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. . . ) "Iphone 4s"
Abstract—In social networks, information and influence  Bil1 =~ . Anno

diffuse among users as cascades. While the importance of Q
studying cascades has been recognized in various applicais,

it is difficult to observe the complete structure of cascades
in practice. Moreover, much less is known on how to infer
cascades based on partial observations. In this paper we
study the cascade inference problem following the indepereht

cascade model, and provide a full treatment from complexity 06
to algorithms: (a) We propose the idea of consistent trees o™ Mary.3 Mary,3
as the inferred structures for cascades; these trees conrtec G T1 T2

source nodes and observed nodes with paths satisfying the Figure 1: A cascade of an Ad (partially observed) in a

constraints from the observed temporal information. (b) We ial networkG: f d its t ible t
introduce metrics to measure the likelihood of consistentrees ~ SOCIal NEWOrkG from userAnn, and its two possible tree

as inferred cascades, as well as several optimization prashs ~ representationgy and7s.

for finding them. (c) We show that the decision problems

for consistent trees are in generainp-complete, and that the  geyelop techniques that camfer the cascades using partial
optimization problems are hard to approximate. (d) We provide inf Hi Consider the followi |

approximation algorithms with performance guarantees on the information. L.onsider the foflowing example.

quality of the inferred cascades, as well as heuristics. We Example 1:The graphG in Fig. 1 depicts a fraction of a

experimentally verify the efficiency and effectiveness of ur social network €.g., Twitter), where each node is a user, and

Mary,3

inference algorithms, using real and synthetic data. each edge represents an information exchange. For example,
Keywords-information diffusion; cascade inference edge(Ann, Bill) with a weight0.7 represents that a usann
sends an advertisement (Ad) about a released produgt (
|. INTRODUCTION “Iphone 4s”) with probability0.7. To identify the impact of

In various real-life networks, users frequently exchangean Ad strategy, a company would like to know the complete
information and influence each other. The informatiery(, ~ cascade starting from their agentn. Due to data privacy
messages, articles, recommendation links) is typicales cr policies, the observed information may be limited: (a) at
ated from a user and spreads via links among users, leavingtdne step0, Ann posts an Ad about “Iphone 4s”; () time
trace of its propagation. Such traces are typically repitese ~ step 1, Bill is influenced by Ann and retweets the Ad; (c)
as trees, namelynformation cascadewhere (a) each node by time step3, the Ad reachesvary, and Mary retweets
in a cascade is associated with the time step at which it. As seen, the information diffuses from one user to his
receives the information, and (b) an edge from a node t®r her neighbors with different probabilities, represertg
another indicates that a user propagates the information tde weighted edges it. Note that the cascade unfolds as
andinfluencests neighbor [4], [12]. atree, rooted at the nodann.

A comprehensive understanding and analysis of cascadesTo capture the entire topological information of the cas-
benefit various emerging applications in social networks [6 cades, we need to make inferences in the graph-time domain.
[16], viral marketing [1], [9], [27], and recommendation Given the above partially observed information, two such
networks [24]. In order to model the propagation of infor- inferred cascades are shown as tréeand7; in Fig. 1.7}
mation, variouscascademodels have been developed [8], illustrates a cascade where each path from the scumedo
[31], [33]. Among the most widely used models is the each observed node has a length that exactly equals to the
independent cascade mod&b], where each node has only time step, at which the observed node is influenced, while
one chance to influence its inactive neighbors, and each nodg illustrates a cascade where any patfiinfrom Ann to an
is influenced by at most one of its neighbors independentlyobserved node has a length no greater than the observed time
Nevertheless, it is typically difficult to observe the eatir step when the node is influenced, due to possible delay in
cascade in practice, due to the noisy graphs with missingbservatione.g.,Mary is known to be influenced by (instead
data, or data privacy policies [21], [29]. It is important to of exactly at) time ste®. The inferred cascades provide



useful information about the missing links and users thaRelated work. We categorize related work as follows.

are important in the propagation of the information. Cascade ModelsTo capture the behavior of cascades, a
The above example highlights the need to make reasolariety of cascade models have been proposed [2], [13], [15]

able inference about the cascades, according to only tllq7], [18], such asSuscepctible/Infected (SI) modg], de-

partial opservations qf influenced nodes and the time areasing cascade modl7], triggering mode[16], Shortest

or by which they are influenced. Although cascade modelpath Model[19], and theSusceptible/Infected/Recover (SIR)

and a set of related probleng.,influence maximization, model[18]. In this paper, we assume that the cascades follow

have been widely studied, much less is known on how tgpe independent cascade moddB], which is one of the

infer the cascade structures, including complexity boundgnost widely studied models (the shortest path model [19] is
and approximation algorithms. one of its special cases).

Contributions. We investigate the cascade inference prob-Cascade PredictionThere has been recent work on cas-
lem, where cascades follow the widely usediependent cade prediction and inference, with the emphasis on global
cascade modelTo the best of our knowledge, this is properties €.9.,cascade nodes, width, size) [5], [11], [20],
the first work towards inferring cascades gesneral trees [23], [29], [31], [33] with the assumption of missing data
following independent cascade model, based on the parti@ind partial observations. The problem of identifying and
observations. ranking influenced nodes is addressed in [20], [23], but
the topological inference of the cascades is not considered
Wang et al. [33] proposed diffusive logistic model to

: ! - . - “capture the evolution of the density of active users at a
cascades by incorporating connectivity and time condsain _. . . .
given distance over time, and demonstrated the prediction

in the partial observations. To provide a quantitative meas o . .
: . . ability of this model. Nevertheless, the structural infarm
of the quality of inferred cascades, we also introduce twa, .
o . . . : ion about the cascade is not addressed. Song et al. [31]
metrics in Section Il, based on (i) the size of the consisten

trees, and (ii) the likelihood when a diffusion function of studied the probability of a user being influenced by a given

