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Abstract
In this paper, we present the Remote Compilation Frame-
work (RCF), a feedback-directed, phase-aware compilation
system “as-a-service” for efficient execution of dynamic
scripting language programs. Using RCF, at the client-side,
users execute programs using a ubiquitous, memory-efficient
interpreter extended with our light-weight sampling support.
The interpreters collect samples of annotated calling con-
text trees and communicate them to a remote optimization
service. This service combines samples into a phase-based
aggregate profiles across users/inputs and uses them to trig-
ger and guide guarded, selective and speculative type spe-
cialization of programs via static translation. Users receive
new versions of the program from the service as part of
software update which they use for future executions of the
program. We provide an empirical analysis of RCF and a
sensitivity study of its phase-based recompilation strategy.
We find that RCF can accurately detect phase shifts in com-
plex applications for different numbers of users and achieves
performance benefits similar to that of a popular dynamic
compilation system (PyPy) using a significantly simpler and
memory efficient client-side runtime system.

1. Introduction
The ubiquity and wide-spread use of interpreter-based run-
time systems for dynamic scripting languages is in part due
to the use of efficient interpreters implementations [8] writ-
ten in C/C++ [5, 21, 25]. Such runtime implementations al-
low language designers to leverage mature and heavily sup-
ported tool-chains (e.g. GNU) for static compilation of their
interpreters and runtime services on a wide variety of ar-
chitectures, operating systems, and devices, without having
to support complex compilation infrastructures themselves.
These implementations also have small runtime memory
footprint requirements and expedite support of new and
emerging language features since the language semantics
(in the interpreter) are implemented independently of and
separately from the compilation system.

Alternatively, dynamic compiler systems for scripting
languages, especially those that perform feedback-directed
specialization [10, 23, 24], have the potential to improve
program performance significantly over interpretation. Dy-
namic compilers, however, are highly complex, difficult to
extend, and non-portable – code generation within the run-
time must target a particular OS and ISA. They also have
much larger memory footprint relative to compiler-free run-
times due to the data structures needed for translation and
optimization and to the size of the translated/stored native
code. This complexity requires significant manpower for im-
plementation, language evolution, and maintenance. As new
versions of interpreters and language specifications emerge
frequently, compiler engineers are continuously forced to
play catch-up. Such effort can lead to abbreviated projects
lifespan [23, 34] or lack of support for the latest language
features [12, 13, 22]. Moreover, these systems mix compi-
lation with program execution and thus have a limited com-
pilation time budget. This limitation is exacerbated by the
challenges imposed by code generation for the dynamic fea-
tures that these languages offer (dynamic typing, dynamic
objects, polymorphic method dispatch, reflection, etc.).

In this work, we investigate a compilation-based solution
that targets an intermediate point in the runtime design space
between efficient interpretation and dynamic compilation for
dynamic scripting languages. Our goal is to improve the
performance of programs written in these languages while
maintaining the simplicity, small footprint, and portability of
their client-side runtime systems. Our approach is to employ
hybrid execution, a combination of compilation and inter-
pretation, but to decouple and separate the two.

Our system, called the Remote Compilation Framework
(RCF), employs a simple instrumented interpreter at the
client’s machine and static, feedback-directed translation of-
fline at a remote optimization server. A user’s (client-side)
interpreter collects (with low-overhead) feedback from her
use of a particular application “in-the-wild”. The optimiza-
tion service collects and merges this information from dif-
ferent users and uses it to specialize the application code.
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This service then returns the optimized version of the code
to all users as part of a software update. Users employ the
updated version of the code for future executions of the ap-
plication. The optimization service compiles and specializes
only the most frequently executed methods to ensure that
the runtime footprint at the client remains small, while im-
proving program performance. Although techniques simi-
lar to RCF’s constituent technologies have been previously
considered for debugging [15], efficient profiling [18, 33],
and per-user online remote compilation of Java [14, 20, 32],
RCF combines and extends these technologies into a single
framework that targets, for the first time to our knowledge,
low-footprint specialization of dynamic scripting languages
using phase-aware sampling of multiple users/inputs.

We prototype RCF using the Python programming lan-
guage as a representative scripting language because of its
wide-spread use and similarities to (language and imple-
mentation) other popular dynamic languages such as Ruby
and JavaScript. At the client-side, users employ a popu-
lar Python interpreter (CPython [5]), that we extend with
a sample-based profiling mechanism and support for com-
municating sample to the remote optimization service. Our
sampling mechanism collects calling context trees annotated
with performance and behavioral data such as call site, exe-
cution counts, and data type information.

The remote optimization service is a software system
that receives samples from multiple client-side interpreters
and aggregates them into a multi-user profile from which it
identifies hot methods to specialize. The service employs a
phase-based process that enables it to identify when a par-
ticular profile is stable (and can be optimized) and when it
changes sufficiently to warrant re-consideration (potentially
additional optimization). For compilation and optimization,
we extract information from the profile about hot methods
and data types used in them and perform Python-level op-
timizations (e.g. inlining and loop optimizations). We then
translate to C and type-specialize the code using Cython [6].
We insert guards as part of this process as needed to guaran-
tee correctness. Finally, we compile the code using the GNU
tool chain (gcc) for the target (client-side) platform(s). The
resulting optimized code can be executed as an extension
module to any CPython interpreter.

We extensively exercise RCF in this work to evaluate
its overheads and performance potential. We also perform
a sensitivity study on the parameters of our phase detec-
tion process. We find that the RCF sampling mechanism in
CPython imposes less than 2% overhead on program exe-
cution at the client-side on average. We also find that for
many popular client-side applications, we can shortcut the
sampling process to around 5000 total samples because of
the similarity in method use behavior (profile convergence)
across inputs/users for these programs.

RCF achieves performance improvements over CPython
interpretation alone of 1.1×−1.7× for real applications, and

1.3×−3.4× for community benchmarks, with little increase
to memory footprint of the client-side runtime system. We
also compare RCF to a popular Python runtime that employs
dynamic compilation, feedback-directed optimization, and
type and value specialization: PyPy [22]. We find that RCF
facilitates performance gains similar to PyPy with a 2.7 ×
−7× smaller memory footprint and a significantly simpler
and portable client-side runtime system implementation.

For the sensitivity analysis of our multi-user phase-aware
profiling mechanism, we employ multi-program workloads
as representatives of large-scale multi-component applica-
tions from which users execute different parts over time.
We consider transitions between such components as phase
shifts. Our analysis identifies and explains the range of pa-
rameter values required for accurate identification of phase
shifts and phase stability (points at which re-compilation and
re-optimization should be reconsidered). We also evaluate
the impact of using large numbers of users (100-1000) for
profile collection. We find that only a single parameter is
influenced by the number of users (per-program) participat-
ing in the system and that, in our experiments, setting this
value equal to the number of participating users is sufficient
to eliminate false (premature) recompilations.

In summary, we contribute a new framework that com-
bines interpretation and compilation in a new way that tar-
gets the effective, yet memory-efficient, performance opti-
mization of programs written using dynamic scripting lan-
guage (Python in our case). Our prototype includes new
sample-based profile collection and aggregation techniques
as well as a phase-driven off-line compilation and type-
specialization approach that together improves performance
over interpreter-based runtimes while achieving the small
footprint of such runtimes on the client-side.

