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Abstract—In social networks, information and influence
diffuse among users as cascades. While the importance of
studying cascades has been recognized in various applications,
it is difficult to observe the complete structure of cascades
in practice. Moreover, much less is known on how to infer
cascades based on partial observations. In this paper we
study the cascade inference problem following the independent
cascade model, and provide a full treatment from complexity
to algorithms: (a) We propose the idea of consistent trees
as the inferred structures for cascades; these trees connect
source nodes and observed nodes with paths satisfying the
constraints from the observed temporal information. (b) We
introduce metrics to measure the likelihood of consistent trees
as inferred cascades, as well as several optimization problems
for finding them. (c) We show that the decision problems
for consistent trees are in generalNP-complete, and that the
optimization problems are hard to approximate. (d) We provide
approximation algorithms with performance guarantees on the
quality of the inferred cascades, as well as heuristics. We
experimentally verify the efficiency and effectiveness of our
inference algorithms, using real and synthetic data.
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I. I NTRODUCTION

In various real-life networks, users frequently exchange
information and influence each other. The information (e.g.,
messages, articles, recommendation links) is typically cre-
ated from a user and spreads via links among users, leaving a
trace of its propagation. Such traces are typically represented
as trees, namely,information cascades, where (a) each node
in a cascade is associated with the time step at which it
receives the information, and (b) an edge from a node to
another indicates that a user propagates the information to
and influencesits neighbor [4], [12].

A comprehensive understanding and analysis of cascades
benefit various emerging applications in social networks [6],
[16], viral marketing [1], [9], [27], and recommendation
networks [24]. In order to model the propagation of infor-
mation, variouscascademodels have been developed [8],
[31], [33]. Among the most widely used models is the
independent cascade model[16], where each node has only
one chance to influence its inactive neighbors, and each node
is influenced by at most one of its neighbors independently.
Nevertheless, it is typically difficult to observe the entire
cascade in practice, due to the noisy graphs with missing
data, or data privacy policies [21], [29]. It is important to
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Figure 1: A cascade of an Ad (partially observed) in a
social networkG from userAnn, and its two possible tree
representationsT1 andT2.

develop techniques that caninfer the cascades using partial
information. Consider the following example.

Example 1:The graphG in Fig. 1 depicts a fraction of a
social network (e.g.,Twitter), where each node is a user, and
each edge represents an information exchange. For example,
edge(Ann,Bill) with a weight0.7 represents that a userAnn
sends an advertisement (Ad) about a released product (e.g.,
“Iphone 4s”) with probability0.7. To identify the impact of
an Ad strategy, a company would like to know the complete
cascade starting from their agentAnn. Due to data privacy
policies, the observed information may be limited: (a) at
time step0, Ann posts an Ad about “Iphone 4s”; (b)at time
step1, Bill is influenced by Ann and retweets the Ad; (c)
by time step3, the Ad reachesMary, and Mary retweets
it. As seen, the information diffuses from one user to his
or her neighbors with different probabilities, represented by
the weighted edges inG. Note that the cascade unfolds as
a tree, rooted at the nodeAnn.

To capture the entire topological information of the cas-
cades, we need to make inferences in the graph-time domain.
Given the above partially observed information, two such
inferred cascades are shown as treesT1 andT2 in Fig. 1.T1

illustrates a cascade where each path from the sourceAnn to
each observed node has a length that exactly equals to the
time step, at which the observed node is influenced, while
T2 illustrates a cascade where any path inT2 from Ann to an
observed node has a length no greater than the observed time
step when the node is influenced, due to possible delay in
observation,e.g.,Mary is known to be influenced by (instead
of exactly at) time step3. The inferred cascades provide



useful information about the missing links and users that
are important in the propagation of the information.

The above example highlights the need to make reason-
able inference about the cascades, according to only the
partial observations of influenced nodes and the time at
or by which they are influenced. Although cascade models
and a set of related problems,e.g., influence maximization,
have been widely studied, much less is known on how to
infer the cascade structures, including complexity bounds
and approximation algorithms.

Contributions . We investigate the cascade inference prob-
lem, where cascades follow the widely usedindependent
cascade model. To the best of our knowledge, this is
the first work towards inferring cascades asgeneral trees
following independent cascade model, based on the partial
observations.

(a) We introduce the notions of(perfect and bounded) con-
sistent treesin Section II. These notions capture the inferred
cascades by incorporating connectivity and time constraints
in the partial observations. To provide a quantitative measure
of the quality of inferred cascades, we also introduce two
metrics in Section II, based on (i) the size of the consistent
trees, and (ii) the likelihood when a diffusion function of
the network graph is taken into account, respectively. These
metrics give rise to two optimization problems, referred toas
theminimum consistent treeproblem andminimum weighted
consistent treeproblem.

(b) We investigate the problems of identifying perfect and
bounded consistent trees, for given partial observations,in
Section III and Section IV, respectively. These problems are
variants of the inference problem.

(i) We show that these problems are allNP-complete. Worse
still, the optimization problems are hard to approximate:
unlessP = NP, it is not possible to approximate the problems
within any constantratio.

(ii) Nevertheless, we provide approximation and heuristic
algorithms for these problems. For bounded trees, the prob-
lems areO(|X | ∗ log fmin

log fmax
)-approximable, where|X | is the

size of the partial observation, andfmin (resp.fmax) are the
minimum (resp. maximum) probability on the graph edges.
We provide such polynomial approximation algorithms. For
perfect trees, we show that it is alreadyNP-hard to even
find a feasible solution. However, we provide an efficient
heuristics using a greedy strategy. Finally, we address a
practical special case for perfect tree problems, which are
O(d∗ log fmin

log fmax
)-approximable, whered is the diameter of the

graph, which is typically small in practice.

(c) We experimentally verify the effectiveness and the effi-
ciency of our algorithms in Section V, using real-life data
and synthetic data. We show that our inference algorithms
can efficiently infer cascades with satisfactory accuracy.