. : . source. In contrast, we consider a more general inference
the network graph is taken into account, respectively. €hes .
S o problem where there are multiple observed users, who are
metrics give rise to two optimization problems, referredso

theminimum consistent tragroblem andminimum weiahted influenced at different time steps from the source. Fei et
. e g al. [11] studied social behavior prediction and the effefct o
consistent treg@roblem.

information content. In particular, their goal is to predic
(b) We investigate the problems of identifying perfect andactions on an article based on the training dataset. Budak et
bounded consistent trees, for given partial observations, al. [5] investigated the optimization problem of minimigin
Section Il and Section 1V, respectively. These problengs arthe number of the possible influencing nodes following
variants of the inference problem. a specified cascade model, instead of predicting cascades
based on partial observations.

All the above works focus on predicting the nodes and
their behavior in the cascades. In contrast, we propose
approaches to infer both the nodes and the topology of the
cascades in the graph-time domain.

(i N_evertheless, we provide approximation and heuriStiCNetwork Inference Another host of work study network
algorithms for these problems. For bounded trees, the pro?ﬁference problem, which focuses on inferring network

Ingm,L'n - 1 1
lems areO(|.X]| 1 )-approximable, whereX| is the structures from observed cascades over the unknown net-

’ U log fraz /.
size of the partial o%servatlon, atfthin (1€SP.fmac) are the work, instead of inferring cascade structures as trees [10]
[14]. Manuel et al. [14] proposes techniques to infer the

minimum (resp. maximum) probability on the graph edges
We provide such polynomial approximation algorithms. Forstructure of a network where the cascades flow, based on
the observation over the time each node is affected by a

perfect trees, we show that it is already-hard to even
find a feasible solution. However, we provide an eﬁ'c'emcascade. Similar network inference problem is addressed
fh [10], where the cascades are modeled as (Markov random

heuristics using a greedy strategy. Finally, we address
practical special case for perfect tree problems, which ar9\/alk) networks. The main difference between our work and
ax theirs is (a) we use consistent trees to describe possible

O(dx llf)’g}c#)-approximable, wheréd is the diameter of the
ch is typically small in practice. cascades allowing partial observations; (b) we focus on

graph, whi

(c) We experimentally verify the effectiveness and the effi-inferring the structure of cascades as trees instead of the
ciency of our algorithms in Section V, using real-life data backbone networks.

and synthetic data. We show that our inference algorithms Closer to our work is the work by Sadikov et al. [29] that
can efficiently infer cascades with satisfactory accuracy. consider the prediction of the cascades modelegdazses, a

(a) We introduce the notions ¢perfect and bounded) con-
sistent trees$n Section Il. These notions capture the inferred

(i) We show that these problems are m#i-complete. Worse
still, the optimization problems are hard to approximate:
unlessp = NP, it is not possible to approximate the problems
within any constantratio.



Ann,0 Ann,0 Ann,0 Ann,0

a time stept;, which represents that; is newly activeat
Bill 1 time stept;. Intuitively, a cascade is a tree representation of
Bill. 10O Bill.1 Jack  Bill,1 the “trace” of the information propagation from a specified
Jack source node to a set of influenced nodes.

Jack Tom Indeed, one may verify that any cascade frefollowing
the independent cascade model is a tree rooted at
Mary,3 Mary,3 Mary3 Mary3 Example 2: The graphG in Fig. 1 depicts a social graph.

T3 T4 The treel; and7; are two possible cascades following the
independent cascade model. For instance, after issuind an a
of “Iphone 4s”,Ann at time 0 becomes “newly active’Bill
and Jack retweet the ad at timé. Ann becomes “active”,
while Bill andJack are turned to “newly active”. The process
balanced tree model. The global properties of cascades sugBpeats until the ad reachstry at time step3. The trace
as size and depth are predicted based on the incomplegg the information propagation forms the cascdge
cascade. In contrast to their work, (a) we model cascades asAs remarked earlier, it is often difficult to observe the
general trees instead éfbalanced trees, (b) while Sadikov entire structure of a cascade in practice. We model the
et al. [29] assume the partial cascade is alsbteee and  observed information for a cascade gsaatial observation
predict only the properties of the original cascade, werinfe
the nodes as well as topology of the cascades only from a sE@rtial observation. Given a cascad€’ = (V., Ec, s, T),
of nodes and their activation time, using much less availabl@ Pair (v;, t;) is anobservation pointif v; € V' is known
information. (c) The temporal informatior @.,time steps) ~ (0bserved) to beewly active abr by time stept;. A partial

Figure 2: Tree representations of a partlal observalion
{(Ann,0), (Bill, 1), (Mary, 3)}: T5, T, andT}; are consistent
Trees, whileTg is not.

X is acomplete observatioif for any v € V,, there is an
[I. CONSISTENTTREES observation pointv,t) € X. To simplify the discussion,
We start by introducing several notions. we also assume that pais,0) € X wheres is the source

o . ) node. The techniques developed in this paper can be easily
Diffusion graph. We denote a social network agdaected  4qapted to the case where the source node is unknown.

graphG = (V. E, f), where (a)V is a finite set of nodes, e are now ready to introduce the idea of consistent trees.
and each node. € V denotes a user; (b C V x V is

a finite set of edges, where each edgev) € F denotes A. Consistent trees
a social connection via which the information may diffuse
from v to v; and (c) adiffusion functionf : £ — R* which
assigns for each edde,v) € E a valuef(u,v) € [0,1], as
the probability that node influencesv.

