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ABSTRACT

Using geo-social applications, such as FourSquare, mdlas peo-
ple interact with their surroundings through their frieraogl their
recommendations. Without adequate privacy protectiomelier,
these systems can be easily misused,,to track users or target
them for home invasion. In this paper, we introdu@eX, a nov-
el alternative that provides significantly-improved ldcatprivacy
without adding uncertainty into query results or relyingsirong
assumptions about server security. Our key insight is tdyagg
cure user-specific, distance-preservaggprdinate transformations
to all location data shared with the server. The friends oferu
share this user’'s secrets so they can apply the same tranasfor
tion. This allows all location queries to be evaluated atityeby
the server, but our privacy mechanisms guarantee thatrseave
unable to see or infer the actual location data from the foamsd
data or from the data access. We show that LocX provides-priva
cy even against a powerful adversary model, and we use ppatot
measurements to show that it provides privacy with verigljper-
formance overhead, making it suitable for today’s mobileakss.

1. INTRODUCTION

With billions in downloads and annual revenue, smartphgne a
plications offered by Apple iTunes and Android are quickbcbm-
ing the dominant computing platform for today’s user aptiians.
Within these markets, a new wave géo-socialapplications are
fully exploiting GPS location services to provide a “sotiilter-
face to the physical world. Examples of popular social aapli
tions include social rendezvous [35], local friend recomdaions
for dining and shoppind [20,83], as well as collaborativenmek
services and gameSl[3.]41]. The explosive popularity of feobi
social networks such as SCVNGR [1] and FourSquare (3 million
new users in 1 year) likely indicate that in the future, sbréa-
ommendations will be our primary source of information atfmur
surroundings.

Unfortunately, this new functionality comes with signifitly
increased risks to personal privacy. Geo-social apptinatoperate
on fine-grain, time-stamped location information. For eatrser-
vices with minimal privacy mechanisms, this data can be tsad
fer a user’s detailed activities, or to track and predictiber’s daily
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movements. In fact, there are numerous real world examphesav
the unauthorized use of location information has been raifizr
economic gain[40], physical stalking [16], and to gathealesv-
idence [8]. Even more disturbing, it seems that less thanekwe
after Facebook turned on their popular “Places” featuretrfmrk-
ing users’ locations, such location data was already usekdieyes
to plan home invasions [43]. Clearly, mobile social netvgodt
tomorrow require stronger privacy properties than the ejpeall
policies available today.

Existing systems have mainly taken three approaches twimpr
ing user privacy in geo-social systems: (a) introducingeutainty
or error into location data[18,84,110], (b) relying on teterver-
s or intermediaries to apply anonymization to user idesgitind
private data[[24. 34, 25], and (c) relying on heavy-weiglypto-
graphic or PIR techniques11,137.136] 47]. None of them, vewe
er, have proven successful on current application platorfiech-
niques using the first approach fall short because theyregoih
users and application providers to introduce uncertainty their
data, which degrades the quality of application resultsrnetd to
the user. In this approach, there is a fundamental tradetfiden
the amount of error introduced into the time or location dioma
and the amount of privacy granted to the user. Users didfike t
loss of accuracy in results, and application providers teavatu-
ral disincentive to hide user data from themselves, whicluces
their ability to monetize the data. The second approacksein
the trusted proxies or servers in the system to protect usercy.
This is a risky assumption, since private data can be expbged
either software bugs and configuration errors at the trusteders
or by malicious administrators. Finally, relying on heawvgight
cryptographic mechanisms to obtain provable privacy quees
have been too expensive to be deployed on mobile devices.

The challenge, then, is to design mechanisms that effigiprak
tect user privacy without sacrificing the accuracy of theeys or
making strong assumptions about the security or trustivess of
the application servers. More specifically, we target gemas ap-
plications, and assume that servers (and any intermes)ada be
compromised and, therefore, are untrusted. To limit misose
goal is to limit accessibility of location information fromglobal
visibility to a user’s social circle. We identify two mainggs of
queries necessary to support the functionality of thesesgo@l
applications: point queries and nearest-neighlddN) queries.
Point queries query for location dagéa particular point, whereas
kNN queries query fok nearest datarounda given location coor-
dinate (or up to a certain radius). Our goal is to support lojo#ry
types in an efficient fashion, suitable for today’s mobilgides.

To address this challenge, in this paper, we propageX (short
for location to index mapping), a novel approach to achiguis-
er privacy while maintaining full accuracy in LBSAs. Our igist



is that many services do not need to resolve distance-bassity
between arbitrary pairs of users, but only between frientdsésted

in each other’s locations and data. Thus, we can partitication
data based on users’ social groups, and then perfansforma-
tionson the location coordinates before storing them on untduste
servers. A user knows the transformation keys of all henitie
s, allowing her to transform her query into the virtual capade
system that her friends use. Our coordinate transformatiwe-
serve distance metrics, allowing an application serveretdopm
both point and nearest-neighbor queries correctly on foamed
data. However, the transformationdgecure in that transformed
values cannot be easily associated with real world locatiwith-
out asecref which is only available to the members of the social
group. Finally, transformations are efficient, in that tiegur min-
imal overhead on the LBSAs. This makes the applicationg buil
on LocX lightweight and suitable for running on today’s mebi
devices.

2. SCENARIOS AND REQUIREMENTS

Here we describe several scenarios we target in the context o
emerging geo-social applications that involve heavy adgon of
users with their friends. We use these scenarios to idetftékey
requirements of a geo-social location privacy preservirggesn.

2.1 Geo-social Application Scenarios

The scenarios above bring out the following key requirement
from an ideal location-privacy service.

e Strong location privacy: The servers processing the dath (a
the administrators of these servers) should not be able to
learn the history of locations that a user has visited.

e Location and user unlinkability: The servers hosting thre se
vices should not be able to tell if two records belong to the
same user, or if a given record belongs to a given user, or if a
given record corresponds to a certain real-world location.

e Location data privacy: The servers should not be able to view
the content of data stored at a location.

e Flexibility to support point, circular range, and nearesighbor
queries on location data.

e Efficiency in terms of computation, bandwidth, and latency,
to operate on mobile devices.

3. RELATED WORK

Prior work on privacy in general location-based servicesg8E).
There are mainly three categories of proposals on proviltiog-
tion privacy in general LBSs that do not specifically targatial
applications. First is spatial and temporal cloaking [18/830,12,

Scenario 1.Alice and her friends are excited about exploring new [25], wherein approximate location and time is sent to theeser

activities in their city and leveraging the “friend refdfrarogram-
s offered by many local businesses to obtain discounts. eAfic
currently in downtown and is looking to try a new activity ierh
vicinity. But she also wants to try an activity that gives lilee
most discount. The discounts are higher for a user thatsefiere
friends or gets referred by a friend with high referral covks a re-
sult Alice is interested in finding out the businesses recenued
by her friends and the discounts obtained through them jmditér
vicinity. In addition, she is also interested in checkinghiére are
discounts available for her favorite restaurant at a gieeation.
Scenario 2. Alice and her friends are also interested in playing
location-based games and having fun by exploring the cityéu.
So they setup various tasks for friends to perform, such msimg
a few miles at the Gym, swimming certain laps, taking pictuae
a place, or dining at a restaurant. They setup various péants
each task, and give away prizes for the friends with mosttpoin
order for Alice to learn about the tasks available near lerneeds
to query an application to find out all tasks from friends niear
and the points associated with them.

