
The Path to Virtual Machine Images as First

Class Provenance

Sotiria Lampoudi

Department of Computer Science
University of California

Santa Barbara, CA 93106-5110, USA

Abstract. The scientific community’s increased exposure to cloud com-
puting has led to increased familiarity with the machine virtualization
technology that underpins the cloud. Efforts to define and implement
provenance for the cloud are under way. In the meantime, however, an
orthogonal idea, aimed at quickly facilitating repeatability and curation,
has taken shape. This is the idea of using virtual machine images (VMIs)
as authoritative, encapsulated and executable records of computations,
especially computations whose results are destined for publication and/or
re-use. In this paper we trace the origins of this idea, discuss its strengths
and limitations, and outline some of the future steps and potential pit-
falls on the path to its realization. We also analyze how this approach
differs from, yet composes with traditionally defined provenance.

1 Introduction

Modern machine virtualization technology, as typified by the open source Xen
hypervisor1, on the software level, and Intel VT2 and AMD-V3, on the hard-
ware level, has reached maturity. It is possible for the working computational
scientist to work entirely on a virtualized workstation. However, this is not typ-
ical. Instead, most computational scientists exposure (conceptual or hands-on)
to machine virtualization appears to be via exposure to cloud computing (CC).
Virtualization is only one of the fundamental technologies underpinning only one
of the flavors of cloud computing (specifically, Infrastructure as a Service, abbre-
viated IaaS). However, the correlation between the concepts of, on the one hand,
virtualization and, on the other, the cloud has led to some confusion between
the two, especially in publications originating outside computer science. Specifi-
cally, the issue appears to be confusion about which attributes of modern virtual
machines are consequences of virtualization itself and which are consequences of
virtualization being used in the cloud setting.

One body of discourse where the this confusion is consequential concerns the
use of virtual machine images (VMIs) to facilitate scientific repeatability and

1 http://www.xen.org/
2 http://ark.intel.com/VTList.aspx
3 http://sites.amd.com/us/business/it-solutions/virtualization/Pages/

virtualization.aspx



2

curation. The overarching idea or strategy is this: to use VMIs as authorita-
tive, encapsulated and executable records of computations, especially
computations whose results are destined for publication and/or re-
use. (Whenever, in subsequent parts of this paper, we refer to ”this idea” or
”this strategy” without a tighter scope, the referent should be understood to be
the idea above, in bold.)

The timeliness of this idea becomes clear when one notes three factors: a)
the buzz surrounding the cloud and, consequently, virtualization, b) the prolif-
eration of calls in the popular scientific press [1, 2], and even the NSF4 for code
publication, Open Science [3], etc., and c) the rise of provenance, the field that
is formally concerned with repeatability and curation.

We, like the people who have published and spoken about this idea before us,
argue that it has merit. However, our focus is on clarifying the context in which
the idea has merit, at present, and identifying possible paths to the expansion
of that context in the future, based on emerging technologies and standards.

The aims of this paper are many-fold: first, to trace the origins and shape
of this idea, by reviewing some of the discourse (literature and talks) in which
it has appeared; second, to discuss its feasibility, strengths and weaknesses, es-
pecially in light of the crystal clear distinction between virtualization in general
and virtualization for the cloud; third, to point out some of the challenges and
opportunities along the path to implementing this idea; and fourth, to point out
how this idea is orthogonal to, yet composes with, current research directions on
provenance for the cloud.

The paper is organized as follows: section 2 summarizes the relevant tech-
nologies; section 3 reviews the discourse on the subject; section 4 discusses the
merits, drawbacks and limitations of the strategy and some technology gaps;
section 5 discusses what provenance has to contribute to this idea.