Given a partial observatioX” of a graphG = (V, E, f),
a bounded consistent trég; = (Vr., Er.,s) w.rt. X is a
directed subtree of with root s € V, such that forevery
(vi,t;) € X, v; € Vi, ands reaches; by ¢; hops,i.e., there
Cascades We first review the independent cascade exists a path of lengtht mostt; from s to v;. Specifically,
model[16]. We say an information propagates over a graphve say a consistent tree ispeerfect consistent tred for
G following the independent cascade modél(a) at any every (v;,t;) € X andwv; € Vp,, there is a path of length
time step, each node i@ is exactly one of the three states equals tot; from s to v;.
{active newly active inactive}; (b) a cascade starts from Intuitively, consistent trees represent possible cascade
a source nodes being newly activeat time step0; (c) a  which conform to the independent cascade model, as well
newly activenodewu at time stept has only one chance to as the partial observation. Note the following: (a) the path
influence itsinactive neighbors, such that at time+ 1, (i)  from the roots to a nodev; in a bounded consistent tree
if v is an inactive neighbor ofi, v becomesnewly active 75 is not necessarily a shortest path framto v; in G,
with probability f (u, v); and (ii) the state ofi changes from as observed in [22]; (b) the perfect consistent trees model
newly activeto active and cannot influence any neighbors cascades when the partial observation is accurateeach
afterwards; and (d) eadhactive nodewv can be influenced time ¢; in an observation poinfv;, ;) is exactly the time
by at most one of itmewly activeneighbors independently, whenw; is newly active; in contrast, in bounded consistent
and the neighbors’ attempts are sequenced in an arbitratyees, an observation poirit, ¢) indicates that node is
order. Once a node iactive it cannot change its state. newly active at the time stefp < ¢, due to possiblelelays

Based on the independent cascade model, we defineia the information propagation, as observed in [6].
cascadeC over graphG = (V,E, f) as adirected tree Example 3:Recall the graphG’ in Fig. 1. The partial
(Ve, Eeys,T) where (V. CV, E. CFE; (b)sc V,.isthe observation of a cascade @l is X = {(Ann,0), (Bill, 1),
source nodérom which the information starts to propagate; (Mary, 3)}. The treeT} is a perfect consistent treer.t. X,
and (c)7 is a function which assigns for each nodec V.  whereT5 is a bounded consistent treer.t. X.



Now consider the trees in Fig. 2. One may verify that (a)using the two metrics. We investigate the problems for
T3, T, and Ty are bounded consistent tre@s.t. X; (b) T3 perfect consistent trees in Section Ill, and for bounded
andT, are perfect consistent treesr.t. X, whereTy is not  consistent trees in Section IV, respectively.

a perfect consistent tree. (€} is not a consistent tree, as

there is no path from the sour@en to Mary with length lIl. CASCADES AS PERFECT TREES
no greater thars as constrained by the observation point As remarked earlier, when the partial observatiBnis
(Mary, 3). accurate, one may want to infer the cascade structure via

perfect consistent trees The minimum (resp. weighted)
erfect consistent treproblem, denoted aBCT ., (resp.
CT,) is to find the perfect consistent trees with minimum
size (resp. weight) as the quality metric.

B. Cascade inference problem

We introduce the general cascade inference proble
Given a social grapiz and a partial observatioX, the

cascade inference probletis to determine whether there Though it is desirable to have efficient polynomial time

exﬁgs a con5|st;tent trlef_ﬁl lw.r.t. X. in G. ¢ il balgorithms to identify perfect consistent trees, the peots
ere may be multiple consistent trees for a partial o of searching®CT i, andPCT,, are nontrivial.

servation, so one often wants to identify the best condisten

tree. We next provide two quantitative metrics to measure Proposition 1: Given a graphG: and a partial observation
the quality of the inferred cascades. I@t= (V, E, f) bea X, (a) it is NP-complete to determine whether there is a
social graph, and{ be a partial observation. perfect consistent tree.r.t. X in G; and (b) thePCT i,

o . ) . and PCT,, problems arevp-complete andiPx-hard.
Minimum weighted consistent trees In practice, one often

wants to identify the consistent trees that are most likely t
be the real cascades. Recall that each ddge) € E in a
given networkG carries a value assigned by a diffusion
function f(u,v), which indicates the probability that
influencesv. Based onf(u,v), we introduce dikelihood
functionas a quantitative metric for consistent trees.

One may verify Proposition 1(a) by a reduction from
the Hamiltonian path problem [32], which is to determine
whether there is a simple path of lendth| — 1 in a graphGG
=(V, E). Following this, one can verify that tHeCT;, and
PCT,, problems arenpP-complete as an immediate result.

Proposition 1(b) shows that tHeCT,,;, andPCT,, prob-
o , ) i lems are hard to approximate. Thex class [32] consists
Likelihood function Given a grapl = (V. £, f), a partial ¢ \p gptimization problems that can be approximated by
c_)bsgrvatlonX and a consistent tréﬁ% - (V_TS’ETS’S)’ the a polynomial time #TIME) algorithm within somepositive
likelihood of 7', denoted ad.x (), is defined as: constant. Theapx-hard problems areaPx problems to