The scenarios above, while fictitious, are not far from tgali
Groupon and LivingSocial are some example companies tleat ar
leading the thriving business of local activities. SCVNGR ¢f-
fers similar services as location-based games. But nonkeskt
services provide any location privacy to users: all thetiocs vis-
ited by the users are known to these services and to its astnaini
tors.

Our goal is to build a system that caters to these scenaribs an
enables users to query for friends’ data based on locatiehite
preserving their location privacy. We want to support: pajnt
queryto query for data associated with a particular locatiorcib)
cular range quenyto query for data associated with all locations in
a certain range (around the user), anderest-neighbor quernyp
query for data associated with locations nearest to a goeatibn.
Finally, while it is also useful to query for data that belerig non-
friends in certain scenarios, we leave such extensionsifard.

2.2 System Requirements

instead of the exact values. The intuition is that this pnév@accu-
rate identification of the locations of the users, and thysraves
privacy. This approach, however, hurts the accuracy anelitiess
of the responses from the server, and most importantlyethes
several simple attacks on these mechanisms([14, 21, 22haf] t
can still break user privacy. Pseudonyms and silent timg&4p
are other mechanisms to achieve cloaking, where in deviee- id
tifiers are changed frequently, and data is not transmitietbhg
periods at regular intervals. This, however, severelyshfuhc-
tionality and disconnects users. The key difference betvieese
approaches and our work is that they rely on trusted inteianied,
or trusted servers, and reveal approximate real-worldilme#o the
servers in plain-text. In LocX, we do not trust any internagitis
or servers. On the positive side, these approaches are reoeead
and, hence, can apply to many location-based servicess WhdX
focuses mainly on the emerging geo-social applications.

The second category is location transformation, which tre@s-
formed location coordinates to preserve user locatiorapyivOne
subtle issue in processing nearest-neighbor queries Wishap-
proach is to accurately find all the real neighbors. Blindea@on
using Hilbert Curves[]26], unfortunately, can only find apgr
mate neighbors. In order to find real neighbors, previouskwor
either keeps the proximity of transformed locations to akto-
cations and incrementally processes nearest-neighboiequét],
or requires trusted third parties to perform location tfarmation
between clients and LBSA servers[28]. In contrast, LocXsduet
trust any third party and the transformed locations are elated
to actual locations. However, our system is still able tedeine
the actual neighbors, and is resistant against attacksl lnaseon-
itoring continuous querie§|[7, 42].

The third category of work relies on Private Information Re-
trieval (PIR) [11] to provide strong location privacy. Itenfor-
mance, although improved by using special hardwares [88}jli
I much worse than all the other approaches, thus it is uncaear
present if this approach can be applied in real LBSs.

Prior work on privacy in geo-social serviceSor certain types of
geo-social services, such as buddy tracking services taftas



friend is nearby, some recent proposals achieve provabéitm
privacy [36/[47] using expensive cryptographic technicgiash as
secure two party computation. In contrast, LocX only usex-n
pensive symmetric encryption and pseudorandom numberaene
tors. The closest work to LocX is Longitude [30.131], whickal
transforms locations coordinates to prevent disclosutiegtgerver-

s. However, in Longitude, the secrets for transformati@raain-
tained between every pair of friends and are updated frestyudm
LocX, the number of secrets that users have to maintain js@re
per user, while LocX can still achieve location and usernkak
bility. In addition, LocX can provide more versatile geceio ser-
vices, such as location based social recommendationsnpdensi,
and others, than just buddy tracking as in the above priokwor
Anonymous communication systemsThese systems, including
Tor [9], provide anonymity to users during network activiPne
might ask, thenwhy using Tor to anonymously route data to LBSA
servers is not sufficientThis approach seems to provide privacy
as the server only sees location data but not the identityeofiser
behind that data. However, recent research has revealehidivay
the identity of the users alone is not sufficient to protecatmn
privacy. Even if Tor is used, it is possible for an attackethvéc-
cess to the location data to violate qurivacy and unlinkability
requirements. For example, using anonymized GPS trackstol

ed by the servers, it has been shown that users’ home and office

locations, and even user identity can be derived [14[ 2122,
LocX defends against such attacks and meets all our reqgeiresm
Systems on untrusted serverfn the context of databases, recent
systems proposed running database queries on encrypi@dsdat
tored on untrusted servers), using heavy-weight homono{@g]

or asymmetric encryption [45] schemes. These approachesidr
able for spatial data outsourcing or data mining scenarteraithe
data is static and is owned by limited number of users. Buyt éne
less suitable for LBSAs, where the data is dynamic and peatson
and thus cannot be encrypted under a single secret key.

In the context of location and social applications, Persf@ija
and Adeonal[39] also relied on encrypting all data stored on u
trusted servers to protect user privacy. Persona focusedivacy
in online social networks, and Adeona focused on privacyen d
vice tracking systems where there is no data sharing amasrg.us
Applying Persona’s mechanisms to LBSAs directly would gptr
all location coordinates, making LBSAs unable to processes-
neighbor queries. But if location is not encrypted, attackmg

Alice @
tSecrets Transform and Get

. (x’,y’) i
% An LBSA

@Decrypt E(data) Server

Figure 1: A basic design. In this design, 1) Alice and Bob exchange
their secrets, 2) Alice stores her review of the restaurantat (z, y)) on
the server under transformed coordinates, 3) Bob later vigs the restau-
rant and queries for the reviews on transformed coordinates and 4)
decrypts the reviews obtained.

System and Attacker Model.In this paper, we assume that the
companies that provide LBSA services manage the serveersUs
store their data on the servers to obtain the service. Thpanias
are responsible for reliably storing this data, and pragdaccess
to all the data a user should have access to. The companiggtan
incentives via displaying ads, or charging users some ufesge
In our attacker model, we assume that the attacker has aodbes
LBSA servers. This attacker could be an employee of the caynpa
running the service or an outsider that compromises thesenis

a result, the attacker can access all the data stored onrresse
and can also monitor which user device is accessing whiatepie
of information on the servers. Our goal is to design a systeh t
preserves the location privacy of users in this setting. $éme
that the attacker does not perform any attacks on the censist
or integrity of data on the servers, but aims only to learrrsise
location information. We also assume that the friends ofea ase
trusted anddo not colludewith the servers in breaking the user’s
privacy.

4.2 A Basic Design

To clarify the need for each component in LocX, we start the
design description with a basic, simple design.

As listed in our requirements, the server should suppdierift
types of queries (point, circular range and nearest-neighlheries)

anonymized GPS traces, mentioned above, can succeed,gnakin on location data. For the server to be able to do this, we need t

Persona insufficient to protect location privacy. SimilaAdeona
is useful for a user to retrieve her own data, but not the daia f
her friends. Our contributions complement these systenasneS

reveal the location coordinates in plain text. But doing smuld
allow the malicious server to break a user’s location psivac
To resolve this problem, we propose the ideaadrdinate trans-

techniques in these papers can help LocX as well, e.g. Person formation Each usew in the system chooses a set of secrets that

a’s approach to partition data shared with friends into grened
groups, and Adeona’s hardware-assisted approaches td spee
crypto processing.

4. SYSTEM DESIGN

In this section, we describe the design of LocX in detail.

