
Towards Multitenancy for IO-bound OLAP Workloads

Hatem A. Mahmoud
∗

UC Santa Barbara
hatem@cs.ucsb.edu

Hyun Jin Moon
†

Google

hyunm@google.com

Yun Chi
NEC Laboratories

ychi@sv.nec-labs.com

Hakan Hacıgümüş
NEC Laboratories

hakan@sv.nec-labs.com

Divyakant Agrawal
UC Santa Barbara

agrawal@cs.ucsb.edu

Amr El-Abbadi
UC Santa Barbara

amr@cs.ucsb.edu

ABSTRACT
Consolidation of multiple databases on the same server allows ser-
vice providers to save significant resources because many produc-
tion database servers are often under-utilized. We consider the
problem of minimizing the number of servers needed to host a set
of tenants, while satisfying the service level agreement (SLA) on
the throughput of each tenant. Recent research investigates this
problem under the assumption that the working sets of tenants are
kept in main memory (e.g., OLTP workloads, or in-memory OLAP
workloads), thus the buffer size of each tenant is dictated by the
working set size of that tenant. In this paper we instead investigate
the problem when the throughput SLAs of tenants are low enough
for queries to be answered from disk. We study the trade-off be-
tween buffer size and query execution time for IO-bound work-
loads and propose an algorithm, called Greedy Memory Reduction
(GMR). GMR approximates a globally-optimum memory alloca-
tion function (i.e., a function that assigns a buffer size to each ten-
ant) for tenants running in private DBMS instances, such that the
number of servers needed to host all tenants is minimized. GMR
further inspires the design of another online heuristic that, though
lacks an approximation guarantee, performs very well in practice.
We then present a heuristic algorithm, called Greedy Tenant Con-
solidation (GTC), for consolidating tenants into shared DBMS in-
stances whenever their throughput SLAs allow. Finally, we conduct
extensive experimental evaluations of our algorithms to demon-
strate their effectiveness, scalability, and correctness.

1. INTRODUCTION
Workload consolidation is an effective method to achieve cost

efficiency in cloud computing. The consolidation of multiple small
workloads – also known as multitenancy – can avoid significant
resource waste given that many production servers are often over-
provisioned for the peak workload [3]. Database services in the
cloud can benefit from the same principle through database multi-

∗Work partially done while the author was at NEC.
†Work done while the author was at NEC.

.

tenancy by co-locating multiple databases on the same server. In
this paper, we consider the problem of mutlitenant database place-
ment given per-tenant service-level agreements (SLAs) on query
throughput. By throughput SLA we mean that the service provider
agrees to handle queries from a particular tenant up to a given
arrival rate, whereas query latency is not the main concern. We
aim to minimize the number of servers required to host a given
set of tenants, while meeting the throughput SLA of each tenant.
Previous work has considered consolidation of OLTP workloads
whose working sets can fit in main memory [6], and consolidation
of OLAP workloads that are small enough to entirely fit in main
memory [16]. While these are important steps towards database
multitenancy, previous studies build their solutions based on a key
assumption that the total working set size of all tenants hosted by a
server is no more than the available buffer memory on that server.
This is typical for low-latency workloads, where the required low
latency makes it infeasible to answer queries from disk. In this
paper, in comparison, we consider tenants whose queries are al-
lowed to be answered from disk. An example of such workloads are
OLAP queries over large data sets for periodic report generation.
We believe that tenants with such workloads may very well benefit
from multitenancy if their throughput SLAs are low enough. To the
best of our knowledge, previous research has not investigated such
cases.

The problem of multitenancy for IO-bound OLAP workloads
turns out to be closely related to the well-known “5 minute rule”
that was proposed by Gray et al. [13, 12] and recently brought
up-to-date by Graefe [11]. According to the 5-minutes rule, un-
der the given costs for memory vs. IO bandwidth, a data item can
be served either in-memory (memory-resident) or through IO ac-
cess (disk-resident), resulting in different costs; furthermore, there
exists a break-even frequency of access that separates the regions
where one choice is better than the other. In our work, we extend
this simple but powerful principle in the following two directions.
First, we demonstrate that in handling an OLAP workload (instead
of a single data item [13] or certain sequential SQL operations [12,
11]), there exists a continuous spectrum of configurations which we
can exploit, in addition to the choices of 100% memory-resident
and 100% disk-resident. For example, by increasing the size of the
buffer pool dedicated to a workload, we can trade off a portion of
the IO bandwidth required by the workload. Second, instead of op-
timizing for a single workload, we study how to place and configure
a set of tenants in a manner that minimizes the number of servers
required to host tenants. Here, the challenge for service providers
is that all tenants have to be considered together in order to achieve
globally-optimum solutions.

In this paper, we study the trade-off between memory and disk

bandwidth when co-locating IO-bound OLAP tenants. We design
and implement a set of algorithms and heuristics that balance these
two critical resources, namely memory and IO bandwidth. The goal
is to minimize the total number of servers required to host a set of
tenants, while meeting the throughput SLA requirements of each
tenant. Toward this goal, we make the following contributions.

• We propose an approximation algorithm, called Greedy Mem-
ory Reduction (GMR), that approximates globally optimum
buffer sizes of tenants running on private DBMS instances
with a worst case approximation ratio of 3.

• We present an online heuristic, called Balanced Memory Re-
duction (BMR), that performs well in practice although it
does not have a theoretical approximation guarantee.

• We present a heuristic, called Greedy Tenant Consolidation
(GTC), that consolidates tenants into shared DMBS instances
whenever throughput SLAs allow, based on a profiling ap-
proach that takes into account cache warmness (where cache
warmness indicates what percentage of the pages cached in
the DBMS buffer pool are relevant to a given tenant that runs
on that buffer pool).

• We conduct an experimental evaluation to demonstrate that
our algorithms and heuristics effectively reduce the number
of servers needed to host a given set of tenants compared to
other baseline algorithms and heuristics, and we also demon-
strate that the tenant placement plans generated by our algo-
rithms meet the throughput SLAs of tenants.

The rest of the paper is organized as follows. In Section2 we
present related work. In Section 3 we formulate our optimization
problem, state our assumptions and restrictions, and show the im-
practicality of searching for an exact solution to the optimization
solution. In Sections 4 and 5 we present our approximate solution
to the problem on two phases; first we solve the problem using pri-
vate DBMS instances in Section 4, then we present a heuristic for
consolidating tenants into shared DBMS instances in Section 5. In
Section 6 we evaluate the effectiveness, scalability, and correctness
of our solution. Finally, we conclude in Section 7.

2. RELATED WORK
The emergence of cloud computing has induced many new re-

search challenges on database multitenancy [8]. Most recent re-
search investigates the problem of database multitenancy when the
workloads of tenants are kept in main memory. For example, OLTP
workloads are studied in [6] and in-memory OLAP workloads are
studied in [16]. The assumption that all tenants on a given server
have to answer their queries from main memory leaves little room
for optimization since the buffer size of each tenant is dictated by its
working set size, and the CPU time is dictated by the high through-
put requirements of the tenant. Furthermore, none of these solu-
tions is optimized for OLAP workloads whose throughput SLAs
allow for queries to be answered from disk. Other related research
[19, 21, 18] investigates database multitenancy at a virtual machine
level, where the allocation of CPU and memory is the main fo-
cus. However, these VM-based methods are not directly applicable
to IO-bound multitenancy, at least before IO virtualization tech-
nologies become mature enough to achieve satisfactory IO isolation
with negligible overhead [20].

Another direction of research on database multitenancy focuses
on consolidation of large numbers of almost-inactive tenants by
sharing the same schema among tenants [4, 14]. The main chal-
lenge in this type of systems is scalability, due to the limit on the

number of tables a DBMS can handle for a given schema. Our
work, in comparison, targets workloads with given throughput re-
quirements. Other previous research, for example [15], attempts to
model the performance of disk IO for different types of workloads
analytically. We take a more empirical approach by profiling ten-
ants for different buffer sizes and different cache warmness levels.
However, it is still possible to make use of the model in [15] in our
solution to avoid the profiling of workloads, if profiling is overly
expensive.