2 Background

A Virtual Machine Monitor (VMM) or hypervisor (e.g. Xen, KVM, HyperV,
VMware) is a software layer that multiplexes access by many VMs to a machine’s
physical hardware. A VMM can present the hardware to VMs in one of two ways:
a) para-virtualized, or b) fully virtualized. If the hardware is para-virtualized it
means that a layer of emulation or abstraction is placed between the physical
hardware and the virtual hardware. Para-virtualization can sometimes lead to
better-than-native performance by simplifying or slimming down the drivers re-
quired to access devices [4]. In full virtualization, direct, multiplexed access by
VMs to the hardware is mediated by the VMM. Full virtualization most often
requires hardware support.

4 http://www.nsf.gov/pubs/2011/oise11003/“Changing the Conduct of Science:
Summary Report of Workshop Held on November 12, 2010,” at the National Sci-
ence Foundation Workshop Changing the Conduct of Science in the Information
Age, June, 2011.



3

Hypervisors differ in the precise details of their organization, which we will
not discuss here. However, the abstract notion of a virtual machine image (VMI),
that is, a collection of whatever is needed for a hypervisor to boot a VM, is
useful across the board. For a Linux installation, a VMI consists of a Linux
kernel/RAMdisk and a root filesystem. Many of the existing VMI packaging for-
mats are inter-convertible, by separating the source format into its components
(kernel/RAMdisk, filesystem) and re-packaging it according to the destination
format.

Notice that up to this point everything we have described concerns machine
virtualization in general, and we have said nothing about cloud computing.

Cloud computing provides available (”when you need it”), dynamic (”pay for
what you use”) and elastic (”use as much as you need”) provisioning of computa-
tional resources. It comes in three flavors: Infrastructure, Platform and Software
as a Service (IaaS, PaaS and SaaS, respectively), of which we will be concerned
with the first, IaaS. The ”infrastructure” of IaaS refers to computational, net-
work and storage resources. The computational resources are presented to the
user as virtual machines (VMs).

In this paper we take the position that IaaS cloud computing is currently
exemplified by Amazon’s Elastic Compute Cloud (EC2), the first and currently
dominant player in the field, and other software stacks (e.g. Eucalyptus [5]) that
are compatible with it. It appears that, at the moment, Amazon’s APIs are
the de facto standard in IaaS, although it remains to be seen whether that will
continue to be the case, as later arrivals to the industry are attempting to craft
and force the adoption of competing standards.

Most VMMs, Xen included, are capable of presenting a configurable mix of
virtualized and para-virtualized resources. In order to achieve availability and
elasticity at scale, Amazon’s EC2 severely restricts the number of VM configura-
tions among which their customers can choose. The hypervisor of choice at EC2
is Xen, the VMs all have one network interface, and they come in only a handful
of VM configurations, parameterized by the number of CPU ”core equivalents”
and RAM. As of the writing of this paper, one instance type provides access to
additional Graphical Processing Unit (GPU) hardware. This standardization of
VMs allows EC2 to account for its resources in a crude but effective fashion that
makes it possible to deploy VMIs very rapidly.

There is an important distinction between what happens to a VMI if it is
booted on a run-of-the-mill workstation with virtualization enabled vs on the
cloud. In the former case, any changes to the filesystem that occur while the
VM is running become permanent by virtue of the fact that the filesystem is
persistent. In the original EC2 usage model, the VMI’s filesystem was treated as
an immutable object from which multiple, initially identical, but independently
evolving VMs could be booted. A VM that has booted from a VMI, and whose
running state can be different from other VMs that have booted from the same
VMI, is called an instance. Nowadays there are two ways to configure an EC2
instance: under the original model, the filesystem of an instance is volatile, so
that, if the user wants any changes that occur to it to become persistent, he



4

or she must explicitly save (”bundle”) the image; under the newer model, the
filesystem is stored in a persistent, rather than a volatile, store (Elastic Block
Store, EBS). The newer model is similar to the behavior of a run-of-the-mill
virtualized workstation that has booted from a network attached filesystem.