4.1 Terminology and Attacker Model

Terminology. Location coordinatesefer to the longitude, latitude
pairs associated with real-world locations. A pair of caoates is
returned from a GPS, and is used to associate data with adocat
Location data or location informatiorefers to such data associated
with a location. For example, when reviews (and referrahpde-
tails) are written for a given restaurant, the reviews aeddlaation
data associated with the restaurant’s location coordinate

they reveal only to their friends. These secrets includetation
angled,,, a shiftb,,, and a symmetric keyymm,,. The users ex-
change their secrets via interactions when friends meegison,

or via a separate trusted channel, such as email, phone bt. T
secret angle and shift are used by the users to transforimealbt
cation coordinates they share with the servers. Simildre/secret
symmetric key is used to encrypt all the location data theyesbn
the servers. These secrets are known only to the friends)emzk
only the friends can retrieve and decrypt the data.

For example, when a user wants to store a review for a
restaurant atz, y), she would use her secrets to transfqrmy)
to (z’,y') and store encrypted revief(r) on the server. When a
friend v wants to retrieve:’s review for the restaurant &t y), she
would again transfornfz, y) usingu’s secret (previously shared
with v), retrieveFE(r), and then decrypt it using's symmetric key
to obtainr. Similarly, v would transform(z, y) according to each



of her friends’ secrets, obtain their reviews, and read thé&monly
focus on point queries for now. Figurke 1 depicts this basgigie

A limitation. This basic design has one important limitation: the
server can uniquely identify the client devices (€ag, using the IP
address). Using this, the server can associate differamsfiormed
coordinates to the same user (using the IP). Sufficient nuwibe
such associations can break the transformations (as weisl8®e-
tion[d). So maintaining unlinkability between differentegies is
critical.

One approach to resolve this limitation is to route all geri
through an anonymous routing system like Tor [9]. But simply
routing the data through Tor all the time will be inefficiefispe-
cially in the context of recent LBSAs, that adds larger nmiédia
files (pictures and videos) at each location. So we need tcovep
this basic design to be both secure and efficient.

4.3 Overview of LocX

LocX builds on top of the basic design, and introduces two new
mechanisms to overcome its limitations. First, in LocX, \wpktshe
mapping between the location and its data into two pairs: p-ma
ping from the transformetbcation to an encrypted indefcalled
L2l), and a mapping from thimdex to the encrypted location da-
ta (calledI2D). This splitting helps in making our system efficient.
Second, users store and retrieve the L2lsmigusted proxiesThis
redirection of data via proxies, together with splittinigyrsficantly
improves privacy in LocX. For efficiency, 12Ds are not prakiget
privacy is preserved (as explained later).

Decoupling a location from its dataln today’s systems, location
datadata,,,) corresponding to the real-world locatidw, y) is
stored undefz, y) on the server. Butin LocX, the locatidm, y) is
first transformed t@x’, '), and the location data is encrypted into
E(data(, ). Then the transformed location is decoupled from the
encrypted data using a random indexia two servers as follows:

1) an L2l = [(z',y'), E(7)], which storesE (i) under the location
coordinate(z’, y'), and2) an 12D = [i, E(data, )], which stores
the encrypted location daté(data,,,)) under the random index
1. The index is generated using the user’s secret random numbe
generator. We refer to the server storing L2Is asitiaex server
and the server storing 12D as tHata server We describe these two
as separate servers for simplicity, but in reality they cammb the
same server, and our privacy properties still hold. Thisesmon

of location information into two components (L2I and 12D)lpee

us continue to efficiently run different types of locatioreges on
L2Is and retrieve only relevant 12Ds.

The key interfaces used by the applications to store anigvetr
data on the LocX servers are listed in TdDle 1. Figure 2 depiet
design of LocX.

Proxying L2Is for location privacy. Users store their L2Is on the
index server viaintrusted proxiesThese proxies can be any of the
following: PlanetLab nodes, corporate NATs and email sasrie

a user’s work places, a user’'s home and office desktops apapt
s, or Tor [9] nodes. We only need a one-hop indirection betwee
the user and the index server. These diverse types of prpries
vide tremendous flexibility in proxying L2Is, thus a user cdore
her L2Is via different proxies without restricting herselfa single
proxy. Furthermore, compromising these proxies by an kdtac
does not break users’ location privacy, as (a) the proxiss ah-

ly see transformed location coordinates and hence do not tha
users’ real locations, and (b) due to the noise added to ld&s (
scribed later). To simplify the description, for now, wease that
the proxies are non-malicious and do not collude with thesind
server. But we will later describe our solution in detail teee
defend against colluding, malicious proxies.

API Call
putL2l (X', y'), E(D)
getL2l (X', y)
putD2I (i, E(data))
getD2I (i)

Purpose of the Call
Put L2l of (x, y) on the IS.
Get the L2l of(z, y) from the IS.
Put 12D of(x, y) on the DS.
Get 12D of (x, y) from the DS.

Table 1: The index server (IS) and data server (DS) APIs and their
functions in LocX.

At (x, y) @ m (xy') => EG)
o) PutL2l ((x’,y’) => E(i))
m

Alice (we

Secrets

Data Server

An LBSA

Figure 2: Design of LocX. 1) Alice and Bob exchange their secrets,
2) Alice generates and L2l and 12D from her review of the restarant
(at (z,y)), and stores the L2I on the index server via a proxy. 3) She
then stores the 12D on the data server directly, 4) Bob later isits the
restaurant and fetches for L2Is from his friends by sending he trans-
formed coordinates via a proxy, 5) he decrypts the L2| obtaied and
then queries for the corresponding 12D, 6) finally Bob decryps Alice’s
review.

E(data) i => E(data)

Decrypt E(data)

With this high-level overview, we now describe our solution
store and query data on the servers in detail. We also exttiain
challenges we faced, and the tradeoffs we made in makingosur s
lution secure and efficient.

4.4 Privacy Preserving Data Storage

When a user generates the location data corresponding to a lo
cation(z, y), she uses her secrets to decouple it into a L2| and an
12D. Now we describe how they are stored on the index and the
data servers respectively.

Storing L2I on the index server. First consider storing L2l on
the index server. To perform this, the user transforms hal re
world coordinate(z, y) to a virtual coordinateéz’, y’) using her
secret rotation anglé, and secret shift,: (z',y") < (cosO,x —
sin0uy + by, sinfux + cosbuy + by). This transformation pre-
serves the distances between pﬂnt-m circular range and near-
est neighbor queries for a friend’s location data can begqzsed

in the same way on transformed coordinates as on real-world ¢
ordinates. Then the user generates a random indexsing her
random number generator and encrypts it with her symmegyc k
to obtain Fsymm, (i)). The user then stores this L2k, y’),
Esymm, (1)], at the transformed coordinate on the index server via
a proxy. The L2l is small in size and is application indeperde
as it always contains the coordinates and an encrypted maito
dex. Thus the overhead due to proxying is very small (quatifi

Sectior6).

'Given any two real-world point&ey, y1), (x2, y2), it is easy to see
that the distance between their corresponding virtual dioates

V(s —h)? + (o —91)? = /(w2 —21)% + (12 — 11)?




Storing 12Ds on the data serveiThe user can directly store 12Ds
(location data) on the data server. This is both secure diviket.

1) This is secure because the data server only sees the inded sto
by the user and the corresponding encrypted blob of dataheln t
worst case, the data server can link all the different irglicethe
same user device, and then link these indices to the retgeiser’s
device. But this only reveals that one user is interestechaiheer
user’s data, but not any information about the location efukers,
or the content of the 12Ds, or the real-world sites to whiah data

in the encrypted blob corresponds #).The content of 12D is ap-
plication dependent. For example, a location-based videghaoto
sharing service might share multiple MBs of data at eachtioca
Since this data is not proxied, LocX still maintains the édficy of
today’s systems.

