
Preserving Location Privacy in Geo-Social Applications

Krishna P. N. Puttaswamy, Shiyuan Wang, Troy Steinbauer,
Divyakant Agrawal, Amr El Abbadi, Christopher Kruegel and Ben Y. Zhao

Department of Computer Science, UC Santa Barbara
{krishnap, sywang, troysteinbauer, agrawal, amr, chris, ravenben}@cs.ucsb.edu

ABSTRACT
Using geo-social applications, such as FourSquare, millions of peo-
ple interact with their surroundings through their friendsand their
recommendations. Without adequate privacy protection, however,
these systems can be easily misused,e.g., to track users or target
them for home invasion. In this paper, we introduceLocX, a nov-
el alternative that provides significantly-improved location privacy
without adding uncertainty into query results or relying onstrong
assumptions about server security. Our key insight is to apply se-
cure user-specific, distance-preservingcoordinate transformations
to all location data shared with the server. The friends of a user
share this user’s secrets so they can apply the same transforma-
tion. This allows all location queries to be evaluated correctly by
the server, but our privacy mechanisms guarantee that servers are
unable to see or infer the actual location data from the transformed
data or from the data access. We show that LocX provides priva-
cy even against a powerful adversary model, and we use prototype
measurements to show that it provides privacy with very little per-
formance overhead, making it suitable for today’s mobile devices.

1. INTRODUCTION
With billions in downloads and annual revenue, smartphone ap-

plications offered by Apple iTunes and Android are quickly becom-
ing the dominant computing platform for today’s user applications.
Within these markets, a new wave ofgeo-socialapplications are
fully exploiting GPS location services to provide a “social” inter-
face to the physical world. Examples of popular social applica-
tions include social rendezvous [35], local friend recommendations
for dining and shopping [20, 33], as well as collaborative network
services and games [3, 41]. The explosive popularity of mobile
social networks such as SCVNGR [1] and FourSquare (3 million
new users in 1 year) likely indicate that in the future, social rec-
ommendations will be our primary source of information about our
surroundings.

Unfortunately, this new functionality comes with significantly
increased risks to personal privacy. Geo-social applications operate
on fine-grain, time-stamped location information. For current ser-
vices with minimal privacy mechanisms, this data can be usedto in-
fer a user’s detailed activities, or to track and predict theuser’s daily

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

movements. In fact, there are numerous real world examples where
the unauthorized use of location information has been misused for
economic gain [40], physical stalking [16], and to gather legal ev-
idence [8]. Even more disturbing, it seems that less than a week
after Facebook turned on their popular “Places” feature fortrack-
ing users’ locations, such location data was already used bythieves
to plan home invasions [43]. Clearly, mobile social networks of
tomorrow require stronger privacy properties than the open-to-all
policies available today.

Existing systems have mainly taken three approaches to improv-
ing user privacy in geo-social systems: (a) introducing uncertainty
or error into location data [18, 34, 10], (b) relying on trusted server-
s or intermediaries to apply anonymization to user identities and
private data [24, 34, 25], and (c) relying on heavy-weight crypto-
graphic or PIR techniques [11, 37, 36, 47]. None of them, howev-
er, have proven successful on current application platforms. Tech-
niques using the first approach fall short because they require both
users and application providers to introduce uncertainty into their
data, which degrades the quality of application results returned to
the user. In this approach, there is a fundamental tradeoff between
the amount of error introduced into the time or location domain,
and the amount of privacy granted to the user. Users dislike the
loss of accuracy in results, and application providers havea natu-
ral disincentive to hide user data from themselves, which reduces
their ability to monetize the data. The second approach relies on
the trusted proxies or servers in the system to protect user privacy.
This is a risky assumption, since private data can be exposedby
either software bugs and configuration errors at the trustedservers
or by malicious administrators. Finally, relying on heavy-weight
cryptographic mechanisms to obtain provable privacy guarantees
have been too expensive to be deployed on mobile devices.

The challenge, then, is to design mechanisms that efficiently pro-
tect user privacy without sacrificing the accuracy of the system, or
making strong assumptions about the security or trustworthiness of
the application servers. More specifically, we target geo-social ap-
plications, and assume that servers (and any intermediaries) can be
compromised and, therefore, are untrusted. To limit misuse, our
goal is to limit accessibility of location information fromglobal
visibility to a user’s social circle. We identify two main types of
queries necessary to support the functionality of these goe-social
applications: point queries and nearest-neighbor (kNN) queries.
Point queries query for location dataat a particular point, whereas
kNN queries query fork nearest dataarounda given location coor-
dinate (or up to a certain radius). Our goal is to support bothquery
types in an efficient fashion, suitable for today’s mobile devices.

To address this challenge, in this paper, we proposeLocX(short
for location to index mapping), a novel approach to achieving us-
er privacy while maintaining full accuracy in LBSAs. Our insight

is that many services do not need to resolve distance-based queries
between arbitrary pairs of users, but only between friends interested
in each other’s locations and data. Thus, we can partition location
data based on users’ social groups, and then performtransforma-
tionson the location coordinates before storing them on untrusted
servers. A user knows the transformation keys of all her friend-
s, allowing her to transform her query into the virtual coordinate
system that her friends use. Our coordinate transformations pre-
serve distance metrics, allowing an application server to perform
both point and nearest-neighbor queries correctly on transformed
data. However, the transformation issecure, in that transformed
values cannot be easily associated with real world locations with-
out asecret, which is only available to the members of the social
group. Finally, transformations are efficient, in that theyincur min-
imal overhead on the LBSAs. This makes the applications built
on LocX lightweight and suitable for running on today’s mobile
devices.

2. SCENARIOS AND REQUIREMENTS
Here we describe several scenarios we target in the context of

emerging geo-social applications that involve heavy interaction of
users with their friends. We use these scenarios to identifythe key
requirements of a geo-social location privacy preserving system.

2.1 Geo-social Application Scenarios
Scenario 1.Alice and her friends are excited about exploring new
activities in their city and leveraging the “friend referral” program-
s offered by many local businesses to obtain discounts. Alice is
currently in downtown and is looking to try a new activity in her
vicinity. But she also wants to try an activity that gives herthe
most discount. The discounts are higher for a user that refers more
friends or gets referred by a friend with high referral count. As a re-
sult Alice is interested in finding out the businesses recommended
by her friends and the discounts obtained through them, within her
vicinity. In addition, she is also interested in checking ifthere are
discounts available for her favorite restaurant at a given location.
Scenario 2. Alice and her friends are also interested in playing
location-based games and having fun by exploring the city further.
So they setup various tasks for friends to perform, such as running
a few miles at the Gym, swimming certain laps, taking pictures at
a place, or dining at a restaurant. They setup various pointsfor
each task, and give away prizes for the friends with most points. In
order for Alice to learn about the tasks available near her, she needs
to query an application to find out all tasks from friends nearher
and the points associated with them.

The scenarios above, while fictitious, are not far from reality.
Groupon and LivingSocial are some example companies that are
leading the thriving business of local activities. SCVNGR [1] of-
fers similar services as location-based games. But none of these
services provide any location privacy to users: all the locations vis-
ited by the users are known to these services and to its administra-
tors.

Our goal is to build a system that caters to these scenarios and
enables users to query for friends’ data based on locations,while
preserving their location privacy. We want to support: a)point
queryto query for data associated with a particular location, b)cir-
cular range queryto query for data associated with all locations in
a certain range (around the user), and c)nearest-neighbor queryto
query for data associated with locations nearest to a given location.
Finally, while it is also useful to query for data that belongs to non-
friends in certain scenarios, we leave such extensions for future.

2.2 System Requirements

The scenarios above bring out the following key requirements
from an ideal location-privacy service.

• Strong location privacy: The servers processing the data (and
the administrators of these servers) should not be able to
learn the history of locations that a user has visited.

• Location and user unlinkability: The servers hosting the ser-
vices should not be able to tell if two records belong to the
same user, or if a given record belongs to a given user, or if a
given record corresponds to a certain real-world location.

• Location data privacy: The servers should not be able to view
the content of data stored at a location.

• Flexibility to support point, circular range, and nearest-neighbor
queries on location data.

• Efficiency in terms of computation, bandwidth, and latency,
to operate on mobile devices.

3. RELATED WORK
Prior work on privacy in general location-based services (LBS).
There are mainly three categories of proposals on providingloca-
tion privacy in general LBSs that do not specifically target social
applications. First is spatial and temporal cloaking [18, 34, 10, 12,
25], wherein approximate location and time is sent to the server
instead of the exact values. The intuition is that this prevents accu-
rate identification of the locations of the users, and thus improves
privacy. This approach, however, hurts the accuracy and timeliness
of the responses from the server, and most importantly, there are
several simple attacks on these mechanisms [14, 21, 22, 27] that
can still break user privacy. Pseudonyms and silent times [6, 24]
are other mechanisms to achieve cloaking, where in device iden-
tifiers are changed frequently, and data is not transmitted for long
periods at regular intervals. This, however, severely hurts func-
tionality and disconnects users. The key difference between these
approaches and our work is that they rely on trusted intermediaries,
or trusted servers, and reveal approximate real-world location to the
servers in plain-text. In LocX, we do not trust any intermediaries
or servers. On the positive side, these approaches are more general
and, hence, can apply to many location-based services, while LocX
focuses mainly on the emerging geo-social applications.