Lx(Ts) =P(X | Ts) = H fu,v). (1)  which everyapx problem can be reduced. Hence, the prob-
(uw)EBr, lem for computing a minimum (weighted) perfect consistent
. . tree is among the hardest ones that allewmEe algorithms
_ F(_)Ilowmg common practice, we opt to use the Iog'with a constant approximation ratio.
likelihood metric, where It is known that if there is ampproximation preserving
Lx(To)= > logf(u,v) reduction AFP-reduction) [32] from a problemIl; to a
(u,v)€E, problemIl,, and if problemIl; is Apx-hard, thenll; is
Apx-hard [32]. To see Proposition 1(b), we may construct
an AFP-reduction from the minimum directed steiner tree
(MST) problem. An instance of a directed steiner tree
problemI = {G,V,, Vs, r,w} consists of a grapty, a set of
requirednodesV,., a set ofsteinernodesV;, a source node
r and a functionw which assigns to each node a positive
Minimum consistent trees Instead of weighted consistent weight. The problem is to find a minimum weighted tree
trees, one may simply want to find tmeinimumstructure  rooted atr, such that it contains all the nodes ¥ and a
that represents a cascade [25]. The minimum consistent trepart of V. We show such a reduction exists. Sind&T is
as a special case of the minimum weighted consistent treé&Px-hard,PCT i, is APX-hard.
depicts the smallest cascades with the fewest communicatio ) _
steps to pass the information to all the observed nodes. ifi- Bottom-up searching algorithm
other words, the metric favors those consistent trees sbnsi  Given the above intractability and approximation hardness
with the given partial observation with the fewest edges. result, we introduce a heuristicWPCT for the PCT,,

Given G and X, theminimum consistent treproblem is  problem. The idea is to (a) generate a “backbone network”
to find the minimum consistent trees g w.r.t. X. G, of G which contains all the nodes and edges that are

In the following sections, we investigate the cascadepossible to form a perfect consistent tree, using a set of
inference problem, and the related optimization problemgruning rules and also rank the observed nodegin with

GivenG and X, a natural problem is to find the consistent
tree of the maximum likelihood iz w.r.t. X. Using log-
likelihood, the minimum weighted consistent trgeoblem
is to identify the consistent tre&; with the minimum
—Lx(Ts), which in turn has the maximum likelihood.



Input: graphG and partial observatiorX'.
Output: a perfect consistent treE in G.

treeT = (Vr, Er), whereVr = {v|(v,t) € X},
set levell(v):= t for each(v,t) € X, E :={);
setVy, = {vp|dist(s, vp) < tmaz };
if there is a node in X andv ¢ V4 then return 0;
setE, = {(v,0)|(v',v) € E,v" € Vv € Vi) };
for eachv € V}, do

if there is no(v;, t;) € X that

dist(s, v)+dist(v, v;) < t; then

Vi = Vi \ {v};

Ey = Ey \ {(v1,v2)} wherevy = v or vy = v;
grathb = (‘/I,,Eb),
0.list L := {(vi,t1),..., (vk,tk)}

Whereti < tit1, (Ui,ti) cX,1¢€ [1, k— 1];
11.for eachi € [1, tma<) following descending ordetlo
12. Vi=ViuVW, UuVs, Vyoi= {’Uil(l},ti) S X};
Vo = {vjv € Vp,l(v) = t; };
V3 = {v’|(v’,v) € Eyb,ve Vi u VQ,U/ ¢ VT};
E; = {(v,v)]v' € V3,v € ViU Vs, (v,v) € Ep};
14. constructG; = (Vi, Ey);
15. T :=TUPCT|(G¢, Vi U Vo, Va,1);
16.if T is a treethen return T
17.return 0;

Procedure PCT,
Input: A bipartite graphG',
node setl’, node sefl’;, a numbert;;
Output: a forestT:.
1. T, =0
2. constructl; as a minimum weighted steiner forest
which coverV as the required nodes;
3. for each treeT; € T; do
4. I(r) :=t; — 1 wherer € V; is the root ofT;;
5. return T3;

=

oMW

B oo~

13.

Figure 3: AlgorithmWPCT: initialization, pruning and local
searching

the descending order of their time stepXn and (b) perform
a bottom-up evaluation for each time step G using a
local-optimal strategy, following the descending ordethef
time step.

Backbone network We consider pruning strategies to re-

of the following steps:

Initialization (line 1). The algorithmA/PCT starts by initial-
izing a treeT’, by inserting all the observation points into
T. Each nodev in T is assigned with devel(v) equal to
its time step as inX. The edge set is set to empty.

Pruning (lines 2-10). The algorithmWVPCT then constructs
a backbone networ&, with the pruning rules (lines 2-9). It
initializes a node se;, within ¢,,,,, hop of the source node
s, wheret,, . is the maximum time step iX (line 2). If
there exists some nodec X that is not inV;, the algorithm
returnsf@, since there is no path from reachingv with ¢
steps for(v, t) € X (line 3). It further removes the redundant
nodes and edges that are not in any perfect trees, using the
pruning rules (lines 5-8). The netwodk, is then constructed
with V3, and E, at line 9. The partial observatiol is also
sortedw.r.t. the time step (line 10).

Bottom-up local searching(lines 11-17). Following a
bottom-up greedy strategy, the algorithPCT processes
each observation point as follows. For eddh [1,¢,,4.], it
generates a (bipartite) gragh. (a) It initializes a node set
V; as the union of three sets of nodés 1, andV; (line 12),
where (i)V; is the nodes in the observation points with time
stept;, (ii) V4 is the node® in the current perfect consistent
tree T with level [(v) = ¢;, and (iii) V3 is the union of the
parents for the nodes ivi; andV4. (b) It constructs an edge
set F;, which consists of the edges from the noded/into
the nodes inV; and V5. (c) It then generate&’; with V;
and the edge sdft;, which is a bipartite graph. Aftef:; is
constructed, the algorithiwPCT invokes procedur®CT,

to compute a “part” of the perfect trde which is anoptimal
solution for Gy, a part of the graplts, which contains all
the observed nodes with time stgp It expandsT” with the
returned partial tree (line 15). The above process (lines 11
15) repeats for eache [1, t,,,4.] until all the nodes inX are
processed. AlgorithmVPCT then checks if the constructed
T is atree. If so, it return$’ (line 16). Otherwise, it returns
() (line 17). The above procedure is as illustrated in Fig. 4.

duce the nodes and the edges that are not possible to be in

any perfect consistent trees, given a gréph (V, E, f) and
a partial observatioX = {(v1,t1),. .., (vk, tx)}. We define
a backbone networks, = (V,, E}), where
o Vi = U{vjldist(s,v;) + dist(v;,v;) < t;} for each
(’Ui,f,i) € X; and
o By ={(v,v) € Vh,v €W, (v,v) € E}
Intuitively, GGy, includes all the possible nodes and edge

partial observation. In order to constru¢t,, a set of
pruning rulescan be developed as follows: if for a node
v" and each observed nodein a cascade with time step
t, dist(s,v") + dist(v’,v) > t, thend’ and all the edges
connected ta’ can be removed frony,.

