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ABSTRACT
The back-end databases of web-based applications are a
major data security concern to enterprises. The problem
becomes more critical with the proliferation of enterprises
hosted web applications in the cloud. While much prior
work has concentrated on the malicious attacks that try
to break into the database by using vulnerabilities of web
applications, little work has focused on the threat of data
harvesting through web form interfaces, in which large col-
lections of the underlying data can be harvested and sen-
sitive information can be learnt by iteratively submitting
legitimate queries and analyzing the returned results for de-
signing new queries. Although the individual data items in
the database are public, data harvesting aims at accumu-
lating large subsets of the underlying data, thus potentially
revealing competitive information.

To defend against data harvesting, traditional prevention
approaches such as inference control could be used, but un-
fortunately they hurt usability. Thus a detection approach
should be used either as an alternative or complement to
prevention approaches. In this paper, we summarize the
characteristics of data harvesting, and propose the notions
of query correlation and result coverage for data harvest-
ing detection. We design a detection system called HengHa,
in which Heng examines the correlation among queries in a
session, and Ha evaluates the data coverage of the results of
queries in the same session. Our experimental results verify
the effectiveness and efficiency of HengHa for data harvest-
ing detection.

1. INTRODUCTION
With the success of the cloud-computing paradigm due to
its desirable features of scalability, elasticity, fault-tolerance,
self-management, and pay-per-use, an increasing number of
enterprises are migrating their applications to the cloud en-
vironments. Web-based data-intensive applications are the
majority of those applications. However, data security re-
mains the main obstacle for enterprises to host their web
applications in the cloud. The vulnerability and security of
enterprise data is still a significant research challenge.

A high-level classification of vulnerabilities and risks in data-
rich web applications reveals two potential threats to enter-
prise data. The first threat is unauthorized access to the ma-
chines in the cloud that host the back-end databases. The
attackers usually try to break into the back-end database by
looking for vulnerabilities in a web application (e.g. insuf-

ficient input checking), submitting malicious requests, and
then compromising the underlying data. A typical example
is SQL injection, which has been extensively studied [35, 19,
34] and can be mitigated by solid coding practices.

The other threat arises due to the permissive intent of web-
based applications which allows users from all over the In-
ternet to interact with the underlying back-end databases
through well-defined form-based query interfaces. Clearly,
the goal of such web-based applications is to make this in-
terface as usable as possible by providing informative results
to the queries from their respective visitors with the hope
that many of the casual visitors will be converted to legiti-
mate clients. This is indeed the underlying business model
that is prevalent amongst almost all E-Commerce web sites.
Even if the database is properly protected against malicious
attacks, and the application is carefully developed, we may
still not be able to avoid unwanted information leakage and
abuse. It is extremely difficult to prevent the adversaries
from disguising themselves as ordinary visitors to a web site
by submitting sequences of legitimate queries, but analyz-
ing the returned results for designing new queries in order
to dig sensitive information or gradually harvest the data
inventory. Ironically, in the past few years, there has been a
large body of research that addresses the issue of extracting
information from such back-end databases referred to as the
hidden databases, or hidden web [23].

Although data extraction from the hidden web is in gen-
eral useful for public good, since it enables web-like search,
it poses potential problems for the data provider in an en-
terprise landscape. For example, a competitor of company
X, say company Y, can launch a deep web crawler to crawl
product sale information from X’s web site. Although the
information on X’s web site is searchable to the public, re-
vealing a large number of data records may enable company
Y to infer sensitive business information of X (e.g. inven-
tory of a popular product). This type of attack launched by
company Y is referred as a crawling attack. Occasionally,
even web content crawling without malicious intent can be
perceived as adverse by content owners. For example, some
large internet search companies were sued for copyright in-
fringement because they crawled book contents from library
web sites [1], and news content from newspaper web sites [3]
for commercialization.

Many web applications adopt a simple solution to mitigate
data crawling attacks by setting a limit on the number of
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searches that a client can perform per day or per session.
However, in the presence of such a restriction, company Y
could still perform a uniform random sampling on the data
results through smart adaptive sequences of queries, result-
ing in company Y being able to infer approximations of sen-
sitive aggregates of X’s inventory (e.g. a popular product
is in short supply) [6, 8, 7], and to adjust its own business
strategy against X based on that information. This second
type of attack performed by Y is referred as a sampling at-
tack [8]. In addition to the above crawling and sampling
attacks, unknown attacks with the purpose of harvesting
data and learning sensitive information could also exist. We
refer collectively to such attack activities as data harvesting.

Although similar problems of data inference were extensively
studied in statistical and general databases [29, 9, 12], little
research efforts have been put in data harvesting on hid-
den databases. Traditional data inference can be controlled
using access control, query sets restriction or data pertur-
bation. However, there are two problems when applying
these same prevention approaches to control data harvest-
ing. First, query sets restriction is not effective on sampling
attacks, as shown in the above example. Second, query sets
restriction and data perturbation hurt usability. Therefore,
we propose using lightweight detection approaches as alter-
native or complement to prevention approaches.

Technical Challenge. Detecting data harvesting on a hid-
den database is a non-trivial task. Traditional analysis based
on individual queries [34, 19, 20] does not work in this con-
text, since each query is legitimate by design. A more ap-
propriate choice would be to analyze user sessions, including
web robot detection. However, such techniques typically rely
on identifying special characteristics of HTTP traffic [33]
and they may have difficulty in finding a deep web crawler,
because a deep web crawler can be easily camouflaged as a
normal user by submitting HTTP requests similar to those
of normal users.