The second category is location transformation, which usestrans-
formed location coordinates to preserve user location privacy. One
subtle issue in processing nearest-neighbor queries with this ap-
proach is to accurately find all the real neighbors. Blind evaluation
using Hilbert Curves [26], unfortunately, can only find approxi-
mate neighbors. In order to find real neighbors, previous work
either keeps the proximity of transformed locations to actual lo-
cations and incrementally processes nearest-neighbor queries [46],
or requires trusted third parties to perform location transformation
between clients and LBSA servers [28]. In contrast, LocX does not
trust any third party and the transformed locations are not related
to actual locations. However, our system is still able to determine
the actual neighbors, and is resistant against attacks based on mon-
itoring continuous queries [7, 42].

The third category of work relies on Private Information Re-
trieval (PIR) [11] to provide strong location privacy. Its perfor-
mance, although improved by using special hardwares [37], is stil-
l much worse than all the other approaches, thus it is unclearat
present if this approach can be applied in real LBSs.
Prior work on privacy in geo-social servicesFor certain types of
geo-social services, such as buddy tracking services to test if a

friend is nearby, some recent proposals achieve provable location
privacy [36, 47] using expensive cryptographic techniquessuch as
secure two party computation. In contrast, LocX only uses inex-
pensive symmetric encryption and pseudorandom number genera-
tors. The closest work to LocX is Longitude [30, 31], which also
transforms locations coordinates to prevent disclosure tothe server-
s. However, in Longitude, the secrets for transformation are main-
tained between every pair of friends and are updated frequently. In
LocX, the number of secrets that users have to maintain is only one
per user, while LocX can still achieve location and user unlinka-
bility. In addition, LocX can provide more versatile geo-social ser-
vices, such as location based social recommendations, reminders,
and others, than just buddy tracking as in the above prior work.
Anonymous communication systems.These systems, including
Tor [9], provide anonymity to users during network activity. One
might ask, then,why using Tor to anonymously route data to LBSA
servers is not sufficient?This approach seems to provide privacy
as the server only sees location data but not the identity of the user
behind that data. However, recent research has revealed that hiding
the identity of the users alone is not sufficient to protect location
privacy. Even if Tor is used, it is possible for an attacker with ac-
cess to the location data to violate ourprivacy and unlinkability
requirements. For example, using anonymized GPS traces collect-
ed by the servers, it has been shown that users’ home and office
locations, and even user identity can be derived [14, 21, 22,27].
LocX defends against such attacks and meets all our requirements.
Systems on untrusted servers.In the context of databases, recent
systems proposed running database queries on encrypted data (s-
tored on untrusted servers), using heavy-weight homomorphic [23]
or asymmetric encryption [45] schemes. These approaches are suit-
able for spatial data outsourcing or data mining scenarios where the
data is static and is owned by limited number of users. But they are
less suitable for LBSAs, where the data is dynamic and personal,
and thus cannot be encrypted under a single secret key.

In the context of location and social applications, Persona[4]
and Adeona [39] also relied on encrypting all data stored on un-
trusted servers to protect user privacy. Persona focused onprivacy
in online social networks, and Adeona focused on privacy in de-
vice tracking systems where there is no data sharing among users.
Applying Persona’s mechanisms to LBSAs directly would encrypt
all location coordinates, making LBSAs unable to process nearest-
neighbor queries. But if location is not encrypted, attacksusing
anonymized GPS traces, mentioned above, can succeed, making
Persona insufficient to protect location privacy. Similarly, Adeona
is useful for a user to retrieve her own data, but not the data from
her friends. Our contributions complement these systems. Some
techniques in these papers can help LocX as well, e.g. Person-
a’s approach to partition data shared with friends into fine-grained
groups, and Adeona’s hardware-assisted approaches to speed up
crypto processing.

4. SYSTEM DESIGN
In this section, we describe the design of LocX in detail.

4.1 Terminology and Attacker Model
Terminology. Location coordinatesrefer to the longitude, latitude
pairs associated with real-world locations. A pair of coordinates is
returned from a GPS, and is used to associate data with a location.
Location data or location informationrefers to such data associated
with a location. For example, when reviews (and referral point de-
tails) are written for a given restaurant, the reviews are the location
data associated with the restaurant’s location coordinates.

Transform and GetSecrets

Transform and Put2

1

An LBSA

Server

(x’, y’) => E(data)

E(data)

3 (x’, y’)

At (x, y)

At (x, y) 4 Decrypt E(data)

Alice

Bob

Figure 1: A basic design. In this design, 1) Alice and Bob exchange
their secrets, 2) Alice stores her review of the restaurant (at (x, y)) on
the server under transformed coordinates, 3) Bob later visits the restau-
rant and queries for the reviews on transformed coordinates, and 4)
decrypts the reviews obtained.

System and Attacker Model.In this paper, we assume that the
companies that provide LBSA services manage the servers. Users
store their data on the servers to obtain the service. The companies
are responsible for reliably storing this data, and providing access
to all the data a user should have access to. The companies canget
incentives via displaying ads, or charging users some usagefees.
In our attacker model, we assume that the attacker has accessto the
LBSA servers. This attacker could be an employee of the company
running the service or an outsider that compromises the servers. As
a result, the attacker can access all the data stored on the servers,
and can also monitor which user device is accessing which pieces
of information on the servers. Our goal is to design a system that
preserves the location privacy of users in this setting. We assume
that the attacker does not perform any attacks on the consistency
or integrity of data on the servers, but aims only to learn users’
location information. We also assume that the friends of a user are
trusted anddo not colludewith the servers in breaking the user’s
privacy.

4.2 A Basic Design
To clarify the need for each component in LocX, we start the

design description with a basic, simple design.
As listed in our requirements, the server should support different

types of queries (point, circular range and nearest-neighbor queries)
on location data. For the server to be able to do this, we need to
reveal the location coordinates in plain text. But doing so would
allow the malicious server to break a user’s location privacy.

To resolve this problem, we propose the idea ofcoordinate trans-
formation. Each useru in the system chooses a set of secrets that
they reveal only to their friends. These secrets include a rotation
angleθu, a shiftbu, and a symmetric keysymmu. The users ex-
change their secrets via interactions when friends meet in person,
or via a separate trusted channel, such as email, phone etc. The
secret angle and shift are used by the users to transform all the lo-
cation coordinates they share with the servers. Similarly,the secret
symmetric key is used to encrypt all the location data they store on
the servers. These secrets are known only to the friends, andhence
only the friends can retrieve and decrypt the data.

For example, when a useru wants to store a reviewr for a
restaurant at(x, y), she would use her secrets to transform(x, y)
to (x′, y′) and store encrypted reviewE(r) on the server. When a
friendv wants to retrieveu’s review for the restaurant at(x, y), she
would again transform(x, y) usingu’s secret (previously shared
with v), retrieveE(r), and then decrypt it usingu’s symmetric key
to obtainr. Similarly, v would transform(x, y) according to each

of her friends’ secrets, obtain their reviews, and read them. We only
focus on point queries for now. Figure 1 depicts this basic design.
A limitation. This basic design has one important limitation: the
server can uniquely identify the client devices (fore.g., using the IP
address). Using this, the server can associate different transformed
coordinates to the same user (using the IP). Sufficient number of
such associations can break the transformations (as we showin Sec-
tion 5). So maintaining unlinkability between different queries is
critical.

One approach to resolve this limitation is to route all queries
through an anonymous routing system like Tor [9]. But simply
routing the data through Tor all the time will be inefficient.Espe-
cially in the context of recent LBSAs, that adds larger multimedia
files (pictures and videos) at each location. So we need to improve
this basic design to be both secure and efficient.

4.3 Overview of LocX
LocX builds on top of the basic design, and introduces two new

mechanisms to overcome its limitations. First, in LocX, we split the
mapping between the location and its data into two pairs: a map-
ping from the transformedlocation to an encrypted index(called
L2I), and a mapping from theindex to the encrypted location da-
ta (calledI2D). This splitting helps in making our system efficient.
Second, users store and retrieve the L2Is viauntrusted proxies. This
redirection of data via proxies, together with splitting, significantly
improves privacy in LocX. For efficiency, I2Ds are not proxied, yet
privacy is preserved (as explained later).
Decoupling a location from its data.In today’s systems, location
datadata(x,y) corresponding to the real-world location(x, y) is
stored under(x, y) on the server. But in LocX, the location(x, y) is
first transformed to(x′, y′), and the location data is encrypted into
E(data(x,y)). Then the transformed location is decoupled from the
encrypted data using a random indexi via two servers as follows:
1) an L2I = [(x′, y′), E(i)], which storesE(i) under the location
coordinate(x′, y′), and2) an I2D = [i, E(data(x,y))], which stores
the encrypted location dataE(data(x,y)) under the random index
i. The index is generated using the user’s secret random number
generator. We refer to the server storing L2Is as theindex server
and the server storing I2D as thedata server. We describe these two
as separate servers for simplicity, but in reality they can be on the
same server, and our privacy properties still hold. This separation
of location information into two components (L2I and I2D) helps
us continue to efficiently run different types of location queries on
L2Is and retrieve only relevant I2Ds.