Intuition behind privacy. Due to the coordinate transformation,
the index server does not see the real-world coordinateeafisler.
Because of the proxy, the index server cannot link the aiffet2ls
stored on the index server to the same user. The index seasex h
single coordinate space in which it stores all the data frértha
users. These are the reasons behind the privacy in LocX.e&akbr
a user’s privacy, a malicious index server will havebreak two
steps:a) learn the transformation secrets of the user, and b) link a
request to the corresponding user (otherwise, the attaltless not
know which transformation secret to apply to a request) s&teo
steps significantly raise the bar for attacks.

4.5 Privacy Preserving Data Retrieval

Retrieving location data from the server in LocX is a morelcha
lenging problem. In particular, we need &) maintain location
privacy, andb) ensure that the retrieval is efficient.

Consider the following simple design for data retrieval. e
takes the location coordinate she is interested in, tramsfdt ac-
cording to all her friends’ secrets, and sends a query toghees
containing all the transformed locations via a proxy. If anisas
f friends, and is at a locatiofx, y), she sends a query with points
(=1, 91), (x5, 42), ..., (z, y})) to the server, wherr;, y;) is the
transformation of(z,y) with friend i’s secret. The index server
then fetches all the L2Is at the locations in the query andrmet
them. The user then decrypts all the returned L2Is, and esiéne
data server for the 12Ds she cares about.

This design has two major problems. First, this approach to
query the server easily breaks a user’s privacy. Just by kmgpw
that all the transformed points sent by a user corresporieetsame
real-world coordinate, the server can construct and sobet af e-
quations to derive the real-world location of the user (provn
Sectiorl}). To prevent this derivation, if the user were tergtfor
each friend’s transformed coordinate separately, theroitlévin-
crease the total time (and the # of RPCs) to retrieve thetseduwlrt-
ing the performance. Thus we need a secure and efficientagpro
to retrieve L2Isfrom the index server. Second, since the server
sends all the points stored at a transformed coordifetey;) in
the query (irrespective of who stored data there), the ussr get
many L2Is from non-friends who happen to store data at lopati
(z%,yi). Since the user does not know the source, she will have to
attempt to decrypall L2Is returnedin response to locatiofr}, ;)
with friend i's symmetric key. This wastes significant amount of
computation cycles on the user’s device. Thus, we need aieeffi
and secure mechanista identify the L2Ishat are from friends,
and to quickly reject L2Is from non-friends. We next deserdur
solutions to these two problems.

Privacy while querying the index servem order to prevent attack-
s while querying the index server, we propose that users aide n
to the query. Noise in our solution is a fea} additional, ran-

domly selected points(z17,y1}), (z15,y15), ..., (z1y, y1y)),
added to each query sent to the index server. Of course, the no
added has to be minimal for efficiency. We show through analy-
sis (in Sectiof b) that adding only a few additional randorimiso
prevents privacy attacks, and the server will not be ableetivel

the real location of the user. In addition, the user can eéitiér

out the L2Is corresponding to the noise. Note that the noigeir
system is different from the noise in prior systeins| [18] thffect

the accuracy of the locations.

Adding noise, coupled with routing the index server quevies

proxies (just like the way they were stored), provides girtmta-
tion privacy during querying. The queries only contain & &
points in the transformed coordinate space, without any idse-
tifier or actual location information. Due to proxying, therger
cannot identify the client. And finally the noise preventside
tion of user’s location based on transformed coordinatettirRu
noise and proxying schemes together, the server cannatlirii-
ple different queries to the same user. We will later prow this
unlinkability preserves the users’ secrets, and also shatvthis
approach is resilient against collusion between the psoaiel the
index server.
Securely and efficiently identifying L2Is of friendsln the sim-
ple design for data retrieval described above, we query &at &f
points in the transformed coordinates and decalpthe returned
results. This provides strong privacy as the server doeseaon
which of the returned L2lIs are relevant to the user, but deary
all the results increases the overhead on the client’s devic

If, on the other hand, we provide some information to theeserv
to filter out the L2Is that are irrelevant for a user beforedsen
them, it provides efficiency, but breaks privacy. For examplp-
pose each user attaches an anonymized ID to each L2I. Thearau
can submit a list of IDs she cares about and some additiorsaidD
noise. This allows the server to send only the L2Is at a pbiat t
fall into the set of IDs specified by the user. Even decryptiould
be efficient, as the user would know the right key to use foheac
L2I. Unfortunately, these IDs would enable the server té Hiif-
ferent L2Is, and this can lead to privacy leaks. For instatioe
index server could perform “fingerprinting attacks,” bydeaging
the distance preserving property of our transformatiomsthése
attacks, the server takes “fingerprints” of popular desitna (e.g.
airports in major cities), and uses the distance betweesettiesti-
nations as fingerprints. It then matches these fingerpriiitsthe
locations corresponding to a particular user identified gy ID,
and then derives the transformation secret of the user. Wigd
then reveal all the real-world locations of that user, whiciuld
help identify the user behind the ID.

Fundamentally, there is a tradeoff between efficiency aidpr
cy. Revealing more information to the server leads to efiicye
but hurts privacy, and vice versa. Exploring the design spatto
balance these two properties leads to the following passiét of
choices.

1. No tags. The basic design where no user-specific tag is at-
tached to L2lIs, and the user simply queries and decrypts all
L2ls in the results for a location. This approach provides
high privacy, but low performance.

2. User ID tags. The prior design where the server filters the
L2ls in the response using the anonymized ID tags that the
users attach with each L2I. This approach provides high per-
formance, but low privacy.

. Keyed hash tagsln this approach, each userhas a secret
text 7., that she shares with her friends. The usegener-
ates a new random strirfgy for each new L2 she stores, and



tags it with< S;, H(T..S;) >, whereH () is a hash func-
tion such as SHAL. So the L2l now contains

< (2',y),E(i),S;, H(Tu,S;) >. When a friend ofu
wants to query for a locatio(r, y), she transforms her lo-
cation withu's secret to obtairiz’, y), and sends this point

in a query. Then the index server sends all L21gaty")
without any filtering. Upon receipt of the L2lIs, the client us
er appends; in an L2| toT,, and then compares the hash to
check ifitis indeed from user. It would decrypt the L2l on-

ly if this hash check is passed. A similar check is performed
on each L2I. Because of the fact that hashing is nearly two
orders of magnitude (from our tests) faster than symmetric
key decryption, this approach is significantly more effitien
thanno tagsin terms of processing time on the user’s device,
while providing the same, strong privacy. We use HMAC-
s [B] with proven security guarantees for implementing.this

. Random tagslIn this approach, each userhas another se-
cret random number generatotyén,,) that she shares with
her friends. The user generates a new random numper
from rgen, and attaches this tag to every new L2l she s-
tores. The L2l now containg (z',y’), E(i),r; >. When
a friend ofu transforms her locatiofz, y) with u’s secret
to obtain(z’,y’) and sends this point in a query, the index
server sends all L2Is dt’, y’) without any filtering. Up-
on receipt of the L2Is, the friend checks if the random tag,
r;, in an L2I is within the set of random numbers generat-
ed byrgen,,. The friend only decrypts the L2Is whose tags
are in this set. Since the membership check is faster than
hashing (by about two orders of magnitude in our tests), this
approach is more efficient than key-based hash tags, but re-
quires some additional state. Specifically, the users need t
exchange, with their friends, the maximum number of ran-
dom tags (from theirgen) they have used so far in tagging
L2ls. This helps them build the set of tags for checking L2Is.
Thus this approach provides both high privacy and high effi-
ciency.