We overview RCF in the next section. We then detail our
profiling approach based on calling context trees and across-
input sampling (Section 3). We then present the RCF remote
optimization service (Section 4) and describe our approach
to program specialization. We follow this with a description
of our experimental methodology and an extensive empirical
evaluation and sensitivity study of RCF. Finally, we discuss
the current state of our RCF prototypes and its limitations,
present related work, and conclude.

2. Remote Compilation Framework
Our goal with this work is to investigate whether it is possi-
ble to develop a system that gleans the benefits of both effi-
cient interpretation and feedback-directed compilation with-
out imposing their drawbacks: poor program performance
with the former, and complex client-side runtime and large
client-side memory footprint with the latter. Toward this end,
we design, implement, and evaluate a Remote Compilation
Framework (RCF), a hybrid program optimization system
for dynamic scripting languages that decouples and sep-
arates interpretation from feedback-directed optimization.
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Figure 1. Remote Compilation Framework (RCF)
overview.

RCF relies on performance profiles collected from users “in
the wild” to trigger and guide phase-aware code optimiza-
tion remotely using feedback-directed static compilation.

Our key design decisions are three-fold. First, the client-
side runtime for dynamic scripting languages remains as it is
in its most popular incarnation today: simple, portable, and
extensible so that it is easy for language designers and run-
time implementers to maintain and extend as the language it
implements changes and evolves.

Secondly, we employ a compilation system that exe-
cutes on a single architecture/system (a remote optimiza-
tion server) as opposed to all of the possible combinations
of architectures and OS of client systems. The optimization
server compiles and specializes portions of programs and
produces a library from these portions (for all client target
platforms). The output of this process is a program that can
be executed using any unmodified interpreter: the unopti-
mized scripting language code calls into the compiled and
optimized library extensions for its execution. This model
allows the interpreter and compiler to be decoupled and
evolved independently of each other. While the unmodified
interpreter always supports all recent language features, the
compiler need only focus on the subset of features that is im-
portant for performance (i.e. features heavily used and per-
form poorly in the client interpreter). Features unsupported
by the compiler can always be interpreted. This allows for
incremental and simpler compiler implementation.

Finally, this compilation system is feedback-driven so
that it is able to identify the most frequently executing
code across users/clients and to specialize the code to re-
duce the overhead imposed by the use of dynamic scripting
languages. We target only most frequently executed (hot)
code for specialization/compilation to improve program per-
formance without increasing the memory footprint of the
client-side runtime. Being feedback-driven, RCF is also
able to continuously monitor running programs and adapt
to changes in their behavior by recompilation.

Figure 1 depicts RCF. While users execute a program
with different inputs and use cases, the interpreter at the
client side collects samples randomly about the program’s
behavior using calling context trees (CCTs) [1]. The client-
side runtime communicates the samples to an optimiza-
tion server which merges them into aggregate profiles that

identify frequent and common program and phase behavior
across inputs/users. Since samples can come from numerous
users, per-user sampling rate can be kept very low. In the
sections that follow, we detail the three primary components
of RCF: client-side profile collection, the remote optimiza-
tion service, and the phase detection process.

3. RCF Profiling
RCF employs calling context trees as its profile representa-
tion and collects samples randomly from users “in the wild”
using modified client-side interpreters.

3.1 Calling Context Tree Profiles
A Calling Context Tree (CCT) [1, 2, 26, 38] is a representa-
tion of program behavior as a tree for which nodes represent
methods and directed edges represent calls between meth-
ods. In RCF, we extend the traditional CCT to distinguish
call sites. This means that if A calls B twice but from dif-
ferent callsites then there will be two different nodes for B
under the same context. We distinguish nodes by call sites
to enable per-callsite and per-context specialization across
users/inputs; without it, a method’s behavior under a partic-
ular callsite or calling-context may appear highly variable
(and thus not specializable)

Our sampling system annotates CCT nodes with infor-
mation about types and execution frequency of the method
it represents. The key annotations that we employ are:
• Execution Count (Time): To represent the time spent

in a method called from a particular call site using the
method invocation count plus the number of times a
back-edge was taken within the method.

• Argument Types: We record a histogram of tuple counts
for each set of arguments passed into a method. The
higher the number of histogram entries, the more dy-
namic the method is. We refer to methods (and their call-
sites) with one unique argument tuple as single-typed
methods/callsites (vs multi-typed methods/callsites with
multiple argument tuples).

• Bytecode Types: We also record a tuple of types for
objects operated on and returned by the most popular and
high overhead bytecodes (operand stack loads/stores and
function calls). We refer to bytecodes with a single tuple
single-typed bytecodes (vs multi-typed bytecodes with
multiple tuples).

3.2 Multi-Input Remote Profiling
To collect CCT samples from different users, the users em-
ploy a standard CPython interpreter [5] that we have ex-
tended to collect sample-based profiles from Python pro-
grams. These interpreters can also communicate the samples
during execution or store them to disk for off-line communi-
cation to an RCF remote optimization service.

The interpreters sample only Python code (CPython byte-
codes, not native code). Each CCT sample consists of a se-
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quence of CCT nodes describing the calling context at the
point during execution at which the sample is collected. A
leaf node in the CCT sample represents the sampled method;
we annotate only leaf nodes.

The interpreters initiate sampling on a sampling event,
i.e. a method call or a backward branch. For each sampling
event, the runtime decrements a counter. The counter is set
(and reset) to a random value between 5000 and 10000.
When the counter expires, the runtime samples the code and
collects bytecodes type information, until the next sampling
event occurs. When this happens, the runtime resets the
counter, terminates the sample, and buffers the data. When
the buffer overflows, the interpreter writes the samples to
disk or transmits them to the optimization server.

The RCF remote optimization server receives and merges
into an aggregate profile the CCT samples from client-side
interpreters (users executing the program “in the wild”). The
aggregate CCT is similar in spirit to that described in [2]
but we do so across inputs and users. To merge a sample,
we search for the sample’s context in the aggregate CCT, if
the context already exists, we augment the type profile of the
sample to that of the corresponding aggregate CCT node and
increment its frequency. We add unmatched samples to the
CCT as new nodes and edges.

4. RCF Remote Optimization Service
RCF extracts the hot callsites from the aggregate profile as
candidates for specialization. RCF considers callsites that
account for 50% of total execution count (method invocation
counts plus taken loop backedges) as hot. For each hot call-
site target method, RCF applies Python-level optimization
that includes traditional type specialization as well as new
techniques for feedback-directed optimization that are par-
ticularly useful for dynamic languages, including dispatch-
ing and optimization of different method versions (clones)
and their context-aware specialization.

4.1 Type Specialization
Type specialization aims to reduce the number of type-
checks, unbox operations, indirect calls, and other forms
of overhead associated with type-generic code. For exam-
ple, if an arithmetic operation is performed on two Python
objects, then the implementation must first resolve the types
of the two objects, find the correct method associated with
that operation, and indirectly call it. However, if the types of
the two objects are known to be integers, for example, then
the compiler can unbox these objects and directly implement
(lower) the arithmetic operations. Although it is possible to
generate specialized code for different types and have it in an
if-else-if ladder, in RCF, we specialize code for single-typed
bytecodes only. For multi-typed bytecodes, RCF generates
generic code. This simplifies our specialization system and
achieves almost zero guard overhead on today’s superscalar
machines.