Algorithm . Algorithm WPCT, as shown in Fig. 3, consists

ProcedurePCT,. Given a (bipartite) graplt;, and two sets

of nodesV andV; in Gy, the procedur®CT, computes for
G: a set of treeq; = {T1,...,T;} with the minimum total
weight (line 2), such that (a) each is a2-level tree with

a root inV; and leaves i/, (b) the leaves of any two trees
in T; are disjoint, and (c) the trees contain all the nodes in
V' as leaves. For each;, PCT, assigns its root in V; a

X : I®evel I(r) = t; — 1 (line 4). T; is then returned as a part
that may appear in a perfect consistent tree for a giventihe

entire perfect consistent tree (line 5). In practige,
may either employ linear programming, or an algorithm for
MST problem €.9.,[28]) to computeT;.

Example 4:The cascad€l; in Fig. 1, as a minimum
weighted perfect consistent tree, can be inferred by algo-
rithm WPCT as illustrated in Fig. 4 WPCT first initializes
a tree T" with the nodeMary. It then constructs; as



Ann.0 sp trees with the maximum likelihood (resp. minimum size).

\ Proposition 2: Given a graphG and a partial observation
X, (@) itisinpTIME to find asp treew.r.t. X; (b) thePCT i,

and PCT,, problems for perfectp trees arenp-hard and

Apx-hard; (c) thePCT,, problem is approximable within

rom O Jack e Old igng), whered is the diameter of7, and fi,qz

v \T (resp. fmim) Is the maximum (resp. minimum) probability
2 ,// by the diffusion functionf.
We next provide an approximation algorithm to thé€T,,
G problem for sp trees. Given a graphG and a partial

Figure 4: The bottom-up searching in the backbone networRbservationX, the algorithm, denoted ag/PCTy, (not
shown), first constructs the backbone gr@phas in the al-

the graph induced by edgésom, Mary), (Jack, Mary), and gorithmWPCT. It then constructs node seits = {v|(v,t) €
(Mike, Mary). Intuitively, the three nodes as the parents ofX 1+ @ndVs = V'\ V;.. TreatingV as required nodes/; as
Mary are the possible nodes which accepts the messagfée'n_er nodes, and the Iog-llkellhood function as the_ weigh
at time step2. It then selects the tree with the maximum runction, WPCT., approximately computes an undirected
probability, which is a single edgéMike, Mary), and adds minimum steiner tred’". If the directed counterpaift’ of T

' ' ! i i ’ .
it to 7. Following Mike, it keeps choosing the optimal M Gb 1S nota tlree_, WPCT,, transformsT” to a tree: for
tree structure for each level, and identifies nods. The ~ ©ach node in 7" with more than one parent, it (a) connects
process repeats untilVPCT reaches the sourgenn. Itthen S andv via the shortest path, and (b) removes the redundant

/

returns the perfect consistent tréeas the inferred cascade ©d9es attached t. It then/r_eturnsT as ansp tree.
from the partial observatior . One may verify that (a)" is a perfect;pi tr?ew.r.t. X, (b)
] ] the weight—L x (7”) is bounded byO(d x ;224 ) times of
Correctness The algorithm WPCT either returns@, or the optimal weight, and (c) the algoritrlwifmﬁs@ﬂvﬂ)
cgrrectl)f[.ca;wplutgs e:jperfect conssttfenéchtw;[eet. ”:E partial  ime leveraging the approximation algorithm for the séein
observationX. Indeed, one may verify that (a) the pruning yeq problem [32]. Moreover, the algorithWiPCT,, can be

rules only remove the nodes and edges that are not in anYsaq for the probler®CT ., for sp trees, where each edge

perfect consistent tree.r.t. X, and (b)WPCT has the loop i, 7 has the same weight. This achieves an approximation
invariant that at each iteration (lines 11-15), it always ratio of d.

constructs a part of a perfect tree as a forest.

Complexity The algorithmWPCT is in time O(|V||E| + IV. CASCADES AS BOUNDED TREES
| X |2 + timaz * A), Wheret,, .. is the maximum time step in
X, and A is the time complexity of procedufeCT,. Indeed,
(a) the initialization and preprocessing phase (lines 1-9
takesO(|V||E|) time, (b) the sorting phase is i@ (] X|?)
time, (c) the bottom-up construction is 0(|t;a. * A|),
which is further bounded bQ(|t,,.. * |V|?) if an approx- - _ _
imable algorithm is used [28]. In our experimental study, we Proposition 3: For a given grapht and a partial obser-
utilize efficient linear programming to compute thptimal ~ vation X, there is a bounded consistent treeinw.rt. X
steiner forest. if and only if for each(v,t) € X, dist(s,v) < t, where

The algorithmWPCT can easily be adapted to the prob- dist(s; v) is the distance frons to v in G.
lem of finding the minimum perfect consistent trees, where Indeed, one may verify the following: (a) if there is
each edge has a unit weight. a node(v;,t;) € X wheredist(s,v;) > t;, there is no