3 Literature Overview

The use of VMIs for repeatability and curation of scientific results is a strategy,
rather than a piece of software or infrastructure or a standard. Thus, it is diffi-
cult to definitively trace when and by whom it may have first been used. Here
we first survey some foundational literature on the use of (para-)virtualization
and the cloud in scientific computing, and then we present some of the pub-
lished literature and scientific talks in which the idea of using virtualization for
repeatability and curation appears.

Virtualization has a long history in the area of operating systems, dating
back to IBM’s PDP-11 in the 1970s. Machine virtualization was historically
associated with a performance penalty due to the additional software layers
required to achieve isolation from the hardware. Thus, an important question is
whether modern machine (para-)virtualization technology suffers from the same
drawback, which would disqualify it from being an ideal platform for scientific
computing. This question is studied in [4, 6] in the context of para-virtualization
in Xen.

The question of whether cloud computing achieves performance worthy of
scientific computing (presumably at decreased cost) is altogether different. As
we described in the previous section, CC severely restricts the VM configurations
available to the user, can be subject to dramatic fluctuations in demand, and uses
CPU core equivalents, to circumvent the fact that the underlying hardware can
be heterogeneous, depending on when it was deployed. Thus, while to assess the
impact of para-virtualization it is possible to compare performance of the virtual
vs the native hardware, measured performance in EC2 must be compared to
either the performance of an unrelated computational resource, e.g. a cluster, or
to the theoretical peak CPU core equivalent performance that Amazon describes.
Other performance metric comparisons can be similarly confused. Nevertheless,
this is an important question, and it is studied in [7, 8] and [9].

[10] proposes the use of VMs to encapsulate large, complicated stacks of sci-
entific software so they can be deployed across supercomputing centers without
the need to install each of the software packages individually in every new envi-
ronment. The paper describes a proof-of-concept of this strategy developed for
the High-Energy and Nuclear Physics application STAR, deployed on a five node
cluster. While this paper does not address repeatability or curation, it proposes
virtualization as a solution for achieving encapsulation and portability of the
software environment of a scientific application, one of the big challenges on the
way to repeatability and curation.

In 2011 concerns over computational repeatability reached a crescendo, mostly
in the form of calls for source code publication. The idea of using VMIs to achieve



5

computational repeatability and curation appeared in two venues. In early 2011
the scientific publishing house Elsevier announced a call for papers and proofs-
of-concept called the ”Executable Paper Grand Challenge”5. The statement of
the problem they posed was: ”how can data intensive research be made repeat-
able and workable within the context of a scholarly journal article?” The second
place prize was won by [11] in which a cloud-based environment for authoring,
sharing, modifying and executing computational results was described. SHARE
includes a web portal for accessing its functionality, and the VMIs on which it
is based are deployed in an on-premise Eucalyptus cloud hosted at Eindhoven
University of Technology, Netherlands.

In July 2011 a workshop entitled ”Reproducible Research: Tools and Strate-
gies for Scientific Computing” took place6. Three talks made reference to the
strategy of using VMIs to facilitate repeatability. In the first Tiffani Williams
introduced Paper Mache, which was also one of the finalists of the Executable
Paper Grand Challenge, and was later demoed at ICCS [12]. It consists of a
workbench, a modified hypervisor and a tool for creating (visual) images, and
it creates custom VMIs intended for use throughout the submission, review,
modification and curation process of a paper. Sorin Mitran gave a talk enti-
tled ”Archiving Computational Research in Virtual Machines”7, and Bill Howe
gave a talk entitled ”Virtual Appliances, Cloud Computing, and Reproducible
Research”8.

4 The Approach

The strategy of using VMIs to achieve repeatability and curation of scientific
computing results is just that: a strategy. As such, it permits implementations
that span a wide range of abstraction and/or automation, SHARE, Paper Mache
and Mitran’s hand-crafted approach being only some of the possibilities.

