
MEDEA: A Pluggable Middleware System for Interoperable
Program Execution Across Cloud Fabrics

Chris Bunch Brian Drawert Navraj Chohan Andres Riofrio
Chandra Krintz Linda Petzold

Computer Science Department
University of California, Santa Barbara

UCSB Technical Report #2012-11, October 2012

1. ABSTRACT
In this paper we present MEDEA, a software architecture
that abstracts away the details of cloud infrastructures to
make it easy to deploy applications over disparate fabrics
without requiring application modification or expertise with
the underlying technologies. MEDEA consists of scripting
language support with which developers describe the inputs,
outputs, and location of their code, as well as their cloud cre-
dentials. This support then employs a remote web service
that packages applications so that they can be executed as
background tasks over different cloud infrastructures. This
execution engine integrates pluggable components for task
queues, task workers, and storage implementations. We then
plug into this framework extant cloud infrastructure imple-
mentations from Microsoft Azure, Amazon Web Services,
Eucalyptus, and Google App Engine. MEDEA helps de-
velopers avoid lock-in, compare and contrast different cloud
offerings (their restrictions, costs, performance), and eval-
uate hybrid cloud deployments (furthering cloud interoper-
ability).

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Software Engineering
- Language Classifications (Extensible Languages); C.2.4 [
Computer Systems Organization]: Computer-Commun-
ication Networks - Distributed Systems (Distributed Appli-
cations)

General Terms
Design, Languages, Performance

Keywords
Cloud Platform, PaaS, Open-Source, Distributed Systems

2. INTRODUCTION
Cloud infrastructures provide intuitive, utility-style access
to pools of on-premise or publicly available resources (com-
pute, storage, networking, and software services). Although

accessing cloud resources is cheap and readily available, do-
ing so from cloud infrastructure providers requires signifi-
cant expertise, experience, and time for customization, con-
figuration, deployment, and management of virtual machines
(VMs). Despite the emergence of technologies that aid users
in these endeavors, significant challenges remain with mak-
ing effective use of federated cloud systems.

One key challenge is the multitude of cloud offerings. With
each comes different application programming interfaces (APIs),
toolkits, scale, service level guarantees, performance levels,
pricing models, rules, and restrictions. This diversity of of-
ferings makes it challenging for new and expert software de-
velopers to determine which set of services is best for their
apps, for some definition of “best” (e.g. price, performance,
scale, configurability, familiarity, ease of use). In addition,
once a developer invests the time to learn a particular sys-
tem and codes their applications to it, they become “locked
in” to the technology since moving to a competitive offering
requires rewriting their applications and learning the intri-
cacies of a different technology (however similar in overall
function). The lack of portability across clouds and cloud
services consume developer time and focus that could in-
stead be used for the core innovation and science in the
applications themselves.

The goal of our work is to design and develop an open source
software framework that reduces the barrier to entry on the
use of cloud infrastructures and that facilitates their use
and interoperation for a wide range of domains and appli-
cation domains. As a first step in this direction, we define
a software architecture that turns arbitrary user programs
into cloud-ready applications that it then deploys over dis-
parate cloud infrastructures on behalf of user. This software
layer, called MEDEA, abstracts away the details of using
cloud infrastructures, simplifies program (job) submission,
and packages and deploys user programs to any infrastruc-
ture that supports background task submission.

The MEDEA front-end consists of scripting language sup-
port with which developers describe their programs. Users
employ this support to supply meta-information about their
programs to the MEDEA execution engine. This metadata
includes details about the program (name, executable, ar-
guments, etc.) and the user’s account credentials for each
cloud they wish to use.

The MEDEA execution engine is a web service that leverages



a commonly available cloud service, the FIFO task queue, to
deploy submitted apps as background tasks in different cloud
infrastructures. The engine manages jobs in FIFO queues,
sets up jobs for execution, persists program output, and col-
lects profile information about the execution. Users access
the output and profile information via a web service inter-
face once execution terminates (normally or abnormally).

Moreover, the MEDEA framework is “pluggable” in that
each of its components interface to multiple implementa-
tions. The components consist of the FIFO queue, the
task worker, and storage. In this way, MEDEA programs
are portable across any of the component implementations
(cloud infrastructure services) that MEDEA plugs in, and
users need not become expert with any of the integrated or
underlying technologies or modify their applications in any
way. In addition, developers can use MEDEA-compatible
services to avoid lock-in, to compare and contrast different
cloud offerings (their restrictions, costs, performance, etc.),
and to evaluate hybrid cloud deployments (cloud interoper-
ability) of their applications, easily and portably.

To implement MEDEA, we leverage the open source App-
Scale cloud platform [7, 11] and the Neptune HPC configu-
ration language [8]. The plugins that we integrate into the
MEDEA deployment engine include compute, storage, and
FIFO queue services from Amazon Web Services [1], Mi-
crosoft Azure [5], Google App Engine [20], and AppScale.
To investigate the potential of MEDEA, we employ the sys-
tem for a number of different use cases in which we com-
pare and contrast supported plugins in terms of price and
performance using various applications, domains, and pro-
gramming languages.

In the sections that follow, we present the design and im-
plementation of the MEDEA execution model. We describe
how we plug in different cloud services with MEDEA. We
then investigate the cost and performance of a number of
different use cases enabled by MEDEA, empirically evalu-
ate its use in different hybrid cloud configurations, and for
programs written in different languages. We then discuss
related work and conclude.