. . path satisfies the time constraint afidis empty; (b) if
Perfect consistent SP treesThe independent cascade modeldist(s,vi) < t, for each node(v;, t;) € X, a BFS tree

may be an overkill for real-life applications, as observedrooted ats with each nodes; in X as its internal node or

in [_7]’ [19]. Instead, one may identify the consistent r€€Si0at is a bounded consistent tree. Thus, to determine whethe
which follow the shortest path model [19], where cascade$y . e is a bounded consistent tree isan E2]) time, via a
propagate following the shortest paths. We defingedect BFS traversal of from s.

shortest pathdp) tree rooted at a given source nodeas a Given a graphi and a partial observatiol, the mini-

perfect consistent tree, such that for each observatiomt poi mum weighted bounded consistent tpzeblem, denoted as

g;t? frgo rfw( c;:; th?nt;ﬁg’ire:ediigtgzé’%g:?e;tgzrthyxogjsjréze BCT., is to identify the bounded consistent tré&g w.r.t.
S v . . . .
. . . X with the minimum-—log L x (T) (see Section II).
PCT,, (resp.PCT.in) problem forsp trees is to identify the og L (T3) ( )

- 0V Bill, 1 Jack

tmax Mary,3 @

In this section, we investigate the cascade inference
roblems for bounded consistent trees. In contrast to the
ntractable counterpart in Proposition 1(a), the problem o

finding a bounded consistent tree for a given graph and a
partial observation is iPTIME.



Input: graphG and partial observatiorX'.
Output: a bounded consistent tr&ein G.

1. treeT = (Vi, Ey), whereV, := {s|(s,0) € X}, B, :=0;
2. computet;, boundedBFS DAG G4 of s in G,
3. for eacht; € [t1,tx] do
4. for each nodev where(v,¢;) € X andi(v) =4 do
5. if ¢ > t; then return 0;
6. find a pathp from s to v with the
minimum weightw(p) = —Xlog f(e) for eache € p;
7. T=TUp;
8. return 7' as a bounded consistent tree;

Figure 5: AlgorithmWBCT: searching bounded consistent

trees via top-down strategy

Theorem 1:Given a graphG and a partial observation
X, the BCT,, problem is
(a) NP-complete andapx-hard; and
(b) approximable withinO(|X| « {2£2i2), where fyq.

(resp. finin) IS the maximum (resp. minimum) prob-
ability by the diffusion functionf overG.

We can prove Theorem 1(a) as follows. First, B€T,,
problem, as a decision problem,
there exists a bounded consistent t#avith —Lx(7") no
greater than a given boun@. The problem is obviously in

NP. To show the lower bound, one may show there exists
polynomial time reduction from the exact 3-cover problem

visits each edges at most once followind®BS traversal.

We next show the approximation ratio in Theorem 1(b).
Observe that for a single nodein X, (a) the total weight
of the pathw from s to v is no greater than-|w|log fiin,
where |w| is the length ofw; and (b) the weight of
the counterpart ofw in 7™, denoted asw’, is no less
than —|w*llog fmaz- Also observe thatw| < |w*|. Thus,
w/w* < 135]0% As there are in tota|X| such nodes,
Lx(T)/Lx(T") < |X
thus follows.

w
w*

< | X|{24nin Theorem 1(b)

Minimum bounded consistent tree We have considered
the likelihood function as a quantitative metric for the
quality of the bounded consistent trees. As remarked earlie
one may simply want to identify the bounded consistent
trees of theminimumsize. Given a social grapkr and

a partial observationX, the minimum bounded consistent
tree problemdenoted a8CT s, is to identify the bounded
consistent tree with the minimum sizee., the total number

of nodes and edges. THXT,,;, problem is a special case

is to determine whethe?f BCT,,, and its main result is summarized as follows.

Proposition 4: The BCT,,,;, problem is (a)NpP-complete,
(b) Apx-hard, and (c) approximable withi@(|X|), where

4X| is the size of the partial observation.

Proposition 4(a) and 4(b) can both be shown by construct-

(X3C). Second, to see the approximation hardness, one ma{)9 reductions from thé/ST problem, which isup-complete

verify that there exists aAFP-reduction from the minimum
directed steiner treeMST) problem.

WBCT, for theBCT,, problem. The algorithm runs iimear

time w.r.t.the size ofG, and with performance guarantee as

in Theorem 1(b).

Algorithm . The algorithmWBCT s illustrated in Fig. 5.
Given a graphG and a partial observatioN, the algorithm
first initializes a treel’ = (V;, E;) with the single source
node s (line 1). It then computes the, boundedBFS
directed acyclic graphQYAG ) [3] G, of the source node,

wheret;, is the maximum time step of the observation points
in X, andGy is a DAG induced by the nodes and edges

visited by aBFS traversal ofG from s (line 2). Following
a top-down strategy, for each nodef (v,¢) € X, WBCT
then (a) selects a paghwith the minimumX log f(e) from

s to v, and (b) extends the current trdé with the path
p (lines 3-7). If for some observation poirv,t) € T,
dist(s,v) > ¢, thenWBCT returnsf) as the treel’ (line 5).
Otherwise, the treel’ is returned (line 8) after all the
observation points inX are processed.

Correctness and complexityOne may verify that algo-

rithm WBCT either correctly computes a bounded consisten
treeT, or returns). For each node in the observation point
X, there is a path of weight selected using a greedy strateg

and Apx-complete [32].
Despite of the hardness, the problem can be approximated

We next provide a polynomial time algorithm, denoted asWithin O(|X]) in polynomial time, by applying the algo-

rithm WBCT over an instance where each edge has a unit
weight. This completes the proof of Proposition 4(c).