Related work. We categorize related work as follows.

Cascade Models. To capture the behavior of cascades, a
variety of cascade models have been proposed [2], [13], [15],
[17], [18], such asSuscepctible/Infected (SI) model[2], de-
creasing cascade model[17], triggering model[16], Shortest
Path Model[19], and theSusceptible/Infected/Recover (SIR)
model[18]. In this paper, we assume that the cascades follow
the independent cascade model[13], which is one of the
most widely studied models (the shortest path model [19] is
one of its special cases).

Cascade Prediction. There has been recent work on cas-
cade prediction and inference, with the emphasis on global
properties (e.g.,cascade nodes, width, size) [5], [11], [20],
[23], [29], [31], [33] with the assumption of missing data
and partial observations. The problem of identifying and
ranking influenced nodes is addressed in [20], [23], but
the topological inference of the cascades is not considered.
Wang et al. [33] proposed adiffusive logistic model to
capture the evolution of the density of active users at a
given distance over time, and demonstrated the prediction
ability of this model. Nevertheless, the structural informa-
tion about the cascade is not addressed. Song et al. [31]
studied the probability of a user being influenced by a given
source. In contrast, we consider a more general inference
problem where there are multiple observed users, who are
influenced at different time steps from the source. Fei et
al. [11] studied social behavior prediction and the effect of
information content. In particular, their goal is to predict
actions on an article based on the training dataset. Budak et
al. [5] investigated the optimization problem of minimizing
the number of the possible influencing nodes following
a specified cascade model, instead of predicting cascades
based on partial observations.

All the above works focus on predicting the nodes and
their behavior in the cascades. In contrast, we propose
approaches to infer both the nodes and the topology of the
cascades in the graph-time domain.

Network Inference. Another host of work study network
inference problem, which focuses on inferring network
structures from observed cascades over the unknown net-
work, instead of inferring cascade structures as trees [10],
[14]. Manuel et al. [14] proposes techniques to infer the
structure of a network where the cascades flow, based on
the observation over the time each node is affected by a
cascade. Similar network inference problem is addressed
in [10], where the cascades are modeled as (Markov random
walk) networks. The main difference between our work and
theirs is (a) we use consistent trees to describe possible
cascades allowing partial observations; (b) we focus on
inferring the structure of cascades as trees instead of the
backbone networks.

Closer to our work is the work by Sadikov et al. [29] that
consider the prediction of the cascades modeled ask-trees, a
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Figure 2: Tree representations of a partial observationX =
{(Ann, 0), (Bill, 1), (Mary, 3)}: T3, T4 andT5 are consistent
Trees, whileT6 is not.

balanced tree model. The global properties of cascades such
as size and depth are predicted based on the incomplete
cascade. In contrast to their work, (a) we model cascades as
general trees instead ofk-balanced trees, (b) while Sadikov
et al. [29] assume the partial cascade is also ak-tree and
predict only the properties of the original cascade, we infer
the nodes as well as topology of the cascades only from a set
of nodes and their activation time, using much less available
information. (c) The temporal information (e.g.,time steps)
in the partial observations is not considered in [29].

II. CONSISTENTTREES

We start by introducing several notions.

Diffusion graph. We denote a social network as adirected
graphG = (V,E, f), where (a)V is a finite set of nodes,
and each nodeu ∈ V denotes a user; (b)E ⊆ V × V is
a finite set of edges, where each edge(u, v) ∈ E denotes
a social connection via which the information may diffuse
from u to v; and (c) adiffusion functionf : E → R+ which
assigns for each edge(u, v) ∈ E a valuef(u, v) ∈ [0, 1], as
the probability that nodeu influencesv.

Cascades. We first review the independent cascade
model[16]. We say an information propagates over a graph
G following the independent cascade modelif (a) at any
time step, each node inG is exactly one of the three states
{active, newly active, inactive}; (b) a cascade starts from
a source nodes being newly activeat time step0; (c) a
newly activenodeu at time stept has only one chance to
influence itsinactiveneighbors, such that at timet+ 1, (i)
if v is an inactive neighbor ofu, v becomesnewly active
with probabilityf(u, v); and (ii) the state ofu changes from
newly activeto active, and cannot influence any neighbors
afterwards; and (d) eachinactivenodev can be influenced
by at most one of itsnewly activeneighbors independently,
and the neighbors’ attempts are sequenced in an arbitrary
order. Once a node isactive, it cannot change its state.

Based on the independent cascade model, we define a
cascadeC over graphG = (V,E, f) as a directed tree
(Vc, Ec, s, T ) where (a)Vc ⊆ V , Ec ⊆ E; (b) s ∈ Vc is the
source nodefrom which the information starts to propagate;
and (c)T is a function which assigns for each nodevi ∈ Vc

a time stepti, which represents thatvi is newly activeat
time stepti. Intuitively, a cascade is a tree representation of
the “trace” of the information propagation from a specified
source nodes to a set of influenced nodes.

Indeed, one may verify that any cascade froms following
the independent cascade model is a tree rooted ats.

Example 2:The graphG in Fig. 1 depicts a social graph.
The treeT1 andT2 are two possible cascades following the
independent cascade model. For instance, after issuing an ad
of “Iphone 4s”,Ann at time0 becomes “newly active”.Bill
and Jack retweet the ad at time1. Ann becomes “active”,
while Bill andJack are turned to “newly active”. The process
repeats until the ad reachesMary at time step3. The trace
of the information propagation forms the cascadeT1.

As remarked earlier, it is often difficult to observe the
entire structure of a cascade in practice. We model the
observed information for a cascade as apartial observation.

