
A Comprehensive Framework for Secure Query
Processing on Relational Data in The Cloud

Shiyuan Wang, Divyakant Agrawal, and Amr El Abbadi

Department of Computer Science, University of California at Santa Barbara
{sywang, agrawal, amr}@cs.ucsb.edu

Abstract. Data security in the cloud is a big concern that blocks the widespread
use of the cloud for relational data management. First, to ensure data security,
data confidentiality needs to be provided when data resides in storage as well as
when data is dynamically accessed by queries. Prior works onquery process-
ing on encrypted data did not provide data confidentiality guarantees in both
aspects. Tradeoff between secrecy and efficiency needs to bemade when satisfy-
ing both aspects of data confidentiality while being suitable for practical use. Sec-
ond, to support common relational data management functions, various types of
queries such as exact queries, range queries, data updates,insertion and deletion
should be supported. To address these issues, this paper proposes a comprehen-
sive framework for secure and efficient query processing of relational data in the
cloud. Our framework ensures data confidentiality using asalted IDAencoding
scheme andcolumn-access-via-proxyquery processing primitives, and ensures
query efficiency using matrix column accesses and a secure B+-tree index. In ad-
dition, our framework provides data availability and integrity. We establish the
security of our proposal by a detailed security analysis anddemonstrate the query
efficiency of our proposal through an experimental evaluation.

1 Introduction

Cloud computing has been gaining interests in the commercial arena due to its desirable
features of scalability, elasticity, fault-tolerance, self-management and pay-per-use. On
the other hand, the security of sensitive data stored in the cloud remains a big con-
cern, and even a road block to the enterprise usage of the cloud for relational data
management and query processing. The cloud, unfortunately, has some unique security
problems due to the shared environment it creates, even if access control policy and
authentication are in place. For example, a recent vulnerability found in Amazon EC2
allows crossing virtual machine boundary and gaining access to another tenant’s data
co-located on the same physical machine [1]. Many enterprises therefore question about
whether adequate security can be ensured for storing and processing their relational data
in the cloud.

To solve the above concern of data security, data confidentiality is a major chal-
lenge. Although encryption is often used to protects data, encryption itself is insuffi-
cient to guarantee data confidentiality, even if the encryption scheme does not reveal
any characteristics about the plaintext data and thus can resist statistical analysis on
encrypted data. When the encrypted data is frequently accessed for serving clients’



2

queries, any potential information leakage should also be controlled and minimized,
since attackers may infer the plaintext data from clients’ accessed positions on the en-
crypted data. Many existing proposals on processing queries on encrypted data did not
consider both confidentiality for data residing in storage and for data being accessed
by queries [2, 3, 4, 5, 6, 7]. Some of them are only able to support one or two types
of queries on encrypted data, and do not even support other data processing operations
such as data updates [3, 4]. Although powerful cryptographic techniques such as ho-
momorphic encryption [8] and Private Information Retrieval [9] can overcome some
of the confidentiality drawbacks, they are computationallyexpensive and can adversely
impact both latency and throughput.

In addition to data confidentiality, the availability and integrity of data in the cloud
should also be considered.Information Dispersal Algorithm(IDA) [10] and the sim-
ilar error-correcting codes [11] are used in recent work [10, 12, 13] to provide data
availability, and are commercialized [14]. A recent trend in industry even consider IDA
as an alternative to the traditional data encryption [15], since IDA provides both data
availability and certain degree of data confidentiality.

Our goal in this paper is to provide a comprehensive secure query processing frame-
work that addresses the issues of data confidentiality, availability and integrity, and
supports practical processing of various queries on the relational data in the cloud. We
achieve confidentiality for data residing in storage using amodified scheme to IDA,
called “salted” IDA (Section 4). Salted IDA relies on randomness to improve data
confidentiality of the original IDA scheme against computation bounded adversaries
and relies on the original IDA scheme to provide data availability. We achieve confi-
dentiality for data dynamically accessed by queries by transforming query requests to
single operations calledcolumn-access-via-proxy(Section 5), so that different queries
and queries among different clients are not likely to be differentiated. We discuss the
security of these two schemes in a security analysis (Section 7).

To enable practical query processing, we build a secure B+-tree index [16] on fre-
quently queried attributes. We encode and disperse the index and the data tuples in-
to matrix column pieces using salted IDA, and access the index and the tuples using
column-access-via-proxy operation. During query processing, a client retrieves and de-
codes only a small part of the index, based on which information she locates the candi-
date answer tuples. We further boost query performance by caching partial index on the
client. Caching index also helps improve data confidentiality at accesses by confusing
inferences on the index traversal paths. Thus, we are able tosupport common relational
database queries such as exact queries, range queries and data updates with consis-
tent security guarantees (Section 6). Our experimental evaluation indicates the query
performance of our framework is practical, i.e. it can process an exact query within 1
milliseconds, and a range query within 200 milliseconds on adata table of size107

(Section 8).

2 Related Work

To support database style queries on encrypted relational data, previous proposals de-
signed techniques to directly filter or process encrypted data. However, they did not



3

achieve a good tradeoff of data confidentiality and query efficiency. For example, the
methods that attach range labels to encrypted data [2, 3] reveal the underlying data dis-
tributions. Methods relying on order preserving encryption [4, 17] reveal the data order.
These methods cannot overcome attacks based on statisticalanalysis on encrypted data.
On the other hand, homomorphic encryption is secure and enables calculation on en-
crypted data [18, 8], but it relies on expensive public key cryptosystem and thus is not
practical.