The key interfaces used by the applications to store and retrieve
data on the LocX servers are listed in Table 1. Figure 2 depicts the
design of LocX.
Proxying L2Is for location privacy.Users store their L2Is on the
index server viauntrusted proxies. These proxies can be any of the
following: PlanetLab nodes, corporate NATs and email servers in
a user’s work places, a user’s home and office desktops or laptop-
s, or Tor [9] nodes. We only need a one-hop indirection between
the user and the index server. These diverse types of proxiespro-
vide tremendous flexibility in proxying L2Is, thus a user canstore
her L2Is via different proxies without restricting herselfto a single
proxy. Furthermore, compromising these proxies by an attacker
does not break users’ location privacy, as (a) the proxies also on-
ly see transformed location coordinates and hence do not learn the
users’ real locations, and (b) due to the noise added to L2Is (de-
scribed later). To simplify the description, for now, we assume that
the proxies are non-malicious and do not collude with the index
server. But we will later describe our solution in detail to even
defend against colluding, malicious proxies.

API Call Purpose of the Call
putL2I ((x’, y’), E(i)) Put L2I of (x, y) on the IS.

getL2I ((x’, y’)) Get the L2I of(x, y) from the IS.
putD2I (i, E(data)) Put I2D of(x, y) on the DS.

getD2I (i) Get I2D of(x, y) from the DS.

Table 1: The index server (IS) and data server (DS) APIs and their
functions in LocX.

Index Server

Data Server

An LBSA

Secrets

PutL2I ((x’,y’) => E(i))

2

1
3

At (x, y)

At (x, y)

6 Decrypt E(data)

Alice

Bob

(x’,y’) => E(i)

...

i => E(data)

...

PutI2D (i, E(data))

5 GetI2D (i)

4

Ge
tL2

I ((
x’,
y’)
)

E(data)

Proxy

E(i))

E(i))

Figure 2: Design of LocX. 1) Alice and Bob exchange their secrets,
2) Alice generates and L2I and I2D from her review of the restaurant
(at (x, y)), and stores the L2I on the index server via a proxy. 3) She
then stores the I2D on the data server directly, 4) Bob later visits the
restaurant and fetches for L2Is from his friends by sending the trans-
formed coordinates via a proxy, 5) he decrypts the L2I obtained and
then queries for the corresponding I2D, 6) finally Bob decrypts Alice’s
review.

With this high-level overview, we now describe our solutionto
store and query data on the servers in detail. We also explainthe
challenges we faced, and the tradeoffs we made in making our so-
lution secure and efficient.

4.4 Privacy Preserving Data Storage
When a user generates the location data corresponding to a lo-

cation(x, y), she uses her secrets to decouple it into a L2I and an
I2D. Now we describe how they are stored on the index and the
data servers respectively.
Storing L2I on the index server. First consider storing L2I on
the index server. To perform this, the user transforms her real-
world coordinate(x, y) to a virtual coordinate(x′, y′) using her
secret rotation angleθu and secret shiftbu: (x′, y′) ← (cosθux−
sinθuy + bu, sinθux + cosθuy + bu). This transformation pre-
serves the distances between points1, so circular range and near-
est neighbor queries for a friend’s location data can be processed
in the same way on transformed coordinates as on real-world co-
ordinates. Then the user generates a random index (i) using her
random number generator and encrypts it with her symmetric key
to obtain (Esymmu

(i)). The user then stores this L2I, [(x′, y′),
Esymmu

(i)], at the transformed coordinate on the index server via
a proxy. The L2I is small in size and is application independent,
as it always contains the coordinates and an encrypted random in-
dex. Thus the overhead due to proxying is very small (quantified in
Section 6).

1Given any two real-world points(x1, y1), (x2, y2), it is easy to see
that the distance between their corresponding virtual coordinates
√

(x′

2 − x′

1)
2 + (y′

2 − y′

1)
2 =

√

(x2 − x1)2 + (y2 − y1)2

Storing I2Ds on the data server.The user can directly store I2Ds
(location data) on the data server. This is both secure and efficient.
1) This is secure because the data server only sees the index stored
by the user and the corresponding encrypted blob of data. In the
worst case, the data server can link all the different indices to the
same user device, and then link these indices to the retrieving user’s
device. But this only reveals that one user is interested in another
user’s data, but not any information about the location of the users,
or the content of the I2Ds, or the real-world sites to which the data
in the encrypted blob corresponds to.2) The content of I2D is ap-
plication dependent. For example, a location-based video or photo
sharing service might share multiple MBs of data at each location.
Since this data is not proxied, LocX still maintains the efficiency of
today’s systems.
Intuition behind privacy. Due to the coordinate transformation,
the index server does not see the real-world coordinate of the user.
Because of the proxy, the index server cannot link the different L2Is
stored on the index server to the same user. The index server has a
single coordinate space in which it stores all the data from all the
users. These are the reasons behind the privacy in LocX. To break
a user’s privacy, a malicious index server will have tobreak two
steps:a) learn the transformation secrets of the user, and b) link a
request to the corresponding user (otherwise, the attackerdoes not
know which transformation secret to apply to a request). These two
steps significantly raise the bar for attacks.

4.5 Privacy Preserving Data Retrieval
Retrieving location data from the server in LocX is a more chal-

lenging problem. In particular, we need toa) maintain location
privacy, andb) ensure that the retrieval is efficient.

Consider the following simple design for data retrieval. A user
takes the location coordinate she is interested in, transforms it ac-
cording to all her friends’ secrets, and sends a query to the server
containing all the transformed locations via a proxy. If a user has
f friends, and is at a location(x, y), she sends a query with points
((x′

1, y
′

1), (x
′

2, y
′

2), ..., (x
′

f , y
′

f)) to the server, where(x′

i, y
′

i) is the
transformation of(x, y) with friend i’s secret. The index server
then fetches all the L2Is at the locations in the query and returns
them. The user then decrypts all the returned L2Is, and queries the
data server for the I2Ds she cares about.

This design has two major problems. First, this approach to
query the server easily breaks a user’s privacy. Just by knowing
that all the transformed points sent by a user correspond to the same
real-world coordinate, the server can construct and solve aset of e-
quations to derive the real-world location of the user (proven in
Section 5). To prevent this derivation, if the user were to query for
each friend’s transformed coordinate separately, then it would in-
crease the total time (and the # of RPCs) to retrieve the results, hurt-
ing the performance. Thus we need a secure and efficient approach
to retrieve L2Isfrom the index server. Second, since the server
sends all the points stored at a transformed coordinate(x′

i, y
′

i) in
the query (irrespective of who stored data there), the user may get
many L2Is from non-friends who happen to store data at location
(x′

i, y
′

i). Since the user does not know the source, she will have to
attempt to decryptall L2Is returnedin response to location(x′

i, y
′

i)
with friend i’s symmetric key. This wastes significant amount of
computation cycles on the user’s device. Thus, we need an efficient
and secure mechanismto identify the L2Isthat are from friends,
and to quickly reject L2Is from non-friends. We next describe our
solutions to these two problems.
Privacy while querying the index server.In order to prevent attack-
s while querying the index server, we propose that users add noise
to the query. Noise in our solution is a few (N) additional, ran-

domly selected points,((x1′1, y1
′

1), (x1
′

2, y1
′

2), ..., (x1
′

N , y1′N)),
added to each query sent to the index server. Of course, the noise
added has to be minimal for efficiency. We show through analy-
sis (in Section 5) that adding only a few additional random points
prevents privacy attacks, and the server will not be able to derive
the real location of the user. In addition, the user can easily filter
out the L2Is corresponding to the noise. Note that the noise in our
system is different from the noise in prior systems [18] thataffect
the accuracy of the locations.

Adding noise, coupled with routing the index server queriesvia
proxies (just like the way they were stored), provides strong loca-
tion privacy during querying. The queries only contain a list of
points in the transformed coordinate space, without any user iden-
tifier or actual location information. Due to proxying, the server
cannot identify the client. And finally the noise prevents deriva-
tion of user’s location based on transformed coordinate. Putting
noise and proxying schemes together, the server cannot linkmulti-
ple different queries to the same user. We will later prove that this
unlinkability preserves the users’ secrets, and also show that this
approach is resilient against collusion between the proxies and the
index server.
Securely and efficiently identifying L2Is of friends.In the sim-
ple design for data retrieval described above, we query for aset of
points in the transformed coordinates and decryptall the returned
results. This provides strong privacy as the server does notlearn
which of the returned L2Is are relevant to the user, but decrypting
all the results increases the overhead on the client’s device.