Both keyed hash tagand random tagsnicely balance privacy
and performance. We did construct several other mecharasms
long similar lines to efficiently identify L2Is from friendahile
maintaining privacy, but we only discuss and evaluate these
due to space limitations. Fundamentally, all these meshasat-
tach some additional tags to the L2Is, which can only be ligefu
interpreted by the friends. Since the server cannot linfediht
L2Is from the same user, these mechanisms provide strorg loc
tion privacy.

Querying the data server and decrypting location datafter ob-
taining the L2Is from the index server corresponding to axpoi
(z',y"), say transformed with friend's secrets, the client user i-
dentifies the L2Is fromu (using the tags), and then decrypts the re-
turned L2Is withu's symmetric key. Then the user directly queries
the data server for the 12Ds corresponding to all the deed/pt-
dices she cares about in a bat¢h, iz, ...). She then obtains the
12Ds from the data server, decrypts each of them using the sym
metric key of the friend whose key was used to decrypt theeeorr

port more complex queries like circular range and neareighfor
queries. The key change necessary is for the index servetumr
dataarounda query point instead of returning datta query point
(as was done so far). Fortunately, building an R-tfeé [19fhen
L2ls input by the users can support both circular range aacase
neighbor queries, out of the box. Finally, the user shouldtioa
the type of the query she wants to run, while querying thexnde
server. The rest of the steps in querying remain the same.

One issue in processing a nearest-neighbor query by qgeayin
different transformed coordinates separately is thatridex serv-
er will return each friend’s nearest location data instefadearest
location data taken based on all friends’ location data. Assalt,
additional answers that are not necessarily needed by osghs
be included. While our focus is not to explicitly remove th@xtra
answers, one way to remove them is to specify a query rangeg alo
with the query; another way is to let the users filter out suatad
after decryption.

5. PRIVACY ANALYSIS
5.1 Intuition Behind Privacy in LocX

Here we describe the intuition behind LocX’s privacy, anevho
it meets all of our requirements.
Defending against an attacker with access to data on the serv
s. The data stored on both servers do not reveal any information
about their locations to the attacker. The L2Is on the indexes
contain transformed coordinates and the data on the dater see
all encrypted. As a result, an attacker with access to jestitiia on
these servers cannot de-anonymize the data to associasenite
their locations.
Location privacy during server acces&ven the attacker with ac-
cess to monitor both servers cannot link accesses to the amté
the data server because the indices stored on the index seeve
encrypted, but the indices are not encrypted on the datarséwn-
ly the users know how to decrypt the encrypted indices. Witho
the decryption keys, the attacker cannot link these redorfigure
out even the transformed location of the users accessirggthers.
Location data unlinkability. The 12Ds are encrypted, and the user-
s access them only via indices. Hence users cannot be linked t
any locations. The indices stored or accessed by a userraterma
numbers. The data server can link together the indices seddsy
the same user, but this does not help the servers link thetaiser
any locations. Finally, the users store and retrieve L2Ishenin-
dex server via proxies, so servers cannot link differemtsfarmed
locations to the same user. Together, these provide locatibnk-
ability.

5.2 Privacy During Location Data Access

Here we present a theoretical analysis of the privacy ptigser
during data access in LocX. When a user accesses her frigatds’
by transforming her own location to different points in thans-
formed space and sending them in a query, a malicious inaegrse
learns the different, transformed coordinates that mapasame,
real-world location (which is the user’s current locatiofihe ques-
tion is whether an attacker could use this information taveeihe

sponding index. And then the user consumes the data as per thauser’s real-world location. Here, we discuss the fundaaiean-

application. There is no need for a proxy in this step as tbexn
and the encrypted data on the data server cannot link a uber to
location. Since the decrypted index is sent to the data geitve
cannot even be linked to an encrypted index on the index serve
Supporting circular range and nearest-neighbor queriehe de-
scription so far was for point queries, where a user fetclaa d
at a given location coordinate. These steps naturally exi@sup-

straints we need to preserve in LocX to prevent the serven fro
succeeding in such attacks.

Constraints in querying the index serverAssume first that the
users directly access the index server, without any proXiesch
user has a secret angl®, and a secret shif), to transform her
location coordinates. Suppose a user hdgends and she issues
m location queries. In each of the locations,(z;, y;), the user



searches fon; (n; < n,1 < j <m) friends’ information. Let us
assume that all friends’ information is queried atqalllocations,
and let us also assume the worst case scenario where thésfrien
transformed points are queried in the same order. Condidettte
index server is malicious and sees the transformed codedirat
the user’s friends(z;;, vi;), in all m queries. The attacker (index
server) then build§2n1 +2n2 + ...+ 2n,, ) equations as follows (2
equations for each requested friend at one location) irr¢odslve
2m unknown real coordinate&e;, y;) and2n unknown friends’
secretg0;, b;), wherel < j <m,1<1i<n.

cosl;-x1 —sinb; -y1 +b;, = i
sind; -x1 +cosb; -y1 +bi = ya
. = .. Q)
cosl; - Ty —sinb; - Yym +b;i = Tim
sin; - T +c080; - Ym +bi = Yim

The total # of unknown variables &n + 2n. For the attacker to
solve all the unknowns, the following must hold:

2n1 +2n2 + ... + 2n;m
= N1 +n2+ ..+ nm

> 2m+2n
>

@)
(©)

So to protect the users’ locations and friends’ secrets foeing
inferred by the attacker, the reverse of Form[la (3) must:hol

4)

If the users query alh friends’ data at each location; = n, a
stronger version of Formulfl(4) must hold:

m-+n

n+ne+..+nm<m+n

mn<m-+n

®)
We consider two special cases that satisfy Fornidla (5).

1. m = 1, n < 1+ n, meaning that the transformed coordi-
nates of friends should be only observed in one location. In
other words, the index server should not link multiple geri

In a worse case, more than one proxy may be malicious, and they
may collude with the index server. Given the number of cafigd
proxies,k, we have to further limit the average number of friends’
requests that a user can send per location via one proxylte:
%)/k = % + . This number, however, becomes impractically
small. We resolve this limitation by adding noise to quetiest
users send via proxies.
Improving privacy using noisy queriesNow we derive the amoun-
t of noise to add per query. Following Formuld (6) kiforoxies
are colluding, together they can sean{k - (1 + Z£),n} friend
requests from the same user at one locatioris(the maximum
number of friend requests of their interest for one locatjaery),
which violates Formuld{4) and hence the user’s locatiovapyi.
To make sure the colluding proxies cannot break Equafibnié)
need to increase the number of unknowns on the right sideref Fo
mula [4). This is achieved by generating extra “dummy” fden
requests based on false secr@sb’). The user uses these false
secrets to transform the real location of her request, imsee ob-
tained dummy points along with the legitimate transformeih{s
obtained by applying the user’s friend secrets and routes thia
the proxies. The colluding proxies may then attempt to stiee
equation without knowing which requests are real and whigso
are fake. But since the solution to the equation is then based
dummy random points, the attacker wilbt have the right secrets
for the user’s friends.