Instead of direct filtering or processing encrypted data, analternative is to use an
encrypted index which allows the client to traverse the index and to locate data of inter-
ests in a small number of rounds of retrieval and decryption [6, 7, 5]. However, previous
works using encrypted index did not provide satisfactory data confidentiality. For ex-
ample, deterministic symmetric key encryption (e.g. 3DES)is used in [6], revealing
the underlying data distribution. Each value of the index entries is encrypted in [7], re-
vealing the index structure and consequently revealing client access pattern. Although
confidentiality for data residing in storage is proved in [5], data confidentiality in a dy-
namic query access environment is not guaranteed. Recent work studied obfuscating
query access patterns [19] for data outsourced in the cloud,but it still incurs a lot extra
computation and communication costs and requires a specialsecure hardware, while we
only bring additional communication costs by routing low level data requests via prox-
ies. Our work is more comprehensive in that we provide data confidentiality, availability
and supports flexible queries and data updates.

3 System and Attacker Model

3.1 System Model

Data Model. We consider a relational tableD with N tuples. Each tuplet hasd at-
tributes,A1, A2, ..., Ad. An indexI is built on the frequently queried attributes ofD,
such as the primary key. Without loss of generality, we referto I as a one-dimensional
index with one-to-one mapping to the tuples inD. We assume each attribute value (and
each index key) can be mapped to an integer in the range of[1, ...,MAX ].

Data Storage Model. The tuples and the index are encoded under separate secret
keysC and then stored onn servers,S1, S2, ..., Sn, hosted by cloud storage providers
such as Amazon EC2. The same keysC are used for decoding the tuples and the index
retrieved from servers. The tuples and the index are only accessible to the clients who
own the data or the trusted partners of the clients (partnersare also referred to as clients
hereinafter).

Data Access Model. We assume that multiple clients always issue multiple queries
on a data table in the same time period, e.g. in working time. We process exact queries,
range queries and tuple updates given index keys as predicates. We also process tuple
insertion and deletion.

3.2 Attacker Model

Attacker and Prior Knowledge Assumptions. We consider attackers are external enti-
ties or the servers which store the data. We do not deal with insider attacks, such as



4

from malicious partners. We assume client machines are safe, thus any confidential in-
formation of the client such as the secret keyC is not known to attackers. Attackers do
not know clients’ queries. However, attackers could know clients’ data distribution and
even some exact data values and their occurrence frequencies. We assume attackers’
computations are bounded by polynomial size circuits.

Attacks. We consider two types of attacks: (1) attacks that try to compromise da-
ta confidentiality without compromising data availabilityor integrity; (2) attacks that
modify the encoded tuples or index keys (compromising data integrity), or conduct
Denial-of-Service (DoS) attacks to bring down servers (compromising data availabil-
ity). We say servers arefaulty in Type (2) attacks. In Type (1) attacks, attackers can
compromise any number of servers (or any number of servers can collude) to analyze
the encoded data. They can monitor index and data accesses, and perform inference or
linking attacks [6], in which they try to infer the correspondence between the positions
of encoded data in storage and plain-text values in the data domain, or even try to infer
the secret keyC.

4 Data Encryption and Dispersal by “Salted” IDA

We leverage Information Dispersal Algorithm (IDA) [10] forproviding data confiden-
tiality and availability. We propose an easy-to-use data encoding and dispersal scheme
calledsalted IDAbased on the original IDA scheme.

4.1 Information Dispersal Algorithm (IDA)

We first introduce the original IDA scheme [10]. IDAencodes and disperses data into
n uninterpretable pieces so that onlym (m ≤ n) pieces are required to reconstruct the
data, and the total storage size of the dispersed pieces is only n/m times of the data
size. Consider thatn pieces are distributed onton servers, then IDA can tolerate up to
(n −m) faulty servers for data retrievals. Table 1 summarizes the notations we use in
the paper.

Given a matrixM , letMi,: be itsith row,M:,i be itsith column, andMi,j orMij be
the entry at theith row,jth column ofM . Consider anm×w data matrixD. Each entry
in D is an integer in a finite fieldGF (2s), or a residue modB = 2s. The following
data values and arithmetic operations are onGF (2s). To encode and disperseD, IDA
uses ann × m information dispersal matrixC, in which everym rows are linearly
independent, or any submatrixC∗ formed by anym rows ofC is invertible, e.g. in

GF (24), C =













1 3 5
1 4 3
1 5 2
1 6 7
1 7 6













.

Let the encoded data matrix beE = C ·D, then each row ofE, Ei,: (1 ≤ i ≤ n), is
a dispersed piece stored on a server. To reconstructD, we collectm dispersed pieces,
corresponding tom rows ofE. Let these rows form anm × w submatrix ofE, E∗.
Keep the correspondingm rows ofC to form anm×m submatrix ofC, C∗. Then



5

Table 1.Table of Frequently Used Notations

Notation Description
n number of dispersed data pieces (number of servers to distribute the data)
m threshold number of pieces to recover the data (threshold number of servers to retrieve the data)
N number of data tuples or keys
d number of attributes in one tuple
C n×m secret key matrix
ID, TD plaintext index matrix, data tuples matrix
IE, TE securely encoded index matrix, data tuples matrix
Ei,:, E:,i ith row, ith column of matrixE
E∗ m×m sub matrix obtained by deleting rows inE
b number of branches in a B+-tree index node
col column address pointing to a column in a matrix
key key in a B+-tree index node

D = C∗−1 · E∗ (1)

For example inGF (24), consider a matrixD =





1 4 7
2 5 8
3 6 9



. Using the above infor-

mation dispersal matrixC, we get

E = C ·D =













1 3 5
1 4 3
1 5 2
1 6 7
1 7 6

















1 4 7
2 5 8
3 6 9



 =













8 6 7
12 9 9
13 10 8
4 8 8
5 11 9













We distribute five rowsE1,: , E2,: , ..., E5,: onto five serversS1, S2, ..., S5 respectively.
If S2 andS3 are faulty, we obtainE1,: , E4,: andE5,: from S1, S4 andS5 to formE∗.
We then deleteC2,: andC3,: fromC to formC∗, and reconstructD using Equation (1).