If, on the other hand, we provide some information to the server
to filter out the L2Is that are irrelevant for a user before sending
them, it provides efficiency, but breaks privacy. For example, sup-
pose each user attaches an anonymized ID to each L2I. Then, a user
can submit a list of IDs she cares about and some additional IDs for
noise. This allows the server to send only the L2Is at a point that
fall into the set of IDs specified by the user. Even decryptionwould
be efficient, as the user would know the right key to use for each
L2I. Unfortunately, these IDs would enable the server to link dif-
ferent L2Is, and this can lead to privacy leaks. For instance, the
index server could perform “fingerprinting attacks,” by leveraging
the distance preserving property of our transformations. In these
attacks, the server takes “fingerprints” of popular destinations (e.g.
airports in major cities), and uses the distance between these desti-
nations as fingerprints. It then matches these fingerprints with the
locations corresponding to a particular user identified by the ID,
and then derives the transformation secret of the user. Thiswould
then reveal all the real-world locations of that user, whichcould
help identify the user behind the ID.

Fundamentally, there is a tradeoff between efficiency and priva-
cy. Revealing more information to the server leads to efficiency,
but hurts privacy, and vice versa. Exploring the design spectrum to
balance these two properties leads to the following possible set of
choices.

1. No tags. The basic design where no user-specific tag is at-
tached to L2Is, and the user simply queries and decrypts all
L2Is in the results for a location. This approach provides
high privacy, but low performance.

2. User ID tags. The prior design where the server filters the
L2Is in the response using the anonymized ID tags that the
users attach with each L2I. This approach provides high per-
formance, but low privacy.

3. Keyed hash tags.In this approach, each useru has a secret
text Tu that she shares with her friends. The useru gener-
ates a new random stringSj for each new L2I she stores, and

tags it with< Sj ,H(Tu.Sj) >, whereH() is a hash func-
tion such as SHA1. So the L2I now contains
< (x′, y′), E(i), Sj ,H(Tu, Sj) >. When a friend ofu
wants to query for a location(x, y), she transforms her lo-
cation withu’s secret to obtain(x′, y′), and sends this point
in a query. Then the index server sends all L2Is at(x′, y′)
without any filtering. Upon receipt of the L2Is, the client us-
er appendsSj in an L2I toTu, and then compares the hash to
check if it is indeed from useru. It would decrypt the L2I on-
ly if this hash check is passed. A similar check is performed
on each L2I. Because of the fact that hashing is nearly two
orders of magnitude (from our tests) faster than symmetric
key decryption, this approach is significantly more efficient
thanno tagsin terms of processing time on the user’s device,
while providing the same, strong privacy. We use HMAC-
s [5] with proven security guarantees for implementing this.

4. Random tags.In this approach, each useru has another se-
cret random number generator (rgenu) that she shares with
her friends. The user generates a new random numberrj
from rgenu and attaches this tag to every new L2I she s-
tores. The L2I now contains< (x′, y′), E(i), rj >. When
a friend ofu transforms her location(x, y) with u’s secret
to obtain(x′, y′) and sends this point in a query, the index
server sends all L2Is at(x′, y′) without any filtering. Up-
on receipt of the L2Is, the friend checks if the random tag,
rj , in an L2I is within the set of random numbers generat-
ed byrgenu. The friend only decrypts the L2Is whose tags
are in this set. Since the membership check is faster than
hashing (by about two orders of magnitude in our tests), this
approach is more efficient than key-based hash tags, but re-
quires some additional state. Specifically, the users need to
exchange, with their friends, the maximum number of ran-
dom tags (from theirrgen) they have used so far in tagging
L2Is. This helps them build the set of tags for checking L2Is.
Thus this approach provides both high privacy and high effi-
ciency.

Both keyed hash tagsand random tagsnicely balance privacy
and performance. We did construct several other mechanismsa-
long similar lines to efficiently identify L2Is from friendswhile
maintaining privacy, but we only discuss and evaluate thesetwo
due to space limitations. Fundamentally, all these mechanisms at-
tach some additional tags to the L2Is, which can only be usefully
interpreted by the friends. Since the server cannot link different
L2Is from the same user, these mechanisms provide strong loca-
tion privacy.
Querying the data server and decrypting location data.After ob-
taining the L2Is from the index server corresponding to a point
(x′, y′), say transformed with friendu’s secrets, the client user i-
dentifies the L2Is fromu (using the tags), and then decrypts the re-
turned L2Is withu’s symmetric key. Then the user directly queries
the data server for the I2Ds corresponding to all the decrypted in-
dices she cares about in a batch:(i1, i2, ...). She then obtains the
I2Ds from the data server, decrypts each of them using the sym-
metric key of the friend whose key was used to decrypt the corre-
sponding index. And then the user consumes the data as per the
application. There is no need for a proxy in this step as the index
and the encrypted data on the data server cannot link a user toher
location. Since the decrypted index is sent to the data server, it
cannot even be linked to an encrypted index on the index server.
Supporting circular range and nearest-neighbor queries.The de-
scription so far was for point queries, where a user fetches data
at a given location coordinate. These steps naturally extend to sup-

port more complex queries like circular range and nearest-neighbor
queries. The key change necessary is for the index server to return
dataarounda query point instead of returning dataat a query point
(as was done so far). Fortunately, building an R-tree [19] onthe
L2Is input by the users can support both circular range and nearest-
neighbor queries, out of the box. Finally, the user should mention
the type of the query she wants to run, while querying the index
server. The rest of the steps in querying remain the same.

One issue in processing a nearest-neighbor query by querying at
different transformed coordinates separately is that the index serv-
er will return each friend’s nearest location data instead of nearest
location data taken based on all friends’ location data. As aresult,
additional answers that are not necessarily needed by usersmight
be included. While our focus is not to explicitly remove those extra
answers, one way to remove them is to specify a query range along
with the query; another way is to let the users filter out such data
after decryption.

5. PRIVACY ANALYSIS

5.1 Intuition Behind Privacy in LocX
Here we describe the intuition behind LocX’s privacy, and how

it meets all of our requirements.
Defending against an attacker with access to data on the server-
s. The data stored on both servers do not reveal any information
about their locations to the attacker. The L2Is on the index server
contain transformed coordinates and the data on the data server are
all encrypted. As a result, an attacker with access to just the data on
these servers cannot de-anonymize the data to associate users with
their locations.
Location privacy during server access.Even the attacker with ac-
cess to monitor both servers cannot link accesses to the index and
the data server because the indices stored on the index server are
encrypted, but the indices are not encrypted on the data server. On-
ly the users know how to decrypt the encrypted indices. Without
the decryption keys, the attacker cannot link these recordsto figure
out even the transformed location of the users accessing theservers.
Location data unlinkability.The I2Ds are encrypted, and the user-
s access them only via indices. Hence users cannot be linked to
any locations. The indices stored or accessed by a user are random
numbers. The data server can link together the indices accessed by
the same user, but this does not help the servers link the userto
any locations. Finally, the users store and retrieve L2Is onthe in-
dex server via proxies, so servers cannot link different transformed
locations to the same user. Together, these provide location unlink-
ability.

5.2 Privacy During Location Data Access
Here we present a theoretical analysis of the privacy properties

during data access in LocX. When a user accesses her friends’data
by transforming her own location to different points in the trans-
formed space and sending them in a query, a malicious index server
learns the different, transformed coordinates that map to the same,
real-world location (which is the user’s current location). The ques-
tion is whether an attacker could use this information to derive the
user’s real-world location. Here, we discuss the fundamental con-
straints we need to preserve in LocX to prevent the server from
succeeding in such attacks.
Constraints in querying the index server.Assume first that the
users directly access the index server, without any proxies. Each
user has a secret angle,θ, and a secret shift,b, to transform her
location coordinates. Suppose a user hasn friends and she issues
m location queries. In each of them locations,(xj , yj), the user

searches fornj (nj ≤ n, 1 ≤ j ≤ m) friends’ information. Let us
assume that all friends’ information is queried at allm locations,
and let us also assume the worst case scenario where the friends’
transformed points are queried in the same order. Consider that the
index server is malicious and sees the transformed coordinates of
the user’s friends,(xij , yij), in all m queries. The attacker (index
server) then builds(2n1+2n2+ ...+2nm) equations as follows (2
equations for each requested friend at one location) in order to solve
2m unknown real coordinates(xj , yj) and2n unknown friends’
secrets(θi, bi), where1 ≤ j ≤ m, 1 ≤ i ≤ n.

cos θi · x1 − sin θi · y1 + bi = xi1

sin θi · x1 + cos θi · y1 + bi = yi1
... = ...

cos θi · xm − sin θi · ym + bi = xim

sin θi · xm + cos θi · ym + bi = yim

(1)

The total # of unknown variables is2m + 2n. For the attacker to
solve all the unknowns, the following must hold:

2n1 + 2n2 + ...+ 2nm ≥ 2m+ 2n (2)

⇒ n1 + n2 + ...+ nm ≥ m+ n (3)

So to protect the users’ locations and friends’ secrets frombeing
inferred by the attacker, the reverse of Formula (3) must hold:

n1 + n2 + ...+ nm < m+ n (4)

If the users query alln friends’ data at each location,nj = n, a
stronger version of Formula (4) must hold:

mn < m+ n (5)

We consider two special cases that satisfy Formula (5).