Let the minimum number of such noisy points hg and the
user asks fofn + n') friends’ data inm location queries. Then we

should havenin{k - (1 + %), n} = 1+ "jl”l, from which we
getn’ = min{(k — 1) - (m + n), mn — m — n}. For each of the
m locations, theminimumamount of noise that the user needs to

generate on an average is

’

%:min{(k—l)'(l“‘%)v”_l_%} )

Note thatl) the overhead due to noise is proportional to the

to the same user. This can be achieved by using proxies to @mount of collusion in the system when the number of collgdin

anonymize user identities and ensure that the index server proxiesk is <

cannot link different user requests to the same user.

2. n =1, m < 1+m, meaning that the user is limited to access
only one, different friend’s data at each of thelocations.
In other words, the functionality the user obtains from the
applications is limited only to the data from an unreasonabl
low number of friends, in all the locations.

For the general cases af > 1,n > 1, we decide to exploit
the first case for our design, since we do not want to limit siser
(and hence to hurt functionality) as in the second case. Bng
queries through proxies, we can easily satisfy Fornidlai(&eshe
index server cannot link different requests to the same asdong

as the proxies do not collude with the index server. Thus, avwe h
proved that the unlinkability of queries due to proxies press
users’ privacy in LocX.

Impact of malicious proxiesWe assumed in the previous analysis
that all proxies are benign. However, a proxy may be mali&iou
and collude with the index server, which would then violates
unlinkability of queries and hence violates users’ loaaipivacy.
Therefore, multiple proxies are needed, and we need toadht
number of queries any given proxy can see. Based on Forfjyla (4
the upper bound on the average number of friends’ data a aser ¢
request at a given location through a single proxy is

n1+n2++nm<
m

m-+n

=1+ = ©)
m

mn

-, The amount of noise does not increase be-
yondn — 1 — = whenk > 2= as all the requests sent out by
a user are learned by the attackers by now. 2jthe noise added
above is an average value. We just need to ensure that the nois
added ovemn points averages to this value — the noise does not
have to be the same in each query. We show in our evaluation tha
the overhead due to the noise is very low.

Finally, we stress that even if noise is not added, the woit t
the attacker can do is to break a single user’s location @yivebut
not the location privacy of all her friends. Moreover, evensers
do not generate enough noisy friend requests as the numéer sp
fied in Formula[(¥), and the attackers or malicious proxiesadle
to solve Equation[{1), it is still not easy for them to buile tbor-
rect association between areal friend and a pair of secoéined
from the solution, since there a(éfln’) - n! possible association-
s. Hence even in this worst case, the user’s friends’ searetstill
kept secure. In this case, only the user’s current locatioeviealed
to the attacker (from the solution to the Equatibh (1)), leeonly
this user’s location privacy is violated. This privacy is@hot vi-
olated arbitrarily long, but only so long as the proxies amm to
collude and associate the requests coming to the indexrgerthe
same victim user.

5.3 Other Attacks and Defenses

We now discuss other possible attacks the servers can pgiifor
addition to the attacks described before, and our propagatans
to ward off these attacks.




Query linking attacks by the index servef.he index server might
attempt to link the queries from the same user using someyquer
“fingerprints.” For instance, the server might guess thiaqaries
with 199 points (one per friend) belong to the same user —aisgL

that it is uncommon to have many users that use the same proxy

having 199 friends. Fortunately, our extension of adding&do
the requests helps here. Since the number of noisy poinesdadd
varies per query, the server cannot perform such attacks.
Fingerprinting using cookies in incoming connections.

We assume that the proxies or the clients scrub the outgaing c

Measures LocX L2D

Client Processing Time (ms) | 0.0055 0.0
Query Completion Time (ms) | 0.013 | 0.0045

Data Communication Size (Bytes) 140.1 | 84.5

Table 2: Measures of Location Puts

While defending against all such attacks based on extenfat i
mation is extremely challenging, and is outside the scopthief

nections, using tools such as Privoky [2], to remove all-identification paper, we offer our intuitions as to why such attacks arecape

information from the connection. This assumption is comrtmn
all anonymity-preserving systems, including Tol [9]. Thawgh
attacks do not work on LocX.

Localization-based attacksSince the users talk to the data server
directly, the data server can attempt to learn users’ londtased
on their IPs. Fortunately, the location obtained from thiesdn-
nologies is at the granularity of tens of mil€s][44]. In agtdit we
can use several existing techniques to prevent this atfackess-
ing data server via proxies helps, but this reduces the efibgi of
the system. Finally, some recently proposed [13] mechanismn
also help us in reducing the localization accuracy of theeseand
even defeating these attacks.

Timing attacks by the index servefhe index server may attempt
to link different requests that arrive at the server to theeas-

er or query using timing information. For example, the sepan
say that all requests for L2Is and 12Ds within a second betong
the same user, and hence all such L2Is and 12Ds are related. Fo
tunately, we can leverage prior work on location privacyeh&g,
[18,[32[ 10/ 1P]. By using techniques such as batching resjaest
randomly delaying requests to the server at the proxies tneat
clients, and by combining them with noisy queries described
fore, we can deter these attacks. Moreover, these attaeknefr
fective themselves if the LBSA service has a large active hbase,
which is typical in today’s successful LBSAs such as FoueBgu
Attacks using stolen or compromised user deviceln attacker
with access to a user’s secrets (obtained by compromisisteal-
ing her device), obviously, has access to all her data anfiibeds’
data. To contain the impact of such compromises we can lggera
existing techniques. Far.g, we could partition friends into differ-
ent groups and use attribute-based encrypfioh [4, 15] twvadhly
group members to decrypt the data. Periodically refreshinger’s
secrets, as discussed next, can further help in these cases.
Periodically refreshing a user’s secret&o far we described LocX
as if only one pair of secre{®, b) is used by a user to protect her
data. But we can easily extend this to allow users to use time-
varying secrets. Fae.g, Alice may use(6, b) to protect data gen-
erated in the year 2010, aifd’, b’) (generated using a pseudoran-
dom number generator) to protect 2011’s data. This timedddr
secret refresh can also be configured by the user. The usktr cou
then share new secrets with friends, and the friends coddhes
appropriate secret(s) to query for the user’s data.

Attacks using external information.Attackers can mount sever-
al attacks on targeted users using information learnedtahem
from outside our system. Farg, Bob, an employee of a restau-
rant, might know Alice’s home address and know that it takés 1
minutes for her to come from her home to the restaurant. Kmgwi
two locations of Alice (home and restaurant) and the timedovn
when transformations of these locations are stored on therse
Bob might collude with the server to try to figure out Alicels-s
crets.

ly difficult against LocX. First, this attack can work only ¢imose
users whose information is precisely known by the attackére
number of such users is usually very limited. Second, owrtsss
against timing attacks can significantly increase the tinredaw

the attacker has to process. And the attacker will have togs®
all the points uploaded to the system in that time window,clvhi
can be extremely large in a system with many users. Thirdh eve
if successful, the attacker will have to keep running thiack due

to time-varying secrets of the users. Finally, just leagranuser’s
secret does not compromise her privacy. The attacker stillth
break the unlinkability of every (future) request sent big thser
(by colluding with proxies). That is, even when the secré ws-

er (6,b) are broken, the attacker still needs to link future requests
to that user.