Partial observation. Given a cascadeC = (Vc, Ec, s, T ),
a pair (vi, ti) is an observation point, if vi ∈ V is known
(observed) to benewly active ator by time stepti. A partial
observationX is a set of observation points. Specifically,
X is a complete observationif for any v ∈ Vc, there is an
observation point(v, t) ∈ X . To simplify the discussion,
we also assume that pair(s, 0) ∈ X wheres is the source
node. The techniques developed in this paper can be easily
adapted to the case where the source node is unknown.

We are now ready to introduce the idea of consistent trees.

A. Consistent trees

Given a partial observationX of a graphG = (V,E, f),
a bounded consistent treeTs = (VTs

, ETs
, s) w.r.t. X is a

directed subtree ofG with root s ∈ V , such that forevery
(vi, ti) ∈ X , vi ∈ VTs

, ands reachesvi by ti hops,i.e., there
exists a path of lengthat mostti from s to vi. Specifically,
we say a consistent tree is aperfect consistent treeif for
every (vi, ti) ∈ X and vi ∈ VTs

, there is a path of length
equals toti from s to vi.

Intuitively, consistent trees represent possible cascades
which conform to the independent cascade model, as well
as the partial observation. Note the following: (a) the path
from the roots to a nodevi in a bounded consistent tree
Ts is not necessarily a shortest path froms to vi in G,
as observed in [22]; (b) the perfect consistent trees model
cascades when the partial observation is accurate,i.e., each
time ti in an observation point(vi, ti) is exactly the time
whenvi is newly active; in contrast, in bounded consistent
trees, an observation point(v, t) indicates that nodev is
newly active at the time stept′ ≤ t, due to possibledelays
in the information propagation, as observed in [6].

Example 3:Recall the graphG in Fig. 1. The partial
observation of a cascade inG is X = {(Ann, 0), (Bill, 1),
(Mary, 3)}. The treeT1 is a perfect consistent treew.r.t. X ,
whereT2 is a bounded consistent treew.r.t. X .



Now consider the trees in Fig. 2. One may verify that (a)
T3, T4 andT5 are bounded consistent treesw.r.t. X ; (b) T3

andT4 are perfect consistent treesw.r.t. X , whereT5 is not
a perfect consistent tree. (c)T6 is not a consistent tree, as
there is no path from the sourceAnn to Mary with length
no greater than3 as constrained by the observation point
(Mary, 3).

B. Cascade inference problem

We introduce the general cascade inference problem.
Given a social graphG and a partial observationX , the
cascade inference problemis to determine whether there
exists a consistent treeT w.r.t. X in G.

There may be multiple consistent trees for a partial ob-
servation, so one often wants to identify the best consistent
tree. We next provide two quantitative metrics to measure
the quality of the inferred cascades. LetG = (V,E, f) be a
social graph, andX be a partial observation.

Minimum weighted consistent trees. In practice, one often
wants to identify the consistent trees that are most likely to
be the real cascades. Recall that each edge(u, v) ∈ E in a
given networkG carries a value assigned by a diffusion
function f(u, v), which indicates the probability thatu
influencesv. Based onf(u, v), we introduce alikelihood
functionas a quantitative metric for consistent trees.

Likelihood function. Given a graphG = (V,E, f), a partial
observationX and a consistent treeTs = (VTs

, ETs
, s), the

likelihood of Ts, denoted asLX(Ts), is defined as:

LX(Ts) = P(X | Ts) =
∏

(u,v)∈ETs

f(u, v). (1)

Following common practice, we opt to use the log-
likelihood metric, where

LX(Ts) =
∑

(u,v)∈ETs

log f(u, v)

GivenG andX , a natural problem is to find the consistent
tree of the maximum likelihood inG w.r.t. X . Using log-
likelihood, theminimum weighted consistent treeproblem
is to identify the consistent treeTs with the minimum
−LX(Ts), which in turn has the maximum likelihood.

Minimum consistent trees. Instead of weighted consistent
trees, one may simply want to find theminimumstructure
that represents a cascade [25]. The minimum consistent tree,
as a special case of the minimum weighted consistent tree,
depicts the smallest cascades with the fewest communication
steps to pass the information to all the observed nodes. In
other words, the metric favors those consistent trees consist
with the given partial observation with the fewest edges.

GivenG andX , the minimum consistent treeproblem is
to find the minimum consistent trees inG w.r.t. X .

In the following sections, we investigate the cascade
inference problem, and the related optimization problems

using the two metrics. We investigate the problems for
perfect consistent trees in Section III, and for bounded
consistent trees in Section IV, respectively.

III. C ASCADES AS PERFECT TREES

As remarked earlier, when the partial observationX is
accurate, one may want to infer the cascade structure via
perfect consistent trees. The minimum (resp. weighted)
perfect consistent treeproblem, denoted asPCTmin (resp.
PCTw) is to find the perfect consistent trees with minimum
size (resp. weight) as the quality metric.

Though it is desirable to have efficient polynomial time
algorithms to identify perfect consistent trees, the problems
of searchingPCTmin andPCTw are nontrivial.

Proposition 1: Given a graphG and a partial observation
X , (a) it is NP-complete to determine whether there is a
perfect consistent treew.r.t. X in G; and (b) thePCTmin

and PCTw problems areNP-complete andAPX-hard.

One may verify Proposition 1(a) by a reduction from
the Hamiltonian path problem [32], which is to determine
whether there is a simple path of length|V |−1 in a graphG
=(V,E). Following this, one can verify that thePCTmin and
PCTw problems areNP-complete as an immediate result.

Proposition 1(b) shows that thePCTmin andPCTw prob-
lems are hard to approximate. TheAPX class [32] consists
of NP optimization problems that can be approximated by
a polynomial time (PTIME) algorithm within somepositive
constant. TheAPX-hard problems areAPX problems to
which everyAPX problem can be reduced. Hence, the prob-
lem for computing a minimum (weighted) perfect consistent
tree is among the hardest ones that allowPTIME algorithms
with a constant approximation ratio.