Observation. We observe that when regular users use web
form interfaces for searching, in most cases they have a spe-
cific task in mind. For example, to find clothes for a partic-
ular occasion on a clothing store web site; to find bargain
flight tickets and hotel rooms for a trip on a flight ticket
booking web site such as priceline.com; or to find beauty
and skin care products in a department store web site. In
contrast, data harvesting attackers are interested in finding
as broad and as diverse information as possible from the un-
derlying database. This observation is consistent with the
findings of web crawler behavior in prior research investiga-
tions [10].

Proposed Approach. We identify data harvesting attack-
ers by examining if their search behaviors in a session show
relatively significant broadness and diversity. Broadness is
measured by the data that the attacker obtains from the
search results compared to the entire data in the hidden
database, which we formally refer to as result coverage. Di-
versity is measured by the degree of correlation among the
attacker’s queries in a single session, which we refer to as
query correlation. Both approaches are needed since a sam-
pling attack may not achieve significant broadness, and still
obtains distinct pieces of data. A session that shows signifi-

cant diversity in its visit might be just of an absent-minded
user.

We refer to our system for detecting data harvesting as
HengHa, which is derived from two icons Heng and Ha from
Eastern mythology and who guard and protect Buddhist
temples from all evil 1. HengHa consists of two main sub-
systems: the query correlation observer (corresponding to
Heng) and the result coverage monitor (corresponding to
Ha). The Heng subsystem treats each query as an item set
consisting of the predicates of the query (values of the se-
quentially ordered fields on the web form). It finds the query
correlation of a session by mining frequent patterns [16] on
the queries within the session. The Ha subsystem efficiently
represents result coverage of a session with a coverage bit
vector. It employs a model derived from the clusters of the
coverage bit vectors of historical user sessions in order to
find groups of sessions with different data access patterns.
During online detection, the detector calculates the proba-
bility of a session being a data harvesting session based on
result coverage and query correlation, and makes a decision
for the suspicious session.

Contributions. We formally define data harvesting and
summarize their characteristics (Section 3). We propose
HengHa, a system for detecting data harvesting in the ses-
sion level (Section 4), which includes two novel approaches
of frequent pattern mining for finding query correlation (Sec-
tion 5) and coverage bit vector for representing result cov-
erage (Section 6). The approaches we propose do not re-
quire good sanitization of the training set, which makes them
practical. They are able to perform online detection in close
to real time with low false positive rates and 0% false nega-
tive rates (Section 8).

2. RELATED WORK
Databases are popular attack targets by both insiders who
have direct access to the databases and outsiders who can
only access the data in the databases through some appli-
cation interfaces. Insider attackers typically perform ma-
licious data modifications that may be prohibited by their
roles. Outsider attackers typically use the vulnerabilities of
the database management systems or the logical flaws in
the front end applications, such as buffer overflow and in-
sufficient input validation, to compromise the data in the
underlying database. The data harvesting we consider in
this paper are outsider attacks through web form interfaces.

To detect insider attacks, a rich body of work has focused
on finding anomalous data access operations (anomaly de-
tection) [20, 31, 24] or misuse of regular data operations
(misuse detection) [5, 32, 18]. Anomaly detection typically
builds a model of normal data access behaviors on attack
free logs offline, e.g. by clustering or classification. Dur-
ing online detection of attacks, it compares a user’s current
operation with learnt normal models and raises an alarm if
it finds significant deviation. Misuse detection builds rules
to capture normal data operations or known attack opera-
tions. Anomaly detection and misuse detection techniques
are also applicable to detecting outsider attacks. HengHa,

1For more interesting details, please refer to
http://en.wikipedia.org/wiki/Nio
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especially the Ha subsystem, corresponds to anomaly detec-
tion. Similar to [31, 24], our result coverage proposal also
exploits data accessed by users for finding anomalous behav-
iors. However, different from these two proposals, we do not
have to calculate statistics for every single query, which is
expensive.

Outsider attacks, especially attacks based on web applica-
tion interfaces, range from one step SQL injections to multi-
step intrusions. For detecting SQL injection attacks, Valeur
et al. [34] extract the structures of SQL queries and apply
anomaly detection. Kruegel and Vigna [22] perform statis-
tical analysis on the query attributes and values of HTTP
requests. Huang et al. [19] apply software testing tech-
niques to find vulnerabilities in web applications. For de-
tecting multi-step intrusions, Vigna et al. [35] build state
transition diagrams to model attacking process. To identify
business logic violations in multi-request sessions, Roichman
and Gudes [30] model queries in a session by a binary vec-
tor, each bit of which indicates the existence of a SQL fin-
gerprint. This is similar to our idea of a coverage bit vector,
but we model results of queries instead of the structures of
queries, because data harvesting changes query submissions
based on the results returned by previous queries.

In contrast to the common intrusive web based database
attacks, data harvesting attackers do not exploit vulnera-
bilities or weak logics in web applications. Instead, they
exploit the relationships between queries submitted and re-
sults returned to maximize the coverage of the underlying
data or to infer sensitive aggregate information. Recent pro-
posals on crawling the deep web [23] and sampling hidden
databases [6] raise the concern of data harvesting on hidden
database. The corresponding crawling and sampling attacks
are discussed in more details in Section 3.

Similar problems of inferring sensitive individual informa-
tion from multiple aggregation queries exists in statistical
databases, in which restrictions on query sets or data per-
turbation are often used for inference control [29, 9]. Unlike
statistical databases, web databases contain individual data
records instead of statistical aggregates. Restriction or per-
turbation, though suitable for statistical databases, violates
the open nature of E-commerce web applications. Similarly,
access control that prevents data disclosure in traditional
databases [12], if applied on web interfaces, would compli-
cate normal data access of a large number of users. A recent
proposal mitigates uniform random sampling attacks on hid-
den databases by inserting a large number of dummy tuples
into the database [8]. This way of data perturbation breaks
the data integrity of the database, and brings inconvenience
to potential clients, because every time they search, they
have to visually identify the real results from a large number
of dummy results. Hence, we believe a lightweight detection
approach should be used as an alternative to prevention ap-
proaches.