3. PROBLEM FORMULATION
We consider the problem of tenant placement for IO-bound OLAP

workloads. The objective is to configure and place OLAP tenants
in a manner that minimizes the total number of servers needed to
host tenants, while satisfying the throughput SLA requirements of
each tenant. Figure 1 shows a block diagram of our multitenancy
architecture, where each server hosts one or more DBMS instances,
and each DBMS instance hosts one or more tenants. Note that the
database server allocates and controls one buffer pool per database
instance, which is typical for most widely used database products
in large cloud data centers that are created with cost efficiency. The
main questions that we investigate are: (1) which DBMS instances
should be hosted together on the same server?, (2) how much mem-
ory should we assign to each database instance?, and (3) which ten-
ants should be placed together within the same DBMS instance?

Figure 1: Block diagram of 3 DBMS instances hosting 4 ten-
ants on a single server with 2 disks. All three DBMS instances
share the same server. Tenants 1 and 2 share the same DBMS
instance.

In our framework we allow two levels of multitenancy:

Multiple DBMS instances share the same DB server: Although
a single DBMS instance per sever allows a larger buffer
pool shared among hosted tenants, one tenant may greedily
evict the cached pages of other tenants that share the same
buffer pool, which may result in uncontrollable and inferior
performance. Thus, we use multiple DBMS instances on
the same server in order to impose controlled boundaries
between the buffer pools of different (groups of) tenants.

Multiple databases (tenants) share the same DBMS instance:
We do however consolidate some tenants into the same
DBMS instances whenever their throughput SLAs allow.
Note that some tenants need non-trivial buffer sizes to
satisfy their throughput SLAs but do not need their buffers
to remain warm from one query to another; that is, the
buffer pool is merely used as a working space (e.g., in a
nested-loop join, a table is scanned multiple times during the
running time of a single query).

In a multitenancy environment, each tenant introduces a certain
load to its hosting server. We use the term load to indicate the frac-
tion of time that the hosting server spends on serving queries from
the given tenant on average. The load of a tenant depends on two
factors: (1) the average query arrival rate of the tenant, which is
bounded by the throughput SLA of the tenant, and (2) the average
query execution time of the tenant. The average query execution
time of a tenant is affected by three main factors: (1) the work-
loads of other tenants running concurrently on the same DBMS in-
stance, (2) the workloads of other tenants running on other DBMS
instances but utilizing the same disk, and (3) the buffer pool size
assigned to the tenant. Note that we focus on IO-bound workloads
where the CPU is not highly utilized and therefore is not a crit-
ical resource (we leave the problem of co-locating IO-bound and
CPU-bound workloads on the same servers as future work). Also,
since we deal with tenants that have non-trivial throughputs, each
server typically hosts a few tenants, thus disk space is not a bottle-
neck resource. The two main critical resources we focus on are IO
bandwidth and memory space.

In the following subsection we investigate how IO bandwidth
and memory affect the loads of tenants. Then we formally define
our problem of placing and configuring tenants such that the total
number of servers used to host tenants is minimized while satisfy-
ing per-tenant throughput SLAs.

3.1 Models for Two Critical Resources
We start by modeling the two critical resources, i.e., IO band-

width and memory, and their effect on the loads of tenants.

3.1.1 IO bandwidth: concurrency
Previous studies (e.g., [17]) suggest that disk-bound OLTP work-

loads achieve maximum throughput when the ratio between the
multi-programming level (MPL) (i.e., the number of transactions
running concurrently) and the number of disks is small (e.g., around
2). We conduct our own experiments on disk-bound OLAP work-
loads to study the effect of concurrency on throughput. We begin
by generating a set W that contains 7 random workloads. Each
workload is comprised of 10 queries, randomly chosen from the
query templates of the TPC-H benchmark, with randomly gener-
ated parameter values. Next, we construct a set P of 14 pairs of
workloads randomly chosen from W . For each pair of workloads
(wi, wj) in P , we run the two workloads wi and wj in parallel and
serially, and compare the time required to execute the workloads
in both cases. We consider two types of experiments: (1) the two
workloads wi and wj run on the same DBMS instance, and (2) the
two workloads run on two different DBMS instances. Each work-
load operates on a database whose size is 1 gigabyte. We run these
experiments under two buffer configurations: (1) the total buffer
pool size assigned to both workloads equals the total database sizes
of both workloads (i.e., 2 gigabytes), and (2) the total buffer pool
size assigned to both workloads equals half the total database sizes
of both workloads (i.e., 1 gigabyte). We run our experiments on
MySql 5.5 with InnoDB as a storage engine. We use Linux 2.6
machines each with a single disk and 2 Intel Quad-Core Xeon pro-
cessors with hyper-threading.

Figure 2 shows the execution times of workload pairs plotted as
a set of points whose x-coordinates represent the execution times
when the workload pairs are executed concurrently, and whose y-
coordinates represent the execution times when the workload pairs
are executed sequentially. Our experiments show that, for disk-
bound OLAP workloads running on MySql, maximum throughput
is achieved in most cases by running 1 workload per disk at a time;
that is, no two tenants run concurrently on the same disk. This ob-

Figure 2: The execution time of random pairs of TPC-H work-
loads, concurrently versus sequentially.

servation confirms the claim in [17]. Since the SLA requirements of
tenants are expressed in terms of maximum throughput, we make
the design decision of restricting the number of tenants running
on each disk to 1 at a time. We store the data of tenants that are
hosted by the same DBMS instance on the same disk, thus tenants
hosted by the same DBMS instance do not run their queries con-
currently. Eliminating concurrency between workloads of tenants
hosted by the same DBMS instance serves to avoid unpredictable
interactions between workloads. Previous studies [2, 1] already
show that such interactions result in unpredictable and counter-
intuitive performance that is too complex to model. Therefore,
in Figure 1, queries that are directed to the same DBMS instance
are executed sequentially. We note that there are more sophis-
ticated scan mechanisms, such as shared scans, implemented by
some high-end database products to save IO when multiple queries
scan the same set of records on the disk. However, as we mention
before, in this work we mainly focus on cloud data center settings,
where hardware and software components are chosen from com-
modity and lower-cost resources to increase cost efficiency, which
is a common practice in the industry.

3.1.2 Memory: buffer size and warmness
Although we restrict interaction between tenants by avoiding

query contention on the same disks and the same DBMS instances,
tenants still affect the loads of each others. For example, assigning
less buffer size to a low-throughput tenant ti slows down ti, thus
takes advantage of ti’s low throughput and leaves more memory for
other higher-throughput tenants on the same server. But as ti takes
longer time to finish, it introduces more load on the server, and
therefore leaves less time for other tenants that use the same disk
and/or run on the same DBMS instance to finish their queries. Thus
there is a trade-off between memory and time resources. Another
way tenants affect each others is when tenants hosted by the same
DBMS instance evict the buffered pages of each others. For ex-
ample, if two tenants ti and tj share the same DBMS instance and
the working set size of each of them is greater than or equal to the
buffer size of the database instance, then each tenant of them will
have to retrieve all data from disk each time they answer a query. In
other words, the cache will be always cold for both tenants. Note
that even in the case when the cache is always cold at the beginning

Figure 3: The average execution time when scanning the
lineitem table in the TPC-H benchmark, for different buffer
sizes, and different warmness levels.

Figure 4: The average query execution time of Q8 in TPC-H,
for different buffer sizes, and different warmness levels.

of each query, zero buffer may be not a good idea because a single
query may re-use the data it retrieves multiple times (e.g., when
performing a nested-loop join). Also, if the working set size of one
of the two tenants, say ti, is less than the buffer size, then only a
fraction of tj’s cache will be evicted.

Figures 3 and 4 show the average query execution times of two
types of TPC-H queries measured on MySql 5.5 for different buffer
sizes and different cache warmness levels. For a given query (resp.
tenant), cache warmness indicates what percentage of the buffer
contains cached pages used by this query (resp. tenant). A tenant
running in a private database instance always finds its cache 100%
warm. Meanwhile, a tenant finds its cache 0% warm if it shares
buffer with another tenant that has at least the same query arrival
rate and has a working set size at least as large as the buffer size.
If the working set size of one tenant is, say, 25% of the buffer size
then the other tenant gets a cache that is 75% warm, and so on. To
compute these profiles, we develop a profiler that measures the av-
erage query execution time of a given tenant under different buffer
sizes and different warmness levels. The input of the profiler is a
set of sample queries, say Q(t), extracted from the workload of the
tenant t, and the range of buffer sizes and warmness levels under
which the tenant t needs to be profiled. The output of the profiler
is a profile of the tenant t similar to Figures 3 and 4. To measure
the average query execution time under different buffer sizes, the
profiler restarts the database daemon multiple times, each time the
database is assigned a different buffer size. To measure the average
execution time under a certain warmness level, say w% warmness,
the profiler scans a dummy table whose size equals (100−w)% of

the buffer size before executing each query in Q(t). This ensures
that whenever a query q ∈ Q(t) is executed, no more than w% of
the pages cached in the buffer are relevant to q, but at the same time
the entire buffer is available as a workspace for q.