4.2 Clones Calling Mechanism
We refer to the method bodies that the optimization service
specializes using particular types as clones. In RCF, we gen-
erate clones for hot, monomorphic (single target) callsites.
Although it is possible to have multiple clones for polymor-
phic and/or multi-typed callsites, RCF only produces one
clone per-callsite for simplicity. If a callsite is polymorphic,
RCF does not specialize it. If a callsite is monomorphic (one
target) and its target is a multi-typed method, RCF special-
izes only the single-typed bytecodes within the method.

When RCF generates a clone for a callsite, its compiler
associates an ID number with the target method object and
its clone. At the callsite, the runtime first resolves the method
by name. If the method body has the expected ID number, its
clone is invoked instead. Each clone has a global guard in its
prologue that type-checks the method argument, if any of
the checks fails, the generic method is invoked instead. The
global guard is redundant in terms of correctness, since every
specialized piece of code is already guarded. However, if the
argument type checks fail, we have found that it is likely
that many guards will fail inside the method body. We thus
decide, in such cases, to switch to the generic version early.

4.3 Direct Calls and Inlining of Clones
Since method resolution takes place before the clone is dis-
patched, RCF emits code to call the clone directly, using
the C calling convention, instead of using the slower call-
ing convention that CPython implements. This eliminates
the extra work of packing arguments into tuples in the caller
and unpacking them in the callee, following the Python call-
ing convention. RCF dispatches and inlines built-in meth-
ods directly, without method resolution, since Python disal-
lows built-in methods to be modified. For example, a call to
the append built-in method for a List object receiver can be
called directly or inlined, provided that we perform a type
check on the receiver.

4.4 Context-aware Specialization
As part of this work, we have discovered that it is effective
to partition dynamic callsites by calling context to reveal
significantly more static behavior in some programs. Poly-
morphic callsites in many of the programs we have studied
are monomorphic within one or more of its calling contexts.
This enables us to use optimization service to more aggres-
sively specialize programs. Context-aware clone resolution
is similar to normal clone resolution except that we require
an additional comparison on the context identifier as part of
the guard that determines if the clone should be dispatched.

We implement the method described in [3] to facili-
tate low-overhead deterministic hashing to encode calling
contexts during execution. Each calling context is encoded
based on the sequence of callsites it contains where each
callsite is represented as a hash of its method name and byte-
code offset. We store the context hash in the corresponding
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call-stack frame, so no hash updates are needed on returns.
This method is fast but introduces a very small chance of
collisions (3 in 10 billion for a 64-bit hash value). Since
we guard each clone with a check on the resolved method
ID that the runtime checks each time clone is dispatched
(which falls back to generic code upon failure), we guaran-
tee that a collision can never lead to incorrect execution. In
our experiments, we have observed no context hashes colli-
sions.

5. Phase Detection and Re-Compilation
For simple programs, a single RCF specialization may be
sufficient to extract high performance. For such programs,
we can turn off RCF profiling at the clients after optimiza-
tion. For more complex programs that implement a variety
of different components and behaviors, continuous profiling
and optimization may be needed to achieve additional per-
formance gains when the use of application changes over
time. Such applications are increasingly common with the
advent and wide spread use of dynamic language frame-
works, web services support, and cloud computing technolo-
gies (e.g. Python/Django, Python/TurboGears, Ruby/Rails,
PHP/Trax, Google AppEngine [11], AppScale [4], ... etc.),
among others. To support such continuous optimization,
RCF implements a multi-user/input phase detection mecha-
nism for fast phase shift detection and identification of addi-
tional optimization opportunities (stable phase behavior).

To capture a program’s behavior at a particular point in
time, RCF records periodically a copy of the aggregate pro-
file, which we call a snapshot. RCF records snapshots every
100 samples; we refer to this duration as the snapshot inter-
val (SI). Note that earlier snapshots are subsets of later snap-
shots since snapshots accumulate. RCF measures and com-
pares the similarity between two snapshots via their over-
lap metric [9] to detect when the behavior of an application
changes (i.e. when the two snapshots deviate). Overlap mea-
sures how well the hot methods (those that cover that top
50% of execution count) in one snapshot cover the the ex-
ecution count (dynamic method invocations and back edges
taken) in the later snapshot. We next discuss how phase de-
tection works in RCF in more detail.

5.1 Convergence Cycle
A naı̈ve approach to detect re-compilation points it to com-
pute the overlap between the latest snapshot and the ag-
gregate profile used for the previous optimization decision.
Phase shifts can then be detected when the overlap value falls
below a specific threshold . This approach, however, can be
very slow in detecting phase shifts and can leave some un-
detected. This is because the current profile is an aggregate
of earlier samples. This means that, over time, the profile
becomes heavily skewed toward a previous behavior and re-
quires a long period of new behavior to overcome this skew
for the new phase to be detected. To overcome this issue, we
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Figure 2. Example of four convergence cycles (CCs). The
Y-axis is the overlap with snapshot distance (SD) = 10. The
X-axis is the snapshot count. Snapshot interval (SI) is set
to 100 samples. The convergence threshold (CT) is marked
at 0.4. The overlap fluctuates at the start of every CC but
stabilizes after 100 snapshots. CCD is set to 200 after which
a new CC is started.

periodically flush the profile. We call this period the Conver-
gence Cycle (CC). A CC always starts with an empty aggre-
gate profile. During a CC, RCF merges received samples and
snapshots the profile periodically. When RCF detects that a
profile has converged, it flushes the profile, terminates the
current CC and starts a new one.

RCF detects CC convergence by repeatedly computing
the overlap between the latest snapshot Si and another snap-
shot in the past Si−d, where d is the Snapshot Distance (SD)
between them. If the overlap remains above a Convergence
Threshold (CT) for a specified number of snapshots (Con-
vergence Cycle Duration (CCD)), RCF terminates the CC
and starts a new one. Note that if the overlap drops below
CT, the duration count is reset. Only when duration reaches
CCD, does RCF declare the CC converged. Figure 2 demon-
strates how the overlap varies for four CCs. Note how flush-
ing the profile drops the overlap to zero at the start of every
CC. The overlap then rises above CT and remains there for
CCD snapshots until the profile is flushed again and a new
CC starts.

5.2 Phases
RCF views a phase as a sequence of CCs with homogeneous
behavior. Every CC is represented by its Last Snapshot (LS).
The LS represents the last recorded snapshot of the con-
verged profile for that CC before it is flushed. To determine
similarity between two CCs, RCF computes the overlap be-
tween their LSs. To detect need for recompilation, RCF per-
forms the following steps which are showed more formally
in Figure 3.

1. Detect a phase shift: RCF tracks the LS of the CC
where the last compilation occurred. That is the aggregate
profile upon which the last compilation was based. For
every CC that ends, RCF compares its LS with the LS
from the last compilation. If the overlap falls below a
threshold (Phase Threshold (PT)), RCF detects a phase
shift.
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// state and duration are global variables
// optLs: LS of last optimization
// curLS, prevLS: current and previous LSs
function recompile(optLS, curLS, prevLS)
begin

if state = phase_stable then
ol = overlap(optLS, curLS)
if ol < PT then

// move to phase shift state
state = phase_shift
duration = 0
return False

endif
else if state = phase_shift then

ol = overlap(prevLS, curLS)
if (ol > PT) then

duration = duration + 1
if duration == PCD then

// phase stable for long enough
// move to stable phase state
state = phase_stable
duration = 0
// is it a different phase ?
ol = overlap(optLS, curLS)
if ol < PT then

return True
else

return False
endif

endif
else

// another phase shift interrupts
duration = 0
return False

endif
endif

end

Figure 3. Phase detection algorithm. The function takes the
last optimization LS, the current LS and the previous LS.
The function returns True if recompilation is required, False
otherwise.