A closely related work to data harvesting detection is web
robot detection. Tan and Kumar [33] use various character-
istics of HTTP requests, such as referred page, request inter-
val, type of requested resources as features to build a classifi-
cation model for differentiating web robot sessions from nor-
mal user sessions. However, data harvesting attackers can

camouflage as normal users by using similar HTTP requests
to those of normal users, e.g. not leaving referred pages
blank, and having longer waits between query submissions.
Park et al. [26] design a smart javascript to capture user
keyboard and mouse operations for differentiating humans
from robots. Unfortunately, it is possible to mimic keyboard
strokes by programming, which has been used in game pro-
gramming. Moreover, some data harvesting activities can
be semi-automatic, e.g. humans submitting queries while
robots analyzing the query results and designing queries.

3. MODEL
3.1 Data and Session Model
In the following discussion, without loss of generality, we
assume a web application with only one search form inter-
face and an underlying database with only one data table
for the application to search. The search form has d fields,
a1, a2, ..., ad, for a user to fill in (text box) or select a value
(drop down list, radio box, etc). A field is bound if it is
not empty, otherwise it is free or unbound. The d fields are
sequentially ordered according to their natural display or-
der on the web interface, and are mapped to d attributes
in the underlying data table, D, through a one-to-one map-
ping. We assume D has N tuples with d attributes (data
with more than d attributes can be grouped by exactly d
attributes by performing a SQL GROUP BY query).

The search form can be considered as a SQL select query
template with at most d predicates: SELECT ∗ FROM D
WHERE a1 = v1 AND a2 = v2 AND ... AND ad = vd

LIMIT K, in which vi(1 ≤ i ≤ d) is an attribute value
of ai or ∗, K is a limit on the number of results returned.
The purpose of this limit is either for neatness of display on
the first page of results, or to prevent the entire data from
being released. Once a search form is submitted to the ap-
plication, a SQL select query is instantiated from the above
query template by keeping only the predicates correspond-
ing to the bound fields and filling vi with the bound values.
Although different web applications have different ranking
policies on the returned answers, here we simply return the
first K answer tuples that are found in D. Since the order
of the fields and predicates is fixed, we abbreviate a query
Q as (v1, v2, ..., vd), in which vi is ∗ for an unbound field ai.

We detect data harvesting in a single session level. Each ses-
sion consists of multiple queries. We assume user sessions
are clearly identified. In the special case that multiple users
are behind a NAT server or they use Tor [11] to hide their
IPs, the web applications can still maintain session IDs by
either generating a session ID when a user first visits the web
site and then appending the session ID in the urls visited by
the user, or forcing users’ browsers to cache the session ID
[2]. In another special case where a botnet is used, exist-
ing botnet detection techniques [15] could be applied. This
problem and the similar problem of detecting multi-session
colluding harvesting will be further explored in our future
work.

3.2 Attack Model
We assume the search service functions well and is not un-
der any Daniel-of-Service attack. We are not concerned
about attacks utilizing the vulnerabilities of a web appli-
cation, such as SQL injection, cross site scripting and buffer
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overflow, etc. We consider the attacks that harvest data
from D and possibly learn sensitive information derived from
the data. Such an attack is done by iteratively submitting
legitimate queries with valid field values, analyzing the re-
sults and then designing a new sequence of legitimate queries
based on the analysis outcome. We summarize two charac-
teristics of the search behavior in such an attack session as
follows:

1. Broadness, the data that the attacker obtains from the
results of the queries covers a broad scope of the un-
derlying data in the hidden database.

2. Diversity, the queries submitted by the attacker are
not concentrated and localized, and they reflect very
distinct intents.

We call such an attack data harvesting. The direct outcome
of data harvesting is to compromise the ownership and pri-
vacy of the data owner. The indirect outcome could be loss
of business profits, distraction of usual business activities,
distraction of business analysis or web campaign based on
statistics of user search activities (e.g. multivariate testing
for optimizing a landing page with a search form).

Note that data harvesting is different from simply flooding
queries in a very short period of time. The latter is easy
to detect and block, but data harvesting is not, because
it uses relatively small numbers of queries to maximize its
information gain. We focus on the following two types of
data harvesting attacks.

3.2.1 Crawling Attack
Crawling attacks perform deep web crawling [23] and data
extraction. Assume the attacker has domain knowledge of
the appropriate input values to fill in the fields of a search
form. To improve the efficiency of an attack, the attacker
focuses on informative query templates, the query templates
that can produce many distinct result sets with a small num-
ber of instantiated queries. The attacker starts by submit-
ting queries instantiated from the query templates with only
one bound field, and then chooses informative query tem-
plates of one bound field and generates new trial query tem-
plates with two bound fields. The attacker keeps submitting
queries, testing if a query template is informative, and gen-
erating new query templates based on previous informative
query templates iteratively, until all fields are bound and no
more informative query templates can be generated.

Broadness and diversity can be easily seen from the above
attack process. By trying different values and binding differ-
ent numbers of fields, the footprints of the attacker cover a
broad scope. The informative criterion itself indicates that
the queries instantiated from informative query templates
are diverse.