Figures 3 and 4 show that the average execution time at any level
of cache warmness drops almost monotonically as the buffer size
increases, and higher levels of cache warmness drop faster. We
observe this behavior in various TPC-H queries. However, some
TPC-H queries perform differently due to the way InnoDB han-
dles table scans. Figure 3 shows the average execution time when
scanning a 1 gigabyte table on MySql 5.5. When most of the ta-
ble is cached except for a few pages, MySql reads the remaining
pages one by one using individual random reads, and in our exam-
ple this results in an execution time greater than that when scanning
the entire table from disk using a single sequential read. Some of
the algorithms that we present later in this paper assume that the
profiles of tenants are monotonically non-increasing. Because the
profiles of tenants occasionally deviate from this monotonicity, we
conservatively fix the profile of each tenant in the following way.
We set the average query execution time at any given buffer size to
be no less than the average query execution times at larger buffer
sizes for the same tenant. Thus we force all profiles to be monoton-
ically non-increasing at the cost of conservatively overestimating
the average query execution time for some buffer sizes.

3.2 MINLP Formulation
Given a set of tenants that we need to host, we use our profiler to

profile each tenant, then use the profiles of tenants as input to our al-
gorithms to come up with a placement plan that minimizes the total
number of servers needed to host all tenants while satisfying per-
tenant throughput SLAs. The placement plan assigns each tenant
to a DBMS instance (either a private DBMS instance, or a DBMS
instance shared with other tenants), assigns each DBMS instance
to a server, and determines the buffer size of each DBMS instance.
Before presenting our algorithms in the following sections, here we
present a mathematical formulation of the problem whose solution,
if obtained exactly, is the optimum one (i.e., minimizes the number
of servers required to host tenants). We assume that all servers have
the same resources (e.g., the same disk speed, main memory size,
and processing power), which is reasonable given the current trend
of using commodity servers in data centers. Under such assump-
tions, the optimum solution (i.e., minimum number of servers) can
be found by solving the following mixed-integer non-linear pro-
gram (MINLP), which we refer to as MINLP-1.

min
∑
k zk

s.t. ∀i
∑
j

xij = 1 (1)

∀j
∑
k

yjk = 1 (2)

∀j, k yjk ≤ zk (3)

∀k
∑
j

yjkmj ≤ zk (4)

∀k
∑
j

yjk
∑
i

xijriei(mj ,
∑
l

xlj) ≤ zk (5)

∀i, j, k xij , yjk, zk ∈ {0, 1} (6)
∀j 0 ≤ mj ≤ 1 (7)

Decision variables are explained as follows. xij = 1 if and only
if the tenant i is hosted by the DBMS instance j, yjk = 1 if and
only if the DBMS instance j is hosted by the server k, and zk = 1
if and only if the server k is used (i.e., hosts at least one database

instance). mj is the buffer size of the DBMS instance j, measured
as a fraction of server memory. ri is an input constant indicating
the average query arrival rate (i.e., throughput) of the tenant i, and
ei is the average query execution time of the tenant i. The average
execution time is a function in buffer size and warmness level; such
function is determined by the profile of the tenant, as in Figures 3
and 4. For now let us assume that there are only two warmness
levels, either 100% warm or 0% warm. The tenant i is 100% warm
if and only if no other tenants run on the same DBMS instance
(i.e., if and only if

∑
l xlj = 1, where j is the DBMS instance

of the tenant i), otherwise the tenant i is 0% warm. The objective
function to be minimized the number of servers used. The first
two constraints state that each tenant is assigned to one and only
one database instance, and each database instance is assigned to
one and only one server. The third constraint counts a server as
used if it hosts at least one database instance. The fourth constraint
states that the total memory assigned to all database instances on a
server is no more than the server memory size. The fifth constraint
states that the total load of a server is no more than 1. For now
let us assume that each server has only one disk, thus the load of
each tenant is computed as the average query arrival rate times the
average query execution time of the tenant.

Figure 5: Running time of Couenne for different numbers of
tenants.

We implement MINLP-1 in AMPL, and solve it using Couenne
on NEOS1. We start by doing straightforward experiments where
the number of tenants is very small, and the optimum solution con-
sists of one tenant per database instance and one database instance
per server. Figure 5 shows the time taken by NEOS to reach an
optimum solution as the number of tenants increases. Our experi-
ments show that, even for very simple input cases, the running time
grows very rapidly as a function in input size. We believe that the
complexity of the model stems from the non-convexity of the ten-
ant profile function ei. Thus it is impractical to use MINLP solvers
to solve real-world cases that involve thousands of tenants. In the
following sections, we develop algorithms and heuristics to approx-
imate a solution to this optimization problem within a reasonable
amount of time.

4. PRIVATE DATABASE INSTANCES
In this section, we study a special case where only the first level

of multitenancy, namely multiple DBMS instances sharing the same
DB server, is allowed. That is, we find a placement plan for a given
set of tenants by assigning each tenant to a private DBMS instance
and configuring the buffer size of each tenant. We want the total
number of servers needed to host all tenants to be minimized while
satisfying per-tenant throughput SLAs. The problem that we solve
in this section is a sub-problem of that we describe in Section 3.2,
1http://www.neos-server.org/

since we do not allow for more than one tenant to be hosted by the
same DBMS instance.

4.1 Formulation as a 2-DVPP Problem
We begin by defining our sub-problem formally as follows. We

are given a set of tenants t1, ..., tn. Each tenant ti is associated with
an SLA throughput ri that has to be satisfied. Let mi be the buffer
size that we assign to the DBMS instance of tenant ti, the average
execution time ei of tenant ti is a function in mi that is defined
by the workload of ti. We restrict concurrency on disks so that no
two tenants run queries on the same disk at a time. Therefore, the
average query execution time of each tenant depends only on the
workload and the buffer size of that tenant. The load li imposed by
the tenant ti on its server equals ri ·ei(mi), where ri is the through-
put SLA of tenant ti. We assume that ei, and consequently li, are
monotonically non-increasing functions inmi. The total load of all
tenants on a single server must not exceed the number of disks, and
the total memory assigned to all tenants on a single server must not
exceed the server memory size. Let D be the number of disks, and
M be the memory size of each server. We assume that all servers
have exactly the same resources. Therefore, without loss of gen-
erality, we set the unit of memory measurement toM, so that the
memory size of each server equals 1, and mi ≤ 1 for all ti. We
also scale down the average execution time function of each tenant
by a factor of 1/D, so that the total load handled by each server
equals 1, and li ≤ 1 for all ti.

The minimum number of servers needed to host tenants depends
on how much memory we assign to each tenant (which in turn de-
termines the load of each tenant), and how we pack tenants into
servers. The problem of packing tenants into servers can be for-
mulated as a 2-dimensional vector packing problem (2-DVPP) [9].
Each tenant ti is represented by a 2-dimensional vector whose first
dimension is the buffer size mi, and whose second dimension is
the load li. Each server has two capacities: a memory capacity of
1, and a load capacity of 1. As stated earlier, ei and li depend on
the workload and the throughput SLA of the tenant ti, thus mi is
the only input of 2-DVPP that we can tune. In order to find the
minimum number of servers needed, we need to find a memory
assignment function m∗ that assigns a buffer size to each tenant
such that the optimum output of the tenant placement 2-DVPP is
minimized. That is, assume Opt 2DV P (m) is an algorithm that
computes the optimum packing of tenants into servers, where the
buffer sizes of tenants are determined by the memory assignment
function m, then

m∗ = arg min
m
{Opt 2DV P (m)} (8)

4.2 Approximating Tenant Buffer Size
2-DVPP is an NP-hard problem in the strong sense (i.e., the

worst case running time is exponential in the value of the input),
therefore finding m∗ is NP-hard as well [should it be EXP??].
There are polynomial-time approximation algorithms for 2-DVPP
with guarantees on the worst case ratio between the approximate
solution value and the optimum solution value; such ratios are
called approximation ratios. To the best of our knowledge, no ap-
proximation algorithm for 2-DVPP has a worst case approximation
ratio less than 2. The approximation scheme in [7] approximates 2-
DVPP with a worst case approximation ratio of 2+ε for any ε > 0,
but with a worst case running time that is exponential in 1/ε2.