3. DESIGN
By unifying cloud program execution under the MEDEA ex-
ecution model, we aim to make existing user code interoper-
able between disparate cloud services. Pushing the complex-
ity of cloud services into an abstract software layer reduces
the complexity that must be present in user-facing code.
This also increases portability, reduces lock-in to a particu-
lar vendor’s services, and enables users to benchmark their
applications without needing to become experts with each
technology they wish to utilize. In this work, we focus on
providing such support for three different and common cloud
services:

• Compute services for execution of user code

• Storage services for data persistence

• Queue services providing a FIFO queue abstraction

The MEDEA execution model uses a combination of these
three services to manage and execute programs over sup-
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Figure 1: Overview of the design of the MEDEA
execution model.

ported cloud fabrics. Moreover, it does in a way that hides
the details of the implementation of each service, so that
users can employ them for execution of their programs with-
out having any knowledge or direct experience with them –
users need only have credentials for each cloud she wishes
to use.

We depict the design of the MEDEA execution model in Fig-
ure 1. The MEDEA execution model consists of two compo-
nents. The first is scripting language support that enables
developers to specify the execution environment and deploy-
ment preferences for their programs. The second is a deploy-
ment engine that plugs in cloud service support to execute
applications. We first overview the MEDEA scripting lan-
guage support and then describe the MEDEA deployment
engine.

To make the use of these services portable and simple, the
MEDEA scripting support consists of a single function with
which users specify the program they wish to run, its in-
puts, location, and executable (if any), as well as the names
of the service plugins they wish to employ for compute, stor-
age, and queuing. The type of programs that MEDEA cur-
rently supports are those that take zero or more arguments
as inputs, that communicate only with persistent services,
and that generate output through the standard output and
standard error streams.

Consider a user who wishes to run a Python n-body simu-
lation in Amazon EC2, store its output in Amazon S3 [2],
and have workers in EC2 poll for tasks (here, the n-body
simulation is the task) via Amazon SQS [4]. Normally they
would need to become familiar with the APIs of each ser-
vice, their pricing models, and best practices. Once this is
done, the user is then locked-in to these three services. In
contrast, using a domain specific language to specify the ex-
ecution environment of a program reduces the amount of
work required to execute the following code:

r e s u l t = medea (
: ex ecu tab l e => ”python ” ,
: code => ”/home/ user /nbody . py ” ,
: compute => ”ec2 ” ,
: s t o rage => ”s3 ” ,
: queue => ”sqs ”)

puts r e s u l t . s tdout
puts r e s u l t . s t d e r r



Here, the user indicates what binary executes their program
in the cloud compute service, where the code to execute is
located on their local machine, and which compute, stor-
age, and queue services should be used. Users also provide
their credentials to each service as environment variables or
as additional parameters. Code can be written in any lan-
guage, as long as the compute service has the correct binary
installed to execute it. Our library support for this func-
tion validates the submitter’s cloud credentials and verifies
that the user’s code exists on their local computer. Once
this is done, it packages this information and sends it to the
MEDEA deployment engine.

The object that is returned from calls to medea can be used
to manually poll for the result of the job. To execute the
program using a different service, the developer need only
change the value of a function argument for the compute,
storage, and/or queue services. For example, changing the
value of :compute above from ec2 to azure, causes MEDEA
to execute the program in Microsoft Azure instead of Ama-
zon EC2.

The returned object provides methods that store the task’s
standard output and standard error streams. MEDEA also
profiles the execution of the task and returns various per-
formance metrics to the user as a field in this object called
metadata. This latter support enables users to extend their
scripts to interrogate the differences between the multiple
cloud services to compare and contrast them and to identify
the most appropriate one for their application.

4. IMPLEMENTATION
We implement the MEDEA scripting language support by
repurposing Neptune, a domain specific language that auto-
mates the configuration and deployment of high-performance
computing applications. Our extensions implement this new
function (function semantics and library support) to facili-
tate execution of arbitrary user programs. Users need only
specify where the code to execute is located, what executable
should be invoked to run it, and an Array of arguments to
pass to their program. The scripting language support then
validates that the code exists on their local computer, and
then copies it and any files specified in the argument list to
the MEDEA deployment engine, who then uses its pluggable
storage support (Section 4.3) to interface with the storage
service that the user has specified.

The MEDEA scripting language support communicates with
the MEDEA deployment engine. The deployment engine
provides a software layer that abstracts away common ser-
vices required for execution of arbitrary programs over cloud
compute, storage, and queue services. We plug in actual
cloud services to this layer to provide the implementation
for each of these operations.

The MEDEA deployment engine employs two key abstrac-
tions: the Task Manager (which delegates tasks to clouds)
and the Task Worker (which executes the task). This script-
ing language support and deployment engine perform five
steps (which form the acronym MEDEA) to execute pro-
grams portably:

1. the scripting language support (M)essages the Task
Manager with the program to execute, described by a
MEDEA script,

2. the Task Manager (E)nqueues the task to a queue ser-
vice,

3. a Task Worker (D)equeues a task from a queue service,

4. a Task Worker (E)xecutes the task,

5. the developer (A)ccesses the result of the task from
their local computer (from within a MEDEA script).

We implement the MEDEA deployment engine as a web
service within the AppScale cloud platform. This platform
automatically deploys and starts the MEDEA deployment
engine when an AppScale cloud is instantiated. We also
provide plugins into the deployment engine’s abstractions for
each service (queue, compute, and storage) that implement
the necessary functionality.

4.1 Pluggable Queue Support
When a Task Manager receives a request to run a task from
a user, it examines the :queue parameter in the user’s task
to determine which cloud queue the task should be placed
on. Acceptable values are:

• "rabbitmq" for RabbitMQ, hosted within AppScale
(the default)

• "sqs" for Amazon Simple Queue Service (SQS)

• "azure-q" for Microsoft Azure Queue Service

• "gae-pull-q" for Google App Engine’s pull queue

These queues provide a scalable FIFO queue service where
items can be pushed to or popped from. The Task Manager
employs the Factory design pattern, thus, as long as sup-
ported queues implement a common API (push/pop), the
Task Manager can access them without needing to be con-
cerned with their underlying implementation details. Once
the Task Manager uses a QueueFactory to get a connection
to the necessary queue service, it pushes the task to that
queue service and returns an acknowledgement to the user’s
local computer that the task has been started.