3.2.2 Sampling Attack
Similar to crawling attacks, sampling attacks try to reduce
the number of queries needed to be submitted for sampling a
reasonable size of data [6, 8]. However, the focus of sampling
attacks is to find the queries whose results are not truncated
by the limit K, meaning that the result size is in [1, K]. To

Figure 1: HengHa Detection System Architecture

ensure uniformity of sampling, the attacker can only sample
from the result set of these queries, because sampling from
the top K results of other queries will be biased. To identify
the above type of queries in the sampling process, the at-
tacker binds more fields to a query that produces more than
K results, or changes the bound field value of a query that
produces more than 1 but less than K results.

Due to the uniformity of sampling, the footprints of the
attacker exhibit diversity. Whether the footprints of the at-
tacker cover a broad scope depends on the sample size and
the intermediate search results for sensitive aggregates. If
the expected sample size is small (this is rare since a small
sample size does not provide a good estimate of the un-
derlying data), or if the attacker successfully finds sensitive
information of interest and terminates early, the footprints
of the attacker may not show broadness.

4. SYSTEM ARCHITECTURE
We propose a system called HengHa for data harvesting de-
tection. HengHa consists of two subsystems: a Query Cor-
relation Observer, also called Heng, and a Result Coverage
Monitor, also called Ha. Heng and Ha collect query correla-
tion (Section 5) and result coverage (Section 6) as evidence
for detecting data harvesting, and pass them to the core
detector respectively. We assume a typical three layer web
application, as illustrated in Fig. 1.

The directions of arrows in Fig. 1 show the data flow. The
Heng subsystem is in charge of examining incoming queries
submitted through the web form interface. The Ha subsys-
tem is in charge of monitoring the outgoing results of the
queries returned by the underlying database. The two sub-
systems are equipped with learnt behaviors of normal users
sessions as models. Although they make initial decisions
themselves, they report the evidence that they collect, such
as the query correlation score and data coverage pattern, to
the detector. The detector calculates the attack probabili-
ties of these sessions based on the evidence and then makes
a final judgement on whether these sessions are attacks.

5. QUERY CORRELATION
As mentioned in Section 1, a normal user session is usually
task oriented, and therefore the queries in the session are
often correlated. For example, when a user located in Santa
Barbara plans to go to Chicago for business, the majority
of the searches she does on a trip planning web site will be
about Chicago, the flight from Santa Barbara to Chicago,
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the hotels and car rentals in Chicago, etc. In contrast, as
we show in Section 3, the queries of data harvesting attack-
ers reflect diversity. In terms of crawling attacks, it was
experimentally shown in [10] that web crawlers visit more
distinctive resources than normal users. Similarly, data har-
vesting attackers fill in different binding inputs on the search
form and change predicate values much more frequently in
their sessions. Thus we use query correlation, the degree to
which the queries in a session are correlated to each other, as
a measurement for differentiating data harvesting attackers
from normal users. Our basic hypothesis is that data har-
vesting sessions are bound to have lower query correlation
as compared to the majority of normal user sessions.

To quantify query correlation, one straightforward way would
be to calculate the distances between any two queries in a
session based on some distance metric on queries (repre-
sented in predicate value vectors), and then use the sum
or average distance to represent query correlation. Closer
distances suggest higher correlation, while farther distances
indicate lower correlation. Given the number of queries in
session S, denoted by |S|, the time complexity of this ap-
proach is O(|S|2), which could be computationally expensive
for a larger size session S.

We contend that it is not necessary to measure correlation
between any two queries, as long as we can capture some
common characteristics of the queries. We describe our pro-
posal for quantifying query correlation in Section 5.1, and
discuss the offline learning of the query correlation thresh-
old value and online detection in Section 5.2 and Section 5.3,
respectively.

5.1 Representation of Query Correlation
To quantify query correlation, we adopt a simple and effi-
cient approach. From the above example, we notice that
some predicate values tend to appear frequently in several
queries in a normal user session, e.g. “Chicago”, but it is
harder to find predicate values with such high frequencies
in an attacker session. Therefore, we use frequent predi-
cate value sets to quantify query correlation in a session.
More specifically, given a session S that consists of a num-
ber of queries represented by their predicate value lists, {Q :
(v1, v2, ..., vd)}, we mine closed frequent predicate value sets
(called closed patterns in the literature [16]) on the predicate
value lists of these queries. We abbreviate closed frequent
predicate value set as CFS. We formally define it in the
following.

Definition 1. Given a session S, a predicate value set PS :
(vp1, vp2, ..., vpk) is a subset of a query Q : (v1, v2, ..., vd).
In another word, PS occurs in Q. The frequency of PS’s
occurrences in S divided by the number of queries in S,
|S|, is called support, denoted as support(PS). Given a
threshold value of support, supportthres, a PS is frequent
iff support(PS) > supportthres. A predicate value set PS
is closed, if PS is frequent and there exists no super-set
PS′ ⊃ PS with the same support as PS.

The reason that we mine closed frequent predicate value sets
instead of all frequent predicate value sets is that a larger size
of predicate value set with the same support is semantically

closer to the intention of a query. To mine CFS efficiently,
we use one of the fastest and well known frequent pattern
mining algorithms, FP-tree [17].