At its core, the strategy simply requires a scientist to – somehow – generate
a VMI of a computational environment capable of reproducing his or her results,
and to make that VMI publicly accessible. The strategy hinges on the assump-
tions that the VMI will be an authoritative, encapsulated and executable record
of computations. To say that a VMI is an authoritative record of a computation
is trivially true. Encapsulation, on the other hand, can be achieved by proper
design, a subject we discuss briefly in the last section. But the claim that a VMI
will be generally executable bears some scrutiny.

At present there is no unqualified answer to the question: if a VMI is pub-
lished, will it be executable in the short-term (repeatability) and in the long-term
(curation)?

5 http://www.executablepapers.com/
6 http://www.stodden.net/AMP2011/index.html
7 http://www.stodden.net/AMP2011/slides/ReproducibleResearchMitran.pdf
8 http://www.stodden.net/AMP2011/slides/reproducibility_in_the_

cloud-HOWE.pdf



6

The issue here is that not all VMIs are created equal when it comes to the
likelihood that they will be able to be booted in the near and far future. A VMI
that is cloud-compatible, in the sense of being compatible with EC2, is guaran-
teed to boot under most versions of Xen, to conform to a simplistic device model,
and to have one of only a handful of CPU and RAM configuration expectations.
In the short term, it will be easy to boot it on any Xen installation, whether
on the cloud or not. In the long term, it is reasonable to argue that, because it
is one of many thousands of VMIs with similar hypervisor/VM expectations, it
has a better chance of being supported.

The same cannot be said of an arbitrary VMI generated on a virtualized
workstation, a virtualized HPC cluster or any other arbitrary virtualized envi-
ronment. Indeed, even a VMI that is compatible with an on-premise cloud is not
guaranteed to be cloud-compatible, in the sense of being EC2-compatible, since
on-premise cloud software, like Eucalyptus, can be configured to work with hy-
pervisors (e.g. KVM) and VM configurations other than those specified by EC2.

In order to improve the odds that an arbitrary VMI will be able to boot on
today’s foreign and tomorrow’s alien resources, it seems reasonable to propose
that there should exist a metadata format for specifying a VMI’s hypervisor and
VM configuration expectations. Indeed such a standard now exists: the Open
Virtualization Format9. On the one hand, this is a welcome development for the
scientific community, and any community interested in harnessing the power of
virtualization without adopting the cloud model and its inherent simplicity-for-
availability trade-off. On the other hand, because the flexibility of being able
to spin up an arbitrarily large assortment of VM types comes with a penalty
in availability, it is unlikely that Amazon’s EC2 and EC2-compatible software
stacks that care about scale will adopt OVF. This leaves the scientific community
and anyone else who wants to adopt arbitrary OVF-wrapped VMIs with a diffi-
cult decision, based on speculation about the future. Will OVF thrive (once the
standard converges) and become a new classic, like Portable Document Format
(PDF) before it, which also had difficulties at first? Or will arbitrary VMIs will
be relegated to un-executability and OVF to the cemetary for useless metadata
formats?

Thus, it appears that cloud-compatible VMIs have an excellent chance of
being executable in the near future, and an arguably good chance at being
executable in the further future. Arbitrary VMIs, however, should at a minimum
come with a description of their hypervisor and VM expectations, preferably in
a recognized format, like OVF, and may not, even then, have a good chance of
being executable as their date of creation fades into the past.

A question to which the answer is not dictated by the strategy of using
VMIs for repeatability and curation, and which is, therefore, open to discus-
sion, is whether a published VMI needs to be the scientist’s original working
environment, or whether it can be a re-creation of it.

Articles calling for source code publication for science [1, 2] cite the burden
of cleaning up and polishing code and data in order to produce a final publish-

9 http://dmtf.org/standards/ovf



7

able product as being an important deterrent from code publication. One might
imagine, then, that this deterrent would extend to re-creating a computational
environment on a VMI for publication. If the community’s objective is to pro-
mote the rapid and wide adoption of the VMI publication strategy, then perhaps
it makes sense to express a preference for the VMI environment to be the original
environment in which the results were obtained, rather than a re-creation of it.

Bill Howe, in his AMP2011 talk, made a related argument for conducting the
entire life cycle of computational science on the cloud. He pointed out that the
cloud is an excellent environment for cheap experimentation with software. He
further explained that often there is no clear distinction between writing, testing,
debugging and final experimentation with scientific software. Thus, carrying out
the entire lifecycle of computational science on the cloud has the advantage
of allowing publication of a VMI whenever the cycle happens to be complete,
however unpredictable, messy and heterogeneous that final VMI may be.

Sorin Mitran brought up several drawbacks to the VMI publication for re-
peatability and curation approach in his AMP2011 talk. According to him, those
are: a) that VMIs contain a large amount of data, and so pose a storage chal-
lenge, b) that there is no guarantee that a VM emulator will exist in the far
future, and c) that this approach does not support the special-purpose hardware
and multi-machine configurations that are often used in computational science.
He countered his own arguments with the observations that, a) storage is get-
ting cheaper, b) there is strong vendor support for VMs, and c) CUDA, MPI
and OpenMP are now all supported. To his counter-argument for (a) we would
add that, irrespective of whether storage gets cheaper, the problem of storage
bloat is one that is being encountered in many settings, including provenance,
and thus is being independently studied and addressed. We believe that concern
(b) is different for cloud-compatible vs arbitrary VMIs, as we explained above.
Finally, we believe that concern (c) actually encompasses two separate issues.
On the one hand there is the issue of special hardware availability (e.g. GPUs
and FPGAs). Amazon is currently addressing at least GPU availability, but one
has to wonder whether that support, which appears to be a deviation from EC2’s
core business model, will last. In any case, a metadata model such as OVF, that
allows the specification of virtual hardware requirements, theoretically addresses
how to make sure VMIs appropriately ask for the resources they require. On the
other hand is the issue of Multiple Program Multiple Data software architec-
tures. OVF, again theoretically contains the ability to specify a ”federation” of
VMIs that are intended to be deployed in a particular order.

While complete solutions based on the strategy of using VMIs for repeata-
bility and curation, such as SHARE and Paper Mache, are appealing in settings
where a GUI-based, high-level, end-to-end ”executable paper” approach is desir-
able, they are only one way to implement the strategy. We would like to propose
that the strategy will have a better chance at wide adoption if an ecosystem of
lower-level software, libraries and conventions addressing small, encapsulated as-
pects of it emerges. Such individual components could be mashed-up and remixed
as necessary to form entire solutions. They would also be individually easier to



8

replace as the relevant technologies change. The components would each stand a
better chance of being adopted individually, not only in the scientific computing
setting, but also in enterprise. Some ideas for such components follow.

One of the things that must be specified in order to make a published VMI
useful for reproducibility and curation purposes is what it is capable of. In the
case of SHARE and Paper Mache, the GUI or the author(s) generate scripts
that perform the tasks that the VMI is supposed to demonstrate. Analogously,
it would be useful if there was a general purpose convention addressing where one
should look to understand what a VMI is about. It would be convenient if the
capabilities of a VM could be specified in a human readable and in an executable
format in some standard location. Possibilities include that the home directory
of some default user should contain a file called README, that make should be
invoked at some standard location to demonstrate some of the functions of the
VMI, or that the last init script (in the case of UNIX variants) launch the VMI’s
functionality.

Further, we would like to propose two types of systems-level improvements
that would render Linux an easier operating system from which to generate
VMIs for repeatability and curation. Both of these concern the handover of
Linux-based VMIs from the author to end-users.

The first class of improvements concern de-authentication and de- personal-
ization of a running VM. A VMI normally contains files that link back to its
author. Depending on how the VMI was generated there may be more of fewer
of these. These files can range from password files, to public and private keys,
to, simply, settings. In general, for the purposes of implementing the VMI pub-
lication strategy, it would be useful to have stand-alone tools for ”undressing” a
VMI of the authentication and personalization of the author, and ”re-dressing”
it, if necessary, with the authentication and personalization of the person instan-
tiating it.