Task Workers periodically query the Task Manager for a
list of all the queues that tasks can be found on, as well as
the cloud credentials needed to access each queue. This is
necessary because two users may have different credentials
to the same queue service. Each Task Worker uses the same
QueueFactory as the Task Manager to get a connection to
each queue service and pops off one item of work per core
on its machine.

4.2 Pluggable Compute Support
After pushing the task onto the specified queue service, the
Task Manager ensures that Task Workers are running in
the specified compute service. For example, if a user has
specified that a task should be executed in Amazon EC2, the



Task Manager will ensure that one or more Task Workers are
running in Amazon EC2. To provide this functionality, the
Task Manager keeps metadata about the number of workers
in each cloud and utilizes a ComputeFactory to interact with
cloud compute services, based on the value of the :compute

parameter in the user’s task. Acceptable values are:

• "ec2" for Amazon EC2, hosted within AppScale (the
default)

• "azure" for Microsoft Azure

• "app-engine" for Google App Engine

• "euca" for Eucalyptus

For Amazon EC2, the Task Manager uses the EC2 command-
line tools to dynamically spawn or terminate virtual ma-
chines. Once virtual machines have been spawned, a Task
Worker is started on it, who then polls the Task Manager
for work as previously descibed. The Task Manager is also
cost-aware, so it does not terminate Task Workers once they
have completed a task. Because Amazon EC2 charges on a
per-hour basis, the Task Manager terminates Task Workers
only near the end of the hour, and only if they are not in
use at that time.

Amazon EC2 enables users to remotely log into machines
and directly execute programs via the familiar Linux pro-
grams ssh and scp. In contrast, Microsoft Azure and Google
App Engine do not support this functionality, as Azure de-
ploys Windows virtual machines, and App Engine does not
allow access to the hosted machine at all. To enable in-
teroperable program execution, we contribute Oration, a
tool that automatically generates Task Workers that exe-
cute user-provided applications in different cloud execution
systems. Oration takes, as inputs, the name of the cloud
to execute the application in, the name of the function to
execute, and the name of the file that function can be found
in, and then constructs a “cloud-ready” Task Worker that
utilizes best practices from that cloud to execute the user’s
program. This Task Worker implements the following API:

1. PUT /task: Given a function name and its inputs, runs
the function stores its output for later retrieval.

2. GET /task: Given the name of the task, checks to see
if the task is still running, has completed, or has failed.

3. PUT /data: Given a location to store data and the data
to store, saves the data for later use.

4. GET /data: Given a location to read from, returns ei-
ther the given data (if it exists) or a null value (if it
does not exist).

For Microsoft Azure, Windows virtual machines are pro-
cured (as opposed to Linux virtual machines in Amazon
EC2), so the bootup script we include starts by installing
language support for each runtime we wish to execute tasks
with (by default, this supports Python and Java, but is ex-
tensible to other languages). Microsoft Azure also follows a

per-hour pricing model, but in contrast to Amazon EC2, it is
a per-wall-clock-hour pricing model. The following process
is used to implement MEDEA support on Microsoft Azure:

1. the scripting language support (M)essages the Task
Manager with the program to execute, described by a
MEDEA script,

2. the Task Manager uses Oration to construct a Mi-
crosoft Azure compatible Task Worker and uploads it
to Microsoft Azure. The Task Manager then (E)nqueues
the task by performing a PUT /task on the remotely-
hosted web application, which will schedule a back-
ground task with the Microsoft Windows Azure Queue
Service API. If the task requires any files as inputs, the
Task Manager uses PUT /data calls to move inputs
from the datastore specified to the Windows Azure
Storage Service.

3. the Task Worker (D)equeues the task and spawns up
workers by performing a POST /task to the application
server.

4. the Task Worker (E)xecutes the task and stores the
output via the Azure Storage Service, a key-value data-
store that uses a get/put interface.

5. the developer (A)ccesses the result of the task from
their local computer (from within a MEDEA script).
The Task Manager retrieves the result by performing
a GET /data on the remotely-hosted web application.

Finally, the Google App Engine PaaS provides autoscaling,
and does not allow its users to programmatically dictate
the number of instances that are used. It also employs a
restricted runtime that can only execute tasks written in
Python, Java, and Go, so we provide specialized Task Work-
ers in those languages to execute Python, Java, and Go
tasks. Google App Engine charges on a per-minute pricing
model, as opposed to the per-hour pricing model employed
by Amazon EC2 and Microsoft Azure. The following pro-
cess is used to implement MEDEA support on Google App
Engine:

1. the scripting language support (M)essages the Task
Manager with the program to execute, described by a
MEDEA script,

2. the Task Manager uses Oration to construct a Google
App Engine compatible Task Worker and uploads it to
Google App Engine. The Task Manager then (E)nqueues
the task by performing a PUT /task on the remotely-
hosted application, which will schedule a background
task with the Google App Engine Task Queue API. If
the task requires any files as inputs, the Task Manager
uses PUT /data calls to move inputs from the datastore
specified to the Google App Engine Datastore.

3. the Task Worker (D)equeues the task and spawns up
workers by performing a POST /task to the application
server.



4. the Task Worker (E)xecutes the task and stores the
output via the Datastore API, an object datastore that
uses a get/put interface.

5. the developer (A)ccesses the result of the task from
their local computer (from within a MEDEA script).
The Task Manager retrieves the result by performing
a GET /data on the remotely-hosted web application.

Regardless of where the task executes, the Task Worker col-
lects the following data as outputs and metadata from the
task:

• The standard output produced by the task.

• The standard error produced by the task.

• The time taken to execute the task.

• The time taken from when the Task Manager received
the task to when the task finished executing.

• The time taken to retrieve the code and inputs from
the datastore service.

• The time taken to dequeue the task off the queue ser-
vice.