Table 1: Queries in A Trip Planning Session S1

Index Query
Q1 (Santa Barbara, Chicago, April 1 2010, April 7 2010 )
Q2 (Chicago, 4-star, April 1 2010, April 6 2010 )
Q3 (Chicago, Honda, April 1 2010, April 7 2010 )

Table 2: Closed Frequent Predicate Value Sets
(CFS) in S1 (supportthres = 1/3)
Index CFS support
CFS1 (Chicago, April 1 2010 ) 1
CFS2 (Chicago, April 1 2010, April 7 2010 ) 2/3

Table 3: Refined Supports of CFSs in S1

Index CFS rsupport
CFS1 (Chicago, April 1 2010 ) 1/3
CFS2 (Chicago, April 1 2010, April 7 2010 ) 2/3

As an example, consider a trip planning session S1 illus-
trated in Table 1. S1 consists of three queries that search
for flight tickets, hotel and car rentals. Given a support
threshold supportthres = 1/3, we get two CFSs, which are
shown in Table 2. Note that (Chicago) is not a CFS, be-
cause its support is the same as its super-set (Chicago, April
1 2010 ), which is a CFS.

After mining CFSs for a session S, we calculate the query
correlation score of S based on the mined CFSs. For two
CFSs, CFS1 and CFS2 s.t. CFS1 ⊂ CFS2, we subtract
the support of CFS1 from the support of CFS2 to account
for the unique occurrences of CFS2. We call the new sup-
port value refined support, abbreviated as rsupport. We cal-
culate the refined supports on all CFSs of session S. For our
running example S1, CFS1 ⊂ CFS2, thus rsupport(CFS1)
= 1 - 2/3 = 1/3, rsupport(CFS2) = 2/3, which are demon-
strated in Table 3.

Let the operator || be the size of a set, so |S| is the number
of queries in a session S, |Q| is the size of the predicate value
list of a query Q, and |PS| is the size of a predicate value
set PS. Let p be the number of CFSs of session S. Then
the query correlation score of a session S, qc(S) is defined
as

qc(S) = |S|×
p∑

i=1

(rsupport(CFSi)× |CFSi|)/
|S|∑
j=1

|Qj | (1)

For our running example S1, qc(S1) = 3× (1/3× 2 + 2/3×
3)/(4 + 4 + 4) = 2/3.

Intuitively, if a session has more CFSs with higher supports,
and these CFSs are more similar to the queries (they are
longer), the queries in this session are correlated, which leads
to a high query correlation score. Note that the number of
CFSs, p is often smaller than |S|. Mining CFSs with FP-
tree takes O(|S|) time. Calculating the refined support of a
CFS can be done by traversing the FP-tree and subtracting
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the support of a child node from the support of the node
corresponding to CFS. Calculating the refined supports
of all CFSs can be done in O(p) time. Thus, the time
complexity for calculating the query correlation score of a
session is O(|S|).

Finer grained query correlation may be obtained by explor-
ing the semantics of queries. For instances, divide a pred-
icate value into words and apply frequent pattern mining
on the word set. Alternatively, identify two values or two
words as semantically close if they co-occur in the same data
tuple. However, finer grained calculation is computationally
expensive, which prohibits the Heng subsystem to respond
quickly. It may also be too application specific and not as
general as the above definition of query correlation score.

5.2 Offline Learning
To learn an empirical threshold for query correlation, qcthres,
of normal user sessions, we calculate the query correlation
scores for all training sessions, and then set qcthres to be the
lower bound of query correlation scores of training sessions.
Ideally, if the training sessions are purely normal, qcthres can
be set to the lowest query correlation score of the training
sessions. However in practice, historical sessions as train-
ing sessions could also contain attack sessions, thus using
the lowest query correlation score of the training sessions as
qcthres may produce a lot of false negatives.

To solve this problem, we use a statistical outliers test,
Grubbs’ test [14], to extract query correlation score out-
liers from the training sessions, and then set qcthres to be
the mean of the query correlation scores of all the outliers.
Given a significance level α and the number of training ses-
sions M , we categorize the query correlation of a training
session, qc, as an outlier using the following Grubbs’ one-
sided test

G =
qc− qc

s
>

M − 1√
M

√√√√ t2(α/M,M−2)

M − 2 + t2(α/M,M−2)

(2)

where qc and s are the mean and standard deviation of the
query correlation scores of training sessions, and t2(α/M,M−2)

is the critical value of the t-distribution with (M−2) degrees
of freedom and a significance level of α/M .

5.3 Online Detection
The learnt threshold qcthres is used to identify suspicious
sessions in online detection. To examine a recently ended
new session Snew, Heng mines CFSs on Snew using the FP-
tree algorithm, and then uses Formula (1) to calculate the
query correlation score of Snew, qc(Snew). If

qc(Snew) < qcthres (3)

Heng marks Snew as a suspicious attack session. The time
complexity for online mining of CFSs and calculation of
query correlation score is O(|Snew|), depending on the num-
ber of queries in the session Snew.

Since it is very hard for real time detection to be accurate
due to the lack of full footprints of the attacks’ actions, a
compromised approach could be to wait until the number of
queries in a session reaches a predefined threshold, and start
calculating query correlation scores immediately.

6. RESULT COVERAGE
Not only are the queries in data harvesting sessions less cor-
related than the queries in normal user sessions, but they
are also more likely to cover a broader scope of the hidden
data. For example, it was experimentally shown in [10] that
web crawlers’ visits are more exhaustive than the visits of
the average normal users. This behavior applies to deep
web crawlers as well. Thus we use result coverage, the result
coverage of queries on the entire data in the hidden data
table, or the proximity of result data distribution to the dis-
tribution of the entire data, as our second line of defense for
differentiating data harvesting attackers from normal users.
Note that result coverage does not necessarily mean big re-
sult sets, since a big result set could be obtained from cer-
tain parts of data without spanning across the entire data
set. Result coverage and query correlation are also not sub-
stitutes for each other. Result coverage helps differentiate
real attackers from casual browsing users, while query cor-
relation helps catch attackers who do not want to expose
themselves by visiting too much data or sampling attackers
whose sample sizes are not very large.