D = C∗−1 · E∗ =





1 3 5
1 6 7
1 7 6





−1 



8 6 7
4 8 8
5 11 9



 =





1 4 7
2 5 8
3 6 9





4.2 “Salted” IDA

IDA ensures data availability, but does not ensure adequatedata confidentiality. An en-
cryption scheme with adequate confidentiality should be resistant to statistical analysis
on a set of encrypted data. That is, the encrypted data set should not reveal any charac-
teristics of the corresponding plaintext data set. Note that simple symmetric encryption
such as 3DES reveal the underlying data distribution; order-preserving encryption [4]
reveals the data order.

Based on IDA, we propose a scheme calledsalted IDAto achieve such data confi-
dentiality. As in IDA, a client maintains ann × m secret matrixC as the information
dispersal matrix and the keys for encoding and decoding a data matrixD, wheren,m



6

are determined by the client based on the number of servers that she plans to use and
the estimated number of non-faulty servers. In addition, the client keeps a secret seed
ss, and a deterministic functionfs for producing random factors based onss and the
address of data entries onD. We call these random factorssalt.

Functionfs feedsss into a pseudorandom number generator (PRNG). Before en-
coding and dispersingD onton servers using IDA, for each column ofD, D:,i, the
client calls the PRNG procedurei times, sets the last generated random number as the
salt, and then adds the salt to each data entry ofD:,i,Dj,i (1 ≤ j ≤ m). After decoding
the encoded data retrieved fromm non-faulty servers, the client reconstructs salts by
callingfs and then deducts these salts from the decoded data entries, recoveringD. The
security of salted IDA is established in Section 7.1.

5 Secure Cloud Data Access

In this section, we present the core design of our secure query processing framework
for relational data stored in the cloud.

5.1 Overview

We use salted IDA to encode and disperse the data onto serversin the cloud. Now we
consider the problem of query processing on salted IDA encoded matrix. First, we note
that in Equation (1), if the encoded matrixE∗ is substituted by a columnE∗

:,i, we can
get the corresponding data columnD:,i.

D:,i = C∗−1 · E∗

:,i (2)

Similarly we can encode a columnD:,i separately as follows.

E:,i = C ·D:,i (3)

For the example data in Section 4.1, if we retrieveE11 = 8 from serverS1, E41 = 4
from serverS4 andE51 = 5 from serverS5 to form a columnE∗

:,1 = (8 4 5)T , we get
D:,1 = (1 2 3)T using Equation (2). However, note that a row of the data matrix cannot
be accessed in a similar way by accessing only a row of the encoded matrix.

Using thiscolumn accessproperty, we can process a query or an update by ac-
cessing a few columns at a time. However, selecting which columns to access is still
difficult, because searching data on the IDA encoded matrix based on plaintext input is
fundamentally difficult. We solve this problem by building aB+-tree index on the key
attribute. The index is kept secure and is only known to the client.

Given a tableD with N tuples and a B+-tree indexI on the key attributes ofD,
we storeD into a tuple matrixTD, andI into an index matrixID. TD andID have
a fixed column size,m. As a result, each column ofTD corresponds to one or more
tuples inD. One or more columns ofID correspond to a tree node inI. Each leaf node
of I maintains the pointers to the columns ofTD where the tuples with the keys in this
leaf node are stored. We encodeID into IE andTD into TE, and then disperseIE
andTE onton servers,S1, S2, ..., Sn, by salted IDA (see Fig. 1). Queries on the index
key attribute can be efficiently processed by locating the columns ofID (tree nodes)
that store the query keys and then retrieving the corresponding tuples from columns of
TD.



7

5.2 Organization of Index

Fig. 1. Secure Cloud Data Access Framework

Let the branching factor of the B+-
tree indexI beb. Then every node of
I has[⌈ b−1

2 ⌉, b − 1] keys, and every
internal node ofI has[⌈ b

2⌉, b] chil-
dren. We fix the size of a tree node
as2b + 1. Since the column size of
the index matrixID is fixed tom,
the ideal case would bem = 2b+ 1,
one column for one tree node. We as-
sume the ideal case in the paper for
simplicity 1.

We assign each tree node an inte-
ger column address denoting its be-
ginning column inID according to
the order it is inserted. Similarly, we
assign every tuple column ofTD an
integer column address according to
the order its tuples are added into
TD. Since the tree is dispersed, these column addresses serve as pointers to the tree
nodes.

We represent a tree node ofI, node, or the corresponding consecutive columns in
ID, ID:,g as

(isLeaf, col0, col1, key1, col2, key2, ..., colb−1, keyb−1, colb) (4)

whereisLeaf indicates if it is a leaf node.keyi is an index key, or0 if node has less
thani keys. For an internal node,col0 = 0, coli (1 ≤ i ≤ b) is the beginning column
address of theith child node ofnode if keyi−1 exists, otherwisecoli = 0. For a leaf
node,col0 andcolb are the beginning column addresses of the predecessor/successor
leaf nodes respectively, andcoli(1 ≤ i ≤ b− 1) is the column address of the tuple with
keyi.

Given an exampleEmployeetable shown in Fig. 2, Fig. 3 gives an index (the upper
part) built onPerm Noand the corresponding index matrixID (the lower part). In the
figure, the branching factorb = 4, and the column size ofID,m = 9. Keys are inserted
into the tree in ascending order. The numbers shown on top of the tree nodes are the
column addresses of these nodes. The numbers pointed to by arrows below the keys
of the leaf nodes are the column addresses of the tuples with those keys. For the root
nodeID:,2, isLeaf = 0, col0 = 0, col1 = 1 is the column address of its leftmost
child, key1 = 10003, key3 = 0 andcol4 = 0 for no third key. For the leaf nodeID:,1,
isLeaf = 1, col0 = 0 for no predecessor,col1 = 1 is the column address of the tuple

1 In the cases of multiple columns representing a tree node, the columns representing a tree node
are consecutive, and the number of these columns is fixed as⌈ 2b+1

m
⌉. Given the column address

of the tree node, which is also the column address of the beginning column that represents the
node, the column addresses of the following columns can be easily derived from the beginning
column address, since consecutive columns have consecutive integer addresses.