Map matching attacks.The attacker might attempt to connect the
points in the virtual coordinate space, to construct paakert by

a user, and then to map them back to the paths in the real-world
map. Doing so would enable the attacker to identify realtsvor
paths traversed by a user. However, such attacks are ingadact
for the attacker to mount due to the following reasons. Fisstat-
ing the points that belong to a given user is very hard. Theair
coordinate space is shared, and all users’ points overl#msrs-
pace. As a result, a set of points in a region of the space eah le
to an extremely large number of total paths. Due to unlinkswf
points, the attacker would not know which path among thetieeis
path taken by the user. Second, due to our defenses agaiirgy ti
attacks, the points in a path may not appear in the right catler
the server. So even if the user’s points are isolated by thelar,
they will lead to a wrong path fingerprint. Finally, mappingath
fingerprint to the right path in the world’s map is not trivial
Denial-of-Service attacks by malicious userso prevent DoS at-
tacks on the server behind the cloak of anonymity, we carrdgee
existing research [38], whetekensare used to verify that theuts
(store operations) are from legitimate users and hencelinaite
malicious puts.

Summary.To break a user’s location privacy in LocX, the attackers
need to surpass two steps: a) learn the secrets of the usertieve
she changes it, and b) correctly identify every request lsgithe
user. From our analysis above, doing so is very expensivehér
attacker, and hence, LocX significantly improves locatiomgey
over prior work.

6. EVALUATION

Our evaluation focuses on answering the following key ques-
tions. 1) What is the overhead of putin LocX? 2) What is the
overhead of retrieving point and nearest-neighbor quéniescX
compared to today’s systems? And how does it vary when more
data is retrieved per query3®) How does the overhead vary when
more noise is added to each qued)MHow does the overhead from
L2Is and 12Ds change when larger size of data is store@uers)
Finally, how does LocX perform on mobile devices?
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S s S ‘ : following the tweets in Twitter. As a result, each city hadk20ca-
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tion puts on average, and the total number of location pugs2ia
After all the puts, each client submits a point query and aesta
neighbor query with 70% probability of being within the clté&s
resident city and 30% probability of being in other citiesack
nearest-neighbor query requests for 10 nearest locatvea®ily
evaluate nearest-neighbor queries, as we found in oumprelry
tests that the performance of circular range queries torbiasito
that of nearest neighbor queries). We set noise to a fixed thispo
per query for now, and study the impact of noise later.

We crawlecww. bri ght ki t e. comfor real LBSA traces. We
crawled using BrightKite’s public APIs, at a rate slowerrhe
rate specified in the APl Terms of Use. Due to the slow rate,is«e d

Mributed the crawling tasks to 20 machines, and crawled foua
a month starting from August 20th, 2010. Starting with an ini
tial seed of users, we crawled each user’s profile, frierstsdind
check-in data. The crawled data in total had 25,314 useB433

# of Location Data Puts Per Client

Figure 3: Effect of varying the number of puts on query response sizes
in synthetic data.

6.1 Implementation and Setup

We implemented LocX in Java. We used AES with 128 bits keys
for encryption and decryption. The implementation of nsare
neighbor queries was based on thetiee package from HKUST[17].
We configured each user to cache 1000 random number tags fro
each of her friends.

We measured LocX’s performance on both desktop computers
and on Motorola Droid mobile phones. The index and data serve
were run on the same Dell PowerEdge server equipped with Quad

Core Xeon L5410 2.33Ghz CPU, 24GB RAM and 64 bit Federal
Core 8 kernels. Clients were run on another machine withahees

configuration. We used the same code base for both desktop an

mobile tests. But we had to modify the code slightly for Aridro
OS to deal with some missing libraries. In addition, we hath&ke
certain optimizations to limit the memory usage to under B&M
for LocX process in Android.

Workload. We used both synthetic and real-world LBSA workload
datasets for our tests. The synthetic dataset with defatdinpeters
was created following empirical observation on popular-gecial
sites such as FourSquare: First, we partitioned a two dimens
al space into 100 cells, each of which is a city. In each city, w

unique GPS coordinates with 259,775 check-ins by users.leWhi
using this data for experiments, we treated each checkarnasa-

C]tion put, and let each user query from one of her check-intioca

S. Since check-in messages were not available for us to cnaavl
generated random messages of varying sizes.

Experiment setup.To evaluate the overhead that our approach is
adding to today’s LBSAs which do not provide privacy, we com-
pared LocX with random tags, which we cabcX, with an imple-
mentation of a today'’s service that has social network orséneer
and directly maps a location to its data, which we £2ID. In L2D,
data is in plain-text, thus no encryption nor decryption égaed.
We measured the communication costs between clients avetser
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Figure 6: Breaking down the communication overhead from L2k and 12Ds, when the number of puts is increased.

the client processing time and the query completion timel\if
ing network latency). Note that client processing time isoad)
indication for battery life. The more the processing, therdr the
battery life. We found in our experiments that server preces
time is negligible compared to the client processing tinoeye do
not report it. To evaluate the performance trade-offs ofdbsign

spent around 10 seconds for processing a nearest-neighbor g
in Figured5(d) anf 5(b), where the majority of time was spent
trying different friend keys for decrypting each L2I. Thikarly
shows that tags are necessary to boost the performance ¥ Loc
with only a slight more communication overhead.

Individual overhead from L2l and 12D.Now we look into the

choices we have discussed, we also compared LocX with randomoverhead from L2I and 12D separately. Overhead from L2I & th

tags against LocX with no tags, which we caticX-no-tag Since
these two different designs result in differences in prsiceslL2ls,
we specifically measured the communication cost betweentsli
and the index server for L2| and the communication cost betwe
clients and the data server for 12D.

6.2 Experimental Results

We report results from our tests on desktop computers finst, a
present experimental results on mobiles later.
Performance of a location putWe present the cost of a location
put in synthetic dataset in Taldlé 2. A put in today’s syster@Q)-
costs no processing time on clients as there is no cryptatper
But we can see that a put in LocX with encryption and additiona
index data only slightly increases the overhead, whicleckffice is
not observable by users. The average put message size \Bda 84.
L2D, but it was increased to 140 in LocX.
Query performance with increase in the # of putblext we com-
pared the performance of LocX (with random tags), LocX with n
tags, and L2D for point queries and nearest-neighbor caief®
synthetic dataset, we varied the number of location putsien-
t from 20 to 100, while fixing the amount of noise in a query to
default 10 and message size to default maximum 140. As loca-
tion puts per client increases, the total data size incesabels

setting where no tags are attached is referred to as ‘L2kgo-
We see in Figurg 6(h) that as the number of puts increase® mor
data is returned as answers, and the communication cosbani2
creases more than that of L2l for point queries. But in the ais
nearest-neighbor queries, since a lot of data needs to éeeéilin

L2l phase, more data is transmitted for L2Is. In contradly qoal-
ified answers are transmitted in 12D phase. As a result, theuo
nication cost of L2l is more than that of 12D (see Figure p(b))
Varying put message size¥/e next increased the put message size
from 140 to 700, while fixing the other parameters (20 puts per
client). We expected only the communication cost of 12D to in
crease but the cost of L2l to remain the same in this test.réfgu
confirms this for point queries, and we observed similar bieha
for nearest-neighbor queries (no graph shown due to spatce co
straints). Clearly, as the message size increases, lazgsraf data

is transmitted as answers, thus the cost of 12D graduallyinkmies
that of L2I.