It is known that if there is anapproximation preserving
reduction (AFP-reduction) [32] from a problemΠ1 to a
problemΠ2, and if problemΠ1 is APX-hard, thenΠ2 is
APX-hard [32]. To see Proposition 1(b), we may construct
an AFP-reduction from the minimum directed steiner tree
(MST) problem. An instance of a directed steiner tree
problemI = {G, Vr, Vs, r, w} consists of a graphG, a set of
requirednodesVr , a set ofsteinernodesVs, a source node
r and a functionw which assigns to each node a positive
weight. The problem is to find a minimum weighted tree
rooted atr, such that it contains all the nodes inVr and a
part ofVs. We show such a reduction exists. SinceMST is
APX-hard,PCTmin is APX-hard.

A. Bottom-up searching algorithm

Given the above intractability and approximation hardness
result, we introduce a heuristicWPCT for the PCTw

problem. The idea is to (a) generate a “backbone network”
Gb of G which contains all the nodes and edges that are
possible to form a perfect consistent tree, using a set of
pruning rules, and also rank the observed nodes inGb with



Input: graphG and partial observationX.
Output: a perfect consistent treeT in G.

1. treeT = (VT , ET ), whereVT := {v|(v, t) ∈ X},
set levell(v):= t for each(v, t) ∈ X, E := ∅;

2. setVb := {vb|dist(s, vb) ≤ tmax};
3. if there is a nodev in X andv /∈ Vb then return ∅;
4. setEb := {(v′, v)|(v′, v) ∈ E, v′ ∈ Vb, v ∈ Vb)};
5. for each v ∈ Vb do
6. if there is no(vi, ti) ∈ X that

dist(s, v)+dist(v, vi) ≤ ti then
7. Vb = Vb \ {v};
8. Eb = Eb \ {(v1, v2)} wherev1 = v or v2 = v;
9. graphGb := (Vb, Eb);
10. list L := {(v1, t1), . . . , (vk, tk)}

whereti ≤ ti+1, (vi, ti) ∈ X, i ∈ [1, k − 1];
11. for each i ∈ [1, tmax] following descending orderdo
12. Vt:= V1 ∪ V2 ∪ V3, V1 := {vi|(v, ti) ∈ X};

V2 := {v|v ∈ VT , l(v) = ti};
V3 := {v′|(v′, v) ∈ Eb, v ∈ V1 ∪ V2, v

′ /∈ VT };
13. Et := {(v′, v)|v′ ∈ V3, v ∈ V1 ∪ V2, (v

′, v) ∈ Eb};
14. constructGt = (Vt, Et);
15. T := T ∪ PCTl(Gt, V1 ∪ V2, V3, i);
16. if T is a treethen return T ;
17. return ∅;

ProcedurePCTl

Input: A bipartite graphGt,
node setV , node setVs, a numberti;

Output: a forestTt.
1. Tt = ∅;
2. constructTt as a minimum weighted steiner forest

which coverV as the required nodes;
3. for each treeTi ∈ Tt do
4. l(r) := ti − 1 wherer ∈ Vs is the root ofTi;
5. return Tt;

Figure 3: AlgorithmWPCT: initialization, pruning and local
searching

the descending order of their time step inX , and (b) perform
a bottom-up evaluation for each time step inGb using a
local-optimal strategy, following the descending order ofthe
time step.

Backbone network. We consider pruning strategies to re-
duce the nodes and the edges that are not possible to be in
any perfect consistent trees, given a graphG = (V,E, f) and
a partial observationX = {(v1, t1), . . . , (vk, tk)}. We define
a backbone networkGb = (Vb, Eb), where

• Vb =
⋃
{vj|dist(s, vj) + dist(vj , vi) ≤ ti} for each

(vi, ti) ∈ X ; and
• Eb = {(v′, v)|v′ ∈ Vb, v ∈ Vb, (v

′, v) ∈ E}

Intuitively, Gb includes all the possible nodes and edges
that may appear in a perfect consistent tree for a given
partial observation. In order to constructGb, a set of
pruning rulescan be developed as follows: if for a node
v′ and each observed nodev in a cascade with time step
t, dist(s, v′) + dist(v′, v) > t, then v′ and all the edges
connected tov′ can be removed fromGb.

Algorithm . Algorithm WPCT, as shown in Fig. 3, consists

of the following steps:

Initialization (line 1). The algorithmWPCT starts by initial-
izing a treeT , by inserting all the observation points into
T . Each nodev in T is assigned with alevel l(v) equal to
its time step as inX . The edge set is set to empty.

Pruning (lines 2-10). The algorithmWPCT then constructs
a backbone networkGb with the pruning rules (lines 2-9). It
initializes a node setVb within tmax hop of the source node
s, wheretmax is the maximum time step inX (line 2). If
there exists some nodev ∈ X that is not inVb, the algorithm
returns∅, since there is no path froms reachingv with t
steps for(v, t) ∈ X (line 3). It further removes the redundant
nodes and edges that are not in any perfect trees, using the
pruning rules (lines 5-8). The networkGb is then constructed
with Vb andEb at line 9. The partial observationX is also
sortedw.r.t. the time step (line 10).

Bottom-up local searching(lines 11-17). Following a
bottom-up greedy strategy, the algorithmWPCT processes
each observation point as follows. For eachi in [1, tmax], it
generates a (bipartite) graphGt. (a) It initializes a node set
Vt as the union of three sets of nodesV1, V2 andV3 (line 12),
where (i)V1 is the nodes in the observation points with time
stepti, (ii) V2 is the nodesv in the current perfect consistent
treeT with level l(v) = ti, and (iii) V3 is the union of the
parents for the nodes inV1 andV2. (b) It constructs an edge
setEt which consists of the edges from the nodes inV3 to
the nodes inV1 and V2. (c) It then generatesGt with Vt

and the edge setEt, which is a bipartite graph. AfterGt is
constructed, the algorithmWPCT invokes procedurePCTl

to compute a “part” of the perfect treeT , which is anoptimal
solution forGt, a part of the graphGb which contains all
the observed nodes with time stepti. It expandsT with the
returned partial tree (line 15). The above process (lines 11-
15) repeats for eachi ∈ [1, tmax] until all the nodes inX are
processed. AlgorithmWPCT then checks if the constructed
T is a tree. If so, it returnsT (line 16). Otherwise, it returns
∅ (line 17). The above procedure is as illustrated in Fig. 4.