8

Fig. 2. Employee Table Fig. 3. Index Matrix of Employee Table

with key= 10001, col3 = 0 andkey3 = 0 for no third key, andcol4 = 3 is the column
address of the successorID:,3.

5.3 Organization of Data Tuples

To disperse data tuples on the same setting of servers as the index keys, the column size
of the tuple matrixTD is also set asm. Initially, to organize the existingd-dimensional
tuples ofD in TD, we can sort these tuples in ascending order of their keys, and pack
everyp tuples in a column ofTD such thatp · d ≤ m − k and(p + 1) · d > m − k,
wherek is the size of a secure checksum. The checksum is calculated by applying the
Message Authentication Code(MAC) [20] on the attribute values of allp tuples, so as
to verify the integrity of these tuples returned by servers.The size of the checksum is
fixed regardless of the length of the data.

After initialization, a new tuplet is inserted in the last column ofTD if the column
can accommodatet, or inserted into a new column at the end ofTD. Tuples are not
stored in the order of their index keys as in the initialization. This approach speeds up
tuple insertion and makes it flexible. A deleted tuple is removed from the correspond-
ing column by leaving thed entries it occupied previously empty (the corresponding
encoded entries are not empty, but are filled with salts).

5.4 Secure Column Access Via Proxies

In our framework, the client directs query processing, while the servers store or retrieve
columns on the index matrixID and the tuple matrixTD based on the client’s decision.
Data updates or the initial data uploading need to store columns. Read-only queries only
need to retrieve columns.

To store a column ofID (or TD), ID:,i (or TD:,i), the client adds salts into the
data entries in the column, encodes the column using Equation (3), and disperses it onto
n servers. To retrieveID:,i (or TD:,i), the client retrievesm pieces fromm non-faulty
servers, decodes the assembled column using Equation (2), and deducts salts. Them
requests are sent in parallel.



9

From these column accesses, attackers cannot precisely determine the content of a
query or the plaintext data involved. However, attackers can easily learn the initiator
client through social engineering attacks, and then infer the client’s query and the data
accessed in the query. To hide query initiators from attackers, we route column access
requests and responses for different clients through atrusted proxy, so that attackers
cannot even distinguish between different queries sent from different clients. Multiple
proxies can be used for load balancing. A client can switch toanother proxy whenever
needed. We call this schemecolumn-access-via-proxy. Its security guarantee is analyzed
in Section 7.1.

6 Query Processing

Our framework supports exact queries, range queries, as well as updates, inserts and
deletes. These common queries form the basis for general purpose relational data pro-
cessing.

Exact Query. To find the tuplet for a given index keyx, the client traverses the
index downwards from the root. This traversal is similar to the traversal on a traditional
B+-tree index, except that retrieving each tree node requires retrieving the correspond-
ing index matrix column. At the end of the index traversal, ifthe client findsx in a leaf
node, the client follows the tuple matrix column address associated withx to locatet,
which also needs retrieving the column wheret is stored.

Range Query. To find the tuples whose keys fall in a given range[xl, xr], the client
locates all qualified keys in the leaf nodes of the index, getsthe addresses of the tuple
matrix columns associated with these keys, and then retrieves the answer tuples from
these tuple matrix columns. The qualified index keys are located by performing an exact
query on eitherxl or xr, and then following the successor or predecessor links at the
leaf level. Since tuples can be dynamically inserted and deleted, and the tuple matrix
columns may not be ordered by index keys, we cannot directly retrieve the tuple matrix
columns in between the tuple matrix columns corresponding toxl andxr. After finding
out the qualified index keys and the associated tuple matrix column addresses, we can
request the tuple matrix columns in batch to save disk read time on the server.

Tuple Update. Update to a tuple without changing its index key can be done by
performing an exact query on the key to get the target tuple column and then storing the
updated tuple column.

Insertion and Deletion. Data insertion is done in two steps: tuple insertion and
index key insertion. The corresponding columns in the tuplematrix TD and in the
index matrixID need to be updated by re-storing these columns. Data deletion follows
a similar process, with the exception that the tuple to be deleted is first located based
on the tuple’s key. The order that aTD column is updated before theID column is
important, since the column address of theTD column is the link between the two and
needs to be recorded in theID column. Index key insertion and deletion are always
done on the leaf nodes, but node splits or merges may be neededto maintain the B+-
tree structure. The overhead in these cases is still small, since the number of nodes
(columns) to be updated is bounded by the height of B+-tree,logbN .



10

Boosting Performance and Improving Data Confidentiality atAccesses by Caching
Index Nodes on Client. The above query processing relies heavily on index traversals,
which means the index nodes are frequently retrieved from servers and then decoded
on the client, resulting in a lot of communication and computation overhead. Query
performance can be improved by caching some of the most frequently accessed index
nodes in clear on the client. Top level nodes in the index are more likely to be cached.
We assume the root node of the index is always cached. Cachingindex can also confuse
the inferences that depend on the order of requests to infer the index structure and the
data, thus help improving data confidentiality at accesses.

7 Security Analysis

As analyzed below, we provide data confidentiality against polynomial size circuits
bounded attackers, even when all servers are controlled andmonitored (but they are not
faulty) by attackers. We also provide data integrity and availability when no more than
n−m servers are faulty.