For approximation algorithms of NP-hard problems, worst
case approximation ratios are typically guaranteed by prov-
ing a worst case ratio between the approximate solution value
and a lower bound of the optimum solution value (rather than

the optimum solution value itself, which is hard to character-
ize). The lower bound that is used in this kind of guaran-
tees is usually an infeasible solution value that can be com-
puted efficiently for each instance of the hard problem, and is
guaranteed to be less than the optimum solution value. Let
Aprx 2DV P be an approximation algorithm for 2-DVPP with
a worst case approximation ratio of ρ, and let Lwr 2DV P be
the lower bound that is used to prove the approximation ratio of
Aprx 2DV P , thus Aprx 2DV P (m)/Lwr 2DV P (m) ≤ ρ, for
any m. Since Opt 2DV P (m) ≤ Aprx 2DV P (m), therefore
Opt 2DV P (m)/Lwr 2DV P (m) ≤ ρ, for any m. Let m̂ be a
memory assignment that minimizes Lwr 2DV P (); that is,

m̂ = arg min
m
{Lwr 2DV P (m)} (9)

Thus Lwr 2DV P (m̂) ≤ Lwr 2DV P (m∗). Consequently,

Opt 2DV P (m̂) ≤ ρ · Lwr 2DV P (m̂)

≤ ρ · Lwr 2DV P (m∗)

≤ ρ ·Opt 2DV P (m∗) (10)

For our tenant placement problem, a possible lower bound can be
computed by allowing tenants to span multiple servers. To demon-
strate this, let us first formulate an integer linear program (ILP) for
our tenant placement 2-DVPP as follows. We refer to the following
ILP formulation as ILP-1.

min
∑
k zk (11)

s.t. ∀i
∑
k

xik = 1 (12)

∀i, k xik ≤ zk (13)

∀k
∑
i

xikmi ≤ zk (14)

∀k
∑
i

xikli ≤ zk (15)

∀i, k xik ∈ {0, 1} (16)
∀k zk ∈ {0, 1} (17)

xik = 1 if and only if tenant ti is hosted by server sk. zk = 1
if and only if server sk hosts at least one tenant. Since the num-
ber of servers needed to host all tenants is no more than the num-
ber of tenants, therefore 1 ≤ i, k ≤ n, where n is the number
of tenants. Solving ILP-1 gives an optimum solution to our ten-
ant placement 2-DVPP, however it is NP-hard. Relaxing ILP-1 by
replacing the integer constraints (i.e., the last two constraints) with
non-negativity constraints (i.e., xik, zk ≥ 0, ∀i, k) turns ILP-1 into
a linear program (LP) that can be solved in polynomial time. We
refer to the linear program that results from this relaxation as LP-1.
The solution to LP-1 allows a tenant to span multiple servers, thus
it is infeasible for our tenant placement problem. However, the so-
lution value of LP-1 is a lower bound of the solution value of ILP-1.
From [5], the maximum ratio between the solution value of ILP-1
and the solution value of LP-1 is 3. We define Opt 2DV P (m) as
the solution value of ILP-1, and Lwr 2DV P (m) as the solution
value of LP-1, thus

Opt 2DV P (m) ≤ 3 · Lwr 2DV P (m) (18)

By substituting in Equation (10) we get

Opt 2DV P (m̂) ≤ 3 ·Opt 2DV P (m∗) (19)

A tighter bound can be obtained through the LP relaxation of an-
other ILP formulation of 2-DVPP [5] that is based on the Gilmore-
Gomory cutting stock model [10]. However, the number of de-

cision variables in the Gilmore-Gomory ILP formulation is expo-
nential in the number of tenants, therefore it is impractical when
dealing with thousands of tenants.

We focus on finding a memory assignment m̂ that minimizes
Lwr 2DV P (). From [5], the solution value of LP-1 equals
max{

∑
i li,

∑
imi}. Therefore

m̂ = arg min
m
{max{

∑
i

li(m(ti)),
∑
i

m(ti)}} (20)

Finding m̂ provides us with an input to 2-DVPP such that when
2-DVPP is solved optimally we get an output number of servers
that is no more than three times the minimum number of servers
required to host the tenants. The next section presents a greedy
algorithm that approximates m̂ with an absolute error of no more
than 1 in pseudo-polynomial running time.

4.3 Greedy Memory Reduction (GMR)
In this section we present a greedy algorithm that approximates

m̂ with an absolute error of no more than 1; that is, our algo-
rithm finds a memory assignment ṁ such that Lwr 2DV P (ṁ) ≤
Lwr 2DV P (m̂) + 1. The high-level idea of our solution is as
follows.

Starting by assigning maximum buffer size to all ten-
ants, we keep reducing the buffer sizes of some ten-
ants (therefore trading memory for IO bandwidth) in a
greedy fashion, until the number of servers needed to
provide the total memory size of all tenants and that
needed to handle the total load of all tenants reach a
balanced state.

Our solution consists of two phases. First we profile each tenant un-
der different buffer sizes, then we use these profiles to approximate
m̂. We begin by defining our notation. Let µ denote the minimum
unit of memory allocation. Thus, server memory size M and all
buffer sizes of all tenants are multiples of µ. A reasonable order of
magnitude for µ is 100MB. Let mmin

i denote the smallest buffer
size for which the load of the tenant ti can be handled by a single
server. That is, mmin

i = min{m : li(m) ≤ 1, m/µ ∈ Z}.
Also, let mmax

i denote the data size of ti if the data size of ti
fits in the memory of a single server, or M otherwise. That is,
mmax
i = min{M, min{m : m ≥ mds

i , m/µ ∈ Z}}, where
mds
i is the data size of ti. In the first phase, we profile each tenant ti

by measuring its average query execution time ei(m), for every m
ranging from mmin

i through mmax
i with µ step size. Since mmin

i

is not known until ei(mmin
i) is computed, we begin our profiling

frommmax
i and decrementm until eitherm = 0, or ri·ei(m) > 1.

In the second phase, we use our Greedy Memory Reduction (GMR)
algorithm to approximate m̂ in pseudo-polynomial running time,
with an absolute error of no more than 1, based on the profiles that
we measure in the first phase.

Algorithm 1 lists our Greedy Memory Reduction algorithm. Ini-
tially, each tenant ti is assigned a buffer size of mmax

i . Since the
initial total memory is maximum, and since we assume that the load
is monotonically non-increasing function in the buffer size, then
the initial total load is minimum. After the initialization phase, the
algorithm proceeds in iterations such that each iteration decreases
the buffer size of a single tenant. More specifically, in each itera-
tion k, we pick a tenant ti(k) whose current buffer size mi(k)(k)
can be decreased by some amount of memory δ while incurring a
minimum average load increase per unit memory decreased; that
is, the cheapest available chunk of memory to remove from a sin-
gle tenant. We terminate the loop either (1) when the total memory
needed by all tenants becomes no more than the total load, or (2)

Algorithm 1 Greedy Memory Reduction (GMR)

1: input: {li(m) : ∀ti, ∀m, mmin
i ≤ m ≤ mmax

i , m
µ
∈ Z}

2: Set k ← 0
3: Set mi(k)← mmax

i , ∀ti
4: while

∑
i

mi(k) >
∑
i

li(mi(k)) and ∃i : mi(k) > mmin
i

do
5: Let l̄i(k, δ) =

li(mi(k)− δ)− li(mi(k))

δ

6: Let δi(k) = arg min
δ
{l̄i(k, δ) : mi(k)− δ ≥ mmin

i ,
δ

µ
∈

Z+}, if tied pick the largest δ.
7: Let i(k) = arg min

i
{l̄i(k, δi(k))}, break ties arbitrarily.

8: Set mi(k)(k + 1)← mi(k)(k)− δi(k)(k)
9: Set mi(k + 1)← mi(k), ∀i 6= i(k)

10: Set k ← k + 1
11: end while
12: if max{

∑
imi(k),

∑
i li(mi(k))} > max{

∑
imi(k −

1),
∑
i li(mi(k − 1))} then

13: Set mi(k)(k)← mi(k)(k − 1)
14: end if
15: Set ṁ(ti) = mi(k), ∀i
16: return ṁ

when each tenant ti is assigned its minimum feasible buffer size
mmin
i . After the loop, we make one last check to see if it is better

to rollback the last iteration of the loop. We denote the memory
assignment returned by GMR as ṁ.