ProcedurePCTl. Given a (bipartite) graphGt, and two sets
of nodesV andVs in Gt, the procedurePCTl computes for
Gt a set of treesTt = {T1, . . . , Ti} with the minimum total
weight (line 2), such that (a) eachTi is a 2-level tree with
a root inVs and leaves inV , (b) the leaves of any two trees
in Tt are disjoint, and (c) the trees contain all the nodes in
V as leaves. For eachTi, PCTl assigns its rootr in Vs a
level l(r) = ti − 1 (line 4). Tt is then returned as a part
of the entire perfect consistent tree (line 5). In practice,we
may either employ linear programming, or an algorithm for
MST problem (e.g.,[28]) to computeTt.

Example 4:The cascadeT1 in Fig. 1, as a minimum
weighted perfect consistent tree, can be inferred by algo-
rithm WPCT as illustrated in Fig. 4.WPCT first initializes
a tree T with the nodeMary. It then constructsGt as



... ...

... ...

tmax

...

...

t i

t i+1

t1

s

V1 V2

V3

Gb

Mary,3

Tom Jack Mike

JackBill,1

Ann,0
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the graph induced by edges(Tom, Mary), (Jack, Mary), and
(Mike, Mary). Intuitively, the three nodes as the parents of
Mary are the possible nodes which accepts the message
at time step2. It then selects the tree with the maximum
probability, which is a single edge(Mike, Mary), and adds
it to T . Following Mike, it keeps choosing the optimal
tree structure for each level, and identifies nodesJack. The
process repeats untilWPCT reaches the sourceAnn. It then
returns the perfect consistent treeT as the inferred cascade
from the partial observationX .

Correctness. The algorithmWPCT either returns∅, or
correctly computes a perfect consistent treew.r.t. the partial
observationX . Indeed, one may verify that (a) the pruning
rules only remove the nodes and edges that are not in any
perfect consistent treew.r.t. X , and (b)WPCT has the loop
invariant that at each iterationi (lines 11-15), it always
constructs a part of a perfect tree as a forest.

Complexity. The algorithmWPCT is in time O(|V ||E| +
|X |2+ tmax ∗A), wheretmax is the maximum time step in
X , andA is the time complexity of procedurePCTl. Indeed,
(a) the initialization and preprocessing phase (lines 1-9)
takesO(|V ||E|) time, (b) the sorting phase is inO(|X |2)
time, (c) the bottom-up construction is inO(|tmax ∗ A|),
which is further bounded byO(|tmax ∗ |V |3) if an approx-
imable algorithm is used [28]. In our experimental study, we
utilize efficient linear programming to compute theoptimal
steiner forest.

The algorithmWPCT can easily be adapted to the prob-
lem of finding the minimum perfect consistent trees, where
each edge has a unit weight.

Perfect consistent SP trees. The independent cascade model
may be an overkill for real-life applications, as observed
in [7], [19]. Instead, one may identify the consistent trees
which follow the shortest path model [19], where cascades
propagate following the shortest paths. We define aperfect
shortest path (sp) tree rooted at a given source nodes as a
perfect consistent tree, such that for each observation point
(v, t) ∈ X of the tree,t = dist(s, v); in other words, the
path froms to v in the tree is theshortest pathin G. The
PCTw (resp.PCTmin) problem forsp trees is to identify the

sp trees with the maximum likelihood (resp. minimum size).
Proposition 2: Given a graphG and a partial observation

X , (a) it is in PTIME to find asp treew.r.t.X ; (b) thePCTmin

and PCTw problems for perfectsp trees areNP-hard and
APX-hard; (c) thePCTw problem is approximable within
O(d ∗ log fmin

log fmax
), whered is the diameter ofG, and fmax

(resp.fmin) is the maximum (resp. minimum) probability
by the diffusion functionf .

We next provide an approximation algorithm to thePCTw

problem for sp trees. Given a graphG and a partial
observationX , the algorithm, denoted asWPCTsp (not
shown), first constructs the backbone graphGb as in the al-
gorithmWPCT. It then constructs node setsVr = {v|(v, t) ∈
X}, andVs = V \ Vr. TreatingVr as required nodes,Vs as
steiner nodes, and the log-likelihood function as the weight
function, WPCTsp approximately computes an undirected
minimum steiner treeT . If the directed counterpartT ′ of T
in Gb is not a tree, WPCTsp transformsT ′ to a tree: for
each nodev in T ′ with more than one parent, it (a) connects
s andv via the shortest path, and (b) removes the redundant
edges attached tov. It then returnsT ′ as ansp tree.

One may verify that (a)T ′ is a perfectsp treew.r.t.X , (b)
the weight−LX(T ′) is bounded byO(d∗ log fmin

log fmax
) times of

the optimal weight, and (c) the algorithm runs inO(|V 3|)
time, leveraging the approximation algorithm for the steiner
tree problem [32]. Moreover, the algorithmWPCTsp can be
used for the problemPCTmin for sp trees, where each edge
in G has the same weight. This achieves an approximation
ratio of d.

IV. CASCADES AS BOUNDED TREES

In this section, we investigate the cascade inference
problems for bounded consistent trees. In contrast to the
intractable counterpart in Proposition 1(a), the problem of
finding a bounded consistent tree for a given graph and a
partial observation is inPTIME.