• Information about the processors on this machine (the
contents of /proc/cpuinfo).

• Information about memory on this machine (the con-
tents of /proc/meminfo).

• Information about disk usage on this machine (the re-
sult of df -h).

The types of data collected is extensible. In particular, we
are looking to extend this system with information about
the cost incurred to run the task once cloud providers make
this information available programmatically (as opposed to
performing estimates or downloading bills from a web page,
as is currently done).

4.3 Pluggable Storage Support
Once a Task Worker finishes executing one or more tasks, it
uses a StorageFactory to get access to a supported storage
service. The user indicates which storage service is to be
used via the :storage parameter, with acceptable values
being:

• "appdb" for the datastore hosted within AppScale (the
default)

• "s3" for Amazon Simple Storage Service (S3)

• "waz-storage" for Microsoft Azure Storage Service

• "gstorage" for Google Cloud Storage

• "walrus" for Eucalyptus Walrus
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Figure 2: Deployment strategy used for the n-
body simulation benchmark to evaluate different
pull queue technologies.

The Task Worker then stores three files in the specified stor-
age service, containing the standard output of the task, the
standard error of the task, and the task’s metadata (perfor-
mance profile). At this point, if the user’s script accesses
the medea function’s return value, the calls will succeed and
return this information to the user.

5. EVALUATION
We next use our support for MEDEA within AppScale to
empirically evaluate how effectively tasks execute within cloud
IaaS and PaaS offerings. We begin by evaluating our plug-
gable queue support, continue by evaluating a computa-
tional systems biology application, and conclude by evaluat-
ing implementations of the n-body benchmark application.

5.1 Pluggable Queue Evaluation
We begin by using the pluggable queue support that the
MEDEA execution model enables to compare the perfor-
mance and cost of different cloud queue offerings. We in-
vestigate one internal and four external pull queue services:
RabbitMQ (internal to AppScale), Amazon SQS, Microsoft
Azure Storage Queue, and Google App Engine’s pull queue.
We employ Amazon S3 as the storage service for each task
and deploy an AppScale cloud over Amazon EC2, in the
manner shown in Figure 2. Specifically, we instruct App-
Scale to automatically deploy a single virtual machine in-
stance as the Task Manager, and in all of our Neptune job
requests, we indicate that no more than two Task Workers
should be dynamically acquired and used (to limit the mon-
etary costs we can incur). The Task Manager creates Task
Workers whenever it detects that the number of tasks wait-
ing to be executed in all queues is non-zero. For Task Work-
ers, we utilize Amazon’s m2.4xlarge instance type, each of
which has 8 virtual cores and 68GB of memory. This in-
stance type is one of the more powerful machines offered by
Amazon, and costs $1.60 per hour to lease.

For this evaluation, we run ten instances of our n-body sim-
ulation program (ten tasks) in parallel and report the time
that Task Workers spend dequeuing tasks from the queue.
Note that the task’s payload is nearly constant for all queues
used, and only varies when more or fewer credentials are
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Figure 3: Average dequeue time for the Python n-
body simulation, when task data is stored in Azure
Storage Queue, Google App Engine’s pull queue,
RabbitMQ, and SQS. Each value shown here rep-
resents the average of ten runs.

needed to access the queue. The Neptune code that we run
for each queue to dispatch the tasks and report the resulting
time incurred is:

t a s k i n f o = [ ]
10 . t imes { | i |

t a s k i n f o << medea( params )
}

t a s k i n f o . each { | task |
i f task . r e t u rn va lu e != 0

abort ( ‘ ‘ Ana ly s i s f a i l e d : ’ ’ +
task . s t d e r r )

end
puts task . queue pop time ( )

}

The results of running this code for our n-body simulation
on each of the four supported queues is shown in Figure 3.
RabbitMQ performs the best, because Task Workers in EC2
always have a RabbitMQ server running on their local ma-
chine and thus either need only talk to it or to another ma-
chine in the AppScale deployment a short distance away.
This improves performance but at the cost of fault-tolerance:
in the rare case of an availability zone failing in Amazon
EC2, it would also cause our RabbitMQ servers to fail with
it. Conversely, Amazon SQS and Microsoft Azure Storage
Queue have added fault-tolerance, but perform an order of
magnitude slower than RabbitMQ, but outperform Google
App Engine’s pull queue. This is likely due to the latency
between our Task Workers and Google App Engine’s pull
queue.

These results should not be considered a final evaluation of
available cloud queuing services, as such services are con-
stantly upgraded and evolve and improve over time. How-
ever, since AppScale can be used at any time, users can
employ it to snapshot the current performance of the vari-
ous queue offerings, evaluate that tradeoff against the cost
of using the queue, and choose any queue implementation
on demand.

5.2 Computational Systems Biology Evalua-

tion
We next evaluate the compute engine offerings that are en-
abled by making AppScale MEDEA-compatible. The ap-
plication we use for this study is a Stochastic Simulation
Algorithm (SSA) [19]. SSA is form of kinetic Monte Carlo
simulation used extensively in computational systems bi-
ology. These algorithms are embarrassingly parallel and
probabilistic in nature, and require a large number of in-
dependent simulations to be executed to achieve an accept-
able level of statistical accuracy. The specific algorithm
we focus on is the Diffusive Finite State Projection Algo-
rithm (DFSP) [16], which simulates spatially inhomogeneous
stochastic biochemical systems. In our study, this algorithm
is used to simulate a model of the mating pheromone in-
duced G-protein cycle in budding yeast. We employ this
application because it is a canonical example of a compute
and data-intensive eScience workflow, thus allowing us to il-
lustrate the performance and cost benefits of executing sci-
entific applications via cloud-based systems. However, it is
also an example of an application that is not a web service
and thus is not likely to have a user-written MVC interface
(which the Task Manager automatically constructs).