To analyze the running time of GMR, let us first assume that a
priority queue is used to pick i(k) at each iteration. The running
time of GMR is affected by the value of M

µ
; that is, the granularity

at which memory is assigned to tenants. If M
µ

is a constant then
the absolute approximation error equals 1, and the running time is
O(n log(n)), where n is the number of tenants. However, µ can
be used as a parameter to control the running time as well as the
approximation error of GMR. If µ is a parameter the running time
of GMR isO(nM

µ
(lg(n)+M

µ
)), and the worst case absolute error

equals 1 + n µ
M . The extra error stems from the fact that each

tenant may be assigned µ− ε memory units more than its optimum
memory assignment, where ε is a negligible amount of memory.

The following theorem states the approximation guarantee of
GMR when M

µ
is constant.

THEOREM 4.1. Lwr 2DV P (ṁ) ≤ Lwr 2DV P (m̂) + 1

The proof of Theorem 4.1 is in Appendix A. From Equation (18)
and Theorem 4.1, we get

Opt 2DV P (ṁ) ≤ 3 · Lwr 2DV P (ṁ)

≤ 3 · Lwr 2DV P (m̂) + 3

≤ 3 · Lwr 2DV P (m∗) + 3

≤ 3 ·Opt 2DV P (m∗) + 3 (21)

Let us define V (m) = {(m(ti), li(m(ti))) : ∀ti}, for any m. We
pass the set V (ṁ) as input to 2-DVPP to get a tenant placement
plan that assigns tenants to servers.

4.4 Balanced Memory Reduction (BMR)
In this section we present another approach to obtaining a mem-

ory assignment function that minimizes the total number of servers.
The high-level idea of this approach is as follows.

For each tenant, we keep reducing the memory allo-
cated to it until, for this particular tenant, the buffer
size and the load reach a balanced state.

For any memory assignment m let

D(m) = max
ti
{max{m(ti), li(m(ti))}} (22)

That is, D(m) is the maximum dimension of all vectors in V (m).
From [5], if V (m) is used as input to ILP-1 and LP-1 (both defined
in Section 4.2), the worst case ratio between the solution value of
ILP-1 and the solution value of LP-1 is 1+2D(m). Since the max-
imum value of D(m) is 1, the worst case ratio between the solution
values of ILP-1 and LP-1 is no more than 3. Inequality (18) is based
on the maximum of D(m), but a more general inequality that takes
D(m) into account can be stated as follows.

Opt 2DV P (m) ≤ (1 + 2D(m)) · Lwr 2DV P (m) (23)

The GMR algorithm that we present in Section 4.3 focuses on min-
imizing Lwr 2DV P (m). In this section we present another ap-
proach to obtain a tight bound on Opt 2DV P (m); that is, min-
imizing D(m). We make use of the profiling phase explained in
Section 4.3 to compute the function li for each tenant ti. Then we
assign to each tenant ti, independently of other tenants, a buffer
size mi that minimizes max{mi, li(mi)}. We refer to this mem-
ory assignment function as m̈. If load is a non-monotonic function
in buffer size, we compute m̈(ti) by trying every buffer size for
which ti is profiled from mmin

i to mmax
i . However, assuming that

load is a monotonically non-increasing function in buffer size, we
compute m̈ as follows. For each tenant ti we initialize m̈(ti) to
mmax
i , then iteratively decrease m̈(ti) until m̈(ti) < li(m̈(ti)).

Then we check whether rolling back the last iteration minimizes
max{mi, li(mi)}; if yes, we rollback the last iteration. We refer
to this heuristic as Balanced Memory Reduction (BMR).

The main disadvantage of BMR is that it lacks an approximation
guarantee. It is possible to come up with corner cases where BMR
performs very badly. For example, consider the case when we have
n tenants, all of them have the profile {li(1 − ε) = 0, li(0) = 1}.
BMR sets the buffer size of each tenant to 1− ε so as to minimize
D(m̈). However, this memory configuration requires n servers to
host the n tenants, which is the maximum number of servers any
memory configuration algorithm would require. When the same
input is given to GMR, GMR sets the buffer sizes of half the tenants
to 1 − ε, and the buffer sizes of the other half to 0, thus requiring
dn/2e servers to host the given tenants. Nevertheless, BMR has
several practical advantages over GMR. First, it is more efficient in
terms of running time. If µ is not a parameter, the running time of
BMR is linear. Otherwise, if µ is a parameter, the running time of
BMR is O(nM

µ
), where n is the number of tenants. Second, BMR

assigns a buffer size to each tenant independently of other tenants,
thus it can be used as an online algorithm. Third, as we show in our
experiments (Section 6.3), BMR performs at least as good as GMR
in practice, and in many cases BMR generates tenant placement
plans that require less servers compared to GMR. Fourth, BMR is
much simpler and easier to implement compared to GMR.

We also examine a hybrid approach that attempts to balance
the buffer size and the load of each tenant, while taking advan-
tage of the theoretical approximation guarantee of GMR. We re-
fer to this approach as GMR+BMR. In GMR+BMR, we begin
by running GMR till its end to obtain ṁ, then we iteratively re-
duce D(ṁ) as long as this reduction does not degrade the theo-
retical approximation guarantee of ṁ. In each iteration k we re-
duce D(ṁ) by µ by going through each tenant ti and ensuring
that max{ṁk(ti), li(ṁk(ti))} ≤ D(ṁk−1) − µ; if this inequal-

ity does not hold, we either decrease ṁ(ti) by µ if ṁk−1(ti) >
li(ṁk−1(ti)), otherwise if ṁk−1(ti) ≤ li(ṁk−1(ti)) we increase
ṁ(ti) until li(ṁ(ti)) is decreased by µ. We terminate once it is
no longer possible to reduce D(ṁ) by µ, or if decreasing D(ṁ)
by µ violates the inequality (1 + 2 D(ṁk))Lwr 2DV P (ṁk) ≤
(1 + 2 D(ṁ))Lwr 2DV P (ṁ). Our experiments show that, while
GMR+BMR improves the approximation guarantee of GMR sig-
nificantly, it rarely decreases the actual number of servers needed
by GMR, since the actual number of servers needed by GMR is
usually much less than the upper bound imposed by the approxi-
mation guarantee of GMR.

5. SHARED DATABASE INSTANCES
In this section, we extend our solution by additionally allowing

the second level of multitenancy, namely multiple tenants sharing
the same DB instance. The new solution to the shared instance case
is based on the solution to the private instance case. The key idea
of our solution to this more general multitenancy is as follows.

First we find a memory assignment for tenants in pri-
vate database instances as explained in Section 4. Then
we consolidate database instances iteratively, one pair
at a time, as long as the number of servers needed
to host tenants after iterative consolidation is no more
than the number of servers before the consolidation.

To guarantee that the number of servers never grows, when doing
iterative consolidation, we maintain two invariants: (1) total mem-
ory never increases, and (2) total load never increases.

We compute the load of a tenant t in a shared database instance
as follows. Let I(t) be the database instance that hosts t. We make
a conservative assumption that any other tenant tl hosted by the
same database instance I(t) usesmmax

l memory units as cache for
each query it executes; that is, tl uses all its data set to answer each
query. Let m(I(t)) be the buffer size of I(t). If

∑
lm

max
l >

m(I(t)), then t is 0% warm. Otherwise, the warmness level of t
is defined by m(I(t)) −

∑
lm

max
l rounded down to the closest

warmness level at which t is profiled. For example, if m(I(t)) −∑
lm

max
l = 0.74m(I(t)), and the set of warmness levels at which

t is profiled is {0, 25, 50, 75, 100}, then t is considered 50% warm.
Having decided the warmness level of t, the load of t is computed
as a function in the buffer size and the warmness level (e.g., as in
Figures 4 and 3).

We explain our Greedy Tenant Consolidation (GTC) heuristic
as follows. The input to the heuristic is a set of tenant pro-
files that provide the load of each tenant as a function in buffer
size and warmness level. The output is an instance assignment
function I that assigns each tenant to a database instance, and a
memory assignment function m that assigns a buffer size to each
database instance. The cost function that we want to minimize
is max{

∑
i l(ti),

∑
j m(Ij)}. Instead of searching for a global

minimum for the cost function, our heuristic operates greedily by
picking at each iteration a pair of database instances whose consol-
idation reduces the cost function as much as possible.