Proposition 3: For a given graphG and a partial obser-
vation X , there is a bounded consistent tree inG w.r.t. X
if and only if for each(v, t) ∈ X , dist(s, v) ≤ t, where
dist(s, v) is the distance froms to v in G.

Indeed, one may verify the following: (a) if there is
a node(vi, ti) ∈ X where dist(s, vi) > ti, there is no
path satisfies the time constraint andT is empty; (b) if
dist(s, vi) ≤ ti for each node(vi, ti) ∈ X , a BFS tree
rooted ats with each nodevi in X as its internal node or
leaf is a bounded consistent tree. Thus, to determine whether
there is a bounded consistent tree is inO(|E|) time, via a
BFS traversal ofG from s.

Given a graphG and a partial observationX , the mini-
mum weighted bounded consistent treeproblem, denoted as
BCTw, is to identify the bounded consistent treeT ∗

s w.r.t.
X with the minimum− logLX(T ∗

s ) (see Section II).



Input: graphG and partial observationX.
Output: a bounded consistent treeT in G.

1. treeT = (Vt, Et), whereVt := {s|(s, 0) ∈ X}, Et := ∅;
2. computetk boundedBFS DAG Gd of s in G;
3. for each ti ∈ [t1, tk] do
4. for each nodev where(v, ti) ∈ X and l(v) = i do
5. if i > ti then return ∅;
6. find a pathρ from s to v with the

minimum weightw(ρ) = −Σ log f(e) for eache ∈ ρ;
7. T = T ∪ ρ;
8. return T as a bounded consistent tree;

Figure 5: AlgorithmWBCT: searching bounded consistent
trees via top-down strategy

Theorem 1:Given a graphG and a partial observation
X , theBCTw problem is
(a) NP-complete andAPX-hard; and
(b) approximable withinO(|X | ∗ log fmin

log fmax
), where fmax

(resp.fmin) is the maximum (resp. minimum) prob-
ability by the diffusion functionf overG.

We can prove Theorem 1(a) as follows. First, theBCTw

problem, as a decision problem, is to determine whether
there exists a bounded consistent treeT with −LX(T ) no
greater than a given boundB. The problem is obviously in
NP. To show the lower bound, one may show there exists a
polynomial time reduction from the exact 3-cover problem
(X3C). Second, to see the approximation hardness, one may
verify that there exists anAFP-reduction from the minimum
directed steiner tree (MST) problem.

We next provide a polynomial time algorithm, denoted as
WBCT, for theBCTw problem. The algorithm runs inlinear
time w.r.t.the size ofG, and with performance guarantee as
in Theorem 1(b).

Algorithm . The algorithmWBCT is illustrated in Fig. 5.
Given a graphG and a partial observationX , the algorithm
first initializes a treeT = (Vt, Et) with the single source
node s (line 1). It then computes thetk boundedBFS
directed acyclic graph (DAG ) [3] Gd of the source nodes,
wheretk is the maximum time step of the observation points
in X , andGd is a DAG induced by the nodes and edges
visited by aBFS traversal ofG from s (line 2). Following
a top-down strategy, for each nodev of (v, t) ∈ X , WBCT

then (a) selects a pathρ with the minimumΣ log f(e) from
s to v, and (b) extends the current treeT with the path
ρ (lines 3-7). If for some observation point(v, t) ∈ T ,
dist(s, v) > t, thenWBCT returns∅ as the treeT (line 5).
Otherwise, the treeT is returned (line 8) after all the
observation points inX are processed.

Correctness and complexity. One may verify that algo-
rithmWBCT either correctly computes a bounded consistent
treeT , or returns∅. For each node in the observation point
X , there is a path of weight selected using a greedy strategy,
and the top-down strategy guarantees that the paths form a
consistent tree. The algorithm runs in timeO(|E|), since it

visits each edges at most once following aBFS traversal.
We next show the approximation ratio in Theorem 1(b).

Observe that for a single nodev in X , (a) the total weight
of the pathw from s to v is no greater than−|w| log fmin,
where |w| is the length ofw; and (b) the weight of
the counterpart ofw in T ∗, denoted asw′, is no less
than−|w∗| log fmax. Also observe that|w| ≤ |w∗|. Thus,
w/w∗ ≤ log fmin

log fmax
. As there are in total|X | such nodes,

LX(T )/LX(T ∗) ≤ |X | w
w∗

≤ |X | log fmin

log fmax
. Theorem 1(b)

thus follows.

Minimum bounded consistent tree. We have considered
the likelihood function as a quantitative metric for the
quality of the bounded consistent trees. As remarked earlier,
one may simply want to identify the bounded consistent
trees of theminimum size. Given a social graphG and
a partial observationX , the minimum bounded consistent
tree problem, denoted asBCTmin, is to identify the bounded
consistent tree with the minimum size,i.e., the total number
of nodes and edges. TheBCTmin problem is a special case
of BCTw, and its main result is summarized as follows.

Proposition 4: TheBCTmin problem is (a)NP-complete,
(b) APX-hard, and (c) approximable withinO(|X |), where
|X | is the size of the partial observationX .

Proposition 4(a) and 4(b) can both be shown by construct-
ing reductions from theMST problem, which isNP-complete
and APX-complete [32].

Despite of the hardness, the problem can be approximated
within O(|X |) in polynomial time, by applying the algo-
rithm WBCT over an instance where each edge has a unit
weight. This completes the proof of Proposition 4(c).

V. EXPERIMENTS

We next present an experimental study of our proposed
methods. Using both real-life and synthetic data, we conduct
three sets of experiments to evaluate (a) the effectivenessof
the proposed algorithms, (b) the efficiency and the scalability
of WPCT andWBCT.

Experimental setting. We used real-life data to evaluate the
effectiveness of our methods, and synthetic data to conduct
an in-depth analysis on scalability by varying the parameters
of cascades and partial observations.

