking service). To support entities, xtenel the AppScale key-
assignment mechanism with hierarchical entity naming amglément entity groups.
Each application that runs in AppScale owns multiple erttyles, one for each en-
tity ki nd it implements. We create each entity table dynamically waent is first
invoked for a new entity type. In contrast, GAE designatesdetfor all entity types,
across all applications. We chose to create tables for eadly kind to provide addi-
tional isolation between applications.

We implement an adaptation of multi-version consistenaytrab to manage con-
current transactions. Typically timestamps on updatesuaesl to distinguish ver-
sions B]. However, not all datastores implement timestamp fumetiiby. We thus
employ a different, database agnostic, approach to maintaiversion consistency.
First, with each entity, we assign and record a version nuniides version number is
updated each time the entity is updated. We refer to thisorersumber as th&ans-

action ID since an update is associated with a transaction. We m@itrensaction
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IDs using a counter per application. Each entry in an endilyet contains a serialized
protocol buffer and transaction ID.

To enable multiple concurrent versions of an entity, we usiagle table, which we
call thejournal, to store previous versions of an entity. AppScale appboatdo not
have direct access to this table. We append the transa&i¢velsion number) to the
entity row key (in AppScale it is the application ID and thdignrow key) which we

use to index the journal.

4.4.1 Distributed Transaction Coordinator (DTC)

To enable distributed, concurrent, and fault tolerantdaations, DAT implements
a Distributed Transaction Coordinator (DTC). The DTC prosidgobal and atomic
counters, locking across entity groups, transaction litokg support, and a verifica-
tion service to guarantee that accesses to entities are ondtie correct versions.

The DTC enables this through the use of ZooKee9dt, [an open source, dis-
tributed locking service that maintains consistent copiedata in a distributed setting
via the Paxos algorithnbp, 15]. ZooKeeper is the open source equivalent to Google’s
Chubby locking servicel[3] which is fault tolerant and provides strong consistency fo
the data it stores. The directory service allows for the D@ Create arbitrary paths, on
which both leaves and branches can hold values.

The API forthe DTC is
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e txn_.id get Transacti onl D( app.i d)

e bool acquirelLock(app.id, txn.id,

r oot key)

e void notifyFail edTransacti on(app. d,

t xn_i d)

e txn.id getValidTransactionl DX app.id,

previous_txn.id, rowkey)

e bool registerUpdat eKey(app.id,
current txn.id, target _txn.d,

entity key)

e bool rel easeLock(app.d, txn.d)

e bl ock_range generat el DBl ock(app.i d,

root entity key)

DAT intercepts and implements each transaction made byg@itapon (ut, delete
or programmatic transaction) as a series of interactiortis thie DTC via this API.
A transaction is first assigned a transaction ID by the D@€t (Tr ansact i onl D)
which returns an ID with which all operations that make up titamsaction are per-

formed. Second, DAT obtains a lock from the DT&cQui r eLock) for the entity
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group over which the operation is being performed. For egshaiion, DAT verifies
that all entities accessed have valid versiget (Val i dTr ansact i onl D). For each
putor deleteoperation, DAT registers the operation with the DTC. Thiewa#i the DTC

to track of which entities within the group are being modifiadd, in the case where
the application forces a rollback (applications can throveltback exception within
the transaction function) or any type of failure, the DTC saccessfully know what
the current correct versions of an entity are. The API catl@fi st er Updat eKey

is how previously valid states are registered. This cakksaks arguments the current
valid transaction number, the transaction number whicktégting to apply changes,
and the root entity key to specify the entity group.

When a transaction completes successfully or a rollbackre¢due to an error dur-
ing a transaction, application exception, or lock timepD#T notifies the DTC which
releases the lock on that entity group, and the layer notifiesapplication appropri-
ately. We set the default lock timeout to be 30 seconds (imdigurable). DAT notifies
the application via an exception.

Transactions that start, modify an entity in the entity éalaind then fail to commit
or rollback due to either a failure, thrown exception, orradgout, areblacklistedby
the system. If an application attempts to perform an opanatat is part of a black-
listed transaction, the operation fails and DAT returnsareption to the application.

Application servers that issue operations for a blacldistansaction must retry their
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transaction under a new transaction ID. Any operations whiere executed under a
failed transaction are rolled back to the previous valitesta

Every operation employs the DTC for version verification.gét operation will
fetch from an entity table which returns the entity and agemtion ID number. DAT
checks with the DTC whether the version is valid (i.e., is ootthe blacklist and is
not part of an uncommitted, on-going transaction). If thesian is not valid, the DTC
returns the valid transaction ID for the entity and DAT udas tD with the original
key to read the entity from the journ@ketoperations outside of a transaction are read-
committed as a result of this verification (we do not allowdor t y reads). The result
of a query must follow this step for each returned entity. BG#WE and AppScale
recommend that applications keep entity groups small asilpesto enable scaling
(parallelizing access across entity groups) and to redatteebecks.

Lone putsanddeletesare handled as if they were individually wrapped program-
matic transactions. Forutor deletethe previous version must be retrieved from the
entity table. The version returned could potentially naselsecause the entry was pre-
viously never written to and thus we assign it zero. The warsiumber is checked to
see ifitis valid, if itis not, the DTC returns the currentidahumber. The valid version
number is used for registration to enable rollbacks if ndede

Either using the original version (transaction ID) or thansaction ID returned

from the DTC due to invalidation, DAT creates a new journaj k&d journal entry
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AppServer PB Server ZKTransaction EntityTable JournalTable
T T T T T
L | | | |
>L | | |
beginTransaction | | |
getlransactionlD am | |
¢ - --—-- - - I I
| |
put > [ [
acquireLock - | |
getversidn am [
getValidTransactionlD -
registUpdatedKkey
ihsert -
insert/updpte -
< -------
put >
getVersidgn -
getValidTransactionID -
registUpdatedKkey
ihsert >
insert/updpte -
< -------
commit -
releaselLock - T T
<_ _______ an 1 1
T ' T

Figure 4.2: Transaction sequence example for two puts.
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/appscale

locks <<ephemeral>> gclasttime

gclock

tx03 |

tx04 |

blacklist

validlist

key03 key04

ukey01

lockpath
T

Figure 4.3: Structure of transaction metadata in ZooKeeper nodes.

(journal keys are guaranteed to be unique), registers ilmagb key with the DTC,
and in parallel performs an update on the entity table. Wevisw these steps with
an example in Figurd.2 and show the DTC API being used during the lifetime of a
transaction where twput operations take place. It illustrates the transactiortistar
where a transaction ID is attainedpat request then triggers the acquisition of a lock,
version validation, key registration for rollback, andigntipdates. The seconult
repeats the same steps sans lock acquisition. Lastly,ahsaction is committed.

DAT does not perform expliciieletes Instead, we convert alleletesnto putsand
use @aombstonealue to signify that the entry has been deleted. We plac®thbstone
in the journal as well to maintain a record of the currentd/airsion. Any entries with

tombstones which are no longer live are garbage collectedgeally.
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4.4.2 ZooKeeper Configuration of the DTC

We present the DTC implementation using the ZooKeeper riodetsre prefix tree
(trie) in Figure4.3. We store either a key name as a string (for locks and the lidgck
or use the node directly as an atomically updated countgr, (®r transaction IDs).
State of ZooKeeper is shared among clients, showing a dyraogsistent view. The

tree structure is as follows:

e /appscale/apps/apg/ids: counter for next available transaction IDs for root

child entities.
e /appscale/apps/app/txids: current live transactions.
e /appscale/apps/app/txids/blacklist: invalid transaction ID list.
e /appscale/apps/app/validlist: valid transaction ID list.
e /appscale/apps/apg/locks: transaction entity groups.

The blacklist contains the transaction IDs that have failee to a timeout, an ap-
plication error, an exception, or an explicit rollback. Tvadid list contains the valid
transaction 1Ds for blacklisted entities (so that we can/fiettieve valid entities).

Transactions implemented by DAT provide transactional asgios at the entity
group level. We implement a lock subtree that is responddslenapping a transac-

tion ID to the entity group it is operating on. The name of thekl is the root entity
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key and it stores the transaction ID. We store the lockingenumath in a child node of
the transaction named "lockpath”. Any new transaction #tempts to acquire a lock
on the same entity group will see that this file exists whicheguse the acquisition to
fail. This lock node is removed when a transaction complétessuccessful commit

or rollback).

4.4.3 Scalable Entity Keys

We employ ZooKeeper sequential nodes to implement entiintess (these should
not be confused with transaction IDs). When entities aretedeaithout specifying a
key name, IDs are assigned in an incremental fashion. Weeitsu overhead on key
assignment by allocating blocks of 1000 entity IDs at a timeetduce the overhead
of counter access. The block of IDs is cached by the instahteeocall handler in
the database support layer. Keys are provisioned on a @rsedirst-serve basis to
new entities which do not have a key name. There is no guadnét entity IDs are
ordered.

Entity IDs use two types of counters for concurrent accesae Counter is for
root keys of a specific entity type, while another counterresated for each child of
a root key. Entity IDs are stored under the inner node upoatiome and are removed

once committed. The node structure holds values for eadty gmoup as seen in the
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/appscale/apps/appl/igmth. The "ids” node contains the next batch value for alt roo

keys, whilekey03 andkey04 nodes hold values for the next batch of child keys.

4.4.4 Garbage Collection

In some cases (application error, response time degraglagovice failure, network
partition, etc.), a transaction may be held for a long penbddime or indefinitely.
We place a maximum of 30 seconds on each lock lease acquirappbgations. We
update the value dynamically as needed. Furthermore, idorpgance reasons we
use ZooKeeper’'s asynchronous calls where it does not br&ikb Aemantics (i.e.,
removing nodes after completion of a transaction).

In the background, DAT implements a garbage collection (GfZyise. The ser-
vice scans the transaction list to identify expired tratisadocks (we record the time
when the lock is acquired). The service adds any expiredaction to the blacklist
and releases the lock. For correct operation with timedbessystem is coordinated
using NTP. Nodes which were not successfully removed by gncasonous call to
ZooKeeper are garbage collected during the next iteratiomeoGC.

The GC service also cleans up entities and all related mietatat have been
deleted (tombstoned) within a committed transaction. lditaah, journal entries that
contain entities older than the current valid version of atitg are also collected. We

do not remove nodes in the valid version list at this time.
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We perform garbage collection every thirty seconds. Thee master garbage
collector and multiple slaves checking to make sure theajl@zlock” has not expired.
If the lock has expired (it has been over 60 seconds sincéésy updated), a slave
will take over as the master, and will now be in charge of mically updating the
"gclock”. When a lock has expired, the master will receive lalzack from ZooKeeper.
At this point the master can try to refresh the lock, or if thek has been taken, step

down to a slave role.

4.45 Fault Tolerance

DAT handles certain kinds of failures, excluding byzanfaugts. Our implementa-
tion of the DTC ensures that the worst case timing scenaes dot leave the datastore
in an inconsistent state ("Heisenbugs3y].

A race condition can occur due to the distributed and shaaéd @ of the access to

the datastore. Take for example the following scenario:

e The DTC acquires a lock on an entity group

It becomes slow or unresponsive

The lock expires

It perform an update to the entity table

The DTC node silently dies
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In this case, we must ensure that the entity is not updatezhfmitten with an invalid
version). We detect and prevent such silent faults usingrdresaction blacklist and
valid versions are retrieved from the journal.

We address other types of failures using the lock leasekdwbich are held by a
faulty service in the cloud will be released by the GC. We hawesiered employing
an adaptive timeout on an application or service basis fpliegions/services that
repeatedly timeout. That is, reduce the timeout value ferapplication/service — or
for individual entity groups — in such cases to reduce theml of delayed update
access. Additional state would be required that would adstead to lookup each
timeout value per entity group or application. Currentlye thmeout is configurable
upon cloud deployment.

Our system is designed to handle complete system failumggpoutages) in ad-
dition to single/multi node failures. All writes and delstare issued to the datastore,
each write persists on disk before acknowledgment. No &cimn which has been
committed is lost attaining full durability (granted at $@ne replica survived). Meta
state is also replicated in ZooKeeper for full recovery abl asethe transaction journal.

Replication factor is also configurable upon cloud deploytmen
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4.5 Methodology

In this section, we overview our benchmarks and experinhenédhodology. For
our experiments, AppScale employs Hadoop 0.20.2-cdh3i&skEl 0.90.4-cdh3u3,
Hypertable 0.9.5.5, MySQL ndb-7.0.9, Redis 2.2.11, and Qalsaal.0.7. We ex-
ecute AppScale using a private cluster via the Eucalyptosdcinfrastructure. Our
Eucalyptus private cloud consists of 12 virtual machineth wicores, and 7.5 GB of
RAM. We also employ our benchmark on Google App Engine, whegartfrastructure
is abstracted away. We synchronize the clocks using thexliowi nt pdat e for our

Eucalyptus cluster.

4.5.1 Benchmarking Application

Our benchmark measures reads and writes of each datastere trdinsactions are
enabled as well as disabled, the difference of which givethesverhead imposed
by the DAT layer. AppScale is configured to have the head natlasa full proxy,
randomly distributing request across application servétre benchmark is run for a
single node deployment (it acts as both a load balancer arlapplication servers),
the default four node deployment, and a 12 node deployment.

We use the Apache Benchmark tool as our load generator, waigets a URL

at the head node. The datastore is first primed with 1000esntfor which random
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reads are done on. The writes use random keys, but each kaysastarts with the
application name for isolation and lexicographical enpitgcement.

The Apache Benchmark tool is used with three different loadlte 10, 100, and
1000 concurrent requests. The tool measures latency anubtput for these different
loads. Reported numbers are averages of 10 trials.

Each server runs ten process instances of the benchmaikatmp. We set the
replication factor to one for these experiments for all gtatges, which was the common
factor given our one node deployment. For GAE, Google usesnnh scheduling and
replication policy to enable the scaling of applicationsd é is unknown how many

physical servers are being employed.

4.6 Results

Figures4.4and4.5show measurements for the Cassandra datastore with a varying
number of machines, for writes and reads of a concurren@} 10, 100, and 1000,
with and without transaction support. Figutel(a)and Figured.4(b)chart latency of
requests with and without transactions enabled. For adlssif clusters we see addi-
tional latency for writes, regardless of the concurrenggllevhen transactions are en-
abled. However, reads see no statistically significantreeaa when enabled. Latency

for reads and writes are in close range to each other wheseitdons are disabled, but
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the overhead of transactions for writes causes asymmldtateacy. Moreover, latency
drops as more nodes are added to the cluster with and wittemsdactions.

Figure4.5(a)has throughput of requests, while Figur&(b)has the same but with
transactions disabled. Writes have less throughput whagsacdions are enabled, while
read throughput is unchanged. With the lower latency oftaaithl nodes the through-
put rises.

HBase latency is shown in Figude6(a)and Figuret.6(b) for transactions enabled
and disabled, respectively. Compared to Cassandra, HBas®#msrsimilarly for la-
tency, yet for the 12 node case, Cassandra is able to get higloeighput for reads
and writes as seen in Figurds/(a)and4.7(b) Both datastores see similar drop offs
in throughput due to the overhead of transaction supparCgesandra sees more than
100 more request per second in throughput compared to HBase tndnsactions are
disabled.

Hypertable has slightly more latency for the single nodesdas both reads and
writes as presented in Figurés3(a)and4.8(b) yet for higher node counts it is compa-
rable to HBase. Hypertable achieves high throughput forgeath over 1000 requests
per second as seen in Figyr®(a)and Figuret.9(b) Hypertable, compared to HBase,
gets more read and write throughput, where for high loadavesr 1000 requests per

second. .
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Redis performance numbers are presented in Figufdsand4.11 where we see
some deviation from the previously presented datastoredisReores data in memory
(asynchronously writing to disk which loosens our consisyeguarantees for ACID
semantics) and does so in the master node which handlesjaksts. Slaves store
copies of the master, yet in these experiments we set répliceo one. Where the
previous datastores are able to have clients and scale avgbrldeployments, Redis
does not benefit because all request go to a single node gasatiumration of the node
more quickly, and hence the lower performance in throughput

The MySQL Cluster deployment does not use the DAT layer forsaation support,
but rather its own native implementation. Figutd2(a)shows latency numbers for
reads and writes. The latency is much higher than previotssttaes, along with
higher variance. As more nodes are added, the latency dopshurt even at 12 nodes
it is over 10 seconds for writes. Reads scale much better foroti2s, but with high
variance.