To evaluate result coverage on the data with multiple at-
tributes, we consider D as a d-dimensional data space, and
identify the subsets, or portions of the space accessed by
queries of a session. Normal users’ accesses are usually lo-
calized, so the portions of space that they access are likely
to be concentrated in some parts while leaving other parts
untouched. In contrast, attackers’ accesses are broad, so the
portions of space that they access are likely to be scattered
everywhere. We capture different kinds of access patterns
of normal users by clustering the access patterns of training
sessions, and use a small number of cluster centers to rep-
resent large numbers of access patterns in different clusters.
In online detection, a new session whose access pattern de-
viates from the learnt access patterns of the cluster centers
is reported as a suspicious attack session.

To quantify access patterns, one may consider building a
spatial index tree such as a k-d tree [13] on D, and repre-
sent access patterns as accessed tree paths or tree nodes.
However, this approach is not easy to apply nor efficient in
online detection, since it requires a top-down tree traversal
for each query. Instead, we propose an efficient approach
with a much simpler representation, coverage bit vector, for
access patterns. We describe this representation in Section
6.1, and discuss offline clustering and online detection in
Section 6.2 and Section 6.3, respectively.

6.1 Representation of Result Coverage
First, we use a linearization transformation to map a mul-
tidimensional data tuple to a single integer, f : D → I.
If the number of attributes in D are exactly the same as
the number of fields on the search form, d, f is a one-to-
one mapping. Otherwise, the data tuples are grouped by
the d attributes by performing a SQL GROUP BY query,
and f maps each group of data tuples to a single integer.
The transformed integers do not need to be consecutive,
but f maps two data tuples that are close in the original
multi-dimensional data space to two integers that are close
(locality-preserving). Then, we sort the transformed inte-
gers in ascending order. We create a bit vector in which the
bits correspond to the ordered transformed integers one by
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Figure 2: Example of Z-curve Transformation

one. We say a combination of attribute values is valid, if it
appears in D. The size of the bit vector equals the num-
ber of valid combinations of the d attributes. We call this
bit vector a coverage bit vector, abbreviated as CBV , and
denote the size of CBV as |CBV |. Let the mapping of a
transformed integer to a bit be h : I → B. When a session
starts, we initialize a CBV and set all its bits to 0. For any
result tuple of a query, t that is mapped to a bit i in CBV
by mapping h(f(t)) = 1, we set CBV (i) = 1. The resulting
CBV at the end of the session captures result coverage.

Intuitively, since the data access of a normal user session
is usually localized, the CBV of a normal user session has
dense 1 bits in some parts, and a long consecutive range of
0 bits in most other regions of the vector. In contrast, the
CBV of a data harvesting session would have many inter-
leaving 0 and 1 bits.

Linearization transformation. We use a popular space
filling curve, z-curve [25] as the mapping f . Define an order
on the d attributes, A1, A2, ..., Ad. We start from the entire
data space. The data space is partitioned into two halves
along dimension Ai, in which the two halves have approx-
imately an equal number of data tuples and i is the next
dimension mod d. The lower half is assigned a code 0 and
the upper half a 1. The newly assigned code is appended to
the code of the pre-partitioned space. The partitioning of
the data space continues with each subspace being assigned
a binary code, until the granularity of the subspaces is ac-
ceptable, e.g. each sub space has no more than a predefined
number of data points. Considering the final binary codes as
binary numbers, the z-curve is a curve that traverses these
sub spaces in the order of their binary codes. An example is
shown in Fig. 2. Finally, the binary codes are transformed
to decimal integers. We can see that the z-curve transfor-
mation tries to preserve locality of original data tuples, but
it is not an exact transformation.

Categoric attribute values with hierarchical relationships can
be transformed together. Fig. 3 illustrates an example of as-
signing binary codes to the attributes Department and Cate-
gory in a clothes store database. Since attribute Department
has three values, Men, Women and Children, we use two bit
binary codes to represent them. In each department, the
category values are assigned binary codes in the same way
as the department values. Finally, the binary codes from
department and category are concatenated. For example, in

Figure 3: Example of Hierarchical Attributes Trans-
formation

men’s department, Men dress is assigned a category code 00
and becomes 0000, and Men casual is assigned a category
code 01 and becomes 0001, etc.

6.2 Offline Learning
Given two CBV s, CBVx and CBVy, a natural way to mea-
sure the difference of their access patterns is to count the
number of different bits, which we denote as diff(CBVx, CBVy).
To model different kinds of normal data access patterns in a
systematic way, we cluster the CBV s of training sessions and
use the resulting clusters to represent different categories of
normal data access patterns. Since CBVx(i) − CBVy(i) =
0, 1 for any bit i (1 ≤ i ≤ |CBV |),

diff(CBVx, CBVy) =
∑

i

|CBVx(i)− CBVy(i)| (4)

=
∑

i

(CBVx(i)− CBVy(i))2 (5)

= d(CBVx, CBVy)2 (6)

where d(CBVx, CBVy) is the Euclidean distance between
CBVx and CBVy. This result suggests that we can use
the Euclidean distance to measure the difference of data
access patterns, and we are safe to use a Euclidean distance
based clustering algorithm such as k-means for clustering.
We choose k-means [16] and use an efficient variant of it [27,
28] 2. We abbreviate Euclidean distance as distance in the
following.

The CBV of a normal user session is expected to be close
to one of the learnt cluster centers, Clustnorm. Although
Clustnorm is not a CBV , |Clustnorm| = |CBV | and each
value of the Clustnorm vector is in [0, 1]. It is easy to see that

d(CBVx, CBVy) ≤
√
|CBV | and d(CBV, Clustnorm) ≤

√
|CBV |.