In order to compute how much reduction in the cost function can
be achieved by consolidating two database instances, say I1 and I2
wherem(I2) ≥ m(I1), first we need to choose a buffer size for the
potential consolidated instance, say Inew, in the range from m(I2)
through m(I1) + m(I2). These upper and lower bounds guarantee
that Invariants (1) and (2) are true, respectively. The upper bound is
obvious. To justify the lower bound we make two notes. First, note
that the load is a monotonically non-increasing function in buffer
size and warmness level. Since we start from the output of pri-
vate instance configuration (Section 4), decreasing the buffer size

of any tenant must increase the load because private instance con-
figuration terminates only after taking advantage of any chance of
decreasing the buffer size of a tenant while maintaining the load of
that tenant intact. Second, note that consolidation either decreases
warmness (which increases load), or keeps warmness and load in-
tact (if warmness is already 0%). Based on these two notes, if we
choose a buffer size for Inew less than m(I2), the buffer sizes of
all tenants in Inew decrease, and their warmness levels either de-
crease or remain the same, thus total load increases, which violates
Invariant (2).

Within the range [m(I2),m(I1) + m(I2)], we choose a buffer
size that minimizes the cost function max{

∑
i l(ti),

∑
j m(Ij)}.

If more than one buffer size minimize the cost function, we choose
the one that also minimizes min{

∑
i l(ti),

∑
j m(Ij)}. After we

choose a buffer size for the potential instance Inew, which corre-
sponds to the pair of instances I1 and I2, we compare this pair
of instances against other candidate pairs of instances, and choose
the pair whose consolidation achieves as much reduction of the
cost function max{

∑
i l(ti),

∑
j m(Ij)} as possible. We termi-

nate once no consolidation decreases the cost function.

6. EXPERIMENTS
We carry out a set of experiments to demonstrate the effective-

ness, scalability, and correctness of our algorithms and heuristics.
Our experiments are based on the TPC-H benchmark2, which is
representative of OLAP workloads. As mentioned before, we run
our experiments on MySql 5.5 with InnoDB as a storage engine.
We use Linux 2.6 machines each with a single disk and 2 Intel
Quad-Core Xeon processors with hyper-threading. We start by ex-
plaining the tools that we use to conduct our experiments.

6.1 Tenant Synthesizer
We develop a tenant synthesizer to generate synthetic tenant pro-

files. For each synthetic tenant we generate: (1) a random mixture
of TPC-H queries that constitute the workload of the tenant, (2) a
random data size, and (3) a feasible random throughput value. We
compute the profile of each tenant from its query mixture and data
size, then use the computed profile to determine the range of feasi-
ble throughput values from which we pick the random throughput
value of the tenant. We use two approaches to compute the pro-
file of a tenant from its random query mixture and random data
size. We begin by explaining our two approaches informally as fol-
lows. In the first approach, we profile individual TPC-H queries
on a database with 1 gigabytes of data, generate a random TPC-H
query mixture for each tenant, compute the profile of each tenant
from the profiles of its query mixture, generate a random data size
for each tenant, then scale the profile of the tenant according to its
random data size. This approach allows us to pick arbitrary data
sizes, without having to re-profile TPC-H queries for each random
data size that we generate, but scaling the profiles of tenants gen-
erates profiles that do not correspond to real measurements. In the
second approach we define a small set of data sizes, profile individ-
ual TPC-H queries on each of these data sizes, generate a random
query mixture for each tenant, pick a random data size for each ten-
ant from the pre-defined set of data sizes, then compute the profile
of each tenant from the profiles of its query mixture that correspond
to the data size of the tenant. This approach generates tenants with
profiles that correspond to real measurements, but we are restricted
to pick the data size of each tenant from a small set of data sizes.
We explain the process of tenant synthesis in details as follows.

We define a set D of data sizes, and for each data size d ∈ D we

2http://www.tpc.org/tpch/

create a TPC-H database with data size d. On each of these TPC-H
databases, we profile TPC-H query templates as follows. Let H be
the set of all query templates in the TPC-H benchmark. For each
template h ∈ H , we generate a set of queries Qh by assigning
random values to the parameters of h, then we use Qh as input to
our profiler to generate a profile of h. The profile of the template
h is a function ph(d, b, w) that returns the average query execution
time of h when run on a database with a data size d, a buffer size
b, and a cache warmness level w. In our experiments, the set D
contains three data sizes: 1 gigabyte, 2 gigabytes, and 3 gigabytes.
We profile TPC-H query templates for each data size d ∈ D, with
buffer sizes that range from 100 megabytes to d, at 100 megabytes
intervals, and under five warmness levels: 0%, 25%, 50%, 75%,
and 100%.

After profiling all templates in H , we generate two sets of syn-
thetic tenants, Treal and Tscaled. First, we explain the set Treal.
For each tenant t ∈ Treal we randomly pick a data size dt from
the set D. We also generate a random query mixture for t by
tossing a fair coin for each template h ∈ H to decide whether
t uses h or not. Let Ht denote the set of TPC-H queries used
by t. We compute the profile pt of the tenant t as follows. For
each buffer size b, and each warmness level w, we set pt(b, w)
to the average of the profiles of all templates in Ht with a data
size of dt, a buffer size of b, and a warmness level of w; that is,
pt(b, w) =

∑
h∈Ht

ph(dt, b, w)/|Ht|. Second, we explain the set
Tscaled. For each tenant t ∈ Tscaled we randomly pick a data size
dt following an exponential distribution whose mean λ is an input
parameter to the tenant synthesizer. We also generate a random
query mixture for t by tossing a fair coin for each template h ∈ H
to decide whether t uses h or not. Let Ht denote the set of TPC-
H queries used by t. We compute the profile pt of the tenant t as
follows. For each buffer size b, and each warmness level w, we set
pt(dt · b, w) to dt times the average of the profiles of all templates
inHt with a data size of 1 gigabytes, a buffer size of b, and a warm-
ness level ofw; that is, pt(dt·b, w) = dt·

∑
h∈Ht

ph(1, b, w)/|Ht|.
Finally, we generate for each tenant t a feasible SLA through-

put value rt as follows. Let emint = min
b,w
{pt(b, w)}; that is,

the minimum query execution time in the profile of the tenant t.
Since we assume that pt is monotonically non-decreasing, emint

can be achieved when b and w are maximum. Similarly, let
emaxt = max

b,w
{pt(b, w)}, which is achieved when b and w are min-

imum. We are interested in generating a throughput value rt that
the tenant t can satisfy, otherwise the placement problem is unsolv-
able, thus 1/emint is the maximum value of rt. However, 1/emaxt

does not represent a lower bound on the value of rt. We generate
a random average query execution time, erandt , uniformly from the
range [emint , C · emaxt], where C is our coldness factor, then we set
rt = 1/erandt . The coldness factor is a parameter to the tenant
synthesizer, whose value is no less than emint /emaxt , and that we
use to push the average throughput of tenants lower or higher.

6.2 Evaluation: Effectiveness
We show that our algorithm GMR is effective by comparing it

against other baseline memory configuration heuristics. We use
three heuristics for comparison: (1) Max: sets the buffer size of
each tenant ti to its data size mmax

i , (2) Min: sets the buffer size
of each tenant ti to the minimum amount of memory mmin

i that
satisfies its SLA constraints, and (3) Const: sets the buffer sizes of
all tenants to the same value, which is the minimum buffer size that
satisfies the SLA constraints of all tenants.

We construct two sets of tenants, Treal and Tscaled, each con-
tains 1000 synthetic tenants generated using our tenant synthe-

Figure 6: The number of servers needed by each placement
plan for different server memory sizes.

Figure 7: The number of servers needed by each placement
plan as the average tenant data size increases. Coldness = 2.

sizer as explained in Section 6.1. We use these synthetic tenants
as input to GMR, BMR, and the three baseline heuristics. The
output of each of these five memory configuration heuristics is
a set of 2-dimensional vectors that represent the buffer sizes and
the loads of tenants after memory configuration. This set of 2-
dimensional vectors is used as input to an approximation algorithm
for 2-dimensional vector packing to generate a tenant placement
plan. We use First Fit Decreasing (FFD) [9] as an approximation
algorithm for 2-dimensional vector packing, which has a worst case
approximation ratio of 7/3. Also, we generate one more tenant
placement plan by using the output of GMR as input to GTC, to
consolidate tenants into shared database instances, then we apply
FFD to the output of GTC. Finally, we compare the total number of
servers needed by each of these six tenant placement plans.