V. EXPERIMENTS

We next present an experimental study of our proposed
methods. Using both real-life and synthetic data, we cohduc
three sets of experiments to evaluate (a) the effectivenfess
the proposed algorithms, (b) the efficiency and the scathabil
of WPCT and WBCT.

Experimental setting. We used real-life data to evaluate the
effectiveness of our methods, and synthetic data to conduct
an in-depth analysis on scalability by varying the paramsete
of cascades and partial observations.

(a) Real-life graphs and cascaded/e used the following
real-life datasets. (iEnron email cascadesThe dataset of
Enron Emails! consists of a social graph 66, 808 nodes

and 660, 642 edges, where a node is a user, and two nodes
are connected if there is an email message between them.
We tracked théorwardedmessages of the same subjects and
btained260 cascades of depth no less tharwith more

han 8 nodes. (ii) Retweet cascadelRT). The dataset of

;I/’witter Tweets’ [35] contains more thad70 million posts

and the top-down strategy guarantees that the paths form ahgp:jmww.cs.cmu.edu/ enrons

consistent tree. The algorithm runs in tir6¥|E|), since it

2http://snap.stanford.edu/data/twitter7.html
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Figure 6: Theprec andrec of the inference algorithms over Enron email cascades amddee cascades

from more thanl7 million users, covering a period of 7 | Algorithms || Precision d:gEn[ond:LL 7 :ZWTte; =5
months from June 2009. We extracted the retweet cascadgs WPCT prec, 100% | 100% | 97.2% | 93.2%
of the identifiedhashtagqg35]. To guarantee that a cascade prec, 78.2% | 82.4% | 86.1% | 82.6%
represents the propagation of a single hashtag, we removed |, s+ prec, 100% | 70.1% | 73.6% | 66.1%
those retweet cascades containing multiple hashtagseln th prec, 69% | 55.7% | 60.6% | 41.7%

end, we obtain321 cascades of depth more thdn with
node size ranging from0 to 81. Moreover, we used the
EM algorithm from [30] to estimate the diffusion function. from given graphs.PCT, is developed using a similar

(b) Synthetic cascade¥ve generated a set of synthetic Cas_strateg_y forWPCT, especially for each_ level the steiner
cades unfolding in an anonymous Facebook social gfaph forest is randomly selected (see Section Iif); WSCT
which exhibits properties such as power-law degree distrid0€s,BCT, runs on bounde@FS directed acyclic graphs,
bution, high clustering coefficient and positive assortati Put randomly selects edges. (iv) to verify various imple-
ity [34]. The diffusion function is constructed by randomly Mentations oWPCT, an algorithmPCT, is developed by
assigning real numbers betweénand 1 to edges in the USinga greedy_ strategy to choose the steiner fores_t for each
network. The generating process is controlled by $ize level (see _Sectlon ). We used LBolve 5.5* as the linear

We randomly choose a node as the source of the cascade. Bjogramming solver.

simulating the diffusion process following the indeperiden We used a machine powered by larel(R) Core2.8GHz

cascade modeL we then generated cascades |T| and CPU andSGB of RAM, Using Ubuntu 10.10. Each eXperi-
assigned time steps. ment was run byl0 times and the average is reported here.

Table I. prec,, andprec, over real cascades

(c) Partial observation.For both real life and synthetic Experimental results. We next present our findings.
cascades, we definencertainty of a cascadel’ as ¢ =  Effectiveness of consistent treds the first set of experi-
- HVLTH where|Vr| is the size of the nodes ifi, and| X | is ~ ments, using real life cascades, we investigated the acgura
the size of the partial observatioti. We remove the nodes and the efficiency of our cascade inference algorithms.
from the given cascades until the uncertainty is satisfied, a

e = (a) Given a set of real life cascade = {T1,...,Tk},
collect the remaining nodes and their time stepsXas

for each cascad&; = (Vr,,Er,) € T, we computed an
(d) ImplementationWe have implemented the following in inferred cascadd;’ = (Vr./, Er.) according to a partial
C++: (i) algorithms WPCT, and WBCT; (ii) two linear  observation with uncertainty. Denote the nodes in the
programming algorithms$CT,, and BCT,, which iden- partial observation a$’y. We evaluated therecision as
tify the optimal weighted bounded consistent trees anthrec = W and rec = W
the optimal perfect consistent trees using linear programpitively, prec is the fraction of inferred nodes that are

ming, respectively; (iii) two randomized algorithn®CT,  issing from7;, while rec is the fraction of missing nodes
and BCT,, which are developed to randomly choose treespat are inferred byi).

Shttp://current.cs.ucsb.edu/socialnets “4http://lpsolve.sourceforge.net/5.5/
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Figure 7: Efficiency and scalability over synthetic cassade

For Enron email cascades, Fig. 6(a) and Fig. 6(b) show thabove75% over both datasets. Better still, the results hold

accuracy oWPCT, PCT, andPCT, for inferring cascades,
while ¢ is varied from0.25 to 0.85. PCT), does not scale
over the Enron dataset and thus is not shown WBCT
outperformsPCT, and PCT, on both prec and rec. (i)
When the uncertainty increases, both pinec andrec of the
three algorithms decrease. In particulMPCT successfully
infers cascade nodes wifbrec no less than70% and rec
no less than25% even when85% of the nodes in the

even when we set = 85%. For WBCT, prec, and prec,

are above65% and abovel0%, respectively. FOMWPCT,

prec,, andprec, have almost consistent performance on both
datasets; however, foVBCT, the prec, and prec, of the
inferred Enron cascades are higher than those of the idferre
retweet cascades. The gap might result from the different
diffusion patterns between these two datasets: we observed
that there are more than0% of cascades in the Enron

cascades are removed. Using the same setting, the perfatataset whose structures are contained inBRg directed

mance ofWBCT, BCT,, andBCT, are shown in Fig. 6(c)
and Fig. 6(d), respectively. (i) BotBCT,, and WBCT
outperformBCT,, and theirprec and rec decrease while
the uncertainty increases. (BCT), has better performance
thanWBCT. In particular, bottBCT, andWBCT success-
fully infer the cascade nodes with tipesc no less thars0%
and with therec no less thar25%, even wher85% of the
nodes in the cascades are removed.