Our evaluation considers the Amazon EC2 IaaS, Google App
Engine PaaS, and Microsoft Azure IaaS. For the IaaS of-
ferings, we must manually choose the number of instances
(virtual machines) that execute tasks, so we experiment with
the performance and cost implications of using 1, 2, 4, and
8 workers. For the Google App Engine PaaS, users cannot
dictate the exact number of instances to be used (as it dy-
namically scales up and down in response to user traffic).
To provide a fair comparison, we use the m1.small instance
type within Amazon EC2, the Small instance type within
Microsoft Azure, and the F1 instance type within Google
App Engine. These instances minimize the cost incurred to
end users, and provide a comparable amount of CPU and
memory between one another.

Figure 4 shows the time taken to run a varying number of
tasks within Amazon EC2 and Microsoft Azure, for varying
numbers of workers. As we increase the number of simu-
lations, we see a roughly linear increase in the amount of
time taken to execute these tasks. We also note a standard
deviation proportional to the number of tasks run. For Ama-
zon EC2, this is due to the performance variability of tasks
that execute within it, a result that has been confirmed by
the works of others [6] [25]. As we increase the number of
workers used to execute tasks, we also note a corresponding
speedup in the total execution time. Note that the x-axis is
on a logarithmic scale.

Figure 5 shows the time taken and the cost incurred when
using the maximum number of workers in Amazon EC2 and
Microsoft Azure (here, 8 workers) and compares it with
Google App Engine, which autoscales and does not allow
us to dictate the exact number of workers to use. We note
that Google App Engine performs the best of the three en-
gines compared here, and because of its per-minute pricing
model, costs less than the other offerings for the lower num-
bers of simulations. Amazon EC2 and Microsoft Azure both
cost the same, which is simply the price of eight machines
for a single hour. All three cost a similar amount when the
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Figure 4: Running time for execution of SSA simulations in Amazon EC2 (left) and Microsoft Azure (right),
when a varying number of workers are utilized. Each value represents the average of five runs. Note that
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simulations in Amazon EC2, Microsoft Azure, and Google App Engine. Each value represents the average of
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total execution time approaches an hour, which agrees with
the per-hour pricing model employed by Amazon EC2 and
Microsoft Azure.

5.3 Programming Language Shootout Evalu-

ation
In the previous sections, we showed that the MEDEA ex-
ecution model can be used to enable programs to be exe-
cuted simply and easily over disparate cloud systems. In
this section, we use AppScale’s MEDEA support to com-
pare the performance and cost of using different program-
ming language implementations of programs over different
public cloud fabrics.

It can be useful to test the performance of a given language,
which itself evolves into numerous versions over time. Ad-
ditionally, creators of a new programming language may
wish to compare the performance of their language with
other programming languages on a set of reference imple-
mentations. In the spirit of the Computer Language Bench-
marks Game [30], we can use AppScale (augmented with
MEDEA) to provide a community cloud PaaS that can be
used to benchmark algorithms with implementations in dif-
ferent languages on various cloud compute, storage, and
queue services.

We evaluate AppScale’s MEDEA support in this use case
in Figure 6. Here, we have taken eleven implementations
of the n-body simulation benchmark from [30], written in
programming languages of varying programming paradigms,
type checking systems, and other language-level design and
implementation details. This data shows that most of the
implementations of this benchmark perform within the same
order of magnitude, with the exceptions of Python and Ruby,
which perform two orders of magnitude slower than the oth-
ers. These results are roughly in agreement with the values
published by [30].

While the MEDEA execution model provides users with sup-
port for different programming languages and different pro-
gramming models, it also enables users to investigate and
understand the monetary costs of using a particular pro-
gramming language in a public cloud setting. Moreover, it
enables users to investigate the costs of the different pricing
models employed by public cloud vendors.

For example, the cost to run the n-body benchmark in dif-
ferent languages using AppScale over Amazon EC2 is shown
in Table 1. We consider both the cost to run each bench-
mark via an hourly pricing model (the standard employed by
Amazon) and a per-second pricing model (similar to the per-
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Figure 6: Average running time for implementations
of the n-body benchmark in different programming
languages. Only the time taken to execute the task
is considered here. This does not include the time
taken to message the system, enqueue the task, de-
queue it, or the final result in the remote datastore.
Each value represents the average over ten runs.

Language Cost Per Task
Ada $0.0076 ± $0.0002
C $0.0069 ± $0.0002
C# $0.0105 ± $0.0000

Fortran $0.0073 ± $0.0003
Go $0.0105 ± $0.0000

Haskell $0.0120 ± $0.0000
Java $0.0075 ± $0.0000

OCaml $0.0110 ± $0.0000
Python $0.5876 ± $0.0057
Ruby $2.1944 ± $0.0198
Scala $0.0075 ± $0.0000

Table 1: Average monetary cost (in U.S. dollars)
incurred to run the benchmarks shown in Figure 6
via a per-second pricing model. These costs only
include the cost incurred for the virtual machines
used. Each value shown here represents the average
cost incurred over ten runs.

minute pricing model employed by Google App Engine). For
the hourly pricing model, all of the benchmarks employed
ran within a single hour (except for Ruby), and thus cost
$1.80 to run. For Ruby, it took more than an hour to run,
so we were assessed charges for two hours of computation, a
total of $3.60. If Amazon were to employ a per-second pric-
ing model (as shown in the table), the results exhibit larger
differences between language technologies. Specifically, C
is the cheapest, with Fortran, Java, Scala, and Ada closely
following it. Python and Ruby perform the slowest, costing
one to two orders of magnitude more to run.

AppScale, with MEDEA support, thus provides users with
a tool that they can use to measure the costs of running
their application in a given language or under the different
pricing models employed by cloud vendors. Such a tool is
important for the investigation of new pricing models and
to assess application costs when pricing models change.

Next, we consider the performance and cost of running the
Python and Java n-body simulations in Amazon EC2, Google

App Engine, and Microsoft Azure. We elect to use only
Python and Java (as opposed to all the languages we have
implementations for) because Google App Engine only sup-
ports programs written in Python, Java, and Go. Here, we
utilize a m1.large instance in Amazon EC2, a F4 instance
in Google App Engine, and an Extra Small instance in Mi-
crosoft Azure. We vary the number of bodies to simulate
between 5 × 103 and 5 × 107, and run each simulation ten
times, reporting the average and standard deviation.

The average running time for the n-body simulation bench-
mark is shown in Figure 7. Amazon EC2 performs the
fastest at the lower number of bodies to simulate because
it does not dispatch workers to a queue and backend storage
service - it simply runs them as it receives them. At the
higher number of bodies to simulate, the queue and storage
service time no longer dominates the total execution time,
and the three services perform roughly the same to one an-
other. We were unable to run the Python n-body simu-
lation at 5 × 107 bodies, because our instances used more
than 512MB of memory (the maximum memory allowed for
F4 instances) and were killed by the App Engine runtime.
Even without this memory restriction, it would have likely
taken more than 10 minutes to execute (the maximum time
allowed for background tasks to execute within Google App
Engine) and still have been killed by the Google App Engine
runtime.

The average cost to run the n-body simulation benchmark is
shown in Table 2. Amazon EC2 and Microsoft Azure charge
users on a per-hour basis, and because all of the n-body sim-
ulation times for the Python and Java implementations ran
in less than an hour, we were charged for a full hour in these
systems. This was $0.32 for a m1.large instance in Amazon
EC2, and $0.02 for an Extra Small instance in Microsoft
Azure. Google App Engine charges on a per-minute basis,
and because all of the Java n-body simulation times ran in
less than a minute, we were charged for a full minute in
Google App Engine (as opposed to a full hour in Amazon
EC2 and Microsoft Azure). As we used the most expen-
sive instance type in Google App Engine (the F4 instance
type), we were charged $0.0013 for the minute that our pro-
gram took to execute. We used the same instance type for
our Python n-body simulation, but as the larger number of
bodies to simulate took more than a single minute to exe-
cute, we were charged for more than a single minute of time.
Table 2 shows the cost incurred by simulating 5×107 bodies.

These cost values are not intended to reflect the optimal
costs of running the n-body simulation code in Amazon EC2,
Google App Engine, and Microsoft Azure. We could have
picked instance types that cost less within each of these
providers, which could have then increased the total exe-
cution time for each, which could have then increased the
cost incurred (depending on the pricing model used). As
was the case for the cloud queue services, implementations
of MEDEA provides users with a system that can be used
to snapshot the performance and cost of using a cloud IaaS
or PaaS system to execute their code.

6. EXTENDING MEDEA
The MEDEA execution model enables cloud interoperability
for supported programs. In this section, we consider exten-
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Figure 7: Running time for execution of n-body simulations written in Python (left) and Java (right), using
Amazon EC2, Google App Engine, and Microsoft Azure. Note that both axes are on logarithmic scales.

Cloud Service Cost

Amazon EC2 $0.3200 ± $0.0000
Google App Engine (Java) $0.0013 ± $0.0000

Google App Engine (Python) $0.0049 ± $0.0006
Microsoft Azure Worker Roles $0.0200 ± $0.0000

Table 2: Monetary cost incurred to run the n-body
simulation code shown in Figure 7 across Amazon
EC2, Google App Engine, and Microsoft Azure.
Costs are assessed on a per-hour basis for Amazon
EC2 and Microsoft Azure, and on a per-minute ba-
sis for Google App Engine. The value presented for
the Python Google App Engine simulation reflects
only the most expensive simulation size (all others
are identical to the Java Google App Engine simu-
lation).

sions to this model to facilitate greater portability across
and ease of use of cloud systems. The extensions we con-
sider in the subsections that follow include simplifying the
use of the MEDEA scripting language component via a par-
allel future construct, task inlining (bypassing the queuing
system in some cases), making task deployment more effi-
cient via batching, and utilizing caching on Task Workers
to eliminate unnecessary data retrieval. Throughout this
section, we also consider the impact of these optimizations
on the popular MapReduce programming model, popular-
ized in [13], with an emphasis on the single embarrassingly
parallel applications that this model supports.

6.1 Automatic Polling via Futures
We begin by considering ways to improve the use of the
MEDEA scripting language component for distributed, multi-
cloud application deployment. Towards this end, the result
of an invocation of medea() returns an object that encapsu-
lates information about the task’s execution. Users can poll
for the output of the task from within a MEDEA script, to
determine when a task has completed. The MEDEA script
for doing so would look similar to the following:

r e s u l t = medea( params )

output params = params . dup
output params [ : type ] = ”output ”
loop {

i f medea ( output params ) [ : done ]
break

end
s l e ep (10)

}

puts r e s u l t . s tdout
puts r e s u l t . s t d e r r
puts r e s u l t . metadata

To automate the process of polling (reducing the amount of
work a user must perform) and to enable the script to do
other work while waiting for the task to finish (e.g. execute
more tasks), we investigate implementing the medea function
as a future [22, 32, 31]. A future is a simple and elegant
programming language construct that enables developers to
introduce asynchronous computation into their programs.

To enable this in our scripting language support, we modify
the design and implementation of the medea function to re-
turn a future for the object (the task’s result) instead of the
object itself. When medea is invoked, a background thread
is spawned that dispatches a message to the MEDEA Task
Manager, polls for its output, and blocks if the user calls any
of its methods or accesses any of its fields before the task
has completed. We employ Ruby’s metaprogramming fea-
tures to implement implicit future semantics for the medea

function, so users need not know that the object they are
accessing is a future. The previous example, which used
polling, can be rewritten when futures are used, as follows:

r e s u l t = medea ( params )
puts r e s u l t . s tdout # th i s w i l l b lock u n t i l
puts r e s u l t . s t d e r r # the task completes
puts r e s u l t . metadata

6.2 Inlining Task Execution
MEDEA provides a task execution model that utilizes a dis-
tributed queue service to pass information between the Task
Manager and Task Workers. Yet for short-running tasks,
the overhead incurred by storing tasks in a queue may be
longer than running the task immediately within the Task
Manager. Therefore, we enable users to specify the value of
:worker to be inline to indicate that the task should be“in-



lined” - that is, it should not follow the standard MEDEA
execution model, and instead should be immediately exe-
cuted inline within the Task Manager.

To evaluate the benefits and drawbacks of task inlining in
MEDEA, we deploy a set of tasks that count the number
of words in an input corpus using the map-reduce program-
ming model [13]. Here, each Map task performs a word
count on the works of William Shakespeare (roughly 5MB
in size), and each Reduce task aggregates the results from
each Map task. Our extensions to the MEDEA scripting
language support that facilitate the use of futures enables
supported programs to be “chained” together in a manner
similar to that of a workflow system, except that this sys-
tem is fully Turing-complete, as opposed to the XML-based
systems that most workflow systems employ. Here, we pass
the output of each Map task as an input to the final Reduce
task. The MEDEA script for this MapReduce job looks like
the following:

common params = {
: s t o rage => ”s3 ” ,
: queue => ”sqs ” ,
: i n s t an c e t yp e => ”m2. 4 x l a r g e ” ,
: max nodes => 3 ,
: worker => ” i n l i n e ”

}

map params = common params . dup
map params [ : code ] = ”/ . . . / wc . py”
map params [ : argv ] = [ ”/ . . . / shakespeare . tx t ”]

num mappers . t imes { | i |
param l i s t << map params

}
map tasks = medea( param l i s t )

outputs = map tasks .map { | task |
task . ou tpu t l o c a t i on

}
reduce params = common params . dup
reduce params [ : code ] = ”/ . . . / reduce . py”
reduce params [ : argv ] = outputs
r educe task = medea( reduce params )

In this experiment, we vary the number of Map tasks dis-
patched when inlining is used and when it is not used, and
report the results in Figure 8. The data shows that when we
inline a small number of tasks, inlining performs better than
the non-inlined case, but as we inline more tasks, it causes
a near-linear slowdown on the system (as all inlined tasks
are run on the Task Manager, who runs them serially). In
the non-inlined case, the number of tasks we run are smaller
than the number of available cores, so the total execution
time is roughly constant.

As part of ongoing and future work, we are investigating how
to automatically detect when a task can and should be in-
lined vs deployed via the tasking system. Such support will
remove the burden from the programmer to decide when it
is best to do so. Since the MEDEA Task Manager collects
performance data and task behavior, we will use this infor-
mation to guide this inlining functionality that we currently
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Figure 8: Average end-to-end time to run inlined
and non-inlined tasks for the Python MapReduce
WordCount code for varying numbers of Map tasks
and a single Reduce task. Each value here represents
the average of five runs.

have in place. As a first step, we augment the Task Manager
to automatically inline up to one task per core on its node
(to avoid CPU thrashing from overprovisioning tasks).

6.3 Batch Task Execution
As many real-world use cases need to run more than a single
task, the ability to batch task invocations can be useful.
Our next MEDEA extension therefore facilitates batch task
invocation.

To enable this, we modify the invocation of medea to take
advantage of Ruby’s duck typing capabilities so that it can
receive either a Ruby hash (a single task invocation) or a
Ruby array of hashes (multiple task invocations) as argu-
ments. In case of the latter, the multiple task requests are
dispatched all at once to the MEDEA Task Manager within
AppScale, and a Ruby array of futures of task objects is re-
turned as a result. A code example that runs ten n-body
simulations in Google App Engine and prints their outputs
is:

t a sk s = [ ]
10 . t imes { | i |

ta sk s << medea ( params )
}

ta sk s . each { | task |
puts task . stdout

}

That example dispatches 10 tasks individually to MEDEA
to be executed, and prints the result of each task. Alter-
natively, the 10 tasks could be dispatched in a single batch
request as follows:

param l i s t = [ ]
10 . t imes { | i |

param l i s t << params
}

ta sk s = medea ( param l i s t )
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Figure 9: Average time to dispatch requests in a
batched fashion and a non-batched fashion for the
Python MapReduce WordCount code for varying
numbers of Map tasks. Each value here represents
the average of ten runs.

ta sk s . each { | task |
puts task . stdout

}

Figure 9 shows the performance improvements that are pos-
sible from batching requests for the Python MapReduce
WordCount code. When only a single Map task is used,
the two systems perform roughly equally. However, as the
number of tasks to run increases, batching the tasks into
a single request saves a significant amount of time. The
amount of time spent is linear in the number of tasks in
both cases, as the MEDEA scripting language checks that
the inputs and code to run are in the remote datastore (or
copy them to the datastore if they are on the local disk), and
that the output location specified does not exist (to avoid
accidentally overwriting existing data).

6.4 Caching Support
Many use cases, such as those in the MapReduce program-
ming paradigm, can execute many instances of a single pro-
gram (here, the Map program) on a single machine. Our
final MEDEA extension is therefore concerned with provid-
ing caching for programs and inputs on machines.

To implement caching support, whenever TaskWorkers would
normally download a program or an input file, they first
check to see if they have the file already stored locally in
/var/cache/medea. If so, they do not attempt to download
the file again (otherwise, they download the file from the
remote datastore as usual).

Figure 10 shows the results of executing WordCount Map
tasks over the baseline MEDEA system, as well as the per-
formance improvements that occur when we batch the tasks
into a single request. Finally, we also consider the perfor-
mance improvements of using batching as well as caching the
Map program and its input file (the works of William Shake-
speare). Although batching does improve performance (by
23% at 64 Map tasks), adding caching support has a much
greater impact on total execution time (by 65% at 64 Map
tasks). This is because the input file is 5MB in size, so not
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Figure 10: Average time taken to execute a varying
number of WordCount Map tasks, when the base-
line system is used, when batch task support is en-
abled, and when batch task support and caching is
employed. Each value here represents the average
of five runs.

re-downloading it for every Map task reduces the normal
“download-execute” process to simply “execute”.