1. m = 1, n < 1 + n, meaning that the transformed coordi-
nates of friends should be only observed in one location. In
other words, the index server should not link multiple queries
to the same user. This can be achieved by using proxies to
anonymize user identities and ensure that the index server
cannot link different user requests to the same user.

2. n = 1,m < 1+m, meaning that the user is limited to access
only one, different friend’s data at each of them locations.
In other words, the functionality the user obtains from the
applications is limited only to the data from an unreasonably
low number of friends, in all the locations.

For the general cases ofm > 1, n > 1, we decide to exploit
the first case for our design, since we do not want to limit users
(and hence to hurt functionality) as in the second case. By routing
queries through proxies, we can easily satisfy Formula (5) since the
index server cannot link different requests to the same user, as long
as the proxies do not collude with the index server. Thus, we have
proved that the unlinkability of queries due to proxies preserves
users’ privacy in LocX.
Impact of malicious proxies.We assumed in the previous analysis
that all proxies are benign. However, a proxy may be malicious
and collude with the index server, which would then violatesthe
unlinkability of queries and hence violates users’ location privacy.
Therefore, multiple proxies are needed, and we need to control the
number of queries any given proxy can see. Based on Formula (4),
the upper bound on the average number of friends’ data a user can
request at a given location through a single proxy is

n1 + n2 + ...+ nm

m
<

m+ n

m
= 1 +

n

m
(6)

In a worse case, more than one proxy may be malicious, and they
may collude with the index server. Given the number of colluding
proxies,k, we have to further limit the average number of friends’
requests that a user can send per location via one proxy to:(1 +
n
m
)/k = 1

k
+ n

mk
. This number, however, becomes impractically

small. We resolve this limitation by adding noise to queriesthat
users send via proxies.
Improving privacy using noisy queries.Now we derive the amoun-
t of noise to add per query. Following Formula (6), ifk proxies
are colluding, together they can seemin{k · (1 + n

m
), n} friend

requests from the same user at one location (n is the maximum
number of friend requests of their interest for one locationquery),
which violates Formula (4) and hence the user’s location privacy.
To make sure the colluding proxies cannot break Equation (1), we
need to increase the number of unknowns on the right side of For-
mula (4). This is achieved by generating extra “dummy” friend
requests based on false secrets(θ′, b′). The user uses these false
secrets to transform the real location of her request, inserts the ob-
tained dummy points along with the legitimate transformed points
obtained by applying the user’s friend secrets and routes them via
the proxies. The colluding proxies may then attempt to solvethe
equation without knowing which requests are real and which ones
are fake. But since the solution to the equation is then basedon
dummy random points, the attacker willnot have the right secrets
for the user’s friends.

Let the minimum number of such noisy points ben′, and the
user asks for(n+n′) friends’ data inm location queries. Then we
should havemin{k · (1 + n

m
), n} = 1 + n+n′

m
, from which we

getn′ = min{(k − 1) · (m+ n),mn−m− n}. For each of the
m locations, theminimumamount of noise that the user needs to
generate on an average is

n′

m
= min{(k − 1) · (1 +

n

m
), n− 1−

n

m
} (7)

Note that1) the overhead due to noise is proportional to the
amount of collusion in the system when the number of colluding
proxiesk is ≤ mn

m+n
. The amount of noise does not increase be-

yondn − 1 − n
m

whenk > mn
m+n

, as all the requests sent out by
a user are learned by the attackers by now. And2) the noise added
above is an average value. We just need to ensure that the noise
added overm points averages to this value – the noise does not
have to be the same in each query. We show in our evaluation that
the overhead due to the noise is very low.

Finally, we stress that even if noise is not added, the worst that
the attacker can do is to break a single user’s location privacy – but
not the location privacy of all her friends. Moreover, even if users
do not generate enough noisy friend requests as the number speci-
fied in Formula (7), and the attackers or malicious proxies are able
to solve Equation (1), it is still not easy for them to build the cor-
rect association between a real friend and a pair of secrets obtained
from the solution, since there are

(

n+n′

n

)

· n! possible association-
s. Hence even in this worst case, the user’s friends’ secretsare still
kept secure. In this case, only the user’s current location is revealed
to the attacker (from the solution to the Equation (1)), hence only
this user’s location privacy is violated. This privacy is also not vi-
olated arbitrarily long, but only so long as the proxies continue to
collude and associate the requests coming to the index server to the
same victim user.

5.3 Other Attacks and Defenses
We now discuss other possible attacks the servers can perform, in

addition to the attacks described before, and our proposed solutions
to ward off these attacks.

Query linking attacks by the index server.The index server might
attempt to link the queries from the same user using some query
“fingerprints.” For instance, the server might guess that all queries
with 199 points (one per friend) belong to the same user – assuming
that it is uncommon to have many users that use the same proxy
having 199 friends. Fortunately, our extension of adding noise to
the requests helps here. Since the number of noisy points added
varies per query, the server cannot perform such attacks.
Fingerprinting using cookies in incoming connections.
We assume that the proxies or the clients scrub the outgoing con-
nections, using tools such as Privoxy [2], to remove all user-identification
information from the connection. This assumption is commonto
all anonymity-preserving systems, including Tor [9]. Thussuch
attacks do not work on LocX.
Localization-based attacks.Since the users talk to the data server
directly, the data server can attempt to learn users’ location based
on their IPs. Fortunately, the location obtained from thesetech-
nologies is at the granularity of tens of miles [44]. In addition, we
can use several existing techniques to prevent this attack.Access-
ing data server via proxies helps, but this reduces the efficiency of
the system. Finally, some recently proposed [13] mechanisms can
also help us in reducing the localization accuracy of the server and
even defeating these attacks.
Timing attacks by the index server.The index server may attempt
to link different requests that arrive at the server to the same us-
er or query using timing information. For example, the server can
say that all requests for L2Is and I2Ds within a second belongto
the same user, and hence all such L2Is and I2Ds are related. For-
tunately, we can leverage prior work on location privacy here [29,
18, 34, 10, 12]. By using techniques such as batching requests and
randomly delaying requests to the server at the proxies or atthe
clients, and by combining them with noisy queries describedbe-
fore, we can deter these attacks. Moreover, these attacks are inef-
fective themselves if the LBSA service has a large active user base,
which is typical in today’s successful LBSAs such as FourSquare.
Attacks using stolen or compromised user devices.An attacker
with access to a user’s secrets (obtained by compromising orsteal-
ing her device), obviously, has access to all her data and herfriends’
data. To contain the impact of such compromises we can leverage
existing techniques. Fore.g., we could partition friends into differ-
ent groups and use attribute-based encryption [4, 15] to allow only
group members to decrypt the data. Periodically refreshinga user’s
secrets, as discussed next, can further help in these cases.
Periodically refreshing a user’s secrets.So far we described LocX
as if only one pair of secrets(θ, b) is used by a user to protect her
data. But we can easily extend this to allow users to use time-
varying secrets. Fore.g., Alice may use(θ, b) to protect data gen-
erated in the year 2010, and(θ′, b′) (generated using a pseudoran-
dom number generator) to protect 2011’s data. This time period for
secret refresh can also be configured by the user. The user could
then share new secrets with friends, and the friends could use the
appropriate secret(s) to query for the user’s data.
Attacks using external information.Attackers can mount sever-
al attacks on targeted users using information learned about them
from outside our system. Fore.g., Bob, an employee of a restau-
rant, might know Alice’s home address and know that it takes 10
minutes for her to come from her home to the restaurant. Knowing
two locations of Alice (home and restaurant) and the time window
when transformations of these locations are stored on the server,
Bob might collude with the server to try to figure out Alice’s se-
crets.