A second class of improvements concerns what Chris Read calls ”transient
runtime pollution”10. Because Linux uses the filesystem for process ID locks,
logs and other transient files, these can bundled into a VMI. Aside from their
potentially revealing nature, e.g. in the case of logs, they can present technical
difficulties when they represent a state of the VM that is no longer valid. It
would be useful to have ways of specifying where and how the filesystem may be
polluted with such transient runtime artifacts, and how to clean them up during
the process of packaging a VMI for publication.

5 Discussion

The strategy of using VMIs for repeatability and curation is an attempt to
quickly and cheaply (in terms of time investment, and also commitment) achieve
a subset of the objectives of provenance. In a sense, this strategy is a case of
”low hanging fruit”. But, as we explained in the previous section, it appears that

10 http://blog.chris-read.net/2009/04/08/ec2-ami-creation-tips-part2/



9

the strategy is currently useful in only a fraction of the cases in which it could
be applied.

Research on provenance for the cloud is largely orthogonal to the strategy of
using VMIs for repeatability, as it focuses on the extension of existing provenance
methodologies and tools to the cloud [13–18]. Current provenance-for-the-cloud
approaches do not impede publication of VMIs, and, conversely, publication of
VMIs does not detract from the impact of provenance-for-the-cloud approaches.

What the strategy of using VMIs for repeatability and curation does stand
to benefit from is exposure to the list of concerns and capabilities within the
provenance community. Specifically, there are four issues that the provenance
community has thought about that also arise when considering this strategy. The
first is the issue of transforming and packaging VMIs in such a way that they
achieve the degree of encapsulation necessary for repeatability and/or curation.
Indeed, it can be a provenance problem to identify and resolve data dependencies,
e.g. internet URL references to data used as inputs, in a VMI.

The second issue, which the provenance community is also faced with, is that
of bloat in storage requirements. In the same way that provenance metadata can
exceed in volume the data that it annotates, so can bundled VMIs can be much
larger than, e.g., the datasets or figures whose computation they document.

The third issue with which the provenance community has a great deal of fa-
miliarity is that of constructing a naming and location scheme for VMIs. Whether
such a scheme will be like URI, DOI, ARK or something else is wide open. One
possibility that we can suggest is an extension to ARK11that provides for an
inflection for re-creating, via VMI execution (as opposed to retrieving from stor-
age), data for which that makes sense.

Finally, we believe that the development of a standard for specifying the hy-
pervisor and VM expectations of individual VMIs and collections of VMIs would
benefit from the involvement of the provenance community. Among current
customers of the cloud, the demand for configurable VMs, virtualized special-
purpose hardware and VM federations is low, whereas among the scientific com-
puting community, and especially in the high performance computing (HPC)
community, demand for these features is high. If VMIs are to become first class
provenance artifacts, then the provenance community should be involved in the
specification of the relevant metadata formats. Aside from this being an oppor-
tunity to have significant real-world impact, it is also a unique academic oppor-
tunity. Since VMIs are (at least in some cases, as we hope we have convinced
you) executable, the metadata surrounding them is, at once, both a descriptive

record of their origin, and a prescriptive recipe for their reconstruction.