(a) Real-life graphs and cascades. We used the following
real-life datasets. (i)Enron email cascades. The dataset of
Enron Emails1 consists of a social graph of86, 808 nodes
and660, 642 edges, where a node is a user, and two nodes
are connected if there is an email message between them.
We tracked theforwardedmessages of the same subjects and
obtained260 cascades of depth no less than3 with more
than 8 nodes. (ii) Retweet cascades(RT). The dataset of
Twitter Tweets2 [35] contains more than470 million posts

1http://www.cs.cmu.edu/ enron/
2http://snap.stanford.edu/data/twitter7.html
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Figure 6: Theprec and rec of the inference algorithms over Enron email cascades and Retweet cascades

from more than17 million users, covering a period of 7
months from June 2009. We extracted the retweet cascades
of the identifiedhashtags[35]. To guarantee that a cascade
represents the propagation of a single hashtag, we removed
those retweet cascades containing multiple hashtags. In the
end, we obtain321 cascades of depth more than4, with
node size ranging from10 to 81. Moreover, we used the
EM algorithm from [30] to estimate the diffusion function.

(b) Synthetic cascades. We generated a set of synthetic cas-
cades unfolding in an anonymous Facebook social graph3,
which exhibits properties such as power-law degree distri-
bution, high clustering coefficient and positive assortativ-
ity [34]. The diffusion function is constructed by randomly
assigning real numbers between0 and 1 to edges in the
network. The generating process is controlled by size|T |.
We randomly choose a node as the source of the cascade. By
simulating the diffusion process following the independent
cascade model, we then generated cascadesw.r.t. |T | and
assigned time steps.

(c) Partial observation.For both real life and synthetic
cascades, we defineuncertainty of a cascadeT as σ =
1− |X|

|VT | , where|VT | is the size of the nodes inT , and|X | is
the size of the partial observationX . We remove the nodes
from the given cascades until the uncertainty is satisfied, and
collect the remaining nodes and their time steps asX .

(d) Implementation. We have implemented the following in
C++: (i) algorithmsWPCT, and WBCT; (ii) two linear
programming algorithmsPCTlp and BCTlp, which iden-
tify the optimal weighted bounded consistent trees and
the optimal perfect consistent trees using linear program-
ming, respectively; (iii) two randomized algorithmsPCTr

andBCTr, which are developed to randomly choose trees

3http://current.cs.ucsb.edu/socialnets

Enron TwitterAlgorithms Precision
d=3 d=4 d = 4 d = 5

prec
v

100% 100% 97.2% 93.2%WPCT
prec

e
78.2% 82.4% 86.1% 82.6%

prec
v

100% 70.1% 73.6% 66.1%WBCT
prec

e
69% 55.7% 60.6% 41.7%

Table I.precv andprece over real cascades

from given graphs.PCTr is developed using a similar
strategy forWPCT, especially for each level the steiner
forest is randomly selected (see Section III); asWBCT

does,BCTr runs on boundedBFS directed acyclic graphs,
but randomly selects edges. (iv) to verify various imple-
mentations ofWPCT, an algorithmPCTg is developed by
using a greedy strategy to choose the steiner forest for each
level (see Section III). We used LPsolve 5.54 as the linear
programming solver.

We used a machine powered by anIntel(R) Core2.8GHz
CPU and8GB of RAM, using Ubuntu 10.10. Each experi-
ment was run by10 times and the average is reported here.

Experimental results. We next present our findings.
Effectiveness of consistent trees. In the first set of experi-
ments, using real life cascades, we investigated the accuracy
and the efficiency of our cascade inference algorithms.

(a) Given a set of real life cascadeT = {T1, . . . , Tk},
for each cascadeTi = (VTi

, ETi
) ∈ T, we computed an

inferred cascadeTi
′ = (VTi

′ , ETi
′) according to a partial

observation with uncertaintyσ. Denote the nodes in the
partial observation asVX . We evaluated theprecision as

prec =
Σ(|(VTi

′∩VTi
)\VX |)

Σ(|VTi
′\VX )| , and rec =

Σ(|(VTi
′∩VTi

)\VX |)

Σ(|VTi
\VX )| .

Intuitively, prec is the fraction of inferred nodes that are
missing fromTi, while rec is the fraction of missing nodes
that are inferred byTi

′.

4http://lpsolve.sourceforge.net/5.5/
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Figure 7: Efficiency and scalability over synthetic cascades

For Enron email cascades, Fig. 6(a) and Fig. 6(b) show the
accuracy ofWPCT, PCTg andPCTr for inferring cascades,
while σ is varied from0.25 to 0.85. PCTlp does not scale
over the Enron dataset and thus is not shown. (i)WPCT

outperformsPCTg and PCTr on both prec and rec. (ii)
When the uncertainty increases, both theprec andrec of the
three algorithms decrease. In particular,WPCT successfully
infers cascade nodes withprec no less than70% and rec

no less than25% even when85% of the nodes in the
cascades are removed. Using the same setting, the perfor-
mance ofWBCT, BCTlp andBCTr are shown in Fig. 6(c)
and Fig. 6(d), respectively. (i) BothBCTlp and WBCT

outperformBCTr, and theirprec and rec decrease while
the uncertainty increases. (ii)BCTlp has better performance
thanWBCT. In particular, bothBCTlp andWBCT success-
fully infer the cascade nodes with theprec no less than50%
and with therec no less than25%, even when85% of the
nodes in the cascades are removed.