Figure 6 shows the number of servers needed by each of the six
placement plans to host Treal as the server memory data size M
increases from 1 gigabytes to 3 gigabytes, while the coldness fac-
tor C remain constant at 2. Figure 6 shows that our algorithms
and heuristics give superior results in all cases. For server mem-
ory size of more than 1 gigabyte, the gap between our algorithms
and the baseline algorithms is more than 500 servers. Our experi-
ments show that performance remains the same for C = 5. Figure 7
shows the number of servers needed by each of the six placement
plans to host Tscaled as the average tenant data size λ increases
from 4 gigabytes to 256 gigabytes. The server memory size M
remains constant at 16 gigabytes, and the coldness factor C equals
2. Figure 7 shows that our algorithms and heuristics give superior
results in all cases. Min performs worst, requiring almost as many
servers as the number of tenants. Both Max and Const give exactly
the same results. The gap between Max/Const and GMR is maxi-
mum when λ = 32; that is, 261 servers. GTC further reduces the

Figure 8: The number of servers needed by each placement
plan as the average tenant data size increases. Coldness = 5.

Figure 9: The running time of GTC as the number of tenants
increases.

number of servers, and the maximum reduction is achieved when
λ = 64; that is, 104 servers. When λ is too small or too large
compared toM, the gap decreases between Max/Const and GMR
on the one hand, and between GMR and GTC on the other hand.
As mentioned in Section 4.4, although BMR does not have a theo-
retical approximation guarantee like GMR, BMR performs as good
as GMR in practice, and is even better when λ is much larger than
M. Figure 8 shows the same experiment when the coldness fac-
tor C equals 5. Max and Const maintain nearly the same results as
in Figure 7, with Const doing slightly better in some cases. Min
performs better compared to Figure 7 as the number of servers is
initially smaller, and grows slower. GMR and BMR still give su-
perior results compared to other baseline heuristics, and perform
better than Figure 7 for most data sizes.

6.3 Evaluation: Scalability and Correctness
We also evaluate the scalability of our algorithms and heuristics

by measuring the running time as the number of tenants increases.
GMR and BMR process up to 50,000 tenants in less than a second.
We focus on GTC since it has quadratic time complexity. Figure 9
shows the running time of GTC as the number of tenants increase
from 10,000 to 50,000. The server memory sizeM is 16 gigabytes,
and the coldness factor C is 2. Figure 9 shows that GTC can process
tens of thousands of tenants within a few hours on single machine.

Finally we evaluate the correctness of our algorithms and heuris-
tics by showing that the placement plans generated by GMR, BMR,
and GTC, when implemented in practice, satisfy the through-
put SLA requirements of tenants. Figure 10 compares the SLA
throughputs of tenants against the actual throughputs that our gen-
erated placement plans can handle. First, we pick 30 random ten-
ants from Treal, and run GMR, BMR, and GTC on them, followed

Figure 10: Observed throughput versus SLA throughput.

by FFD, to get placement plans. GMR and BMR give the same
placement plan, requiring 10 servers, while GTC requires 8 servers.
We deploy these tenants on servers according to the resulting place-
ment plans, then we run the workloads. We schedule the workloads
of the tenants hosted by each server in a round robin fashion to
see the maximum throughput supported by the placement plans.
Figure 10 shows that our placement plans satisfy the throughput
SLAs of tenants in the real deployment, and for most tenants there
is enough room to handle spikes of traffic.

7. CONCLUSION
We present a set of algorithms and heuristics that balance mem-

ory and time resources in order to minimize the total number of
servers required to host a set of IO-bound tenants, while meeting
the throughput SLA of each tenant. We first tackle the problem
for private DBMS instances by approximating a globally-optimum
memory assignment that minimizes the total number of servers
needed, and present an online version that works well in practice,
then we develop a heuristics for consolidating tenants into shared
DBMS instances. Finally we evaluate our algorithms and heuristics
experimentally, and show that they effectively reduce the number
of servers needed to host a given set of tenants compared to other
baseline heuristics. We also demonstrate that the tenant placement
plans generated by our algorithms and heuristics meet the through-
put SLA requirements of the tenants as expected.

8. REFERENCES
[1] M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala.

Interaction-aware scheduling of report-generation workloads.
The VLDB Journal, 20:589–615, 2011.

[2] M. Ahmad and I. T. Bowman. Predicting system
performance for multi-tenant database workloads. In DBTest,
2011.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, and
M. Zaharia. Above the clouds: A Berkeley view of cloud
computing. Technical report, University of California at
Berkeley, 2009.

[4] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger.
Multi-tenant databases for software as a service:
schema-mapping techniques. In SIGMOD, 2008.

[5] A. Caprara and P. Toth. Lower bounds and algorithms for the
2-dimensional vector packing problem. Discrete Applied
Mathematics, 111(3):231–262, 2001.

[6] C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan.
Workload-aware database monitoring and consolidation. In
SIGMOD, 2011.

[7] W. F. de la Vega and G. S. Lueker. Bin packing can be solved
within 1+epsilon in linear time. Combinatorica,
1(4):349–355, 1981.

[8] A. Elmore, S. Das, D. Agrawal, and A. E. Abbadi. Who’s
driving this cloud? towards efficient migration for elastic and
autonomic multitenant databases. Technical report,
University of California at Santa Barbara, 2010.

[9] M. R. Garey, R. L. Graham, and D. S. Johnson. Resource
constrained scheduling as generalized bin packing. J. Comb.
Theory, Ser. A, 21(3):257–298, 1976.

[10] P. C. Gilmore and R. E. Gomory. A linear programming
approach to the cutting-stock problem. Operations Research,
9(6):849–859, 1961.

[11] G. Graefe. The five-minute rule 20 years later (and how flash
memory changes the rules). Commun. ACM, 52, 2009.

[12] J. Gray and G. Graefe. The five-minute rule ten years later,
and other computer storage rules of thumb. SIGMOD Rec.,
26, 1997.

[13] J. Gray and F. Putzolu. The 5 minute rule for trading memory
for disc accesses and the 10 byte rule for trading memory for
cpu time. SIGMOD Rec., 16, 1987.

[14] M. Hui, D. Jiang, G. Li, and Y. Zhou. Supporting database
applications as a service. In ICDE, 2009.

[15] O. Ozmen, K. Salem, M. Uysal, and M. H. S. Attar. Storage
workload estimation for database management systems. In
SIGMOD, 2007.

[16] J. Schaffner, B. Eckart, D. Jacobs, C. Schwarz, H. Plattner,
and A. Zeier. Predicting in-memory database performance
for automating cluster management tasks. In ICDE, 2011.

[17] B. Schroeder, M. Harchol-Balter, A. Iyengar, E. Nahum, and
A. Wierman. How to determine a good multi-programming
level for external scheduling. In ICDE, 2006.

[18] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale:
elastic resource scaling for multi-tenant cloud systems. In
SOCC, 2011.

[19] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem,
P. Kokosielis, and S. Kamath. Automatic virtual machine
configuration for database workloads. ACM Trans. Database
Syst., 35:7:1–7:47, February 2008.

[20] C. A. Waldspurger and M. Rosenblum. I/o virtualization.
Commun. ACM, 55(1):66–73, 2012.

[21] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and
H. Hacigumus. Intelligent management of virtualized
resources for database systems in cloud environment. In
ICDE, 2011.

APPENDIX
A. PROOF OF THE GUARANTEE OF GMR

To keep the notation simple, we use δi(k) to indicate both the
amount of memory, and the range [mi(k) − δi(k),mi(k)]. For
any m in the range δi(k), such that m is a multiple of µ, we refer
to the range [mi(k) − δi(k),m] as a tail of δi(k), and the range
[m,mi(k)] as the remainder of the tail. For any tail β, we use
the symbol β to refer to the range of the tail as well as the size
of the tail. Similarly, for any remainder α of the tail β, we use
the symbol α for both the range and its size. For any m in the
range [mmin

i ,mi(k) − δi(k)), such that m is a multiple of µ, we
refer to the range [m,mi(k) − δi(k)] as a prefix of δi(k). For

any prefix γ, we use the symbol γ to refer to both the prefix range
and its size. We also use the function l() to indicate the load drop
across a range, and l̄() to indicate the average load drop across a
range; for example, l(δi(k)) = li(mi(k) − δi(k)) − li(mi(k))
and l̄(δi(k)) = l(δi(k))/δi(k). The proof of the approximation
guarantee of GMR is based on the following two lemmas.

LEMMA A.1. If β is a tail of δi(k) then l̄(β) ≤ l̄(δi(k)).