2. Wait for a stable phase: This steps measures the homo-
geneity of the CCs after the phase shift to detect if the
profile has entered a new stable phase or is just going
through a transient period. To achieve this, RCF com-
pares the current LS with the previous one. If the overlap
remains higher than the PT for a continuous number of
CCs (Phase Convergence Duration (PCD)), the phase is
stable again.

3. Check for transition to a new phase: Now what re-
mains is to determine if the currently stable phase is a
new phase or just a continuation of the previous stable
phase. This is achieved via one last comparison between
the newest LS and the LS from the last compilation. If the
overlap is below PT, this is a new phase and is different
from the previous stable phase that we optimized for. If
not, then the behavior shift is a temporary fluctuation of
the profile and no recompilation is needed.

6. Experimental Methodology
To investigate the efficacy of the various design decisions we
make in RCF and to evaluate its potential and overhead, we
use 12 real Python applications. We overview our applica-
tion suite in Table 1. The last column of the table indicates

Name Description G/C LOC
2to3-2.6 Python 2.x to 3.x translator C 83469
Brainworkshop-4.8.1 Memory trainer G 61531
Doctuils-0.7 Text to HTML/Latex converter C 58327
DrPython-3.11.3 Python IDE G 16568
Markdown-2.0.3 Text to HTML converter C 2569
Gourmet-0.15.7 Recipe manager G 43714
PdfShuffler-0.5.1 PDF documents management tool G 1031
PyParsing-1.5.5 General grammar parsing tool C 10581
Solarwolf-1.5 Arcade game G 5270
TowerDefense-0.5 Arcade game G 3884
w3af Web attack and audit framework G 58133
wapiti Web apps vulnerability scanner C 5810

Table 1. Description of 12 real Python applications evalu-
ated. Applications with a graphical user interface are marked
with ’G’, those with a command-line interface (CLI) are
marked with ’C’.

whether the application uses C, a command-line interface
(CLI) or G, a graphical-user interface (GUI).

We analyze the performance of RCF optimization using a
subset of applications (docutils, 2to3, markdown, gourmet,
and pdfshuffler), chosen arbitrarily. We also employ a set
of microbenchmarks (binarytrees, fannkuch, fasta, meteor,
nbody, and mandlebrot) that have been used in other stud-
ies on optimization of dynamic scripting languages. These
microbenchmarks come from the Programming Language
Shootout [31]; we overview their functionality in Table 2.

We also compare the performance of RCF-based opti-
mization with that of a popular dynamic compilation and
type specialization system: PyPy [24]. For this study, we use
PyPy 1.6 [22], and perform the comparison using the subset
of these programs that PyPy is able to run. These programs
are docutils, markdown, fannkuch, fasta, and meteor.

For each program, we consider four different inputs that
we have generated as test inputs and through arbitrary use
(by different students) of the programs. We chose the inputs
to exercise different functionalities of the programs under
study. We generate profiles for three of the four inputs, on a
per-thread basis, using CPython 2.6.6 [5], extended with our
sample-based profiling support. For every application, we
combine profiles from three inputs into one global aggregate
profile. We use the fourth input to analyze the efficacy of
profile-guided optimization across-inputs (for an input not
used in the profile aggregation step).

Our optimization step relies on Cython [6], a Python-to-
C translator and optimizer that translates Python code with
type annotations into efficient C extension modules. We start
by applying a set of by-hand Python-level optimizations and
type-annotations to hot code guided by the aggregate profile
(Section 4). We then compile the optimized Python code to
C using Cython which automatically performs the required
specialization and adds the necessary guards as needed. We
can automate all manual steps of our optimization process
but chose not to do so for this paper due to time constraints
(and because doing so is purely an engineering exercise
that will likely be duplicated by the Cython team). We use
Cython 0.14.1 and gcc 4.4.3.
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Micro Benchmark Description
Binarytrees Allocate and deallocate many binary trees
Fannkuch Repeatedly access a tiny integer-sequence
Fasta Generate and write random DNA sequences
Mandelbrot Generate a Mandelbrot set and write a portable bitmap
Meteor Search for solutions to shape packing puzzle
Nbody Perform an N-body simulation of the Jovian planets

Table 2. Description of Python microbenchmarks applica-
tions evaluated.

For our experiments, we execute the programs 10 times
within a test harness and report the average (with bars for
standard error of the mean), across all but the first warmup
run. We consider the warmup run separately, for which case
we execute the programs without the test harness 10 times
and report the average. Our execution platform is a Linux-
2.6.32-27 machine running on an Intel Core i5 clocked at
2.67GHz, with 8GB of memory.

7. Empirical Evaluation
We next empirically evaluate RCF. In the subsections that
follow, we consider the efficacy of the RCF profiling com-
ponent, investigate the potential of RCF for improving per-
formance of Python programs, and perform an extensive sen-
sitivity analysis across the parameters of the RCF phase de-
tection system.

7.1 Effect of Profile Aggregation
In this section, we quantify the similarity between the ag-
gregate profile and per-input profiles that contribute to it,
in both the amount of recurring type behavior and method
hotness. We consider similarity at the method (call-site and
body) and the bytecode level. High similarity indicates little
information is lost in the aggregation process, and as such, an
optimization plan that is guided only by the aggregate profile
can benefit programs that employ its constituent inputs. The
amount of similarity across inputs indicates the potential for
across-input and ahead-of-time optimization.

We first evaluate behavioral similarity for each input and
the aggregate using the time spent in methods called from
monomorphic call sites (single target call sites) in Figure 4.
The Y-axis is execution time (approximated by method call
and back-edge counts) spent in these calls normalized to the
total time. The ratio is almost identical (3% variation) across
inputs and the aggregate profiles for all applications except
pyparsing and w3af.

In Figure 5, we perform the same evaluation but for time
spent in methods called from monomorphic call sites that are
single-typed (for which the argument types are invariant). As
expected, there is less time spent in these methods than if
we disregard variation in argument types. For example, ap-
proximately half of pyparsing call-sites are monomorphic,
yet, for two inputs, only 10% are monomorphic to single-
typed methods. On the contrary, the methods called from
monomorphic call-sites in drpython are almost all single-
typed. This figure shows higher variation across inputs. For
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Figure 4. Effect of profile aggregation on the total execu-
tion count of monomorphic calls. Numbers are normalized
to the workload total execution count. Higher is better.
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Figure 5. Effect of profile aggregation on the total execu-
tion count of monomorphic calls with invariant argument
types. Numbers are normalized to the total execution count.
Higher is better.

docutils, gourmet, pyparsing and w3af, one or two of the in-
puts have different ratio than the rest, and the aggregate pro-
file tends to capture the behavior of the majority of inputs.
For all other applications, the aggregate profile remains sim-
ilar to that of the per-input profiles.

We next consider behavioral similarity across inputs at
the Python bytecode level. Figure 6 shows the ratio of byte-
codes executed that are single-typed (operate on one invari-
ant type). With the exception of gourmet and w3af, the fig-
ure shows that single-typed bytecodes tend to remain that
way across inputs. This suggests that by specializing based
on the aggregate profile, we can benefit different inputs.

So far we have assessed how representative an aggregate
profile is of per-input profiles in terms of the amount of
static behavior it identifies across different execution of a
program. The data indicates that our aggregate profiles are
good representatives of individual inputs (i.e. they do not
lose significant information). However, this result is only
useful if an optimizing compiler specializes all methods in
the code. Since we attempt to balance performance gains
with memory footprint, we only optimize hot methods. To
do so, the hot methods must also be the same (or similar)
across inputs.
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Figure 6. Effect of profile aggregation on the dynamic
count of single-typed bytecodes normalized to the total byte-
codes dynamic count. Higher is better.
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Figure 7. Overlap between the aggregate profile and each
of the per-input profiles contributing to it. The graph shows
the coverage over the per-input profiles when the top 50%
execution count of the aggregate profile are optimized.

Figure 7 quantifies hot methods similarity of our pro-
grams. We measure the overlap of the methods that con-
stitute the top 50% of approximated execution time between
the aggregate and per-input profiles. In other words, if the
compiler specializes the top 50% methods in the aggregate
profile, we measure how much of the per-input profile gets
covered by the specialization. For seven applications, the fig-
ure shows that the overlap is 50% or more for all inputs
(up to 90% in solarwolf ). For the remaining five programs,
overlap ranges from 40% to 50%. gourmet’s second input
exhibits a low overlap (20%). This is because this input ex-
ercises a different part of the application than the others.

7.2 Sampling Overhead and Accuracy
We next evaluate the overhead and accuracy of the RCF CCT
sampling system. We first consider overhead.

Figure 8 shows the average runtime overhead for the
command-line interface (CLI) applications with a random-
ized sampling rate between 5000 and 10000 events (calls
or back-edges). On average, the overhead is less than 2%.
Some applications show minor speedup. This is because the
sampling overhead is so low that it falls within the margin
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Figure 8. Runtime overhead of sampling calling context
and bytecode types.

of noise in measurements1. wapiti has higher performance
variation than the other programs. This is likely due to its
network I/O as part of its implementation and not due to per-
formance sampling.

In Figure 9, we investigate how fast a sampled aggre-
gate profile converges to the complete aggregate one. That
is, how many samples are needed before the sampled profile
overlap with the complete profile is above a threshold. We
sample evenly from three different inputs to build the sam-
pled aggregate profile. On every hundred samples, we record
a snapshot of the sampled profile and compute the overlap.
Our overlap metric is how much of the complete profile is
covered by the top 50% call-sites of the snapshot. That is, if
we choose to specialize the top call-sites accounting for 50%
of the execution count in the sampled snapshot, how much of
the complete profile is covered. Hence, a reasonable overlap
threshold for convergence is 50%.

Surprisingly, by only 5000 samples, we achieve an over-
lap of at least 50% for all applications. This indicates that,
for the programs we consider, if we perform online sample
collection (i.e. the user’s runtime communicates samples to
the optimization server while the program is executing), very
few samples are needed from a small number of users to
build a sampled profile that is representative enough to guide
optimization. This is because client-side Python applications
are typically of single-purpose and have highly peaked pro-
files.

7.3 Potential of Context-aware Specialization
We next investigate the feasibility and potential of context-
aware specialization. We first measure the runtime overhead
that is imposed by tracking the context hash (updating the
context hash upon every method call). Figure 10 summa-
rizes our findings. The average overhead is 0%, while the
maximum is 4%. Similar to the sampling overhead, some
applications get minor speedup. Next, we analyze the effect
of context-awareness on extracting static execution behav-
ior from programs. We measure the amount of time spent

1 The performance of the CPython main dispatch loop is very sensitive to
modification. Hence, by adding extra code, one can obtain minor speedups
like the ones shown here.
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Figure 10. Runtime overhead of context hashing and track-
ing. Execution time is normalized to baseline. Lower is bet-
ter.

in methods called from single-typed monomorphic call sites
(Figure 11) when we distinguish call-sites by their contexts.

The data shows that using context information increases
the time spent in these specializable sections of code for
all applications. The increase is large for dynamic applica-
tions such as pyparsing, docutils and w3af, indicating poten-
tial for additional performance improvement over not using
context-awareness. Other programs exhibit smaller improve-
ments (drpython, pdfshuffler and brainworkshop). Programs
that are developed in a way that does not use dynamic fea-
tures extensively benefit less from context awareness. Such
programs are arguably easier to optimize and as such, our
context-aware profiling technique can benefit more dynamic
programs – those that are currently challenging to optimize
effectively.

7.4 Speedup
RCF applies the optimizations described in Section 4 to the
hottest monomorphic callsites – those that account for 50%
of the total execution count. We next evaluate the speedup
that RCF achieves from these optimization for a subset of
our applications and microbenchmarks.

Figure 12 and Figure 13 show the average speedup and
error bars for six of the microbenchmarks and five applica-
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Figure 12. Speedup for six microbenchmarks using four
different inputs. Three inputs are part of the aggregate profile
and the fourth is a new input.

tions, respectively. We show four different inputs for each
program. The first three are used to generate the aggregate
profile. The fourth profile is a new input – not used as part
of the aggregate profile. The speedup for the microbench-
marks ranges from 1.3× to 3.4×. The speedup for the ap-
plications ranges from 1.1× to 1.7×. The microbenchmarks
benefit to a greater degree, as expected, because they have
a small tight kernel which can be easily optimized with
very few specialized clones. The applications have flatter
profiles. This speedup for applications is significant, how-
ever, in that it is on par or better than that reported by other
Python optimization efforts that employ complex dynamic
compilation such as Google’s (now defunct) Unladen Swal-
low project [34, 35].

The other interesting result is that the fourth (new) input
shows nearly equal, and sometimes much higher, speedup
for all programs. This means that RCF can enable perfor-
mance benefits for users that employ arbitrary and new in-
puts for some programs. It also shows that for these pro-
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Figure 14. Speedup comparison of RCF to PyPy-1.6 with-
out startup cost. We average the execution time of each
workload over 10 runs after an initial warm-up run.

grams at least, a core subset of behavior can be captured by
a small number of inputs.

7.5 PyPy Comparison
To compare these speedups against an on-going (client-side)
dynamic compilation project, we next evaluate PyPy v1.6.
PyPy compiles hot traces of the interpreter dispatch loop,
and performs partial evaluation of methods with type and
value specialization. We employ a different set of programs
for this evaluation since PyPy was unable to execute most of
our programs because it either does not support PyGTK or
crashes during execution.

We compare RCF against the steady-state performance of
PyPy by excluding the initial “warm-up” run in which PyPy
identifies hot methods and optimizes them. We present the
average and standard deviation of execution speedup (rela-
tive to the baseline – unoptimized, interpreted performance)
across 10 runs that follow the warm-up run.

Figure 14 shows the steady-state performance compari-
son over four inputs. RCF outperforms PyPy on all inputs
for meteor, and the first input for markdown, for which
PyPy shows a 50% slowdown. RCF also shows approaching
speedup to PyPy for fasta. PyPy achieves better performance
for all other programs, specially fannkuch. PyPy’s advantage
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Figure 15. Speedup comparison of RCF to PyPy-1.6 for
cold runs only. We average execution time over 10 cold runs
to measure the effect of startup cost.

stem from (1) our exclusion of PyPy compilation overhead
due to steady-state comparison in these results, (2) the use of
value specialization by PyPy (which we do not employ in our
RCF prototype), (3) specializations that target the behavior
of the current input (as opposed to RCF’s conservative ap-
plication of optimizations using aggregate, multi-input pro-
files), and (4) compilation of a greater number of methods
than RCF.

We next consider the overhead of compilation and opti-
mization that PyPy imposes. Such overhead impacts startup
time, user interactivity, as well as overall performance. We
consider only the warmup run, which we execute 10 times
without the harness, and present the average and error. Fig-
ure 15 shows the results. Except for fannkuch, for which
the differences are now smaller, RCF and PyPy show sim-
ilar speedup. In half of the cases, RCF outperforms PyPy.
This result suggests that RCF may be more suitable for short
running and user-interactive applications than dynamic com-
pilation systems that are unable to quickly amortize their op-
timization overhead.

7.6 Memory Footprint
Since our goal with RCF is to achieve performance bene-
fits without the memory footprint of dynamic compilation
systems, we next investigate the impact of RCF on footprint
versus that of PyPy. Figure 16 shows the memory footprint
of CPython (solid), RCF (dashed), and PyPy (dotted). The
X-axis is the percentage of execution time and the Y-axis
is the memory in KiloBytes. We approximate memory foot-
print by measuring virtual memory resident set size via the
Linux ps command. We query this value approximately ev-
ery 0.1 seconds to generate this data.

RCF shows a similar memory usage pattern as CPython
while PyPy footprint is significantly larger (and keeps in-
creasing for all programs except markdown). The footprint
of the dynamic compiler is larger due to the code objects
generated by PyPy as well as the code required to imple-
ment the compilation system. The memory usage of PyPy
is 2×-7× greater than that of baseline and RCF for the pro-
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Figure 16. Memory footprint of CPython (solid), RCF (dashed), and PyPy-1.6 (dotted). The X-axis is the percentage of
execution time and the Y-axis is the memory in KiloBytes

Name Description Value

CT Overlap threshold to exceed for a CC to converge 0.4
CCD Number of snapshots a CC must remain convergent before 20

it is terminated
PT Overlap threshold to fall under for a phase to be detected 0.3
PCD Number of CCs a phase must remain convergent before 4

it is considered stable
SD Distance between two snapshots compared during a CC 10
SI Number of samples between snapshot recordings 100

Table 3. RCF phase detection parameters. CT: Conver-
gence Threshold, CCD: Convergence Cycle Duration, PT:
Phase Threshold, PCD: Phase Convergence Duration, SD:
Snapshot Distance, SI: Snapshot Interval. For each sensitiv-
ity experiment, one parameter is varied while other parame-
ters maintain their default values.

grams we evaluated. This is on par with that reported on the
Unladen Swallow project website [35].

7.7 Phase Detection
We next investigate how well RCF can react to large, com-
plex Python programs that demonstrate phases in their be-
havior through its phase detection and recompilation tech-
nique. We first conduct a sensitivity analysis of the system
to choose a suitable range for its parameters. We then evalu-
ate the efficacy of the system, using the chosen parameters,
on a multi-user experiment.

7.7.1 Sensitivity Analysis
RCF phase detection operation is controlled by a set of pa-
rameters that we presented earlier in Section 5. To under-
stand the effect of those parameters on the system and the
best range of values for each, we conducted a sensitivity
analysis of the system. For each parameter, we vary it over
a range of values while holding other parameters constant to
a default value. Table 3 summarizes the system parameters
and their default values. For each experiment, we observe
the effect on

• Number of false positive/negative recompilations:
False positive are recompilations that cannot be asso-
ciated with a phase shift. A false negative is a phase shift
that goes undetected with no recompilation triggered.

• Average recompilation delay: The delay, in samples,
between the position where an actual phase shift occur
and where RCF triggers a recompilation.

Evaluation of RCF phase detection demands a baseline
for comparison. For that purpose, we devise a set of baseline
workloads with known phase shift locations to which we
can compare RCF. We call these true phase shifts. For each
workload, we generate a trace that contains a mark for every
true phase shift that occurred during execution. We then
feed the trace to RCF phase detection module. We finally
compare the detected phase shifts and recompilation points
with the true phase shifts marks in the trace. This enables
us to find the number of false recompilations, recompilation
delays and other metrics.

To emulate real, complex, multi-component applications,
we chain multiple applications from our evaluation suite
(Table 1) together. Every application is homogeneous by
itself and thus constitutes a single stable phase. A transition
from one application to the next causes significant changes
to the aggregate profile that lead to a phase shift. We run
each workload to generate a trace of samples where points
of transitions are marked. The workloads are in two groups:
The first group consists of the applications 2to3 and docutils
exercised back-to-back with three different inputs. We iterate
over the execution 5 times to generate 10 phases. The second
group consists of pyparsing, wapiti and markdown. They are
also executed with three different inputs and iterated 5 times
to generate 15 phases. Table 4 summarizes the workloads. In
this section, we investigate the effect of all parameters.

Convergence Threshold (CT)
Every snapshot recorded during a CC is compared to a snap-
shot that is SD snapshots in the past, where SD is the Snap-
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short name # of samples phases # of phases
exp1 inp1 3,297,142 2to3, docutils 10
exp1 inp2 7,081,851 2to3, docutils 10
exp1 inp3 2,077,072 2to3, docutils 10
exp2 inp1 3,701,229 pyparsing, wapiti, markdown 15
exp2 inp2 2,521,970 pyparsing, wapiti, markdown 15
exp2 inp3 3,989,511 pyparsing, wapiti, markdown 15

Table 4. Attributes of the six experiments used for sensitiv-
ity analysis. The table shows, for each experiment, the num-
ber of samples it generates, the phases it consists of, and the
total number of phases.
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Figure 17. Effect of convergence threshold (CT) on average
recompilation delay.

shot Distance. Only when the overlap exceeds CT and re-
mains above it for a while is the CC terminated. Therefore,
CT should control the CC length. Our results show that vary-
ing CT causes no false compilations. Although one might
expect that increasing the CC length will reduce the sys-
tem sensitivity, and hence lead to undetected phase shifts,
this is not the case. In our experiments, the CC never gets
long enough to hide a short phase. In other words, even with
high CT, CCs always converge fast enough and thus have
fine enough granularity to be able to detect all phases.

We investigate the effect on recompilation delay in Fig-
ure 17. As expected, the increase in CT causes an increase
in recompilation delay as the CCs grow larger. The in-
crease is significant for CT above 0.4 with the exception
of exp2 input2 at a CT of 0.1. At this point there is a spike
in delay from 17,000 to 20,000 samples. This increase is
due to how, by affecting the CC length, the CT also affects
CC termination points and how they align with phase shifts.
If a phase shift occurs very close to a CC end, the last snap-
shot (LS) of that CC will not reflect the shift and we have
to wait for another CC before the shift is detected. We find
that the average CC length for this experiment to be around
3000 samples which makes the spike amount (≈3000 sam-
ples) reasonable. This is an artifact of the randomness of the
sampling process.