Measures LocX L2D
Client Processing Time (ms) 0.0055 0.0
Query Completion Time (ms) 0.013 0.0045

Data Communication Size (Bytes) 140.1 84.5

Table 2: Measures of Location Puts

While defending against all such attacks based on external infor-
mation is extremely challenging, and is outside the scope ofthis
paper, we offer our intuitions as to why such attacks are especial-
ly difficult against LocX. First, this attack can work only onthose
users whose information is precisely known by the attacker.The
number of such users is usually very limited. Second, our defenses
against timing attacks can significantly increase the time window
the attacker has to process. And the attacker will have to process
all the points uploaded to the system in that time window, which
can be extremely large in a system with many users. Third, even
if successful, the attacker will have to keep running this attack due
to time-varying secrets of the users. Finally, just learning a user’s
secret does not compromise her privacy. The attacker still has to
break the unlinkability of every (future) request sent by this user
(by colluding with proxies). That is, even when the secrets of a us-
er (θ, b) are broken, the attacker still needs to link future requests
to that user.
Map matching attacks.The attacker might attempt to connect the
points in the virtual coordinate space, to construct paths taken by
a user, and then to map them back to the paths in the real-world
map. Doing so would enable the attacker to identify real-world
paths traversed by a user. However, such attacks are impractical
for the attacker to mount due to the following reasons. First, isolat-
ing the points that belong to a given user is very hard. The virtual
coordinate space is shared, and all users’ points overlap inthis s-
pace. As a result, a set of points in a region of the space can lead
to an extremely large number of total paths. Due to unlinkability of
points, the attacker would not know which path among these isthe
path taken by the user. Second, due to our defenses against timing
attacks, the points in a path may not appear in the right orderat
the server. So even if the user’s points are isolated by the attacker,
they will lead to a wrong path fingerprint. Finally, mapping apath
fingerprint to the right path in the world’s map is not trivial.
Denial-of-Service attacks by malicious users.To prevent DoS at-
tacks on the server behind the cloak of anonymity, we can leverage
existing research [38], wheretokensare used to verify that theputs
(store operations) are from legitimate users and hence rate-limit
malicious puts.
Summary.To break a user’s location privacy in LocX, the attackers
need to surpass two steps: a) learn the secrets of the user, every time
she changes it, and b) correctly identify every request sentby the
user. From our analysis above, doing so is very expensive forthe
attacker, and hence, LocX significantly improves location privacy
over prior work.

6. EVALUATION
Our evaluation focuses on answering the following key ques-

tions. 1) What is the overhead of aput in LocX? 2) What is the
overhead of retrieving point and nearest-neighbor queriesin LocX
compared to today’s systems? And how does it vary when more
data is retrieved per query?3) How does the overhead vary when
more noise is added to each query?4) How does the overhead from
L2Is and I2Ds change when larger size of data is stored perput? 5)
Finally, how does LocX perform on mobile devices?

 35

 40

 45

 50

 55

 60

 65

 70

 75

20 40 60 80 100

Q
ue

ry
 C

om
pl

et
io

n
T

im
e

(m
s)

of Data Puts Per Client

LocX
LocX-no-tag

L2D

(a) Query Completion Time

 0

 1

 2

 3

 4

 5

 6

20 40 60 80 100

C
lie

nt
 P

ro
ce

ss
in

g
T

im
e

(m
s)

of Data Puts Per Client

LocX-no-tag
LocX
L2D

(b) Client Processing Time

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

20 40 60 80 100

D
at

a
C

om
m

un
ic

at
io

n
S

iz
e

(K
B

)

of Data Puts Per Client

LocX
LocX-no-tag

L2D

(c) Data Communication Size

Figure 4: The various costs of running point queries, while varying the number of location puts in synthetic data.

 10

 100

 1000

 10000

20 40 60 80 100

Q
ue

ry
 C

om
pl

et
io

n
T

im
e

(m
s)

of Data Puts Per Client

LocX-no-tag
LocX
L2D

(a) Query Completion Time

 0.1

 1

 10

 100

 1000

 10000

20 40 60 80 100

C
lie

nt
 P

ro
ce

ss
in

g
T

im
e

(m
s)

of Data Puts Per Client

LocX-no-tag
LocX
L2D

(b) Client Processing Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

20 40 60 80 100

D
at

a
C

om
m

un
ic

at
io

n
S

iz
e

(K
B

)

of Data Puts Per Client

LocX
LocX-no-tag

L2D

(c) Data Communication Size

Figure 5: The various costs of running nearest-neighbor queries, while varying the number of location puts in synthetic data.

 0

 50

 100

 150

 200

 250

10080604020#
of

 E
nt

rie
s

P
er

 Q
ue

ry
 R

es
po

ns
e

of Location Data Puts Per Client

Nearest Neighbor Queries
Point Queries

Figure 3: Effect of varying the number of puts on query response sizes
in synthetic data.

6.1 Implementation and Setup
We implemented LocX in Java. We used AES with 128 bits keys

for encryption and decryption. The implementation of nearest-
neighbor queries was based on the R∗-tree package from HKUST [17].
We configured each user to cache 1000 random number tags from
each of her friends.

We measured LocX’s performance on both desktop computers
and on Motorola Droid mobile phones. The index and data servers
were run on the same Dell PowerEdge server equipped with Quad
Core Xeon L5410 2.33Ghz CPU, 24GB RAM and 64 bit Federal
Core 8 kernels. Clients were run on another machine with the same
configuration. We used the same code base for both desktop and
mobile tests. But we had to modify the code slightly for Android
OS to deal with some missing libraries. In addition, we had tomake
certain optimizations to limit the memory usage to under 16MBs
for LocX process in Android.
Workload. We used both synthetic and real-world LBSA workload
datasets for our tests. The synthetic dataset with default parameters
was created following empirical observation on popular geo-social
sites such as FourSquare: First, we partitioned a two dimension-
al space into 100 cells, each of which is a city. In each city, we

randomly generated 100 pairs of location coordinates. Thenwe as-
signed 1000 resident clients to each city. Each client had 100–1000
friends following a power law distribution withα = 1.5 [32], a-
mong whom 70% friends were from the same city as the client and
30% were from other cities. Each client did 20 location puts,a-
mong which 70% puts were at locations in the client’s resident city
and 30% were at locations in other cities. Each location put mes-
sage was randomly generated consisting of maximum 140 bytes,
following the tweets in Twitter. As a result, each city had 20K loca-
tion puts on average, and the total number of location puts was 2M.
After all the puts, each client submits a point query and a nearest-
neighbor query with 70% probability of being within the client’s
resident city and 30% probability of being in other cities. Each
nearest-neighbor query requests for 10 nearest locations (we only
evaluate nearest-neighbor queries, as we found in our preliminary
tests that the performance of circular range queries to be similar to
that of nearest neighbor queries). We set noise to a fixed 10 points
per query for now, and study the impact of noise later.

We crawledwww.brightkite.com for real LBSA traces. We
crawled using BrightKite’s public APIs, at a rate slower than the
rate specified in the API Terms of Use. Due to the slow rate, we dis-
tributed the crawling tasks to 20 machines, and crawled for about
a month starting from August 20th, 2010. Starting with an ini-
tial seed of users, we crawled each user’s profile, friends list, and
check-in data. The crawled data in total had 25,314 users, 123,438
unique GPS coordinates with 259,775 check-ins by users. While
using this data for experiments, we treated each check-in asa loca-
tion put, and let each user query from one of her check-in location-
s. Since check-in messages were not available for us to crawl, we
generated random messages of varying sizes.
Experiment setup.To evaluate the overhead that our approach is
adding to today’s LBSAs which do not provide privacy, we com-
pared LocX with random tags, which we callLocX, with an imple-
mentation of a today’s service that has social network on theserver
and directly maps a location to its data, which we callL2D. In L2D,
data is in plain-text, thus no encryption nor decryption is needed.
We measured the communication costs between clients and servers,

www.brightkite.com

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

20 40 60 80 100

D
at

a
C

om
m

un
ic

at
io

n
S

iz
e

(K
B

)

of Data Puts Per Client

I2D
L2I

L2I-no-tag

(a) Point Queries

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

20 40 60 80 100

D
at

a
C

om
m

un
ic

at
io

n
S

iz
e

(K
B

)

of Data Puts Per Client

L2I
L2I-no-tag

I2D

(b) Nearest Neighbor Queries

Figure 6: Breaking down the communication overhead from L2Is and I2Ds, when the number of puts is increased.

the client processing time and the query completion time (includ-
ing network latency). Note that client processing time is a good
indication for battery life. The more the processing, the shorter the
battery life. We found in our experiments that server processing
time is negligible compared to the client processing time, so we do
not report it. To evaluate the performance trade-offs of thedesign
choices we have discussed, we also compared LocX with random
tags against LocX with no tags, which we callLocX-no-tag. Since
these two different designs result in differences in processing L2Is,
we specifically measured the communication cost between clients
and the index server for L2I and the communication cost between
clients and the data server for I2D.

6.2 Experimental Results
We report results from our tests on desktop computers first, and

present experimental results on mobiles later.
Performance of a location put.We present the cost of a location
put in synthetic dataset in Table 2. A put in today’s system (L2D)
costs no processing time on clients as there is no crypto operation.
But we can see that a put in LocX with encryption and additional
index data only slightly increases the overhead, which difference is
not observable by users. The average put message size was 84.5 in
L2D, but it was increased to 140 in LocX.
Query performance with increase in the # of puts.Next we com-
pared the performance of LocX (with random tags), LocX with no
tags, and L2D for point queries and nearest-neighbor queries. On
synthetic dataset, we varied the number of location puts perclien-
t from 20 to 100, while fixing the amount of noise in a query to
default 10 and message size to default maximum 140. As loca-
tion puts per client increases, the total data size increases, thus
more data needs to be processed and the sizes of query answers
increase. Figure 3 shows the increase in query answer sizes.Obvi-
ously, the response to a nearest-neighbor query contains more data
than a point query (by more than 6 times).