Figure4.13(b)shows a CDF of latency of writes and reads for transactiorabtés
for Cassandra on a 12 node deployment, while Figuds(a)shows the same with
transactions enabled. The overhead can be seen with 10@swihere latency is
much higher. Reads do no see the same overhead, where theylatays the same.
When transactions are disabled, writes are faster than reddshe 90th percentile,

where writes have a longer tail for latency.
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The breakdown of an entitgut for Cassandra is presented in Fig4ré4 Each
operation which is a part of the transaction adds some anaiwverhead, where the
"Puts” are parallel writes to the entity table and journaléa The majority of overhead
comes from checking to see if the current key exists and, db#s, to register that
transaction value for any required rollback. This figure suees it for the case where
the key did not exist before, which for Cassandra is a highten&y operation than
looking for a key which does exist. It should be noted that thithe highest amount of
relative overhead because this looks at only a sipgtelf the transaction had multiple
reads and writes, then much of the overhead associated taitting a transaction,
getting a lock, releasing it, and committing is amortized.

For comparison purposes we also ran the benchmark on GA&edd 5(a)has the
latency of gets and writes for different concurrency leveigure4.15(b)has through-
put for the same experiment, showing much less throughput ttur scalable datas-
tores, yet in these cases the round trip time is much highpm@averaged 27ms to
our application hosted by Google) as our load generatorca ko our private cluster.

Round trip time for our local tests, by comparison, where subk.1

4.6.1 Discussion

We find that Cassandra, HBase, and Hypertable were the moabkgadll being

BigTable clones. Cassandra performed best in our studywetidy Hypertable, and
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then HBase. Although Cassandra is able to do placement usndgma partitioning
for range query support it requires lexicographical parting. Because data is placed
based on key names, we see that data is stored on a single mddetablet server is
split and stored on another node. If the data set is based onedablet we see certain
nodes can become hotspots causing slowdown if the numbdieafscbecomes very
large. Larger scale deployments were attempted, but dueetaforementioned place-
ment of data, we found additional nodes saw no improvemetatrms of throughput.

MySQL Cluster had much higher latency and lower throughpah tthe NoSQL
stores. MySQL is at a disadvantage as it is not aware of they gmbup abstraction.
Hence, it uses course grain locks which limit the througlgfwutpdates.

Throughput of transactions fguuts does drop by as much as 50% compared to
transactions being disabled. AppScale allows developkosds not require transaction
semantics, and hence the required overhead, to disabletthéme use of namespaces.
Any namespace which preprenastranswill give direct access to the datastore, where
access to DAT is circumvented. Any application which usasgaction semantics will
still work although no ACID correctness guarantees are given

Read throughput remains unchanged when transactions aoieénas the only
overhead associated with the read is to check to make suketbi®n of the entity is
not from an on going transaction, or a black listed transactMany systems and work-

loads are read heavy, one example of which comes from the d¢tmggpaperq] which
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used 20:1 read to write ratios for their evaluations sintidavhat they see internally at

Google.

4.7 Summary

In this chapter, we investigate the trade offs of providihgud platform support
for multiple distributed datastores automatically andtaiolly. To enable this we de-
sign and implement a database support layer, i.e. a clowstdae portability layer,
that decouples the datastore interface from its implentieni@), load-balances across
datastore entry points in the system, and automates disgdleployment of popular
datastore systems. Developers write their applicatiorséoaur datastore API and their
applications execute using any datastore that plugs it@ltform, without modifi-
cation, precluding lock-in to any one public cloud vendohisTsupport enables us to
compare and contrast the different systems for differepliegtions and usage models
and enables users to select across different datastonmgolegies with less effort and
learning curve.

We extend this layer to provide distributed ACID transacts@mantics to appli-
cations, independent and agnostic of any particular datasystem and that does not
require any modifications to the datastore systems thatiptogour cloud portability
layer. These semantics allow applications to update atdiyicultiple key-value pairs

programmatically. We refer to this extension as DAT for Bate-agnostic transactions.
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Since no open source datastore today provide such semdhisdayer facilitates their
use by new applications and application domains includnggé from the business,
financial, and data analytic communities, that depend upech semantics. We im-
plement this layer within the open source AppScale cloutfqgria. The next chapter
further extends our datastore middleware by adding secgmidex support to provide

developers an SQL-like query language to access their data.
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Figure 4.4: Cassandra latency as the number of machines increases.
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Figure 4.5: Cassandra results as the number of machines increases.
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Figure 4.7: HBase throughput as the number of machines increases.
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Figure 4.9: Hypertable results as the number of machines increases.
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Figure 4.11: Redis throughput as the number of machines increases.
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Figure 4.12: MySQL results as the number of machines increases.
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Chapter 5

Scalable Queries with Indexing
Support

With the advent of cloud computing and the growing popwaaot software-as-
a-service (SaaS) offerings (the ability to access apjptinatvia remote resources),
datasets have exploded in size and number. Public clouddemsvincreasingly pro-
vide pay-per-use and on-demand data management senates#be both in terms of
the amount of data that can be stored, as well as the rate Wwitthwthey are accessed,
and which facilitate access via simple and portable RESTfates.

Many popular public storage services are available suchnaszan’s Simple Stor-
age Service (S3) which provides four 9's availability witleveen 9's durability and
Amazon’s Reduced Redundancy Storage (RRS) which also providesame service
with less reliability. Microsoft offers its Table serviceweh can store large amount of

unstructured data with access through a REST interfacegviRakckspace has Cloud
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Files for on-demand storage and content deliv@®; i, 2]. Services such as these
provide a simple key/value interface for storing and retrig data.

Google’s storage system is BigTable], a column-oriented key/value store, which
runs many internal large-scale applications. Since Bigdalplublication in 2006, there
have been open source implementations emulating its dadelmdhese projects in-
clude HBase46], Hypertable 0], and Accumulo 1]. Cassandra, a project initially
developed at Facebook, provides a data model similar to BigTtaut employs an peer-
to-peer architecture similar to Amazon’s Dynamo datasfad. In addition, other
highly scalable datastores have emerged that providenattee data modules such
as document stores (MongoDB), key/value stores (Moldemart)l graph databases
(Neo4J). Currently there are over 122 different offeringd,[each with their own API,
options, deployment requirements, and idiosyncrasiessd lnon-relational datastores
are referred to by the community as "NoSQL” datastores.

These cloud-based NoSQL datastores offer an alternatiweote traditional rela-
tional databases which provide a very expressive queryukgeg but are not designed
for the same use cases and scale (concurrent use, largeeshfndata, offline ana-
lytics) as NoSQL datastores. Scaling relational databaesgsres that users manually
shard their datasets. NoSQL datastores, on the other hawe the capability to dis-
tribute large amounts of data automatically, but lack extenquery capabilities of

relational databases. NoSQL datastores as a result relgtarpdocessing frameworks
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such as MapReduce, and higher level languages such as Hivg tw Benerate to
MapReduce jobs. These MapReduce jobs are appropriate foredditialytics, but their
high latency make them ill-suited for real-time processing

Each of the BigTable clones mentioned before do have a lingjtexty language
which allows access to a dataset. Yet, each language isatifftor each datastore, and
each provides different feature sets. Developers who usedatastore must rewrite
their datastore application code if they decide to switch thifferent datastore for per-
formance or feature reasons — even when the underlyingifunadity is similar (but
different APIs are exported). Such a lack of easy portahiiecludes direct compar-
isons between datastores using real application workloads

To address this limitation (lack of portability), and thee$iis question on how
we can provide additional functionality for cloud developewe investigate the use
of a unifying datastore API and programming model whichwadidor the simplified
use and extensibility of any datastore that plugs into thenggource AppScale cloud
platform [22]. In particular, we target the design and implementatiom giortability
layer that provides generic indexing and query supportsacaovide range of disparate
NoSQL datastore offerings (any key/value store with rangeryg support and atomic
row updates). We employ the Google App Engine (GAE) dataséd®l and query
language (GQL) as the mechanisms with which developersadbe datastores. By

adopting the GAE datastore API, not only are we able to rurotee 1 million applica-
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tions [36] that exist today, but we also gain access to the analytidatastore libraries
written for the GAE environmen®4).

Our goal is to enhance the programmability of a varying nuntbéNoSQL data-
stores by providing a universal interface that expandgiegigjuery capabilities and
removed the need to reimplement these features (i.e., dapomdexes) by the appli-
cation developer. Moreover, we simplify the mapping of aggilon datastore models
to multiple datastores, allowing for application portékpjlcode reuseability, and fea-
ture extendability, without the requirement that the aqggilon developer be an expert
in any given datastore.

We use our systems to compare three BigTable clones: HBasesrtdipte, and
Cassandra. We use a GAE benchmarking application and shgeetf@mance char-
acteristics of each datastore. Our experimentation re\aalinteresting degradation
impact of soft deletions on query performance. Our exparnisalso consider the pro-
prietary datastore implemented by the GAE public cloud.

In the sections that follow, we first discuss background rimfation and related
work, followed by the design and implementation of the systé/e give an evaluation

in Section5.4, and conclude in Sectiomb5.
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5.1 Background

Google App Engine (GAE), a PaasS for web applications writteéhe Python, Java,
and Go programming languages, can autoscale applicatiomstiie load balancer, ap-
plication server, and datastore layers, removing the msrdétechnically challenging
aspects of application hosting from the developer. To enabiual unlimited scale for
applications, some restrictions are enforced by the GAEm@ Front-end request can
only last for 60 seconds. Any request that must run for somefinite amount of time
must use a background process. For Python applicationsapproved libraries or li-
braries which are pure-Python are allowed, and for Javaldrlries which are white
listed are allowed. Moreover, no file access is allowed and slaould be persisted via
the datastore API.

This chapter focuses on the datastore backend APl whichwega by BigTable
and Megastore, two technologies internal to Goodlé p]. Applications which use
App Engine are able to scale their data as needed, and arearipneharged based on
the total volume of data stored and amount of times acce$3A& provides applica-

tions with a 99.95% uptime SLA, powered by their high replima datastore37).
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5.1.1 Google Query Language

The datastore API for GAE provides a key/value interfacestoring entities (ob-
jects), along with a SQL-like query language called GQLatiks the full-SQL stan-
dard, missing operations such as JOIN, MERGE, and querieshwhodify the datas-
tore. However, it has useful semantics for retrieving ergtibased on properties/attributes
of entities.

There are four different types of queries possible: kirgll@scestor, single prop-
erty, and composite. The kindless query allows for theee#liof entities across entity
kinds (a kind is a table coming from the relational databaedet). Ancestor queries
are based on entity relationships, where parent entiteeasgigned to child entities, and
the ancestor is the root entity which has no parent of its d8ingle property queries
allow for the comparison between a property value using dleviing operators: ==,
I=, <, <=, >, >=. Composite queries allow for the same but with a combinadion
properties, with limitations such that only one propertyymae an inequality filter.

The following is an example of a composite query:

SELECT * FROM KI ND VWHERE
PROPERTY1 >= VALUE1L
AND PROPERTY2 == VALUE2

ORDER BY PROPERTY1 DESC
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Here we set the inequality filter for the first property and qunadity filter for the second.
The descending ordering has the restriction that it musolne @n the property which

had the inequality filter.

5.1.2 AppScale

In 2009, soon after the release of GAE, AppScale, the opertsamplementation
of GAE, was released. AppScale is a private cloud offerinty WAE API compatibil-
ity (Table ??) and able to run on a variety of Infrastructure-as-a-Ser{iaaS) layers
such as AWS, Eucalyptus, and OpenStack. This chapter takeSoate and expands
its query support enabling the GAE datastore API with datasagnostic secondary

index support.

5.1.3 Related Work

The previous implementation of AppScale’s datastore ARpsut was lacking in
that all queries required pulling all the data for a givendk{all data from a table), and
applying the filters in memory. This has two adverse affeqtgeries became slower
as more data was stored in a given table, and second, oncablkesize was too big
a query could potentially bring down a node due to a lack of mmThis chapter

addresses these issues by translating GQL queries ditedtlg datastore. Moreover,

102



Chapter 5. Scalable Queries with Indexing Support

we add kindless query support which was previously lacking tb the design and
implementation from previous world ], 20].

Previous work which inspired the current design and implaait@n comes from
Megastore and BigTable, which currently power GAE. Our printastinction from the
GAE implementation is that we are providing the APl and GQpysurt across different
NoSQL technologies, with the capability to run on a multéwd laaS layers, whereas
GAE is tied only to their closed source implementation anlgt wms on Google infras-
tructure. We take Google’s lead however in that they spusrethe NoSQL movement
with BigTable, and have given an excellent query languagerolae on top of such
technologies.

In [62], the authors present how the unification of databases cagethter with
the standardization of SQL, and present the dual of SQL fd8Qlo datastores they
call coSQL. In 2011, Couchbase and SQLite announced a stiindton of a NoSQL
guery language called UnQI8T], but the project has since become defunct.

YCSB allows for the comparison of different NoSQL technoésgand we are simi-
lar in that regard, yet we allow so with real GAE applicatiansl we contrast in that we
provide expanded query support on top of these technolégiesable ease of porta-

bility and programming.
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5.2 Design and Implementation

To support GQL within AppScale, we must provide four differeypes of queries:
ancestor, kindless, single property, and composite. @si@rie supplied by an applica-
tion and checked at runtime for validity. Each query is coteatto a set of filters and

order operators by the application server handling theesigal query.

5.2.1 Filters, Orders, and Cusors

A filter is a data structure with fields property name, prop&glue, and operator
kind (i.e., greater than). Each filter only applies to a sngfoperty and contains a
single operator, and although a query can be comprised dipt@uilters as in the case
for a composite query, only one property can have an ineguater.

An order, either ascending or descending, gives the dimectntities should be
sorted. A given query can have multiple orders allowing faitiag on multiple prop-
erties. In the case of multiple orders, the property which dra inequality filter must
come first.

A cursor can be supplied with any query except for any thattisé!="filter, as
that does not map directly to a single range query, but réeeseparate range queries.
A cursor tells the query engine what the starting key shoaldathich typically means

the previously results have already been seen and need kipiped.
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5.2.2 Query System

| Query |

S

| Orders | | Filters | | Cursor |

@

| Datastore Mapper |

v

Datastore
(Cassanadra, Hbase, Hypertable)

Figure 5.1: Top level design of the query system.

Figure5.1 shows the top level design of the query system. The highest ilethe
query supplied by the application. The query can come in twm§, either as a GQL
string, or as user created filters and order operators. #f & GQL string, it will be
converted to a set of filters, orders, and if given, a cursbesg items are then passed

onto a datastore mapper which translates each query to th8dgte DB API.

5.2.3 AppScale DB API

The AppScale DB API is an abstraction from any datastore fvimgplements the

interface. The API consists of the following:

create_tabl e(table, columms)
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del et e_t abl e(t abl e)
get _batch(table, key_ list, colums)
put batch(table, key list, cell val ues,
col unms)

del ete_batch(table, key list)
range_query(table,

start _key,

end_key,

limt,

of f set,

start _incl usive,

end_i ncl usi ve)

Gets return a dictionary of mappings of keys to column namesvalues. Range
gueries return an ordered list of mappings of the same. @ats, and deletes can
all be done in batches to minimize multiple trips (somethting previous version of
AppScale did not have).

Range queries take a start key and an end key. If a start key ssipplied then the
guery starts at the very top of the table. Likewise, if an eeg ik not supplied then it
will scan until the end of the table. Both keys have flags whathittthe start and end

keys should be inclusive in the scan. A limit can be supplcedrisure that only that
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prescribe amount is returned. The runtime of a query witkvg®gn) in runtime if that
subset of keys grows and is left unchecked vialitm& argument. Lastly, an offset can
be supplied to jump ahead a set amount of entities from atdagasnge query result.

We have two restrictions as to which datastore can implethenAPI:
e Batch capabilities for gets, puts, and deletes
e Range queries between a start and end key

Given these two requirements, a datastore can be portege¢sbpport for our system.
For this chapter we have implemented Cassandra, HypertfdelHBase. However,
NoSQL datastores which lack these features can still beg@avith performance degra-

dation due to emulation of said feature.

5.2.4 Automatic Deployment

Each datastore is automatically configured and deployeds i$tdone on a vari-
able number of machines, and does not require the user amyéaige of the datastore
they've chosen to launch upon initiation of AppScale. Apg8avill take template con-
figuration files, and fill them in with the correct parameteasédd on the infrastructure
being used. It will then launch the processes with the coasguments and temporal

procedure (i.e., master process before slave process).
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5.2.5 Table and Key Layout

The AppScale design uses a set of tables which are shareedretpplications.
Isolation is provided by the system between applicatioris each key prepended with
the application ID and any particular namespace that agupdic may be using. The

tables are as follows:

ENTI TY(val ue)

ASCENDI NG_PROPERTY( r ef er ence)
DESCENDI NG_PROPERTY( r ef er ence)
KI ND( r ef er ence)

| DS( sequence)

The ENTITY table stores the entities in a serialized formEte key to an entity
includes the application ID, namespace, and full path, e/kiez full path of an entity is
comprised of an entity’s ancestors. The ASCENDIREBOPERTY and DESCEND-
ING_PROPERTY table store references to the ENTITY table. The keyhe property
tables include the application ID, namespace, propertyengomoperty value, and the
full path. The property value in the descending table iscegraphically flipped to
accommodate reverse ordering. Each entry also requirdsitipath because it is pos-

sible to have multiple entities which have the same valuecé@¢his provides a unique
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key. The KIND table also has a reference to the ENTITY table the path is reversed
giving the child first and root last.