7.1 On Data Confidentiality

We rely on the definition ofdata indistinguishability[21, 22] to prove the confiden-
tiality of “salted” IDA encoding.Data indistinguishabilitymeans thatthe encryption of
any two database tables with the same schema and the same number of tuples should
be computationally indistinguishable for any polynomial size circuit. It is a strong se-
curity guarantee in that it invalidates statistical analysis on encoded data, while such
attacks would work on simple symmetric encryption such as 3DES or order-preserving
encryption [4]. The original IDA scheme [10] does not have such strong security guar-
antee, e.g. equal plaintext columns would be encoded into equal ciphertext columns,
and constructingm×m correct correspondences between plaintext and ciphertextdata
could reveal the secret keyC. We show in the following that salted IDA achieves data
indistinguishability.

Theorem 1. If the random numbers generated by a pseudorandom number generator
(PRNG) are indistinguishable from truly random numbers,∀ two m × w data matri-
cesD,D′ in GF (232), their encryption under salted IDA scheme are computationally
indistinguishable.

Proof. Given that the random numbers generated by PRNG are drawn uniformly from
GF (232), each column of a matrixD:,i will be added by a salt which is uniformly
distributed in[1, 232], thus the number of possible choices of salts for each column
is 232. For w columns, the total number of possible choices of salts is232w. Since
w > N/(b− 1), 232w > 232N/(b−1), which is exponential inN . For a typical database
index of b = 50, N = 106, 232N/(b−1) > 2653061. Given such a large choice space
of salts and that after adding salt toD andD′, they will be encoded with an unknown
secret matrixC, the ciphertext matricesE,E′ obtained by salted IDA encoding are
computationally indistinguishable.



11

Since the rows ofE,E′ are distributed onton servers, two rows from themEi,: , E
′

i,:
are also computationally indistinguishable. Similarly, because of the large choice space
of salts,C is unbreakable on polynomial size circuits. However, ensuring the security
of the salted IDA encoding scheme itself does not ensure dataconfidentiality. For ex-
ample, a target data table can still be located on the serverswhen its data size or index
size is unique. Then attackers could monitor data accesses on its index matrix and infer
the keys based on user accessed positions and known index keydistribution. We there-
fore give a definition for a secure relational data processing framework to ensure data
confidentiality.

Definition 1. A secure relational data processing framework ensures data confidentiali-
ty if it satisfies the following conditions: (1) Data is encrypted under a secure encryption
scheme that satisfies data indistinguishability; (2) By observing index accesses on the
encrypted data, finding out correct correspondences between the plaintext data and the
encrypted data only has negligible advantage over random guesses with prior knowl-
edge on polynomial size circuits.

We have shown in Theorem 1 that our framework satisfies condition (1). We next
show that it satisfies condition (2). It is easy to see that if client data access patterns
are clearly revealed to attackers, attackers may figure out the index structure and then
perform linking analysis between possible plaintext data and ciphertext data. However,
since query processing is performed bycolumn-access-via-proxy, a client’s data access
pattern is obfuscated among multiple clients, and a query’sdata access pattern is obfus-
cated among multiple queries.

Lemma 1. Under multiple clients, multiple queries scenarios with index cache enabled
on the client, the best that attackers can get under the column-access-via-proxy scheme
is to identify the columns that represent leaf nodes of the index.

Proof. Under multiple clients, multiple queries scenarios with index cache enabled on
the client, all the attackers observe on the index are singleand batch column accesses.
The exact structure or even the height of the index are not known to the attackers. To
them, single column accesses could correspond to internal nodes or leaf nodes for exact
and range queries, while batch columns accesses could only correspond to leaf nodes
for range queries. In the long term, attackers may be able to identify a large number of
leaf nodes and sort some of them in the natural order of key values, but they may not
get the total order of all leaf nodes.

Based on Lemma 1, we show our framework satisfies condition (2) of Definition 1.

Lemma 2. Finding correct correspondences between plaintext keys and encoded leaf
nodes only has negligible advantage over random guesses on polynomial size circuits.

Proof. Assume the exact plaintext key values and the exact order of all the leaf nodes
are known. Consider the possible ways of distributingN ordered key values intow
ordered leaf nodes with the constraint that each node holds[ b−1

2 , b − 1] keys. Note
that only afternodei holds b−1

2 keys, can the succeeding nodenodei+1 start to hold
keys, which means afternodei holds b−1

2 keys, the next[ b−1
2 , b − 1] keys can only be



12

distributed betweennodei andnodei+1, yielding
( b−1

2
+1

1

)

= b+1
2 choices. As there are

(w− 1) pairs of preceding and succeeding nodes in total, the total number of choices is

( b+1
2 )

w−1
. Sincew > N/(b− 1), ( b+1

2 )
w−1

> ( b+1
2 )

N/(b−1)−1
, which is exponential

in N . For a typical database index ofb = 50, N = 106, ( b+1
2 )

N/(b−1)−1
> 227957.

Given such a large choice space, finding the correct correspondences between plaintext
key values and encoded leaf nodes only has negligible advantage over random guesses.

Since our proposed framework satisfies both conditions of Definition 1, we claim
the following.

Theorem 2. The proposed secure relational data processing framework ensures data
confidentiality.

Note that the multiple clients, multiple queries scenariosthat we assume in the
above are typical in working time, especially when the rent of the cloud resources is
related to the time of usage. We do not deal with other scenarios such as single client
queries for now, but we suggest requesting redundant columns in ak-anonymity [23]
fashion in each request to provide practical data confidentiality at accesses in those
scenarios.

7.2 On Data Integrity and Availability

We check the integrity violation on the index structure using the relationships of sorted
key values and the relationships of nodes in the index, and check the integrity violation
on data values using the checksums. We rely on IDA to provide data availability when
no more thann−m servers are faulty.

For the integrity of the index, the keys in a node and among allleaf nodes are sort-
ed, and the keys in parent/child or successor/predecessor nodes have certain relation-
ships. As a result, malicious changes on the encoded index, includingspoofing attacks
which replace an encoded data piece andsplicing attackswhich swap two encoded data
pieces, will be detected if these changes violate the relationships between nodes. For
the integrity of tuples, the client checks if the checksum stored in the same tuple column
as these tuples matches the attribute values of these tuples. If one data piece is found to
be corrupted, the client fetches a piece from another server, as long asm servers are not
faulty. Similarly, our framework can withstand DoS attackson up ton−m servers for
supporting read only queries. For writes such as data updates, alln servers are required
to be not faulty. However, this constraint can be relaxed by using the quorum consensus
idea proposed in [24].