From Figures 4(a) and 5(a), we see that processing a query in
LocX takes no more than twice the time for processing the query in
L2D, in a LAN setting, and the total time is much less than 1 sec-
ond. The difference is due to the client processing time, which is
shown in Figures 4(b) and 5(b). This processing time is consumed
in LocX for decrypting indices and location messages. But notice
that with increase in data size, the processing time in LocX increas-
es very slowly, which suggests that LocX is scalable. The commu-
nication cost of LocX is no more than 3 times the communication
cost of L2D for point queries and no more than 7 times the com-
munication cost of L2D for nearest-neighbor queries, as shown in
Figures 4(c) and 5(c) respectively. We also notice that LocXwith
no tags consumes more processing than LocX with tags; no tags

spent around 10 seconds for processing a nearest-neighbor query
in Figures 5(a) and 5(b), where the majority of time was spentin
trying different friend keys for decrypting each L2I. This clearly
shows that tags are necessary to boost the performance of LocX,
with only a slight more communication overhead.
Individual overhead from L2I and I2D.Now we look into the
overhead from L2I and I2D separately. Overhead from L2I in the
setting where no tags are attached is referred to as ‘L2I-no-tag’.
We see in Figure 6(a) that as the number of puts increases, more
data is returned as answers, and the communication cost of I2D in-
creases more than that of L2I for point queries. But in the case of
nearest-neighbor queries, since a lot of data needs to be filtered in
L2I phase, more data is transmitted for L2Is. In contrast, only qual-
ified answers are transmitted in I2D phase. As a result, the commu-
nication cost of L2I is more than that of I2D (see Figure 6(b)).
Varying put message sizes.We next increased the put message size
from 140 to 700, while fixing the other parameters (20 puts per
client). We expected only the communication cost of I2D to in-
crease but the cost of L2I to remain the same in this test. Figure 7
confirms this for point queries, and we observed similar behavior
for nearest-neighbor queries (no graph shown due to space con-
straints). Clearly, as the message size increases, larger sizes of data
is transmitted as answers, thus the cost of I2D gradually dominates
that of L2I.
Varying the amount of noise in queries.We next varied the amount
of noise added per query from 10 to 50, while setting the other
parameters to default values. Figure 8 shows that increasing the
noise only increases the communication overhead from L2I, and
this increase in overhead is quite small. There is no increase in I2D
overhead due to noise. Also note that noise does not increasethe
computation time on client devices, as clients can reject responses
to noisy points and not even attempt to decrypt them. The trends
in nearest-neighbor queries are similar, but we leave out the graph
due to lack of space.
Experiments with real-world BrightKite datasets.Since we were
not able to crawl the messages in check-ins, we generated messages
of size varying from 140 to 700 bytes, and then used the check-in
locations to put this data on the server. We set the noise in the
queries to default value 10. This real-world data had a lot fewer
check-ins compared to our synthetic data, and hence the number of
results returned in query responses was also smaller. The average
answer size for a point query and a nearest-neighbor query were
around 0.92 and 36.5 respectively. We learned from this testthat
the performance trend of LocX with real data is similar to that on
synthetic data. Figure 9 shows that LocX does not incur too much
processing overhead on real data either. Increasing the message
size increases the processing time only slightly due to decryption

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 140 280 420 560 700

D
at

a
C

om
m

un
ic

at
io

n
S

iz
e

(K
B

)

Raw Data Size

I2D
L2I

L2I-no-tag

Figure 7: Increase in the data (I2D) transfer size when the message
size per location data put is increased in synthetic data.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 10 20 30 40 50

D
at

a
C

om
m

un
ic

at
io

n
S

iz
e

(K
B

)

of Noisy Requests Per Query

L2I
L2I-no-tag

I2D

Figure 8: Increase in the L2I communication overhead due to increase
in the noise, for point queries in synthetic data.

of larger sized data. Due to similar trends, we leave out the other
graphs on point and nearest-neighbor queries.

Next we used this real-world data to get a realistic estimateof
the amount of noise added by LocX according to Formula 7. We
setn to 7.17, the average # of friends in the BrightKite dataset, and
m to 10.95, the average # of check-ins per user. The number of
noisy points a user with thisn andm has to add while using LocX
with the increase in the number of colluding proxiesk is shown
in figure 10. The noise increases up to a certain value ofk and
then remains constant, as expected (explained in Section 5.2). In
addition, we see that even the maximum noise added (5.53) is less
than the value ofn, which we think is reasonable.
Overhead of running LocX on a Motorola Droid.We ported LocX
to Android, and ran the experiments under synthetic data on Mo-
torola Droids. We observed similar trends in our tests as theresults
reported before (in Figures 4 and 5), so we do not present new fig-
ures. The key difference was that the client processing timeis much
slower on Droids due to low resources. In the default settingwith
20 location puts per client and one point query per client (described
in Section 6.1), the average client processing time on Droids was
about 10 times slower than on the Dell server. But even after this
slow down, the query completion time on Droids were below 0.2
seconds for point queries, and all nearest-neighbor queries were
answered in below a second. We measured the power consumption
on Droids and noticed that the phone can process about 40K point
queries before the battery was completely consumed.
Summary.We find in our evaluation that LocX can run on today’s
mobile devices with low computation and communication costand
still provide strong location privacy.

7. BUILDING APPLICATIONS USING LOCX

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 140 280 420 560 700

C
lie

nt
 P

ro
ce

ss
in

g
T

im
e

(m
s)

Raw Data Size

LocX-no-tag
LocX
L2D

Figure 9: The increase in the processing overhead for point queries in
BriteKite dataset, for increase in put message size.

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8 9 10

of

 N
oi

se
 N

ee
de

d
P

er
 Q

ue
ry

of Colluding Proxies

noise

Figure 10: Ideal amount of noise necessary to protect users in
BrightKite, with increase in the number of malicious proxies.

Here we sketch how to build LBSAs using LocX. We demon-
strate the usage of our APIs by building three applications.In to-
day’s systems that provide these services, the data is entrusted to
the server in plain-text, which performs the computations in the ap-
plication logic. But since we do not trust the server in LocX,the
application logic that computes on the plain-text locationdata is
moved to the client.
Location-based reminders.This application users place reminders
for friends at specific locations (fore.g. reminder to buy milk n-
ear a grocery store), and when the friends are at that location, an
alert is generated on their device. To build this application in our
model, a user bundles all the details about the reminder, such as
the reminder text and time, encrypts the whole bundle and gener-
ates a corresponding I2D. Then the user decides the locationof the
reminder, transforms it based on the friend’s secret and generates
a corresponding L2I. These pieces are stored on the servers with
a putL2I and aputI2D calls. Each user periodically runs a neigh-
borhood query for data from her friends. First the user takesher
current location, transforms it according to her secret, runs a neigh-
borhood query, and fetches the L2Is and I2Ds, if any, using the
getL2IandgetI2Dcalls. Then the device decrypts and reminds the
user as appropriate.
Location-based recommendations.This application aims to rec-
ommend nearby sites (restaurants, shopping malls, etc.) tousers
based on the reviews given to these sites by their friends. Inour
model, this application is built as follows. A user stores her re-
views by generating a bundle containing all the informationrelated
to the review, such as the review text, rating, etc., encrypts the bun-
dle using her symmetric key, and generates a L2I and I2D usingthe
data. The locations of the sites are transformed, of course,while
generating the L2Is. This information is then stored on the servers
using theputL2I andputI2D calls. The application on each user’s

mobile downloads the data from her friends at the user’s curren-
t location by running a neighborhood query. Then it decryptsthe
returned data, and plots the recommended sites on a map in thede-
vice. Thus, the application operates without even revealing users’
location to the servers.
Friend locator. This application alerts a user whenever a friend is
in the vicinity. When this application is built on LocX, users check-
in at their current location periodically; then users checkfor friends
in the vicinity by running a neighborhood query around theircur-
rent location and decrypting check-ins from friends in recent times
(e.g. last ten minutes). Despite using neighbor query, this approach
to building friend locator is still efficient. Even a hotspot(e.g. a
concert) in the real coordinate space is usuallynot a hotspotin the
transformed coordinate space due to user-specific locationtrans-
formations, and thus limits the amount of (irrelevant) datareceived
and processed by a user.

8. CONCLUSIONS
This paper describes the design, prototype implementation, and

evaluation of LocX, a system for building location-based social ap-
plications (LBSAs) while preserving user location privacy. LocX
provides location privacy for users without injecting uncertainty or
errors into the system, and does not rely on any trusted servers or
components.

LocX takes a novel approach to provide location privacy while
maintaining overall system efficiency, by leveraging the social data-
sharing property of the target applications. In LocX, usersefficient-
ly transformall their locations shared with the server and encrypt
all location data stored on the server using inexpensive symmetric
keys. Only friends with the right keys can query and decrypt aus-
er’s data. We introduce several mechanisms to achieve both privacy
and efficiency, and analyze their privacy properties.