Convergence Cycle Duration (CCD)
CCD dictates how long the CC overlap must remain above
CT before a CC terminates. It has a direct impact on the CC
length. By elongating CCs, CCD also indirectly increases
the phase convergence duration (PCD) which is the number

of CCs RCF must wait before it declares a phase stable.
Longer PCD makes the system less sensitive to phase shifts.
In other words, a PCD can outgrow a phase length which
will make the system consider a whole phase as a temporary
transient behavior before an actual stable phase is reached.
On the other end, a short CCD causes premature termination
of CCs which leads to randomness in the last snapshot (LS)
of CCs. Figure 18 (a) summarizes this effect. At CCD below
10, there is increase in false positives (false phase detections)
due to randomness in CCs. Starting at 80, the number of false
negatives (undetected phases) grows significantly. Figure 18
(b) shows the effect on recompilation delay. At a CCD of
60, the delay starts growing significantly. Although, for this
experiment, a reasonable range for CCD is between 10 and
60, our experiment with larger number of users (Section
7.7.2) reveals that CCD must scale with the number of users
to achieve accurate phase detection.

Phase Threshold (PT)
Phase threshold (PT) is the overlap threshold that the last
snapshot (LS) of the current CC and the LS used in latest
optimization must fall under for a phase shift to be detected.
This parameter affects operation at the CC level, not snap-
shot level. It has a direct effect on false recompilations and
recompilation delay. With low PT, the system becomes less
sensitive to phase shifts which can lead to false negatives.
With high PT, two contradicting effects take place. On one
hand, the system is more sensitive which can cause false pos-
itives. On the other hand, increased sensitivity causes more
interruptions during the PCD period and thus elongates it
(refer to Figure 3). Elongated PCD can cause major phase
shifts to be overlooked as transient fluctuation hence caus-
ing false negatives. Figure 19 (a) summarizes these effects.
We see false negatives at very low PT values (0.001). No
false recompilations happen in the range 0.01 until 0.3. Start-
ing from 0.4 false recompilation, both positive and negative,
arise. Figure 19 (b) shows the effect on recompilation de-
lay. The delay remains fairly constant until a PT of 0.4, after
which there is increase in delay due to the longer PCD. Rea-
sonable PT value should be in the 0.01 to 0.3 range, depend-
ing on how sensitive we want the system to be.

Phase Convergence Duration (PCD)
PCD parameter tells RCF how many CCs the profile has to
be stable before a stable phase is declared. It has the intuitive
effect of controlling the length of the phase stability period
and the system sensitivity to relatively shorter phases. It also
causes the recompilation delay to be longer, since recom-
pilations happen only after stable new phases are declared.
Figure 20 (a) and (b) show the effects. At a PCD of 8, we
start seeing false negatives. Nearly all experiments have false
negatives at a PCD of 128. There is a consistent increase in
recompilation delay for higher PCDs.

Snapshot Distance (SD)
The distance between every two snapshots compared dur-
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Figure 18. Effect of convergence cycle duration (CCD) (in snapshots) on false positives/negatives and average recompilation delay.
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Figure 20. Effect of phase convergence duration (PCD) on false positives/negatives and average recompilation delay. Infinite recompilation
delay means no recompilations took place.

ing a CC is the snapshot distance (SD). A low SD causes a
CC to terminate early leading to randomness in CC endings
which can possibly lead to false positives. A high SD ex-
pands the CC length, and consequently the PCD, and lead to
false negatives. Figure 21 (a) shows false negatives at values
larger than or equal to 60. At 100, RCF does not detect any
phases for exp2 input2 due to the long PCD. At 1000, all
experiments, except exp1 input2, have no phases detected.
A good range for this parameter is 10 to 40 which avoids
false recompilations and has low recompilation delay (Fig-
ure 21(b)).

Snapshot Interval (SI)
Snapshot interval (SI) determines the frequency by which
snapshots are recorded. Although snapshots collected at
higher rate (low SI) provide finer granularity for profile com-
parison, they need to be accompanied by an increase in the

CCD. Otherwise, the comparison of close (hence, similar)
snapshots will yield a false indication of CC convergence
leading to randomness in LSs and false positives. On the
other extreme, higher SI will cause long CCs and conse-
quently longer PCD and false negatives. Figure 22 (a) shows
how SI can generate false compilations. On the high end,
we see false negatives, which is explained by the undetected
phase shifts due to a long PCD. On other low end, there is
a mix of false positives and negatives. This is induced by
the randomness in CCs which can either cause the overlap to
drop below PT, hence leading to false phase detections (false
positives), or overlap drops during PCD which can lead to
excessively long PCD and hence undetected phases (false
negatives). This randomness also causes increase in recom-
pilation delay on both ends in Figure 22 (b). A reasonable
choice of SI range from 100 to 250. The minimum recompi-
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Figure 22. Effect of snapshot interval (SI) on false positives/negatives and average recompilation delay. Infinite recompilation delay means
no recompilations took place.

lation delay for all experiments with no false recompilation
happens at a SI=100.

7.7.2 Multi-user experiments
We next evaluate the efficacy of RCF phase detection for
large multi-user experiments. We set the system parameters
to the values shown in Table 3. For CCD, however, we set it
to be equal to the number of users connected to the system.
This is necessary to overcome the randomness in CCs with
the increased number of users. We will explore the effect of
CCD on accuracy later in this section.

To be able to assess RCF accuracy, we devised a work-
load consisting of five applications (components): mark-
down, wapiti, pyparsing, docutils and 2to3 executed in that
order back-to-back. Each transition from one application to
the next is a phase shift. We experiment with 1000 users
and divide them into three equal groups, each running with
a specific input. For every group of users, we collect a trace
of samples that is fed into RCF.

Figure 23 illustrates the behavior of the workload and
RCF response to it. For every input (bottom three bars), we
show the phase shift locations at which the workload moves
from one component to the next to form five phases for each.
The phases are plotted against the snapshot count. Since the
number of users in each group (input) is equal, a phase shift
in one group always has an impact on the overall phase of the
workload. The top bar shows RCF reaction to every phase

input 2

input 3

recompilation

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000

input 1

Figure 23. Illustration of phase shifts and recompilation
points plotted against snapshots count for 1000 users.

# of users 100 500 1000

Samples 134,826,000 678,215,300 1,294,850,600
Avg CC length (samples) 14,799 61,556 259,033
CC count 9,110 11,017 10,402
Avg phase length (samples) 9,050,700 45,528,000 85,858,100
Avg recompilation delay (%) 3.88% 3.68% 2.08%

Table 5. Difference in behavior for the multi-user experi-
ment when varying the number of users.

shift. There are 13 workload phase shifts, RCF detects all of
them accurately with no false positives or negatives.

Table 5 shows the effect of increasing the number of users
on the workload. The number of samples nearly scales lin-
early with the number of users to reach 1.3 billion sam-
ples at 1000 users. The average CC length increases with
the number of users, this is partially because we scale CCD
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CCD 100 500

Avg CC length (samples) 15114 61556
CC count 44872 11017
False positives 588 0

Table 6. Effect of decreasing CCD on number of false pos-
itives, average CC length and CC count

to be equal to the number of users and also because with
more users comes more variation in the profile that it takes
longer for a CC to stabilize. The table also shows average
phase length, which is the average number of samples be-
tween consecutive phase shifts. The phase length scales lin-
early with the number of users. Finally, the average recompi-
lation delay is shown which is the distance between when a
phase shift occurs and when RCF reacts with recompilation.
The number shown is a percentage of the new phase length.
For all users, on average, recompilation happens before 4%
of the phase samples are read. The delay declines with in-
creasing number of users and longer phases. This indicates
that although the phases are longer, only a small percentage
is needed to recognize the shift.