Ascending Property Table
Key
app_id/ns/Greeting/content/hello/Greeting:1 app_id/ns/Greeting:1
app_id/ns/Greeting/content/hi/Greeting:2 app_id/ns/Greeting:2
app_id/ns/Greeting/content/howdy/Greeting:3  app_id/ns/Greeting:3
app_id/ns/Greeting/date/06-12-2012/Greeting:1 app_id/ns/Greeting:1
app_id/ns/Greeting/date/06-13-2012/Greeting:2 app_id/ns/Greeting:2
app_id/ns/Greeting/date/06-14-2012/Greeting:3  app_id/ns/Greeting:3

Entity Table
=
app_id/ns/Greeting:1 encoded entity
app_id/ns/Greeting:2 encoded entity
app_id/ns/Greeting:3 encoded entity

Figure 5.2: Ascending property table and entity tables for a Greetimgl ki

5.2.6 ID Allocation

Entities can have either a name or an ID. If a name or an ID isssigned during
creation, then a unique ID is assigned by the system. UniQaete attained from an
ID table, where each row is per application. Each datastenees attains a block of
IDs which are assigned first-come first-serve. IDs are notapiaed to be in order due

to the distributed allocation of each datastore server.
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5.2.7 Putand Deletes

Each Put operation requires updating indexes into the kidgaoperty tables. Take

for example the following entity class:

cl ass Greeting(Model.db):
date = db. Dat eTi meProperty()

content = db. StringProperty()

Any updates requires two separate indexes for a Greetirt kiata and content. The

following steps are required for the successful insertiompolate of an entity:

e Get the previous entity from the entity table if it exists

Delete all the indexes from the ascending and descenditgy tab

Insert the new indexes into the ascending and descendilgy tab

Insert a reference to the entity table into the kind table

Insert the entity into the entity table

5.2.8 Ancestor and Kindless Queries

Ancestor queries require a range query over the entity .talake for example the

following keys to a set of entities:
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app_id/ns/Parent:Bill!
app_id/ns/Parent:Bill!Child:Alice!
app_id/ns/Parent:Bill!Child:Jim
app_id/ ns/Parent: Sally!
app_id/ns/Parent: Sally!Child:Alice!
app_id/ns/Parent: Sally!Child:Jim
app_i d/ ns/ Par ent : Zack!

app_i d/ ns/ Parent : Zack! Chi | d: Dave!

app_i d/ ns/ Parent : Zack! Chi | d: Chri s!

Here if we want to get all entities which have the root entitl we will have a start

key and end key of

start: app_id/ns/Parent:Bill!

end: app_id/ns/Parent:Bill!<tstr>

where thetstr is a series of the ASCII 255 character. Here we would get 3iestit
returned with this range query which are the first threedigstities, Bill, Alice, and
Jim. It should be noted that entities can have the same narni2 o long as it has
a different ancestry, as shown with the children of Sally valsn has children named
Alice and Jim. Moreover, an ancestry can go deeper with plalhierarchies, and they

can be of any kind, whether they be the same or different.
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Kindless queries operate on the entity table as well takikgygrom which to start
the range query from, and optionally take an ancestor toméate the end key. Without
an ancestor, the query will span across different kinds @faotication and a particular

namespace.

5.2.9 Single Property Queries

Single property queries do a range query on either the asweiod descending
property table, where the direction is given by an orderimghie query (default is
ascending). The filter dictates which property is scannetvamch operator is used.

For an equality filter we use the following start and end key:

start: app_id/ ns/kind/prop/vall

end: app_id/ ns/kind/ prop/val/<tstr>
For greater than:

start: app_id/ ns/kind/prop/val/<tstr>

end: app_id/ ns/Kind/prop/<tstr>
For greater than or equal to:
start: app_id/ ns/kind/prop/val/

end: app_i d/ ns/kind/prop/<tstr>
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For less than:

start: app_id/ ns/kind/ prop/

end: app_i d/ ns/kind/ pop/val/
For less than or equal to:

start: app_id/ ns/kind/ prop/

end: app_id/ns/kind/prop/val/<tstr>

A not equal to query will run two queries—first a less than guand then a greater than
query.
Each of these scans will return references to the entitgtabhese references are

used in a batch get and returned in the order requested inugrg.q

5.2.10 Composite Queries

A composite query consists of having two or more filters, and or more order-
ings. There may only be one property for which inequalitefst, <=, >, >=) may
be used and other filters on different properties may onlythisequality operator.

Composite queries use the ascending and descending talbesfilt€r with the
inequality is applied first within a set window size, and thieeo filters are applied in

memory. The filter will be applied until the limit amount isached.
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Multiple orderings are applied in memory after the properhych had the inequal-
ity filter. An example of multiple orderings is where the fipgbperty is last name, and

then first name, followed by birth date.

5.3 Evaluation

We evaluate our query system against three different adatsstCassandra (1.0.7),
Hypertable (0.9.5.5), and HBase (0.90.4-cdh3u3). A 12 negidogment on Eucalyp-
tus 3.0 is deployed with VMs consisting of 14GBs of RAM and 4 CPlkeso The
deployment has 6 nodes dedicated to web servers and sixatiedlio being database
nodes. Four different queries are evaluated for 100K estikindless, ancestor, single
property, and composite. Moreover, we evaluate a mixed adkof puts and gets
workloads and well as analyze the time taken for larger ptatbaperations. The same
benchmark application is used on GAE with a higher workloadcomparison pur-
poses. We use an optimization in our implementation wherdavaot do references to
the entity, but rather store the entity itself in our secaogdadexes. This removed the
overhead of doing batch gets which can add significant oeerh@&he tradeoff is the

additional replication of the entity per index.
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Upon creation of the dataset, a set of parent entities asdextavith each parent
then having 100 child entities. Each entity has two integeperties. The first one
ranges between 1 and 1,000,000 while the second rangesdretvand 10.

Ancestor queries pick a random parent entity to query ontitignthe number to
100 (the amount of children each parent has). Kindless gsipick a parent as the last
key to start the query from. Single property queries seletities which have the first
property value greater than some random number between 1,866,000. Finally,
composite queries do the same as single property queriealdaurequire the second
property to be equal to some random value between 1 and 1QuAtfies have a limit
of 100.

Our benchmark driver uses Multi-Mechanize, a Python basetbpnance testing
framework. The test lasts for 300 seconds and has users faufngn O to 1500 within
that time frame. The tool reports latency per request asagdtiroughput in 10 second
intervals.

We also look at gets/puts with a read to write ratio of 80:20r this experiment,
we create 1000 entities in the datastore. If the requestapibily dictates that it is a
read than one of the 1000 entities are chosen at random. téthuest is write, than a

new entity is created in the datastore.
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Figure 5.3: Cassandra ancestor query response time.
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Figure 5.4: Cassandra ancestor query throughput.

5.3.1 Results

We first look at queries for Cassandra. Figir20shows ancestor queries response
time. The response time stays below five seconds for the #Gtséconds as traffic
is being increased. We find that there is a drop in throughipigiu¢e 5.21) after the
140 second mark. The reason for this drop is connection timseand retries by the
cassandra interface. As more and more connections arehesedd instability.

Kindless queries had a similar graph to ancestor queriestharefore not shown.

Single queries (Figurb.24and5.25show interesting behavior in that it achieves very
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Figure 5.6: Cassandra kindless query throughput.

high throughput initially, but as users increase there nspieral spacing between re-
guests due to connection timeouts.

Composite queries do much more work outside of the datastwause only one
property is queried on within the range scan. Hence, mucheofdtency comes from
filtering entities within memory. There is generally higlelacy here and under high
load we hit the 60 second cutoff set forth by the front end loaldncer.

Ancestor queries for HBase are much more stable compared sa@#s. HBase
has similar results for ancestor and single queries, adthsingle property indexes did

not show the brief lapses of time where no responses camegihras shown in Fig-
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Figure 5.7: Cassandra single query response time.
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Figure 5.8: Cassandra single query throughput.

ure5.28 Kindless queries for HBase get the best performance withutiiyput fluctu-
ating around 100 request per second (Figui]). Figure5.30shows the individual
request response time and have peculiar behavior with thoekes of responsiveness,
less than 5 second, between 5-10, and a steady increaselsadmseconds, all while
maintaining approximately 100 requests per second.

Hypertable gets the best performance and stability in ggevith over 150 request
per second in ancestor queries as seen in FiguB#&and5.33 As more load is added
to the system, latency per request increases and does soteady get undulating

manner. Single property queries see a wider spread of respganes, and achieves
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Figure 5.9: Cassandra composite query response time.
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Figure 5.10: Cassandra composite query throughput.

between 75 to 95 request per second (Fig&8&4 and5.35. Kindless queries saw
similar performance to single property queries.

Lastly, we look at a mixture of reads to writes, as our quenypsut does mod-
ify our write procedure with the requirement of updatingerds. Figuré.36has an
experiment where we ramp up users to our experimental AppSieployment. We
can achieve high throughput with over 850 request per se@figdre not shown), and
then drops towards zero. Response times show that requesbeielg retried in three
second intervals, which is the standard for TCP backoff. @admode is being over-

whelmed with traffic and forces our load generating clienbackoff at the transport
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Figure 5.11: HBase ancestor query response time.
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Figure 5.12: HBase ancestor query throughput.

layer. Throughput increases as the underlying TCP layer mgelois throttling traffic,
yet the same pattern repeats. We see a similar result witta@@dissan HBase. Future

work includes methods to alleviate this issue within Apd&ca

5.3.2 Discussion

There are certain differences in the API which can lead tataaieél overhead when
shoehorning to our common datastore API. Hypertable hakntiitation of truncating
strings that have the null terminating character, and fbezgequire encoding and de-

coding of the key. HBase does not include the last key in a rgngey and requires
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Figure 5.13: HBase kindless query response time.
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Figure 5.14: HBase kindless query throughput.

additional overhead of fetching the key if the flag for inolity is enabled. This over-
head is more if the key does not exist, as non-existent keysnach more expensive

than existing keys.

5.4 Evaluation

We evaluate our query system against three different adatsstCassandra (1.0.7),
Hypertable (0.9.5.5), and HBase (0.90.4-cdh3u3). A 12 negdogment on Eucalyp-
tus 3.0 is deployed with VMs consisting of 14GBs of RAM and 4 CPlWkeso The

deployment has 6 nodes dedicated to web servers and sixatiediito being database
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Figure 5.15: Hypertable ancestor query response time.
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Figure 5.16: Hypertable ancestor query throughput.

nodes. Four different queries are evaluated for 100K estikindless, ancestor, single
property, and composite. Moreover, we evaluate a mixed ladkof puts and gets
workloads and well as analyze the time taken for larger ptataperations. The same
benchmark application is used on GAE with a higher workloadcomparison pur-
poses. We use an optimization in our implementation wherdavgot do references to
the entity, but rather store the entity itself in our secaogdadexes. This removed the
overhead of doing batch gets which can add significant oeerh&he tradeoff is the

additional replication of the entity per index.
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Figure 5.17: Hypertable single query response time.
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Figure 5.18: Hypertable single query throughput.

Upon creation of the dataset, a set of parent entities asdextavith each parent
then having 100 child entities. Each entity has two integeperties. The first one
ranges between 1 and 1,000,000 while the second rangesdretvaand 10.

Ancestor queries pick a random parent entity to query ontifigjmthe number to
100 (the amount of children each parent has). Kindless gsipick a parent as the last
key to start the query from. Single property queries seletities which have the first
property value greater than some random number between 1,860,000. Finally,

composite queries do the same as single property queriealdaurequire the second
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Figure 5.19: Hypertable 80:20 read to write ratio response times.

property to be equal to some random value between 1 and 1@Quaties have a limit
of 100.

Our benchmark driver uses Multi-Mechanize, a Python basetbpnance testing
framework. The test lasts for 300 seconds and has users faufngn 0 to 1500 within
that time frame. The tool reports latency per request asagdtiroughput in 10 second
intervals.

We also look at gets/puts with a read to write ratio of 80:26r this experiment,
we create 1000 entities in the datastore. If the requestapibity dictates that it is a
read than one of the 1000 entities are chosen at random. téthuest is write, than a

new entity is created in the datastore.

5.4.1 Results

We first look at queries for Cassandra. Figr20shows ancestor queries response

time. The response time stays below five seconds for the #i@tséconds as traffic
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Figure 5.20: Cassandra ancestor query response time.
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Figure 5.21: Cassandra ancestor query throughput.

is being increased. We find that there is a drop in throughipigiufe 5.21) after the
140 second mark. The reason for this drop is connection timseand retries by the
cassandra interface. As more and more connections arehesedd instability.

Kindless queries had a similar graph to ancestor queriestrarefore not shown.
Single queries (Figurb.24and5.25show interesting behavior in that it achieves very
high throughput initially, but as users increase there nspieral spacing between re-
guests due to connection timeouts.

Composite queries do much more work outside of the datastwause only one

property is queried on within the range scan. Hence, mucheofdatency comes from
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Figure 5.22: Cassandra kindless query response time.
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Figure 5.23: Cassandra kindless query throughput.

filtering entities within memory. There is generally higlelacy here and under high
load we hit the 60 second cutoff set forth by the front end loaldncer.

Ancestor queries for HBase are much more stable compared saQ#s. HBase
has similar results for ancestor and single queries, afthasingle property indexes did
not show the brief lapses of time where no responses camegihras shown in Fig-
ure5.28 Kindless queries for HBase get the best performance withutiiyput fluctu-
ating around 100 request per second (Figui]). Figure5.30shows the individual

request response time and have peculiar behavior with thogkes of responsiveness,
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Figure 5.24: Cassandra single query response time.
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Figure 5.25: Cassandra single query throughput.

less than 5 second, between 5-10, and a steady increaselso?faseconds, all while
maintaining approximately 100 requests per second.

Hypertable gets the best performance and stability in geevith over 150 request
per second in ancestor queries as seen in FiguB#&and5.33 As more load is added
to the system, latency per request increases and does soteéady /et undulating
manner. Single property queries see a wider spread of reggones, and achieves
between 75 to 95 request per second (Fig&:&4 and5.35. Kindless queries saw

similar performance to single property queries.
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Figure 5.26: Cassandra composite query response time.
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Figure 5.27: Cassandra composite query throughput.

Lastly, we look at a mixture of reads to writes, as our quenypsut does mod-
ify our write procedure with the requirement of updatingerds. Figuré.36has an
experiment where we ramp up users to our experimental Ape$ieployment. We
can achieve high throughput with over 850 request per se@f€igdre not shown), and
then drops towards zero. Response times show that requesbeieig retried in three
second intervals, which is the standard for TCP backoff. @admode is being over-
whelmed with traffic and forces our load generating clienbackoff at the transport

layer. Throughput increases as the underlying TCP layer mgelois throttling traffic,
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Figure 5.28: HBase ancestor query response time.
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Figure 5.29: HBase ancestor query throughput.

yet the same pattern repeats. We see a similar result witta@dissan HBase. Future

work includes methods to alleviate this issue within Ap&ca

5.4.2 Discussion

There are certain differences in the API which can lead tatimeél overhead when
shoehorning to our common datastore API. Hypertable hakntitation of truncating
strings that have the null terminating character, and tbezgequire encoding and de-
coding of the key. HBase does not include the last key in a rgogey and requires

additional overhead of fetching the key if the flag for inohity is enabled. This over-
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Figure 5.30: HBase kindless query response time.
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Figure 5.31: HBase kindless query throughput.

head is more if the key does not exist, as non-existent keysnach more expensive

than existing keys.

5.5 Summary

In this chapter we have presented a design, implementadiwh,evaluation of a
middleware that provides secondary index support. Thipasumllows developers to
use a SQL-like language, GQL, to query their large scaleidatal-time. Our system

supports four main types of queries: ancestor, kindleagjesiproperty and composite
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Figure 5.32: Hypertable ancestor query response time.
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Figure 5.33: Hypertable ancestor query throughput.

gueries. We provide these queries on NoSQL datastores itastdee-agnostic way, in

which we only require range query support by the underlyiaigstore.
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Figure 5.34: Hypertable single query response time.
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Figure 5.35: Hypertable single query throughput.
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Figure 5.36: Hypertable 80:20 read to write ratio response times.
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Chapter 6

Hybrid Cloud Support for Large Scale
Analytics and Web Processing

Platform-as-a-service (PaaS) offerings, such as Micto&pfire [4] and Google
App Engine B7], automate configuration, deployment, monitoring, ancstetay by
abstracting away the infrastructure through well-definéisfand a higher-level pro-
gramming model. PaaS providers restrict the behavior ardatipns (libraries, func-
tionality, and quota-limit execution) of hosted applicas, both to simplify cloud ap-
plication deployment, and to facilitate scalable use ofglaform by very large num-
bers of concurrent users and applications. Google App En@AE), the system we
focus on herein, currently supports over 7.5 billion pagema per day across over
1,00,000 active application86] as a result of their platform’s design. As is the case
for public laaS systems, public PaaS users pay only for thaurees and services they

use.
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A key functionality lacking from the original design of Pagstems is online ana-
lytics processing (OLAP). OLAP enables application depels to model, analyze, and
identify patterns in their online web applications as usarsess them. Such analysis
helps developers target specific user behavior with soffvweahancements (code/data
optimization, improved user interfaces, bug fixes, etc.yvel as applying said analy-
sis for commercial purposes (e.g. marketing and adveglisithese improvements and
adaptations are crucial to building a customer base, faitflg application longevity,
and ultimately commercial success for a wide range of comegarin recognition of
this need, PaaS systems are increasingly offering newcesrthat facilitate OLAP ex-
ecution models by and for applications that execute oventf88, 77, 5]. However,
such support is still in its infancy and is limited in flexibyl posing questions as to
what can be done within quota limits and how the service ccisneith the online
applications they analyze.

In this chapter, we investigate the emerging support of OIS AE, identify its
limitations, and its impact on the cost and performance pfiagtions in this setting.
We propose an alternate approach to OLAP, in the form of aithydboud consisting
of a public cloud executing the live web application or seevand a remote analytics
cloud which shares application data. We build upon and elxfgopScale to enable
analytic processing for web developers and address theopat the thesis question

which concerns helping developers do so for large data.
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Portability gives developers the freedom and flexibilityetxplore, research, and
tinker with the system level details of cloud platforn29[22, 54]. Our hybrid OLAP
solution provides multiple options for data transfer beswéhe two clouds, facilitates
deployment of the analytics cloud over Amazon’s EC2 publaudlor an on-premise
cluster, and integrates the popular Hive distributed dagehousing technology to
enable a wide range of complex analytics applications todvepned over live GAE
datasets. By using a remote AppScale cloud for analyticsvefdata, we are able to
specialize it for this execution model and avoid the quotas strictions of GAE,
while maintaining the ease of use and familiarity of the GA&tform.

In the sections that follow, we first provide background onE=sfd AppScale. We
then describe the design and implementation of our hybrid®Ekystem. We follow
this with an evaluation of existing solutions for analyticair Hive processing, and
an analysis of the cost and overhead of cross-cloud datdgymgation. Finally, we

present related work and conclude.

6.1 Background

Google App Engine was released in 2008, with the goal of atigvdevelopers
to run applications on Google’s infrastructure via a fullamaged and automatically

scaled system. While the first release only supported theoRypinogramming lan-
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guage, the GAE team has since introduced support for theala/&o languages. Ap-
plication developers can access a variety of differentiseswia a set of well-defined
APIs. The API implementations in the GAE public cloud areimpted for scalabil-
ity, shared use, and fault tolerance. The APIs that we foous ohis chapter are the
Datastore (for data persistence), URL Fetch (for commuioicgtand Task Queues (for
background processing).

AppScale implements the GAE APIs using a combination of gmemce technolo-
gies and custom software. It provides a database-agnagte, lwhich multiple dis-
parate database/datastore technologies (e.g. CassariRhae HHypertable, MySQL
cluster, and others) can plug intd]]. It implements the Task Queue API by executing
atask on a background thread in the same application sesviee application instance
that makes the request. This support, though simple, igenitly inefficient and not
scalable, because it is neither distributed nor load-lc@dnMoreover, it does not share
state between application servers, which leads to incoamgalication behavior when
more than one application server is present. We replaceArismplementation as

part of this work, addressing this limitation.

6.1.1 App Engine Analytics Libraries

The Task Queue API facilitates the use of multiple, independser-defined queues,

each with a rate limit of 100 tasks per second (which can breased in some casex])
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in GAE. A task consists of an application URL, which is callgdlive system upon task
dequeue. A 200 HTTP response code (OK) indicates that tkectampletes success-
fully. Other HTTP codes cause re-enqueuing of the task fditiathal execution at-

tempts. The number of retries, a time delay, and a task namieecaptionally specified

by developers as part of the task when it is enqueued. Usslohtanes is important to
prevent the same task from being enqueued multiple timeddtk of such measures
can result in a task fork bomb, in which a task is infinitely eaged). One way to

circumvent the 10 minute time limit for a task is to chain &gk which the initial task

performs a portion of the work, and enqueuing another tasktome where it has left
off. Tasks should be idempotent, or only perform side efféetg., updating shared,
persistent data) as the final operation — since any failuie @fevious statement will

cause the task to be re-enqueued (potentially updatingdissate incorrectly).

GAE application developers are responsible for prograskitarrectness when fail-
ures occur. This requires that developers make proper usslohames and chaining,
and implement tasks that are idempotent. Doing so for althmimost trivial of appli-
cations can be a challenging undertaking for all but expevetbpers. To address this
limitation, there are libraries that provide a layer of adstion over the GAE task queue
interface and implementation. These libraries are Fanf8SInGAE Pipeline [/ 7], and
GAE MapReduced8]. Each automates naming and failure handling by saving-inte

mediate state via the Memcache and the Datastore APIs.
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MyMachine

InitialState
do/ InitialStateClass

( ReviewAndRecoverState
Qjof ReviewAndRecoverStateClass )

Figure 6.1: An example state machine in Fantasm.

Fantasm, based oA(], employs a programming model that is based on finite state
machines (FSM). A programmer describes a state machinbe&gAML markup lan-
guage by identifying states, events, and actions. Thealrstate typically starts with a
guery to the datastore, to gather input data for analysistaSen steps through the query
and constructs a task for each entity (datastore elemettita query processes in each
state. Optionally, there can be a fan-in state, which takelspte previous states and
combines them via a reduction method. Fig@réshows an example FSM. A limita-
tion of Fantasm is how it iterates through data. It does natgkatasets, but instead,

pages through a query serially, leading to inefficient ekeaolof state machines.
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cl ass WCUr | ( pi peline. Pipeline):
def run(self, url):
r = urlfetch.fetch(url)
return len(r.data.split())
cl ass Sun( pi peline. Pi peline):
def run(self, =val ues):
return sumn(val ues)
cl ass MySear chEngi ne( pi pel i ne. Pi peline):
def run(self, *urls):
results =[]
for uin urls:
# Do word count on each URL

results. append((yield WCUrl (u)))
yield Sum(*results) # Barrier waits

Figure 6.2: Code example of Pipeline parallellizing work.
The GAE Pipeline library facilitates chaining of tasks irgovorkflow. Pipeline

stages (tasks) yield for barrier synchronization, at wtpoint the output is unioned
and passed onto the next stage in the pipeline. Figishows an example of parallel
processing via Pipeline that counts the number of uniquelsvon multiple web pages.
Theyield operator spawns background tasks, whose results are ceddnml passed to
the Sumoperation. Implementing similar code via just the Task QUARI is possible,
but is more complicated for users.

The GAE MapReduce library performs parallel processing auldictions across
datasets. Mapper functions operate on a particular kinatitiyeand reducer functions
operate on the output of mappers. Alternative input reagegs for use of Blobstore

files) and sharding supportis also available. The GAE MapRetiorary uses the Task
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Queue API for its implementation, as opposed to using Gaglernal MapReduce
infrastructure or Hadoop, an open source implementatioth Bee more flexible than
GAE MapReduce, and allow for a wider range of analytics preiogsthan this library.
Currently, a key limitation of GAE MapReduce is that all emstin the Datastore are
processed, even when they are not of interest to the analysis

Each of these abstractions for background processing aadadalytics in GAE
introduce a new programming model with its own learning euMoreover, analytics
processing on the dataset is intertwined with the appboat{that users use to pro-
duce/access the dataset) which combines concerns, caduoé& bugs, and can have
adverse affects on programmer productivity, user expeeieand monetary cost of
public cloud use. To address these limitations, we invatign alternate approach to
performing online data analytics for applications exewyitvithin GAE that employs a

combination of GAE and AppScale concurrently.

6.1.2 Related Work

OLAP and data warehousing systems have been around sind®70s [Lg], yet
there is no system available for GAE which is currently feaaiproviding OLAP for
executing web applications. AppScale, with its API compéity and our extensions

herein, brings OLAP capabilities (as well as its testing daldugging) to this domain.
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TyphoonAE is the only other framework which is capable ofniaig GAE appli-
cations outside of GAE. TyphoonAE however is a more efficiesion of the SDK
(executes the system serially) and only supports the Pytdryuage. AppScale and
our work supports Python, Java, and Go languages and isbdisid and scalable.
TyphoonAE does not have the same facility as AppScale to natytics, as it does
not support datastores capable of Hive support. Privat& B#arings such as Cloud
Foundry R6] offer an open source alternative to many proprietary petgland offer
automatic deployment and scaling of applications, yet dsopport GAE APIs.

There are many cloud platforms which allows for analyticeeéaun on large scale
datasets. Amazon’s Elastic MapReduce is one such servieewhachines are au-
tomatically setup to run jobs, along with customized irdeéls for tracking jobsof].
The Mesos framework is another cloud platform which can ruargety of processing
tools such as Hadoop and MPI, and does so with a dynamicalhgdiset of nodeg[].
Helios is yet another framework that simplifies the appiaatieployment process.

In [53], the authors measured data-intensive applications itipleiclouds includ-
ing GAE, AWS, and Azure. Their application was a variant of TRC-W benchmark,
similar to an online bookstore. Our benchmarks, by compariare analytics driven
rather than online processing. Furthermore, since the ¢ifrpublication Google—as

well as the other cloud providers—have continuously impdolunctionality and added
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features. Our work provides a new snapshot in time of theeatigystem, which has
since come out of preview and become a fully supported servic

Data replication across datacenters is a common methoddweeiption of data loss
and to enable disaster recovery if needed. Currently GAEemphts three-plus times
replication across datacenters using a variant of the Palgosithm [6]. Extant solu-
tions, such asq1], however, are not applicable because of the restrictiomosed by
the GAE runtime. To overcome this limitation, we providetadiry wrapper around de-
structive datastore operations, to asynchronously upmateemote AppScale analytic
platform. As part of future work, we are investigating howptovide disaster recovery

using our hybrid system.

6.2 Hybrid PaaS Support for Web Application Data Anal-
ysis

In this work, we investigate how to combine two PaaS systegether into a hybrid
cloud platform that facilitates the simple and efficient@axen of large-scale analysis
of live web application data. Our hybrid model executes tled \@pplication on the
GAE public cloud platform, synchronizes the data betweés application/platform
and a remote AppScale cloud, and facilitates analysis ofitkeapplication data us-

ing the GAE analytics libraries, as well as other populaagabcessing engines (e.g.
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Hadoop/Hive) using AppScale. Users can deploy AppScalda@ted, on-premise clus-

ter, or over Amazon EC2. In this section, we overview the twmpry components of

our hybrid cloud system: the data synchronization supputtthe analytics processing
engine. We then discuss our design decisions and how ouicggoluorks within the

restrictions of the GAE platform.

6.2.1 Cross-Cloud Data Synchronization

The key to our approach to analytics of live web applicatisrtee combined use of
GAE and AppScale. Since the two cloud platforms share a camii, applications
that execute on one can also do so on the other, without maiilific This portability
also extends to the data model. That is, given the compéatibgtween AppScale and
GAE, we can move data between the two different platformshfersame application.
We note that for vast datasets such an approach may not bbléeaslowever, it is
feasible for a large number of GAE applications today. Thssiplatform portability
facilitates and simplifies our data synchronization suppord makes it easier for de-
velopers to write application and analytics code, becauseuntime, APIs, and code
deployment process is similar and familiar.

We consider two approaches to data synchronization: bulkimeremental data
transfer. For bulk transfer, GAE currently provides toddspart of its software devel-

opment kit (SDK) to upload and download data into and out ef@AE datastore en
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masse. We have extended AppScale with similar functignalur extensions pro-
vide the necessary authentication and data ingress/egupp®rt, as well as support
for the GAE Remote API37], which enables remote access to an application’s data in
the datastore. The latter must be employed by any applicédiowhich hybrid ana-
lytics will be used. Using the Remote API, a developer canigpatat data can be
downloaded (the default is all). Bulk download from, and @oldo, is subject to GAE
monetary charges for public cloud use.

There are several limitations to bulk data transfer as a am@s for data synchro-
nization between the two application instances. Firstsicurrent incarnation, transfer
is all or nothing (of the entities specified). As such, we die @o only perform ana-
lytics off-line or postmortem if we are to copy the dataset@(the most inexpensive
approach). To perform analytics concurrently with web agpion execution, we are
forced to download the same data repeatedly over time (agpblecation changes it).
This can be both costly and slow. Finally, the data uploasfdoad tools from GAE
are slow and error prone, with frequent interruptions artd tsss.

To address these limitations, we investigate an altemapproach to synchroniz-
ing data between GAE and AppScale: incremental data trarisgfenable this, we have
developed a library for GAE applications that runs transpty in both GAE and App-
Scale. Our incremental data transfer library interceptdestructive operations (writes

and deletes) and communicates them to the AppScale asatytiad. In our current
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prototype, we do not support the limited form of transacitmat GAE applications
can perform 83]. As part of our on-going and future work, we are considelogv
to reflect committed transactional updates in the AppSaadytics cloud. Developers
specify the location of the AppScale analytics cloud as patheir GAE application
configuration file. Since the library code executes as pati@application in GAE, it
must adhere to all of the GAE platform restrictions. Funthere, communication to
the AppScale analytics cloud is subject to GAE charges folipgloud use.

Our goal with this library is to avoid interruption or impaah GAE web appli-
cation performance and scale, from the users’ perspedfileeconsider two forms of
synchronization with different consistency guarante@sntial consistency (EC) and
best effort (BE). EC incremental transfer uses the Task QA&Udo update the App-
Scale analytics cloud. Using this approach, the libraryuengs a background task
in GAE upon each destructive datastore operation. The teskises the URL Fetch
library to synchronously transmit the updated entity. InE;Aasks are retried until
they complete without error. Thus, GAE and AppScale datdcapfor the applica-
tion are eventually consistent, assuming that both the GAEAppScale platforms are
available.

Our second approach, best effort (BE), for incremental feamsplements an asyn-
chronous URL Fetch call to the AppScale analytics cloud ferapplication upon each

destructive update. If this call fails, the GAE and AppScefdicas will be inconsistent
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until the next time the same entity is updated. The BE approanhimplement poten-
tially fewer transfers since failed transfers are not egkri This may impact the cost
of hybrid cloud analytics using our system. BE is useful fdtisgs in which perfect

consistency is not needed.

To maintain causal ordering across updates we employ adbgiock (a Lamport
clock [58]), ensuring that only the latest value is reflected in thdicafed dataset for
each entity. Using this approach, it is possible that at argles point in time there may
be an update missing (still in flight due to retries in EC olef@in BE) in the replicated
dataset. We transmit entity updates as Protocol BuffersGihE transfer format of

Datastore entities.

6.2.2 Analytics Processing Engine within AppScale

We next consider different implementations of the AppSeatdalytics processing
engine. We first extend AppScale to support each of the thralytecs libraries that
GAE supports, described in Sectiéril.1 We start by replacing the TaskQueue API
implementation in AppScale, from a simple, imbalanced aggh, to a new software
layer, similar to that for the Datastore APl implementationl transaction suppo(),
that is implementation-agnostic and allows different tagskue implementations to be
plugged in and experimented with.

The GAE Task Queue API includes the functions:
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AddTask(name, url, paraneters)
Del et eTask( nane)

Pur geQueue()

We emulate the GAE behavior of this API (that we infer using @AE SDK and by
observing the behavior of GAE applications) in our task gusoftware layer within
AppScale. Each task that is added to the queue specifiddfaat is a valid path (URL
route) defined in the application, to which a POST requestbeamade using thpa-
rameters Thenameargument ensures that a task is only enqueued once givegaeuni
identifier. If a name is not supplied, a unique name is assign@. ThePurgeQueue
operation will remove all tasks from a queue, resetting iatoinitial, empty state,
whereaDeleteTaskwill remove a named task if it is still enqueued. Task exemuti
code is within the application itself (a relative path), @ncbe a fully remote loca-
tion (a full path). Successful execution of a task is indédaby a HTTP 200 response
code. The task queue implementation retries failed tasks apconfigurable number
of times, defaulting to ten attempts.

The AppScale Task Queue interface for plugging in new mesgagystems is as

follows: This API includes the functions:

EnqueueTask(app_name, url, paraneters)
Locat eTask(app_nane, task _nane)

AddTask(app_nane, task_nane)
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AckTask(app_nane, task_nane, reenqueue)

Pur geQueue( app_nane)

The AddTaskfunction stores the given task name and state in the systele-data-
store. Possible task states are ‘running’, ‘completed’failed’, and states can be
retrieved viaLocateTask AckTaskells the messaging system whether the task should
be re-enqueued, and if it should be, the messaging systeemieats the retry count as-

sociated with that task. Each function requires the apjticaname because AppScale

supports multiple applications per cloud deploymentasof such communications.

Load Balancer

User Application

AppScale TaskQueue

Figure 6.3: Overview of RabbitMQ implementation in AppScale.

Using the AppScale task queue software layer, we plug-iviM&/are RabbitMQ [9]
technology and implement support for each of the GAE arcyitoraries (GAE MapRe-
duce, GAE Pipeline, and Fantasm) described in Se@&ibrion top of the Task Queue
API. We have chosen to integrate RabbitMQ due to its widespusa and multiple
useful features within a distributed task queue implentemtaincluding clustering,
high availability, durability, and elasticity. Figu&3 shows the software architecture

of RabbitMQ as a task queue within AppScale (two nodes run engapplication in
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this figure). Each AppScale node that runs the applicatioaddbalanced application
servers) runs a RabbitMQ server. Each application servea bhsnt that can enqueue
tasks or listen for assigned tasks (a callback thread) tooon the RabbitMQ server.
We store metadata about each task (name, state, etc.) igdtegrsin the cloud data-
store. A worker thread consumes tasks from the server. Uporgdso, it issues a
POST request to its localhost or full path/route (if spedifievhich gets load-balanced
across application servers running on the nodes. Taskdsdridbuted to workers in a
round-robin basis, and are retried upon failure. RabbitM@rrgueues failed tasks and
is fault tolerant.

In addition to the Task Queue, MapReduce, Pipeline, and Bian#sPIs, we also
consider a processing engine that is popular for largeestath analytics yet that is not
available in GAE. This processing engine employs a comiginaif MapReduce30|
(not to be confused with GAE MapReduce, which exports diffesemantics and be-
havioral restrictions) and a query processing engine treggsnSQL statements to a
workflow of MapReduce operations. In this work, we employ Hazlan open source
implementation of a fully featured MapReduce system, ane 8%, 67, 48], an open
source query processing engine, similar in spirit to Pig Sadizall. This processing
engine (Hive/Hadoop) provides users with ad-hoc data gogrgapabilities that are
processed using Hadoop, without requiring any knowledge&tow to write or chain

MapReduce jobs. Moreover, using this AppScale service susamn operate on data
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using the familiar syntax of SQL and perform large-scalenglex data queries using
Hadoop.

AppScale integrates multiple datastore technologiesuditg Cassandra, Hyper-
table, and HBaselfl, 12]. All of these datastores are distributed, scalable, fault
tolerant, and provide column-oriented storage. Each ttataprovides a limited query
language, with capabilities similar to the GAE Datastoreeas model: entities, stored
as Protocol Buffers, are accessed via keys and key rangesodl¥s 6n the currently
best performing datastore in this work, Cassané@ [

Our extensions swap out the Hadoop File System (HDFS) in AglgSand replace
it with CassandraFSLp], an HDFS-compatible storage layer, that interoperatestly
with Cassandra, with the added benefit of having no singletpah failure within
its NameNode process. Above CassandraFS, we deploy Hadooye &ladoop, we
deploy Hive. Developers can issue Hive queries from the canthtine, a script issued
on any AppScale DB nodé&4l], or via their applications through a library, similar to
the GAE MapReduce library implementation in AppScale.

To enable this, we modified the datastore layout of entinehé AppScale datas-
tore. Previously, we employed a single column-family (lsor all kinds of entities
in an applications dataset. We shared tables across neudtpplications and we iso-
lated datasets using namespaces prepended to the key nkntes work, we store

column-families for each kind of entity. The serializatiand deserialization between
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Hadoop, CassandraFS, and Cassandra happens through a austéace, which en-
ables Hadoop mappers and reducers to read and write dataCfagsandra. We ex-
tended the AppScale Datastore API with a layer that traeslkatities to/from Protocol
Buffers. Our extensions eliminate the extract-transfooad|step of query processing
so that entities can be processed in place.

This support enables Hive queries to run SQL statementswvérne partitioned into
multiple mapper and reducer phases. Hive compiles SQLms#tts into a series of
connected map and reduce jobs. Analysts can perform queaesre automatically
translated to mappers and reducers, rather than manuatipgvthese functions and
chaining them together. Take for example the task of gettiegotal count of entities

of a certain kind. A Hive query is as simple as:
SELECT COUNT(*) FROM appi d_ki nd;

To to the same thing in GAE, the entities are paged throughaacmunter incre-
mented. Note that the Google Query Language for GAE appicsitimits the number
of entities in a single fetch operation to 1000. If the dat#&séarge enough, then the
developer must use a background task or manually implenaskt queue chaining.
Another alternative approach is to use sharded countersdp & live count; multiple
counter entities are required if the increment must happarrae faster than once per
second. Both methods are foreign to many developers and rangof@ complex and

non-intuitive than simple SQL Hive statements.
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us-east-1 Northern Virginia, USA
eu-west-1 Dublin, Ireland
ap-southeast-1 Singapore
ap-northeast-1 Tokyo, Japan

sa-east-1 Sao Paulo, Brazil
us-west-1 Oregon, USA
us-west-2 California, USA

Table 6.1: EC2 Regions for Amazon Web Services.

6.3 Evaluation

In this section, we evaluate multiple components of our itpweb application and
analytics system. We first start with an evaluation of thssrcoud connectivity within
a hybrid cloud deployment. For this, we analyze the roummtime (RTT) between a
deployed GAE application in Google datacenters and virethines deployed glob-
ally across multiple regions and availability zones of AmaEC2. We next evaluate
the performance of the GAE libraries for analytics using @%E public cloud. We
then evaluate the efficacy of our extensions to the AppScad&Queue implementa-
tion. Lastly, we show the efficiency of using the AppScalelgi@asolution running

Hive over Cassandra.

6.3.1 Cross Cloud Data Transfer

To evaluate the performance of cross-cloud data synchatoizbetween GAE and

AppScale, we must first understand the connectivity rateden them for incremental
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Figure 6.4: Experimental Setup for Measuring Round-trip Time and Bantwigk-
tween a GAE Application and VMs in Multiple EC2 Regions.

data transfer (cf Sectiof.2.1). To measure this, we deploy an application in the GAE
public cloud that we access remotely from multiple Amazon B@&o instances in 16
different availability zones, spanning seven regions.ufé@.1 shows the regions we
consider, and Figuré.4 depicts our experimental setup.

Our experiment issues a HTTP POST request from the EC2 iresgaaach with a
data payload of a particular size, a destination URL locagamique identifier, and the
type of hybrid data synchronization to employ: eventuatiggistent (EC) or best effort

(BE). The sizes we consider are 1KB, 10KB, 100KB, and 1MB (the maxn allowed
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Figure 6.6: Round-trip Time and Bandwidth Between a GAE Application anddbif
ent EC2 Regions.

for GAE’s Datastore API). The EC2 instances host a web semech receives the data
from the GAE application (either from a task via EC or from #pplication itself via

BE) and records the current time and request identifier. Ei§ulFshows the average
RTT for different packet sizes, for each availability zoriEhe data indicates that it
is advantageous to batch updates when possible since sheot a linear relationship

between size and RTT, as sizes grow.
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We next consider whether the geographical location of thpSgale cloud (dif-
ferent EC2 regions) makes a significant difference in the cameoation overhead on
data synchronization. To evaluate this, we consider theageeround-trip time (RTT)
and bandwidth across payload sizes to the GAE applicatiothfo different regions
(Figure6.6). The US East region had the RTT with the highest bandwidttg factor
of two. Both US regions have the next best performing comnatiuo behavior. This
data suggests that our GAE application is hosted (geograly)iin GAE in the East-
ern US. Locality to the application shows more than 2x thedbadth for the US East
availability zone than other zones (130KB versus 50KB to BA&r other zones). We
investigated this further and found via traceroutes andthat the application was
located near or around New York. We also found with this expent that bandwidth
over time is generally steady, with the exception of betwgmnhours of 16:00 and
22:00 (figure not shown). It may be possible to take advantdgech information to
place the AppScale cloud to enable more efficient data spnctation.

We next investigated the task queue delay in GAE. We aredasted in whether
the delay changes over time or remains relatively condistdfe present this data in
Figure6.7, as points at each hour in the day (normalized to Easterm&tdmime) that
we connect using lines to help visualize the trends. Thedaftis is RTT in seconds for

the region, and the right x-axis is the average queue datasegonds) for the region.
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Figure 6.7: Round-trip time from multiple regions to a deployed GAE apgiion with
task queue delay.

Queue delays do vary but this variance (impact on RTT) is pesteptible during the
early evening hours in all regions.

Finally, we compare our two methods for synchronization: & BE. EC uses
a combination of the Task Queue API and synchronous URLFeteh the use of
the former ensures that all failed tasks are retried ungly thre successful. BE uses
asynchronous URLFetch for all destructive updates and dataetry upon failures.

We ran the experiment for seven days and sent a total of 1B9ftfiests. Out
of the 597644 packets (half of the total packets) sent vid#dskQueue option, 11679
were duplicates (unnecessary transfers). The asynchsdoBUuFetch experienced 10
duplicate packets suggesting the URLFetch API will retryomse cases from within
the lower layers of the APl implementation as needed. Wergxpeed no update loss

using EC and 5 updates lost for BE.
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6.3.2 Benchmarks

We next consider the performance of five different and papaitealytics bench-
marks: wordcount, join, grep, aggregate, and subset agigre@dvordcount counts the
number of times a unique word appears. Join takes two sep@fses and combines
them based on a shared field. Grep searches for a unique friagparticular sub-
string. Aggregate gives the summation of a field across a &fnehtity, while sub-
set aggregate does the same, but for a portion of the entiasetaone percent for
this benchmark). We implemented each benchmark using thea$a, Pipeline, and

MapReduce GAE libraries, as well as a Hive query.

6.3.3 Google App Engine Analytics

For the experiments in this section, we execute each ben&hfiva times and
present the average execution time and standard devigtieruse the automatic GAE
scaling thresholds, and had billing enabled. We considexpdriments with 100, 1000,
10000, and 100000 entities in the datastore. We attemptadlagher numbers of en-
tities, but the running time for each trial became infeastblget complete results.

The tables ir6.2 shows the results for all of the benchmarks. The Fantasmeimpl
mentation shows a large latency for a significant numberstities, and compared to

Pipeline, is 6X to 30X slower. This is due to the fact that Bant’s execution model
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has a task for each entity, so it must do paging through they§uPipeline, by com-
parison, retrieves a maximum of 1000 entities at a time frbendatastore, reducing
the amount of time spent querying the database. Pipeling boesee much latency
increases from 100 to 1000 entities, because both requiyeacsingle fetch from the
datastore, and the difference lays in the summation. Mapéeediso deals in batches,
but the size of the batch depends on the number of shards. \Wa@uinber of entities
went from 100 to 1000 for MapReduce, the growth in latency wes 6X because the
number of shards was one. 10000 entities, on the other hadd,shards, and there-
fore did more work in parallel, seeing an increase in lesn tief the time. Pipeline
has an advantage because of its ability to combine multiptiéyevalues before doing
a transactional update to the datastore, whereas both MapRetd Fantasm are in-
crementing the datastore transactionally for each enkty. the implementation, the
counter was sharded to ensure that there was high writeghpa for increments.
Pipeline shows less overhead for Grep as compared to Ageré€ta0-1000) be-
cause it uses half as many Pipeline stages. In the aggregaia® implementation,
there was an initial Pipeline which does the query fetchébdalatastore, and another
for incrementing the datastore in parallel after combinialyies. Grep, by comparison,
does not need require combining or transactional updasecuired for the counter

update in aggregate. Counter updates require reading ttentualue, incrementing it,

The Fantasm library, since the writing of this chapter, hédea the ability to do batch fetches for
better performance.
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and storing it back. Aggregate vs Grep MapReduce has a sibalzavior to Pipeline

because each mapper does not require transactional updates

Figure 6.8: An identical benchmark run three times showing variabilityun time.

The Join benchmark combines two different entity kinds &ate a new table. The
Join results show similar trends as Aggregate and Grep.nBuhie experiments for
Join, we experienced high variability in the performancéath the Pipeline and Fan-
tasm libraries. Figur6.8shows a snapshot of three separate trials for Fantasm, ahwhi
noticeable differences in processing times occur. Multity could be a primary reason
for the fluctuations, yet the exact reasons are unknown apdres further study.

The Subset benchmarks queries a Subset of the entities tagindhe entire dataset.
Here we see that Fantasm does well, as this scenario wasnheryreason for devel-
oping the library according to its developeB8]. Pipeline performs best, once again,
because of its ability to batch the separate entities, amibtaequire separate web
requests to process individual entities as Fantasm doepRbthuce suffers the most

because it must map the entire dataset even though only @Ssilof interest.
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For wordcount, MapReduce experiences its largest increasef0000 to 100000
in this benchmark, which was due to several retries becaiusarsaction collisions.
The optimistic transaction support in GAE allows for tractgans to rollback if a newer
transaction begins before the previous one finishes. Thaed for very large scale
deployments, where failures can happen and locks couldfbediind to be cleaned
up after a timeout has occurred. Yet it is also possible togothe throughput of a
single entity to zero if there is too much contention. Thdgrenance of the wordcount
benchmark can be improved by using sharded counters perasapposed to the sim-
ple non-shared counter per word in our implementation. Bailblackoff mechanisms

in the MapReduce library alleviates the initial contentialhigwing the job to complete.

6.3.4 AppScale Library Support

We next investigate the use of the GAE analytics librariesy &ppScale using the
original Task Queue implementation in the GAE software tgwaent kit (SDK) and
our new implementation based on the RabbitMQ (RMQ) distridbmtessaging system.
We present only Pipeline results here for brevity (the netadifferences between GAE
and AppScale are similar). Tab&3 shows the average time in seconds for the GAE
applications executing over a 3 node Xen VM AppScale depaymEach VM had

7.5GBs of RAM and 4 cores, each clocked at 2.7GHz. Note, thah®GAE num-
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bers, we do not know the number of nodes/instances or théitigpaf the underlying
physical machines employed.

Table 6.3 shows the RMQ execution time in seconds for each message bilge w
Table6.4 shows the SDK execution time in seconds for each messageT$izeSDK
implementation enqueues the tasks as a thread locallyrrithe spreading out load
between nodes. In addition, the SDK spawns a thread for esthvthich posts its
request to the localhost. Tasks which originate from thallbost will never be run on
another node. RabbitMQ, on the other hand, spreads load &etaades, preventing
any single node from performing all tasks. We are unable tothe 100K jobs using
the SDK because the job fails each time from a lack of faultreoice. If for any reason
the node which enqueues the task fails, that task is lost anetrun again. RabbitMQ,
however, will assign a new client to handle the messagejraang on in the face of
client failures. For larger sized datasets we also see alapdeecause of the load

distribution of tasks.

6.3.5 AppScale Hive Analytics

We next investigate the execution time of the GAE benchmaskyy the Hive/Hadoop
system. Figurd.5 presents the execution time for the previous benchmarks) ke
Hive query language on a AppScale Cassandra deploymente Was no discernible

difference between the sizes of the datasets, but ratheutneer of stages, where grep
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only needed a single mapper phase, while the rest had bothenapd reducer phases.
While slower for smaller sizes than the GAE library solutiath® Hive solution is con-
sistently faster when dealing with larger quantities oftes# (although it has the same
issue as the MapReduce library when dealing with data sybsets

The Hive/Hadoop system in AppScale introduces a constartiugt overhead for
each phase (map or reduce) of approximately 10s. This cadik¢he dominant factor
in the performance. Once the startup has occurred, eaclhimank completes very
quickly. The numbers in the table include this overhead. hEafcthe benchmarks
use a single mapper and reducer phase except for Grep. Ouraappgs significantly
more efficient (enabling much larger and more complex qagtlean performing an-
alytics using GAE. Moreover, our approach significantly glifites analytics program
development. Each of our GAE benchmarks requires apprd&lyna00 lines each to
implement their functionality. Using our system, a developan implement each of

these benchmarks using a single line with fewer than 50 chensa

6.3.6 Monetary Cost

The cost of transferring data in GAE is dependent on two prymaetrics: band-
width out which is billed at .12 USD per gigabyte, and fromténstances, at .08 USD
per hour. For low traffic applications, these costs can bemal/by the free quota. For

higher traffic, it is possible to adjust two metrics to keeptaown; the first is the max-
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imum amount of time waiting before a new application sergestarted (where it will
be billed for a minimum of 15 minutes), and the second is thalwer of idle instances
that can exist (lowers latency to new requests in exchangadber frontend cost).

We can compress data and work in batches to lower the barfdaadt, seeing as
how the additional latency for sending updates is betweamd47aseconds on average
for the largest possible entity of 1MB. The compression ettienuime is added to
frontend hour cost, and the level of compression is very déget on the application’s
data (images, for example, may already be highly comprgs$ee average daily cost
of the data transfer was 12.41 USD for frontend hours, 1.0B {8 datastore storage
(went up over time), 2.55 USD for bandwidth, and 15.63 USDdatastore access.
As future work, we are leveraging our findings to improve oatagtore wrapper to
minimize cost while still maintaining low latency overhead

The cost for on-site analytics such as Fantasm and Pipalibased on datastore
access, both for reading the data which is needed for oparatnd metadata for track-
ing the current progress of a job. The other cost associatéki frontend instance
hours. The cost for running Pipeline for wordcount on 100866ties was 0.34 USD
(not accounting for the free quota), where 0.056 USD wastémoh hours, 0.13 USD
was datastore writes, and 0.154 USD on datastore reads. oBhefcdatastore writes
is highly dependent on the number of indexed entities, aackthre if the entities have

more properties, the writes can multiply quickly as wouldtdeach index write counts
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as a datastore write). In general, it is difficult to prediet tost of GAE analytics. Our
approach allows developers to perform analytics repeateihout being charged at
the cost of data transfer.

Our other option for downloading the data is via bulk transfgng tools provided
by the SDK. We investigated the use of such tools but we randifficulties where ex-
ceptions arose and the connection would drop. Multiplengits were needed, driving
cost up as much to 5 to 6 times the cost of a daily experimemtaffrom 15 USD to 86
USD) before being able to complete a full download of the ditiook 9520 seconds
on average for the three successful downloads of a datag&2dfiB. This option is

clearly not acceptable for hybrid analytic clouds.

6.4 Summary

Cloud computing has seen tremendous growth and wide spreagcently. With
such growth comes the need to innovate new methods and ¢e&snfor which ex-
tant solutions do not exist. Online analytics processirgesys are such an offering
for Google App Engine, where current technology has focusedeb application ex-
ecution at scale and with isolation, and existing solutibage operated within the

restrictions imposed.
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In this chapter we have described, implemented, and eealusto systems for
running analytics on GAE application, running currentdibes in AppScale through
the implementation of a distributed task queue, and thétyakdl run SQL statements
on cross-cloud replicated data. Future work will carry fard/our findings to optimize
cross-cloud data synchronization as well apply our systeambther use case: disaster

recovery.
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100 1000 10000 100000
Fantasm 13.804+ 1.61| 110.2945.00| 1148.24+ 86.20| 11334.594+- 1047.57
Pipeline 2.464+0.86 | 3.05+0.32 11.084+ 0.50 98.344 3.82
MapReduce 9.34+ 0.35 | 57.36+ 8.96 | 104.56+ 17.83 | 377.70+ 63.35
Aggregate
100 1000 10000 100000
Fantasm 10.854+0.77| 121.21421.07| 1819.86+ 1175.19| 10360.40- 396.56
Pipeline 2.40+£1.26 | 2.663+0.51 9.77+£0.72 98.89+ 13.76
MapReduce 2.73+ 0.30 | 4.56+ 0.09 24.05+ 0.30 227.57+ 20.76
Grep
100 1000 10000 100000
Fantasm 10.71+ 1.22 | 109.834+4.90| 977.23+ 80.34| 10147.75+- 1106.15
Pipeline 454+ 234 | 14.484-5.22 | 44.11+ 12.57 | 159.964 73.30
MapReduce 6.28+ 1.43 | 40.18+ 1.66 | 66.76+ 10.92 | 256.40+ 11.16
Join
100 1000 10000 100000
Fantasm 0.584+0.30| 3.544-0.28| 16.954 1.34| 78.284 10.62
Pipeline 1.974+0.05| 2.04+ 0.20| 2.014+0.09 | 3.81+1.60
MapReduce 2.67+ 0.24 | 5.424+ 0.45| 27.66+ 1.74 | 237.75+ 12.00
Subset
100 1000 10000 100000
Fantasm 12.2243.20| 105.824-8.45| 1022.96+ 72.85| 10977.504+ 1258.76
Pipeline 3.63+0.74 | 497+0.92 25.894 8.92 222.144-9.02
MapReduce 6.40+ 0.96 | 42.70+ 0.72 | 134.88+ 9.59 840.714 125.15
Wordcount

Table 6.2: Execution time in seconds for the benchmarks in GAE.
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100 RMQ | 1000 RMQ| 10000 RMQ| 100000 RMQ
Aggregate | 3.02 5.72 183.93 610.12
Grep 5.37 16.90 205.53 862.36
Join 2.72 5.16 165.03 455.31
Subset 2.45 3.12 12.61 786.53
Wordcount| 7.41 11.43 311.52 635.28

Table 6.3: Execution time in seconds for benchmarks using the Pipdilmary on

AppScale with RabbitMQ (RMQ).

100 SDK | 1000 SDK| 10000 SDK
Aggregate | 3.77 6.14 N/A
Grep 6.11 28.88 260.03
Join 3.78 5.90 305.82
Subset 2.55 3.20 12.11
Wordcount| 8.38 17.40 411.12

Table 6.4: Execution time in seconds for benchmarks using the Pipdlnary with

the AppScale SDK implementation.

100 1000 10000 100000
Aggregate | 20.59+ 1.41| 21.14+ 0.55 | 20.30+ 0.88 | 20.94+ 0.59
Grep 11.90+ 1.32| 11.00+ 0.58 | 11.17+ 1.30| 10.69+ 0.44
Join 20.52+ 1.01| 20.71+ 0.84| 20.43+ 0.57 | 23.41+ 0.64
Subset | 19.93+ 0.54| 20.07+ 1.34 | 20.26+ 0.86 | 20.66+ 0.45
Wordcount| 21.73+ 1.50 | 22.13+ 1.51 | 22.19+ 0.96 | 21.54+ 0.95

Table 6.5: Execution time in seconds for benchmarks using Hive.
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Chapter 7

Spot Instances for MapReduce
Workflows

MapReduce is a general computational model that originated the functional
programming paradigm for processing very large data sefsarallel. A scalable,
fault tolerant approach of MapReduce has been popularizédemently patented by
Google B0, 39]. This implementation operates on data in the form of kduegairs
and simplifies how large-scale data reductions are expidsgg@rogrammers. The
system automatically partitions the input data, distelsutomputations across large
compute clusters, and handles hardware and software thuitsghout the process.
Since the emergence, use, and popularity of MapReduce fal@nange of problems,
many other implementations of the process have emergedm®kepopular of which
is Hadoop #3], an open-source implementation of Google MapReduce. Hadoo

currently in use by Yahoo!, Facebook, and Amazon, among athapanies.
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Given its ease of use and amenability to parallel procesdtapReduce is em-
ployed in many different ways within cloud computing frantes. Google employs
its MapReduce system for data manipulation within its pavampute cloud and App-
Scale, the open-source implementation of the Google Appren@AE) cloud plat-
form, exports Hadoop Streaming support to GAE applicatj@@ The Amazon Web
Services cloud infrastructure makes Hadoop and Hadoopr8ing available as a web
service called Elastic Map Redud#l].

In December of 2009, Amazon announced a new pricing modeAWs§ called
Spot Instances (SIs). Sls are ephemeral virtual machinanoss for which users pay
for each completed runtime hour. A user defines a maximum iee pwhich is the
maximum the user is willing to pay for a given hour. The manete is determined
by Amazon, which they claim is based on VM demand within th@rastructure.

If a VM is terminated by Amazon because the market price bedaigher or equal
to the maximum bid price, the user does not pay for any paroal. However, if the
user terminates the VM, she will have to pay for the full hdturthermore, a user pays
the market price at the time the VM was created, given thatritiges the next hour.
The cost of the hours that follow may differ depending on tteekat price at the start
of each consecutive hour.

Sls are an alternative to on-demand and reserve VM instanc&mazon. On-

demand instances have a set price for each hour that dodsange Reserve instances
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have a cheaper per-hour price than both on-demand instamceSlIs, but the user
must lease the VMs for long periods of time (1 or 3 year terr883.therefore provide
inexpensive computational power at the cost of reliab{griable and unknown VM

lifetime). The reliability is a function of the market priead the users maximum bid
(limited by their hourly budget).

In this work, to address the analytics portion of the thesisstjon, we investigate
the use of Sls for MapReduce tasks. Slis fit well into the MapRegacadigm due to
its fault tolerant features. We use Sls as acceleratorseoM@ipReduce process and
find that by doing so we can significantly speed up overall MahRe time. We find
that this speedup can exceed 200% for some workloads witll@itianal monetary
cost of 42%.

However, since Sls are less reliable and prone to termimgaalts can significantly
impact overall completion time negatively depending on mvhiee fault occurs. Our
experiments experience a slow down of up to 27% comparedetodn-SI case, and
50% compared to an accelerated system in which the faultrumtesccur.

Since the likelihood of termination is dependent on the repkice of the VM and
the user defined maximum bid price, we investigate the paldmenefit and degrada-
tion (cost of termination) of using Sls for MapReduce giveifiedent prices. We also
use the pricing history of Amazon Sls to determine how muchidoas well as how

many machines to bid for. By using this characterization fgiven bid and market
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price, we compute expected VM lifetimes for users. Such adonables users to best

determine when to employ Sls for MapReduce jobs.

7.1 Background

We first briefly overview the Hadoop MapReduce process. Usiadaddp, users
write two functions, a mapper and a reducer. The map phass takinput a file from a
distributed file system, called the Hadoop Distributed Bystem (HDFS), and assigns
blocks (splits) of the file as key-value pairs to mappersughmut the cluster. HDFS
employs replication of data for both fault tolerance andcadatality for the mappers.
Mappers (map tasks) consume splits and produce interneekigtvalue pairs which
the system sorts and makes available to the reducers. Redteauce tasks) consume
all pairs for a particular key and perform the reduction. Reds then store the resulting
output to HDFS. The result may be a final computation or mayfitke an intermediate
set of values for another MapReduce tuple.

Each machine is configured with a maximum number of mappereshacer tasks
slots. The number of slots depends upon the resourceslaeajiae. number of CPU
cores and memory) as well as the type of job being run (CPU-dbearsus 10-bound).
The master runs a Job-Tracker process which assigns woratialale worker slots.

Slave nodes run Task-Trackers which have their task slstgrasd work as it becomes
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available by the Job-Tracker. Each Task-Tracker can rus@gouconfiguration. It can
be designated to run only mappers, only reducers, or, apisaly some combination
of the two.

Hadoop tolerates failures of a machine through the use dtadjon. Output data
can be regenerated given there are live replicas of the spits. The replication policy
for Hadoop is rack-aware and will place one copy on the sanysipll rack and the
second off-rack. Hadoop also tolerates bad records. Reudrid$ cause exceptions
are retried a default of three times and then skipped to erikarentire job is not halted
due to a single bad record. This issue can come about whelry Ihigdrparty software
is used.

Hadoop uses heart-beat messages to detect when a machinngar operable.
Data which was lost due to a failure is replicated to ensuaettie configured number
of replicas exist.

The time for a MapReduce job in Hadoop is dependent on the &tmgening task.
Tasks that are few in number and those that continue exa&catioe most others have
completed are called stragglers. The system can spe@ljagxecute stragglers in
parallel using idle task slots in an attempt to reduce timeaimpletion. The authors

in [93] provide details on the impact of stragglers in virtualizzironments.
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7.2 Data Analytic Cloud

In this section we describe what we envision to be a data aoalpud which uses
MapReduce for analyzing data and the cost associated witingisuch a service. The
scenario which this chapter focuses on relies on a provalkost their large data sets
in a public cloud. The data is stored in a distributed file systunning on a subset
of leased VMs in the cloud. In addition, the provider may ps@on the data analytic
engine required for processing or querying the data. Inchegpter we consider the
MapReduce framework as that engine, although this work aswes to using higher
level query languages such as Prid[and Hive B7]. Users submit MapReduce jobs,
and the provider charges the user an hourly rate, along hatloption to speedup their
job at an additional cost. In order to maximize profit, thevler uses the cheapest
source of computation available. Amazon’s EC2 Sl pricingosipetitive in this area,
being as low as 29% of the cost of an EC2 on-demand instance.

Amazon’s Elastic MapReduce is another option availablengiusers an easy and
cost effective way to analyze large data sets. Data, at e oif writing this chapter,
is free to upload into their Simple Storage Service (S3) ape o transfer within EC2,
but transferring out is $0.15 per GB and storage per monttGiers $0.15. A 1TB
set of data cost $150 per month to store, and $150 per tramsferThere is also an

additional cost for PUT and GET request for S3 at $0.01 pe0I@quests. Elastic
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MapReduce is spawned with a user defined number of instand¢esuser only pays
for the number of VM hours used at an additional 17.6% chafglesoon-demand VM
instance price.

The minimum cost of hosting a 1TB data set in a Hadoop clusiign @ 3 year term)
using just local instance disk space, with three times ¢capbn, costs $194 dollars a
month (20 small instance VMs with 160GB each for a total offTB2f distributed
storage). The Elastic MapReduce service with S3 is moredsfue if the total amount
of cost for VM instances is less than $44 dollars a month, Wwhitords 440 VM hours
a month or 22 hours of processing for 20 small VM instances dikadvantages of
storing the data in S3 is that the MapReduce cluster losesatiadatality a local HDFS

cluster provides.

7.3 Analysis

We next investigate how best to employ Hadoop within a cloddastructure for
which virtual machine instances are transient. Our goal isvtestigate how best to do
so given the Spot Instance (SI) option offered by Amazon WelviSes (AWS). Sls
offer a cost effective alternative to on-demand instanaesesthe cost of their use is
dependent on market-based supply and demand of instaneefind\that Sis can be

as low as 29% of the cost of on-demand instances. Sls traderofination control for
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such cost savings. Slis are good for short running jobs timatatarate termination, i.e.
faults in the execution process. MapReduce is an ideal catedfdr Sls since we can
use additional nodes to accelerate the computation.

However, since the time to complete a MapReduce process &dept upon how
many faults it encounters, we must also consider Sl termonaSince Sl termination
is dependent upon market price and maximum bid price, wenégeaisted in using this
information to estimate the likelihood of termination.

To enable this, we consider bid prices independent of mamkeg¢s since there is
very limited information available from Amazon as to howytltetermine the market
price. Amazon does not reveal bids by users or the amountoédd. Tabl&.1shows
the pricing of different instance types in the western USareg The SI pricing is an
average of prices since they were first introduced in Decemb2009 till March of
2010. The small instance type uses a 32-bit platform, whige¢st are 64-bit. An EC2

compute unit is equivalentto a 1.0 to 1.2 GHz 2007 Xeon or foptprocessor]).

7.3.1 Spot Instance Characterization

We model the Sl lifetimes by building a Markov Chain with edgegg the proba-

bility of price transitions for each hour interval. Giverettransitional probabilities we
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Average On-Demand EC2 Compute Memory | Storage
Instance Type Price StDev Price Units (GB) (GB)
m2l.small $0.0399| 0.001327| $0.095 1 1.7 160
cl.medium | $0.0798| 0.002551| $0.190 5 1.7 350
ml.large $0.1673| 0.04163 | $0.380 4 7.5 850
m2.xlarge $0.2397| 0.007489| $0.570 6.5 17.1 420
ml.xlarge $0.3197| 0.009045| $0.760 8 15 1690
cl.xlarge $0.3233| 0.02469 | $0.760 20 7 1690
m2.2xlarge | $0.5593| 0.01756 | $1.340 13 34.2 850
m2.4xlarge | $1.1164| 0.03288 | $5.08 26 68.4 1690

Table 7.1: Prices of different VM instances from the US west regiontdnses labeled
with "m1” are standard instances, "m2” are high-memoryanses, and "c1” are high-
CPU instances. EC2 compute units are based on CPU cores andahattiveads. All

instances here are for the Linux operating system. Costsduaeed from ).

can calculate n-step probability using a variant of the Chapi®olmogorov equation:

P(i,b,n) =>  M;;P(j,b,n — 1) (7.1)
J€B
where
0 ifieB
p(i,b,0) = (7.2)
1 ifigB

The starting market price at the time of VM creation @ndn is the number of time
unit steps. The set of prices which are over the bid pricere in setB. M,; is
the probability matrix of a price point fromto j. Pricing history was collected over

time using Amazon’s EC2 tools and can be attained fr@®.[ P(i,b,n) is solved
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recursively, where each step depends on the previous orebdse case is a binary
function of whether or not the bid price is greater than theketgprice.

Figure7.1shows the probability of a VM running for hours. The figure has dif-
ferent maximum bid prices given the market price being $® &3he time of starting
the instance. As the maximum bid decreases, the probabflitye Sl staying up de-
creases as well. Some small increments in the bid price cenngiich larger returns
in probabilities as can be seen when incrementing the bae firom $0.041 to $0.043,
whereas other increments give very little return ($0.03¥A®39). A Sl in this case
has more than an 80% chance of making it past the first houn ghe market price
was less than the bid price at the start of the VM. Bids thatese than or equal to the
market price at the start of the VM would stay at 0% probap{#0.035 for example
which is not viewable because it is directly overlaid on thedis).

Figure7.2 has two sets of data for comparison. The data set labeleds'/AAbm
mid-January 2010 to mid-March 2010, while the data labektdi$ from mid-March
2010 to the end of May 2010. A comparison of the two models shihat the past
pricing model is a good indicator of future pricing. It shdude noted that data prior
to mid-January was not used in building the model as shownguaré7.1 because as
reported in B] there was a bug in the pricing algorithm prior to this dateckhhas

since been fixed. The bug’s impact can be seen in the pricewplized in 27] where
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Probability of Operation

0.2 |

Number of Hours

Figure 7.1: The probability of a small VM instance staying operationatime given
a starting price of $0.035 with varying bids.
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Figure 7.2: A comparison for verifying the pricing and lifetime modelatmall VM
instance given a starting price of $0.038 and varying bids.
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prices stabilized post January 15th. This explains thelsm@nge of prices between
Figure7.1and Figurer.2
Using Equation7.1, we can calculate the expected lifetime,of a VM given a

starting market price, a given bidp, and a max run time of time units:
E(l) =) nP(i,b,n) (7.3)
n=1

We can determine the amount of expected work a VM should eehgeren the
lifetime of a VM. This value can be used in the planning of bhaglkup data and hence
reduce the impact of failure. Moreover, it can be used inibigidtrategies to ensure
the greatest amount of Sls can be requested without fearing gwer your maximum

allocated budget.

7.3.2 Cost of Termination

We define the cost of a termination as the amount of time lasipewed to having

the set of machines stay up until completion of the job. Theimmim cost is

0+ (fM/s)/(s = f) (7.4)
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where the total time taken to complete the mappefd isThe total number of mappers
is a function of block size and the size of the input file. Thaltaumber of slaves is
s, the number of machines terminatedfisand the time spent waiting for a heart-beat
timeout to occur while useful work could be doneisEarly termination of a machine
into the map phase allows for an overlap of when the ternonat detected and the
rest of the cluster is doing useful map work (i.e. no map stetsgdle). Work is equally
divided given the machines are homogeneous.

Termination also results in the loss of reducer slots if thathine was configured
so. This may or may not be an additional cost of failure dep®noin the job configura-
tion which can specify the number of total reducers. Thigptal cost is not reflected
in Equation7.4due to its application specific and configuration specificiratTermi-
nation after all the mappers have finished, sees the moshseué the fault detection,
forcing a re-execution of all mappers completed on the teateid machine, even those

which have been consumed by reducers and will not be consagead.

7.3.3 Evaluation

Our initial experiment consists of five small-sized on-dachénstances on EC2
with one node as the master, and four as slaves. The slavescaefigured with two
map slots and one reduce slot. Additional EC2 Sls which areadflor speedup also

have the same configuration. Each data point is an averageedfiils. The applica-
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Figure 7.3: This graph shows the speedup of three different applicatidime x-axis
shows the number of Sis used in addition to the original HDIESter. Each data point

represents the average of 5 trial runs.
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Figure 7.4: This graph shows the cost versus the speedup. The baselirg bost for
the HDFS cluster is $0.475 per hour. Each additional S| mtstacost $0.040.
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tions are wordcount, pi estimation, and sort. Wordcountt®the occurrence of each
word of an input file. Pi estimation uses a quasi-Monte Cartxedure by generat-
ing points for a square with a circle superimposed withine Tatio of points inside
versus outside the circle is used to calculate the estimaBort uses the MapReduce
framework’s identity functions to sort an input file.

Figure7.3.3has the speedup of each job with the number of Sis varied. géwdsip
is normalized to the original HDFS cluster configuratione&gup is linear for all three
applications. The price for speedup is in Figat8.3where each additional Sl cost
$0.04 per hour. Each job ran for less than one hour, theréfehe job been running
for n hours, the y-axis would be a multiple of

Our second experiment was using five machines as the HDF&iglaad one ma-
chine as an accelerator. Figuté has the speedup breakdown of adding an accelerator
as well as the relative slowdown when the Sl is terminatefiagl through execution.
The detection of machine faults was set to 30 seconds to nzeifrfor these experi-
ments, where the default is 10 minutes. The default delagtisficiently large for
the purpose of distinguishing between node failure and tearg network partitioning
and had our experiments used the default valu®uld have grown accordingly.

For Figure7.5 the mapper portion is from when the first mapper begins and the
last mapper ends. The shuffle period is where map outputdsddtby reducers. This

phase runs in parallel with mappers until the last mappguuwius fetched. Reducers
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fetch and merge-sort the data as map output becomes aeaildbley finish merge
sorting the remaining intermediate data and proceed tolremedduce procedure once
the shuffle phase is complete. The reduce procedure doetarairstil all map output
is accounted for.

As expected, we see speedup for all applications with thaéiadaf an Sl. Yet the
cost of losing the accelerator actually slows down the appbn sufficiently, to the
point where it was faster with the original setup. If the Si tanger than an hour, it
would have cost the user money with no work to show for it. Oa dkher hand, if
the Sl was terminated before the first complete hour, no m@legt. The completion
time is hampered in both cases. Sectio#f presents the solution we are pursuing to
alleviate this problem.

The addition of SlIs improves the completion time of the mappleut may not im-
prove the completion time of the reduce phase. Many apmitathave a sole reducer
at the end of the map phase because it requires a holisticofidve map output. Ad-
ditionally, the runtime of the reducer is dependent on thewam of intermediate data
generated. The amount of intermediate data is subject tM#apReduce application,
and the input data. The use of a combiner also reduces therarabintermediate
data, which is invoked at the end of a mapper performing ameggdion of mapper

output. Our wordcount benchmark uses a combiner which galigmloes the same
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Figure 7.5: Completion time for three different applications showingntione for
MapReduce on the original on-demand HDFS cluster, with onar®&l with an Sl ter-
mination halfway through completion (85, 450, 940 secomalsPi Estimation, Word
Count, and Sort, respectively).
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job as the reducer at a local level. The aggregated map ohghos to decrease the

reducer workload in both the amount of data which must bénégt@and processed.

7.4 Discussion

Had we kept adding Sls to the system in our first experimentwvangld expect to
get a diminishing return in the amount of speedup an appicaees. For each Sl, data
must be streamed to it from the HDFS cluster which is hostuegriput file. Moreover,
there may be a tipping point in which the HDFS cluster is ouedbned with too many
out going data transfers, and the addition of an SI wouldltré@sa slowdown. We are
pursuing discovering where this breaking point is, and vitiatratio of HDFS VMs to
S| VMs are for different applications.

We also ran experiments with accelerator nodes only runmagpers. Our first
notion was that mapper output which was consumed by a reduaeld not be re-
executed in case of a failure. This assumption was wrongmAjppers are re-executed
on a machine regardless of whether it will be consumed adReducer output is al-
ready stored in HDFS with default replication of three. Chpoknting the map func-
tions can be done by replicating the intermediate data ae @doibl]. Other meth-

ods include saving the intermediate data to Amazon’s S3 or. HB& current Hadoop
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framework can also be modified to use tracking data on whigbp@is have been con-
sumed to prevent re-execution during a fault.

Future work includes analyzing the cost-to-work ratio dfedent VM instance
types. Sls can be used as probes for determining the besjeaatfon. But this is only
after fixing the availability of mapper output after termtioa, since we want to be able
to restart the Task-Trackers with the optimal discoveredfigaration. The optimal
configuration consists of having the most amount of mappedsraducers without
them hitting performance bottlenecks due to sharing CPW, distwork, and memory
resources. Without the ability to save their intermedia@&gdthe probes would become
liabilities for wasted computation. Furthermore, we planiovestigating the use of
heterogeneous configurations and instance types wherdiarpof the VMs only run
reducers or mappers.

Additional future work includes analyzing the effects addggering max bid prices
across a set of SI VMs. In such a case it would be possible tplosk portions of
accelerators at a time, essentially giving some VMs pgorit

The nature of Sl billing also leads to an interesting disicusen how to maximize
utilization. An Sl will be billed for the entire hour if termated by the user even though
it was only used for a partial hour, while no billing resultshe VM ran for a partial
hour and Amazon terminates the instance due to arise in thentunarket price. Users

may want to terminate an instance after an hours time in @odanly pay for a full hour
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usage rather than pay for a partial hour, but this is only wiken the framework can

recover from failure without significant adverse affectstom completion time.

7.5 Summary

We have presented Sls as a means of attaining performanteadow monetary
cost. We have characterized the EC2 Sl pricing for informetisittns on making
bids given the current market price. Our work has shown tlat td the nature of
spot instances and their reliability being a function of ki@ price and market price,
MapReduce jobs may suffer a slowdown if intermediate dataisstored in a fault
tolerant manner. Moreover, a fault can cause a job’s compléime to be longer than

having not used additional SIs while potentially costingeno
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Chapter 8

Infrastructure Agnostic and Datastore
Agnostic Live Migration of Private
Cloud Platforms

Companies with on-premise Infrastructure-as-a-ServiaaS) and Platform-as-a-
Service (PaaS) systems employ private cloud technologghadrovides the flexibility
and power of the public cloud, yet allows for the utilizatiohon-premise resources
and infrastructure.

As more and more companies go towards private PaaS offetimg® is a critical
concern for providing high reliability and availability wé also enabling the ability to
perform updates on the underlying hardware and softwamiress. At the OS level,
within individual VMs, security patches must be installedttmay require the system
to be rebooted. At the PaaS level, user applications rely owlétude of software

subsystems that may be frequently updated (e.g., load c&mnapplication servers,
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and databases). Moreover, hardware updates can occur whangro higher end
servers, or moving to higher performing storage optionsl{ss solid state drives).

Open source PaaS technologies rely on a multitude of cormpenehich them-
selves are comprised of open source solutions that ardyaghidnging. These changes
come in response to getting community uptake or decline rufawity, for reasons such
as performance and reliability. The communities followgSQL datastore technolo-
gies, where there are well over 150 different optiond,[are a prime example where
there are constant shifts between selections as techeslogprove with better perfor-
mance and newer feature sets. Yet, while the capability spswut a datastore should
be possible, developers of such technologies are not incaad to create portable sys-
tems.

We address the thesis question and the requirement thaPaa& systems face
for frequent upgrades and the desire to swap out technalegth minimal downtime
by using a technique callddre migration With live migration, PaaS users can be
transplanted from one underlying technology to anothegthér that technology is the
virtualization layer, the laaS, or some component techmotd the PaaS, with minimal
service disruption.

We do so by extending the AppScale PaaS framework. AppSeaal&oogle App

Engine (GAE) applications and do so scalably while suppgmnultiple infrastructures
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Figure 8.1: Live migration in AppScale.

and datastores. AppScale has plug-in capability for datest supporting datastores
such as Cassandra, HBase, Hypertable, and MySQL Cluster dsd@ia&Chapte#.

Figure8.1shows an example of a live migration of two different App®addploy-
ments, where the underlying laaS system and datastore tesééiag updated. In this
chapter we address the need to be able to move applicatidrie@ents from one PaaS
deployment to another, and to leverage the elasticity @ggeicloud infrastructures to
perform live migrations.

In the sections that follow, we first provide required backgrd on AppScale and
its data model. We then describe the requirements, desighingplementation of our
live migration system and show an evaluation of our live @iign support between

two deployments of AppScale, where we transition the datasised from Cassandra
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to Hypertable. Our evaluation looks at several componehtheosystem, including
the synchronization of our distributed transaction manatgastore performance, and

switchover time.

8.1 Background

AppScale provides GAE application portability as well afsastructure and datas-
tore agnosticism. It provides this portability by implentiag the GAE APIs, doing so
scalably and with fault tolerance. While there are many AR[spsrted by AppScale
for GAE compatibility, the only system state that requiragnattion is the datastore,
as the other APIs are stateless or have no impact on corssdfrteansferred to a sec-
ondary deployment. Yet, for performance reasons we alsceaddhe preloading of
memcache, a distributed memory caching system meant toa#idoad on the datas-
tore, as to prevent having a cold cache upon the traffic hardov

Infrastructure agnosticism comes by the way of how AppSsgbackaged as a vir-
tual machine image. Any virtualization technology capatfleinning a Ubuntu virtual
machine image can run AppScale (e.g., Xen, KVM), and any thaSs EC2 compat-
ible (e.g., Eucalyptus, OpenStack) allows for AppScaledabtomatically deployed
over a varying number of nodes at initialization.

AppScale employs an abstraction layer above the datasitwejng for the plugging-

in of a variety of NoSQL technologies, which are automalycdéployed at initializa-
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tion. We contribute a unifying data migration layer that nallows for the ability to
do rolling upgrades to new versions of the existing datastwran entirely different
datastore, a feature that many NoSQL datastores do nontlyrseipport.

The datastore layer within AppScale was extended to proM@i transaction
support, regardless of the underlying datast@g, jvia a distributed coordinator. Lock
granularity for transactions is at an “entity group” lewghere entities that share a com-
mon root entity are within the same group. These groups adedleld by the developer
within their application, and cannot be changed thereafirout deleting the entities.

Moreover, the query support in GAE, and thus AppScale, igdidto only scalable
operations. There is no support for JOINs, MERGES, or quevigsh can do IN-
SERTSs, and hence all queries perform read-only operatiSimece queries which can
be performed in GAE are derived from the ability to do rangerggs on the datastore,
certain queries are not allowed, such as inequality filtearsaltiple properties.

Related work includes Albatros29], a migration technique for moving tenants in
a cloud system between deployments. While we can also prpeideenant movement
between deployments, our data model allows for the capabiliupdate the software
stack at multiple levels, all while maintaining backwardsnpatibility with running
applications. Furthermore, while much research has beee thoVM migration BQ],
it does not address the problem of performing software sti@gkades above the laaS

layer or allow for per-tenant migration.
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8.2 Design and Implementation

Live migration of data must adhere to certain requiremesutsh as high availability,
backward compatibility, a minimal number of failed tranaws, and minimal perfor-
mance degradation. We have designed and implemented dBngeation techniques
within AppScale with these requirements and metrics in mifmldo so, we leverage
existing components, including the datastore-agnostiestction support. Migration
requires multiple phases, in which state is synchronizégden two separate deploy-
ments. Figureé.2shows the different stages required to make a full tranmsftiom the

current deployment to the next.

Full Data
Synchronization

Application
Cloning

ﬁ/L\

Data Snap Shot
Initialized

Secondary Data
Access Only

<

I \ J J ]
Y Y
Migration ZooKeeper COW on Live Traffic Transfer
Initialization Synchronization Updates Complete

Figure 8.2: Timeline of the migration process.

8.2.1 Migration Initialization
The first steps in our migration process require the conftgurand deployment of

a secondary AppScale instancé,|, initiated by the primary AppScale instanc¥,|.
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Ny's firewall is opened up to allow access By to controlNV,’s network channels (such
as SOAP servers).

OnceN; has been successfully initialized; utilizes the AppScale command-line
tools (a toolset which cloud administrators can use to atewith AppScale deploy-
ments) to upload copies of the applications runningyVinto N,. At this point, no data
has transferred and the applications themselves, whil@mgnare not being accessed
by users. We currently do not support the uploading of newiegdmns to N; while

the migration is taking place.

8.2.2 Metadata Synchronization

ZooKeeper is a distributed coordination system that ApfeSemploys to manage
state between different services within a deployment, dsasdor locking to provide
transactional semantics, as explained?@ |

After the N, ZooKeeper instances are up, nodes are automatically symezed
with N; for new updates, as a consensus is required via the Paxogtaigonce they
have joined the cluster. Existing data is then made availablthe new ZooKeeper
nodes by doing the synchronization functionality in a defptt search. ZooKeeper

nodes are decommissioned/t after the full migration is complete.
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8.2.3 Memcache Warm-up

Our objective for memcache is to have a warm cacheiby the time the handover
takes place. For this we do not require full synchronizabioha best effort to keep all
relevant and most recently used data in the cache. We adhisvay employing copy-
on-write (COW) and also copy-on-read (COR) for memcache uptiat¥s. The local
read or write happens in parallel to the remote write to minémoverhead. We do not
do asynchronous updates as to adhere to cache coherencemihes are invalidated.
This step is initiated as soon &’s memcache system is operational (not shown in

Figure8.2).