Using evaluation based on both synthetic and real-world LBSA
traces, we find that LocX adds little computational and communi-
cation overhead to existing systems. Our LocX prototype runs ef-
ficiently even on resource constrained mobile phones. Overall, we
believe that LocX takes a big step towards making location privacy
practical for a large class of emerging geo-social applications.

9. REFERENCES[1] http://www.scvngr.com.
[2] Privoxy web proxy.http://www.privoxy.org/.
[3] A NANTHANARAYANAN , G., PADMANABHAN , V. N., RAVINDRANATH , L.,

AND THEKKATH , C. A. Combine: leveraging the power of wireless peers
through collaborative downloading. InProc. of MobiSys(2007).

[4] BADEN, R., BENDER, A., SPRING, N., BHATTACHARJEE, B., AND STARIN ,
D. Persona: An online social network with user defined privacy. In Proc. of
SIGCOMM(2009).

[5] BELLARE, M., CANETTI , R., AND KRAWCZYK , H. Keying hash functions for
message authentication. InCRYPTOâ̆AŹ96.

[6] BERESFORD, A., AND STAJANO, F. Mix zones: User privacy in
location-aware services. InProc. of Pervasive Computing(2004).

[7] CHOW, C.-Y., AND MOKBEL, M. F. Enabling private continuous queries for
revealed user locations. InSSTD(2007), pp. 258–275.

[8] DAILY NEWS. How cell phone helped cops nail key murder suspect secret
’pings’ that gave bouncer away, Mar. 2006.

[9] D INGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor: The
second-generation onion router. InUSENIX Security Symposium(2004).

[10] GEDIK , B., AND L IU , L. Location privacy in mobile systems: A personalized
anonymization model. InProc. of ICDCS(2005).

[11] GHINITA , G., KALNIS, P., KHOSHGOZARAN, A., SHAHABI , C., AND TAN ,
K.-L. Private queries in location based services: anonymizers are not
necessary. InSIGMOD Conference(2008).

[12] GHINITA , G., KALNIS, P.,AND SKIADOPOULOS, S. Prive: anonymous
location-based queries in distributed mobile systems. InProc. of WWW(2007).

[13] GILL , P., GANJALI , Y., WONG, B., AND L IE, D. Dude where’s that IP?
Circumventing Measurement-based IP Geolocation. InUSENIX Security
Symposium(2010).

[14] GOLLE, P.,AND PARTRIDGE, K. On the anonymity of home/work location
pairs. InProc. of Pervasive(2009).

[15] GOYAL , V., PANDEY, O., SAHAI , A., AND WATERS, B. Attribute-based
encryption for fine-grained access control of encrypted data. InProc. of CCS
(2006), ACM.

[16] GRACE, F. Stalker Victims Should Check For GPS, Feb. 2003.
www.cbsnews.com.

[17] GROUP, D. P. R-tree java implementation.
http://www.rtreeportal.org/code/Rstar-java.zip.

[18] GRUTESER, M., AND GRUNWALD , D. Anonymous usage of location-based
services through spatial and temporal cloaking. InProc. of Mobisys(2003).

[19] GUTTMAN , A. R-trees: a dynamic index structure for spatial searching. In
Proc. of SIGMOD(1984).

[20] HENDRICKSON, M. The state of location-based social networking, Sept. 2008.
[21] HOH, B., GRUTESER, M., XIONG, H., AND ALRABADY, A. Enhancing

security and privacy in traffic-monitoring systems. InIEEE Pervasive
Computing Magazine(2006).

[22] HOH, B., GRUTESER, M., XIONG, H., AND ALRABADY, A. Preserving
privacy in gps traces via uncertainty-aware path cloaking.In Proc. of CCS
(2007).

[23] HU, H., XU, J., REN, C., AND CHOI, B. Processing private queries over
untrusted data cloud through privacy homomorphism. InICDE (2011).

[24] JIANG , T., WANG, H. J.,AND HU, Y.-C. Preserving location privacy in
wireless lans. InProc. of MobiSys(2007).

[25] KALNIS, P., GHINITA , G., MOURATIDIS, K., AND PAPADIAS, D. Preventing
location-based identity inference in anonymous spatial queries.TKDE (2007).

[26] KHOSHGOZARAN, A., AND SHAHABI , C. Blind evaluation of nearest
neighbor queries using space transformation to preserve location privacy. In
Proc. of SSTD(2007).

[27] KRUMM, J. Inference attacks on location tracks. InProc. of Pervasive(2007).
[28] L IN , D., BERTINO, E., CHENG, R., AND PRABHAKAR , S. Position

transformation: a location privacy protection method for moving objects. In
Proc. of Security and Privacy in GIS and LBS(2008).

[29] MANWEILER, J., SCUDELLARI , R., AND COX, L. P. Smile: Encounter-based
trust for mobile social services. InProc. of CCS(2009).

[30] MASCETTI, S., BETTINI , C., AND FRENI, D. Longitude: Centralized
privacy-preserving computation of users’ proximity. InProc. of SDM(2009).

[31] MASCETTI, S., BETTINI , C., FRENI, D., WANG, X. S., AND JAJODIA, S.
Privacy-aware proximity based services. InProc. of MDM (2009).

[32] M ISLOVE, A., MARCON, M., GUMMADI , K. P., DRUSCHEL, P.,AND

BHATTACHARJEE, B. Measurement and analysis of online social networks. In
Proc. of IMC (Oct 2007).

[33] MOHAN, P., PADMANABHAN , V. N., AND RAMJEE, R. Nericell: rich
monitoring of road and traffic conditions using mobile smartphones. InProc. of
SenSys(2008).

[34] MOKBEL, M. F., CHOW, C.-Y., AND AREF, W. G. The new casper: A
privacy-aware location-based database server. InICDE (2007).

[35] MOTANI, M., SRINIVASAN , V., AND NUGGEHALLI , P. S. Peoplenet:
engineering a wireless virtual social network. InProc. of MobiCom(2005).

[36] NARAYANAN , A., THIAGARAJAN , N., LAKHANI , M., HAMBURG, M., AND

BONEH, D. Location privacy via private proximity testing. InProc. of NDSS
(2011).

[37] PAPADOPOULOS, S., BAKIRAS, S.,AND PAPADIAS, D. Nearest neighbor
search with strong location privacy.PVLDB(2010).

[38] PUTTASWAMY, K. P. N., BHAGWAN , R., AND PADMANABHAN , V. N.
Anonygator: Anonymity and Integrity Preserving Data Aggregation. InProc. of
Middleware(2010).

[39] RISTENPART, T., MAGANIS, G., KRISHNAMURTHY, A., AND KOHNO, T.
Privacy-preserving location tracking of lost or stolen devices: Cryptographic
techniques and replacing trusted third parties with DHTs. In Proc. of USENIX
Security Symposium(2008).

[40] SCHILIT, B., HONG, J.,AND GRUTESER, M. Wireless location privacy
protection.Computer 36, 12 (2003), 135–137.

[41] SIEGLER, M. Foodspotting is a location-based game that will make your mouth
water.http://techcrunch.com/2010/03/04/foodspotting/.

[42] TURGAY, E. O., PEDERSEN, T. B., SAYGIN , Y., SAVAS, E., AND LEVI, A.
Disclosure risks of distance preserving data transformations. InProc. of
SSDBM(2008).

[43] Police: Thieves robbed homes based on facebook, socialmedia sites. WMUR
News, September 2010.
http://www.wmur.com/r/24943582/detail.html.

[44] WONG, B., STOYANOV, I., AND SIRER, E. Octant: A comprehensive
framework for the geolocalization of Internet hosts. InProc. of NSDI(2007).

[45] WONG, W. K., CHEUNG, D. W.-L., KAO, B., AND MAMOULIS , N. Secure
kNN computation on encrypted databases. InSIGMOD Conference(2009).

[46] Y IU , M. L., JENSEN, C. S., HUANG, X., AND LU, H. Spacetwist: Managing
the trade-offs among location privacy, query performance,and query accuracy
in mobile services. InProc. of ICDE(2008).

[47] ZHONG, G., GOLDBERG, I., AND HENGARTNER, U. Louis, lester and pierre:
Three protocols for location privacy. InProc. of PET(2007).

http://www.scvngr.com
http://www.privoxy.org/
www.cbsnews.com
http://www.rtreeportal.org/code/Rstar-java.zip
http://techcrunch.com/2010/03/04/foodspotting/
http://www.wmur.com/r/24943582/detail.html

	Introduction
	Scenarios and Requirements
	Geo-social Application Scenarios
	System Requirements

	Related Work
	System Design
	Terminology and Attacker Model
	A Basic Design
	Overview of LocX
	Privacy Preserving Data Storage
	Privacy Preserving Data Retrieval

	Privacy Analysis
	Intuition Behind Privacy in LocX
	Privacy During Location Data Access
	Other Attacks and Defenses

	Evaluation
	Implementation and Setup
	Experimental Results

	Building Applications Using LocX
	Conclusions
	References