During clustering, we calculate the cluster diameters, the
farthest distance of a cluster member to its corresponding
cluster center, and set the mean of cluster diameters as the
upper bound distance threshold, dthres, for identifying nor-
mal user sessions.

6.3 Online Detection
The learnt threshold dthres is used to identify suspicious ses-
sions in online detection. To examine a new session Snew,
Ha initializes a coverage bit vector CBVnew with all bits
set to 0 when Snew starts, and sets the bit correspond-
ing to any returned data tuple t, CBVnew(h(f(t))) = 1

2k-means is not always suitable for clustering high dimen-
sional numeric data, but it works well for CBV s. Because
the value in any dimension of CBV is binary, CBV is much
less affected by the curse of the dimensionality. The experi-
mental results in Section 8 confirm that the clustering result
of k-means is effective in data harvesting detection.
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as Snew gets results to a query submitted. Then it cal-
culates the distances of CBVnew to the centers of the nor-
mal clusters, and picks the smallest distance among them,
min(d(CBVnew, Clustnorm)). If

min(d(CBVnew, Clustnorm)) > dthres (7)

Ha marks Snew as a suspicious attack session. The time com-
plexity for finding and setting a bit in CBVnew is O(1) by
two table lookups through mapping h(f()). The worst case
time complexity for online distance calculation and compar-
ison is O(N), when the number of attributes in D is d, and
the size of the coverage bit vector equals the number of data
tuples in D.

Similar to Heng, Ha does not have to wait until session Snew

is terminated to initiate detection. It can start calculating
min(d(CBVnew, Clustnorm)) when the number of queries in
a session reaches a predefined threshold.

7. DETECTOR
During online detection, for each new session Snew, the de-
tector collects the query correlation score, qc(Snew), and the
smallest distance of the coverage bit vector to cluster centers,
min(d(CBVnew, Clustnorm)), and calculates the probability
of Snew being an attack session.

Since the Euclidean distance d(CBVx, CBVy) ≤
√
|CBV |

and d(CBV, Clustnorm) ≤
√
|CBV |, we normalize d by di-

viding
√
|CBV | and derive a normalized distance, nd =

d√
|CBV | . Similarly, we normalize the distance threshold

dthres and get ndthres = dthres√
|CBV | . Hence, the probability

of a session S being an attack session is

Pa(S) =
min(nd(CBVS , Clustnorm))

1 + qc(S)
(8)

Since nd(CBVS , Clustnorm) ≤ 1, we guarantee Pa(S) ≤ 1.
Intuitively, the farther a session’s CBV is from the learnt
cluster centers, the lower the query correlation is, the higher
the probability of the session being data harvesting. We
define the threshold of Pa(S) as

Pthres =
ndthres

1 + qcthres
(9)

If Pa(S) > Pthres, the detector flags S as an attack session.

Based on the time complexity for query correlation calcula-
tion O(|S|) and the worst time complexity for result cover-
age analysis O(N), the time complexity for the entire online
detection is linear to the length of the session and the size
of the database O(max(|S|, N)), thus detection represents
little overhead.

8. EXPERIMENT EVALUATION
We evaluate the effectiveness and efficiency of HengHa, the
stand-alone query correlation observer, Heng, and the stand-
alone result coverage monitor, Ha, for detecting data har-
vesting in terms of false positive rate, false negative rate and
online detection time. The evaluation of running only one
of the Heng, Ha subsystems for detection is valuable, since
in some applications, not both queries and results are avail-
able. Experimental results on a real user session set with

synthesized attack sessions show that both HengHa and its
two subsystems are able to achieve very low false positive
rates and 0% false negative rates, and they are very efficient
in online detection.

8.1 Experimental Setup
We implemented HengHa in Java. We used the FP-tree im-
plementation in [4] for mining frequent predicate value sets
(Section 5.1), and the k-means implementation in [27, 28]
for clustering coverage bit vectors (Section 6.2). We imple-
mented the crawling attack following [23] and the sampling
attack following [6, 8]. To camouflage the attacker as a nor-
mal user, we generated waits between consecutive queries
that follows a Pareto distribution.

We used a real clickstream data set from KDD Cup 2000
[21]. It contains the clickstream log from Gazelle.com, a
legwear and legcare web retailer which closed their online
store in 2000. To facilitate business analysis, this log does
not only record HTTP requests, but also records the prod-
ucts and related assortments that users clicked on. Ses-
sions are clearly separated in the log. The original click-
stream data has 234,954 sessions with 777,480 HTTP re-
quests. Note that a real data set with real query sessions
is difficult to obtain for evaluation. Hence, we recovered
session queries from HTTP requests and recorded product
assortments. These recovered queries, though not exact due
to some unknown predicates, approximate real user queries.
We removed the sessions without queries and removed the
HTTP requests that are not queries, e.g. editing account
profile, and checkout. After this refinement, we had 99,169
sessions with 466,638 product queries or views, which we
used in our experiments. Since we do not have the database
of Gazelle.com, we reproduced a partial product data table
by collecting the products that users clicked on, which re-
sulted in a partial product database of 387 products. Note
that this partial product data is still meaningful in evaluat-
ing result coverage, since it represents the popular subset of
the data.

We set the limit on the size of results per web page, K, to 10,
and just returned the first available 10 results for a query.
We synthesized 1000 random attack sessions, in which 40%
of them are crawling attack sessions implemented according
to [23] and 60% of them are sampling attack sessions imple-
mented based on the algorithm in [6, 8]. The informative
threshold for evaluating a query template in a crawling at-
tack is set to be 6, meaning that on the average, each of
the queries instantiated from a informative query template
has 6 distinct results. For synthesizing sampling attacks, we
randomly generated a desired sample size between 5% and
50%.