8 Experimental Evaluation

Our evaluation focuses on the following: (1) the efficiency of our proposal for process-
ing different queries (exact, range, insert and update); (2) the overhead imposed by se-
curity based on comparisons with thebaselinequery processing of no security provided,
and with the basic encrypted index approach [6] which does not provide sufficient data
confidentiality and provides no data availability; (3) the overhead breakdown in terms



13

of client processing time, server processing time and network latency as well as the
communication sizes for index and tuples; (4) the effects ofdata size, query selectivity
and index caching on query performance.

8.1 Implementation and Setup

Implementation. We implemented thebaselineapproach, denoted asbaseline, the ba-
sic encrypted index approach [6], denoted asencr, and our approach, denoted assida,
in C++. Forbaseline, all processing is done on the server and a plaintext B+-treeindex
is used. Forencr, a B+-tree index is stored on the server, with each node encrypted
using 3DES. We used Crypto++ Library 5.6.0 [25] for implementing IDA and MAC in
sida and for implementing 3DES inencr. We simulated servers in the cloud by using
exactly the same number of local files, and simulated networklatency by multiplying
the communication sizes with the average internet downloadspeed (5.1Mbps) and the
average internet upload speed (1.1Mbps) in a wide area network [26]. To account for
the overhead of proxy insida, we doubled the calculated network latency. We imple-
mented the client side index cache for all three approaches for fairness of performance
comparison. Given a client desired cache hit rate, we cachedmost frequently accessed
index nodes based on the query workload.

Data Set. We extracted 5 attributes,I ID, I A ID, I RELATED1,...,I RELATED5,
I STOCKandI PAGEfrom theItem table of TPC-W Benchmark [27] to form the test
data table and built an index on the primary keyI ID. We used a TPC-W data generating
tool to generate different sizes of tuple sets.

Setup. We fixed the branching factor of B+-tree indexb = 50. We usedm =
13, n = 21 servers forsida, and only one server forbaselineandencrrespectively. We
summarize our experimental parameters in Table 2. For each combination of parameter-
s, we generated 1000 exact queries, range queries, data updates and inserts respectively.
A query key was generated by randomly picking a value from thedomain ofI ID based
on Zipf distribution with the specified query skew (default skew=1). For a range query,
we used this generated query key as the pivot value, and picked a fixed size query range
(query range/selectivity in Table 2) around the pivot value. For an update or insert, the
new values of the tuple were generated using the TPC-W tool. The reported results were
averaged over 1000 queries of the same type. Experiments were run on Linux servers
with Intel 2.40GHz CPU, 3GB memory and Federal Core 8 OS.

Table 2.Experimental Parameters

Parameter Domain Default
Number of TuplesN 10K, 100K, 1M, 10M 1M

Query Range/Selectivity 100, 500, 1000, 2000 500
Index Cache Hit Rate for Client 0.0, 0.4, 0.8, 1.0 0.8
Query Skew 1, 1.5, 2, 2.5, 3 1
Threshold Number of Serversm, Total Number of Serversn (10, 15), (11, 17), (12, 19), (13, 21)(13, 21)



14

8.2 Experimental Results

General Overhead Comparison. To understand the security overhead brought by our
approachsida, we first evaluate the efficiency ofsida for processing different types of
queries. We varied the number of tuplesN from 10K to 10M as shown on the x-axis
while fixing other parameters as default. These figures show that having strong data
security schemes insidado not dramatically degrade query performance as compared to
baselinewith no security schemes at all. Take 10M tuples as an example, from Figs. 4(a)
and 5(a), we can see that the total processing time ofsida(shown as the middle bar) for
an exact query is 0.86ms vs. 0.28 ms of that ofbaseline(shown as the left bar), and the
total processing time ofsida for a range query is 167ms vs. 20ms of that ofbaseline.
The communication size ofsidafor an exact query is around 0.5KB vs. 0.023KB of that
of baseline, as shown in Fig. 4(b), and the communication size ofsidafor a range query
is 78KB vs. 9.8KB of that ofbaseline, as shown in Fig. 5(b). In many cases,sidaeven
outperformsencrwith weaker security schemes. We note thatencrhas larger network
latency in general. Althoughsidasometimes transmits more data thanencrbecausesida
packs tuples into tuple matrix columns and uses checksums, as shown in Fig. 5(b), the
data communication ofsidahappens between the client and multiple servers in parallel,
sosida incurs smaller network latency. The comparison result of total processing time
on data inserts is similar, so we do not show it here and specifically study its client
processing time below. Considering the overhead of security, these results suggest that
our approach is efficient to be used in practice.

Overhead Breakdown. By breaking down the processing time in Fig. 4(a) and
Fig. 5(a), we find that client processing dominates query processing insidaandencr,
which is because the client directs query processing and encoding/decoding all happen-
s on the client. For exact queries where index traversal is the dominant factor, index
communication dominates tuple communication, as shown in Fig. 4(b). However for
range queries where the amount of tuple processing is more than index traversal, tuple
communication dominates index communication, as shown in Fig. 5(b). For the above
read-only queries, the client processing time ofsida is slightly better than that ofencr.
However for data inserts and updates in Fig. 6(a) and 7(a), the client processing time of
sida is slightly worse thanencr, which suggests that salted IDA decoding is faster, and
only its encoding is a bit slower.