8.2.4 Data Synchronization

After synchronizing the metadata ivi;, we can now synchronize application data.
The data access layer at each node has a REST interface thalssiige stages of
migration the process should be in. Each datastore procegach node is sent a
message containing the IP address\Vef Upon receiving this message, any writes or
deletes are forwarded ¥, in a copy-on-write manner.

It should be noted that because of the GAE Datastore APIFséaetion semantics,
writes and deletes are always part of a transaction, evdreitransaction is only a
single operation. Therefore, each operation requiresahatk be acquired and held

through ZooKeeper (which is shared state between deplagndfurthermore, COW
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updates are done in parallel with local writes to the tramgagournal and datastore,
to minimize latency.

Transactions must always verify that if it started duringmal operation that it
did not transition into COW mode mid-transaction upon beioghmitted. If so, the
transaction must be retried to ensure that its state is ssftdly synchronized with the
secondary deployment via COW. By default, failed transastwill retry up to three
times, before they permanently fail.

Once all datastore access layers acknowledge they are in CQ, ithen the data-
store snapshot process can begin. COW updates start bedmeapshot is started and
proceeds during and after, as to make sure no new updatessard e updates them-
selves are SOAP calls to a migration service running\Verwhich uses the datastore
agnostic API.

A full snapshot of the datastore consists of serializinghgable into a set of flat
files which are then compressed. Each independent file caabted intaV, in parallel
as an optimization, yet we currently do it serially for simay.

The completed snapshot is then copied ove¥iavhere it is loaded into the datas-
tore via the datastore agnostic transaction 1agé}. [Updates are done transactionally,
where the key is first checked to make sure no live updates dame to the entry
before updating it. This is only possible because ZooKestae is currently shared

between deployments. If an entry has been updated durirvg @ditastore write, the
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snapshot version is simply ignored, as it is stale data (angded version will still be
available if a rollback is required). Furthermore, it is paissible for an entry to be
loaded intoN,’s datastore while an ongoing transaction is in placé&’at N, will fail

to get the lock on the given entity group and will exponehtidlackoff until the lock
can be attained. After the lock has been acquired, it wilhttleeck to see if the given
entry already exists, where it will find an entry due to therafeentioned transaction,

and thus move onto the next entity to load.

8.2.5 Traffic Handover

Once full data synchronization as been achieved we thewrlswit as a full proxy
for data access tty,, making it the primary replica for data access. This stepasired
as we make the transition ondé, for the traffic handoff.

We have two stages of traffic switching. The first stage does@eent redirects
at the proxy routing layer (nginx), but because we cannotaniae that all proxies
on all nodes force redirection at the same time we requirdulheata-proxy stage to
make sure there is no case where a user who has not been reetedoes not see
updates made by a user at the secondary deployment (indepgamngbates alV, are
not synchronized back td7).

Second, we use DNS updates to make sure that the secondéoyrdept has sub-
sequent traffic from new users. DNS updates alone do not sufiic many clients

cache the DNS entry and it may take ample time before it reé®ds entry. Amazon’s
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Route 53 was the DNS service we used because of its high alijlabd scalability.
Modifications to the DNS was done using their RESTful API whadbws for dynamic
updates. Our updates consisted of updating the resouraariéeld to point from/V;’'s

IP to Ny's IP.

8.2.6 Fault Tolerance

In a distributed setting we are able to leverage AppScaleieat fault tolerant ca-
pabilities for live migration. If transactions fail durirgglive migration the transaction
handler identifier is recorded into ZooKeeper which is stiastate between deploy-
ments. Any reads of an entity that has a blacklisted trarmsadentifier is ignored,
and the correct version identifier, which is saved in Zookegjs fetched from the
transaction journal. While data is currently checked wittbrhdshes when transferred

across nodes to prevent data corruption, we do not handlenBgedaults.

8.3 Evaluation

In this section we measure the overhead associated withiiyeation between one
AppScale deployment to a secondary. We do so with two singgke mleployments of
VMs with 7.5GB of RAM and 4 CPU cores. The initial deployment Haalssandra
1.0.7 as its storage layer, while the secondary deploynmeshtHypertable 0.9.5.5. The
testing application was a GAE application with a RESTful ifdee. Reads and writes

were done based on parameters passed to this applicatioeqoest.
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Lock Count| Min | Mean | Stdev | Max

1000 444\ 4.49 | £0.03| 4.53
5000 6.57| 6.58 | £0.04| 6.62
10000 8.35| 8.47 | £0.07| 8.53
50000 23.6| 23.8 | £0.13| 24.0

100000 42.8| 43.0 | £0.22| 43.4

Table 8.1: Time in milliseconds required for lock synchronization omeav ZooKeeper
node with a varying number of lock entries.

We first measure the time to synchronize our locking systetin dooKeeper. Next
we empirically evaluate the time taken to upload differérgd entities from a snapshot.
Furthermore, we look at the overhead of updates to both ttesidae and memcache
which occurred during live migration. Lastly, we quantihetlatency associated with a

switch over using Amazon’s Route 53.

8.3.1 ZooKeeper Synchronization

Table8.1 shows the time taken for synchronizing a node given a difteaenount
of ZooKeeper nodes in which transactional lock states amedt The number of root
entities signifies the number of locks required, and thusl nede synchronized. We
see that the time taken on average has sub-linear growtle asithber of entries grow

while maintaining a relatively low standard deviation.

8.3.2 Memcache

We measured the time taken for migration of reads and writeeémcache and

measured the overhead compared to normal operation. Fty sizes of 5SKB, we
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State| Read %| Min | Mean | Stdev | Max
N 20 46.4| 107.2| +£23.6 | 240.2
N 50 44.5| 100.2 | +24.5| 223.9
N 80 4431 94.0 | +24.1| 348.1
M 20 43.7| 115.8| +32.4| 536.5
M 50 45.7| 103.3| +£27.1| 2745
M 80 47.0| 94.2 | +£23.0] 233.1

Table 8.2: A comparison of time taken for request in milliseconds bemvaormal
operation (N) and live migration (M) for different worklo@eércentages of reads versus
writes.
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Figure 8.3: CDF of latency of different work loads comparing normal opierato live
migration. The x-axis is latency in milliseconds.

found that COW added 0.17ms of overhead, while COR added 0,8%wtis adding
less than one percent overall overhead per user request edieg both local and
remote updates in parallel. COR added slightly more overmast because writes are

10.3 times longer compared to a local read.

8.3.3 Datastore Performance
Table8.2has a comparison of the average latency with different veadis, from a

20/80 read-to-write ratio, to an 80/20 ratio. We compareriiiml state (pre-migration)
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Size Min | Mean| Stdev | Max
100B | 1.72| 2.45 | £0.92 | 20.53
500B | 1.71|2.29 | +0.80| 19.08
1KB 1.70| 2.43 | +£0.97| 17.03
5KB 1.78| 2.62 | £0.75| 12.53
10KB | 1.79| 2.71 | +1.09| 18.26
50KB | 1.82] 2.88 | +£1.03| 20.02
100KB | 2.17| 3.18 | £1.00| 24.45

Table 8.3: Time for transactionally loading entities of differenteizinto Hypertable
through the datastore agnostic transactional layer. Taneg milliseconds.

and during migration with 100,000 updates. Load is gendnageng the Apache Bench-
mark Tool with a concurrent setting of 10 requests which rdaou all the CPU cores.
Read heavy operations see the least amount of overhead assindbrequire copy-
on-write operations with the secondary deployment. As @3 shows that there
is more overhead associated with write heavy workloadspgeause updates to the
remote deployment are done in parallel with the local writethe datastore, we mini-
mize the additional required latency. Overall we see thelwasd at an average of 7.4%
with write heavy workloads, while being negligible for relaglavy workloads at 0.2%.
The most write heavy workload also sees a longer tail pas®tie percentile, from
170ms to 190ms. For both scenarios no failed requests weoeteel.
Table8.3presents the time taken for different entity sizes whenddddom a snap-
shot. For this experiment 10,000 updates of each size wadetband measured. These

times include the time to acquire the lock, to check if therent key had an existing
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value, and to do the write. There were insertion times ovar8s the max times show,

but these were well into the 95th percentile (CDF not shown).

8.3.4 Traffic Handover

We use the AWS REST-based API to dynamically update the resoecord names
in Route 53. We measure the switchover time with the Apache lBaad Tool which
continuously sends HTTP request to the initial deploym&he average time to switch
over was 46.4 seconds with a standard deviation of 0.97 witiah of 10 trials. The
time measured is the difference between when the first HT§Best appears in the
access logs of the secondary deployment to the the initied the APl request was

sent.

8.4 Summary

In this chapter we have designed, implemented, and eval@aRaaS live migra-
tion technique that provides minimal performance degiadaind little to no service
disruption. As part of future work, we will evaluate diffetecombinations of rolling

upgrades throughout the cloud stack, as well as migratiommsa WANS.
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Conclusion

This dissertation has laid the groundwork for a large scgl#id cloud platform-
as-a-service and has leveraged it to investigate multgagéuland high impact facets of
cloud computing. First, it addresses the lack of tools togam and contract different
NoSQL offerings, in which there are over 120 at the time oftiwg this thesis. Sec-
ond, it addresses the missing features of NoSQL datastochsas ACID transactions,
and secondary index support. Third, this dissertation hagiged a valid and novel
use case for hybrid computing for emerging PaaS platfortiizing independent, dis-
parate cloud systems for offline data analytics. Moreoverextended this research by
considering how certain cost models of cloud computing cexploited to achieve
low cost analytics. Lastly, we have pursued platform suppblive migration for ap-
plications, with the capability to swap out the underlyirgrdware and software by

leveraging the abstractions that cloud computing exposes.
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In Chapter3 we have presented AppScale, the first open source PaaShéedda
the research community, filling a need which was previousifulfilled. In order to
engender a vibrant developer community, we have emulaee&togle App Engine
APIs, allowing any of 1 million-plus applications to be alsm on our private cloud
platform. AppScale does not compete with App Engine, butdatles scale and flexi-
bility for application developers and cloud researchedikseajiven the cluster resources
it has been allocated. AppScale also addresses the probl@Elock-in since it en-
ables applications to move to different public laaS prokgded to and between private
clouds, without code modification. Finally, because théfpten is open, developers
can turn off the restrictions that GAE imposes on appliceti¢e.g. limited libraries
allowed, time restrictions on service use and request handandboxed execution),
albeit at the potential cost of scalability and system $§tsibi

Our work in Chaptert has considered the benefits and trade offs of the cloud plat-
form from the perspective of large scale data management. aBances facilitate
automatic deployment of distributed datastore techne®gihile providing applica-
tion portability across them via a common datastore API. portability layer of our
implementation has allowed for the plugging in of datastaard distributed load of
datastore requests across a distributed system. Applisatian now be written using a
common datastore APl and easily migrated to another dagasithout any modifica-

tions to their applications.
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Because this layer provides a level of indirection betweenabplication and the
datastore, we have been able to show that we can use it tormaptelatastore-agnostic
extensions to the underlying technologies. We prototypm#dd form of distributed
ACID transaction semantics (Chap#rand secondary index support (Chapigiby
exploiting this layer. By doing so, we show that we can impletsich support once
and benefit numerous technologies for which it is absent -ppesed to reimplement-
ing such support for each individually. For our limited tsastion semantics, we require
only that the underlying datastore technologies providenat row access and strong
consistency across replicas. For secondary index supperiequire only range query
support. We show that we can efficiently add such supportpedéent of the datas-
tore technologies in this way by leveraging the extensildaad platform that AppScale
provides.

Given efficient and portable support for large scale, kduerdata management, we
next turn our attention to making use of such technology matyics. Analytics is crit-
ical to both large and small businesses to make smart desialwout how best to satisfy
customers and grow. In Chap®@we have described the first hybrid use case for PaaS
systems. We have contributed two methods for synchrooizaitross cloud platforms
and have evaluated them using a range of metrics. Moreoeenawe provided a high

level query language for developers to run analytics jobprof their existing appli-
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cations data without any requiring them to perform extaetransformation-loading
(ETL) manually.

In Chapter7, we have considered the monetary aspects of using an emeaxgsh
model exported by public cloud provider for large scale @atalytics: market-based
pricing. We have focused on and modeled the Amazon EC2 impiatien of such
pricing because of its mature and available implementatibat such a model can also
be used on-premise for any organization with auditing nesments. Specifically, we
have modeled a dataset of pricing of Amazon EC2 and have usethike intelligent
bidding decisions for resource prices for MapReduce jobghEtmore, we have found
that this programming model, as it is implemented by the gmemce Hadoop system,
suffers performance issues upon node failures due to ietdiate data that must be
regenerated.

We next investigated a key building block for hybrid cloudttan open and exten-
sible platform like AppScale can provide. In particular, neve considered support
for moving (migrating) an application between datastoaeS, and PaaS technologies
while it is executing, without modifying the applicationdm Our results have shown
that we are able to do so with little overhead, no lost updatad with our limited
transaction semantics support, for read heavy workloads.

Our contributions address how to facilitate portabilitydata-intensive applications

across different cloud fabrics and internal storage syste@ur extensions to App-
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Scale facilitate comparison of disparate storage systeith®wt the need to learn the
idiosyncrasies of any one datastore, while providing @atien support and secondary
indexes. Moreover, our advances enable cross cloud symehtmn of data that facil-

itates offline analytics and live application migration.

9.0.1 Impact

Our research artifacts include multiple publications ip tonference venues in-
cluding USENIX HotCloud, USENIX WebApps, and IEEE CLOUD. Addnally, we
have combined and extended two of our papgis21] for a journal publication in the
Journal of GRID Computingl[9]. We have also published a book chapter on the usage
of AppScale in 5], which has been downloaded and referenced by users oved 5,0
times.

We have released all of our code as open source under the 8edditD license.
Our releases began in April 2009 and we have released thensyggven times since
then. Our system has had over 10,000 downloads and over gt@&@9in the last year,
by users all over the world and by researchers at organimticcluding NASA and
IBM. AppScale is the platform that Google representativésremce to address vendor
lock-in concerns by potential and extant App Engine custsm@ur user community
(mailing list) which has over 320 members who consider tleeaisAppScale for both

research and production deployments.
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9.0.2 Future Work

The keys to the success and continued high impact of thisrigten work requires
that we maintain and continue high-fidelity and compatipilvith Google App Engine
and that we support and integrate the updates made to thheahtechnologies that
AppScale integrates (e.g. the NoSQL datastores) that ater wievelopment by third
parties. To keep up with the release cycle of App Engine (lmghtve communicate
with the Google App Engine team. We prioritize advances drahges to APIs based
on application use. As part of future work we will continueptarsue such evolutions
so that AppScale is as similar as possible to App Engine.

NoSQL datastores also have a fairly rapid release cycleypddting the datastores
requires a one-time effort. Most efforts are simple as thet sip procedures and in-
terfaces have not changed, but we've experienced undgrAitis changing causing
porting time to increase. Yet, with developers leveragimgp8cale, this porting effort
is abstracted away because the GAE datastore layer is tantsis

Additional work is required to extend our index support tolude scalable support
for transactions. Our current limitation with pessimigticking is simple yet restricts
scalability and performance for batch updates of entitiesifdifferent entity groups.
Also as part of future work, we are investigating the traffe-of different implemen-
tations of indexing in order to provide the high scale of N&S(@d with limited trans-

action semantic support.
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Next, our application migration support currently workdyofor local area net-
works. As part of future work, we are extending this to theevadea. Since we rely
on the Zookeeper open source technology for distributeddooation, and it has been
used in the wide area, we are working on extending our carttabs to provide limited
forms of migration functionality in the wide area. We willauate both the limitations
necessary and the trade offs required to scale and perfemthat such support across
disparate clouds requires. We would also like to leveragelmsertation technologies
to mirror data to facilitate such migration as well as to deatisaster recovery for
applications.

With our cloud platform there are many longer term advanicasdre also possible.
We find the switch over in the disaster recovery scenario eanibal, but the fail-over
mechanisms required are very application-specific. Ad#i advances can provide a
more general solution for such scenarios.

Currently, our platform is ideal for a single application winican use the entire set
of resources allocated to it. While AppScale can also suppaitiple applications,
the resource utilization of individual applications canitmg@roved. Different applica-
tions have different workloads (CPU versus datastore aoshgch leads to difficult
scheduling and scaling problems. However, since AppSeadaroonitor and profile all
of the activities of the cloud through API call interceptjdinis feedback can be used to

provide intelligent placement and elasticity support.
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Finally, we have found that it is possible to combine our agsle on using spot
instances with the automatic scaling of applications —esmar application servers are
stateless. The scaling out of our datastore is more chatigrigpwever, as different
datastores behave differently when new nodes are addeccaraved. Moreover, dif-
ferent NoSQL technologies implement replication diffehenAnother potential long
term extension of our work is support for automatic elastiof the AppScale NoSQL
plug-ins —in a way that is datastore agnostic (similar imisj@ our support for indexing

and limited transaction semantics in this work).
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