Effect of Convergence Cycle Duration We mentioned ear-
lier that we need to scale the CCD with the number of users.
Because the CCD defines the length of a CC, if we keep the
CCD constant then the number of samples received during
each CC will be roughly the same. Now, if we increase the
number of users connected to RCF while CCD is fixed, then,
during one CC, RCF will receive less samples from each user
on average. In other words, we will learn less about how each
user is using the code since the number of users is increas-
ing and the amount of samples collected per CC is the same.
Since users are using the program differently, it is impera-
tive that RCF knows enough about every use case. This is
achieved by growing CCD with the number of users. If the
CCD remains fixed, then the last snapshot (LS) of every CC
may not be sufficiently representative of that CC leading to
fluctuations in LSs and false phases detections.

While increasing CCD increases the number of samples
per CC, it does not necessarily mean that the CCs will
have longer time duration. With more users connected to
the system, samples may be received at higher rate. Table
6 demonstrates the effect of lowering the CCD for the 500
users experiment to 100. There is an expected decrease in
average CC length, increase in their count and many false
recompilations.

7.8 Limitations
This work lays the groundwork for practical remote compila-
tion for dynamic scripting languages and aims to understand
its feasibility and potential. Although our prototype reveals
many of the design issues involved and how to overcome
them, there are still certain limitations that require further
research.

First, RCF is a cross-user optimization framework that
relies upon aggregate profiles to guide optimizations. Since
aggregate profiles capture the way most of the users use
the program, RCF optimizations will target this majority. A
problem may arise if a relatively smaller groups of users use
the program significantly different from the majority, and
they do not contribute enough to the aggregate profile. RCF
may then overlook these smaller groups, and they may not
see any optimization benefit. One possible way of overcom-
ing this to group users based on how they use the program
and target each group with a different set of optimizations.

Second, RCF assumes that all users are running the same
version of the program while profiling. However, released
program updates, in addition to RCF optimization updates,
affect the profile shape and program semantics. Aggregating
samples gathered from mixed versions of the program will
yield an inaccurate and misleading profile. A possible solu-
tion is to make RCF aware of what version each sample is
coming from and route it to the correct aggregate profile.

8. Related Work
The idea of distributed remote profiling has been employed
before for different purposes. Liblit et al. [15] propose an
approach to isolate bugs in a program by remotely collect-
ing assertions outcomes from large user community. Orso
et al. [19] propose GAMMA system, a low-overhead soft-
ware monitoring framework where program profiles are con-
structed by merging partial profiles gathered from many
users connected to a network. Nagpurkar et al. [17, 18]
present a phase-aware [27] profiling framework to collect
accurate per-user profile with low-overhead. This approach
is different from ours in that we are interested in gathering a
global performance profile, not a per-user profile, that spans
multiple users and runs of the program. This enables us to
use very low sampling rates without sacrificing accuracy.

Tian et al. [33] use an approach similar to ours of cross-
user profiling to gather program input information and loop
trip counts with low overhead to enable input-aware opti-
mizations. However, unlike RCF, the profiles analysis and
optimizations happen locally on the user machine. The op-
timizations remain dynamic (happen at runtime), per-user
and rely on a relatively shorter profiling period to iden-
tify the input features. Also, their work targets Java, which
is a statically-typed language. In contrast, RCF is geared
more towards DSL, performs AOT compilation and relies
on cross-user profiling to devise optimizations for all users.

The idea of continuous program optimization has been
proposed before where tuning/optimization plans are de-
vised based on profiling across execution layers [37]. RCF
employs the same concept by continuously monitoring pro-
grams running on the client-side and reacting to phase shifts
via recompilation. A remote compilation strategy is used by
Lee et al. [14] for Java to offload compilation tasks to a
remote server resulting in lower compilation overhead and
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footprint. Similar work by Palm et al. [20] propose a remote
compilation service for hand-held devices in order to achieve
better battery life. Sirer et al. [32] factor runtime services
such as verification, security enforcement, compilation and
optimization to a cluster of machines serving as a distributed
virtual machine (DVM) for Java. Although our work bears
similarity in concept, we do not do code replacement while
the client application is running, instead we compile offline
and send program updates back to the user. Furthermore, to
the best of our knowledge, no remote compilation frame-
work exists for dynamic scripting languages.

There has been several prior work on understanding over-
all program behavior and phases of execution [7, 16, 28–
30, 36]. In [30], Sherwood et al. present a hardware-based
phase detection and prediction scheme. Their technique re-
lies on generating basic blocks execution frequency pro-
files at equal profiling intervals and classifying these in-
tervals into unique phases. They use an encoding of his-
tory of phases and their durations to predict the next phase.
In [36], Vijayn et al. reduce the hardware storage needed
by identifying phases using branches footprint (sequence of
branches addresses). Their technique also reduces the num-
ber of unique phases by collapsing phases with small vari-
ation in footprint. Nagpurkar et al. [16] devise an online
software-based phase detector for virtual machines. Their
solution is based on grouping profile elements into windows
and doing a similarity check to detect a phase shift.

RCF phase detection scheme differs in several ways.
First, RCF operates on a higher level profile of hot meth-
ods and their argument types which aim to guide a type-
specializing compiler. Second, the profile samples are col-
lected online from different instances of the application run-
ning with different input. Finally, although RCF still relies
on the idea of a profiling interval (a profile snapshot in our
case), we add second layer of adaptive profiling interval:
the convergence cycle. A convergence cycle is terminated
only when the aggregate profile is stable long enough. This
dampens the randomness in the snapshots expected when
sampling from multiple sources.

9. Conclusion
In this paper, we present the Remote Compilation Frame-
work (RCF) for improving the performance of Python pro-
grams. RCF decouples compilation from interpretation so
that each can be performed at a different location. The RCF
model is one in which a large number of users execute a
particular program using an interpreter extended with sup-
port for collecting samples of program execution behavior
unobtrusively. The samples are communicated to an opti-
mization server where they are aggregated into a calling-
context-aware type profile that it then uses to guide phase de-
tection and selective program specialization. RCF then peri-
odically delivers optimized versions of the program (Python
plus compiled and optimized libraries) to users as a part of

a software update that they then use for future executions of
the program using any unmodified interpreter.

By targeting the sweet spot between interpretation and
dynamic compilation, RCF retains the benefits of both: sim-
plicity and low footprint of user interpreter-based runtimes
at the client side, and type-specialized performance of dy-
namic languages. Specifically, we evaluate RCF using com-
munity benchmarks and real applications and find that (i)
RCF enables 1.1 × −3.4× performance gains, (ii) these
gains are similar to those of achieved by the popular, yet
complex, PyPy client-side dynamic compilation system for
Python, (iii) introduces very low overhead for performance
sampling (< 2%), and (iv) that has a memory footprint that
is 2.7×−7× smaller than PyPy.

We also propose a phase detection mechanism for RCF
that enables it to perform adaptive recompilation as needed.
RCF continuously compares snapshots of the aggregate pro-
file to detect phase shifts and triggers recompilation if the
program enters a new phase. We evaluate our techniques
through an extensive sensitivity analysis of the systems pa-
rameters and by a large multi-user experiment. RCF is able
to accurately detect all phase shifts and recompiles with a
delay of less than 4% on average.
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