For retweet cascades, theprec and the rec

of WPCT, PCTg and PCTr are shown in Fig. 6(e)
and in Fig. 6(f), respectively. While the uncertainty
increases from0.25 to 0.85, (i) WPCT outperformPCTr

and PCTg, and (ii) the performance of all the algorithms
decreases. In particular,WPCT successfully infers the
nodes with theprec more than80% and therec more than
35%, while the uncertainty is25%. Similarly, theprec and
the rec of WBCT and BCTr are presented in Fig. 6(g)
and Fig. 6(h), respectively. AsBCTlp does not scale on
retweet cascades, its performance is not shown. While
the uncertaintyσ increases, theprec and the rec of the
algorithms decrease. For allσ, WBCT outperformsBCTr;
in particular,WBCT correctly infers the nodes withprec no
less than60% and rec no less than25%, whenσ is 25%.

(b) To further evaluate the structural similarity ofTi and
Ti

′ as described in (a), we also evaluate (i)precv = |V ′′|
|V ′|

for nodesV ′ = (VTi
′ ∩ VTi

) \ VX , where V ′′ ∈ V ′ are
the nodes with the sametopological orderin both T ′

i and
Ti, and (ii) prece = |E′|

|ETi
′ |

for E′ = ETi
∩ ETi

′ , following
the metric for measuring graph similarity [26]. The average
results are as shown in Table I, forσ =50%, and the
cascades of fixed depth. As shown in the table, forWPCT,
the averageprecv is above90%, and the averageprece is

above75% over both datasets. Better still, the results hold
even when we setσ = 85%. For WBCT, precv and prece
are above65% and above40%, respectively. ForWPCT,
precv andprece have almost consistent performance on both
datasets; however, forWBCT, the precv and prece of the
inferred Enron cascades are higher than those of the inferred
retweet cascades. The gap might result from the different
diffusion patterns between these two datasets: we observed
that there are more than70% of cascades in the Enron
dataset whose structures are contained in theBFS directed
acyclic graphs ofWBCT, while in the Twitter Tweets there
are less than45% of retweet cascades following the assumed
graph structures ofWBCT.

Efficiency over real datasets. In all the tests over real
datasets, PCTr, BCTr, PCTg and WBCT take less than
1 second.BCTlp does not scale for retweet cascades, while
PCTlp does not scale for both datasets. On the other hand,
while WPCT takes less than0.4 seconds in inferring all the
Enron cascades, it takes less than20 seconds to infer Twitter
cascades whered=4, and100 seconds whend = 5. Indeed,
for Twitter network the average degree of the nodes is20,
while the average degree for Enron dataset is7. As such, it
takes more time forWPCT to infer Twitter cascades in the
denser Twitter network. In our tests, the efficiency of all the
algorithms are not sensitivew.r.t. the changes toσ.

Efficiency and scalability over synthetic datasets. In the
second set of experiments, we evaluated the efficiency and
the scalability of our algorithms using synthetic cascades.

(a) We first evaluate the efficiency and scalability ofWPCT

and compareWPCT with PCTr andPCTg.
Fixing uncertaintyσ = 50%, we varied|T | from 30 to

240. Fig. 7(c) shows thatWPCT scales well with the size
of the cascade. Indeed, it only takes2 seconds to infer the
cascades with300 nodes.

Fixing size |T | = 100, we varied the uncertaintyσ from
0.25 to 0.85. Fig. 7(d) illustrates that while all the three
algorithms are more efficient with largerσ, WPCT is more
sensitive. All the three algorithms scale well withσ.

As PCTlp does not scale well, its performance is not
shown in Fig. 7(c) and Fig. 7(d).

(b) Using the same setting, we evaluated the performance
of WBCT, compared withBCTlp andBCTr.



Problem Complexity Approximation time

BCTmin NP-c, APX-hard |X| O(|E|)

BCTw NP-c,APX-hard |X| ∗ log fmax
log fmin

O(|E|))

PCTmin (sp tree) NP-c, APX-hard d O|V 3|

PCTw (sp tree) NP-c, APX-hard d ∗ log fmax
log fmin

O|V 3|

PCTmin NP-c, APX-hard – O(|tmax ∗ |V |3)

PCTw NP-c, APX-hard – O(|tmax ∗ |V |3)

Table II. Summary: complexity and approximability

Fixing σ and varying |T |, the result is reported in
Fig. 7(a). First,WBCT outperformsBCTlp, and is almost as
efficient as the randomized algorithmBCTr. For the cascade
of 240 nodes,WBCT takes less than0.5 second to infer the
structure, whileBCTlp takes nearly1000 seconds. Second,
while WBCT is not sensitive to the change of|T |, BCTlp is
much more sensitive.

Fixing |T | and varyingσ, Fig. 7(b) shows the performance
of the three algorithms. The figure tells us thatWBCT

andBCTr are less sensitive to the change ofσ thanBCTlp.
This is becauseWBCT and BCTr identify bounded con-
sistent tree by constructing shortest paths from the source
to the observed nodes. When the maximum depth of the
observation point is fixed, the total number of nodes and
edges visited byWBCT andBCTr are not sensitive toσ.

Summary. We can summarize the results as follows. (a)
Our inference algorithms can infer cascades effectively.
For example, the original cascades and the ones inferred
by WPCT have structural similarity (measured byprece) of
higher than75% in both real-life datasets. (b) Our algorithms
scale well with the sizes of the cascades, and uncertainty.
They seldom demonstrated their worst-case complexity. For
example, even for cascades with240 nodes, all of our
algorithms take less than two seconds.

VI. CONCLUSION
In this paper, we investigated cascade inference problem

based on partial observation. We proposed the notions of
consistent trees for capturing the inferred cascades, namely,
bounded consistent trees and perfect consistent trees, as well
as quantitative metrics by minimizing either the size of the
inferred structure or maximizing the overall likelihood. We
have established the intractability and the hardness results
for the optimization problems as summarized in Table II.
Despite the hardness, we developed approximation and
heuristic algorithms for these problems, with performance
guarantees on inference quality, We verified the effectiveness
and efficiency of our techniques using real life and synthetic
cascades. Our experimental results have shown that our
methods are able to efficiently and effectively infer the
structure of information cascades.
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