8.2 Experiment Results
Note that the 99,169 sessions are not pure normal user ses-
sions. By manual observation on randomly picked sessions,
we found some obvious data harvesting sessions exist, e.g.
there are two sessions with thousands of queries that al-
most cover each finest grained category of the products.
To extract a session set of better quality for offline learn-
ing, we collected the average number of distinct queries per
minute, QPM, for each of the 99,169 sessions, and performed
Grubbs’ test for outliers [14] to remove 605 outlier sessions
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that have an excessively large number of queries per minute.
The smallest QPM in an outlier sessions is 7.3. Note that
this cleaning step is very coarse, since some of the manually
observed obvious data harvesting sessions still exist after re-
moving the outliers. We set the lower bound waits between
queries in an attack to 10 seconds, thus our synthesized at-
tack sessions cannot be detected by simple statistical outlier
tests based on measurements on time and the number of
queries, such as the QPM we used for cleaning training ses-
sions. Since the data harvesting we considered in this paper
tries to maximize the information gain while minimizing the
number of queries submitted, the duration of an attack ses-
sion is generally not long. A synthesized attack session that
we generated for KDD CUP 2000 data typically terminates
in an hour with between 78 and 158 query submissions.

After removing outliers, we performed four folds cross vali-
dation detection on the remaining 98,564 sessions. In each
validation, 3/4 of the 98,564 sessions are used for training,
and the rest 1/4 along with the 1000 synthesized attack ses-
sions are used for testing. Our testbed is a Linux server with
Intel 2.40GHz CPU and 3GB memory, running Federal Core
8 OS.

We evaluated the effectiveness and efficiency of HengHa, the
Heng and Ha subsystems for detecting crawling and sam-
pling attacks. Specifically, HengHa relies on the detector
(Section 7) and the Heng, Ha subsystems for detecting at-
tacks. The Heng subsystem relies on Formula (3), while the
Ha subsystem relies on Formula (7) for detecting attacks.

Table 4 summarizes the false positive and false negative rates
of the three systems. Here the false positive rate and false
negative rate are abbreviated as FPR and FNR respectively.
The results suggest that HengHa and the two proposals for
query correlation and result coverage are effective for data
harvesting detection. The false positive rates are very low,
which means that normal user sessions are almost never sus-
pended and we save the system administrator from check-
ing too many potential attack sessions. The false negative
rates are all zero, which means that all attacks are caught.
HengHa performs better than the Heng subsystem in all
validations. An interesting phenomenon is that the false
positive rate of HengHa is slightly higher than the stand-
alone Ha subsystem. The reason is because we consider the
98,564 sessions as “normal” in calculating the false positive
and false negative rates, but actual attacks might exist in
this “normal” training set, given that it is extremely difficult
to obtain a sanitized data set and the preprocessing we have
is very simple.

Table 5 summarizes the detection calculation time per ses-
sion of the three systems. The time is measured in millisec-
onds. We can see that both HengHa and the two subsystems
respond very quickly in online detection. This helps the web
applications to locate the attackers and block them from fur-
ther harvesting from the underlying databases. Heng spends
most of its time on mining closed frequent patterns (the de-
tection time of Heng should be less in practice, since we used
a stand alone FP-tree miner and file IOs for feeding input
to the miner and processing its output are also included).
In contrast, Ha only maintains the coverage bit vector and
calculates its distance to learnt cluster centers during online

Table 4: Effectiveness for Detecting Data Harvest-
ing

System FPR(%) FNR(%)
1 HengHa 0.21 0

Heng:Query Correlation Observer 0.71 0
Ha:Result Coverage Monitor 0.18 0

2 HengHa 0.06 0
Heng:Query Correlation Observer 0.26 0
Ha:Result Coverage Monitor 0.05 0

3 HengHa 0.06 0
Heng:Query Correlation Observer 0.13 0
Ha:Result Coverage Monitor 0.06 0

4 HengHa 0.24 0
Heng:Query Correlation Observer 0.55 0
Ha:Result Coverage Monitor 0.24 0

detection, so it takes much less time than Heng.

Table 5: Efficiency for Detecting Data Harvesting
System Detection Time (ms)

1 HengHa 8.787
Heng:Query Correlation Observer 8.182
Ha:Result Coverage Monitor 0.812

2 HengHa 6.276
Heng:Query Correlation Observer 5.909
Ha:Result Coverage Monitor 0.515

3 HengHa 7.863
Heng:Query Correlation Observer 7.115
Ha:Result Coverage Monitor 0.392

4 HengHa 6.12
Heng:Query Correlation Observer 5.97
Ha:Result Coverage Monitor 0.294

In summary, HengHa and its subsystems are both effective
and efficient in online detection of data harvesting sessions.

9. CONCLUSION
This paper considers emerging attacks on the back-end databases
of enterprise web applications, which harvest the data and
learn sensitive aggregate information from the databases
through web form interfaces by iteratively submitting le-
gitimate queries and analyzing the returned results for de-
signing new queries. As more enterprise web applications
migrate to cloud, such attacks will be more prevalent. We
refer to such attacks as data harvesting. We have identified
two types of data harvesting, crawling attack and sampling
attack, based on previous work, and summarized their char-
acteristics as broadness and diversity. We have proposed a
data harvesting detection system called HengHa, which uses
result coverage and query correlation to capture broadness
and diversity, respectively. The effectiveness and efficiency
of HengHa for detecting data harvesting has been verified in
the experiment on a real data set.
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