7. RELATED WORK
This paper is an extended version of a previous version of
this work that is currently in submission [?]. In this paper,
we detail the design of the system and describe the benefits
that MEDEA facilitates in terms of cloud interoperability
through application portability and deployment automation
across cloud fabrics. In addition, we evaluate a number of
different extensions and use cases (cf Section 6) not included
in the earlier work.

Our contributions in this paper build upon and extend the
work of others. In particular, we repurpose the AppScale
cloud platform and the Neptune cloud configuration lan-
guage to facilitate MEDEA implementation. AppScale is an
open source distributed runtime that deploys, executes, and
scales Google App Engine applications written in Python,
Java, and Go. Neptune is scripting language support that
enables HPC applications written in MPI [21], UPC [17],
X10 [10], KDT [26], and others to be deployed over App-
Scale. MEDEA extends this work by providing automatic
execution of programs written in any programming language,
across compute, storage, and queue services offered by Ama-
zon, Google, and Microsoft. Furthermore, our extensions
automatically collect and expose metadata about the pro-
gram, allowing users to write programs that quantify the
performance characteristics of the programs they execute.

MEDEA is inspired in part by the YCSB project [12] and
its successor, YCSB++ [28]. These projects enable users to
benchmark popular non-relational datastores (e.g., HBase [23],
Cassandra [9]) on a consistent workload to provide infor-
mation about their underlying performance characteristics.
MEDEA goes a step in an orthogonal direction: instead of
providing a system that can be used to benchmark datas-
tores in a single cloud IaaS, implementations of MEDEA can
be used to benchmark compute, storage, and queue services
tied together in a single cloud IaaS or PaaS, or utilized as a
hybrid cloud.



Elastisizer [24] provides users with the ability to automat-
ically acquire IaaS resources and run tasks over them, and
like Neptune, provides a language-like interface to abstract
away resource usage. Elastisizer differs from MEDEA in
two critical ways. First, Elastisizer can run only Java tasks
that conform to the Hadoop MapReduce framework / pro-
gramming model, whereas our implementation of MEDEA
can run tasks written in any programming language, in any
programming model. Secondly, Elastisizer’s declarative lan-
guage serves a different purpose than Neptune does. Elasti-
sizer enables users to query the system about the perfor-
mance of their tasks for certain data sets, while Neptune
enables users to specify the tasks themselves and chain them
together with other tasks.

[18] attempts to solve a similar, but in many ways an or-
thogonal, problem. While MEDEA aims to simplify appli-
cation deployment over disparate cloud resources, [18] aims
to optimize application scheduling for different types of re-
sources within a single cloud. In particular, [18] focuses on
the Amazon EC2 public cloud, and constrains itself to that
set of APIs. Conversely, MEDEA seeks to maximize the
APIs that it supports, and does not explicitly optimize ap-
plication scheduling within cloud services (although it could
be extended to do so).

In a similar vein, Pegasus [14] and Swift [15] allow users
to specify an execution plan (typically in XML) to connect
programs together. In contrast to our language support,
these execution plans are not Turing-complete, which pre-
vents them from being used in scenarios where the result of
a computation can cause an arbitrary piece of code to be
executed or require some type of human interaction (which
may be the case when an expert user is needed to analyze
the result of a computation). Furthermore, these systems
are not designed to be pluggable in nature: they intend only
to utilize a single, statically owned set of resources to run
applications.

Workflow systems execute and connect programs together
automatically, which is conceptually similar to what MEDEA
offers. AME [33], Condor [29], StratUm [27], and Amazon
Simple Workflow Service (SWF) [3] are recent works that
seek to address this problem, for differing domains. AME is
designed to run on supercomputers, where millions of cores
may be present, while Condor and StratUm utilize grids,
which do not provide elasticity and thus do not allow users
to dynamically acquire nodes. While Amazon SWF does
operate within a cloud environment, it is specialized to the
Amazon cloud, which encourages lock-in to Amazon’s com-
pute, storage, and queue services. Furthermore, the spec-
ification language that connects computation together in
Amazon SWF is not Turing-complete, limiting the types of
computation that can be run in a manner similar to Pegasus
and Swift.

8. CONCLUSION
We contribute MEDEA, an execution model whose imple-
mentation automatically deploys user programs to cloud IaaS
and PaaS systems (compute, storage, and queue services),
without requiring that users modify their applications. To
provide this pluggable service, MEDEA repurposes an open
source cloud PaaS and domain specific language to enable

arbitrary programs to be deployed and executed. Our im-
plementation of MEDEA encapsulates such programs auto-
matically so that they can be executed over a wide variety
of cloud systems, and can execute programs on-premise or
off-premise in Amazon EC2, Google App Engine, Microsoft
Azure, or some combination.

We experiment with and evaluate MEDEA’s implementa-
tion using a number of different programs, programming
languages, benchmarks, and use cases. We find that while
cloud systems may perform similarly for a given piece of
code, they can vary greatly with respect to the price users
pay to run their code in these systems, due to the pricing
models that clouds enforce. Overall, the MEDEA execu-
tion model significantly simplifies and makes cloud IaaS and
PaaS systems portable and reusable through abstraction and
a cloud PaaS system. With our implementation of MEDEA,
users can “snapshot” the performance and cost of their pro-
grams in cloud systems, and run them where it is fastest or
cheapest to do so. All of the work presented in this paper has
been committed back to the AppScale and Neptune projects
under a permissive open source license, whose source code
can be found at http://appscale.cs.ucsb.edu.
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