Varying Number of Tuples. We then study the effects of increasing number of tu-
plesN on query performance. Fig. 4 shows that the processing time and communication
sizes for exact queries increase steadily with bigger values ofN . For data inserts and
updates shown in Figs. 6 and 7, the client processing time andthe data communication
sizes increase slowly. However for range queries shown in Fig. 5, these overheads al-
most do not change. This is because the range query size is fixed, and the major part of
processing for a range query is to process the tuples in the requested range, which num-
ber could be much larger than the number of traversed index nodes (the height of the
B+-tree index). In general, our approach scales well with increasing number of tuples.

Varying Query Range/Selectivity. We then study the effects of range query size/query
selectivity on query performance. We varied the range querysize from 100 to 2000
while fixing other parameters as default. As a result, the answer size for the range query
would increase. Fig. 8 shows that the client processing timeand data communication



15

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

107106105104

P
ro

ce
ss

in
g 

T
im

e 
(s

)

Number of Data Tuples N

encr-client
disp-client

disp-server
encr-server

(a) Processing Time Breakdown

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

107106105104D
at

a 
C

om
m

un
ic

at
io

n 
S

iz
e 

(K
B

)

Number of Data Tuples N

encr-index
disp-index
encr-tuple
disp-tuple

(b) Communication Size Breakdown

Fig. 4. Effects of Varying Number of TuplesN on Exact Queries.

  0.0

  50.0

  100.0

  150.0

  200.0

  250.0

  300.0

ba
se

lin
e

si
da

en
cr

ba
se

lin
e

si
da

en
cr

ba
se

lin
e

si
da

en
cr

ba
se

lin
e

si
da

en
cr

P
ro

ce
ss

in
g 

T
im

e 
B

re
ak

do
w

n 
(m

s)

Number of Tuples N
10K 100K 1M 10M

Network Latency
Server Processing Time
Client Processing Time

(a) Processing Time Breakdown

  0.0

  10.0

  20.0

  30.0

  40.0

  50.0

  60.0

  70.0

  80.0

ba
se

lin
e

si
da

en
cr

ba
se

lin
e

si
da

en
cr

ba
se

lin
e

si
da

en
cr

ba
se

lin
e

si
da

en
crC

om
m

un
ic

at
io

n 
S

iz
e 

B
re

ak
do

w
n 

(K
B

)

Number of Tuples N
10K 100K 1M 10M

Tuple Comm Size
Index Comm Size

(b) Communication Size Breakdown

Fig. 5.Effects of Varying Number of TuplesN on Range Queries.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

10M1M100K10K

C
lie

nt
 P

ro
ce

ss
in

g 
T

im
e 

(m
s)

Number of Tuples N

sida
encr

baseline

(a) Client Processing Time

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

10M1M100K10K

D
at

a 
C

om
m

un
ic

at
io

n 
S

iz
e 

(K
B

)

Number of Tuples N

encr
sida

baseline

(b) Data Communication Size

Fig. 6. Effects of Varying Number of TuplesN on Inserts

 0.001

 0.01

 0.1

 1

 10

 100

 1000

107106105104

C
lie

nt
 P

ro
ce

ss
in

g 
T

im
e 

(s
)

Number of Data Tuples N

naive-encr
disp
encr

(a) Client Processing Time

 1

 10

 100

 1000

 10000

 100000

 1e+006

107106105104D
at

a 
C

om
m

un
ic

at
io

n 
S

iz
e 

(K
B

)

Number of Data Tuples N

naive-encr
encr
disp

(b) Data Communication Size

Fig. 7. Effects of Varying Number of TuplesN on Updates

size insidaandencr increase more dramatically than those ofbaseline. This is because
sida andencr must decode the encoded candidate answers sent from servers, so they
are more sensitive to the change to the query answer size.

Varying Cache Hit Rate. We next study the effects of index cache on the client on
saving the client from decoding index notes, and thus boosting query performance. We
changed the desired cache hit rate from 0.0 (no caching) to 1.0 (caching all the index



16

 0

 100

 200

 300

 400

 500

 600

 700

 800

20001000500100

C
lie

nt
 P

ro
ce

ss
in

g 
T

im
e 

(m
s)

Query Range/Selectivity

encr
sida

baseline

(a) Client Processing Time

 0

 50

 100

 150

 200

 250

 300

 350

20001000500100

D
at

a 
C

om
m

un
ic

at
io

n 
S

iz
e 

(K
B

)

Query Range/Selectivity

sida
encr

baseline

(b) Data Communication Size

Fig. 8. Varying Selectivity on Range Queries

 0

 0.5

 1

 1.5

 2

 2.5

1.00.80.40.0

C
lie

nt
 P

ro
ce

ss
in

g 
T

im
e 

(m
s)

Cache Hit Rate

encr
sida

baseline

(a) Client Processing Time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1.00.80.40.0

D
at

a 
C

om
m

un
ic

at
io

n 
S

iz
e 

(K
B

)

Cache Hit Rate

encr
sida

baseline

(b) Data Communication Size

Fig. 9. Varying Cache Hit Rate on Exact Queries

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 1  1.5  2  2.5  3

In
de

x 
C

ac
he

 S
iz

e 
(K

B
)

Query Skew

sida

(a) Query Skew on Cache Size

 0

 500

 1000

 1500

 2000

 2500

 10  20  30  40  50  60  70  80  90  100

In
de

x 
C

ac
he

 S
iz

e 
(K

B
)

Cache Hit Rate

sida

(b) Hit Rate on Cache Size

Fig. 10.Effects on Cache Size

nodes). Fig. 9 indicates that the effect of caching is significant for processing exact
queries. For range queries however, we do not see such a significant effect, which is
because the major processing for a range query is on tuples instead of on the index. We
do not report results for range queries due to space limit.

Effects of Query Skew on Cache Size. Continuing the previous study on cache hit
rate, we now look at how large size needed by an index cache fora table withN = 106

tuples. Fig. 10(b) shows that the size needed by an index cache increases exponentially
with the desired cache hit rate. This size is not big though, only around 450KB for 80%
cache hit rate, which suggests it is practical to cache partial and even major part of index
on the client. Caching reduces the overhead brought by security, making both security
and efficiency achieved at the same time. When query access ismore skewed, i.e. from
1 to 3 as shown in Fig. 10(a), the size of cache needed is smaller.

Results of Varying Number of Servers for Our Approach. We varied the number
of the threshold number of servers for retrieving data,m, from 10 to 13, and the corre-
sponding number of servers for distributing data,n, from 15 to 21, while fixing other
parameters as default. As shown in Fig. 11(a), the increasing number of servers and
fault tolerance support (n−m) increases the number of data pieces that the client needs
to calculate, disperse and recover from, thus increasing the client processing time. Data



17

 0.00145
 0.0015

 0.00155
 0.0016

 0.00165
 0.0017

 0.00175
 0.0018

 0.00185
 0.0019

 0.00195

13,2112,1911,1710,15

C
lie

nt
 P

ro
ce

ss
in

g 
T

im
e 

(s
)

Threshold Number of Servers m, Number of Servers n

disp

(a) Client Processing Time

 0.4

 0.45

 0.5

 0.55

 0.6

13,2112,1911,1710,15

D
at

a 
C

om
m

un
ic

at
io

n 
S

iz
e 

(K
B

)

Threshold Number of Servers m, Number of Servers n

sida

(b) Data Communication Size

Fig. 11.Effects of Varying Number Of Serversm,n on Exact Queries

storage size also increases (from 15/10 to 21/13 times of thesize of data before dis-
persing), but the data communication size is not much affected, as shown in Fig. 11(b).

9 Conclusion

To solve the security concern for enterprise use of relational data management in the
cloud, this paper has proposed a comprehensive framework for secure and efficient
query processing on relational data in the cloud. Our work isdistinguished from pre-
vious works in that data confidentiality is ensured in both storage and at access time,
and different queries and data updates are supported. Data confidentiality in storage is
ensured using the “salted” IDA scheme to encode and dispersethe data. Data confiden-
tiality in query accesses is ensured by only allowing a single operation calledcolumn-
access-via-proxybetween clients and servers. To support efficient query processing, a
B+-tree index is built on frequently queried key attributes. Both the index and the data
table are organized into matrices, encoded and dispersed using salted IDA. Moreover,
data availability is provided by leveraging IDA, and data integrity is provided by lever-
aging checksum and index structure. A security analysis andan experimental evaluation
indicate our framework achieves a practical trade-off between security and efficiency.

References

[1] Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud: explor-
ing information leakage in third-party compute clouds. In:CCS. (2009) 199–212

[2] Hacigumus, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted data in the
database service provider model. In: SIGMOD. (2002)

[3] Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries. In:
VLDB. (2004) 720–731

[4] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data.
In: SIGMOD. (2004) 563–574

[5] Ge, T., Zdonik, S.B.: Fast, secure encryption for indexing in a column-oriented dbms. In:
ICDE. (2007) 676–685

[6] Damiani, E., di Vimercati, S.D.C., Jajodia, S., Paraboschi, S., Samarati, P.: Balancing
confidentiality and efficiency in untrusted relational dbmss. In: CCS. (2003) 93–102

[7] Shmueli, E., Waisenberg, R., Elovici, Y., Gudes, E.: Designing secure indexes for encrypted
databases. In: DBSec. (2005)



18

[8] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC. (2009) 169–178
[9] Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM

45(6) (1998) 965–981
[10] Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault tol-

erance. J. ACM36(2) (1989) 335–348
[11] Plank, J.S., 0002, Y.D.: Note: Correction to the 1997 tutorial on reed-solomon coding.

Softw., Pract. Exper.35(2) (2005) 189–194
[12] Bowers, K.D., Juels, A., Oprea, A.: Hail: a high-availability and integrity layer for cloud

storage. In: CCS. (2009) 187–198
[13] Wang, C., Wang, Q., K.Ren, Lou, W.: Ensuring data storage security in cloud computing.

In: Proceedings of the 17th IEEE International Workshop in Quality of Service. (2009) 1–9
[14] : Cleversafe responds to cloud security challenges with cleversafe 2.0 software release.

http://www.cleversafe.com/news-reviews/press-releases/press-release-14 (2010)
[15] : Information dispersal algorithms: Data-parsing fornetwork security.

http://searchnetworking.techtarget.com/Information-dispersal-algorithms-Data-parsing-
for-network-security (2010)

[16] Comer, D.: Ubiquitous b-tree. ACM Comput. Surv.11(2) (1979) 121–137
[17] Emekci, F., Agrawal, D., Abbadi, A.E., Gulbeden, A.: Privacy preserving query processing

using third parties. In: ICDE. (2006)
[18] Ge, T., Zdonik, S.B.: Answering aggregation queries ina secure system model. In: VLDB.

(2007) 519–530
[19] Williams, P., Sion, R., Carbunar, B.: Building castlesout of mud: practical access pattern

privacy and correctness on untrusted storage. In: CCS. (2008) 139–148
[20] Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication.

In: CRYPTO. (1996) 1–15
[21] Kantarcioglu, M., Clifton, C.: Security issues in querying encrypted data. In: DBSec.

(2005)
[22] Wang, H., Lakshmanan, L.V.S.: Efficient secure query evaluation over encrypted xml

databases. In: VLDB. (2006) 127–138
[23] Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity

and its enforcement through generalization and suppression. Technical report (1998)
[24] Agrawal, D., Abbadi, A.E.: Quorum consensus algorithms for secure and reliable data. In:

Proceedings of the Sixth IEEE Symposium on Reliable Distributed Systems. (1988) 44–53
[25] : Crypto++ library 5.6.0. http://www.cryptopp.com/
[26] : 2009 report on internet speeds in all 50 states.

http://www.speedmatters.org/content/2009report
[27] : Tpc-w. http://www.tpc.org/tpcw/