References

1. McCafferty, D.: Should code be released? Commun. ACM 53(10) (October 2010)
16–17

11 https://confluence.ucop.edu/display/Curation/ARK



10

2. Ince, D.C., Hatton, L., Graham-Cumming, J.: The case for open computer pro-
grams. Nature 482(7386) (February 2012) 485–488

3. Nielsen, M.: Reinventing Discovery: The New Era of Networked Science. Princeton
University Press (2011)

4. Youseff, L., Wolski, R., Gorda, B., Krintz, R.: Paravirtualization for hpc systems.
In: In Proc. Workshop on Xen in High-Performance Cluster and Grid Computing,
Springer (2006) 474–486

5. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The eucalyptus open-source cloud-computing system. In: Clus-
ter Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM International
Symposium on. (May 2009) 124 –131

6. Youseff, L., Seymour, K., You, H., Dongarra, J., Wolski, R.: The impact of paravir-
tualized memory hierarchy on linear algebra computational kernels and software.
In: Proceedings of the 17th international symposium on High performance dis-
tributed computing. HPDC ’08, New York, NY, USA, ACM (2008) 141–152

7. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing
science on the cloud: the montage example. In: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. SC ’08, Piscataway, NJ, USA, IEEE Press (2008)
50:1–50:12

8. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.:
A performance analysis of ec2 cloud computing services for scientific computing.
In Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E., Akan, O., Bellav-
ista, P., Cao, J., Dressler, F., Ferrari, D., Gerla, M., Kobayashi, H., Palazzo, S.,
Sahni, S., Shen, X.S., Stan, M., Xiaohua, J., Zomaya, A., Coulson, G., eds.: Cloud
Computing. Volume 34 of Lecture Notes of the Institute for Computer Sciences, So-
cial Informatics and Telecommunications Engineering. Springer Berlin Heidelberg
(2010) 115–131

9. Jackson, K., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasser-
man, H., Wright, N.: Performance analysis of high performance computing appli-
cations on the amazon web services cloud. In: Cloud Computing Technology and
Science (CloudCom), 2010 IEEE Second International Conference on. (December
2010) 159 –168

10. Keahey, K., Freeman, T., Lauret, J., Olson, D.: Virtual workspaces for scientific
applications. Journal of Physics: Conference Series 78(1) (2007) 012038

11. Gorp, P.V., Mazanek, S.: Share: a web portal for creating and sharing executable
research papers. Procedia Computer Science 4(0) (2011) 589 – 597 Proceedings of
the International Conference on Computational Science, ICCS 2011.

12. Brammer, G.R., Crosby, R.W., Matthews, S.J., Williams, T.L.: Paper mch: Cre-
ating dynamic reproducible science. Procedia Computer Science 4(0) (2011) 658 –
667 Proceedings of the International Conference on Computational Science, ICCS
2011.

13. Muniswamy-Reddy, K.K., Macko, P., Seltzer, M.: Making a cloud provenance-
aware. In: First workshop on on Theory and practice of provenance. TAPP’09,
Berkeley, CA, USA, USENIX Association (2009) 12:1–12:10

14. Muniswamy-Reddy, K.K., Macko, P., Seltzer, M.: Provenance for the cloud. In:
Proceedings of the 8th USENIX conference on File and storage technologies.
FAST’10, Berkeley, CA, USA, USENIX Association (2010) 15–14

15. Muniswamy-Reddy, K.K., Seltzer, M.: Provenance as first class cloud data.
SIGOPS Oper. Syst. Rev. 43(4) (January 2010) 11–16



11

16. da Cruz, S.M.S., Paulino, C.E., de Oliveira, D., Campos, M.L.M., Mattoso, M.:
Capturing distributed provenance metadata from cloud-based scientific workflows.
Journal of Information and Data Management 2(1) (2011)

17. de Oliveira, D., Ocana, K., Ogasawara, E., Dias, J., Baiao, F., Mattoso, M.: A per-
formance evaluation of x-ray crystallography scientific workflow using scicumulus.
In: Cloud Computing (CLOUD), 2011 IEEE International Conference on. (July
2011) 708 –715

18. Slominski, A.: Flexible creation and adaptive execution of scientific workflows
in cloud and grid environments by using web 2.0-based electronic lab notebook
metaphor. In: Proceedings of the 2010 6th World Congress on Services. SERVICES
’10, Washington, DC, USA, IEEE Computer Society (2010) 326–327