Proof: Assume for contradiction that l̄(β) > l̄(δi(k)). We con-
sider the non-trivial case when 0 < β < δi(k), since otherwise the
lemma is obvious. Let α be the remainder of β. Since l(δi(k)) =

l(α) + l(β), therefore l̄(δi(k)) =
1

δi(k)
l(α) +

1

δi(k)
l(β) =

α

δi(k)
l̄(α) +

β

δi(k)
l̄(β). Sine δi(k) = α + β, therefore l̄(δi(k))

is a convex combination of l̄(α) and l̄(β). Since we assume that
l̄(β) > l̄(δi(k)), and 0 < β < δi(k), therefore l̄(α) < l̄(δi(k)).
Note that one of the endpoints of the range α is at mi(k), thus α
is among the possible δ’s for tenant ti at iteration k. But by defini-
tion, δi(k) is the δ with the smallest value of l̄() for the tenant ti at
iteration k. Therefore we reach a contradiction. �

LEMMA A.2. If γ is a prefix of δi(k) then l̄(γ) > l̄(δi(k)).

Proof: Assume for contradiction that l̄(γ) < l̄(δi(k)). Let δ′ be
the concatenation of the ranges γ and δi(k). Then l̄(δ′) is a convex
combination of l̄(γ) and l̄(δi(k)). Since we assume that l̄(γ) <
l̄(δi(k)), and by definition γ > 0 and δi(k) > 0, therefore l̄(γ) <
l̄(δ′) < l̄(δi(k)). Note that one of the endpoints of the range δ′ is
at mi(k), thus δ′ is among the possible δ’s for tenant ti at iteration
k. But by definition, δi(k) is the δ with the smallest value of l̄() for
the tenant ti at iteration k. Therefore we reach a contradiction.

�
Proof of Theorem 4.1

Proof: We begin by proving that there is no memory assign-
ment m that satisfies both of the following two inequalities: (1)∑
im(ti) <

∑
i ṁ(ti) and (2)

∑
i li(m(ti)) <

∑
i li(ṁ(ti)).

Then we show that if there exists a memory assignment m that sat-
isfies only one of the two inequalities, then the difference between
Lwr 2DV P (m) and Lwr 2DV P (ṁ) is no more than 1.

Assume for contradiction that there exists a memory assign-
ment m that satisfies both Inequality 1 and Inequality 2. Let ta
be any tenant such that m(ta) < ṁ(ta). Also, let tb be any ten-
ant such that lb(m(tb)) < lb(ṁ(ta)). Since lb is monotonically
non-increasing, therefore m(tb) > ṁ(ta). Let ∆a denote the range
[m(ta), ṁ(ta)], and let ka be the iteration at which GMR sets the
buffer size of tenant ta to ṁ(ta). Similarly, let ∆b denote the range
[ṁ(tb),m(tb)]. GMR removes the range ∆b from the buffer of tb
in one or more δ’s. Let these δ’s be ordered chronologically as
δ1b , δ

2
b , ..., δ

c
b , where δ1b is the first removed δ. Let kb be the iter-

ation at which δ1b is picked by GMR; that is, δ(kb) = δ1b . Note
that δ1b may be not completely contained within the range ∆b. We
refer to the intersection between the ranges ∆b and δ1b simply as
∆b ∩ δ1b . The range ∆b ∩ δ1b is actually a tail of δ1b . Therefore,
from Lemma A.1, l̄(∆b ∩ δ1b) ≤ l̄(δ1b). We prove that for any such
ta and tb, l̄(∆b) ≤ l̄(∆a), then we use this inequality to reach a
contradiction with Inequality 2. Consider the two possible cases,
either (1) ka < kb, or (2) kb < ka. For Case 1, at iteration kb,
the buffer size of tenant ta is still at ṁ(ta), unchanged since ka.
Therefore ∆a is one of the δ’s that are considered for compari-
son at iteration kb. Since GMR picks δ1b at iteration kb, therefore
l̄(∆a) ≥ l̄(δ1b) ≥ l̄(∆b ∩ δ1b). Similarly, since δ2b , ..., δ

c
b are all

picked by GMR at iterations subsequent to iteration kb, therefore
l̄(∆a) ≥ l̄(δjb), for all j. Note that l̄(∆b) is a convex combina-
tion of l̄(∆b ∩ δ1b), l̄(δ2b), ..., l̄(δcb). Therefore l̄(∆b) ≤ l̄(∆a). For
Case 2, at iteration kb, the buffer size of tenant ta is at ma(kb) >
ṁ(ta). Let ∆′a denote the range [ṁ(ta),ma(kb)]. GMR removes
∆′a from the buffer of ta in one or more δ’s. Let these δ’s be
ordered chronologically as δ1a, δ2a, ..., δda, where δ1a is the first re-
moved δ. Note that these δ’s are prefixes of one another, therefore
l̄(δ1a) < l̄(δ2a) < ... < l̄(δda). Note also that ∆a is a prefix of δda,
therefore l̄(δda) < l̄(∆a). Since δ1b is picked by GMR at iteration
kb, rather than δ1a, therefore l̄(∆b ∩ δ1b) ≤ l̄(δ1b) ≤ l̄(δ1a) < l̄(∆a).
Similarly, for all δjb , if δjb is picked by GMR at an iteration before
ka, then l̄(δjb) < l̄(∆a). Otherwise, if δjb is picked by GMR after
ka, then we apply the logic of Case 1 to show that l̄(δjb) ≤ l̄(∆a).
Therefore, for all j, l̄(δjb) ≤ l̄(∆a). As with Case 1, since l̄(∆b)
is a convex combination of l̄(∆b ∩ δ1b), l̄(δ2b), ..., l̄(δcb), therefore
l̄(∆b) ≤ l̄(∆a). From Inequality 1, since

∑
im(ti) <

∑
i ṁ(ti),

therefore
∑
a ∆a >

∑
b ∆b. And since l̄(∆a) ≥ l̄(∆b) for all

a and b, therefore
∑
a ∆a l̄(∆a) >

∑
b ∆b l̄(∆b), which can be

re-written as
∑
a l(∆a) >

∑
b l(∆b). Therefore,

∑
i li(m(ti)) >∑

i li(ṁ(ti)), which contradicts with Inequality 2. Thus, there is
no memory assignment m that satisfies both inequalities, 1 and 2.

Consider the case when m satisfies only one of the two inequal-
ities, either 1 or 2. We prove that in such case Lwr 2DV P (ṁ) ≤
Lwr 2DV P (m) + 1. To prove this, we consider two possi-
ble cases, either (1)

∑
i ṁ(ti) ≤

∑
i li(m(ti)),

∑
im(ti) <∑

i li(ṁ(ti)), or (2)
∑
i li(ṁ(ti)) ≤

∑
i li(m(ti)),

∑
im(ti) <∑

i ṁ(ti). Other than these two cases, Lwr 2DV P (m) >
Lwr 2DV P (ṁ), and the theorem follows directly. For Case 1,
note that the loop of GMR terminates once total memory is
no more than total load. Let kl be the last iteration, and let
d =

∑
imi(kl) −

∑
i li(mi(kl)), and d′ =

∑
imi(kl − 1) −∑

i li(mi(kl − 1)). Since each iteration of the loop of GMR de-
creases the buffer size of a single tenant, and since the buffer size
and load of each tenant is at most 1, therefore each iteration de-
creases total memory by no more than 1 and increases total load
by no more than 1. Thus the difference between total memory and
total load decreases by no more than 2 after each iteration. In our
case, d ≤ 0, therefore d′ ≤ 2. If d′ ≥ 1, then d ≥ −1, thus the gap
between total memory and total load when GMR terminates is no
more than 1. If d′ < 1, then dmay be less than−1, however in such
case the last iteration degrades the solution rather than improving it.
We check for this case after the loop terminates, and if it occurs we
rollback the last iteration, thus the final gap size is d′. Therefore, in
both cases, the gap between total memory and total load is no more
than 1. Since Lwr 2DV P (m) lies within this gap, therefore the
difference between Lwr 2DV P (m) and Lwr 2DV P (ṁ) is no
more than 1. For Case 2,

∑
i ṁ(ti) >

∑
im(ti). Then there must

be a tenant ta such that m(ta) < ṁ(ti). But from the definition of
GMR, the two termination conditions are either (i)mi(k) = mmin

i

for all ti, which is not true in this case since ma(ta) 6= mmin
a , or

(ii)
∑
imi <

∑
i li(mi), which is also not true by the definition

of Case 2. Therefore we reach a contradiction. �

