A Comprehensive Framework for Secure Query
Processing on Relational Data in The Cloud

Shiyuan Wang, Divyakant Agrawal, and Amr El Abbadi

Department of Computer Science, University of Califorrti&anta Barbara
{sywang, agrawal, anrt}@s. ucsb. edu

Abstract. Data security in the cloud is a big concern that blocks theegjdead
use of the cloud for relational data management. First, suendata security,
data confidentiality needs to be provided when data resids®iage as well as
when data is dynamically accessed by queries. Prior workquemy process-
ing on encrypted data did not provide data confidentialitargntees in both
aspects. Tradeoff between secrecy and efficiency needsnmade when satisfy-
ing both aspects of data confidentiality while being suidbt practical use. Sec-
ond, to support common relational data management furti@rious types of
gueries such as exact queries, range queries, data updagrsion and deletion
should be supported. To address these issues, this papespsoa comprehen-
sive framework for secure and efficient query processinglational data in the
cloud. Our framework ensures data confidentiality usirgaléed IDAencoding
scheme anaolumn-access-via-proxguery processing primitives, and ensures
query efficiency using matrix column accesses and a secuites®-index. In ad-
dition, our framework provides data availability and irigg We establish the
security of our proposal by a detailed security analysisdemonstrate the query
efficiency of our proposal through an experimental evatumati

1 Introduction

Cloud computing has been gaining interests in the comniengaa due to its desirable
features of scalability, elasticity, fault-tolerancefseanagement and pay-per-use. On
the other hand, the security of sensitive data stored in linedcremains a big con-
cern, and even a road block to the enterprise usage of the étourelational data
management and query processing. The cloud, unfortunhtedysome unique security
problems due to the shared environment it creates, evercéfsaccontrol policy and
authentication are in place. For example, a recent vulilégyafound in Amazon EC2
allows crossing virtual machine boundary and gaining act@snother tenant's data
co-located on the same physical machine [1]. Many enterptieerefore question about
whether adequate security can be ensured for storing acdgsimg their relational data
in the cloud.

To solve the above concern of data security, data confidigytis.a major chal-
lenge. Although encryption is often used to protects dataryption itself is insuffi-
cient to guarantee data confidentiality, even if the endoppscheme does not reveal
any characteristics about the plaintext data and thus cast igtatistical analysis on
encrypted data. When the encrypted data is frequently sedef®r serving clients’

queries, any potential information leakage should alsodrerolled and minimized,
since attackers may infer the plaintext data from clientsessed positions on the en-
crypted data. Many existing proposals on processing gaierieencrypted data did not
consider both confidentiality for data residing in storagd #or data being accessed
by queries [2, 3, 4, 5, 6, 7]. Some of them are only able to sttppee or two types
of queries on encrypted data, and do not even support otleepdacessing operations
such as data updates [3, 4]. Although powerful cryptogmpthniques such as ho-
momorphic encryption [8] and Private Information Retrief® can overcome some
of the confidentiality drawbacks, they are computation@kgensive and can adversely
impact both latency and throughput.

In addition to data confidentiality, the availability andegrity of data in the cloud
should also be considerekhformation Dispersal Algorithn{IDA) [10] and the sim-
ilar error-correcting codes [11] are used in recent work [1B, 13] to provide data
availability, and are commercialized [14]. A recent trendhidustry even consider IDA
as an alternative to the traditional data encryption [1fjces IDA provides both data
availability and certain degree of data confidentiality.

Our goal in this paper is to provide a comprehensive secug/quocessing frame-
work that addresses the issues of data confidentiality|adoitily and integrity, and
supports practical processing of various queries on tlaioslal data in the cloud. We
achieve confidentiality for data residing in storage usimpaified scheme to IDA,
called “salted” IDA (Section 4). Salted IDA relies on randomness to improve data
confidentiality of the original IDA scheme against compigtatbounded adversaries
and relies on the original IDA scheme to provide data avditgbWe achieve confi-
dentiality for data dynamically accessed by queries bysfiaming query requests to
single operations callecblumn-access-via-proxXgection 5), so that different queries
and queries among different clients are not likely to beedéhtiated. We discuss the
security of these two schemes in a security analysis (Seé)io

To enable practical query processing, we build a securer&s-ihdex [16] on fre-
quently queried attributes. We encode and disperse the iade the data tuples in-
to matrix column pieces using salted IDA, and access thexiadie the tuples using
column-access-via-proxy operation. During query praogss client retrieves and de-
codes only a small part of the index, based on which inforomeghe locates the candi-
date answer tuples. We further boost query performancedhirog partial index on the
client. Caching index also helps improve data confidemyiali accesses by confusing
inferences on the index traversal paths. Thus, we are ablgjoort common relational
database queries such as exact queries, range queries tangpdates with consis-
tent security guarantees (Section 6). Our experimentdliatran indicates the query
performance of our framework is practical, i.e. it can psscan exact query within 1
milliseconds, and a range query within 200 milliseconds atata table of size0”
(Section 8).

2 Related Work

To support database style queries on encrypted relati@tal grevious proposals de-
signed techniques to directly filter or process encrypted.ddowever, they did not

achieve a good tradeoff of data confidentiality and quergiefficy. For example, the
methods that attach range labels to encrypted data [2, 8atéive underlying data dis-
tributions. Methods relying on order preserving encrypfi®, 17] reveal the data order.
These methods cannot overcome attacks based on statistadgbis on encrypted data.
On the other hand, homomaorphic encryption is secure andenablculation on en-

crypted data [18, 8], but it relies on expensive public keyptosystem and thus is not
practical.

Instead of direct filtering or processing encrypted dataaléarnative is to use an
encrypted index which allows the client to traverse the xaled to locate data of inter-
ests in a small number of rounds of retrieval and decrypoid [5]. However, previous
works using encrypted index did not provide satisfactofadanfidentiality. For ex-
ample, deterministic symmetric key encryption (e.g. 3DEB)sed in [6], revealing
the underlying data distribution. Each value of the indetxies is encrypted in [7], re-
vealing the index structure and consequently revealiremthccess pattern. Although
confidentiality for data residing in storage is proved in [dta confidentiality in a dy-
namic query access environment is not guaranteed. Recektsiuadied obfuscating
query access patterns [19] for data outsourced in the clmudt still incurs a lot extra
computation and communication costs and requires a spgagate hardware, while we
only bring additional communication costs by routing lowdedata requests via prox-
ies. Our work is more comprehensive in that we provide datéidentiality, availability
and supports flexible queries and data updates.

3 System and Attacker Model

3.1 System Model

Data Model We consider a relational table with N tuples. Each tuple hasd at-
tributes, A1, As, ..., Ag. Anindex1 is built on the frequently queried attributes bf
such as the primary key. Without loss of generality, we raddras a one-dimensional
index with one-to-one mapping to the tuplemWe assume each attribute value (and
each index key) can be mapped to an integer in the ranfie of M AX].

Data Storage ModelThe tuples and the index are encoded under separate secret
keysC and then stored on servers Sy, So, ..., Sy, hosted by cloud storage providers
such as Amazon EC2. The same kéyare used for decoding the tuples and the index
retrieved from servers. The tuples and the index are onlgssille to the clients who
own the data or the trusted partners of the clients (parareralso referred to as clients
hereinafter).

Data Access ModeM/e assume that multiple clients always issue multiple igser
on a data table in the same time period, e.g. in working timepvdcess exact queries,
range queries and tuple updates given index keys as preslid&e also process tuple
insertion and deletion.

3.2 Attacker Model

Attacker and Prior Knowledge AssumptiongVe consider attackers are external enti-
ties or the servers which store the data. We do not deal witidén attacks, such as

from malicious partners. We assume client machines are thafe any confidential in-
formation of the client such as the secret K&ys not known to attackers. Attackers do
not know clients’ queries. However, attackers could knaerts’ data distribution and
even some exact data values and their occurrence freqsefi¢geassume attackers’
computations are bounded by polynomial size circuits.

Attacks We consider two types of attacks: (1) attacks that try to mamise da-
ta confidentiality without compromising data availabildy integrity; (2) attacks that
modify the encoded tuples or index keys (compromising datiagrity), or conduct
Denial-of-Service (DoS) attacks to bring down servers (pmmising data availabil-
ity). We say servers arlaulty in Type (2) attacks. In Type (1) attacks, attackers can
compromise any number of servers (or any number of servarsabude) to analyze
the encoded data. They can monitor index and data accessiggedorm inference or
linking attacks [6], in which they try to infer the corresmtance between the positions
of encoded data in storage and plain-text values in the dateh, or even try to infer
the secret key'.

4 Data Encryption and Dispersal by “Salted” IDA

We leverage Information Dispersal Algorithm (IDA) [10] fproviding data confiden-
tiality and availability. We propose an easy-to-use dataoding and dispersal scheme
calledsalted IDAbased on the original IDA scheme.

4.1 Information Dispersal Algorithm (IDA)

We first introduce the original IDA scheme [10]. ID&ncodes and disperses data into
n uninterpretable pieces so that only (m < n) pieces are required to reconstruct the
data, and the total storage size of the dispersed pieceslysrgmn times of the data
size Consider that pieces are distributed ontoservers, then IDA can tolerate up to
(n — m) faulty servers for data retrievals. Table 1 summarizes tiations we use in
the paper.

Given a matrixM, let M; . be itsith row, M. ; be itsith column, andV/; ; or M;; be
the entry at théth row, jth column ofM . Consider amn x w data matrixD. Each entry
in D is an integer in a finite field7F'(2°), or a residue mod = 2°. The following
data values and arithmetic operations areZdi(2°). To encode and disperge, IDA
uses am x m information dispersal matrix’, in which everym rows are linearly
independent, or any submatrix* formed by anyn rows of C is invertiblg e.g. in

135
143
GF(2Y),C =152
167
176

Let the encoded data matrix ie= C' - D, theneachrowoE, E; . (1 <i < n),is
a dispersed piece stored on a server. To reconsfruete collectm dispersed pieces,
corresponding ton rows of E. Let these rows form am x w submatrix ofE, E*.
Keep the corresponding rows ofC' to form anm x m submatrix ofC, C*. Then

Table 1. Table of Frequently Used Notations

Notation|Description

number of dispersed data pieces (number of servers toltittrihe data)

threshold number of pieces to recover the data (threshattbruof servers to retrieve the dg

number of attributes in one tuple

n
m
N number of data tuples or keys
d
C

n X m secret key matrix

ID, TD |plaintext index matrix, data tuples matrix

IE, TFE |securely encoded index matrix, data tuples matrix

E; ., E. ;|ith row,ith column of matrixEl

E* m X m sub matrix obtained by deleting rows i\
b number of branches in a B+-tree index node
col column address pointing to a column in a matrix
key key in a B+-tree index node
D=c"'. E* (1)
147
For example inGF(2%), consider a matriXD = | 2 58 |. Using the above infor-
369
mation dispersal matrig’', we get
135 8 67
143 147 1299
E=C-D=]|152 258 | =113108
167 369 4 88
176 5119
We distribute five rows; ., Es ., ..., E5 . onto five serversy, Ss, ..., S5 respectively.

If Sy andSs are faulty, we obtairE; ., E4. andEs . from S;, S4 andSs to form E*.

We then delet€’; . andCs . from C to form C*, and reconstrudD using Equation (1).
—1

135 867 147
D=C*""'E*=|167 488 |=1[258
176 5119 3609

4.2 *“Salted” IDA

IDA ensures data availability, but does not ensure adeqlateconfidentiality. An en-
cryption scheme with adequate confidentiality should bistast to statistical analysis
on a set of encrypted data. That is, the encrypted data seldshot reveal any charac-
teristics of the corresponding plaintext data set. Notesimple symmetric encryption
such as 3DES reveal the underlying data distribution; eptleserving encryption [4]
reveals the data order.

Based on IDA, we propose a scheme cabatted IDAto achieve such data confi-
dentiality. As in IDA, a client maintains am x m secret matrixC as the information
dispersal matrix and the keys for encoding and decodingamatrix D, wheren, m

ta)

are determined by the client based on the number of servatrslie plans to use and
the estimated number of non-faulty servers. In additioa,dlfient keeps a secret seed
ss, and a deterministic functioffis for producing random factors based snand the
address of data entries @h We call these random factosalt

Function fs feedsss into a pseudorandom number generator (PRNG). Before en-
coding and dispersing onton servers using IDA, for each column @&, D. ;, the
client calls the PRNG procedutdimes, sets the last generated random number as the
salt and then adds the salt to each data entof, D, ; (1 < j < m). After decoding
the encoded data retrieved fram non-faulty servers, the client reconstructs salts by
calling fs and then deducts these salts from the decoded data ergdeseringD. The
security of salted IDA is established in Section 7.1.

5 Secure Cloud Data Access

In this section, we present the core design of our secureyqurecessing framework
for relational data stored in the cloud.

5.1 Overview

We use salted IDA to encode and disperse the data onto sémihies cloud. Now we
consider the problem of query processing on salted IDA eadodatrix. First, we note
that in Equation (1), if the encoded matX is substituted by a columB&™. ;, we can

get the corresponding data colurbn;.

D:,i:C*il'E*:,i (2)
Similarly we can encode a coluni, ; separately as follows.
E,=C-D.,; 3)

For the example data in Section 4.1, if we retridvg = 8 from serverS,, E4; = 4
from serverS, andE5; = 5 from serverS; to form a columnE*. ; = (8 4 5)7, we get
D.; = (12 3)T using Equation (2). However, note that a row of the data ma#mnnot
be accessed in a similar way by accessing only a row of thederbmatrix.

Using thiscolumn accesgroperty, we can process a query or an update by ac-
cessing a few columns at a time. However, selecting whichronk to access is still
difficult, because searching data on the IDA encoded ma#sed on plaintext input is
fundamentally difficult. We solve this problem by buildind@a-tree index on the key
attribute. The index is kept secure and is only known to tientl

Given a tableD with N tuples and a B+-tree indek on the key attributes ab,
we storeD into a tuple matrixI'D, and! into an index matrix D. T'D andID have
a fixed column sizesm. As a result, each column @D corresponds to one or more
tuples inD. One or more columns dfD correspond to a tree nodeinEach leaf node
of I maintains the pointers to the columnsiob where the tuples with the keys in this
leaf node are stored. We encofl® into I andT' D into T E, and then dispersér
andT E onton serversSy, Sy, ..., Sy, by salted IDA (see Fig. 1). Queries on the index
key attribute can be efficiently processed by locating tHaras of D (tree nodes)
that store the query keys and then retrieving the correspgridples from columns of
TD.

5.2 Organization of Index

Let the branching factor of the B+-
tree index! beb. Then every node of
I has[[%517,b — 1] keys, and every
internal node off has[[%],5] chil-
dren. We fix the size of a tree node
as2b + 1. Since the column size of
the index matrix/ D is fixed tom,
the ideal case wouldbe =26+ 1,
one column for one tree node. We as-
sume the ideal case in the paper for
simplicity *.

We assign each tree node an inte-
ger column address denoting its be-
ginning column in/ D according to
the order it is inserted. Similarly, we
assign every tuple column @D an Fig. 1. Secure Cloud Data Access Framework
integer column address according to
the order its tuples are added into
TD. Since the tree is dispersed, these column addresses sepagngers to the tree
nodes.

We represent a tree node bfnode, or the corresponding consecutive columns in
ID,ID. ,as

(isLeaf, coly, coly, keyr, cola, keya, ..., colp—1, keyp—1, coly) 4)

whereisLea f indicates if it is a leaf nodekey; is an index key, of) if node has less
thani keys. For an internal nodegl, = 0, col; (1 < ¢ < b) is the beginning column
address of théth child node ofnode if key;_1 exists, otherwiseol; = 0. For a leaf
node,coly andcol, are the beginning column addresses of the predecess@ésacc
leaf nodes respectively, ardl; (1 < i < b— 1) is the column address of the tuple with
key;.

Given an exampl&mployedable shown in Fig. 2, Fig. 3 gives an index (the upper
part) built onPerm Noand the corresponding index matii¥> (the lower part). In the
figure, the branching factér= 4, and the column size dfD, m = 9. Keys are inserted
into the tree in ascending order. The numbers shown on topeofree nodes are the
column addresses of these nodes. The numbers pointed tadwysdbelow the keys
of the leaf nodes are the column addresses of the tuples madetkeys. For the root
nodelD. s, isLeaf = 0, coly = 0, col; = 1 is the column address of its leftmost
child, key; = 10003, keys = 0 andcols = 0 for no third key. For the leaf nodeD. ;,
isLeaf = 1, coly = 0 for no predecessotpl; = 1 is the column address of the tuple

1 In the cases of multiple columns representing a tree nodedlumns representing a tree node
are consecutive, and the number of these columns is fixE%&gﬁé} . Given the column address
of the tree node, which is also the column address of the begjrcolumn that represents the
node, the column addresses of the following columns candiy elerived from the beginning
column address, since consecutive columns have consedut@ger addresses.

2
o [o [||
1 3 4
| 10001 | 10002 | H 10003 | 10004 | |—)| 10005 | 10006 | 10007 |
PermNo | Salary | Age | N N L, b, by s Lo
t; | 10001 4000 25 1 2 3 a4
ID
t, | 10002 | 5000 | 28 : B L) —
t; | 10003 4000 25 11 2 3
t4 10004 4000 26 10201 10(;03 10303 10(;05
ts 10005 6000 30 10002 10005 10004 10006
ts | 10006 5500 28 ° . o o7
t; | 10007 6000 31 3 o RN :
Server,
Fig. 2. Employee Table Fig. 3. Index Matrix of Employee Table

with key = 10001, cols = 0 andkeys = 0 for no third key, anaol, = 3 is the column
address of the successap. 3.

5.3 Organization of Data Tuples

To disperse data tuples on the same setting of servers asifrelieys, the column size
of the tuple matrixl" D is also set as:. Initially, to organize the existing-dimensional
tuples of D in T'D, we can sort these tuples in ascending order of their keyspaok
everyp tuples in a column of' D such thapp-d < m —kand(p+1)-d > m — k,
wherek is the size of a secure checksum. The checksum is calculgtedddying the
Message Authentication Co@&IAC) [20] on the attribute values of all tuples, so as
to verify the integrity of these tuples returned by servéte size of the checksum is
fixed regardless of the length of the data.

After initialization, a new tuplé is inserted in the last column @fD if the column
can accommodatg or inserted into a new column at the end7oD. Tuples are not
stored in the order of their index keys as in the initialiaatiThis approach speeds up
tuple insertion and makes it flexible. A deleted tuple is reetbfrom the correspond-
ing column by leaving the entries it occupied previously empty (the corresponding
encoded entries are not empty, but are filled with salts).

5.4 Secure Column Access Via Proxies

In our framework, the client directs query processing, @ltile servers store or retrieve
columns on the index matrikD and the tuple matrif’ D based on the client’s decision.
Data updates or the initial data uploading need to storexmotu Read-only queries only
need to retrieve columns.

To store a column of D (or T'D), ID. ; (or T'D.;), the client adds salts into the
data entries in the column, encodes the column using Equ@)pand disperses it onto
n servers. To retrievéD. ; (or T'D. ;), the client retrieves: pieces frommn non-faulty
servers, decodes the assembled column using Equatiom@)jeducts salts. The
requests are sent in parallel.

From these column accesses, attackers cannot preciselynile¢ the content of a
query or the plaintext data involved. However, attackers easily learn the initiator
client through social engineering attacks, and then ifferdient’s query and the data
accessed in the query. To hide query initiators from atta;kee route column access
requests and responses for different clients througlusted proxy so that attackers
cannot even distinguish between different queries semnt fiifferent clients. Multiple
proxies can be used for load balancing. A client can switcintmther proxy whenever
needed. We call this scheroelumn-access-via-proxis security guarantee is analyzed
in Section 7.1.

6 Query Processing

Our framework supports exact queries, range queries, dsaweipdates, inserts and
deletes. These common queries form the basis for genengabgeirelational data pro-
cessing.

Exact Query To find the tuplet for a given index keyr, the client traverses the
index downwards from the root. This traversal is similarte traversal on a traditional
B+-tree index, except that retrieving each tree node requegtrieving the correspond-
ing index matrix column. At the end of the index traversathi client findse in a leaf
node, the client follows the tuple matrix column addres®eissed withx to locatet,
which also needs retrieving the column wheis stored.

Range QueryTo find the tuples whose keys fall in a given rarigge x|, the client
locates all qualified keys in the leaf nodes of the index, tetsaddresses of the tuple
matrix columns associated with these keys, and then resithe answer tuples from
these tuple matrix columns. The qualified index keys aretémthy performing an exact
query on either; or z,., and then following the successor or predecessor linkseat th
leaf level. Since tuples can be dynamically inserted andtdd| and the tuple matrix
columns may not be ordered by index keys, we cannot diregttiere the tuple matrix
columns in between the tuple matrix columns correspondaing andzx,.. After finding
out the qualified index keys and the associated tuple madtixnen addresses, we can
request the tuple matrix columns in batch to save disk rea€ ¢in the server.

Tuple Update Update to a tuple without changing its index key can be dgne b
performing an exact query on the key to get the target tuglenwo and then storing the
updated tuple column.

Insertion and Deletion Data insertion is done in two steps: tuple insertion and
index key insertion. The corresponding columns in the tupdrix 7D and in the
index matrixI D need to be updated by re-storing these columns. Data defetiows
a similar process, with the exception that the tuple to betddlis first located based
on the tuple’s key. The order that/aD column is updated before thie) column is
important, since the column address of h® column is the link between the two and
needs to be recorded in tHé) column. Index key insertion and deletion are always
done on the leaf nodes, but node splits or merges may be néedegintain the B+-
tree structure. The overhead in these cases is still sniadle $he number of nodes
(columns) to be updated is bounded by the height of B+-trgg/V.

10

Boosting Performance and Improving Data Confidentiality Atcesses by Caching
Index Nodes on ClientThe above query processing relies heavily on index tralgrs
which means the index nodes are frequently retrieved franesg and then decoded
on the client, resulting in a lot of communication and conapioh overhead. Query
performance can be improved by caching some of the mostdretyuaccessed index
nodes in clear on the client. Top level nodes in the index areertikely to be cached.
We assume the root node of the index is always cached. Caictdieg can also confuse
the inferences that depend on the order of requests to iméeintiex structure and the
data, thus help improving data confidentiality at accesses.

7 Security Analysis

As analyzed below, we provide data confidentiality agairdymomial size circuits

bounded attackers, even when all servers are controlletchanéored (but they are not
faulty) by attackers. We also provide data integrity andlafedity when no more than

n — m servers are faulty.

7.1 On Data Confidentiality

We rely on the definition oflata indistinguishabilityf21, 22] to prove the confiden-
tiality of “salted” IDA encoding Data indistinguishabilitymeans thathe encryption of
any two database tables with the same schema and the samemnahtbples should
be computationally indistinguishable for any polynomiakscircuit It is a strong se-
curity guarantee in that it invalidates statistical analy® encoded data, while such
attacks would work on simple symmetric encryption such aESBr order-preserving
encryption [4]. The original IDA scheme [10] does not havelsatrong security guar-
antee, e.g. equal plaintext columns would be encoded intalaziphertext columns,
and constructing: x m correct correspondences between plaintext and ciphefaat
could reveal the secret ke&y. We show in the following that salted IDA achieves data
indistinguishability.

Theorem 1. If the random numbers generated by a pseudorandom numberagen
(PRNG) are indistinguishable from truly random numbe&tswo m x w data matri-
cesD, D’ in GF(23?), their encryption under salted IDA scheme are computatigna
indistinguishable.

Proof. Given that the random numbers generated by PRNG are draviormfy from
GF(23?), each column of a matrixD. ; will be added by a salt which is uniformly
distributed in[1,232], thus the number of possible choices of salts for each column
is 232, For w columns, the total number of possible choices of salt3*#%’. Since

w > N/(b— 1), 232w > 232N/(=1) 'which is exponential ifV. For a typical database
index ofb = 50, N = 106, 232NV/(b=1) 9653061 Gjyen such a large choice space
of salts and that after adding saltfband D’, they will be encoded with an unknown
secret matrixC, the ciphertext matrice®’, £’ obtained by salted IDA encoding are
computationally indistinguishable.

11

Since the rows of, E’ are distributed onte servers, two rows from thed, ., . .
are also computationally indistinguishable. Similarkychuse of the large choice space
of salts,C' is unbreakable on polynomial size circuits. However, einguthe security
of the salted IDA encoding scheme itself does not ensureaatBdentiality. For ex-
ample, a target data table can still be located on the sewlress its data size or index
size is unique. Then attackers could monitor data accessésindex matrix and infer
the keys based on user accessed positions and known indeliskelpution. We there-
fore give a definition for a secure relational data procesii@amework to ensure data
confidentiality.

Definition 1. Asecure relational data processing framework ensures daf@aentiali-

ty if it satisfies the following conditions: (1) Data is encrggtunder a secure encryption
scheme that satisfies data indistinguishability; (2) Byesbig index accesses on the
encrypted data, finding out correct correspondences betweeplaintext data and the
encrypted data only has negligible advantage over randoasges with prior knowl-
edge on polynomial size circuits.

We have shown in Theorem 1 that our framework satisfies ciondi). We next
show that it satisfies condition (2). It is easy to see thatiéint data access patterns
are clearly revealed to attackers, attackers may figureheuindex structure and then
perform linking analysis between possible plaintext daigh @phertext data. However,
since query processing is performeddnlumn-access-via-proxs client’s data access
pattern is obfuscated among multiple clients, and a quegta access pattern is obfus-
cated among multiple queries.

Lemma 1. Under multiple clients, multiple queries scenarios wittiér cache enabled
on the client, the best that attackers can get under the celaotess-via-proxy scheme
is to identify the columns that represent leaf nodes of thexn

Proof. Under multiple clients, multiple queries scenarios wittlér cache enabled on
the client, all the attackers observe on the index are singtebatch column accesses.
The exact structure or even the height of the index are nowkrio the attackers. To
them, single column accesses could correspond to inteodaisor leaf nodes for exact
and range queries, while batch columns accesses could omlyspond to leaf nodes
for range queries. In the long term, attackers may be abketatify a large number of
leaf nodes and sort some of them in the natural order of kayegabut they may not
get the total order of all leaf nodes.

Based on Lemma 1, we show our framework satisfies conditipaf(Refinition 1.

Lemma 2. Finding correct correspondences between plaintext kegsesntoded leaf
nodes only has negligible advantage over random guesseslgngmial size circuits.

Proof. Assume the exact plaintext key values and the exact orddl thfedleaf nodes
are known. Consider the possible ways of distributi¥igordered key values inta

ordered leaf nodes with the constraint that each node Hélfis b — 1] keys. Note
that only afternode; holdsb*T1 keys, can the succeeding nodede; ; start to hold
keys, which means aftetode; holdsb*T1 keys, the nextb*Tl, b — 1] keys can only be

12

distributed betweenode; andnode; 1, yielding (1%11“) = ‘“LTl choices. As there are
(w — 1) pairs of preceding and succeeding nodes in total, the tataber of choices is

(“Tl)wfl. Sincew > N/(b— 1), (b%l)wf1 > (”Tl)N/(bfl)fl, which is exponential

in N. For a typical database index bf= 50, N = 109, (l’““Tl)N/(b_l)_1 > 227957,
Given such a large choice space, finding the correct cornelpes between plaintext
key values and encoded leaf nodes only has negligible aalgamver random guesses.

Since our proposed framework satisfies both conditions dinidien 1, we claim
the following.

Theorem 2. The proposed secure relational data processing framewnskies data
confidentiality.

Note that the multiple clients, multiple queries scenatltst we assume in the
above are typical in working time, especially when the rdrnthe cloud resources is
related to the time of usage. We do not deal with other scesatich as single client
queries for now, but we suggest requesting redundant cauimak-anonymity [23]
fashion in each request to provide practical data confidkfytiat accesses in those
scenarios.

7.2 On Data Integrity and Availability

We check the integrity violation on the index structure gdime relationships of sorted
key values and the relationships of nodes in the index, aadicthe integrity violation
on data values using the checksums. We rely on IDA to provida dvailability when
no more tham — m servers are faulty.

For the integrity of the index, the keys in a node and amonkgaflnodes are sort-
ed, and the keys in parent/child or successor/predecessgesrhave certain relation-
ships. As a result, malicious changes on the encoded indeludingspoofing attacks
which replace an encoded data piece spliting attacksvhich swap two encoded data
pieces, will be detected if these changes violate the cglstiips between nodes. For
the integrity of tuples, the client checks if the checksuoned in the same tuple column
as these tuples matches the attribute values of these tiffjes data piece is found to
be corrupted, the client fetches a piece from another seagéong asn servers are not
faulty. Similarly, our framework can withstand DoS attadksup ton — m servers for
supporting read only queries. For writes such as data update servers are required
to be not faulty. However, this constraint can be relaxeddiggithe quorum consensus
idea proposed in [24].

8 Experimental Evaluation

Our evaluation focuses on the following: (1) the efficien€épor proposal for process-
ing different queries (exact, range, insert and updatéh@ overhead imposed by se-
curity based on comparisons with thaselinequery processing of no security provided,
and with the basic encrypted index approach [6] which do¢pravide sufficient data
confidentiality and provides no data availability; (3) theethead breakdown in terms

13

of client processing time, server processing time and néthaiency as well as the
communication sizes for index and tuples; (4) the effectdadé size, query selectivity
and index caching on query performance.

8.1 Implementation and Setup

Implementation We implemented thbaselineapproach, denoted &sseline the ba-
sic encrypted index approach [6], denotedeasr, and our approach, denotedsida,

in C++. Forbaseling all processing is done on the server and a plaintext B-+itigax

is used. Foencr, a B+-tree index is stored on the server, with each node ptenly
using 3DES. We used Crypto++ Library 5.6.0 [25] for implertiieg IDA and MAC in
sidaand for implementing 3DES iancr. We simulated servers in the cloud by using
exactly the same number of local files, and simulated netdaddncy by multiplying
the communication sizes with the average internet downépaed (5.1Mbps) and the
average internet upload speed (1.1Mbps) in a wide area nef@®]. To account for
the overhead of proxy isida, we doubled the calculated network latency. We imple-
mented the client side index cache for all three approadardaifness of performance
comparison. Given a client desired cache hit rate, we cacteet frequently accessed
index nodes based on the query workload.

Data Set We extracted 5 attributes,ID, | _A_ID, |_ RELATED]...| RELATEDS
|_STOCKandI_PAGEfrom theltemtable of TPC-W Benchmark [27] to form the test
data table and built an index on the primary kd{p. We used a TPC-W data generating
tool to generate different sizes of tuple sets.

Setup We fixed the branching factor of B+-tree indéx= 50. We usedm =
13,n = 21 servers fosida and only one server fdraselineandencrrespectively. We
summarize our experimental parameters in Table 2. For eanobination of parameter-
s, we generated 1000 exact queries, range queries, dateespda inserts respectively.
A query key was generated by randomly picking a value frondtivaain ofl _ID based
on Zipf distribution with the specified query skew (defakkw=1). For a range query,
we used this generated query key as the pivot value, andpackired size query range
(query range/selectivity in Table 2) around the pivot valee an update or insert, the
new values of the tuple were generated using the TPC-W tbel ré&ported results were
averaged over 1000 queries of the same type. Experimenésnwgron Linux servers
with Intel 2.40GHz CPU, 3GB memory and Federal Core 8 OS.

Table 2. Experimental Parameters

Parameter Domain Default
Number of TuplesV 10K, 100K, 1M, 10M 1M
Query Range/Selectivity 100, 500, 1000, 2000 500
Index Cache Hit Rate for Client 0.0,0.4,0.8, 1.0 0.8
Query Skew 1,15,2,25,3 1
Threshold Number of Servers, Total Number of Servers|(10, 15), (11, 17), (12, 19), (13, 2013, 21

14

8.2 Experimental Results

General Overhead Comparisorio understand the security overhead brought by our
approactsida we first evaluate the efficiency sfdafor processing different types of
queries. We varied the number of tupl&sfrom 10K to 10M as shown on the x-axis
while fixing other parameters as default. These figures shaivhaving strong data
security schemes sidado not dramatically degrade query performance as compared t
baselinewith no security schemes at all. Take 10M tuples as an exarfinpie Figs. 4(a)
and 5(a), we can see that the total processing tinsgdaf{shown as the middle bar) for
an exact query is 0.86ms vs. 0.28 ms of thaba$eling(shown as the left bar), and the
total processing time dafidafor a range query is 167ms vs. 20ms of thabakeline
The communication size sidafor an exact query is around 0.5KB vs. 0.023KB of that
of baselingas shown in Fig. 4(b), and the communication sizeidafor a range query

is 78KB vs. 9.8KB of that obaseling as shown in Fig. 5(b). In many cass&jaeven
outperformsencrwith weaker security schemes. We note thiatr has larger network
latency in general. Althougsidasometimes transmits more data tlearcrbecausesida
packs tuples into tuple matrix columns and uses checkswrshawn in Fig. 5(b), the
data communication cfidahappens between the client and multiple servers in parallel
sosidaincurs smaller network latency. The comparison result @l torocessing time
on data inserts is similar, so we do not show it here and spaltjfistudy its client
processing time below. Considering the overhead of segtinise results suggest that
our approach is efficient to be used in practice.

Overhead BreakdownBy breaking down the processing time in Fig. 4(a) and
Fig. 5(a), we find that client processing dominates querggssing insidaandenct,
which is because the client directs query processing anadémg/decoding all happen-

s on the client. For exact queries where index traversalésdtiminant factor, index
communication dominates tuple communication, as showrign4tb). However for
range queries where the amount of tuple processing is mareitidex traversal, tuple
communication dominates index communication, as showngn3tb). For the above
read-only queries, the client processing timesiofais slightly better than that afncr.
However for data inserts and updates in Fig. 6(a) and 7(@J)ltant processing time of
sidais slightly worse tharencr, which suggests that salted IDA decoding is faster, and
only its encoding is a bit slower.

Varying Number of TuplesWe then study the effects of increasing number of tu-
plesN on query performance. Fig. 4 shows that the processing tie@ammunication
sizes for exact queries increase steadily with bigger wabieV. For data inserts and
updates shown in Figs. 6 and 7, the client processing timetendata communication
sizes increase slowly. However for range queries showngn%ithese overheads al-
most do not change. This is because the range query sizeds §imd the major part of
processing for a range query is to process the tuples in theested range, which num-
ber could be much larger than the number of traversed inddes(the height of the
B+-tree index). In general, our approach scales well withéasing number of tuples.

Varying Query Range/SelectivityVe then study the effects of range query size/query
selectivity on query performance. We varied the range gsey from 100 to 2000
while fixing other parameters as default. As a result, thevansize for the range query
would increase. Fig. 8 shows that the client processing intdata communication

15

.002! T 4
0.0025 encr-client —— 4 encr-index —+—
— disp-client - o 35 | disp-index - +
© 0.002 I-disp-server = _Ko....... uE) 3 encr-tuple
OE) encr-server wffe o T T —nmy s disp-tuple
& S 25
2 g 2
2 H 15
8 E :
8 g 1
a
S o5
oBe: B 4 8 0]
10* 10° 10° 107 10* 10° 10° 107
Number of Data Tuples N Number of Data Tuples N

(a) Processing Time Breakdown(b) Communication Size Breakdown
Fig. 4. Effects of Varying Number of Tupled” on Exact Queries.

W Network Latency
0 Server Processing Time

O Tuple Comm Size
B Index Comm Size

@ Client Processing Time

n

£ 300.0 80.0
<

g 2500 700
4 60.0
8 2000

@ 50.0
o

2 1500 40.0
£

> 30.0
£

@

]

8

°

o

Communication Size Breakdown (KB)

g8 g8 EE EE
@5 @5 » 5 b o
10K 100K M 10M 10K 100K im 10M
Number of Tuples N Number of Tuples N

(a) Processing Time Breakdown(b) Communication Size Breakdown
Fig. 5. Effects of Varying Number of Tupled on Range Queries.

18 18

7 g v B —
E 16 \ T 16
g 14 ro8 Lap—
Eo12 e 5 12 e encr
o = sida -
s ! g 1 baseling -
2 08 £ 08 +
s 06 E 06
'fLE 04 S o4
g 02 s 02
© o X z x %

10K 100K 1l oM 10K 100K M oM

R Number of Tuples N . Number of TuplesN .
(a) Client Processing Time (b) Data Communication Size
Fig. 6. Effects of Varying Number of Tupled’ on Inserts
o 1000 nawerséncr —)0(— L g 1e+006 naive-encr %
g 100 oA g 100000 i
Eﬂ 10 § 10000
2 1 g 10004
g E
& 0.1 E 100
5 oo 8 10
[s) 3% ¥ £ %
0.001 i Lol 8 1 ko
10 10° 10° 10’ 10* 10° 10° 10"

Number of Data Tuples N Number of Data Tuples N

(a) Client Processing Time (b) Data Communication Size
Fig. 7. Effects of Varying Number of Tupled” on Updates

size insidaandencrincrease more dramatically than thoséasbeline This is because
sidaandencr must decode the encoded candidate answers sent from sewehey
are more sensitive to the change to the query answer size.

Varying Cache Hit Rate We next study the effects of index cache on the client on
saving the client from decoding index notes, and thus bogsfuery performance. We
changed the desired cache hit rate from 0.0 (no cachingPt¢caching all the index

16

800
%0 Sida =3
600 | baseline ¥
:
= /
- -

W0 e
100

0 X %
100 500 1000 2000 100 500 1000 2000

Range/Selectivity Query Range/Selectivity

@ Clien%“elgrocessmg Time (b) Data Communication Size
Fig. 8. Varying Selectivity on Range Queries

encr —— ! + sida ——

encr -
baseline e g

Client Processing Time (ms)

%0 [o - I ———— 3

Data Communication Size (KB)

— @

[X encr ——

E 5 35T Sida 3

2 87 baseline -

= § 25 1

g S - .

LI B G s I S - |

g 2 15 X

g 3 e i

5 S os B

S * x g x x -
00 0.4 08 10 0.0 0.4 08 10

Cache Hit Rate Cache Hit Rate

(a) Client Processing Time (b) Data Communication Size
Fig. 9. Varying Cache Hit Rate on Exact Queries

2! T
sida —+— 500 sida ——

2000

1500

1000

500

Index Cache Size (KB)
Index Cache Size (KB)

25 3 10 2'0 30 40 50 60 70 80 90 100
ache Hit Rate

(a) Query Skéw on Cache Size (b) Hit Rate on Cache Size
Fig. 10.Effects on Cache Size

nodes). Fig. 9 indicates that the effect of caching is sigaift for processing exact
queries. For range queries however, we do not see such dicagnieffect, which is
because the major processing for a range query is on tuggtsanhof on the index. We
do not report results for range queries due to space limit.

Effects of Query Skew on Cache Siz€ontinuing the previous study on cache hit
rate, we now look at how large size needed by an index cacteetédile withV = 106
tuples. Fig. 10(b) shows that the size needed by an indexedacteases exponentially
with the desired cache hit rate. This size is not big thougly, around 450KB for 80%
cache hit rate, which suggests it is practical to cacheglantid even major part of index
on the client. Caching reduces the overhead brought by isgauaking both security
and efficiency achieved at the same time. When query accexwrésskewed, i.e. from
1to 3 as shown in Fig. 10(a), the size of cache needed is amalle

Results of Varying Number of Servers for Our Approackie varied the number
of the threshold number of servers for retrieving datafrom 10 to 13, and the corre-
sponding number of servers for distributing datafrom 15 to 21, while fixing other
parameters as default. As shown in Fig. 11(a), the incrgasimber of servers and
fault tolerance support— m) increases the number of data pieces that the client needs
to calculate, disperse and recover from, thus increasmgltent processing time. Data

17

0.00195
00019 | disP —+— Y
0.00185
0.0018
0.00175
0.0017
0.00165
0.0016
0.00155
0.0015
0.00145 04
10,15 11,17 12,19 1321 10,15 11,17 12,19 1321
Threshold Number of Servers m, \umber of Servers n Threshold Number of Servers m, Numbey of Servers,n

(a) Client Processing Time (b) Data Communication Size
Fig. 11. Effects of Varying Number Of Servera, n on Exact Queries

sida —+— |

0.55 +
</\‘\4*

4

Client Processing Time (s)

Data Communication Size (KB)
o
&

storage size also increases (from 15/10 to 21/13 times ofiteeof data before dis-
persing), but the data communication size is not much afteets shown in Fig. 11(b).

9 Conclusion

To solve the security concern for enterprise use of relatidata management in the
cloud, this paper has proposed a comprehensive frameworsefure and efficient
guery processing on relational data in the cloud. Our wourdiséinguished from pre-
vious works in that data confidentiality is ensured in botirage and at access time,
and different queries and data updates are supported. Dafi@entiality in storage is
ensured using the “salted” IDA scheme to encode and dispiges#ata. Data confiden-
tiality in query accesses is ensured by only allowing a simggeration calledolumn-
access-via-proxpetween clients and servers. To support efficient querygssing, a
B+-tree index is built on frequently queried key attributBeth the index and the data
table are organized into matrices, encoded and dispersegl seted IDA. Moreover,
data availability is provided by leveraging IDA, and dattegrity is provided by lever-
aging checksum and index structure. A security analysisarekperimental evaluation
indicate our framework achieves a practical trade-off leetwsecurity and efficiency.

References

[1] Ristenpart, T., Tromer, E., Shacham, H., Savage, S.; ymy, get off of my cloud: explor-
ing information leakage in third-party compute clouds. @€S. (2009) 199-212

[2] Hacigumus, H., lyer, B.R., Li, C., Mehrotra, S.: ExeqfiSQL over encrypted data in the
database service provider model. In: SIGMOD. (2002)

[3] Hore, B., Mehrotra, S., Tsudik, G.: A privacy-presenyimdex for range queries. In:
VLDB. (2004) 720-731

[4] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order peegng encryption for numeric data.
In: SIGMOD. (2004) 563-574

[5] Ge, T., Zdonik, S.B.: Fast, secure encryption for indexin a column-oriented dbms. In:
ICDE. (2007) 676—685

[6] Damiani, E., di Vimercati, S.D.C., Jajodia, S., ParaltosS., Samarati, P.: Balancing
confidentiality and efficiency in untrusted relational dismk: CCS. (2003) 93-102

[7] Shmueli, E., Waisenberg, R., Elovici, Y., Gudes, E.: Dasg secure indexes for encrypted
databases. In: DBSec. (2005)

18

[8] Gentry, C.: Fully homomorphic encryption using idedtilzes. In: STOC. (2009) 169-178
[9] Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: \Rttie information retrieval. J. ACM
45(6) (1998) 965-981

[10] Rabin, M.O.: Efficient dispersal of information for sgity, load balancing, and fault tol-
erance. J. ACMB6(2) (1989) 335-348

[11] Plank, J.S., 0002, Y.D.: Note: Correction to the 199ftial on reed-solomon coding.
Softw., Pract. ExpeB5(2) (2005) 189-194

[12] Bowers, K.D., Juels, A., Oprea, A.: Hail: a high-availity and integrity layer for cloud
storage. In: CCS. (2009) 187-198

[13] Wang, C., Wang, Q., K.Ren, Lou, W.: Ensuring data stersecurity in cloud computing.
In: Proceedings of the 17th IEEE International Workshop uraldy of Service. (2009) 1-9

[14] : Cleversafe responds to cloud security challengeh wli¢versafe 2.0 software release.
http://www.cleversafe.com/news-reviews/press-relegmess-release-14 (2010)

[15] : Information dispersal algorithms: Data-parsing fonetwork security.
http://searchnetworking.techtarget.com/Informatitispersal-algorithms-Data-parsing-
for-network-security (2010)

[16] Comer, D.: Ubiquitous b-tree. ACM Comput. Subd(2) (1979) 121-137

[17] Emekci, F., Agrawal, D., Abbadi, A.E., Gulbeden, A.iMRcy preserving query processing
using third parties. In: ICDE. (2006)

[18] Ge, T., Zdonik, S.B.: Answering aggregation queriea secure system model. In: VLDB.
(2007) 519-530

[19] Williams, P., Sion, R., Carbunar, B.: Building casttm# of mud: practical access pattern
privacy and correctness on untrusted storage. In: CCS8j2(89-148

[20] Bellare, M., Canetti, R., Krawczyk, H.: Keying hash @tions for message authentication.
In: CRYPTO. (1996) 1-15

[21] Kantarcioglu, M., Clifton, C.: Security issues in quirg encrypted data. In: DBSec.
(2005)

[22] Wang, H., Lakshmanan, L.V.S.: Efficient secure quergleation over encrypted xml
databases. In: VLDB. (2006) 127-138

[23] Samarati, P., Sweeney, L.: Protecting privacy whegld&ng information: k-anonymity
and its enforcement through generalization and suppms$echnical report (1998)

[24] Agrawal, D., Abbadi, A.E.: Quorum consensus algorighior secure and reliable data. In:
Proceedings of the Sixth IEEE Symposium on Reliable Distadl Systems. (1988) 44-53

[25] : Crypto++ library 5.6.0. http://www.cryptopp.com/

[26] : 2009 report on internet speeds in all 50 states.
http://www.speedmatters.org/content/2009report

[27] : Tpc-w. http://www.tpc.org/tpcw/