Varying the amount of noise in queries/Ve next varied the amount

of noise added per query from 10 to 50, while setting the other
parameters to default values. Figlile 8 shows that incrgahim
noise only increases the communication overhead from Ui, a
this increase in overhead is quite small. There is no inergaD
overhead due to noise. Also note that noise does not incthase

more data needs to be processed and the sizes of query answer€omMputation time on client devices, as clients can rejespiorses

increase. Figurgl 3 shows the increase in query answer Shes.
ously, the response to a nearest-neighbor query contaires sata
than a point query (by more than 6 times).

to noisy points and not even attempt to decrypt them. Thalsen
in nearest-neighbor queries are similar, but we leave @igthph
due to lack of space.

From Figure§ 4(3) ar{d 5{(a), we see that processing a query in Experiments with real-world BrightKite datasetsSince we were

LocX takes no more than twice the time for processing theyguner
L2D, in a LAN setting, and the total time is much less than 1 sec
ond. The difference is due to the client processing timectvig
shown in Figurep 4(b) arfd 5(b). This processing time is coresl

in LocX for decrypting indices and location messages. Bticeo
that with increase in data size, the processing time in Locxeas-
es very slowly, which suggests that LocX is scalable. Theroam
nication cost of LocX is no more than 3 times the communicatio
cost of L2D for point queries and no more than 7 times the com-
munication cost of L2D for nearest-neighbor queries, asveha
Figured 4(d) anf 5(k) respectively. We also notice that Ladtk

not able to crawl the messages in check-ins, we generateshges
of size varying from 140 to 700 bytes, and then used the check-
locations to put this data on the server. We set the noiseen th
queries to default value 10. This real-world data had a loefe
check-ins compared to our synthetic data, and hence theetushb
results returned in query responses was also smaller. Trags/
answer size for a point query and a nearest-neighbor quergy we
around 0.92 and 36.5 respectively. We learned from thistet
the performance trend of LocX with real data is similar tot thia
synthetic data. Figufg 9 shows that LocX does not incur toolmu
processing overhead on real data either. Increasing theages

no tags consumes more processing than LocX with tags; no tagsSize increases the processing time only slightly due toygition
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Figure 7: Increase in the data (12D) transfer size when the message
size per location data put is increased in synthetic data.
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Figure 8: Increase in the L2 communication overhead due to increase
in the noise, for point queries in synthetic data.

of larger sized data. Due to similar trends, we leave out thero
graphs on point and nearest-neighbor queries.

Next we used this real-world data to get a realistic estinoéte
the amount of noise added by LocX according to Formitila 7. We
setn to 7.17, the average # of friends in the BrightKite datased, a
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Figure 9: The increase in the processing overhead for point queries in
BriteKite dataset, for increase in put message size.
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Figure 10: Ideal amount of noise necessary to protect users in
BrightKite, with increase in the number of malicious proxies.

Here we sketch how to build LBSAs using LocX. We demon-
strate the usage of our APIs by building three applicatidnso-
day’s systems that provide these services, the data isstedrto
the server in plain-text, which performs the computatiorhe ap-
plication logic. But since we do not trust the server in Lotie

m to 10.95, the average # of check-ins per user. The number of application logic that computes on the plain-text locatitaia is

noisy points a user with this andm has to add while using LocX
with the increase in the number of colluding proxiess shown

in figure[I0. The noise increases up to a certain valug ahd
then remains constant, as expected (explained in Sdci@n &
addition, we see that even the maximum noise added (5.583ss |
than the value of,, which we think is reasonable.

Overhead of running LocX on a Motorola DroidWe ported LocX

to Android, and ran the experiments under synthetic data on M
torola Droids. We observed similar trends in our tests asdahbelts
reported before (in Figurés 4 ahH 5), so we do not present igew fi
ures. The key difference was that the client processingigmmich
slower on Droids due to low resources. In the default settiit

20 location puts per client and one point query per cliens¢dbed

in Sectio 6.11), the average client processing time on Broids
about 10 times slower than on the Dell server. But even dfier t
slow down, the query completion time on Droids were below 0.2
seconds for point queries, and all nearest-neighbor cuevare
answered in below a second. We measured the power consamptio
on Droids and noticed that the phone can process about 40K poi
queries before the battery was completely consumed.
Summary.We find in our evaluation that LocX can run on today’s
mobile devices with low computation and communication emst
still provide strong location privacy.

7. BUILDING APPLICATIONS USING LOCX

moved to the client.

Location-based remindersThis application users place reminders
for friends at specific locations (fa.g. reminder to buy milk n-
ear a grocery store), and when the friends are at that logadio
alert is generated on their device. To build this applicaiioour
model, a user bundles all the details about the remindeh asc
the reminder text and time, encrypts the whole bundle anérgen
ates a corresponding 12D. Then the user decides the loazititie
reminder, transforms it based on the friend’s secret anérgéss

a corresponding L2I. These pieces are stored on the seriérs w
aputL2l and aputl2D calls. Each user periodically runs a neigh-
borhood query for data from her friends. First the user tdiars
current location, transforms it according to her secretsineigh-
borhood query, and fetches the L2Is and I2Ds, if any, usimg th
getL2landgeti2D calls. Then the device decrypts and reminds the
user as appropriate.

Location-based recommendationsThis application aims to rec-
ommend nearby sites (restaurants, shopping malls, etalsedrs
based on the reviews given to these sites by their friendsuin
model, this application is built as follows. A user stores e
views by generating a bundle containing all the informatielated

to the review, such as the review text, rating, etc., ensrthpt bun-
dle using her symmetric key, and generates a L2| and 12D ubing
data. The locations of the sites are transformed, of couwhée
generating the L2Is. This information is then stored on #reers
using theputL2l andputl2D calls. The application on each user’s



mobile downloads the data from her friends at the user'secdrr
t location by running a neighborhood query. Then it decrypes

returned data, and plots the recommended sites on a mapdethe

vice. Thus, the application operates without even revgalsers’
location to the servers.

Friend locator. This application alerts a user whenever a friend is

in the vicinity. When this application is built on LocX, userheck-
in at their current location periodically; then users chieckriends
in the vicinity by running a neighborhood query around tleeir-
rent location and decrypting check-ins from friends in rédanes
(e.g.last ten minutes). Despite using neighbor query, this aggro
to building friend locator is still efficient. Even a hotsp@tg. a
concert) in the real coordinate space is usuatlya hotspotn the
transformed coordinate space due to user-specific locatams-
formations, and thus limits the amount of (irrelevant) datzeived
and processed by a user.

8. CONCLUSIONS

This paper describes the design, prototype implementagioch
evaluation of LocX, a system for building location-basediabap-
plications (LBSAs) while preserving user location privadyocX
provides location privacy for users without injecting uriaéty or
errors into the system, and does not rely on any trusted rseove
components.

LocX takes a novel approach to provide location privacy whil

maintaining overall system efficiency, by leveraging thealkalata-
sharing property of the target applications. In LocX, usdfisient-

ly transformall their locations shared with the server and encrypt

all location data stored on the server using inexpensivarsstmic
keys. Only friends with the right keys can query and decrypsa
er's data. We introduce several mechanisms to achieve biodcy
and efficiency, and analyze their privacy properties.

Using evaluation based on both synthetic and real-worldABS

traces, we find that LocX adds little computational and comimu
cation overhead to existing systems. Our LocX prototypes refi
ficiently even on resource constrained mobile phones. Qyem=
believe that LocX takes a big step towards making locatiivapy
practical for a large class of emerging geo-social appboat
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