For retweet cascades, theprec and the rec
of WPCT, PCT, and PCT, are shown in Fig. 6(e)

acyclic graphs ofVBCT, while in the Twitter Tweets there
are less than5% of retweet cascades following the assumed
graph structures ofVBCT.

Efficiency over real datasetdn all the tests over real
datasets, PCT,, BCT,, PCT, and WBCT take less than

1 second BCT), does not scale for retweet cascades, while
PCT), does not scale for both datasets. On the other hand,
while WPCT takes less thafi.4 seconds in inferring all the
Enron cascades, it takes less tlarseconds to infer Twitter
cascades wheré=4, and100 seconds wher = 5. Indeed,

and in Fig. 6(f), respectively. While the uncertainty for Twitter network the average degree of the node80is

increases from).25 to 0.85, (i) WPCT outperformPCT,

while the average degree for Enron dataset. i8s such, it

and PCT,, and (ii) the performance of all the algorithms takes more time foWWPCT to infer Twitter cascades in the

decreases. In particulaWWPCT successfully infers the
nodes with theprec more than80% and therec more than
35%, while the uncertainty i25%. Similarly, theprec and
the rec of WBCT and BCT, are presented in Fig. 6(g)
and Fig. 6(h), respectively. ABCT,, does not scale on

denser Twitter network. In our tests, the efficiency of aé th
algorithms are not sensitive.r.t. the changes to.

Efficiency and scalability over synthetic dataselis the
second set of experiments, we evaluated the efficiency and
the scalability of our algorithms using synthetic cascades

retweet cascades, its performance is not shown. While

the uncertaintyo increases, therec and therec of the
algorithms decrease. For atlb, WBCT outperformsBCT,;
in particular, WBCT correctly infers the nodes witprec no
less than60% andrec no less thar25%, wheno is 25%.

(b) To further evaluate the structural similarity @f and
T, as described in (a), we also evaluate gi}c, = ‘l“/,l,ll‘
for nodesV’ = (Vp,» N Vp,) \ Vx, whereV” e V' are
the nodes with the sam®pological orderin both T and

T;, and (ii) prec, = % for E' = Eg, N Er,/, following

the metric for measuring graph similarity [26]. The average

results are as shown in Table |, fer =50%, and the
cascades of fixed depth. As shown in the table, ViG?CT,
the averageprec, is above90%, and the averagerec, is

(a) We first evaluate the efficiency and scalabilitwgPCT
and compar&VPCT with PCT, andPCT,.

Fixing uncertaintyoc = 50%, we varied|T'| from 30 to
240. Fig. 7(c) shows thatWPCT scales well with the size
of the cascade. Indeed, it only takeseconds to infer the
cascades witl300 nodes.

Fixing size|T'| = 100, we varied the uncertainty from
0.25 to 0.85. Fig. 7(d) illustrates that while all the three
algorithms are more efficient with larger WPCT is more
sensitive. All the three algorithms scale well wiih
As PCT), does not scale well, its performance is not
shown in Fig. 7(c) and Fig. 7(d).

(b) Using the same setting, we evaluated the performance
of WBCT, compared witlBCT, and BCT,.



[ Problem [ Complexity [ Approximation ] time |
BCT min NP-c, APX-hard | X O(|E])
BCT,, NP-cAPx-hard | |X| * }g«;f;—w O(|E|))
PCTmin (sp tree) | NP-c, APx-hard O|V?3]
PCT,, (sp tree) | NP-c, APx-hard | d * 28 max o|V3|

log frpin

PCT min

NP-c, APX-hard

- O([tmax * |[V[®)

PCT,,

NP-C, APX-hard

- O([tmaz * [V]%)

Table 1. Summary: complexity and approximability

Fixing o and varying ||,

the result is reported in

Fig. 7(a). FirstWBCT outperformsBCT,, and is almost as

efficient as the randomized algorithB€CT,. For the cascade

of 240 nodes WBCT takes less thaf.5 second to infer the

structure, whileBCT), takes nearlyl000 seconds. Second,

while WBCT is not sensitive to the change [f|, BCT), is
much more sensitive.

Fixing |T'| and varyingo, Fig. 7(b) shows the performance

of the three algorithms. The figure tells us tHABCT
andBCT, are less sensitive to the changecothan BCT,.
This is becausaVBCT and BCT, identify bounded con-
sistent tree by constructing shortest paths from the sourdéd?l

to the observed nodes. When the maximum depth of the

[4]

(5]

(6]

[7]

(8]
9]

(10]

(11]

observation point is fixed, the total number of nodes andi13]
edges visited byVBCT andBCT, are not sensitive to.

Summary. We can summarize the results as follows. (a)[14]
Our inference algorithms can infer cascades effectively[15]
For example, the original cascades and the ones inferred
by WPCT have structural similarity (measured byec,) of
higher tharir5% in both real-life datasets. (b) Our algorithms [17]
scale well with the sizes of the cascades, and uncertainty.

They seldom demonstrated their worst-case complexity. F

example, even for cascades withl0 nodes, all of our
algorithms take less than two seconds.

VI. CONCLUSION

In this paper, we investigated cascade inference proble
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